Motif 999 (n=1,392)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0A1B0GTI1 CCDC201 T26 ochoa Coiled-coil domain-containing protein 201 None
A0JNW5 BLTP3B T420 ochoa Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}.
A0MZ66 SHTN1 T496 ochoa Shootin-1 (Shootin1) Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}.
A1L390 PLEKHG3 T964 ochoa Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}.
A1L390 PLEKHG3 T1042 ochoa Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}.
A1L390 PLEKHG3 T1156 ochoa Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}.
A4UGR9 XIRP2 T2947 ochoa Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}.
A6NEL2 SOWAHB T744 ochoa Ankyrin repeat domain-containing protein SOWAHB (Ankyrin repeat domain-containing protein 56) (Protein sosondowah homolog B) None
A7E2V4 ZSWIM8 T1158 ochoa Zinc finger SWIM domain-containing protein 8 Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}.
A7MD48 SRRM4 T352 ochoa Serine/arginine repetitive matrix protein 4 (Medulloblastoma antigen MU-MB-2.76) (Neural-specific serine/arginine repetitive splicing factor of 100 kDa) (Neural-specific SR-related protein of 100 kDa) (nSR100) Splicing factor specifically required for neural cell differentiation. Acts in conjunction with nPTB/PTBP2 by binding directly to its regulated target transcripts and promotes neural-specific exon inclusion in many genes that function in neural cell differentiation. Required to promote the inclusion of neural-specific exon 10 in nPTB/PTBP2, leading to increased expression of neural-specific nPTB/PTBP2. Also promotes the inclusion of exon 16 in DAAM1 in neuron extracts (By similarity). Promotes alternative splicing of REST transcripts to produce REST isoform 3 (REST4) with greatly reduced repressive activity, thereby activating expression of REST targets in neural cells (PubMed:30684677). Plays an important role during embryonic development as well as in the proper functioning of the adult nervous system. Regulates alternative splicing events in genes with important neuronal functions (By similarity). {ECO:0000250|UniProtKB:Q8BKA3, ECO:0000269|PubMed:30684677}.
A8K0R7 ZNF839 T672 ochoa Zinc finger protein 839 (Renal carcinoma antigen NY-REN-50) None
A8MPP1 DDX11L8 T46 ochoa Putative ATP-dependent DNA helicase DDX11-like protein 8 (EC 5.6.2.-) (DEAD/H box protein 11-like 8) Putative DNA helicase. {ECO:0000305}.
B0YJ81 HACD1 T32 ochoa Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 1 (EC 4.2.1.134) (3-hydroxyacyl-CoA dehydratase 1) (HACD1) (Cementum-attachment protein) (CAP) (Protein-tyrosine phosphatase-like member A) [Isoform 1]: Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators. {ECO:0000269|PubMed:18554506}.; FUNCTION: [Isoform 2]: In tooth development, may play a role in the recruitment and the differentiation of cells that contribute to cementum formation. May also bind hydroxyapatite and regulate its crystal nucleation to form cementum. {ECO:0000269|PubMed:22067203}.
D6RIA3 C4orf54 T448 ochoa Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) None
H7BZ55 CROCC2 T36 ochoa Ciliary rootlet coiled-coil protein 2 None
I3L521 None T107 ochoa RNA-binding protein 7 (RNA-binding motif protein 7) None
K7EQG2 None T63 ochoa Uncharacterized protein None
O00257 CBX4 T351 ochoa E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}.
O00443 PIK3C2A T1555 ochoa Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PI3K-C2-alpha) (PtdIns-3-kinase C2 subunit alpha) (EC 2.7.1.137) (EC 2.7.1.153) (EC 2.7.1.154) (Phosphoinositide 3-kinase-C2-alpha) Generates phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) that act as second messengers. Has a role in several intracellular trafficking events. Functions in insulin signaling and secretion. Required for translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane and glucose uptake in response to insulin-mediated RHOQ activation. Regulates insulin secretion through two different mechanisms: involved in glucose-induced insulin secretion downstream of insulin receptor in a pathway that involves AKT1 activation and TBC1D4/AS160 phosphorylation, and participates in the late step of insulin granule exocytosis probably in insulin granule fusion. Synthesizes PtdIns3P in response to insulin signaling. Functions in clathrin-coated endocytic vesicle formation and distribution. Regulates dynamin-independent endocytosis, probably by recruiting EEA1 to internalizing vesicles. In neurosecretory cells synthesizes PtdIns3P on large dense core vesicles. Participates in calcium induced contraction of vascular smooth muscle by regulating myosin light chain (MLC) phosphorylation through a mechanism involving Rho kinase-dependent phosphorylation of the MLCP-regulatory subunit MYPT1. May play a role in the EGF signaling cascade. May be involved in mitosis and UV-induced damage response. Required for maintenance of normal renal structure and function by supporting normal podocyte function. Involved in the regulation of ciliogenesis and trafficking of ciliary components (PubMed:31034465). {ECO:0000269|PubMed:10766823, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11239472, ECO:0000269|PubMed:12719431, ECO:0000269|PubMed:16215232, ECO:0000269|PubMed:21081650, ECO:0000269|PubMed:31034465, ECO:0000269|PubMed:9337861}.
O00444 PLK4 T423 ochoa Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}.
O00515 LAD1 T274 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00515 LAD1 T358 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O14828 SCAMP3 T78 ochoa Secretory carrier-associated membrane protein 3 (Secretory carrier membrane protein 3) Functions in post-Golgi recycling pathways. Acts as a recycling carrier to the cell surface.
O14917 PCDH17 T1040 ochoa Protocadherin-17 (Protocadherin-68) Potential calcium-dependent cell-adhesion protein.
O15014 ZNF609 T360 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15014 ZNF609 T1315 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15042 U2SURP T487 ochoa U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) None
O15061 SYNM T1109 ochoa Synemin (Desmuslin) Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}.
O15061 SYNM T1165 ochoa Synemin (Desmuslin) Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}.
O15169 AXIN1 T79 ochoa Axin-1 (Axis inhibition protein 1) (hAxin) Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}.
O15379 HDAC3 T76 ochoa Histone deacetylase 3 (HD3) (EC 3.5.1.98) (Protein deacetylase HDAC3) (EC 3.5.1.-) (Protein deacylase HDAC3) (EC 3.5.1.-) (RPD3-2) (SMAP45) Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates (PubMed:21030595, PubMed:21444723, PubMed:23911289, PubMed:25301942, PubMed:28167758, PubMed:28497810, PubMed:32404892, PubMed:22230954). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:23911289). Histone deacetylases act via the formation of large multiprotein complexes, such as N-Cor repressor complex, which activate the histone deacetylase activity (PubMed:23911289, PubMed:22230954). Participates in the BCL6 transcriptional repressor activity by deacetylating the H3 'Lys-27' (H3K27) on enhancer elements, antagonizing EP300 acetyltransferase activity and repressing proximal gene expression (PubMed:23911289). Acts as a molecular chaperone for shuttling phosphorylated NR2C1 to PML bodies for sumoylation (By similarity). Contributes, together with XBP1 isoform 1, to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to endothelial cell (EC) survival under disturbed flow/oxidative stress (PubMed:25190803). Regulates both the transcriptional activation and repression phases of the circadian clock in a deacetylase activity-independent manner (By similarity). During the activation phase, promotes the accumulation of ubiquitinated BMAL1 at the E-boxes and during the repression phase, blocks FBXL3-mediated CRY1/2 ubiquitination and promotes the interaction of CRY1 and BMAL1 (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). Also functions as a deacetylase for non-histone targets, such as KAT5, MEF2D, MAPK14, RARA and STAT3 (PubMed:15653507, PubMed:21030595, PubMed:21444723, PubMed:25301942, PubMed:28167758). Serves as a corepressor of RARA, mediating its deacetylation and repression, leading to inhibition of RARE DNA element binding (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl), lactoyl (lactyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation, delactylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:34608293, PubMed:35044827). Catalyzes decrotonylation of MAPRE1/EB1 (PubMed:34608293). Mediates delactylation NBN/NBS1, thereby inhibiting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38961290). {ECO:0000250|UniProtKB:O88895, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21444723, ECO:0000269|PubMed:22230954, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25301942, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:32404892, ECO:0000269|PubMed:34608293, ECO:0000269|PubMed:35044827, ECO:0000269|PubMed:38961290}.
O15417 TNRC18 T1880 ochoa Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) None
O15446 POLR1G T287 ochoa DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}.
O43149 ZZEF1 T1477 ochoa Zinc finger ZZ-type and EF-hand domain-containing protein 1 Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}.
O43166 SIPA1L1 T1551 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43182 ARHGAP6 Y669 ochoa Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}.
O43295 SRGAP3 T839 ochoa SLIT-ROBO Rho GTPase-activating protein 3 (srGAP3) (Mental disorder-associated GAP) (Rho GTPase-activating protein 14) (WAVE-associated Rac GTPase-activating protein) (WRP) GTPase-activating protein for RAC1 and perhaps Cdc42, but not for RhoA small GTPase. May attenuate RAC1 signaling in neurons. {ECO:0000269|PubMed:12195014, ECO:0000269|PubMed:12447388}.
O43306 ADCY6 T56 ochoa Adenylate cyclase type 6 (EC 4.6.1.1) (ATP pyrophosphate-lyase 6) (Adenylate cyclase type VI) (Adenylyl cyclase 6) (Ca(2+)-inhibitable adenylyl cyclase) Catalyzes the formation of the signaling molecule cAMP downstream of G protein-coupled receptors (PubMed:17110384, PubMed:17916776). Functions in signaling cascades downstream of beta-adrenergic receptors in the heart and in vascular smooth muscle cells (PubMed:17916776). Functions in signaling cascades downstream of the vasopressin receptor in the kidney and has a role in renal water reabsorption. Functions in signaling cascades downstream of PTH1R and plays a role in regulating renal phosphate excretion. Functions in signaling cascades downstream of the VIP and SCT receptors in pancreas and contributes to the regulation of pancreatic amylase and fluid secretion (By similarity). Signaling mediates cAMP-dependent activation of protein kinase PKA. This promotes increased phosphorylation of various proteins, including AKT. Plays a role in regulating cardiac sarcoplasmic reticulum Ca(2+) uptake and storage, and is required for normal heart ventricular contractibility. May contribute to normal heart function (By similarity). Mediates vasodilatation after activation of beta-adrenergic receptors by isoproterenol (PubMed:17916776). Contributes to bone cell responses to mechanical stimuli (By similarity). {ECO:0000250|UniProtKB:Q01341, ECO:0000250|UniProtKB:Q03343, ECO:0000269|PubMed:17110384, ECO:0000269|PubMed:17916776}.
O43365 HOXA3 T150 ochoa Homeobox protein Hox-A3 (Homeobox protein Hox-1E) Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis.
O43426 SYNJ1 T1055 ochoa Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}.
O43491 EPB41L2 T600 ochoa Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
O43524 FOXO3 T296 ochoa Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}.
O43829 ZBTB14 T192 ochoa Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}.
O43903 GAS2 T290 ochoa Growth arrest-specific protein 2 (GAS-2) Required to maintain microtubule bundles in inner ear supporting cells, affording them with mechanical stiffness to transmit sound energy through the cochlea. {ECO:0000250|UniProtKB:P11862}.
O60245 PCDH7 T1013 ochoa Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) None
O60303 KATNIP T455 ochoa Katanin-interacting protein May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}.
O60315 ZEB2 T362 ochoa Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}.
O60318 MCM3AP T116 ochoa Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}.
O60343 TBC1D4 T811 ochoa TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}.
O60499 STX10 T110 ochoa Syntaxin-10 (Syn10) SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. {ECO:0000269|PubMed:18195106}.
O60503 ADCY9 T1275 ochoa Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}.
O60934 NBN T434 ochoa Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}.
O75061 DNAJC6 T572 ochoa Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}.
O75061 DNAJC6 T620 ochoa Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}.
O75151 PHF2 T907 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75152 ZC3H11A T151 ochoa Zinc finger CCCH domain-containing protein 11A Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.
O75175 CNOT3 T509 ochoa CCR4-NOT transcription complex subunit 3 (CCR4-associated factor 3) (Leukocyte receptor cluster member 2) Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. May be involved in metabolic regulation; may be involved in recruitment of the CCR4-NOT complex to deadenylation target mRNAs involved in energy metabolism. Involved in mitotic progression and regulation of the spindle assembly checkpoint by regulating the stability of MAD1L1 mRNA. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may involve histone deacetylases. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:22342980, ECO:0000269|PubMed:22367759}.
O75182 SIN3B T1005 ochoa Paired amphipathic helix protein Sin3b (Histone deacetylase complex subunit Sin3b) (Transcriptional corepressor Sin3b) Acts as a transcriptional repressor. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Interacts with MAD-MAX heterodimers by binding to MAD. The heterodimer then represses transcription by tethering SIN3B to DNA. Also forms a complex with FOXK1 which represses transcription. With FOXK1, regulates cell cycle progression probably by repressing cell cycle inhibitor genes expression. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). {ECO:0000250|UniProtKB:Q62141, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}.
O75362 ZNF217 T409 ochoa Zinc finger protein 217 Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}.
O75363 BCAS1 T316 ochoa Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}.
O75376 NCOR1 T1594 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75385 ULK1 T452 ochoa Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}.
O75448 MED24 T875 ochoa Mediator of RNA polymerase II transcription subunit 24 (Activator-recruited cofactor 100 kDa component) (ARC100) (Cofactor required for Sp1 transcriptional activation subunit 4) (CRSP complex subunit 4) (Mediator complex subunit 24) (Thyroid hormone receptor-associated protein 4) (Thyroid hormone receptor-associated protein complex 100 kDa component) (Trap100) (hTRAP100) (Vitamin D3 receptor-interacting protein complex 100 kDa component) (DRIP100) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:16595664}.
O75626 PRDM1 T513 ochoa PR domain zinc finger protein 1 (EC 2.1.1.-) (BLIMP-1) (Beta-interferon gene positive regulatory domain I-binding factor) (PR domain-containing protein 1) (Positive regulatory domain I-binding factor 1) (PRDI-BF1) (PRDI-binding factor 1) Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue-resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. Plays a role in the development, retention and long-term establishment of adaptive and innate tissue-resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, but also in other nonbarrier tissues like liver and kidney, and therefore may provide immediate immunological protection against reactivating infections or viral reinfection (By similarity). Binds specifically to the PRDI element in the promoter of the beta-interferon gene (PubMed:1851123). Drives the maturation of B-lymphocytes into Ig secreting cells (PubMed:12626569). Associates with the transcriptional repressor ZNF683 to chromatin at gene promoter regions (By similarity). Binds to the promoter and acts as a transcriptional repressor of IRF8, thereby promotes transcription of osteoclast differentiation factors such as NFATC1 and EEIG1 (By similarity). {ECO:0000250|UniProtKB:Q60636, ECO:0000269|PubMed:12626569, ECO:0000269|PubMed:1851123}.
O75928 PIAS2 T501 ochoa E3 SUMO-protein ligase PIAS2 (EC 2.3.2.-) (Androgen receptor-interacting protein 3) (ARIP3) (DAB2-interacting protein) (DIP) (E3 SUMO-protein transferase PIAS2) (Msx-interacting zinc finger protein) (Miz1) (PIAS-NY protein) (Protein inhibitor of activated STAT x) (Protein inhibitor of activated STAT2) Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor. Plays a crucial role as a transcriptional coregulator in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway. The effects of this transcriptional coregulation, transactivation or silencing may vary depending upon the biological context and the PIAS2 isoform studied. However, it seems to be mostly involved in gene silencing. Binds to sumoylated ELK1 and enhances its transcriptional activity by preventing recruitment of HDAC2 by ELK1, thus reversing SUMO-mediated repression of ELK1 transactivation activity. Isoform PIAS2-beta, but not isoform PIAS2-alpha, promotes MDM2 sumoylation. Isoform PIAS2-alpha promotes PARK7 sumoylation. Isoform PIAS2-beta promotes NCOA2 sumoylation more efficiently than isoform PIAS2-alpha. Isoform PIAS2-alpha sumoylates PML at'Lys-65' and 'Lys-160'. {ECO:0000269|PubMed:15920481, ECO:0000269|PubMed:15976810, ECO:0000269|PubMed:22406621}.
O76039 CDKL5 T531 ochoa Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}.
O76080 ZFAND5 T60 ochoa AN1-type zinc finger protein 5 (Zinc finger A20 domain-containing protein 2) (Zinc finger protein 216) Involved in protein degradation via the ubiquitin-proteasome system. May act by anchoring ubiquitinated proteins to the proteasome. Plays a role in ubiquitin-mediated protein degradation during muscle atrophy. Plays a role in the regulation of NF-kappa-B activation and apoptosis. Inhibits NF-kappa-B activation triggered by overexpression of RIPK1 and TRAF6 but not of RELA. Also inhibits tumor necrosis factor (TNF), IL-1 and TLR4-induced NF-kappa-B activation in a dose-dependent manner. Overexpression sensitizes cells to TNF-induced apoptosis. Is a potent inhibitory factor for osteoclast differentiation. {ECO:0000269|PubMed:14754897}.
O94811 TPPP T162 ochoa Tubulin polymerization-promoting protein (TPPP) (EC 3.6.5.-) (25 kDa brain-specific protein) (TPPP/p25) (p24) (p25-alpha) Regulator of microtubule dynamics that plays a key role in myelination by promoting elongation of the myelin sheath (PubMed:31522887). Acts as a microtubule nucleation factor in oligodendrocytes: specifically localizes to the postsynaptic Golgi apparatus region, also named Golgi outpost, and promotes microtubule nucleation, an important step for elongation of the myelin sheath (PubMed:31522887, PubMed:33831707). Required for both uniform polarized growth of distal microtubules as well as directing the branching of proximal processes (PubMed:31522887). Shows magnesium-dependent GTPase activity; the role of the GTPase activity is unclear (PubMed:21316364, PubMed:21995432). In addition to microtubule nucleation activity, also involved in microtubule bundling and stabilization of existing microtubules, thereby maintaining the integrity of the microtubule network (PubMed:17105200, PubMed:17693641, PubMed:18028908, PubMed:26289831). Regulates microtubule dynamics by promoting tubulin acetylation: acts by inhibiting the tubulin deacetylase activity of HDAC6 (PubMed:20308065, PubMed:23093407). Also regulates cell migration: phosphorylation by ROCK1 inhibits interaction with HDAC6, resulting in decreased acetylation of tubulin and increased cell motility (PubMed:23093407). Plays a role in cell proliferation by regulating the G1/S-phase transition (PubMed:23355470). Involved in astral microtubule organization and mitotic spindle orientation during early stage of mitosis; this process is regulated by phosphorylation by LIMK2 (PubMed:22328514). {ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:17693641, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:21316364, ECO:0000269|PubMed:21995432, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:26289831, ECO:0000269|PubMed:31522887}.
O94885 SASH1 T103 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
O94885 SASH1 T444 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
O94913 PCF11 T513 ochoa Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}.
O94979 SEC31A T1165 ochoa Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}.
O95067 CCNB2 T94 ochoa G2/mitotic-specific cyclin-B2 Essential for the control of the cell cycle at the G2/M (mitosis) transition.
O95155 UBE4B T1267 ochoa Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}.
O95359 TACC2 T2571 ochoa Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}.
O95425 SVIL T1227 ochoa Supervillin (Archvillin) (p205/p250) [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}.
O95429 BAG4 T181 ochoa BAG family molecular chaperone regulator 4 (BAG-4) (Bcl-2-associated athanogene 4) (Silencer of death domains) Inhibits the chaperone activity of HSP70/HSC70 by promoting substrate release (By similarity). Prevents constitutive TNFRSF1A signaling. Negative regulator of PRKN translocation to damaged mitochondria. {ECO:0000250, ECO:0000269|PubMed:24270810}.
O95503 CBX6 T282 ochoa Chromobox protein homolog 6 Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Possibly contributes to the target selectivity of the PRC1 complex by binding specific regions of chromatin (PubMed:18927235). Recruitment to chromatin might occur in an H3K27me3-independent fashion (By similarity). May have a PRC1-independent function in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:Q9DBY5, ECO:0000269|PubMed:18927235, ECO:0000269|PubMed:21282530}.
O95613 PCNT T2194 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95696 BRD1 T27 ochoa Bromodomain-containing protein 1 (BR140-like protein) (Bromodomain and PHD finger-containing protein 2) Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, that acts as a regulator of hematopoiesis (PubMed:16387653, PubMed:21753189, PubMed:21880731). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby promoting erythroid differentiation (PubMed:21753189). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21880731}.
O95782 AP2A1 T794 ochoa AP-2 complex subunit alpha-1 (100 kDa coated vesicle protein A) (Adaptor protein complex AP-2 subunit alpha-1) (Adaptor-related protein complex 2 subunit alpha-1) (Alpha-adaptin A) (Alpha1-adaptin) (Clathrin assembly protein complex 2 alpha-A large chain) (Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit) Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}.
O95785 WIZ T998 ochoa Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}.
O95936 EOMES T598 ochoa Eomesodermin homolog (T-box brain protein 2) (T-brain-2) (TBR-2) Functions as a transcriptional activator playing a crucial role during development. Functions in trophoblast differentiation and later in gastrulation, regulating both mesoderm delamination and endoderm specification. Plays a role in brain development being required for the specification and the proliferation of the intermediate progenitor cells and their progeny in the cerebral cortex (PubMed:17353897). Required for differentiation and migration of unipolar dendritic brush cells (PubMed:33488348). Also involved in the differentiation of CD8+ T-cells during immune response regulating the expression of lytic effector genes (PubMed:17566017). {ECO:0000269|PubMed:17353897, ECO:0000269|PubMed:17566017, ECO:0000269|PubMed:33488348}.
P02545 LMNA T24 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P04049 RAF1 T31 ochoa RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}.
P07814 EPRS1 T888 ochoa Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}.
P08237 PFKM T669 ochoa ATP-dependent 6-phosphofructokinase, muscle type (ATP-PFK) (PFK-M) (EC 2.7.1.11) (6-phosphofructokinase type A) (Phosphofructo-1-kinase isozyme A) (PFK-A) (Phosphohexokinase) Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis.
P08581 MET T992 ochoa Hepatocyte growth factor receptor (HGF receptor) (EC 2.7.10.1) (HGF/SF receptor) (Proto-oncogene c-Met) (Scatter factor receptor) (SF receptor) (Tyrosine-protein kinase Met) Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of neuronal precursors, angiogenesis and kidney formation. During skeletal muscle development, it is crucial for the migration of muscle progenitor cells and for the proliferation of secondary myoblasts (By similarity). In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Also promotes differentiation and proliferation of hematopoietic cells. May regulate cortical bone osteogenesis (By similarity). {ECO:0000250|UniProtKB:P16056}.; FUNCTION: (Microbial infection) Acts as a receptor for Listeria monocytogenes internalin InlB, mediating entry of the pathogen into cells. {ECO:0000269|PubMed:11081636, ECO:0000305|PubMed:17662939, ECO:0000305|PubMed:19900460}.
P08651 NFIC T307 ochoa Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication.
P09104 ENO2 T265 ochoa Gamma-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 2) (Neural enolase) (Neuron-specific enolase) (NSE) Has neurotrophic and neuroprotective properties on a broad spectrum of central nervous system (CNS) neurons. Binds, in a calcium-dependent manner, to cultured neocortical neurons and promotes cell survival (By similarity). {ECO:0000250}.
P09543 CNP T320 ochoa 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) (CNPase) (EC 3.1.4.37) Catalyzes the formation of 2'-nucleotide products from 2',3'-cyclic substrates (By similarity). May participate in RNA metabolism in the myelinating cell, CNP is the third most abundant protein in central nervous system myelin (By similarity). {ECO:0000250|UniProtKB:P06623, ECO:0000250|UniProtKB:P16330}.
P10242 MYB T534 ochoa Transcriptional activator Myb (Proto-oncogene c-Myb) Transcriptional activator; DNA-binding protein that specifically recognize the sequence 5'-YAAC[GT]G-3'. Plays an important role in the control of proliferation and differentiation of hematopoietic progenitor cells.
P10515 DLAT T102 ochoa Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial (EC 2.3.1.12) (70 kDa mitochondrial autoantigen of primary biliary cirrhosis) (PBC) (Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex) (M2 antigen complex 70 kDa subunit) (Pyruvate dehydrogenase complex component E2) (PDC-E2) (PDCE2) As part of the pyruvate dehydrogenase complex, catalyzes the transfers of an acetyl group to a lipoic acid moiety (Probable). The pyruvate dehydrogenase complex, catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle (Probable). {ECO:0000305|PubMed:20160912}.
P10746 UROS T247 ochoa Uroporphyrinogen-III synthase (UROIIIS) (UROS) (EC 4.2.1.75) (Hydroxymethylbilane hydrolyase [cyclizing]) (Uroporphyrinogen-III cosynthase) Catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III, the branch point for the various sub-pathways leading to the wide diversity of porphyrins (PubMed:11689424, PubMed:18004775). Porphyrins act as cofactors for a multitude of enzymes that perform a variety of processes within the cell such as methionine synthesis (vitamin B12) or oxygen transport (heme) (PubMed:11689424, PubMed:18004775). {ECO:0000269|PubMed:11689424, ECO:0000269|PubMed:18004775}.
P11532 DMD T2439 ochoa Dystrophin Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission. {ECO:0000250|UniProtKB:P11531, ECO:0000269|PubMed:16710609}.
P12270 TPR T381 ochoa Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}.
P12270 TPR T2139 ochoa Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}.
P15941 MUC1 Y1229 ochoa|psp Mucin-1 (MUC-1) (Breast carcinoma-associated antigen DF3) (Cancer antigen 15-3) (CA 15-3) (Carcinoma-associated mucin) (Episialin) (H23AG) (Krebs von den Lungen-6) (KL-6) (PEMT) (Peanut-reactive urinary mucin) (PUM) (Polymorphic epithelial mucin) (PEM) (Tumor-associated epithelial membrane antigen) (EMA) (Tumor-associated mucin) (CD antigen CD227) [Cleaved into: Mucin-1 subunit alpha (MUC1-NT) (MUC1-alpha); Mucin-1 subunit beta (MUC1-beta) (MUC1-CT)] The alpha subunit has cell adhesive properties. Can act both as an adhesion and an anti-adhesion protein. May provide a protective layer on epithelial cells against bacterial and enzyme attack.; FUNCTION: The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylations and protein-protein interactions. Modulates signaling in ERK, SRC and NF-kappa-B pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK pathway. Promotes tumor progression. Regulates TP53-mediated transcription and determines cell fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of TP53 and represses TP53 activity.
P16157 ANK1 T1688 ochoa Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}.
P18146 EGR1 T28 ochoa Early growth response protein 1 (EGR-1) (AT225) (Nerve growth factor-induced protein A) (NGFI-A) (Transcription factor ETR103) (Transcription factor Zif268) (Zinc finger protein 225) (Zinc finger protein Krox-24) Transcriptional regulator (PubMed:20121949). Recognizes and binds to the DNA sequence 5'-GCG(T/G)GGGCG-3'(EGR-site) in the promoter region of target genes (By similarity). Binds double-stranded target DNA, irrespective of the cytosine methylation status (PubMed:25258363, PubMed:25999311). Regulates the transcription of numerous target genes, and thereby plays an important role in regulating the response to growth factors, DNA damage, and ischemia. Plays a role in the regulation of cell survival, proliferation and cell death. Activates expression of p53/TP53 and TGFB1, and thereby helps prevent tumor formation. Required for normal progress through mitosis and normal proliferation of hepatocytes after partial hepatectomy. Mediates responses to ischemia and hypoxia; regulates the expression of proteins such as IL1B and CXCL2 that are involved in inflammatory processes and development of tissue damage after ischemia. Regulates biosynthesis of luteinizing hormone (LHB) in the pituitary (By similarity). Regulates the amplitude of the expression rhythms of clock genes: BMAL1, PER2 and NR1D1 in the liver via the activation of PER1 (clock repressor) transcription. Regulates the rhythmic expression of core-clock gene BMAL1 in the suprachiasmatic nucleus (SCN) (By similarity). {ECO:0000250|UniProtKB:P08046, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:25258363, ECO:0000269|PubMed:25999311}.
P19338 NCL T69 ochoa Nucleolin (Protein C23) Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}.
P19634 SLC9A1 T695 ochoa Sodium/hydrogen exchanger 1 (APNH) (Na(+)/H(+) antiporter, amiloride-sensitive) (Na(+)/H(+) exchanger 1) (NHE-1) (Solute carrier family 9 member 1) Electroneutral Na(+) /H(+) antiporter that extrudes Na(+) in exchange for external protons driven by the inward sodium ion chemical gradient, protecting cells from acidification that occurs from metabolism (PubMed:11350981, PubMed:11532004, PubMed:14680478, PubMed:15035633, PubMed:15677483, PubMed:17073455, PubMed:17493937, PubMed:22020933, PubMed:27650500, PubMed:32130622, PubMed:7110335, PubMed:7603840). Exchanges intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry (By similarity). Plays a key role in maintening intracellular pH neutral and cell volume, and thus is important for cell growth, proliferation, migration and survival (PubMed:12947095, PubMed:15096511, PubMed:22020933, PubMed:8901634). In addition, can transport lithium Li(+) and also functions as a Na(+)/Li(+) antiporter (PubMed:7603840). SLC9A1 also functions in membrane anchoring and organization of scaffolding complexes that coordinate signaling inputs (PubMed:15096511). {ECO:0000250|UniProtKB:P26431, ECO:0000269|PubMed:11350981, ECO:0000269|PubMed:11532004, ECO:0000269|PubMed:12947095, ECO:0000269|PubMed:14680478, ECO:0000269|PubMed:15035633, ECO:0000269|PubMed:15096511, ECO:0000269|PubMed:15677483, ECO:0000269|PubMed:17073455, ECO:0000269|PubMed:17493937, ECO:0000269|PubMed:22020933, ECO:0000269|PubMed:27650500, ECO:0000269|PubMed:32130622, ECO:0000269|PubMed:7110335, ECO:0000269|PubMed:7603840, ECO:0000269|PubMed:8901634}.
P19793 RXRA T23 ochoa Retinoic acid receptor RXR-alpha (Nuclear receptor subfamily 2 group B member 1) (Retinoid X receptor alpha) Receptor for retinoic acid that acts as a transcription factor (PubMed:10874028, PubMed:11162439, PubMed:11915042, PubMed:37478846). Forms homo- or heterodimers with retinoic acid receptors (RARs) and binds to target response elements in response to their ligands, all-trans or 9-cis retinoic acid, to regulate gene expression in various biological processes (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:16107141, PubMed:17761950, PubMed:18800767, PubMed:19167885, PubMed:28167758, PubMed:37478846). The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 to regulate transcription (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:17761950, PubMed:28167758). The high affinity ligand for retinoid X receptors (RXRs) is 9-cis retinoic acid (PubMed:1310260). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:20215566). On ligand binding, the corepressors dissociate from the receptors and coactivators are recruited leading to transcriptional activation (PubMed:20215566, PubMed:37478846, PubMed:9267036). Serves as a common heterodimeric partner for a number of nuclear receptors, such as RARA, RARB and PPARA (PubMed:10195690, PubMed:11915042, PubMed:28167758, PubMed:29021580). The RXRA/RARB heterodimer can act as a transcriptional repressor or transcriptional activator, depending on the RARE DNA element context (PubMed:29021580). The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes (PubMed:10195690). Together with RARA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). Acts as an enhancer of RARA binding to RARE DNA element (PubMed:28167758). May facilitate the nuclear import of heterodimerization partners such as VDR and NR4A1 (PubMed:12145331, PubMed:15509776). Promotes myelin debris phagocytosis and remyelination by macrophages (PubMed:26463675). Plays a role in the attenuation of the innate immune system in response to viral infections, possibly by negatively regulating the transcription of antiviral genes such as type I IFN genes (PubMed:25417649). Involved in the regulation of calcium signaling by repressing ITPR2 gene expression, thereby controlling cellular senescence (PubMed:30216632). {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:11162439, ECO:0000269|PubMed:11915042, ECO:0000269|PubMed:12145331, ECO:0000269|PubMed:1310260, ECO:0000269|PubMed:15509776, ECO:0000269|PubMed:16107141, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18800767, ECO:0000269|PubMed:19167885, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:25417649, ECO:0000269|PubMed:26463675, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:29021580, ECO:0000269|PubMed:30216632, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}.
P20265 POU3F2 T343 ochoa POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}.
P20700 LMNB1 T25 ochoa Lamin-B1 Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}.
P20810 CAST T245 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P21359 NF1 T2804 ochoa Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}.
P21580 TNFAIP3 T647 ochoa Tumor necrosis factor alpha-induced protein 3 (TNF alpha-induced protein 3) (EC 2.3.2.-) (EC 3.4.19.12) (OTU domain-containing protein 7C) (Putative DNA-binding protein A20) (Zinc finger protein A20) [Cleaved into: A20p50; A20p37] Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquitinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquitinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate 'Lys-11'-, 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death. Has a role in the function of the lymphoid system. Required for LPS-induced production of pro-inflammatory cytokines and IFN beta in LPS-tolerized macrophages. {ECO:0000269|PubMed:14748687, ECO:0000269|PubMed:15258597, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17961127, ECO:0000269|PubMed:18164316, ECO:0000269|PubMed:18952128, ECO:0000269|PubMed:19494296, ECO:0000269|PubMed:22099304, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:8692885, ECO:0000269|PubMed:9299557, ECO:0000269|PubMed:9882303}.
P23588 EIF4B T461 ochoa Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
P24723 PRKCH T319 ochoa Protein kinase C eta type (EC 2.7.11.13) (PKC-L) (nPKC-eta) Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in the regulation of cell differentiation in keratinocytes and pre-B cell receptor, mediates regulation of epithelial tight junction integrity and foam cell formation, and is required for glioblastoma proliferation and apoptosis prevention in MCF-7 cells. In keratinocytes, binds and activates the tyrosine kinase FYN, which in turn blocks epidermal growth factor receptor (EGFR) signaling and leads to keratinocyte growth arrest and differentiation. Associates with the cyclin CCNE1-CDK2-CDKN1B complex and inhibits CDK2 kinase activity, leading to RB1 dephosphorylation and thereby G1 arrest in keratinocytes. In association with RALA activates actin depolymerization, which is necessary for keratinocyte differentiation. In the pre-B cell receptor signaling, functions downstream of BLNK by up-regulating IRF4, which in turn activates L chain gene rearrangement. Regulates epithelial tight junctions (TJs) by phosphorylating occludin (OCLN) on threonine residues, which is necessary for the assembly and maintenance of TJs. In association with PLD2 and via TLR4 signaling, is involved in lipopolysaccharide (LPS)-induced RGS2 down-regulation and foam cell formation. Upon PMA stimulation, mediates glioblastoma cell proliferation by activating the mTOR pathway, the PI3K/AKT pathway and the ERK1-dependent phosphorylation of ELK1. Involved in the protection of glioblastoma cells from irradiation-induced apoptosis by preventing caspase-9 activation. In camptothecin-treated MCF-7 cells, regulates NF-kappa-B upstream signaling by activating IKBKB, and confers protection against DNA damage-induced apoptosis. Promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Phosphorylates ATF2 which promotes its nuclear retention and transcriptional activity and negatively regulates its mitochondrial localization. {ECO:0000269|PubMed:10806212, ECO:0000269|PubMed:11112424, ECO:0000269|PubMed:11772428, ECO:0000269|PubMed:15489897, ECO:0000269|PubMed:17146445, ECO:0000269|PubMed:18780722, ECO:0000269|PubMed:19114660, ECO:0000269|PubMed:20558593, ECO:0000269|PubMed:21820409, ECO:0000269|PubMed:22304920}.
P24928 POLR2A T1950 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P25054 APC T2475 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25054 APC T2676 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25440 BRD2 T47 ochoa Bromodomain-containing protein 2 (O27.1.1) Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}.
P25445 FAS T214 ochoa Tumor necrosis factor receptor superfamily member 6 (Apo-1 antigen) (Apoptosis-mediating surface antigen FAS) (FASLG receptor) (CD antigen CD95) Receptor for TNFSF6/FASLG. The adapter molecule FADD recruits caspase CASP8 to the activated receptor. The resulting death-inducing signaling complex (DISC) performs CASP8 proteolytic activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apoptosis. FAS-mediated apoptosis may have a role in the induction of peripheral tolerance, in the antigen-stimulated suicide of mature T-cells, or both. The secreted isoforms 2 to 6 block apoptosis (in vitro). {ECO:0000269|PubMed:19118384, ECO:0000269|PubMed:7533181, ECO:0000269|PubMed:9184224}.
P26651 ZFP36 T95 ochoa mRNA decay activator protein ZFP36 (G0/G1 switch regulatory protein 24) (Growth factor-inducible nuclear protein NUP475) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36) Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:10330172, PubMed:10751406, PubMed:11279239, PubMed:12115244, PubMed:12748283, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:23644599, PubMed:25815583, PubMed:27193233, PubMed:31439631, PubMed:9703499). Acts as an 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258, PubMed:23644599). Recruits deadenylase CNOT7 (and probably the CCR4-NOT complex) via association with CNOT1, and hence promotes ARE-mediated mRNA deadenylation (PubMed:23644599). Functions also by recruiting components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs (PubMed:11719186, PubMed:12748283, PubMed:15687258, PubMed:16364915). Self regulates by destabilizing its own mRNA (PubMed:15187101). Binds to 3'-UTR ARE of numerous mRNAs and of its own mRNA (PubMed:10330172, PubMed:10751406, PubMed:12115244, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:19188452, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:25815583). Plays a role in anti-inflammatory responses; suppresses tumor necrosis factor (TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA decay and several other inflammatory ARE-containing mRNAs in interferon (IFN)- and/or lipopolysaccharide (LPS)-induced macrophages (By similarity). Also plays a role in the regulation of dendritic cell maturation at the post-transcriptional level, and hence operates as part of a negative feedback loop to limit the inflammatory response (PubMed:18367721). Promotes ARE-mediated mRNA decay of hypoxia-inducible factor HIF1A mRNA during the response of endothelial cells to hypoxia (PubMed:21775632). Positively regulates early adipogenesis of preadipocytes by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Plays a role in maintaining skeletal muscle satellite cell quiescence by promoting ARE-mediated mRNA decay of the myogenic determination factor MYOD1 mRNA (By similarity). Associates also with and regulates the expression of non-ARE-containing target mRNAs at the post-transcriptional level, such as MHC class I mRNAs (PubMed:18367721). Participates in association with argonaute RISC catalytic components in the ARE-mediated mRNA decay mechanism; assists microRNA (miRNA) targeting ARE-containing mRNAs (PubMed:15766526). May also play a role in the regulation of cytoplasmic mRNA decapping; enhances decapping of ARE-containing RNAs, in vitro (PubMed:16364915). Involved in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, affects nuclear pre-mRNA processing (By similarity). Negatively regulates nuclear poly(A)-binding protein PABPN1-stimulated polyadenylation activity on ARE-containing pre-mRNA during LPS-stimulated macrophages (By similarity). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role as a tumor suppressor by inhibiting cell proliferation in breast cancer cells (PubMed:26926077). {ECO:0000250|UniProtKB:P22893, ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10751406, ECO:0000269|PubMed:11279239, ECO:0000269|PubMed:11719186, ECO:0000269|PubMed:12115244, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15187101, ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15766526, ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:16702957, ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18367721, ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20221403, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21775632, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26926077, ECO:0000269|PubMed:27182009, ECO:0000269|PubMed:27193233, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:9703499}.; FUNCTION: (Microbial infection) Negatively regulates HTLV-1 TAX-dependent transactivation of viral long terminal repeat (LTR) promoter. {ECO:0000269|PubMed:14679154}.
P27816 MAP4 T101 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P27987 ITPKB T271 ochoa Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}.
P27987 ITPKB T449 ochoa Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}.
P28715 ERCC5 T528 ochoa DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}.
P28749 RBL1 T652 ochoa Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}.
P33241 LSP1 T195 ochoa Lymphocyte-specific protein 1 (47 kDa actin-binding protein) (52 kDa phosphoprotein) (pp52) (Lymphocyte-specific antigen WP34) May play a role in mediating neutrophil activation and chemotaxis. {ECO:0000250}.
P35606 COPB2 T861 ochoa|psp Coatomer subunit beta' (Beta'-coat protein) (Beta'-COP) (p102) The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. {ECO:0000269|PubMed:34450031}.; FUNCTION: This coatomer complex protein, essential for Golgi budding and vesicular trafficking, is a selective binding protein (RACK) for protein kinase C, epsilon type. It binds to Golgi membranes in a GTP-dependent manner (By similarity). {ECO:0000250}.
P35712 SOX6 T401 ochoa Transcription factor SOX-6 Transcription factor that plays a key role in several developmental processes, including neurogenesis, chondrocytes differentiation and cartilage formation (Probable). Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX5, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene, and is thereby involved in the differentiation of oligodendroglia in the developing spinal tube. Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). {ECO:0000250|UniProtKB:P40645, ECO:0000305|PubMed:32442410}.
P40818 USP8 T454 ochoa Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}.
P40818 USP8 T673 ochoa Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}.
P41162 ETV3 T161 ochoa ETS translocation variant 3 (ETS domain transcriptional repressor PE1) (PE-1) (Mitogenic Ets transcriptional suppressor) Transcriptional repressor that contribute to growth arrest during terminal macrophage differentiation by repressing target genes involved in Ras-dependent proliferation. Represses MMP1 promoter activity. {ECO:0000269|PubMed:12007404}.
P41182 BCL6 T345 ochoa B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}.
P41182 BCL6 T429 ochoa B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}.
P41214 EIF2D T363 ochoa Eukaryotic translation initiation factor 2D (eIF2d) (Hepatocellular carcinoma-associated antigen 56) (Ligatin) Translation initiation factor that is able to deliver tRNA to the P-site of the eukaryotic ribosome in a GTP-independent manner. The binding of Met-tRNA(I) occurs after the AUG codon finds its position in the P-site of 40S ribosomes, the situation that takes place during initiation complex formation on some specific RNAs. Its activity in tRNA binding with 40S subunits does not require the presence of the aminoacyl moiety. Possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40S subunit. In addition to its role in initiation, can promote release of deacylated tRNA and mRNA from recycled 40S subunits following ABCE1-mediated dissociation of post-termination ribosomal complexes into subunits. {ECO:0000269|PubMed:20566627, ECO:0000269|PubMed:20713520}.
P42330 AKR1C3 T131 ochoa Aldo-keto reductase family 1 member C3 (EC 1.1.1.-) (EC 1.1.1.210) (EC 1.1.1.53) (EC 1.1.1.62) (17-beta-hydroxysteroid dehydrogenase type 5) (17-beta-HSD 5) (3-alpha-HSD type II, brain) (3-alpha-hydroxysteroid dehydrogenase type 2) (3-alpha-HSD type 2) (EC 1.1.1.357) (Chlordecone reductase homolog HAKRb) (Dihydrodiol dehydrogenase 3) (DD-3) (DD3) (Dihydrodiol dehydrogenase type I) (HA1753) (Prostaglandin F synthase) (PGFS) (EC 1.1.1.188) (Testosterone 17-beta-dehydrogenase 5) (EC 1.1.1.239, EC 1.1.1.64) Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Acts as a NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain and regulates the metabolism of androgens, estrogens and progesterone (PubMed:10622721, PubMed:11165022, PubMed:7650035, PubMed:9415401, PubMed:9927279). Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH (PubMed:11165022, PubMed:14672942). Acts preferentially as a 17-ketosteroid reductase and has the highest catalytic efficiency of the AKR1C enzyme for the reduction of delta4-androstenedione to form testosterone (PubMed:20036328). Reduces prostaglandin (PG) D2 to 11beta-prostaglandin F2, progesterone to 20alpha-hydroxyprogesterone and estrone to 17beta-estradiol (PubMed:10622721, PubMed:10998348, PubMed:11165022, PubMed:15047184, PubMed:19010934, PubMed:20036328). Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol) (PubMed:10557352, PubMed:10998348, PubMed:11165022, PubMed:14672942, PubMed:7650035, PubMed:9415401). Also displays retinaldehyde reductase activity toward 9-cis-retinal (PubMed:21851338). {ECO:0000269|PubMed:10557352, ECO:0000269|PubMed:10622721, ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:11165022, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:15047184, ECO:0000269|PubMed:19010934, ECO:0000269|PubMed:20036328, ECO:0000269|PubMed:21851338, ECO:0000269|PubMed:7650035, ECO:0000269|PubMed:9415401, ECO:0000269|PubMed:9927279}.
P42331 ARHGAP25 T409 ochoa Rho GTPase-activating protein 25 (Rho-type GTPase-activating protein 25) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}.
P42684 ABL2 T938 ochoa Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}.
P46019 PHKA2 T1046 ochoa Phosphorylase b kinase regulatory subunit alpha, liver isoform (Phosphorylase kinase alpha L subunit) Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin.
P46821 MAP1B T1341 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B T1503 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P47736 RAP1GAP T486 ochoa Rap1 GTPase-activating protein 1 (Rap1GAP) (Rap1GAP1) GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15141215}.
P48681 NES T354 ochoa Nestin Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}.
P49006 MARCKSL1 T122 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P49327 FASN T976 ochoa Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
P49450 CENPA T21 ochoa|psp Histone H3-like centromeric protein A (Centromere autoantigen A) (Centromere protein A) (CENP-A) Histone H3-like nucleosomal protein that is specifically found in centromeric nucleosomes (PubMed:11756469, PubMed:14667408, PubMed:15282608, PubMed:15475964, PubMed:15702419, PubMed:17651496, PubMed:19114591, PubMed:20739937, PubMed:27499292, PubMed:7962047, PubMed:9024683). Replaces conventional H3 in the nucleosome core of centromeric chromatin that serves as an assembly site for the inner kinetochore (PubMed:18072184). The presence of CENPA subtly modifies the nucleosome structure and the way DNA is wrapped around the nucleosome and gives rise to protruding DNA ends that are less well-ordered and rigid compared to nucleosomes containing histone H3 (PubMed:26878239, PubMed:27499292). May serve as an epigenetic mark that propagates centromere identity through replication and cell division (PubMed:15282608, PubMed:15475964, PubMed:20739937, PubMed:21478274, PubMed:26878239). Required for recruitment and assembly of kinetochore proteins, and as a consequence required for progress through mitosis, chromosome segregation and cytokinesis (PubMed:11756469, PubMed:14667408, PubMed:18072184, PubMed:23818633, PubMed:25556658, PubMed:27499292). {ECO:0000269|PubMed:11756469, ECO:0000269|PubMed:14667408, ECO:0000269|PubMed:15282608, ECO:0000269|PubMed:15475964, ECO:0000269|PubMed:15702419, ECO:0000269|PubMed:17651496, ECO:0000269|PubMed:18072184, ECO:0000269|PubMed:19114591, ECO:0000269|PubMed:21478274, ECO:0000269|PubMed:23818633, ECO:0000269|PubMed:25556658, ECO:0000269|PubMed:26878239, ECO:0000269|PubMed:27499292, ECO:0000269|PubMed:7962047, ECO:0000269|PubMed:9024683, ECO:0000305|PubMed:20739937}.
P49757 NUMB T246 ochoa Protein numb homolog (h-Numb) (Protein S171) Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}.
P49757 NUMB T363 ochoa Protein numb homolog (h-Numb) (Protein S171) Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}.
P49796 RGS3 T808 ochoa Regulator of G-protein signaling 3 (RGP3) (RGS3) Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}.
P49802 RGS7 T243 ochoa Regulator of G-protein signaling 7 (RGS7) GTPase activator component of the RGS7-GNB5 complex that regulates G protein-coupled receptor signaling cascades (PubMed:10521509, PubMed:10862767, PubMed:31189666). The RGS7-GNB5 complex acts as an inhibitor signal transduction by promoting the GTPase activity of G protein alpha subunits, such as GNAO1, thereby driving them into their inactive GDP-bound form (PubMed:10521509, PubMed:10862767). May play a role in synaptic vesicle exocytosis (Probable) (PubMed:12659861). Glycine-dependent regulation of the RGS7-GNB5 complex by GPR158 affects mood and cognition via its ability to regulate neuronal excitability in L2/L3 pyramidal neurons of the prefrontal cortex (By similarity). Modulates the activity of potassium channels that are activated by GNAO1 in response to muscarinic acetylcholine receptor M2/CHRM2 signaling (PubMed:15897264). {ECO:0000250|UniProtKB:O54829, ECO:0000269|PubMed:10521509, ECO:0000269|PubMed:10862767, ECO:0000269|PubMed:15897264, ECO:0000269|PubMed:31189666, ECO:0000305|PubMed:12659861}.
P49810 PSEN2 T27 ochoa Presenilin-2 (PS-2) (EC 3.4.23.-) (AD3LP) (AD5) (E5-1) (STM-2) [Cleaved into: Presenilin-2 NTF subunit; Presenilin-2 CTF subunit] Probable catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein). Requires the other members of the gamma-secretase complex to have a protease activity. May play a role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. May function in the cytoplasmic partitioning of proteins. The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is involved in calcium homeostasis (PubMed:16959576). Is a regulator of mitochondrion-endoplasmic reticulum membrane tethering and modulates calcium ions shuttling between ER and mitochondria (PubMed:21285369). {ECO:0000269|PubMed:10497236, ECO:0000269|PubMed:10652302, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:21285369}.
P49916 LIG3 T244 ochoa DNA ligase 3 (EC 6.5.1.1) (DNA ligase III) (Polydeoxyribonucleotide synthase [ATP] 3) Isoform 3 functions as a heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. Isoform 1 is targeted to mitochondria, where it functions as a DNA ligase in mitochondrial base-excision DNA repair (PubMed:10207110, PubMed:24674627). {ECO:0000269|PubMed:10207110, ECO:0000269|PubMed:24674627}.
P50479 PDLIM4 T114 ochoa PDZ and LIM domain protein 4 (LIM protein RIL) (Reversion-induced LIM protein) [Isoform 1]: Suppresses SRC activation by recognizing and binding to active SRC and facilitating PTPN13-mediated dephosphorylation of SRC 'Tyr-419' leading to its inactivation. Inactivated SRC dissociates from this protein allowing the initiation of a new SRC inactivation cycle (PubMed:19307596). Involved in reorganization of the actin cytoskeleton (PubMed:21636573). In nonmuscle cells, binds to ACTN1 (alpha-actinin-1), increases the affinity of ACTN1 to F-actin (filamentous actin), and promotes formation of actin stress fibers. Involved in regulation of the synaptic AMPA receptor transport in dendritic spines of hippocampal pyramidal neurons directing the receptors toward an insertion at the postsynaptic membrane. Links endosomal surface-internalized GRIA1-containing AMPA receptors to the alpha-actinin/actin cytoskeleton. Increases AMPA receptor-mediated excitatory postsynaptic currents in neurons (By similarity). {ECO:0000250|UniProtKB:P36202, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:21636573}.; FUNCTION: [Isoform 2]: Involved in reorganization of the actin cytoskeleton and in regulation of cell migration. In response to oxidative stress, binds to NQO1, which stabilizes it and protects it from ubiquitin-independent degradation by the core 20S proteasome. Stabilized protein is able to heterodimerize with isoform 1 changing the subcellular location of it from cytoskeleton and nuclei to cytosol, leading to loss of isoforms 1 ability to induce formation of actin stress fibers. Counteracts the effects produced by isoform 1 on organization of actin cytoskeleton and cell motility to fine-tune actin cytoskeleton rearrangement and to attenuate cell migration. {ECO:0000269|PubMed:21636573}.
P50479 PDLIM4 Y137 ochoa PDZ and LIM domain protein 4 (LIM protein RIL) (Reversion-induced LIM protein) [Isoform 1]: Suppresses SRC activation by recognizing and binding to active SRC and facilitating PTPN13-mediated dephosphorylation of SRC 'Tyr-419' leading to its inactivation. Inactivated SRC dissociates from this protein allowing the initiation of a new SRC inactivation cycle (PubMed:19307596). Involved in reorganization of the actin cytoskeleton (PubMed:21636573). In nonmuscle cells, binds to ACTN1 (alpha-actinin-1), increases the affinity of ACTN1 to F-actin (filamentous actin), and promotes formation of actin stress fibers. Involved in regulation of the synaptic AMPA receptor transport in dendritic spines of hippocampal pyramidal neurons directing the receptors toward an insertion at the postsynaptic membrane. Links endosomal surface-internalized GRIA1-containing AMPA receptors to the alpha-actinin/actin cytoskeleton. Increases AMPA receptor-mediated excitatory postsynaptic currents in neurons (By similarity). {ECO:0000250|UniProtKB:P36202, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:21636573}.; FUNCTION: [Isoform 2]: Involved in reorganization of the actin cytoskeleton and in regulation of cell migration. In response to oxidative stress, binds to NQO1, which stabilizes it and protects it from ubiquitin-independent degradation by the core 20S proteasome. Stabilized protein is able to heterodimerize with isoform 1 changing the subcellular location of it from cytoskeleton and nuclei to cytosol, leading to loss of isoforms 1 ability to induce formation of actin stress fibers. Counteracts the effects produced by isoform 1 on organization of actin cytoskeleton and cell motility to fine-tune actin cytoskeleton rearrangement and to attenuate cell migration. {ECO:0000269|PubMed:21636573}.
P50570 DNM2 T766 ochoa|psp Dynamin-2 (EC 3.6.5.5) (Dynamin 2) (Dynamin II) Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission at plasma membrane during endocytosis and filament remodeling at many actin structures during organization of the actin cytoskeleton (PubMed:15731758, PubMed:19605363, PubMed:19623537, PubMed:33713620, PubMed:34744632). Plays an important role in vesicular trafficking processes, namely clathrin-mediated endocytosis (CME), exocytic and clathrin-coated vesicle from the trans-Golgi network, and PDGF stimulated macropinocytosis (PubMed:15731758, PubMed:19623537, PubMed:33713620). During vesicular trafficking process, associates to the membrane, through lipid binding, and self-assembles into ring-like structure through oligomerization to form a helical polymer around the vesicle membrane and leading to vesicle scission (PubMed:17636067, PubMed:34744632, PubMed:36445308). Plays a role in organization of the actin cytoskeleton by mediating arrangement of stress fibers and actin bundles in podocytes (By similarity). During organization of the actin cytoskeleton, self-assembles into ring-like structure that directly bundles actin filaments to form typical membrane tubules decorated with dynamin spiral polymers (By similarity). Self-assembly increases GTPase activity and the GTP hydrolysis causes the rapid depolymerization of dynamin spiral polymers, and results in dispersion of actin bundles (By similarity). Remodels, through its interaction with CTTN, bundled actin filaments in a GTPase-dependent manner and plays a role in orchestrating the global actomyosin cytoskeleton (PubMed:19605363). The interaction with CTTN stabilizes the interaction of DNM2 and actin filaments and stimulates the intrinsic GTPase activity that results in actin filament-barbed ends and increases the sensitivity of filaments in bundles to the actin depolymerizing factor, CFL1 (By similarity). Plays a role in the autophagy process, by participating in the formation of ATG9A vesicles destined for the autophagosomes through its interaction with SNX18 (PubMed:29437695), by mediating recycling endosome scission leading to autophagosome release through MAP1LC3B interaction (PubMed:29437695, PubMed:32315611). Also regulates maturation of apoptotic cell corpse-containing phagosomes by recruiting PIK3C3 to the phagosome membrane (By similarity). Also plays a role in cytokinesis (By similarity). May participate in centrosome cohesion through its interaction with TUBG1 (By similarity). Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Involved in membrane tubulation (PubMed:24135484). {ECO:0000250|UniProtKB:P39052, ECO:0000250|UniProtKB:P39054, ECO:0000269|PubMed:15731758, ECO:0000269|PubMed:17636067, ECO:0000269|PubMed:19605363, ECO:0000269|PubMed:19623537, ECO:0000269|PubMed:24135484, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:32315611, ECO:0000269|PubMed:33713620, ECO:0000269|PubMed:34744632, ECO:0000269|PubMed:36445308}.
P50851 LRBA T1120 ochoa Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}.
P51003 PAPOLA T539 ochoa Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}.
P51787 KCNQ1 T470 ochoa|psp Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}.
P51788 CLCN2 T714 ochoa Chloride channel protein 2 (ClC-2) Voltage-gated and osmosensitive chloride channel. Forms a homodimeric channel where each subunit has its own ion conduction pathway. Conducts double-barreled currents controlled by two types of gates, two fast glutamate gates that control each subunit independently and a slow common gate that opens and shuts off both subunits simultaneously. Displays inward rectification currents activated upon membrane hyperpolarization and extracellular hypotonicity (PubMed:16155254, PubMed:17567819, PubMed:19191339, PubMed:23632988, PubMed:29403011, PubMed:29403012, PubMed:36964785, PubMed:38345841). Contributes to chloride conductance involved in neuron excitability. In hippocampal neurons, generates a significant part of resting membrane conductance and provides an additional chloride efflux pathway to prevent chloride accumulation in dendrites upon GABA receptor activation. In glia, associates with the auxiliary subunit HEPACAM/GlialCAM at astrocytic processes and myelinated fiber tracts where it may regulate transcellular chloride flux buffering extracellular chloride and potassium concentrations (PubMed:19191339, PubMed:22405205, PubMed:23707145). Regulates aldosterone production in adrenal glands. The opening of CLCN2 channels at hyperpolarized membrane potentials in the glomerulosa causes cell membrane depolarization, activation of voltage-gated calcium channels and increased expression of aldosterone synthase, the rate-limiting enzyme for aldosterone biosynthesis (PubMed:29403011, PubMed:29403012). Contributes to chloride conductance in retinal pigment epithelium involved in phagocytosis of shed photoreceptor outer segments and photoreceptor renewal (PubMed:36964785). Conducts chloride currents at the basolateral membrane of epithelial cells with a role in chloride reabsorption rather than secretion (By similarity) (PubMed:16155254). Permeable to small monovalent anions with chloride > thiocyanate > bromide > nitrate > iodide ion selectivity (By similarity) (PubMed:29403012). {ECO:0000250|UniProtKB:P35525, ECO:0000250|UniProtKB:Q9R0A1, ECO:0000269|PubMed:16155254, ECO:0000269|PubMed:17567819, ECO:0000269|PubMed:19191339, ECO:0000269|PubMed:22405205, ECO:0000269|PubMed:23632988, ECO:0000269|PubMed:23707145, ECO:0000269|PubMed:29403011, ECO:0000269|PubMed:29403012, ECO:0000269|PubMed:36964785, ECO:0000269|PubMed:38345841}.
P52701 MSH6 T139 ochoa DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}.
P52746 ZNF142 T993 ochoa Zinc finger protein 142 May be involved in transcriptional regulation. {ECO:0000305}.
P53621 COPA T917 ochoa Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor.
P53814 SMTN T279 ochoa Smoothelin Structural protein of the cytoskeleton.
P54725 RAD23A T94 ochoa UV excision repair protein RAD23 homolog A (HR23A) (hHR23A) Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to 'Lys-48'-linked polyubiquitin chains in a length-dependent manner and with a lower affinity to 'Lys-63'-linked polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome.; FUNCTION: Involved in nucleotide excision repair and is thought to be functional equivalent for RAD23B in global genome nucleotide excision repair (GG-NER) by association with XPC. In vitro, the XPC:RAD23A dimer has NER activity. Can stabilize XPC.; FUNCTION: (Microbial infection) Involved in Vpr-dependent replication of HIV-1 in non-proliferating cells and primary macrophages. Required for the association of HIV-1 Vpr with the host proteasome. {ECO:0000269|PubMed:20614012}.
P54727 RAD23B T162 ochoa UV excision repair protein RAD23 homolog B (HR23B) (hHR23B) (XP-C repair-complementing complex 58 kDa protein) (p58) Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome.; FUNCTION: Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation.; FUNCTION: The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts. XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1.
P57060 RWDD2B T175 ochoa RWD domain-containing protein 2B None
P61978 HNRNPK T118 ochoa Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}.
P63010 AP2B1 T682 ochoa AP-2 complex subunit beta (AP105B) (Adaptor protein complex AP-2 subunit beta) (Adaptor-related protein complex 2 subunit beta) (Beta-2-adaptin) (Beta-adaptin) (Clathrin assembly protein complex 2 beta large chain) (Plasma membrane adaptor HA2/AP2 adaptin beta subunit) Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 beta subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins; at least some clathrin-associated sorting proteins (CLASPs) are recognized by their [DE]-X(1,2)-F-X-X-[FL]-X-X-X-R motif. The AP-2 beta subunit binds to clathrin heavy chain, promoting clathrin lattice assembly; clathrin displaces at least some CLASPs from AP2B1 which probably then can be positioned for further coat assembly. {ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:14985334, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}.
P78310 CXADR T334 ochoa Coxsackievirus and adenovirus receptor (CAR) (hCAR) (CVB3-binding protein) (Coxsackievirus B-adenovirus receptor) (HCVADR) Component of the epithelial apical junction complex that may function as a homophilic cell adhesion molecule and is essential for tight junction integrity. Also involved in transepithelial migration of leukocytes through adhesive interactions with JAML a transmembrane protein of the plasma membrane of leukocytes. The interaction between both receptors also mediates the activation of gamma-delta T-cells, a subpopulation of T-cells residing in epithelia and involved in tissue homeostasis and repair. Upon epithelial CXADR-binding, JAML induces downstream cell signaling events in gamma-delta T-cells through PI3-kinase and MAP kinases. It results in proliferation and production of cytokines and growth factors by T-cells that in turn stimulate epithelial tissues repair. {ECO:0000269|PubMed:11734628, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:15800062, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:9096397}.; FUNCTION: (Microbial infection) Acts as a receptor for adenovirus type C. {ECO:0000269|PubMed:10567268, ECO:0000269|PubMed:10666333, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:9733828}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus B1 to B6. {ECO:0000269|PubMed:10814575, ECO:0000269|PubMed:14978041}.
P78312 FAM193A T668 ochoa Protein FAM193A (Protein IT14) None
P78344 EIF4G2 T397 ochoa Eukaryotic translation initiation factor 4 gamma 2 (eIF-4-gamma 2) (eIF-4G 2) (eIF4G 2) (Death-associated protein 5) (DAP-5) (p97) Appears to play a role in the switch from cap-dependent to IRES-mediated translation during mitosis, apoptosis and viral infection. Cleaved by some caspases and viral proteases. {ECO:0000269|PubMed:11511540, ECO:0000269|PubMed:11943866, ECO:0000269|PubMed:9032289, ECO:0000269|PubMed:9049310}.
P78524 DENND2B T467 ochoa DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}.
P78559 MAP1A T1656 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P80192 MAP3K9 T554 ochoa Mitogen-activated protein kinase kinase kinase 9 (EC 2.7.11.25) (Mixed lineage kinase 1) Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. {ECO:0000269|PubMed:11416147, ECO:0000269|PubMed:15610029}.
P82094 TMF1 T104 ochoa TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}.
P85037 FOXK1 T245 ochoa Forkhead box protein K1 (Myocyte nuclear factor) (MNF) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}.
P85037 FOXK1 T422 ochoa Forkhead box protein K1 (Myocyte nuclear factor) (MNF) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}.
P98082 DAB2 T473 ochoa Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
P98175 RBM10 T91 ochoa RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}.
Q00537 CDK17 T124 ochoa Cyclin-dependent kinase 17 (EC 2.7.11.22) (Cell division protein kinase 17) (PCTAIRE-motif protein kinase 2) (Serine/threonine-protein kinase PCTAIRE-2) May play a role in terminally differentiated neurons. Has a Ser/Thr-phosphorylating activity for histone H1 (By similarity). {ECO:0000250}.
Q00613 HSF1 T328 ochoa Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}.
Q01167 FOXK2 T201 ochoa Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}.
Q02548 PAX5 T285 ochoa Paired box protein Pax-5 (B-cell-specific transcription factor) (BSAP) Transcription factor that plays an essential role in commitment of lymphoid progenitors to the B-lymphocyte lineage (PubMed:10811620, PubMed:27181361). Fulfills a dual role by repressing B-lineage inappropriate genes and simultaneously activating B-lineage-specific genes (PubMed:10811620, PubMed:27181361). In turn, regulates cell adhesion and migration, induces V(H)-to-D(H)J(H) recombination, facilitates pre-B-cell receptor signaling and promotes development to the mature B-cell stage (PubMed:32612238). Repression of the cohesin-release factor WAPL causes global changes of the chromosomal architecture in pro-B cells to facilitate the generation of a diverse antibody repertoire (PubMed:32612238). {ECO:0000269|PubMed:10811620, ECO:0000269|PubMed:27181361, ECO:0000269|PubMed:32612238}.; FUNCTION: (Microbial infection) Plays an essential role in the maintenance of Epstein-Barr virus genome copy number within the host cell by promoting EBNA1/oriP-dependent binding and transcription (PubMed:31941781). Also participates in the inhibition of lytic EBV reactivation by modulating viral BZLF1 activity (PubMed:23678172). {ECO:0000269|PubMed:23678172, ECO:0000269|PubMed:31941781}.
Q03164 KMT2A T2100 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A T2153 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A T2169 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A T3038 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03252 LMNB2 T39 ochoa Lamin-B2 Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}.
Q03468 ERCC6 T1350 ochoa DNA excision repair protein ERCC-6 (EC 3.6.4.-) (ATP-dependent helicase ERCC6) (Cockayne syndrome protein CSB) Essential factor involved in transcription-coupled nucleotide excision repair (TC-NER), a process during which RNA polymerase II-blocking lesions are rapidly removed from the transcribed strand of active genes (PubMed:16246722, PubMed:20541997, PubMed:22483866, PubMed:26620705, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Plays a central role in the initiation of the TC-NER process: specifically recognizes and binds RNA polymerase II stalled at a lesion, and mediates recruitment of ERCC8/CSA, initiating DNA damage excision by TFIIH recruitment (PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Upon DNA-binding, it locally modifies DNA conformation by wrapping the DNA around itself, thereby modifying the interface between stalled RNA polymerase II and DNA (PubMed:15548521). Acts as a chromatin remodeler at DSBs; DNA-dependent ATPase-dependent activity is essential for this function (PubMed:16246722, PubMed:9565609). Plays an important role in regulating the choice of the DNA double-strand breaks (DSBs) repair pathway and G2/M checkpoint activation; DNA-dependent ATPase activity is essential for this function (PubMed:25820262). Regulates the DNA repair pathway choice by inhibiting non-homologous end joining (NHEJ), thereby promoting the homologous recombination (HR)-mediated repair of DSBs during the S/G2 phases of the cell cycle (PubMed:25820262). Mediates the activation of the ATM- and CHEK2-dependent DNA damage responses thus preventing premature entry of cells into mitosis following the induction of DNA DSBs (PubMed:25820262). Remodels chromatin by evicting histones from chromatin flanking DSBs, limiting RIF1 accumulation at DSBs thereby promoting BRCA1-mediated HR (PubMed:29203878). Required for stable recruitment of ELOA and CUL5 to DNA damage sites (PubMed:28292928). Also involved in UV-induced translocation of ERCC8 to the nuclear matrix (PubMed:26620705). Essential for neuronal differentiation and neuritogenesis; regulates transcription and chromatin remodeling activities required during neurogenesis (PubMed:24874740). {ECO:0000269|PubMed:15548521, ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:20541997, ECO:0000269|PubMed:22483866, ECO:0000269|PubMed:24874740, ECO:0000269|PubMed:25820262, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:28292928, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236, ECO:0000269|PubMed:9565609}.
Q05193 DNM1 T780 psp Dynamin-1 (EC 3.6.5.5) (Dynamin) (Dynamin I) Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission and participates in many forms of endocytosis, such as clathrin-mediated endocytosis or synaptic vesicle endocytosis as well as rapid endocytosis (RE) (PubMed:15703209, PubMed:20428113, PubMed:29668686, PubMed:8101525, PubMed:8910402, PubMed:9362482). Associates to the membrane, through lipid binding, and self-assembles into rings and stacks of interconnected rings through oligomerization to form a helical polymer around the vesicle membrane leading to constriction of invaginated coated pits around their necks (PubMed:30069048, PubMed:7877694, PubMed:9922133). Self-assembly of the helical polymer induces membrane tubules narrowing until the polymer reaches a length sufficient to trigger GTP hydrolysis (PubMed:19084269). Depending on the curvature imposed on the tubules, membrane detachment from the helical polymer upon GTP hydrolysis can cause spontaneous hemifission followed by complete fission (PubMed:19084269). May play a role in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells through its activation by dephosphorylation via the signaling downstream of EGFR (PubMed:29668686). Controls vesicle size at a step before fission, during formation of membrane pits, at hippocampal synapses (By similarity). Controls plastic adaptation of the synaptic vesicle recycling machinery to high levels of activity (By similarity). Mediates rapid endocytosis (RE), a Ca(2+)-dependent and clathrin- and K(+)-independent process in chromaffin cells (By similarity). Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP (By similarity). Through its interaction with DNAJC6, acts during the early steps of clathrin-coated vesicle (CCV) formation (PubMed:12791276). {ECO:0000250|UniProtKB:P39053, ECO:0000250|UniProtKB:Q08DF4, ECO:0000269|PubMed:12791276, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:19084269, ECO:0000269|PubMed:20428113, ECO:0000269|PubMed:29668686, ECO:0000269|PubMed:30069048, ECO:0000269|PubMed:7877694, ECO:0000269|PubMed:8101525, ECO:0000269|PubMed:8910402, ECO:0000269|PubMed:9362482, ECO:0000269|PubMed:9922133}.
Q05209 PTPN12 T573 ochoa Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}.
Q05682 CALD1 T726 ochoa Caldesmon (CDM) Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}.
Q07343 PDE4B T292 ochoa 3',5'-cyclic-AMP phosphodiesterase 4B (EC 3.1.4.53) (DPDE4) (PDE32) (cAMP-specific phosphodiesterase 4B) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:15260978). May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents. {ECO:0000269|PubMed:10846163, ECO:0000269|PubMed:15003452, ECO:0000269|PubMed:15260978}.
Q07866 KLC1 T462 ochoa Kinesin light chain 1 (KLC 1) Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport (PubMed:21385839). The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250|UniProtKB:P37285, ECO:0000269|PubMed:21385839}.
Q08499 PDE4D T350 ochoa 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}.
Q08AD1 CAMSAP2 T864 ochoa Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}.
Q09666 AHNAK T218 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q0IIM8 TBC1D8B T1037 ochoa TBC1 domain family member 8B Involved in vesicular recycling, probably as a RAB11B GTPase-activating protein. {ECO:0000269|PubMed:30661770}.
Q0VDF9 HSPA14 T188 ochoa Heat shock 70 kDa protein 14 (HSP70-like protein 1) (Heat shock protein HSP60) (Heat shock protein family A member 14) Component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, binds to the nascent polypeptide chain, while DNAJC2 stimulates its ATPase activity. {ECO:0000269|PubMed:16002468}.
Q12774 ARHGEF5 T664 ochoa Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}.
Q12802 AKAP13 T2400 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12873 CHD3 T1535 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12888 TP53BP1 T382 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12912 IRAG2 T133 ochoa Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}.
Q12979 ABR T55 ochoa Active breakpoint cluster region-related protein Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:7479768). The central Dbl homology (DH) domain functions as a guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:7479768). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF-1 directed motility and phagocytosis through the modulation of RAC1 activity (By similarity). {ECO:0000250|UniProtKB:Q5SSL4, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:7479768}.
Q13085 ACACA T1265 ochoa Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}.
Q13153 PAK1 T225 ochoa Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}.
Q13191 CBLB T527 ochoa E3 ubiquitin-protein ligase CBL-B (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene b) (RING finger protein 56) (RING-type E3 ubiquitin transferase CBL-B) (SH3-binding protein CBL-B) (Signal transduction protein CBL-B) E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome. Negatively regulates TCR (T-cell receptor), BCR (B-cell receptor) and FCER1 (high affinity immunoglobulin epsilon receptor) signal transduction pathways. In naive T-cells, inhibits VAV1 activation upon TCR engagement and imposes a requirement for CD28 costimulation for proliferation and IL-2 production. Also acts by promoting PIK3R1/p85 ubiquitination, which impairs its recruitment to the TCR and subsequent activation. In activated T-cells, inhibits PLCG1 activation and calcium mobilization upon restimulation and promotes anergy. In B-cells, acts by ubiquitinating SYK and promoting its proteasomal degradation. Slightly promotes SRC ubiquitination. May be involved in EGFR ubiquitination and internalization. May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBL, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:Q3TTA7, ECO:0000269|PubMed:10022120, ECO:0000269|PubMed:10086340, ECO:0000269|PubMed:11087752, ECO:0000269|PubMed:11526404, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:20525694}.
Q13207 TBX2 T388 ochoa T-box transcription factor TBX2 (T-box protein 2) Transcription factor which acts as a transcriptional repressor (PubMed:11062467, PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). May also function as a transcriptional activator (By similarity). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). Required for cardiac atrioventricular canal formation (PubMed:29726930). May cooperate with NKX2.5 to negatively modulate expression of NPPA/ANF in the atrioventricular canal (By similarity). May play a role as a positive regulator of TGFB2 expression, perhaps acting in concert with GATA4 in the developing outflow tract myocardium (By similarity). Plays a role in limb pattern formation (PubMed:29726930). Acts as a transcriptional repressor of ADAM10 gene expression, perhaps in concert with histone deacetylase HDAC1 as cofactor (PubMed:30599067). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX3 (By similarity). Required, together with TBX3, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with TBX3, in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). Acts as a negative regulator of expression of CDKN1A/p21, IL33 and CCN4; repression of CDKN1A is enhanced in response to UV-induced stress, perhaps as a result of phosphorylation by p38 MAPK (By similarity). Negatively modulates expression of CDKN2A/p14ARF and CDH1/E-cadherin (PubMed:11062467, PubMed:12000749, PubMed:22844464). Plays a role in induction of the epithelial-mesenchymal transition (EMT) (PubMed:22844464). Plays a role in melanocyte proliferation, perhaps via regulation of cyclin CCND1 (By similarity). Involved in melanogenesis, acting via negative modulation of expression of DHICA oxidase/TYRP1 and P protein/OCA2 (By similarity). Involved in regulating retinal pigment epithelium (RPE) cell proliferation, perhaps via negatively modulating transcription of the transcription factor CEBPD (PubMed:28910203). {ECO:0000250|UniProtKB:Q60707, ECO:0000269|PubMed:11062467, ECO:0000269|PubMed:11111039, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537, ECO:0000269|PubMed:22844464, ECO:0000269|PubMed:28910203, ECO:0000269|PubMed:29726930, ECO:0000269|PubMed:30599067}.
Q13330 MTA1 T578 ochoa Metastasis-associated protein MTA1 Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}.
Q13352 ITGB3BP T35 ochoa Centromere protein R (CENP-R) (Beta-3-endonexin) (Integrin beta-3-binding protein) (Nuclear receptor-interacting factor 3) Transcription coregulator that can have both coactivator and corepressor functions. Isoform 1, but not other isoforms, is involved in the coactivation of nuclear receptors for retinoid X (RXRs) and thyroid hormone (TRs) in a ligand-dependent fashion. In contrast, it does not coactivate nuclear receptors for retinoic acid, vitamin D, progesterone receptor, nor glucocorticoid. Acts as a coactivator for estrogen receptor alpha. Acts as a transcriptional corepressor via its interaction with the NFKB1 NF-kappa-B subunit, possibly by interfering with the transactivation domain of NFKB1. Induces apoptosis in breast cancer cells, but not in other cancer cells, via a caspase-2 mediated pathway that involves mitochondrial membrane permeabilization but does not require other caspases. May also act as an inhibitor of cyclin A-associated kinase. Also acts a component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. {ECO:0000269|PubMed:11713274, ECO:0000269|PubMed:12244126, ECO:0000269|PubMed:15082778, ECO:0000269|PubMed:15254226, ECO:0000269|PubMed:16622420}.
Q13490 BIRC2 T142 ochoa Baculoviral IAP repeat-containing protein 2 (EC 2.3.2.27) (Cellular inhibitor of apoptosis 1) (C-IAP1) (IAP homolog B) (Inhibitor of apoptosis protein 2) (hIAP-2) (hIAP2) (RING finger protein 48) (RING-type E3 ubiquitin transferase BIRC2) (TNFR2-TRAF-signaling complex protein 2) Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, mitogenic kinase signaling, and cell proliferation, as well as cell invasion and metastasis. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and regulates both canonical and non-canonical NF-kappa-B signaling by acting in opposite directions: acts as a positive regulator of the canonical pathway and suppresses constitutive activation of non-canonical NF-kappa-B signaling. The target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, RIPK3, RIPK4, CASP3, CASP7, CASP8, TRAF2, DIABLO/SMAC, MAP3K14/NIK, MAP3K5/ASK1, IKBKG/NEMO, IKBKE and MXD1/MAD1. Can also function as an E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Acts as an important regulator of innate immune signaling via regulation of Toll-like receptors (TLRs), Nodlike receptors (NLRs) and RIG-I like receptors (RLRs), collectively referred to as pattern recognition receptors (PRRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Can stimulate the transcriptional activity of E2F1. Plays a role in the modulation of the cell cycle. {ECO:0000269|PubMed:15665297, ECO:0000269|PubMed:18082613, ECO:0000269|PubMed:21145488, ECO:0000269|PubMed:21653699, ECO:0000269|PubMed:21931591, ECO:0000269|PubMed:23453969}.
Q13523 PRP4K T259 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13625 TP53BP2 T700 ochoa Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}.
Q13905 RAPGEF1 T298 ochoa Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}.
Q14106 TOB2 T224 ochoa Protein Tob2 (Protein Tob4) (Transducer of erbB-2 2) Anti-proliferative protein inhibits cell cycle progression from the G0/G1 to S phases.
Q14135 VGLL4 T151 ochoa Transcription cofactor vestigial-like protein 4 (Vgl-4) May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}.
Q14160 SCRIB T941 ochoa Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}.
Q14160 SCRIB T1142 ochoa Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}.
Q14161 GIT2 T726 ochoa ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}.
Q14188 TFDP2 T26 ochoa Transcription factor Dp-2 (E2F dimerization partner 2) Can stimulate E2F-dependent transcription. Binds DNA cooperatively with E2F family members through the E2 recognition site, 5'-TTTC[CG]CGC-3', found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The TFDP2:E2F complex functions in the control of cell-cycle progression from G1 to S phase. The E2F1:DP complex appears to mediate both cell proliferation and apoptosis. Blocks adipocyte differentiation by repressing CEBPA binding to its target gene promoters (PubMed:20176812). {ECO:0000305|PubMed:20176812}.
Q14188 TFDP2 T44 ochoa Transcription factor Dp-2 (E2F dimerization partner 2) Can stimulate E2F-dependent transcription. Binds DNA cooperatively with E2F family members through the E2 recognition site, 5'-TTTC[CG]CGC-3', found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The TFDP2:E2F complex functions in the control of cell-cycle progression from G1 to S phase. The E2F1:DP complex appears to mediate both cell proliferation and apoptosis. Blocks adipocyte differentiation by repressing CEBPA binding to its target gene promoters (PubMed:20176812). {ECO:0000305|PubMed:20176812}.
Q14207 NPAT T777 ochoa Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}.
Q14207 NPAT T781 ochoa Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}.
Q14207 NPAT T1153 ochoa Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}.
Q14242 SELPLG T360 ochoa P-selectin glycoprotein ligand 1 (PSGL-1) (Selectin P ligand) (CD antigen CD162) A SLe(x)-type proteoglycan, which through high affinity, calcium-dependent interactions with E-, P- and L-selectins, mediates rapid rolling of leukocytes over vascular surfaces during the initial steps in inflammation. Critical for the initial leukocyte capture. {ECO:0000269|PubMed:11566773, ECO:0000269|PubMed:12403782}.; FUNCTION: (Microbial infection) Acts as a receptor for enterovirus 71. {ECO:0000269|PubMed:19543284}.
Q14289 PTK2B T749 ochoa Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}.
Q14324 MYBPC2 T46 ochoa Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role.
Q14517 FAT1 T152 ochoa Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}.
Q14669 TRIP12 T1032 ochoa E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}.
Q14676 MDC1 T966 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14684 RRP1B T515 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14684 RRP1B T708 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14934 NFATC4 T124 ochoa Nuclear factor of activated T-cells, cytoplasmic 4 (NF-ATc4) (NFATc4) (T-cell transcription factor NFAT3) (NF-AT3) Ca(2+)-regulated transcription factor that is involved in several processes, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems (PubMed:11514544, PubMed:11997522, PubMed:17213202, PubMed:17875713, PubMed:18668201, PubMed:25663301, PubMed:7749981). Involved in T-cell activation, stimulating the transcription of cytokine genes, including that of IL2 and IL4 (PubMed:18347059, PubMed:18668201, PubMed:7749981). Along with NFATC3, involved in embryonic heart development. Following JAK/STAT signaling activation and as part of a complex with NFATC3 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). Involved in mitochondrial energy metabolism required for cardiac morphogenesis and function (By similarity). Transactivates many genes involved in the cardiovascular system, including AGTR2, NPPB/BNP (in synergy with GATA4), NPPA/ANP/ANF and MYH7/beta-MHC (By similarity). Involved in the regulation of adult hippocampal neurogenesis. Involved in BDNF-driven pro-survival signaling in hippocampal adult-born neurons. Involved in the formation of long-term spatial memory and long-term potentiation (By similarity). In cochlear nucleus neurons, may play a role in deafferentation-induced apoptosis during the developmental critical period, when auditory neurons depend on afferent input for survival (By similarity). Binds to and activates the BACE1/Beta-secretase 1 promoter, hence may regulate the proteolytic processing of the amyloid precursor protein (APP) (PubMed:25663301). Plays a role in adipocyte differentiation (PubMed:11997522). May be involved in myoblast differentiation into myotubes (PubMed:17213202). Binds the consensus DNA sequence 5'-GGAAAAT-3' (Probable). In the presence of CREBBP, activates TNF transcription (PubMed:11514544). Binds to PPARG gene promoter and regulates its activity (PubMed:11997522). Binds to PPARG and REG3G gene promoters (By similarity). {ECO:0000250|UniProtKB:D3Z9H7, ECO:0000250|UniProtKB:Q8K120, ECO:0000269|PubMed:11514544, ECO:0000269|PubMed:11997522, ECO:0000269|PubMed:17213202, ECO:0000269|PubMed:17875713, ECO:0000269|PubMed:18347059, ECO:0000269|PubMed:18668201, ECO:0000269|PubMed:25663301, ECO:0000269|PubMed:7749981, ECO:0000305}.
Q14CZ0 HAPSTR1 T214 ochoa HUWE1-associated protein modifying stress responses 1 (Telomere attrition and p53 response 1 protein) Acts as a central player within a network of stress response pathways promoting cellular adaptability. The E3 ligase HUWE1 assists HAPSTR1 in controlling stress signaling and in turn, HUWE1 feeds back to promote the degradation of HAPSTR1. HAPSTR1 represents a central coordination mechanism for stress response programs (PubMed:35776542). Functions as a negative regulator of TP53/P53 in the cellular response to telomere erosion and probably also DNA damage (PubMed:33660365). May attenuate p53/TP53 activation through the E3 ubiquitin ligase HUWE1 (PubMed:33660365). {ECO:0000269|PubMed:33660365, ECO:0000269|PubMed:35776542}.
Q15007 WTAP T343 ochoa Pre-mRNA-splicing regulator WTAP (Female-lethal(2)D homolog) (hFL(2)D) (WT1-associated protein) (Wilms tumor 1-associating protein) Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Required for accumulation of METTL3 and METTL14 to nuclear speckle (PubMed:24316715, PubMed:24407421, PubMed:24981863). Acts as a mRNA splicing regulator (PubMed:12444081). Regulates G2/M cell-cycle transition by binding to the 3' UTR of CCNA2, which enhances its stability (PubMed:17088532). Impairs WT1 DNA-binding ability and inhibits expression of WT1 target genes (PubMed:17095724). {ECO:0000269|PubMed:12444081, ECO:0000269|PubMed:17088532, ECO:0000269|PubMed:17095724, ECO:0000269|PubMed:24316715, ECO:0000269|PubMed:24407421, ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}.
Q15025 TNIP1 T101 ochoa TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}.
Q15287 RNPS1 T29 ochoa RNA-binding protein with serine-rich domain 1 (SR-related protein LDC2) Part of pre- and post-splicing multiprotein mRNP complexes. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Enhances the formation of the ATP-dependent A complex of the spliceosome. Involved in both constitutive splicing and, in association with SRP54 and TRA2B/SFRS10, in distinctive modulation of alternative splicing in a substrate-dependent manner. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Participates in mRNA 3'-end cleavage. Involved in UPF2-dependent nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Also mediates increase of mRNA abundance and translational efficiency. Binds spliced mRNA 20-25 nt upstream of exon-exon junctions. {ECO:0000269|PubMed:10449421, ECO:0000269|PubMed:11546874, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:14729963, ECO:0000269|PubMed:14752011, ECO:0000269|PubMed:15684395, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:17586820, ECO:0000269|PubMed:22203037}.
Q15311 RALBP1 T36 ochoa RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15329 E2F5 T320 ochoa Transcription factor E2F5 (E2F-5) Transcriptional activator that binds to E2F sites, these sites are present in the promoter of many genes whose products are involved in cell proliferation. May mediate growth factor-initiated signal transduction. It is likely involved in the early responses of resting cells to growth factor stimulation. Specifically required for multiciliate cell differentiation: together with MCIDAS and E2F5, binds and activate genes required for centriole biogenesis. {ECO:0000250|UniProtKB:Q6DE14}.
Q15434 RBMS2 Y282 ochoa RNA-binding motif, single-stranded-interacting protein 2 (Suppressor of CDC2 with RNA-binding motif 3) None
Q15599 NHERF2 T305 ochoa|psp Na(+)/H(+) exchange regulatory cofactor NHE-RF2 (NHERF-2) (NHE3 kinase A regulatory protein E3KARP) (SRY-interacting protein 1) (SIP-1) (Sodium-hydrogen exchanger regulatory factor 2) (Solute carrier family 9 isoform A3 regulatory factor 2) (Tyrosine kinase activator protein 1) (TKA-1) Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3 (PubMed:18829453). May also act as scaffold protein in the nucleus. {ECO:0000269|PubMed:10455146, ECO:0000269|PubMed:18829453, ECO:0000269|PubMed:9096337}.
Q15652 JMJD1C T1187 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15723 ELF2 T374 ochoa ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation.
Q15723 ELF2 T426 ochoa ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation.
Q15772 SPEG T2801 ochoa Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells.
Q15911 ZFHX3 T428 ochoa Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}.
Q16513 PKN2 T304 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16584 MAP3K11 T526 ochoa Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}.
Q16890 TPD52L1 T146 ochoa Tumor protein D53 (hD53) (Tumor protein D52-like 1) None
Q2KHR3 QSER1 T1274 ochoa Glutamine and serine-rich protein 1 Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}.
Q2M1Z3 ARHGAP31 T1380 ochoa Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}.
Q2TAL8 QRICH1 T305 ochoa Transcriptional regulator QRICH1 (Glutamine-rich protein 1) Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}.
Q2TAL8 QRICH1 T347 ochoa Transcriptional regulator QRICH1 (Glutamine-rich protein 1) Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}.
Q2VPB7 AP5B1 T218 ochoa AP-5 complex subunit beta-1 (Adaptor-related protein complex 5 beta subunit) (Beta5) As part of AP-5, a probable fifth adaptor protein complex it may be involved in endosomal transport. {ECO:0000269|PubMed:22022230}.
Q49A88 CCDC14 T376 ochoa Coiled-coil domain-containing protein 14 Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}.
Q4KMP7 TBC1D10B T709 ochoa TBC1 domain family member 10B (Rab27A-GAP-beta) Acts as a GTPase-activating protein for RAB3A, RAB22A, RAB27A, and RAB35. Does not act on RAB2A and RAB6A. {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:19077034}.
Q4L180 FILIP1L T923 ochoa Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}.
Q4L180 FILIP1L Y1070 ochoa Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}.
Q4VCS5 AMOT T311 ochoa Angiomotin Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}.
Q53ET0 CRTC2 T462 ochoa CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}.
Q53EZ4 CEP55 T430 ochoa Centrosomal protein of 55 kDa (Cep55) (Up-regulated in colon cancer 6) Plays a role in mitotic exit and cytokinesis (PubMed:16198290, PubMed:17853893). Recruits PDCD6IP and TSG101 to midbody during cytokinesis. Required for successful completion of cytokinesis (PubMed:17853893). Not required for microtubule nucleation (PubMed:16198290). Plays a role in the development of the brain and kidney (PubMed:28264986). {ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:28264986}.
Q5BJH7 YIF1B T67 ochoa Protein YIF1B (YIP1-interacting factor homolog B) Functions in endoplasmic reticulum to Golgi vesicle-mediated transport and regulates the proper organization of the endoplasmic reticulum and the Golgi (By similarity). Plays a key role in targeting to neuronal dendrites receptors such as HTR1A (By similarity). Plays also a role in primary cilium and sperm flagellum assembly probably through protein transport to these compartments (PubMed:33103737). {ECO:0000250|UniProtKB:Q6PEC3, ECO:0000250|UniProtKB:Q9CX30, ECO:0000269|PubMed:33103737}.
Q5JSZ5 PRRC2B T228 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5SY16 NOL9 T251 ochoa Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}.
Q5SYE7 NHSL1 T1235 ochoa NHS-like protein 1 None
Q5T0B9 ZNF362 T162 ochoa Zinc finger protein 362 May be involved in transcriptional regulation.
Q5T0W9 FAM83B T585 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T5Y3 CAMSAP1 T1054 ochoa Calmodulin-regulated spectrin-associated protein 1 Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}.
Q5T5Y3 CAMSAP1 T1082 ochoa Calmodulin-regulated spectrin-associated protein 1 Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}.
Q5TC82 RC3H1 T781 ochoa Roquin-1 (Roquin) (EC 2.3.2.27) (RING finger and C3H zinc finger protein 1) (RING finger and CCCH-type zinc finger domain-containing protein 1) (RING finger protein 198) Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF, TNFRSF4 and in many more mRNAs (PubMed:25026078, PubMed:31636267). Cleaves translationally inactive mRNAs harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-independent manner (By similarity). Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs (By similarity). In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity (By similarity). In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression (By similarity). Also recognizes CDE in its own mRNA and in that of paralogous RC3H2, possibly leading to feedback loop regulation (By similarity). Recognizes and binds mRNAs containing a hexaloop stem-loop motif, called alternative decay element (ADE) (By similarity). Together with ZC3H12A, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Able to interact with double-stranded RNA (dsRNA) (PubMed:25026078, PubMed:25504471). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406, PubMed:31636267). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2A, UBE2B, UBE2D2, UBE2F, UBE2G1, UBE2G2 and UBE2L3 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). {ECO:0000250|UniProtKB:Q4VGL6, ECO:0000269|PubMed:25026078, ECO:0000269|PubMed:25504471, ECO:0000269|PubMed:25697406, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:31636267}.
Q5TGY3 AHDC1 T1401 ochoa Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}.
Q5TGY3 AHDC1 T1405 ochoa Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}.
Q5U5Q3 MEX3C T547 ochoa RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}.
Q5VT06 CEP350 T2117 ochoa Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}.
Q5VTB9 RNF220 T284 ochoa E3 ubiquitin-protein ligase RNF220 (EC 2.3.2.27) (RING finger protein 220) (RING-type E3 ubiquitin transferase RNF220) E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of SIN3B (By similarity). Independently of its E3 ligase activity, acts as a CTNNB1 stabilizer through USP7-mediated deubiquitination of CTNNB1 promoting Wnt signaling (PubMed:25266658, PubMed:33964137). Plays a critical role in the regulation of nuclear lamina (PubMed:33964137). {ECO:0000250|UniProtKB:Q6PDX6, ECO:0000269|PubMed:25266658, ECO:0000269|PubMed:33964137}.
Q5VUA4 ZNF318 T2037 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VV67 PPRC1 T844 ochoa Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}.
Q5VWN6 TASOR2 T2011 ochoa Protein TASOR 2 None
Q5VWQ8 DAB2IP T704 ochoa Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}.
Q5VZ89 DENND4C T975 ochoa DENN domain-containing protein 4C Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}.
Q5XPI4 RNF123 T677 ochoa E3 ubiquitin-protein ligase RNF123 (EC 2.3.2.27) (Kip1 ubiquitination-promoting complex protein 1) (RING finger protein 123) Catalytic subunit of the KPC complex that acts as E3 ubiquitin-protein ligase (PubMed:15531880, PubMed:16227581, PubMed:25860612). Promotes the ubiquitination and proteasome-mediated degradation of CDKN1B which is the cyclin-dependent kinase inhibitor at the G0-G1 transition of the cell cycle (PubMed:15531880, PubMed:16227581). Also acts as a key regulator of the NF-kappa-B signaling by promoting maturation of the NFKB1 component of NF-kappa-B: acts by catalyzing ubiquitination of the NFKB1 p105 precursor, leading to limited proteasomal degradation of NFKB1 p105 and generation of the active NFKB1 p50 subunit (PubMed:25860612, PubMed:33168738, PubMed:34873064). Also functions as an inhibitor of innate antiviral signaling mediated by RIGI and IFIH1 independently of its E3 ligase activity (PubMed:27312109). Interacts with the N-terminal CARD domains of RIGI and IFIH1 and competes with the downstream adapter MAVS (PubMed:27312109). {ECO:0000269|PubMed:15531880, ECO:0000269|PubMed:16227581, ECO:0000269|PubMed:25860612, ECO:0000269|PubMed:27312109, ECO:0000269|PubMed:33168738, ECO:0000269|PubMed:34873064}.
Q63HR2 TNS2 T933 ochoa Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}.
Q63HR2 TNS2 T977 ochoa Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}.
Q68DC2 ANKS6 T736 ochoa Ankyrin repeat and SAM domain-containing protein 6 (Ankyrin repeat domain-containing protein 14) (SamCystin) (Sterile alpha motif domain-containing protein 6) (SAM domain-containing protein 6) Required for renal function. {ECO:0000269|PubMed:23793029}.
Q69YQ0 SPECC1L T983 ochoa Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}.
Q6GQQ9 OTUD7B T451 ochoa OTU domain-containing protein 7B (EC 3.4.19.12) (Cellular zinc finger anti-NF-kappa-B protein) (Cezanne) (Zinc finger A20 domain-containing protein 1) (Zinc finger protein Cezanne) Negative regulator of the non-canonical NF-kappa-B pathway that acts by mediating deubiquitination of TRAF3, an inhibitor of the NF-kappa-B pathway, thereby acting as a negative regulator of B-cell responses (PubMed:18178551). In response to non-canonical NF-kappa-B stimuli, deubiquitinates 'Lys-48'-linked polyubiquitin chains of TRAF3, preventing TRAF3 proteolysis and over-activation of non-canonical NF-kappa-B (By similarity). Negatively regulates mucosal immunity against infections (By similarity). Deubiquitinates ZAP70, and thereby regulates T cell receptor (TCR) signaling that leads to the activation of NF-kappa-B (PubMed:26903241). Plays a role in T cell homeostasis and is required for normal T cell responses, including production of IFNG and IL2 (By similarity). Mediates deubiquitination of EGFR (PubMed:22179831). Has deubiquitinating activity toward 'Lys-11', 'Lys-48' and 'Lys-63'-linked polyubiquitin chains (PubMed:11463333, PubMed:20622874, PubMed:23827681, PubMed:27732584). Has a much higher catalytic rate with 'Lys-11'-linked polyubiquitin chains (in vitro); however the physiological significance of these data are unsure (PubMed:27732584). Hydrolyzes both linear and branched forms of polyubiquitin (PubMed:12682062). Acts as a regulator of mTORC1 and mTORC2 assembly by mediating 'Lys-63'-linked deubiquitination of MLST8, thereby promoting assembly of the mTORC2 complex, while inibiting formation of the mTORC1 complex (PubMed:28489822). {ECO:0000250|UniProtKB:B2RUR8, ECO:0000269|PubMed:11463333, ECO:0000269|PubMed:12682062, ECO:0000269|PubMed:18178551, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22179831, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:27732584, ECO:0000269|PubMed:28489822}.
Q6IQ19 CCSAP T147 ochoa Centriole, cilia and spindle-associated protein Plays a role in microtubule (MT) stabilization and this stabilization involves the maintenance of NUMA1 at the spindle poles. Colocalizes with polyglutamylated MTs to promote MT stabilization and regulate bipolar spindle formation in mitosis. Binding of CCSAP to centrosomes and the spindle around centrosomes during mitosis inhibits MT depolymerization, thereby stabilizing the mitotic spindle (PubMed:26562023). May play a role in embryonic development. May be required for proper cilia beating (By similarity). {ECO:0000250|UniProtKB:Q6P3G4, ECO:0000269|PubMed:26562023}.
Q6IQ23 PLEKHA7 T538 ochoa Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}.
Q6IQ23 PLEKHA7 T909 ochoa Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}.
Q6N043 ZNF280D T532 ochoa Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) May function as a transcription factor.
Q6NT76 HMBOX1 T135 ochoa Homeobox-containing protein 1 (Homeobox telomere-binding protein 1) (Telomere-associated homeobox-containing protein 1) Binds directly to 5'-TTAGGG-3' repeats in telomeric DNA (PubMed:23685356, PubMed:23813958). Associates with the telomerase complex at sites of active telomere processing and positively regulates telomere elongation (PubMed:23685356). Important for TERT binding to chromatin, indicating a role in recruitment of the telomerase complex to telomeres (By similarity). Also plays a role in the alternative lengthening of telomeres (ALT) pathway in telomerase-negative cells where it promotes formation and/or maintenance of ALT-associated promyelocytic leukemia bodies (APBs) (PubMed:23813958). Enhances formation of telomere C-circles in ALT cells, suggesting a possible role in telomere recombination (PubMed:23813958). Might also be involved in the DNA damage response at telomeres (PubMed:23813958). {ECO:0000250|UniProtKB:Q8BJA3, ECO:0000269|PubMed:23685356, ECO:0000269|PubMed:23813958}.
Q6P0Q8 MAST2 T185 ochoa Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q6P0Q8 MAST2 T1277 ochoa Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q6P1L5 FAM117B T108 ochoa Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) None
Q6P1L5 FAM117B T158 ochoa Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) None
Q6P1L5 FAM117B T416 ochoa Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) None
Q6P4R8 NFRKB T768 ochoa Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}.
Q6P995 FAM171B T796 ochoa Protein FAM171B None
Q6PII3 CCDC174 T439 ochoa Coiled-coil domain-containing protein 174 Probably involved in neuronal development. {ECO:0000269|PubMed:26358778}.
Q6PIJ6 FBXO38 T742 ochoa F-box only protein 38 Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of PDCD1/PD-1, thereby regulating T-cells-mediated immunity (PubMed:30487606). Required for anti-tumor activity of T-cells by promoting the degradation of PDCD1/PD-1; the PDCD1-mediated inhibitory pathway being exploited by tumors to attenuate anti-tumor immunity and facilitate tumor survival (PubMed:30487606). May indirectly stimulate the activity of transcription factor KLF7, a regulator of neuronal differentiation, without promoting KLF7 ubiquitination (By similarity). {ECO:0000250|UniProtKB:Q8BMI0, ECO:0000269|PubMed:30487606}.
Q6T4R5 NHS T1331 ochoa Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}.
Q6UB99 ANKRD11 T278 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q6W2J9 BCOR T1129 ochoa BCL-6 corepressor (BCoR) Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}.
Q6ZRV2 FAM83H T872 ochoa Protein FAM83H May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}.
Q6ZRV2 FAM83H T883 ochoa Protein FAM83H May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}.
Q6ZRV2 FAM83H T894 ochoa Protein FAM83H May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}.
Q6ZRV2 FAM83H T905 ochoa Protein FAM83H May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}.
Q6ZTU2 EP400P1 T126 ochoa Putative EP400-like protein (EP400 pseudogene 1) None
Q6ZU65 UBN2 T1125 ochoa Ubinuclein-2 None
Q76L83 ASXL2 T836 ochoa Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}.
Q76L83 ASXL2 T1156 ochoa Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}.
Q76L83 ASXL2 T1302 ochoa Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}.
Q76N32 CEP68 T351 ochoa Centrosomal protein of 68 kDa (Cep68) Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}.
Q7L311 ARMCX2 T215 ochoa Armadillo repeat-containing X-linked protein 2 (ARM protein lost in epithelial cancers on chromosome X 2) (Protein ALEX2) May regulate the dynamics and distribution of mitochondria in neural cells. {ECO:0000250|UniProtKB:Q6A058}.
Q7L591 DOK3 T409 ochoa Docking protein 3 (Downstream of tyrosine kinase 3) DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}.
Q7L804 RAB11FIP2 T428 ochoa Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}.
Q7L9B9 EEPD1 T222 ochoa Endonuclease/exonuclease/phosphatase family domain-containing protein 1 None
Q7LDG7 RASGRP2 T396 ochoa RAS guanyl-releasing protein 2 (Calcium and DAG-regulated guanine nucleotide exchange factor I) (CalDAG-GEFI) (Cdc25-like protein) (hCDC25L) (F25B3.3 kinase-like protein) Functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. May also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. Functions in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation. May function in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. {ECO:0000269|PubMed:10918068, ECO:0000269|PubMed:14702343, ECO:0000269|PubMed:17576779, ECO:0000269|PubMed:17702895, ECO:0000269|PubMed:24958846, ECO:0000269|PubMed:27235135}.
Q7RTP6 MICAL3 T1651 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7Z2W4 ZC3HAV1 T380 ochoa Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}.
Q7Z309 PABIR2 T121 ochoa PABIR family member 2 None
Q7Z333 SETX T644 ochoa Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}.
Q7Z3K3 POGZ T1340 ochoa Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}.
Q7Z3T8 ZFYVE16 T817 ochoa Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}.
Q7Z417 NUFIP2 T631 ochoa FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q7Z460 CLASP1 T574 ochoa CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}.
Q7Z4H7 HAUS6 T869 ochoa HAUS augmin-like complex subunit 6 Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}.
Q7Z591 AKNA T1104 ochoa Microtubule organization protein AKNA (AT-hook-containing transcription factor) Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}.
Q7Z5H3 ARHGAP22 T589 ochoa Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}.
Q7Z5J4 RAI1 T1268 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z6B7 SRGAP1 T837 ochoa SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}.
Q7Z6B7 SRGAP1 T1001 ochoa SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}.
Q7Z7B0 FILIP1 T931 ochoa Filamin-A-interacting protein 1 (FILIP) By acting through a filamin-A/F-actin axis, it controls the start of neocortical cell migration from the ventricular zone. May be able to induce the degradation of filamin-A. {ECO:0000250|UniProtKB:Q8K4T4}.
Q86TC9 MYPN T420 ochoa Myopalladin (145 kDa sarcomeric protein) Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}.
Q86U44 METTL3 T45 ochoa N(6)-adenosine-methyltransferase catalytic subunit METTL3 (EC 2.1.1.348) (Methyltransferase-like protein 3) (hMETTL3) (N(6)-adenosine-methyltransferase 70 kDa subunit) (MT-A70) The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:28297716, PubMed:29348140, PubMed:29506078, PubMed:30428350, PubMed:9409616). In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA destabilization and degradation (PubMed:28637692). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian clock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of hepatic lipid metabolism (PubMed:30428350). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). Also required for oogenesis (By similarity). Involved in the response to DNA damage: in response to ultraviolet irradiation, METTL3 rapidly catalyzes the formation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:28297716). M6A is also required for T-cell homeostasis and differentiation: m6A methylation of transcripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes mRNA destabilization and degradation, promoting T-cell differentiation (By similarity). Inhibits the type I interferon response by mediating m6A methylation of IFNB (PubMed:30559377). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates m6A methylation of Xist RNA, thereby participating in random X inactivation: m6A methylation of Xist leads to target YTHDC1 reader on Xist and promote transcription repression activity of Xist (PubMed:27602518). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). METTL3 mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998). Acts as a positive regulator of mRNA translation independently of the methyltransferase activity: promotes translation by interacting with the translation initiation machinery in the cytoplasm (PubMed:27117702). Its overexpression in a number of cancer cells suggests that it may participate in cancer cell proliferation by promoting mRNA translation (PubMed:27117702). During human coronavirus SARS-CoV-2 infection, adds m6A modifications in SARS-CoV-2 RNA leading to decreased RIGI binding and subsequently dampening the sensing and activation of innate immune responses (PubMed:33961823). {ECO:0000250|UniProtKB:Q8C3P7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26321680, ECO:0000269|PubMed:26593424, ECO:0000269|PubMed:27117702, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:28297716, ECO:0000269|PubMed:28637692, ECO:0000269|PubMed:29348140, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:33961823, ECO:0000269|PubMed:9409616}.
Q86US8 SMG6 T486 ochoa Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}.
Q86UU1 PHLDB1 T522 ochoa Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) None
Q86V15 CASZ1 T743 ochoa Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}.
Q86VQ1 GLCCI1 T81 ochoa Glucocorticoid-induced transcript 1 protein None
Q86W56 PARG T139 ochoa Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}.
Q86WB0 ZC3HC1 T372 ochoa Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}.
Q86X29 LSR T514 ochoa Lipolysis-stimulated lipoprotein receptor (Angulin-1) Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}.
Q86XN7 PROSER1 T615 ochoa Proline and serine-rich protein 1 Mediates OGT interaction with and O-GlcNAcylation of TET2 to control TET2 stabilization at enhancers and CpG islands (CGIs). {ECO:0000269|PubMed:34667079}.
Q86XP3 DDX42 T98 ochoa ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}.
Q86YN6 PPARGC1B T526 ochoa Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}.
Q86YV5 PRAG1 T287 ochoa Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}.
Q86YV5 PRAG1 T784 ochoa Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}.
Q8IU81 IRF2BP1 T480 ochoa Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}.
Q8IV36 HID1 T681 ochoa Protein HID1 (Down-regulated in multiple cancers 1) (HID1 domain-containing protein) (Protein hid-1 homolog) May play an important role in the development of cancers in a broad range of tissues. {ECO:0000269|PubMed:11281419}.
Q8IVF2 AHNAK2 T296 ochoa Protein AHNAK2 None
Q8IVF5 TIAM2 T203 ochoa Rho guanine nucleotide exchange factor TIAM2 (SIF and TIAM1-like exchange factor) (T-lymphoma invasion and metastasis-inducing protein 2) (TIAM-2) Modulates the activity of RHO-like proteins and connects extracellular signals to cytoskeletal activities. Acts as a GDP-dissociation stimulator protein that stimulates the GDP-GTP exchange activity of RHO-like GTPases and activates them. Mediates extracellular laminin signals to activate Rac1, contributing to neurite growth. Involved in lamellipodial formation and advancement of the growth cone of embryonic hippocampal neurons. Promotes migration of neurons in the cerebral cortex. When overexpressed, induces membrane ruffling accompanied by the accumulation of actin filaments along the altered plasma membrane (By similarity). Activates specifically RAC1, but not CDC42 and RHOA. {ECO:0000250, ECO:0000269|PubMed:10512681}.
Q8IVH2 FOXP4 T556 ochoa Forkhead box protein P4 (Fork head-related protein-like A) Transcriptional repressor that represses lung-specific expression. {ECO:0000250}.
Q8IVL0 NAV3 T656 ochoa Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}.
Q8IVL0 NAV3 T1247 ochoa Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}.
Q8IVL0 NAV3 T1484 ochoa Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}.
Q8IVL1 NAV2 T1321 ochoa Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}.
Q8IVT5 KSR1 T240 ochoa Kinase suppressor of Ras 1 (EC 2.7.11.1) Part of a multiprotein signaling complex which promotes phosphorylation of Raf family members and activation of downstream MAP kinases (By similarity). Independently of its kinase activity, acts as MAP2K1/MEK1 and MAP2K2/MEK2-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1 or MAP2K2/MEK2, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 and/or MAP2K2/MEK2 (PubMed:29433126). Promotes activation of MAPK1 and/or MAPK3, both in response to EGF and to cAMP (By similarity). Its kinase activity is unsure (By similarity). Some protein kinase activity has been detected in vitro, however the physiological relevance of this activity is unknown (By similarity). {ECO:0000250|UniProtKB:Q61097, ECO:0000269|PubMed:29433126}.
Q8IW35 CEP97 T418 ochoa Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}.
Q8IW41 MAPKAPK5 T214 ochoa MAP kinase-activated protein kinase 5 (MAPK-activated protein kinase 5) (MAPKAP kinase 5) (MAPKAP-K5) (MAPKAPK-5) (MK-5) (MK5) (EC 2.7.11.1) (p38-regulated/activated protein kinase) (PRAK) Tumor suppressor serine/threonine-protein kinase involved in mTORC1 signaling and post-transcriptional regulation. Phosphorylates FOXO3, ERK3/MAPK6, ERK4/MAPK4, HSP27/HSPB1, p53/TP53 and RHEB. Acts as a tumor suppressor by mediating Ras-induced senescence and phosphorylating p53/TP53. Involved in post-transcriptional regulation of MYC by mediating phosphorylation of FOXO3: phosphorylation of FOXO3 leads to promote nuclear localization of FOXO3, enabling expression of miR-34b and miR-34c, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent MYC translation. Acts as a negative regulator of mTORC1 signaling by mediating phosphorylation and inhibition of RHEB. Part of the atypical MAPK signaling via its interaction with ERK3/MAPK6 or ERK4/MAPK4: the precise role of the complex formed with ERK3/MAPK6 or ERK4/MAPK4 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPK (ERK3/MAPK6 or ERK4/MAPK4), ERK3/MAPK6 (or ERK4/MAPK4) is phosphorylated and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6 (or ERK4/MAPK4). Mediates phosphorylation of HSP27/HSPB1 in response to PKA/PRKACA stimulation, inducing F-actin rearrangement. {ECO:0000269|PubMed:17254968, ECO:0000269|PubMed:17728103, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:9628874}.
Q8IWE5 PLEKHM2 T266 ochoa Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}.
Q8IWX8 CHERP T819 ochoa Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}.
Q8IXT5 RBM12B T640 ochoa RNA-binding protein 12B (RNA-binding motif protein 12B) None
Q8IZD0 SAMD14 T258 ochoa Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) None
Q8N0Z3 SPICE1 T642 ochoa Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}.
Q8N122 RPTOR T865 ochoa Regulatory-associated protein of mTOR (Raptor) (p150 target of rapamycin (TOR)-scaffold protein) Component of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:32561715, PubMed:37541260). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:32561715, PubMed:37541260). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:37541260). Within the mTORC1 complex, RPTOR acts both as a molecular adapter, which (1) mediates recruitment of mTORC1 to lysosomal membranes via interaction with small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD), and a (2) substrate-specific adapter, which promotes substrate specificity by binding to TOS motif-containing proteins and direct them towards the active site of the MTOR kinase domain for phosphorylation (PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). mTORC1 complex regulates many cellular processes, such as odontoblast and osteoclast differentiation or neuronal transmission (By similarity). mTORC1 complex in excitatory neuronal transmission is required for the prosocial behavior induced by the psychoactive substance lysergic acid diethylamide (LSD) (By similarity). {ECO:0000250|UniProtKB:Q8K4Q0, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12747827, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:26588989, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37541260}.
Q8N1B4 VPS52 T357 ochoa Vacuolar protein sorting-associated protein 52 homolog (SAC2 suppressor of actin mutations 2-like protein) Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of the cycling of mannose 6-phosphate receptors between the TGN and endosomes, this cycling is necessary for proper lysosomal sorting of acid hydrolases such as CTSD (PubMed:15878329, PubMed:18367545). Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane (PubMed:25799061). {ECO:0000269|PubMed:15878329, ECO:0000269|PubMed:18367545, ECO:0000269|PubMed:25799061}.
Q8N1G1 REXO1 T461 ochoa RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}.
Q8N3F8 MICALL1 T416 ochoa MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}.
Q8N3L3 TXLNB T40 ochoa Beta-taxilin (Muscle-derived protein 77) (hMDP77) Promotes motor nerve regeneration (By similarity). May be involved in intracellular vesicle traffic. {ECO:0000250}.
Q8N4C8 MINK1 T920 ochoa Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration.
Q8N4X5 AFAP1L2 T561 ochoa Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}.
Q8N6T7 SIRT6 T305 ochoa NAD-dependent protein deacylase sirtuin-6 (EC 2.3.1.-) (NAD-dependent protein deacetylase sirtuin-6) (EC 2.3.1.286) (Protein mono-ADP-ribosyltransferase sirtuin-6) (EC 2.4.2.-) (Regulatory protein SIR2 homolog 6) (hSIRT6) (SIR2-like protein 6) NAD-dependent protein deacetylase, deacylase and mono-ADP-ribosyltransferase that plays an essential role in DNA damage repair, telomere maintenance, metabolic homeostasis, inflammation, tumorigenesis and aging (PubMed:18337721, PubMed:19135889, PubMed:19625767, PubMed:21362626, PubMed:21680843, PubMed:23217706, PubMed:23552949, PubMed:23653361, PubMed:24052263, PubMed:27180906, PubMed:27322069, PubMed:29555651, PubMed:30374165). Displays protein-lysine deacetylase or defatty-acylase (demyristoylase and depalmitoylase) activity, depending on the context (PubMed:23552949, PubMed:24052263, PubMed:27322069). Acts as a key histone deacetylase by catalyzing deacetylation of histone H3 at 'Lys-9', 'Lys-18' and 'Lys-56' (H3K9ac, H3K18ac and H3K56ac, respectively), suppressing target gene expression of several transcription factors, including NF-kappa-B (PubMed:19625767, PubMed:21362626, PubMed:23892288, PubMed:23911928, PubMed:24012758, PubMed:26456828, PubMed:26898756, PubMed:27043296, PubMed:27180906, PubMed:30374165, PubMed:33067423). Acts as an inhibitor of transcription elongation by mediating deacetylation of H3K9ac and H3K56ac, preventing release of NELFE from chromatin and causing transcriptional pausing (By similarity). Involved in DNA repair by promoting double-strand break (DSB) repair: acts as a DSB sensor by recognizing and binding DSB sites, leading to (1) recruitment of DNA repair proteins, such as SMARCA5/SNF2H, and (2) deacetylation of histone H3K9ac and H3K56ac (PubMed:23911928, PubMed:31995034, PubMed:32538779). SIRT6 participation to DSB repair is probably involved in extension of life span (By similarity). Also promotes DNA repair by deacetylating non-histone proteins, such as DDB2 and p53/TP53 (PubMed:29474172, PubMed:32789493). Specifically deacetylates H3K18ac at pericentric heterochromatin, thereby maintaining pericentric heterochromatin silencing at centromeres and protecting against genomic instability and cellular senescence (PubMed:27043296). Involved in telomere maintenance by catalyzing deacetylation of histone H3 in telomeric chromatin, regulating telomere position effect and telomere movement in response to DNA damage (PubMed:18337721, PubMed:19625767, PubMed:21847107). Required for embryonic stem cell differentiation by mediating histone deacetylation of H3K9ac (PubMed:25915124, PubMed:29555651). Plays a major role in metabolism by regulating processes such as glycolysis, gluconeogenesis, insulin secretion and lipid metabolism (PubMed:24012758, PubMed:26787900). Inhibits glycolysis via histone deacetylase activity and by acting as a corepressor of the transcription factor HIF1A, thereby controlling the expression of multiple glycolytic genes (By similarity). Has tumor suppressor activity by repressing glycolysis, thereby inhibiting the Warburg effect (PubMed:23217706). Also regulates glycolysis and tumorigenesis by mediating deacetylation and nuclear export of non-histone proteins, such as isoform M2 of PKM (PKM2) (PubMed:26787900). Acts as a negative regulator of gluconeogenesis by mediating deacetylation of non-histone proteins, such as FOXO1 and KAT2A/GCN5 (PubMed:23142079, PubMed:25009184). Promotes beta-oxidation of fatty acids during fasting by catalyzing deacetylation of NCOA2, inducing coactivation of PPARA (By similarity). Acts as a regulator of lipid catabolism in brown adipocytes, both by catalyzing deacetylation of histones and non-histone proteins, such as FOXO1 (By similarity). Also acts as a regulator of circadian rhythms, both by regulating expression of clock-controlled genes involved in lipid and carbohydrate metabolism, and by catalyzing deacetylation of PER2 (By similarity). The defatty-acylase activity is specifically involved in regulation of protein secretion (PubMed:23552949, PubMed:24052263, PubMed:27322069, PubMed:28406396). Has high activity toward long-chain fatty acyl groups and mediates protein-lysine demyristoylation and depalmitoylation of target proteins, such as RRAS2 and TNF, thereby regulating their secretion (PubMed:23552949, PubMed:28406396). Also acts as a mono-ADP-ribosyltransferase by mediating mono-ADP-ribosylation of PARP1, TRIM28/KAP1 or SMARCC2/BAF170 (PubMed:21680843, PubMed:22753495, PubMed:27322069, PubMed:27568560). Mono-ADP-ribosyltransferase activity is involved in DNA repair, cellular senescence, repression of LINE-1 retrotransposon elements and regulation of transcription (PubMed:21680843, PubMed:22753495, PubMed:27568560). {ECO:0000250|UniProtKB:P59941, ECO:0000269|PubMed:18337721, ECO:0000269|PubMed:19135889, ECO:0000269|PubMed:19625767, ECO:0000269|PubMed:21362626, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:21847107, ECO:0000269|PubMed:22753495, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23217706, ECO:0000269|PubMed:23552949, ECO:0000269|PubMed:23653361, ECO:0000269|PubMed:23892288, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:24012758, ECO:0000269|PubMed:24052263, ECO:0000269|PubMed:25009184, ECO:0000269|PubMed:25915124, ECO:0000269|PubMed:26456828, ECO:0000269|PubMed:26787900, ECO:0000269|PubMed:26898756, ECO:0000269|PubMed:27043296, ECO:0000269|PubMed:27180906, ECO:0000269|PubMed:27322069, ECO:0000269|PubMed:27568560, ECO:0000269|PubMed:28406396, ECO:0000269|PubMed:29474172, ECO:0000269|PubMed:29555651, ECO:0000269|PubMed:30374165, ECO:0000269|PubMed:31995034, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:32789493, ECO:0000269|PubMed:33067423}.
Q8N8E3 CEP112 T175 ochoa Centrosomal protein of 112 kDa (Cep112) (Coiled-coil domain-containing protein 46) None
Q8N9Z2 CCDC71L T187 ochoa Coiled-coil domain-containing protein 71L None
Q8NCF5 NFATC2IP T316 ochoa NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}.
Q8ND04 SMG8 T471 ochoa Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}.
Q8ND30 PPFIBP2 T365 ochoa Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}.
Q8ND56 LSM14A T194 ochoa Protein LSM14 homolog A (Protein FAM61A) (Protein SCD6 homolog) (Putative alpha-synuclein-binding protein) (AlphaSNBP) (RNA-associated protein 55A) (hRAP55) (hRAP55A) Essential for formation of P-bodies, cytoplasmic structures that provide storage sites for translationally inactive mRNAs and protect them from degradation (PubMed:16484376, PubMed:17074753, PubMed:29510985). Acts as a repressor of mRNA translation (PubMed:29510985). May play a role in mitotic spindle assembly (PubMed:26339800). {ECO:0000269|PubMed:16484376, ECO:0000269|PubMed:17074753, ECO:0000269|PubMed:26339800, ECO:0000269|PubMed:29510985}.
Q8NEM0 MCPH1 T193 ochoa Microcephalin Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}.
Q8NEM7 SUPT20H T494 ochoa Transcription factor SPT20 homolog (p38-interacting protein) (p38IP) Required for MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) activation during gastrulation. Required for down-regulation of E-cadherin during gastrulation by regulating E-cadherin protein level downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by FGF signaling and Snail (By similarity). Required for starvation-induced ATG9A trafficking during autophagy. {ECO:0000250, ECO:0000269|PubMed:19893488}.
Q8NET8 TRPV3 T37 psp Transient receptor potential cation channel subfamily V member 3 (TrpV3) (Vanilloid receptor-like 3) (VRL-3) Non-selective calcium permeant cation channel (PubMed:12077604, PubMed:12077606, PubMed:26818531, PubMed:37648856, PubMed:38691614). It is activated by innocuous (warm) temperatures and shows an increased response at noxious temperatures greater than 39 degrees Celsius (PubMed:12077604, PubMed:12077606). Activation exhibits an outward rectification (PubMed:12077604). The channel pore can dilate to provide permeability to larger cations (PubMed:37648856). May associate with TRPV1 and may modulate its activity (PubMed:12077606). Is a negative regulator of hair growth and cycling: TRPV3-coupled signaling suppresses keratinocyte proliferation in hair follicles and induces apoptosis and premature hair follicle regression (catagen) (PubMed:21593771). {ECO:0000269|PubMed:12077604, ECO:0000269|PubMed:12077606, ECO:0000269|PubMed:21593771, ECO:0000269|PubMed:26818531, ECO:0000269|PubMed:37648856, ECO:0000269|PubMed:38691614}.
Q8NEY1 NAV1 T1002 ochoa Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) May be involved in neuronal migration. {ECO:0000250}.
Q8NHM5 KDM2B T447 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8NHM5 KDM2B T916 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8NI08 NCOA7 T386 ochoa Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}.
Q8TAQ2 SMARCC2 T308 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8TAT5 NEIL3 T452 ochoa Endonuclease 8-like 3 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase FPG2) (DNA glycosylase/AP lyase Neil3) (Endonuclease VIII-like 3) (Nei-like protein 3) DNA glycosylase which prefers single-stranded DNA (ssDNA), or partially ssDNA structures such as bubble and fork structures, to double-stranded DNA (dsDNA) (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). Mediates interstrand cross-link repair in response to replication stress: acts by mediating DNA glycosylase activity, cleaving one of the two N-glycosyl bonds comprising the interstrand cross-link, which avoids the formation of a double-strand break but generates an abasic site that is bypassed by translesion synthesis polymerases (By similarity). In vitro, displays strong glycosylase activity towards the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in both ssDNA and dsDNA; also recognizes FapyA, FapyG, 5-OHU, 5-OHC, 5-OHMH, Tg and 8-oxoA lesions in ssDNA (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). No activity on 8-oxoG detected (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). Also shows weak DNA-(apurinic or apyrimidinic site) lyase activity (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). In vivo, appears to be the primary enzyme involved in removing Sp and Gh from ssDNA in neonatal tissues (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). {ECO:0000250|UniProtKB:A0A1L8HU22, ECO:0000269|PubMed:12433996, ECO:0000269|PubMed:19170771, ECO:0000269|PubMed:22569481, ECO:0000269|PubMed:23755964}.
Q8TB72 PUM2 T184 ochoa Pumilio homolog 2 (Pumilio-2) Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}.
Q8TBN0 RAB3IL1 T181 ochoa Guanine nucleotide exchange factor for Rab-3A (Rab-3A-interacting-like protein 1) (Rab3A-interacting-like protein 1) (Rabin3-like 1) Guanine nucleotide exchange factor (GEF) which may activate RAB3A, a GTPase that regulates synaptic vesicle exocytosis. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May also activate RAB8A and RAB8B. {ECO:0000269|PubMed:20937701}.
Q8TBP0 TBC1D16 T128 ochoa TBC1 domain family member 16 May act as a GTPase-activating protein for Rab family protein(s).
Q8TCN5 ZNF507 T886 ochoa Zinc finger protein 507 May be involved in transcriptional regulation.
Q8TD19 NEK9 T795 ochoa Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}.
Q8TEJ3 SH3RF3 T745 ochoa E3 ubiquitin-protein ligase SH3RF3 (EC 2.3.2.27) (Plenty of SH3s 2) (SH3 domain-containing RING finger protein 3) (SH3 multiple domains protein 4) Has E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20696164}.
Q8TER5 ARHGEF40 T257 ochoa Rho guanine nucleotide exchange factor 40 (Protein SOLO) May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}.
Q8TF74 WIPF2 T269 ochoa WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}.
Q8WUA4 GTF3C2 T222 ochoa General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1.
Q8WUF5 PPP1R13L T491 ochoa RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}.
Q8WUY3 PRUNE2 T776 ochoa Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}.
Q8WVV4 POF1B T100 ochoa Protein POF1B (Premature ovarian failure protein 1B) Plays a key role in the organization of epithelial monolayers by regulating the actin cytoskeleton. May be involved in ovary development. {ECO:0000269|PubMed:16773570, ECO:0000269|PubMed:21940798}.
Q8WVV4 POF1B T125 ochoa Protein POF1B (Premature ovarian failure protein 1B) Plays a key role in the organization of epithelial monolayers by regulating the actin cytoskeleton. May be involved in ovary development. {ECO:0000269|PubMed:16773570, ECO:0000269|PubMed:21940798}.
Q8WXG6 MADD T1061 ochoa MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}.
Q8WXI2 CNKSR2 T327 ochoa Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}.
Q8WXI9 GATAD2B T488 ochoa Transcriptional repressor p66-beta (GATA zinc finger domain-containing protein 2B) (p66/p68) Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2A (PubMed:16415179). Targets MBD3 to discrete loci in the nucleus (PubMed:11756549). May play a role in synapse development (PubMed:23644463). {ECO:0000269|PubMed:11756549, ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:23644463, ECO:0000269|PubMed:28977666}.
Q8WXX7 AUTS2 T1200 ochoa Autism susceptibility gene 2 protein Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). The PRC1-like complex that contains PCGF5, RNF2, CSNK2B, RYBP and AUTS2 has decreased histone H2A ubiquitination activity, due to the phosphorylation of RNF2 by CSNK2B (PubMed:25519132). As a consequence, the complex mediates transcriptional activation (PubMed:25519132). In the cytoplasm, plays a role in axon and dendrite elongation and in neuronal migration during embryonic brain development. Promotes reorganization of the actin cytoskeleton, lamellipodia formation and neurite elongation via its interaction with RAC guanine nucleotide exchange factors, which then leads to the activation of RAC1 (By similarity). {ECO:0000250|UniProtKB:A0A087WPF7, ECO:0000269|PubMed:25519132}.
Q8WY36 BBX T161 ochoa HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}.
Q92508 PIEZO1 T167 ochoa Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}.
Q92543 SNX19 T701 ochoa Sorting nexin-19 Plays a role in intracellular vesicle trafficking and exocytosis (PubMed:24843546). May play a role in maintaining insulin-containing dense core vesicles in pancreatic beta-cells and in preventing their degradation. May play a role in insulin secretion (PubMed:24843546). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (By similarity). {ECO:0000250|UniProtKB:Q6P4T1, ECO:0000269|PubMed:24843546}.
Q92545 TMEM131 T1865 ochoa Transmembrane protein 131 (Protein RW1) Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}.
Q92576 PHF3 T158 ochoa PHD finger protein 3 None
Q92618 ZNF516 T118 ochoa Zinc finger protein 516 Transcriptional regulator that binds to the promoter and activates the transcription of genes promoting brown adipose tissue (BAT) differentiation. Among brown adipose tissue-specific genes, binds the proximal region of the promoter of the UCP1 gene to activate its transcription and thereby regulate thermogenesis (By similarity). May also play a role in the cellular response to replication stress (PubMed:23446422). {ECO:0000250|UniProtKB:Q7TSH3, ECO:0000269|PubMed:23446422}.
Q92667 AKAP1 T447 ochoa A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}.
Q92766 RREB1 T1142 ochoa Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}.
Q92771 DDX12P T65 ochoa Putative ATP-dependent DNA helicase DDX12 (EC 5.6.2.-) (CHL1-related protein 2) (hCHLR2) (DEAD/H box protein 12) DNA helicase involved in cellular proliferation. Probably required for maintaining the chromosome segregation (By similarity). {ECO:0000250}.
Q92870 APBB2 T125 ochoa Amyloid beta precursor protein binding family B member 2 (Amyloid-beta (A4) precursor protein-binding family B member 2) (Protein Fe65-like 1) Plays a role in the maintenance of lens transparency, and may also play a role in muscle cell strength (By similarity). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Activates transcription of APP (PubMed:14527950). {ECO:0000250|UniProtKB:Q9DBR4, ECO:0000269|PubMed:14527950}.
Q92870 APBB2 T343 ochoa Amyloid beta precursor protein binding family B member 2 (Amyloid-beta (A4) precursor protein-binding family B member 2) (Protein Fe65-like 1) Plays a role in the maintenance of lens transparency, and may also play a role in muscle cell strength (By similarity). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Activates transcription of APP (PubMed:14527950). {ECO:0000250|UniProtKB:Q9DBR4, ECO:0000269|PubMed:14527950}.
Q92908 GATA6 T533 ochoa Transcription factor GATA-6 (GATA-binding factor 6) Transcriptional activator (PubMed:19666519, PubMed:22750565, PubMed:22824924, PubMed:27756709). Regulates SEMA3C and PLXNA2 (PubMed:19666519). Involved in gene regulation specifically in the gastric epithelium (PubMed:9315713). May regulate genes that protect epithelial cells from bacterial infection (PubMed:16968778). Involved in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (By similarity). Binds to BMP response element (BMPRE) DNA sequences within cardiac activating regions (By similarity). In human skin, controls several physiological processes contributing to homeostasis of the upper pilosebaceous unit. Triggers ductal and sebaceous differentiation as well as limits cell proliferation and lipid production to prevent hyperseborrhoea. Mediates the effects of retinoic acid on sebocyte proliferation, differentiation and lipid production. Also contributes to immune regulation of sebocytes and antimicrobial responses by modulating the expression of anti-inflammatory genes such as IL10 and pro-inflammatory genes such as IL6, TLR2, TLR4, and IFNG. Activates TGFB1 signaling which controls the interfollicular epidermis fate (PubMed:33082341). {ECO:0000250|UniProtKB:Q61169, ECO:0000269|PubMed:16968778, ECO:0000269|PubMed:19666519, ECO:0000269|PubMed:22750565, ECO:0000269|PubMed:22824924, ECO:0000269|PubMed:27756709, ECO:0000269|PubMed:33082341, ECO:0000269|PubMed:9315713}.
Q92994 BRF1 T616 ochoa Transcription factor IIIB 90 kDa subunit (TFIIIB90) (hTFIIIB90) (B-related factor 1) (BRF-1) (hBRF) (TAF3B2) (TATA box-binding protein-associated factor, RNA polymerase III, subunit 2) General activator of RNA polymerase which utilizes different TFIIIB complexes at structurally distinct promoters. The isoform 1 is involved in the transcription of tRNA, adenovirus VA1, 7SL and 5S RNA. Isoform 2 is required for transcription of the U6 promoter.
Q969J3 BORCS5 T77 ochoa BLOC-1-related complex subunit 5 (Loss of heterozygosity 12 chromosomal region 1) (Myristoylated lysosomal protein) (Myrlysin) As part of the BORC complex may play a role in lysosomes movement and localization at the cell periphery. Associated with the cytosolic face of lysosomes, the BORC complex may recruit ARL8B and couple lysosomes to microtubule plus-end-directed kinesin motor. Thereby, it may indirectly play a role in cell spreading and motility. {ECO:0000269|PubMed:25898167}.
Q969V6 MRTFA T158 ochoa Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}.
Q969V6 MRTFA T456 ochoa Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}.
Q96AY4 TTC28 T1374 ochoa Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}.
Q96AY4 TTC28 Y2295 ochoa Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}.
Q96B70 LENG9 T418 ochoa Leukocyte receptor cluster member 9 None
Q96BD5 PHF21A T480 ochoa PHD finger protein 21A (BHC80a) (BRAF35-HDAC complex protein BHC80) Component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it may act as a scaffold. Inhibits KDM1A-mediated demethylation of 'Lys-4' of histone H3 in vitro, suggesting a role in demethylation regulation. {ECO:0000269|PubMed:16140033}.
Q96C24 SYTL4 T490 ochoa Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}.
Q96CX2 KCTD12 T178 ochoa BTB/POZ domain-containing protein KCTD12 (Pfetin) (Predominantly fetal expressed T1 domain) Auxiliary subunit of GABA-B receptors that determine the pharmacology and kinetics of the receptor response. Increases agonist potency and markedly alter the G-protein signaling of the receptors by accelerating onset and promoting desensitization (By similarity). {ECO:0000250}.
Q96DA6 DNAJC19 T72 ochoa Mitochondrial import inner membrane translocase subunit TIM14 (DnaJ homolog subfamily C member 19) Mitochondrial co-chaperone which forms a complex with prohibitins to regulate cardiolipin remodeling (By similarity). May be a component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. May act as a co-chaperone that stimulate the ATP-dependent activity (By similarity). {ECO:0000250|UniProtKB:Q07914, ECO:0000250|UniProtKB:Q9CQV7}.
Q96DN6 MBD6 T977 ochoa Methyl-CpG-binding domain protein 6 (Methyl-CpG-binding protein MBD6) Non-catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:24634419). Important for stability of PR-DUB components and stimulating its ubiquitinase activity (PubMed:36180891). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). MBD5 and MBD6 containing complexes associate with distinct chromatin regions enriched in genes involved in different pathways (PubMed:36180891). Heterochromatin recruitment is not mediated by DNA methylation (PubMed:20700456). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in development, cell communication, signaling, cell proliferation and cell viability; may promote cancer cell growth (PubMed:36180891). {ECO:0000269|PubMed:20700456, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:36180891}.
Q96E09 PABIR1 T149 ochoa PPP2R1A-PPP2R2A-interacting phosphatase regulator 1 (PABIR family member 1) Acts as an inhibitor of serine/threonine-protein phosphatase 2A (PP2A) activity (PubMed:27588481, PubMed:33108758, PubMed:38123684). Inhibits PP2A activity by blocking the substrate binding site on PPP2R2A and the active site of PPP2CA (PubMed:38123684). Potentiates ubiquitin-mediated proteasomal degradation of serine/threonine-protein phosphatase 2A catalytic subunit alpha (PPP2CA) (PubMed:27588481). Inhibits PP2A-mediated dephosphorylation of WEE1, promoting ubiquitin-mediated proteolysis of WEE1, thereby releasing G2/M checkpoint (PubMed:33108758). {ECO:0000269|PubMed:27588481, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:38123684}.
Q96EV2 RBM33 T853 ochoa RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}.
Q96FC9 DDX11 T46 ochoa ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}.
Q96FF9 CDCA5 T23 ochoa Sororin (Cell division cycle-associated protein 5) (p35) Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}.
Q96G01 BICD1 T595 ochoa Protein bicaudal D homolog 1 (Bic-D 1) Regulates coat complex coatomer protein I (COPI)-independent Golgi-endoplasmic reticulum transport by recruiting the dynein-dynactin motor complex.
Q96HB5 CCDC120 T285 ochoa Coiled-coil domain-containing protein 120 Centriolar protein required for centriole subdistal appendage assembly and microtubule anchoring in interphase cells (PubMed:28422092). Together with CCDC68, cooperate with subdistal appendage components ODF2, NIN and CEP170 for hierarchical subdistal appendage assembly (PubMed:28422092). Recruits NIN and CEP170 to centrosomes (PubMed:28422092). Also required for neurite growth. Localizes CYTH2 to vesicles to allow its transport along neurites, and subsequent ARF6 activation and neurite growth. {ECO:0000269|PubMed:25326380}.
Q96HC4 PDLIM5 T334 ochoa PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}.
Q96I25 RBM17 T224 ochoa Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}.
Q96JH7 VCPIP1 T770 ochoa Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}.
Q96JK2 DCAF5 T650 ochoa DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}.
Q96JM2 ZNF462 T297 ochoa Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}.
Q96JN0 LCOR T44 ochoa Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}.
Q96KQ4 PPP1R13B T529 ochoa Apoptosis-stimulating of p53 protein 1 (Protein phosphatase 1 regulatory subunit 13B) Regulator that plays a central role in regulation of apoptosis via its interaction with p53/TP53 (PubMed:11684014, PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540}.
Q96KQ4 PPP1R13B T673 ochoa Apoptosis-stimulating of p53 protein 1 (Protein phosphatase 1 regulatory subunit 13B) Regulator that plays a central role in regulation of apoptosis via its interaction with p53/TP53 (PubMed:11684014, PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540}.
Q96L34 MARK4 T440 ochoa MAP/microtubule affinity-regulating kinase 4 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase-like 1) Serine/threonine-protein kinase (PubMed:14594945, PubMed:15009667, PubMed:23184942, PubMed:23666762). Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:14594945, PubMed:23666762). Also phosphorylates the microtubule-associated proteins MAP2 and MAP4 (PubMed:14594945). Involved in regulation of the microtubule network, causing reorganization of microtubules into bundles (PubMed:14594945, PubMed:25123532). Required for the initiation of axoneme extension during cilium assembly (PubMed:23400999). Regulates the centrosomal location of ODF2 and phosphorylates ODF2 in vitro (PubMed:23400999). Plays a role in cell cycle progression, specifically in the G1/S checkpoint (PubMed:25123532). Reduces neuronal cell survival (PubMed:15009667). Plays a role in energy homeostasis by regulating satiety and metabolic rate (By similarity). Promotes adipogenesis by activating JNK1 and inhibiting the p38MAPK pathway, and triggers apoptosis by activating the JNK1 pathway (By similarity). Phosphorylates mTORC1 complex member RPTOR and acts as a negative regulator of the mTORC1 complex, probably due to disruption of the interaction between phosphorylated RPTOR and the RRAGA/RRAGC heterodimer which is required for mTORC1 activation (PubMed:23184942). Involved in NLRP3 positioning along microtubules by mediating NLRP3 recruitment to microtubule organizing center (MTOC) upon inflammasome activation (PubMed:28656979). {ECO:0000250|UniProtKB:Q8CIP4, ECO:0000269|PubMed:14594945, ECO:0000269|PubMed:15009667, ECO:0000269|PubMed:23184942, ECO:0000269|PubMed:23400999, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:25123532, ECO:0000269|PubMed:28656979}.
Q96L91 EP400 T137 ochoa E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}.
Q96LD4 TRIM47 T463 ochoa E3 ubiquitin-protein ligase TRIM47 (EC 2.3.2.27) (Gene overexpressed in astrocytoma protein) (RING finger protein 100) (Tripartite motif-containing protein 47) E3 ubiquitin-protein ligase that mediates the ubiquitination and proteasomal degradation of CYLD. {ECO:0000269|PubMed:29291351}.
Q96M96 FGD4 T143 ochoa FYVE, RhoGEF and PH domain-containing protein 4 (Actin filament-binding protein frabin) (FGD1-related F-actin-binding protein) (Zinc finger FYVE domain-containing protein 6) Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. Activates MAPK8 (By similarity). {ECO:0000250, ECO:0000269|PubMed:15133042}.
Q96MU7 YTHDC1 T148 ochoa YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}.
Q96NU1 SAMD11 T642 ochoa Sterile alpha motif domain-containing protein 11 (SAM domain-containing protein 11) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, essential for establishing rod photoreceptor cell identity and function by silencing nonrod gene expression in developing rod photoreceptor cells. {ECO:0000250|UniProtKB:Q1RNF8}.
Q96PE2 ARHGEF17 T1963 ochoa Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}.
Q96PE3 INPP4A T489 ochoa Inositol polyphosphate-4-phosphatase type I A (Inositol polyphosphate 4-phosphatase type I) (Type I inositol 3,4-bisphosphate 4-phosphatase) (EC 3.1.3.66) Catalyzes the hydrolysis of the 4-position phosphate of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) (PubMed:15716355, PubMed:20463662). Also catalyzes inositol 1,3,4-trisphosphate and inositol 1,4-bisphosphate (By similarity). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (By similarity) (PubMed:30071275). May protect neurons from excitotoxic cell death by regulating the synaptic localization of cell surface N-methyl-D-aspartate-type glutamate receptors (NMDARs) and NMDAR-mediated excitatory postsynaptic current (By similarity). {ECO:0000250|UniProtKB:Q62784, ECO:0000250|UniProtKB:Q9EPW0, ECO:0000269|PubMed:15716355, ECO:0000269|PubMed:20463662, ECO:0000269|PubMed:30071275}.; FUNCTION: [Isoform 4]: Displays no 4-phosphatase activity for PtdIns(3,4)P2, Ins(3,4)P2, or Ins(1,3,4)P3. {ECO:0000269|PubMed:9295334}.
Q96PK6 RBM14 T629 ochoa RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}.
Q96QC0 PPP1R10 T315 ochoa Serine/threonine-protein phosphatase 1 regulatory subunit 10 (MHC class I region proline-rich protein CAT53) (PP1-binding protein of 114 kDa) (Phosphatase 1 nuclear targeting subunit) (p99) Substrate-recognition component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation (PubMed:39603239, PubMed:39603240). Promoter-proximal pausing by RNA polymerase II is a transcription halt following transcription initiation but prior to elongation, which acts as a checkpoint to control that transcripts are favorably configured for transcriptional elongation (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates RNA polymerase II transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). The PNUTS-PP1 complex also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (By similarity). PNUTS-PP1 complex mediates dephosphorylation of MYC, promoting MYC stability by preventing MYC ubiquitination by the SCF(FBXW7) complex (PubMed:30158517). In addition to acts as a substrate-recognition component, PPP1R10/PNUTS also acts as a nuclear targeting subunit for the PNUTS-PP1 complex (PubMed:9450550). In some context, PPP1R10/PNUTS also acts as an inhibitor of protein phosphatase 1 (PP1) activity by preventing access to substrates, such as RB (PubMed:18360108). {ECO:0000250|UniProtKB:Q80W00, ECO:0000269|PubMed:18360108, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240, ECO:0000269|PubMed:9450550}.
Q96QF0 RAB3IP T268 ochoa Rab-3A-interacting protein (Rab3A-interacting protein) (Rabin-3) (Rabin8) (SSX2-interacting protein) Guanine nucleotide exchange factor (GEF) which may activate RAB8A and RAB8B (PubMed:12221131, PubMed:26824392). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:12221131, PubMed:26824392). Mediates the release of GDP from RAB8A and RAB8B but not from RAB3A or RAB5 (PubMed:20937701, PubMed:26824392). Modulates actin organization and promotes polarized transport of RAB8A-specific vesicles to the cell surface (PubMed:12221131). Together with RAB11A, RAB8A, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Part of the ciliary targeting complex containing Rab11, ASAP1, RAB3IP and RAB11FIP3 and ARF4 that promotes RAB3IP preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879, PubMed:31204173). {ECO:0000269|PubMed:12221131, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:31204173}.
Q96QS3 ARX T22 ochoa Homeobox protein ARX (Aristaless-related homeobox) Transcription factor (PubMed:22194193, PubMed:31691806). Binds to specific sequence motif 5'-TAATTA-3' in regulatory elements of target genes, such as histone demethylase KDM5C (PubMed:22194193, PubMed:31691806). Positively modulates transcription of KDM5C (PubMed:31691806). Activates expression of KDM5C synergistically with histone lysine demethylase PHF8 and perhaps in competition with transcription regulator ZNF711; synergy may be related to enrichment of histone H3K4me3 in regulatory elements (PubMed:31691806). Required for normal brain development (PubMed:11889467, PubMed:12379852, PubMed:14722918). Plays a role in neuronal proliferation, interneuronal migration and differentiation in the embryonic forebrain (By similarity). May also be involved in axonal guidance in the floor plate (By similarity). {ECO:0000250|UniProtKB:O35085, ECO:0000269|PubMed:11889467, ECO:0000269|PubMed:12379852, ECO:0000269|PubMed:14722918, ECO:0000269|PubMed:22194193, ECO:0000269|PubMed:31691806}.
Q96QU8 XPO6 T210 ochoa Exportin-6 (Exp6) (Ran-binding protein 20) Mediates the nuclear export of actin and profilin-actin complexes in somatic cells. {ECO:0000269|PubMed:14592989}.
Q96RY5 CRAMP1 T535 ochoa Protein cramped-like (Cramped chromatin regulator homolog 1) (Hematological and neurological expressed 1-like protein) None
Q96S38 RPS6KC1 T284 ochoa Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}.
Q96SK2 TMEM209 T224 ochoa Transmembrane protein 209 Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}.
Q96SK2 TMEM209 T230 ochoa Transmembrane protein 209 Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}.
Q96SN8 CDK5RAP2 T1076 ochoa CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}.
Q99081 TCF12 T100 ochoa Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}.
Q99081 TCF12 T285 ochoa Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}.
Q99081 TCF12 Y307 ochoa Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}.
Q99567 NUP88 T37 ochoa Nuclear pore complex protein Nup88 (88 kDa nucleoporin) (Nucleoporin Nup88) Component of nuclear pore complex. {ECO:0000269|PubMed:30543681}.
Q99569 PKP4 T283 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99611 SEPHS2 T111 ochoa Selenide, water dikinase 2 (EC 2.7.9.3) (Selenium donor protein 2) (Selenophosphate synthase 2) Synthesizes selenophosphate from selenide and ATP. {ECO:0000250|UniProtKB:P49903}.
Q99618 CDCA3 T70 ochoa Cell division cycle-associated protein 3 (Gene-rich cluster protein C8) (Trigger of mitotic entry protein 1) (TOME-1) F-box-like protein which is required for entry into mitosis. Acts by participating in E3 ligase complexes that mediate the ubiquitination and degradation of WEE1 kinase at G2/M phase (By similarity). {ECO:0000250}.
Q99798 ACO2 T561 ochoa Aconitate hydratase, mitochondrial (Aconitase) (EC 4.2.1.3) (Citrate hydro-lyase) Catalyzes the isomerization of citrate to isocitrate via cis-aconitate. {ECO:0000250|UniProtKB:P16276}.
Q9BQ04 RBM4B T88 ochoa RNA-binding protein 4B (RNA-binding motif protein 30) (RNA-binding motif protein 4B) (RNA-binding protein 30) Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA (By similarity). {ECO:0000250}.
Q9BQG0 MYBBP1A T1269 ochoa Myb-binding protein 1A May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}.
Q9BSI4 TINF2 T297 psp TERF1-interacting nuclear factor 2 (TRF1-interacting nuclear protein 2) Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded TTAGGG repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Plays a role in shelterin complex assembly. Isoform 1 may have additional role in tethering telomeres to the nuclear matrix. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:16880378}.
Q9BTV7 CABLES2 T107 ochoa CDK5 and ABL1 enzyme substrate 2 (Interactor with CDK3 2) (Ik3-2) Unknown. Probably involved in G1-S cell cycle transition.
Q9BUL5 PHF23 T152 ochoa PHD finger protein 23 (PDH-containing protein JUNE-1) Acts as a negative regulator of autophagy, through promoting ubiquitination and degradation of LRSAM1, an E3 ubiquitin ligase that promotes autophagy in response to starvation or infecting bacteria. {ECO:0000269|PubMed:25484098}.
Q9BWF3 RBM4 T88 ochoa RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}.
Q9BWG6 SCNM1 T185 ochoa Sodium channel modifier 1 As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:36084634). Plays a role in the regulation of primary cilia length and Hedgehog signaling (PubMed:36084634). {ECO:0000269|PubMed:36084634}.
Q9BX66 SORBS1 T642 ochoa Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}.
Q9BY89 KIAA1671 T1226 ochoa Uncharacterized protein KIAA1671 None
Q9C040 TRIM2 T430 ochoa Tripartite motif-containing protein 2 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM2) (RING finger protein 86) (RING-type E3 ubiquitin transferase TRIM2) UBE2D1-dependent E3 ubiquitin-protein ligase that mediates the ubiquitination of NEFL and of phosphorylated BCL2L11. Plays a neuroprotective function. May play a role in neuronal rapid ischemic tolerance. Plays a role in antiviral immunity and limits New World arenavirus infection independently of its ubiquitin ligase activity (PubMed:24068738). {ECO:0000250|UniProtKB:Q9ESN6, ECO:0000269|PubMed:24068738}.
Q9C0A6 SETD5 T1200 ochoa Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}.
Q9C0B0 UNK T338 ochoa|psp RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}.
Q9C0C9 UBE2O T841 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9C0D2 CEP295 T916 ochoa Centrosomal protein of 295 kDa Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}.
Q9C0G0 ZNF407 T954 ochoa Zinc finger protein 407 May be involved in transcriptional regulation.
Q9C0K0 BCL11B T131 ochoa B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}.
Q9GZU1 MCOLN1 T549 ochoa Mucolipin-1 (ML1) (MG-2) (Mucolipidin) (Transient receptor potential channel mucolipin 1) (TRPML1) Nonselective cation channel probably playing a role in the regulation of membrane trafficking events and of metal homeostasis (PubMed:11013137, PubMed:12459486, PubMed:14749347, PubMed:15336987, PubMed:18794901, PubMed:25720963, PubMed:27623384, PubMed:29019983). Acts as a Ca(2+)-permeable cation channel with inwardly rectifying activity (PubMed:25720963, PubMed:29019983). Proposed to play a major role in Ca(2+) release from late endosome and lysosome vesicles to the cytoplasm, which is important for many lysosome-dependent cellular events, including the fusion and trafficking of these organelles, exocytosis and autophagy (PubMed:11013137, PubMed:12459486, PubMed:14749347, PubMed:15336987, PubMed:25720963, PubMed:27623384, PubMed:29019983). Required for efficient uptake of large particles in macrophages in which Ca(2+) release from the lysosomes triggers lysosomal exocytosis. May also play a role in phagosome-lysosome fusion (By similarity). Involved in lactosylceramide trafficking indicative for a role in the regulation of late endocytic membrane fusion/fission events (PubMed:16978393). By mediating lysosomal Ca(2+) release is involved in regulation of mTORC1 signaling and in mTOR/TFEB-dependent lysosomal adaptation to environmental cues such as nutrient levels (PubMed:25720963, PubMed:25733853, PubMed:27787197). Seems to act as lysosomal active oxygen species (ROS) sensor involved in ROS-induced TFEB activation and autophagy (PubMed:27357649). Also functions as a Fe(2+) permeable channel in late endosomes and lysosomes (PubMed:18794901). Also permeable to Mg(2+), Na(+). K(+) and Cs(+) (By similarity). Proposed to play a role in zinc homeostasis probably implicating its association with TMEM163 (PubMed:25130899) In adaptive immunity, TRPML2 and TRPML1 may play redundant roles in the function of the specialized lysosomes of B cells (By similarity). {ECO:0000250|UniProtKB:Q99J21, ECO:0000269|PubMed:12459486, ECO:0000269|PubMed:14749347, ECO:0000269|PubMed:15336987, ECO:0000269|PubMed:16978393, ECO:0000269|PubMed:18794901, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:25733853, ECO:0000269|PubMed:27357649, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:27787197, ECO:0000269|PubMed:29019983, ECO:0000305|PubMed:11013137}.; FUNCTION: May contribute to cellular lipase activity within the late endosomal pathway or at the cell surface which may be involved in processes of membrane reshaping and vesiculation, especially the growth of tubular structures. However, it is not known, whether it conveys the enzymatic activity directly, or merely facilitates the activity of an associated phospholipase. {ECO:0000305|PubMed:21256127}.
Q9H1R3 MYLK2 T186 ochoa Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}.
Q9H2J7 SLC6A15 T703 ochoa Sodium-dependent neutral amino acid transporter B(0)AT2 (Sodium- and chloride-dependent neurotransmitter transporter NTT73) (Sodium-coupled branched-chain amino-acid transporter 1) (Solute carrier family 6 member 15) (Transporter v7-3) Functions as a sodium-dependent neutral amino acid transporter. Exhibits preference for the branched-chain amino acids, particularly leucine, valine and isoleucine and methionine. Can also transport low-affinity substrates such as alanine, phenylalanine, glutamine and pipecolic acid. Mediates the saturable, pH-sensitive and electrogenic cotransport of proline and sodium ions with a stoichiometry of 1:1. May have a role as transporter for neurotransmitter precursors into neurons. In contrast to other members of the neurotransmitter transporter family, does not appear to be chloride-dependent. {ECO:0000269|PubMed:16226721}.
Q9H2Y7 ZNF106 T402 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H4M7 PLEKHA4 T215 ochoa Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}.
Q9H5J0 ZBTB3 T230 ochoa Zinc finger and BTB domain-containing protein 3 May be involved in transcriptional regulation.
Q9H5J0 ZBTB3 T551 ochoa Zinc finger and BTB domain-containing protein 3 May be involved in transcriptional regulation.
Q9H6S3 EPS8L2 T465 ochoa Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}.
Q9H6S3 EPS8L2 T572 ochoa Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}.
Q9H6Y7 RNF167 T316 ochoa E3 ubiquitin-protein ligase RNF167 (EC 2.3.2.27) (RING finger protein 167) E3 ubiquitin-protein ligase that acts as a regulator of the TORC1 signaling pathway (PubMed:33594058, PubMed:35114100). Positively regulates the TORC1 signaling pathway independently of arginine levels: acts by catalyzing 'Lys-29'-polyubiquitination and degradation of CASTOR1, releasing the GATOR2 complex from CASTOR1 (PubMed:33594058). Also negatively regulates the TORC1 signaling pathway in response to leucine deprivation: acts by mediating 'Lys-63'-linked polyubiquitination of SESN2, promoting SESN2-interaction with the GATOR2 complex (PubMed:35114100). Also involved in protein trafficking and localization (PubMed:23129617, PubMed:23353890, PubMed:24387786, PubMed:27808481, PubMed:32409562). Acts as a regulator of synaptic transmission by mediating ubiquitination and degradation of AMPAR receptor GluA2/GRIA2 (PubMed:23129617, PubMed:33650289). Does not catalyze ubiquitination of GluA1/GRIA1 (PubMed:23129617). Also acts as a regulator of the recycling endosome pathway by mediating ubiquitination of VAMP3 (PubMed:23353890). Regulates lysosome positioning by catalyzing ubiquitination and degradation of ARL8B (PubMed:27808481). Plays a role in growth regulation involved in G1/S transition by mediating, possibly by mediating ubiquitination of SLC22A18 (PubMed:16314844). Acts with a limited set of E2 enzymes, such as UBE2D1 and UBE2N (PubMed:33650289). {ECO:0000269|PubMed:16314844, ECO:0000269|PubMed:23129617, ECO:0000269|PubMed:23353890, ECO:0000269|PubMed:24387786, ECO:0000269|PubMed:27808481, ECO:0000269|PubMed:32409562, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:33650289, ECO:0000269|PubMed:35114100}.
Q9H792 PEAK1 T574 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9H792 PEAK1 T615 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9H792 PEAK1 T839 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9HAN9 NMNAT1 T119 ochoa Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1 (NMN/NaMN adenylyltransferase 1) (EC 2.7.7.1) (EC 2.7.7.18) (Nicotinamide-nucleotide adenylyltransferase 1) (NMN adenylyltransferase 1) (Nicotinate-nucleotide adenylyltransferase 1) (NaMN adenylyltransferase 1) Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP (PubMed:17402747). Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency (PubMed:17402747). Can use triazofurin monophosphate (TrMP) as substrate (PubMed:17402747). Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+) (PubMed:17402747). For the pyrophosphorolytic activity, prefers NAD(+) and NaAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively (PubMed:17402747). Involved in the synthesis of ATP in the nucleus, together with PARP1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). Also acts as a cofactor for glutamate and aspartate ADP-ribosylation by directing PARP1 catalytic activity to glutamate and aspartate residues on histones (By similarity). Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NaADP(+) (PubMed:17402747). Protects against axonal degeneration following mechanical or toxic insults (By similarity). Neural protection does not correlate with cellular NAD(+) levels but may still require enzyme activity (By similarity). {ECO:0000250|UniProtKB:Q9EPA7, ECO:0000269|PubMed:17402747, ECO:0000269|PubMed:27257257}.
Q9HAU0 PLEKHA5 T857 ochoa Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) None
Q9HBB8 CDHR5 T772 ochoa Cadherin-related family member 5 (Mu-protocadherin) (Mucin and cadherin-like protein) (Mucin-like protocadherin) (MLPCDH) Intermicrovillar adhesion molecule that forms, via its extracellular domain, calcium-dependent heterophilic complexes with CDHR2 on adjacent microvilli. Thereby, controls the packing of microvilli at the apical membrane of epithelial cells. Through its cytoplasmic domain, interacts with microvillus cytoplasmic proteins to form the intermicrovillar adhesion complex/IMAC. This complex plays a central role in microvilli and epithelial brush border differentiation. {ECO:0000269|PubMed:24725409}.
Q9HCC9 ZFYVE28 T525 ochoa Lateral signaling target protein 2 homolog (hLst2) (Zinc finger FYVE domain-containing protein 28) Negative regulator of epidermal growth factor receptor (EGFR) signaling. Acts by promoting EGFR degradation in endosomes when not monoubiquitinated. {ECO:0000269|PubMed:19460345}.
Q9HCD6 TANC2 T171 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9HCD6 TANC2 T1492 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9HCD6 TANC2 T1829 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9HCE9 ANO8 T643 ochoa Anoctamin-8 (Transmembrane protein 16H) Does not exhibit calcium-activated chloride channel (CaCC) activity.
Q9HCE9 ANO8 T1015 ochoa Anoctamin-8 (Transmembrane protein 16H) Does not exhibit calcium-activated chloride channel (CaCC) activity.
Q9NP74 PALMD T255 ochoa Palmdelphin (Paralemmin-like protein) None
Q9NP74 PALMD T387 ochoa Palmdelphin (Paralemmin-like protein) None
Q9NP87 POLM T374 ochoa DNA-directed DNA/RNA polymerase mu (Pol Mu) (EC 2.7.7.7) (Terminal transferase) Gap-filling polymerase involved in repair of DNA double-strand breaks by non-homologous end joining (NHEJ). Participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination. {ECO:0000269|PubMed:12640116, ECO:0000269|PubMed:12888504, ECO:0000269|PubMed:17483519, ECO:0000269|PubMed:17915942}.
Q9NPB8 GPCPD1 T177 ochoa Glycerophosphocholine phosphodiesterase GPCPD1 (EC 3.1.4.2) (Glycerophosphodiester phosphodiesterase 5) May be involved in the negative regulation of skeletal muscle differentiation, independently of its glycerophosphocholine phosphodiesterase activity. {ECO:0000250}.
Q9NPI6 DCP1A T321 ochoa mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}.
Q9NQB0 TCF7L2 T124 ochoa Transcription factor 7-like 2 (HMG box transcription factor 4) (T-cell-specific transcription factor 4) (T-cell factor 4) (TCF-4) (hTCF-4) Participates in the Wnt signaling pathway and modulates MYC expression by binding to its promoter in a sequence-specific manner. Acts as a repressor in the absence of CTNNB1, and as activator in its presence. Activates transcription from promoters with several copies of the Tcf motif 5'-CCTTTGATC-3' in the presence of CTNNB1. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7L2/TCF4 and CTNNB1. Expression of dominant-negative mutants results in cell-cycle arrest in G1. Necessary for the maintenance of the epithelial stem-cell compartment of the small intestine. {ECO:0000269|PubMed:12408868, ECO:0000269|PubMed:12727872, ECO:0000269|PubMed:19443654, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:9727977}.
Q9NQG6 MIEF1 T61 ochoa Mitochondrial dynamics protein MIEF1 (Mitochondrial dynamics protein of 51 kDa) (Mitochondrial elongation factor 1) (Smith-Magenis syndrome chromosomal region candidate gene 7 protein-like) (SMCR7-like protein) Mitochondrial outer membrane protein which regulates mitochondrial fission/fusion dynamics (PubMed:21701560, PubMed:23921378, PubMed:33632269). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface independently of the mitochondrial fission FIS1 and MFF proteins. Regulates DNM1L GTPase activity and DNM1L oligomerization. Binds ADP and can also bind GDP, although with lower affinity. Does not bind CDP, UDP, ATP, AMP or GTP. Inhibits DNM1L GTPase activity in the absence of bound ADP. Requires ADP to stimulate DNM1L GTPase activity and the assembly of DNM1L into long, oligomeric tubules with a spiral pattern, as opposed to the ring-like DNM1L oligomers observed in the absence of bound ADP. Does not require ADP for its function in recruiting DNM1L. {ECO:0000269|PubMed:21508961, ECO:0000269|PubMed:21701560, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:24515348, ECO:0000269|PubMed:29083303, ECO:0000269|PubMed:33632269}.
Q9NQS7 INCENP T199 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NR45 NANS T277 ochoa N-acetylneuraminate-9-phosphate synthase (EC 2.5.1.57) (3-deoxy-D-glycero-D-galacto-nononate 9-phosphate synthase) (EC 2.5.1.132) (N-acetylneuraminic acid phosphate synthase) (NANS) (Sialic acid phosphate synthase) (Sialic acid synthase) Catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine 6-phosphate (ManNAc-6-P) to synthesize N-acetylneuraminate-9-phosphate (Neu5Ac-9-P) (PubMed:10749855). Also catalyzes the condensation of PEP and D-mannose 6-phosphate (Man-6-P) to produce 3-deoxy-D-glycero-beta-D-galacto-non-2-ulopyranosonate 9-phosphate (KDN-9-P) (PubMed:10749855). Neu5Ac-9-P and KDN-9-P are the phosphorylated forms of sialic acids N-acetylneuraminic acid (Neu5Ac) and deaminoneuraminic acid (KDN), respectively (PubMed:10749855). Required for brain and skeletal development (PubMed:27213289). {ECO:0000269|PubMed:10749855, ECO:0000269|PubMed:27213289}.
Q9NR48 ASH1L T1683 ochoa Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}.
Q9NRA0 SPHK2 T389 ochoa Sphingosine kinase 2 (SK 2) (SPK 2) (EC 2.7.1.91) Catalyzes the phosphorylation of sphingosine to form sphingosine-1-phosphate (SPP), a lipid mediator with both intra- and extracellular functions. Also acts on D-erythro-dihydrosphingosine, D-erythro-sphingosine and L-threo-dihydrosphingosine. Binds phosphoinositides (PubMed:12954646, PubMed:19168031). In contrast to prosurvival SPHK1, has a positive effect on intracellular ceramide levels, inhibits cells growth and enhances apoptosis (PubMed:16118219). In mitochondria, is important for cytochrome-c oxidase assembly and mitochondrial respiration. The SPP produced in mitochondria binds PHB2 and modulates the regulation via PHB2 of complex IV assembly and respiration (PubMed:20959514). In nucleus, plays a role in epigenetic regulation of gene expression. Interacts with HDAC1 and HDAC2 and, through SPP production, inhibits their enzymatic activity, preventing the removal of acetyl groups from lysine residues with histones. Up-regulates acetylation of histone H3-K9, histone H4-K5 and histone H2B-K12 (PubMed:19729656). In nucleus, may have an inhibitory effect on DNA synthesis and cell cycle (PubMed:12954646, PubMed:16103110). In mast cells, is the main regulator of SPP production which mediates calcium influx, NF-kappa-B activation, cytokine production, such as TNF and IL6, and degranulation of mast cells (By similarity). In dopaminergic neurons, is involved in promoting mitochondrial functions regulating ATP and ROS levels (By similarity). Also involved in the regulation of glucose and lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9JIA7, ECO:0000269|PubMed:12954646, ECO:0000269|PubMed:16103110, ECO:0000269|PubMed:16118219, ECO:0000269|PubMed:19168031, ECO:0000269|PubMed:19729656, ECO:0000269|PubMed:20959514}.
Q9NRA8 EIF4ENIF1 T754 ochoa Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}.
Q9NRS6 SNX15 T229 ochoa Sorting nexin-15 May be involved in several stages of intracellular trafficking. Overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the TGN. {ECO:0000269|PubMed:11085978}.
Q9NRZ9 HELLS T505 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NUA8 ZBTB40 T192 ochoa Zinc finger and BTB domain-containing protein 40 May be involved in transcriptional regulation.
Q9NUL3 STAU2 T457 ochoa Double-stranded RNA-binding protein Staufen homolog 2 RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}.
Q9NVT9 ARMC1 T248 ochoa Armadillo repeat-containing protein 1 In association with mitochondrial contact site and cristae organizing system (MICOS) complex components and mitochondrial outer membrane sorting assembly machinery (SAM) complex components may regulate mitochondrial dynamics playing a role in determining mitochondrial length, distribution and motility. {ECO:0000269|PubMed:31644573}.
Q9NW07 ZNF358 T489 ochoa Zinc finger protein 358 May be involved in transcriptional regulation.
Q9NX70 MED29 T139 ochoa Mediator of RNA polymerase II transcription subunit 29 (Intersex-like protein) (Mediator complex subunit 29) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:15555573}.
Q9NXC5 MIOS T768 ochoa GATOR2 complex protein MIOS (Missing oocyte meiosis regulator homolog) As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:26586190, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:26586190, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25263562, PubMed:25457612, PubMed:26586190, PubMed:27487210). Within the GATOR2 complex, MIOS is required to prevent autoubiquitination of WDR24, the catalytic subunit of the complex (PubMed:35831510). The GATOR2 complex is required for brain myelination (By similarity). {ECO:0000250|UniProtKB:Q8VE19, ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25263562, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26586190, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}.
Q9NYB9 ABI2 T218 ochoa Abl interactor 2 (Abelson interactor 2) (Abi-2) (Abl-binding protein 3) (AblBP3) (Arg-binding protein 1) (ArgBP1) Regulator of actin cytoskeleton dynamics underlying cell motility and adhesion. Functions as a component of the WAVE complex, which activates actin nucleating machinery Arp2/3 to drive lamellipodia formation (PubMed:21107423). Acts as a regulator and substrate of nonreceptor tyrosine kinases ABL1 and ABL2 involved in processes linked to cell growth and differentiation. Positively regulates ABL1-mediated phosphorylation of ENAH, which is required for proper polymerization of nucleated actin filaments at the leading edge (PubMed:10498863, PubMed:7590236, PubMed:8649853). Contributes to the regulation of actin assembly at the tips of neuron projections. In particular, controls dendritic spine morphogenesis and may promote dendritic spine specification toward large mushroom-type spines known as repositories of memory in the brain (By similarity). In hippocampal neurons, may mediate actin-dependent BDNF-NTRK2 early endocytic trafficking that triggers dendrite outgrowth (By similarity). Participates in ocular lens morphogenesis, likely by regulating lamellipodia-driven adherens junction formation at the epithelial cell-secondary lens fiber interface (By similarity). Also required for nascent adherens junction assembly in epithelial cells (PubMed:15572692). {ECO:0000250|UniProtKB:P62484, ECO:0000269|PubMed:10498863, ECO:0000269|PubMed:15572692, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:7590236, ECO:0000269|PubMed:8649853}.
Q9NYL2 MAP3K20 T639 ochoa Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.
Q9NZ56 FMN2 T749 ochoa Formin-2 Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}.
Q9NZJ4 SACS T4266 ochoa Sacsin (DnaJ homolog subfamily C member 29) Co-chaperone which acts as a regulator of the Hsp70 chaperone machinery and may be involved in the processing of other ataxia-linked proteins. {ECO:0000269|PubMed:19208651}.
Q9NZN5 ARHGEF12 T30 ochoa Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}.
Q9NZQ9 TMOD4 T60 ochoa Tropomodulin-4 (Skeletal muscle tropomodulin) (Sk-Tmod) Blocks the elongation and depolymerization of the actin filaments at the pointed end. The Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton.
Q9P0K8 FOXJ2 T48 ochoa Forkhead box protein J2 (Fork head homologous X) [Isoform FOXJ2.L]: Transcriptional activator. Able to bind to two different type of DNA binding sites. More effective than isoform FOXJ2.S in transcriptional activation (PubMed:10777590, PubMed:10966786). Plays an important role in spermatogenesis, especially in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q9ES18, ECO:0000269|PubMed:10777590, ECO:0000269|PubMed:10966786}.; FUNCTION: [Isoform FOXJ2.S]: Transcriptional activator. {ECO:0000269|PubMed:10966786}.
Q9P266 JCAD T377 ochoa Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) None
Q9P2B4 CTTNBP2NL T490 ochoa CTTNBP2 N-terminal-like protein Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}.
Q9P2D1 CHD7 T303 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2N5 RBM27 T477 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q9P2Q2 FRMD4A T696 ochoa FERM domain-containing protein 4A Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}.
Q9P2R6 RERE T1268 ochoa Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}.
Q9UBW5 BIN2 T500 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9UBW7 ZMYM2 T840 ochoa Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}.
Q9UGI0 ZRANB1 T117 psp Ubiquitin thioesterase ZRANB1 (EC 3.4.19.12) (TRAF-binding domain-containing protein) (hTrabid) (Zinc finger Ran-binding domain-containing protein 1) Ubiquitin thioesterase, which specifically hydrolyzes 'Lys-29'-linked and 'Lys-33'-linked diubiquitin (PubMed:22157957, PubMed:23827681, PubMed:25752573, PubMed:25752577). Also cleaves 'Lys-63'-linked chains, but with 40-fold less efficiency compared to 'Lys-29'-linked ones (PubMed:18281465). Positive regulator of the Wnt signaling pathway that deubiquitinates APC protein, a negative regulator of Wnt-mediated transcription (PubMed:18281465). Acts as a regulator of autophagy by mediating deubiquitination of PIK3C3/VPS34, thereby promoting autophagosome maturation (PubMed:33637724). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). Required in the stress fiber dynamics and cell migration (PubMed:21834987). {ECO:0000269|PubMed:18281465, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22157957, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25752573, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:33637724}.
Q9UGJ0 PRKAG2 T213 ochoa 5'-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2) (AMPK subunit gamma-2) (H91620p) AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:14722619, PubMed:24563466). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:14722619, PubMed:24563466). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:14722619, PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:14722619, PubMed:24563466). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:14722619, PubMed:24563466). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:14722619, PubMed:24563466). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:14722619, PubMed:24563466). {ECO:0000269|PubMed:14722619, ECO:0000269|PubMed:24563466}.
Q9UGP4 LIMD1 T386 ochoa LIM domain-containing protein 1 Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}.
Q9UGU0 TCF20 T421 ochoa Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}.
Q9UHR4 BAIAP2L1 T416 ochoa BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}.
Q9UIF8 BAZ2B T1598 ochoa Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}.
Q9UIF9 BAZ2A T1399 ochoa Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}.
Q9UIW0 VAX2 T44 ochoa Ventral anterior homeobox 2 Transcription factor that may function in dorsoventral specification of the forebrain. Regulates the expression of Wnt signaling antagonists including the expression of a truncated TCF7L2 isoform that cannot bind CTNNB1 and acts therefore as a potent dominant-negative Wnt antagonist. Plays a crucial role in eye development and, in particular, in the specification of the ventral optic vesicle (By similarity). May be a regulator of axial polarization in the retina. {ECO:0000250}.
Q9UJU6 DBNL T26 ochoa Drebrin-like protein (Cervical SH3P7) (Cervical mucin-associated protein) (Drebrin-F) (HPK1-interacting protein of 55 kDa) (HIP-55) (SH3 domain-containing protein 7) Adapter protein that binds F-actin and DNM1, and thereby plays a role in receptor-mediated endocytosis. Plays a role in the reorganization of the actin cytoskeleton, formation of cell projections, such as neurites, in neuron morphogenesis and synapse formation via its interaction with WASL and COBL. Does not bind G-actin and promote actin polymerization by itself. Required for the formation of organized podosome rosettes (By similarity). May act as a common effector of antigen receptor-signaling pathways in leukocytes. Acts as a key component of the immunological synapse that regulates T-cell activation by bridging TCRs and the actin cytoskeleton to gene activation and endocytic processes. {ECO:0000250, ECO:0000269|PubMed:14729663}.
Q9UKA4 AKAP11 T1244 ochoa A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) Binds to type II regulatory subunits of protein kinase A and anchors/targets them.
Q9ULC8 ZDHHC8 T745 ochoa Palmitoyltransferase ZDHHC8 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 8) (DHHC-8) (Zinc finger protein 378) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates and therefore functions in several unrelated biological processes (Probable). Through the palmitoylation of ABCA1 regulates the localization of the transporter to the plasma membrane and thereby regulates its function in cholesterol and phospholipid efflux (Probable). Could also pamitoylate the D(2) dopamine receptor DRD2 and regulate its stability and localization to the plasma membrane (Probable). Could also play a role in glutamatergic transmission (By similarity). {ECO:0000250|UniProtKB:Q5Y5T5, ECO:0000305|PubMed:19556522, ECO:0000305|PubMed:23034182, ECO:0000305|PubMed:26535572}.; FUNCTION: (Microbial infection) Able to palmitoylate SARS coronavirus-2/SARS-CoV-2 spike protein following its synthesis in the endoplasmic reticulum (ER). In the infected cell, promotes spike biogenesis by protecting it from premature ER degradation, increases half-life and controls the lipid organization of its immediate membrane environment. Once the virus has formed, spike palmitoylation controls fusion with the target cell. {ECO:0000269|PubMed:34599882}.
Q9ULD5 ZNF777 T49 ochoa Zinc finger protein 777 May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}.
Q9ULD5 ZNF777 T145 ochoa Zinc finger protein 777 May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}.
Q9ULH1 ASAP1 T787 ochoa Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}.
Q9ULH7 MRTFB T227 ochoa Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}.
Q9ULI3 HEG1 T1334 ochoa Protein HEG homolog 1 Receptor component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions. {ECO:0000250}.
Q9ULJ3 ZBTB21 T518 ochoa Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}.
Q9ULM3 YEATS2 T521 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9UMD9 COL17A1 T176 ochoa Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies.
Q9UMS6 SYNPO2 T904 ochoa Synaptopodin-2 (Genethonin-2) (Myopodin) Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}.
Q9UNS1 TIMELESS T1089 ochoa Protein timeless homolog (hTIM) Plays an important role in the control of DNA replication, maintenance of replication fork stability, maintenance of genome stability throughout normal DNA replication, DNA repair and in the regulation of the circadian clock (PubMed:17141802, PubMed:17296725, PubMed:23359676, PubMed:23418588, PubMed:26344098, PubMed:31138685, PubMed:32705708, PubMed:35585232, PubMed:9856465). Required to stabilize replication forks during DNA replication by forming a complex with TIPIN: this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic stress (PubMed:17141802, PubMed:17296725, PubMed:23359676, PubMed:35585232). During DNA replication, inhibits the CMG complex ATPase activity and activates DNA polymerases catalytic activities, coupling DNA unwinding and DNA synthesis (PubMed:23359676). TIMELESS promotes TIPIN nuclear localization (PubMed:17141802, PubMed:17296725). Plays a role in maintaining processive DNA replication past genomic guanine-rich DNA sequences that form G-quadruplex (G4) structures, possibly together with DDX1 (PubMed:32705708). Involved in cell survival after DNA damage or replication stress by promoting DNA repair (PubMed:17141802, PubMed:17296725, PubMed:26344098, PubMed:30356214). In response to double-strand breaks (DSBs), accumulates at DNA damage sites and promotes homologous recombination repair via its interaction with PARP1 (PubMed:26344098, PubMed:30356214, PubMed:31138685). May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light (PubMed:15798197). Involved in the determination of period length and in the DNA damage-dependent phase advancing of the circadian clock (PubMed:23418588, PubMed:31138685). Negatively regulates CLOCK|NPAS2-ARTNL/BMAL1|ARTNL2/BMAL2-induced transactivation of PER1 possibly via translocation of PER1 into the nucleus (PubMed:31138685, PubMed:9856465). May play a role as destabilizer of the PER2-CRY2 complex (PubMed:31138685). May also play an important role in epithelial cell morphogenesis and formation of branching tubules (By similarity). {ECO:0000250|UniProtKB:Q9R1X4, ECO:0000269|PubMed:15798197, ECO:0000269|PubMed:17141802, ECO:0000269|PubMed:17296725, ECO:0000269|PubMed:23359676, ECO:0000269|PubMed:23418588, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31138685, ECO:0000269|PubMed:32705708, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9856465}.
Q9UPN3 MACF1 T3300 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN3 MACF1 T4498 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN3 MACF1 T5594 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN4 CEP131 T383 ochoa Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}.
Q9UPN6 SCAF8 T619 ochoa SR-related and CTD-associated factor 8 (CDC5L complex-associated protein 7) (RNA-binding motif protein 16) Anti-terminator protein required to prevent early mRNA termination during transcription (PubMed:31104839). Together with SCAF4, acts by suppressing the use of early, alternative poly(A) sites, thereby preventing the accumulation of non-functional truncated proteins (PubMed:31104839). Mechanistically, associates with the phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit (POLR2A), and subsequently binds nascent RNA upstream of early polyadenylation sites to prevent premature mRNA transcript cleavage and polyadenylation (PubMed:31104839). Independently of SCAF4, also acts as a positive regulator of transcript elongation (PubMed:31104839). {ECO:0000269|PubMed:31104839}.
Q9UPQ0 LIMCH1 T672 ochoa LIM and calponin homology domains-containing protein 1 Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}.
Q9UPR3 SMG5 T538 ochoa Nonsense-mediated mRNA decay factor SMG5 (EST1-like protein B) (LPTS-RP1) (LPTS-interacting protein) (SMG-5 homolog) (hSMG-5) Plays a role in nonsense-mediated mRNA decay. Does not have RNase activity by itself. Promotes dephosphorylation of UPF1. Together with SMG7 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. Necessary for TERT activity. {ECO:0000269|PubMed:17053788}.
Q9UPT6 MAPK8IP3 T367 ochoa C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}.
Q9UPT6 MAPK8IP3 T1193 ochoa C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}.
Q9UPY8 MAPRE3 T164 ochoa Microtubule-associated protein RP/EB family member 3 (EB1 protein family member 3) (EBF3) (End-binding protein 3) (EB3) (RP3) Plus-end tracking protein (+TIP) that binds to the plus-end of microtubules and regulates the dynamics of the microtubule cytoskeleton (PubMed:19255245, PubMed:28814570). Promotes microtubule growth (PubMed:19255245, PubMed:28814570). May be involved in spindle function by stabilizing microtubules and anchoring them at centrosomes (PubMed:19255245, PubMed:28814570). Also acts as a regulator of minus-end microtubule organization: interacts with the complex formed by AKAP9 and PDE4DIP, leading to recruit CAMSAP2 to the Golgi apparatus, thereby tethering non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:28814570). Promotes elongation of CAMSAP2-decorated microtubule stretches on the minus-end of microtubules (PubMed:28814570). {ECO:0000269|PubMed:19255245, ECO:0000269|PubMed:28814570}.
Q9UQ35 SRRM2 T458 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 T2583 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQB3 CTNND2 T278 ochoa Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}.
Q9Y243 AKT3 T122 ochoa RAC-gamma serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase Akt-3) (Protein kinase B gamma) (PKB gamma) (RAC-PK-gamma) (STK-2) AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial for the viability of malignant glioma cells. AKT3 isoform may also be the key molecule in up-regulation and down-regulation of MMP13 via IL13. Required for the coordination of mitochondrial biogenesis with growth factor-induced increases in cellular energy demands. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. {ECO:0000269|PubMed:18524868, ECO:0000269|PubMed:21191416}.
Q9Y2D9 ZNF652 T206 ochoa Zinc finger protein 652 Functions as a transcriptional repressor. {ECO:0000269|PubMed:16966434}.
Q9Y2H5 PLEKHA6 T779 ochoa Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) None
Q9Y2L9 LRCH1 T538 ochoa Leucine-rich repeat and calponin homology domain-containing protein 1 (Calponin homology domain-containing protein 1) (Neuronal protein 81) (NP81) Acts as a negative regulator of GTPase CDC42 by sequestering CDC42-guanine exchange factor DOCK8. Probably by preventing CDC42 activation, negatively regulates CD4(+) T-cell migration. {ECO:0000269|PubMed:28028151}.
Q9Y2T1 AXIN2 T246 ochoa Axin-2 (Axin-like protein) (Axil) (Axis inhibition protein 2) (Conductin) Inhibitor of the Wnt signaling pathway. Down-regulates beta-catenin. Probably facilitate the phosphorylation of beta-catenin and APC by GSK3B. {ECO:0000250|UniProtKB:O15169}.
Q9Y4F5 CEP170B T974 ochoa Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}.
Q9Y4H2 IRS2 T1102 ochoa Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y4I1 MYO5A T602 ochoa Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin) Processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament. Can hydrolyze ATP in the presence of actin, which is essential for its function as a motor protein (PubMed:10448864). Involved in melanosome transport. Also mediates the transport of vesicles to the plasma membrane (By similarity). May also be required for some polarization process involved in dendrite formation (By similarity). {ECO:0000250|UniProtKB:Q99104, ECO:0000250|UniProtKB:Q9QYF3, ECO:0000269|PubMed:10448864}.
Q9Y4J8 DTNA T664 ochoa Dystrobrevin alpha (DTN-A) (Alpha-dystrobrevin) (Dystrophin-related protein 3) May be involved in the formation and stability of synapses as well as being involved in the clustering of nicotinic acetylcholine receptors.
Q9Y4P8 WIPI2 T415 ochoa WD repeat domain phosphoinositide-interacting protein 2 (WIPI-2) (WIPI49-like protein 2) Component of the autophagy machinery that controls the major intracellular degradation process by which cytoplasmic materials are packaged into autophagosomes and delivered to lysosomes for degradation (PubMed:20505359, PubMed:28561066). Involved in an early step of the formation of preautophagosomal structures (PubMed:20505359, PubMed:28561066). Binds and is activated by phosphatidylinositol 3-phosphate (PtdIns3P) forming on membranes of the endoplasmic reticulum upon activation of the upstream ULK1 and PI3 kinases (PubMed:28561066). Mediates ER-isolation membranes contacts by interacting with the ULK1:RB1CC1 complex and PtdIns3P (PubMed:28890335). Once activated, WIPI2 recruits at phagophore assembly sites the ATG12-ATG5-ATG16L1 complex that directly controls the elongation of the nascent autophagosomal membrane (PubMed:20505359, PubMed:28561066). {ECO:0000269|PubMed:20505359, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:28890335, ECO:0000269|PubMed:30968111}.; FUNCTION: [Isoform 4]: Recruits the ATG12-ATG5-ATG16L1 complex to omegasomes and preautophagosomal structures, resulting in ATG8 family proteins lipidation and starvation-induced autophagy. Isoform 4 is also required for autophagic clearance of pathogenic bacteria. Isoform 4 binds the membrane surrounding Salmonella and recruits the ATG12-5-16L1 complex, initiating LC3 conjugation, autophagosomal membrane formation, and engulfment of Salmonella. {ECO:0000269|PubMed:24954904}.
Q9Y4X4 KLF12 T94 ochoa Krueppel-like factor 12 (Transcriptional repressor AP-2rep) Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter.
Q9Y566 SHANK1 T1786 ochoa SH3 and multiple ankyrin repeat domains protein 1 (Shank1) (Somatostatin receptor-interacting protein) (SSTR-interacting protein) (SSTRIP) Seems to be an adapter protein in the postsynaptic density (PSD) of excitatory synapses that interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and Homer, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction.
Q9Y572 RIPK3 T412 ochoa Receptor-interacting serine/threonine-protein kinase 3 (EC 2.7.11.1) (RIP-like protein kinase 3) (Receptor-interacting protein 3) (RIP-3) Serine/threonine-protein kinase that activates necroptosis and apoptosis, two parallel forms of cell death (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:29883609, PubMed:32657447). Necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members, is triggered by RIPK3 following activation by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:29883609, PubMed:32298652). Activated RIPK3 forms a necrosis-inducing complex and mediates phosphorylation of MLKL, promoting MLKL localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:19524512, PubMed:19524513, PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:25316792, PubMed:29883609). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Also regulates apoptosis: apoptosis depends on RIPK1, FADD and CASP8, and is independent of MLKL and RIPK3 kinase activity (By similarity). Phosphorylates RIPK1: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). In some cell types, also able to restrict viral replication by promoting cell death-independent responses (By similarity). In response to Zika virus infection in neurons, promotes a cell death-independent pathway that restricts viral replication: together with ZBP1, promotes a death-independent transcriptional program that modifies the cellular metabolism via up-regulation expression of the enzyme ACOD1/IRG1 and production of the metabolite itaconate (By similarity). Itaconate inhibits the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes (By similarity). RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL (PubMed:19498109). These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production (PubMed:19498109). {ECO:0000250|UniProtKB:Q9QZL0, ECO:0000269|PubMed:19498109, ECO:0000269|PubMed:19524512, ECO:0000269|PubMed:19524513, ECO:0000269|PubMed:22265413, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:22421439, ECO:0000269|PubMed:25316792, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:32298652, ECO:0000269|PubMed:32657447}.; FUNCTION: (Microbial infection) In case of herpes simplex virus 1/HHV-1 infection, forms heteromeric amyloid structures with HHV-1 protein RIR1/ICP6 which may inhibit RIPK3-mediated necroptosis, thereby preventing host cell death pathway and allowing viral evasion. {ECO:0000269|PubMed:33348174}.
Q9Y580 RBM7 T110 ochoa|psp RNA-binding protein 7 (RNA-binding motif protein 7) RNA-binding subunit of the trimeric nuclear exosome targeting (NEXT) complex, a complex that functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104, PubMed:27871484). NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:25189701, PubMed:25852104, PubMed:27871484). Binds preferentially polyuridine sequences and associates with newly synthesized RNAs, including pre-mRNAs and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and 3'-extended products from small nuclear RNAs (snRNAs) (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104). Participates in several biological processes including DNA damage response (DDR) and stress response (PubMed:25525152, PubMed:30824372). During stress response, activation of the p38MAPK-MK2 pathway decreases RBM7-RNA-binding and subsequently the RNA exosome degradation activities, thereby modulating the turnover of non-coding transcriptome (PubMed:25525152). Participates in DNA damage response (DDR), through its interaction with MEPCE and LARP7, the core subunits of 7SK snRNP complex, that release the positive transcription elongation factor b (P-TEFb) complex from the 7SK snRNP. In turn, activation of P-TEFb complex induces the transcription of P-TEFb-dependent DDR genes to promote cell viability (PubMed:30824372). {ECO:0000269|PubMed:25189701, ECO:0000269|PubMed:25525152, ECO:0000269|PubMed:25578728, ECO:0000269|PubMed:25852104, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:30824372}.
Q9Y597 KCTD3 T795 ochoa BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}.
Q9Y5K6 CD2AP T512 ochoa CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}.
Q9Y5T5 USP16 T554 ochoa|psp Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}.
Q9Y5W9 SNX11 T222 ochoa Sorting nexin-11 Phosphoinositide-binding protein involved in protein sorting and membrane trafficking in endosomes (PubMed:23615901). Regulates the levels of TRPV3 by promoting its trafficking from the cell membrane to lysosome for degradation (PubMed:26818531). {ECO:0000269|PubMed:23615901, ECO:0000269|PubMed:26818531}.
Q9Y673 ALG5 T64 ochoa Dolichyl-phosphate beta-glucosyltransferase (DolP-glucosyltransferase) (EC 2.4.1.117) (Asparagine-linked glycosylation protein 5 homolog) Dolichyl-phosphate beta-glucosyltransferase that operates in the biosynthetic pathway of dolichol-linked oligosaccharides, the glycan precursors employed in protein asparagine (N)-glycosylation. The assembly of dolichol-linked oligosaccharides begins on the cytosolic side of the endoplasmic reticulum membrane and finishes in its lumen. The sequential addition of sugars to dolichol pyrophosphate produces dolichol-linked oligosaccharides containing fourteen sugars, including two GlcNAcs, nine mannoses and three glucoses. Once assembled, the oligosaccharide is transferred from the lipid to nascent proteins by oligosaccharyltransferases. Dolichyl-phosphate beta-glucosyltransferase produces dolichyl beta-D-glucosyl phosphate/Dol-P-Glc, the glucose donor substrate used sequentially by ALG6, ALG8 and ALG10 to add glucose residues on top of the Man(9)GlcNAc(2)-PP-Dol structure. These are the three last steps in the biosynthetic pathway of dolichol-linked oligosaccharides to produce Glc(3)Man(9)GlcNAc(2)-PP-Dol. The enzyme is most probably active on the cytoplasmic side of the endoplasmic reticulum while its product Dol-P-Glc is the substrate for ALG6, ALG8 and ALG11 in the lumen of the endoplasmic reticulum. {ECO:0000269|PubMed:10359825, ECO:0000269|PubMed:35896117}.
Q9Y6K1 DNMT3A T257 ochoa DNA (cytosine-5)-methyltransferase 3A (Dnmt3a) (EC 2.1.1.37) (Cysteine methyltransferase DNMT3A) (EC 2.1.1.-) (DNA methyltransferase HsaIIIA) (DNA MTase HsaIIIA) (M.HsaIIIA) Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development (PubMed:12138111, PubMed:16357870, PubMed:30478443). DNA methylation is coordinated with methylation of histones (PubMed:12138111, PubMed:16357870, PubMed:30478443). It modifies DNA in a non-processive manner and also methylates non-CpG sites (PubMed:12138111, PubMed:16357870, PubMed:30478443). May preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1 (By similarity). Plays a role in paternal and maternal imprinting (By similarity). Required for methylation of most imprinted loci in germ cells (By similarity). Acts as a transcriptional corepressor for ZBTB18 (By similarity). Recruited to trimethylated 'Lys-36' of histone H3 (H3K36me3) sites (By similarity). Can actively repress transcription through the recruitment of HDAC activity (By similarity). Also has weak auto-methylation activity on Cys-710 in absence of DNA (By similarity). {ECO:0000250|UniProtKB:O88508, ECO:0000269|PubMed:12138111, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:30478443}.
Q9Y6N7 ROBO1 T1494 ochoa Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}.
Q9Y6R0 NUMBL T265 ochoa Numb-like protein (Numb-related protein) (Numb-R) Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}.
Q9Y6R4 MAP3K4 T1254 ochoa Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}.
Q9Y6R9 CCDC61 T338 ochoa Centrosomal protein CCDC61 (Coiled-coil domain-containing protein 61) (VFL3 homolog) Microtubule-binding centrosomal protein required for centriole cohesion, independently of the centrosome-associated protein/CEP250 and rootletin/CROCC linker (PubMed:31789463). In interphase, required for anchoring microtubule at the mother centriole subdistal appendages and for centrosome positioning (PubMed:31789463). During mitosis, may be involved in spindle assembly and chromatin alignment by regulating the organization of spindle microtubules into a symmetrical structure (PubMed:30354798). Has been proposed to play a role in CEP170 recruitment to centrosomes (PubMed:30354798). However, this function could not be confirmed (PubMed:31789463). Plays a non-essential role in ciliogenesis (PubMed:31789463, PubMed:32375023). {ECO:0000269|PubMed:30354798, ECO:0000269|PubMed:31789463, ECO:0000269|PubMed:32375023}.
Q9Y6R9 CCDC61 T449 ochoa Centrosomal protein CCDC61 (Coiled-coil domain-containing protein 61) (VFL3 homolog) Microtubule-binding centrosomal protein required for centriole cohesion, independently of the centrosome-associated protein/CEP250 and rootletin/CROCC linker (PubMed:31789463). In interphase, required for anchoring microtubule at the mother centriole subdistal appendages and for centrosome positioning (PubMed:31789463). During mitosis, may be involved in spindle assembly and chromatin alignment by regulating the organization of spindle microtubules into a symmetrical structure (PubMed:30354798). Has been proposed to play a role in CEP170 recruitment to centrosomes (PubMed:30354798). However, this function could not be confirmed (PubMed:31789463). Plays a non-essential role in ciliogenesis (PubMed:31789463, PubMed:32375023). {ECO:0000269|PubMed:30354798, ECO:0000269|PubMed:31789463, ECO:0000269|PubMed:32375023}.
R4GMW8 BIVM-ERCC5 T982 ochoa DNA excision repair protein ERCC-5 None
P07858 CTSB T218 Sugiyama Cathepsin B (EC 3.4.22.1) (APP secretase) (APPS) (Cathepsin B1) [Cleaved into: Cathepsin B light chain; Cathepsin B heavy chain] Thiol protease which is believed to participate in intracellular degradation and turnover of proteins (PubMed:12220505). Cleaves matrix extracellular phosphoglycoprotein MEPE (PubMed:12220505). Involved in the solubilization of cross-linked TG/thyroglobulin in the thyroid follicle lumen (By similarity). Has also been implicated in tumor invasion and metastasis (PubMed:3972105). {ECO:0000250|UniProtKB:P10605, ECO:0000269|PubMed:12220505, ECO:0000269|PubMed:3972105}.
P14314 PRKCSH T444 Sugiyama Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}.
O60941 DTNB T179 EPSD|PSP Dystrobrevin beta (DTN-B) (Beta-dystrobrevin) Scaffolding protein that assembles DMD and SNTA1 molecules to the basal membrane of kidney cells and liver sinusoids (By similarity). May function as a repressor of the SYN1 promoter through the binding of repressor element-1 (RE-1), in turn regulates SYN1 expression and may be involved in cell proliferation regulation during the early phase of neural differentiation (PubMed:27223470). May be required for proper maturation and function of a subset of inhibitory synapses (By similarity). {ECO:0000250|UniProtKB:O70585, ECO:0000269|PubMed:27223470}.
P08684 CYP3A4 T136 EPSD|PSP Cytochrome P450 3A4 (EC 1.14.14.1) (1,4-cineole 2-exo-monooxygenase) (1,8-cineole 2-exo-monooxygenase) (EC 1.14.14.56) (Albendazole monooxygenase (sulfoxide-forming)) (EC 1.14.14.73) (Albendazole sulfoxidase) (CYPIIIA3) (CYPIIIA4) (Cholesterol 25-hydroxylase) (Cytochrome P450 3A3) (Cytochrome P450 HLp) (Cytochrome P450 NF-25) (Cytochrome P450-PCN1) (Nifedipine oxidase) (Quinine 3-monooxygenase) (EC 1.14.14.55) A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981). {ECO:0000269|PubMed:10681376, ECO:0000269|PubMed:10759686, ECO:0000269|PubMed:11093772, ECO:0000269|PubMed:11159812, ECO:0000269|PubMed:11555828, ECO:0000269|PubMed:11695850, ECO:0000269|PubMed:12865317, ECO:0000269|PubMed:14559847, ECO:0000269|PubMed:15373842, ECO:0000269|PubMed:15764715, ECO:0000269|PubMed:19965576, ECO:0000269|PubMed:20702771, ECO:0000269|PubMed:21490593, ECO:0000269|PubMed:21576599, ECO:0000269|PubMed:22773874, ECO:0000269|PubMed:2732228, ECO:0000269|PubMed:29461981, ECO:0000269|PubMed:8968357, ECO:0000269|PubMed:9435160}.
O95359 TACC2 T2514 Sugiyama Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}.
O43602 DCX T289 SIGNOR|iPTMNet Neuronal migration protein doublecortin (Doublin) (Lissencephalin-X) (Lis-X) Microtubule-associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development. May act by competing with the putative neuronal protein kinase DCLK1 in binding to a target protein. May in that way participate in a signaling pathway that is crucial for neuronal interaction before and during migration, possibly as part of a calcium ion-dependent signal transduction pathway. May be part with PAFAH1B1/LIS-1 of overlapping, but distinct, signaling pathways that promote neuronal migration. {ECO:0000269|PubMed:22359282}.
P08151 GLI1 T604 GPS6 Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}.
Q13873 BMPR2 T517 Sugiyama Bone morphogenetic protein receptor type-2 (BMP type-2 receptor) (BMPR-2) (EC 2.7.11.30) (Bone morphogenetic protein receptor type II) (BMP type II receptor) (BMPR-II) On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Can also mediate signaling through the activation of the p38MAPK cascade (PubMed:12045205). Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. Promotes signaling also by binding to activin A/INHBA (PubMed:24018044). {ECO:0000250|UniProtKB:O35607, ECO:0000269|PubMed:12045205, ECO:0000269|PubMed:24018044}.
P28799 GRN T182 Sugiyama Progranulin (PGRN) (Acrogranin) (Epithelin precursor) (Glycoprotein of 88 Kda) (GP88) (Glycoprotein 88) (Granulin precursor) (PC cell-derived growth factor) (PCDGF) (Proepithelin) (PEPI) [Cleaved into: Paragranulin; Granulin-1 (Granulin G); Granulin-2 (Granulin F); Granulin-3 (Epithelin-2) (Granulin B); Granulin-4 (Epithelin-1) (Granulin A); Granulin-5 (Granulin C); Granulin-6 (Granulin D); Granulin-7 (Granulin E)] Secreted protein that acts as a key regulator of lysosomal function and as a growth factor involved in inflammation, wound healing and cell proliferation (PubMed:12526812, PubMed:18378771, PubMed:28073925, PubMed:28453791, PubMed:28541286). Regulates protein trafficking to lysosomes, and also the activity of lysosomal enzymes (PubMed:28453791, PubMed:28541286). Also facilitates the acidification of lysosomes, causing degradation of mature CTSD by CTSB (PubMed:28073925). In addition, functions as a wound-related growth factor that acts directly on dermal fibroblasts and endothelial cells to promote division, migration and the formation of capillary-like tubule structures (By similarity). Also promotes epithelial cell proliferation by blocking TNF-mediated neutrophil activation preventing release of oxidants and proteases (PubMed:12526812). Moreover, modulates inflammation in neurons by preserving neurons survival, axonal outgrowth and neuronal integrity (PubMed:18378771). {ECO:0000250|UniProtKB:P28798, ECO:0000269|PubMed:12526812, ECO:0000269|PubMed:18378771, ECO:0000269|PubMed:28073925, ECO:0000269|PubMed:28453791, ECO:0000269|PubMed:28541286}.; FUNCTION: [Granulin-4]: Promotes proliferation of the epithelial cell line A431 in culture.; FUNCTION: [Granulin-3]: Inhibits epithelial cell proliferation and induces epithelial cells to secrete IL-8. {ECO:0000269|PubMed:12526812}.; FUNCTION: [Granulin-7]: Stabilizes CTSD through interaction with CTSD leading to maintain its aspartic-type peptidase activity. {ECO:0000269|PubMed:28453791}.
Q9H0B6 KLC2 T447 Sugiyama Kinesin light chain 2 (KLC 2) Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}.
A6NGB9 WIPF3 T385 ochoa WAS/WASL-interacting protein family member 3 (Corticosteroids and regional expression protein 16 homolog) May be a regulator of cytoskeletal organization. May have a role in spermatogenesis (By similarity). {ECO:0000250}.
A6NKT7 RGPD3 T1566 ochoa RanBP2-like and GRIP domain-containing protein 3 None
A7E2V4 ZSWIM8 T55 ochoa Zinc finger SWIM domain-containing protein 8 Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}.
A7KAX9 ARHGAP32 T954 ochoa Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}.
B1AK53 ESPN T649 ochoa Espin (Autosomal recessive deafness type 36 protein) (Ectoplasmic specialization protein) Multifunctional actin-bundling protein. Plays a major role in regulating the organization, dimension, dynamics and signaling capacities of the actin filament-rich microvilli in the mechanosensory and chemosensory cells (PubMed:29572253). Required for the assembly and stabilization of the stereociliary parallel actin bundles. Plays a crucial role in the formation and maintenance of inner ear hair cell stereocilia (By similarity). Involved in the elongation of actin in stereocilia (PubMed:29572253). In extrastriolar hair cells, required for targeting MYO3B to stereocilia tips, and for regulation of stereocilia diameter and staircase formation. {ECO:0000250|UniProtKB:Q9ET47, ECO:0000269|PubMed:29572253}.
E9PAV3 NACA T857 ochoa Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}.
K7ELQ4 ATF7-NPFF T173 ochoa ATF7-NPFF readthrough None
O00327 BMAL1 T21 psp Basic helix-loop-helix ARNT-like protein 1 (Aryl hydrocarbon receptor nuclear translocator-like protein 1) (Basic-helix-loop-helix-PAS protein MOP3) (Brain and muscle ARNT-like 1) (Class E basic helix-loop-helix protein 5) (bHLHe5) (Member of PAS protein 3) (PAS domain-containing protein 3) (bHLH-PAS protein JAP3) Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). Essential for the rhythmic interaction of CLOCK with ASS1 and plays a critical role in positively regulating CLOCK-mediated acetylation of ASS1 (PubMed:28985504). Plays a role in protecting against lethal sepsis by limiting the expression of immune checkpoint protein CD274 in macrophages in a PKM2-dependent manner (By similarity). Regulates the diurnal rhythms of skeletal muscle metabolism via transcriptional activation of genes promoting triglyceride synthesis (DGAT2) and metabolic efficiency (COQ10B) (By similarity). {ECO:0000250|UniProtKB:Q9WTL8, ECO:0000269|PubMed:11441146, ECO:0000269|PubMed:12738229, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:23955654, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}.; FUNCTION: (Microbial infection) Regulates SARS coronavirus-2/SARS-CoV-2 entry and replication in lung epithelial cells probably through the post-transcriptional regulation of ACE2 and interferon-stimulated gene expression. {ECO:0000269|PubMed:34545347}.
O14639 ABLIM1 T433 ochoa Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}.
O14715 RGPD8 T1565 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14827 RASGRF2 T748 ochoa Ras-specific guanine nucleotide-releasing factor 2 (Ras-GRF2) (Ras guanine nucleotide exchange factor 2) Functions as a calcium-regulated nucleotide exchange factor activating both Ras and RAC1 through the exchange of bound GDP for GTP. Preferentially activates HRAS in vivo compared to RRAS based on their different types of prenylation. Functions in synaptic plasticity by contributing to the induction of long term potentiation. {ECO:0000269|PubMed:15128856}.
O15061 SYNM T163 ochoa Synemin (Desmuslin) Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}.
O15075 DCLK1 T34 ochoa Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system.
O43474 KLF4 T315 ochoa Krueppel-like factor 4 (Epithelial zinc finger protein EZF) (Gut-enriched krueppel-like factor) Transcription factor; can act both as activator and as repressor. Binds the 5'-CACCC-3' core sequence. Binds to the promoter region of its own gene and can activate its own transcription. Regulates the expression of key transcription factors during embryonic development. Plays an important role in maintaining embryonic stem cells, and in preventing their differentiation. Required for establishing the barrier function of the skin and for postnatal maturation and maintenance of the ocular surface. Involved in the differentiation of epithelial cells and may also function in skeletal and kidney development. Contributes to the down-regulation of p53/TP53 transcription. {ECO:0000269|PubMed:17308127, ECO:0000269|PubMed:20071344}.
O43524 FOXO3 T427 ochoa Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}.
O43639 NCK2 T92 ochoa Cytoplasmic protein NCK2 (Growth factor receptor-bound protein 4) (NCK adaptor protein 2) (Nck-2) (SH2/SH3 adaptor protein NCK-beta) Adapter protein which associates with tyrosine-phosphorylated growth factor receptors or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16835242}.
O43688 PLPP2 T270 ochoa Phospholipid phosphatase 2 (EC 3.1.3.-) (EC 3.1.3.4) (Lipid phosphate phosphohydrolase 2) (PAP2-gamma) (PAP2-G) (Phosphatidate phosphohydrolase type 2c) (Phosphatidic acid phosphatase 2c) (PAP-2c) (PAP2c) Magnesium-independent phospholipid phosphatase that catalyzes the dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters including phosphatidate/PA, lysophosphatidate/LPA, sphingosine 1-phosphate/S1P and ceramide 1-phosphate/C1P (PubMed:16467304, PubMed:9607309, PubMed:9705349). Has no apparent extracellular phosphatase activity and therefore most probably acts intracellularly (PubMed:16467304). Also acts on N-oleoyl ethanolamine phosphate/N-(9Z-octadecenoyl)-ethanolamine phosphate, a potential physiological compound (PubMed:9607309). Through dephosphorylation of these bioactive lipid mediators produces new bioactive compounds and may regulate signal transduction in different cellular processes (Probable). Indirectly regulates, for instance, cell cycle G1/S phase transition through its phospholipid phosphatase activity (By similarity). {ECO:0000250|UniProtKB:Q8K593, ECO:0000269|PubMed:16467304, ECO:0000269|PubMed:9607309, ECO:0000269|PubMed:9705349, ECO:0000305|PubMed:16467304}.
O60282 KIF5C T937 ochoa Kinesin heavy chain isoform 5C (EC 3.6.4.-) (Kinesin heavy chain neuron-specific 2) (Kinesin-1) Microtubule-associated force-producing protein that may play a role in organelle transport. Has ATPase activity (By similarity). Involved in synaptic transmission (PubMed:24812067). Mediates dendritic trafficking of mRNAs (By similarity). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). {ECO:0000250|UniProtKB:P28738, ECO:0000250|UniProtKB:P56536, ECO:0000269|PubMed:24812067}.
O60307 MAST3 T41 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60658 PDE8A T388 ochoa High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8A (EC 3.1.4.53) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:18983167). May be involved in maintaining basal levels of the cyclic nucleotide and/or in the cAMP regulation of germ cell development (PubMed:18983167). Binding to RAF1 reduces RAF1 'Ser-259' inhibitory-phosphorylation and stimulates RAF1-dependent EGF-activated ERK-signaling (PubMed:23509299). Protects against cell death induced by hydrogen peroxide and staurosporine (PubMed:23509299). {ECO:0000269|PubMed:18983167, ECO:0000269|PubMed:23509299}.
O75151 PHF2 T541 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75385 ULK1 T625 ochoa Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}.
O75665 OFD1 T776 ochoa Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}.
O75970 MPDZ T356 ochoa Multiple PDZ domain protein (Multi-PDZ domain protein 1) Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}.
O94842 TOX4 T180 ochoa TOX high mobility group box family member 4 Transcription factor that modulates cell fate reprogramming from the somatic state to the pluripotent and neuronal fate (By similarity). In liver, controls the expression of hormone-regulated gluconeogenic genes such as G6PC1 and PCK1 (By similarity). This regulation is independent of the insulin receptor activation (By similarity). Also acts as a regulatory component of protein phosphatase 1 (PP1) complexes (PubMed:39603239, PubMed:39603240). Component of the PNUTS-PP1 protein phosphatase complex, a PP1 complex that regulates RNA polymerase II transcription pause-release (PubMed:39603239, PubMed:39603240). PNUTS-PP1 also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (PubMed:20516061). {ECO:0000250|UniProtKB:Q8BU11, ECO:0000269|PubMed:20516061, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240}.
O95235 KIF20A T859 ochoa Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}.
O95235 KIF20A Y869 ochoa Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}.
O95263 PDE8B T448 ochoa High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8B (HsPDE8B) (EC 3.1.4.53) (Cell proliferation-inducing gene 22 protein) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved in specific signaling in the thyroid gland.
P00533 EGFR T993 ochoa Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.
P04049 RAF1 T303 ochoa RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}.
P04049 RAF1 T324 ochoa RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}.
P04920 SLC4A2 T115 ochoa Anion exchange protein 2 (AE 2) (Anion exchanger 2) (Non-erythroid band 3-like protein) (BND3L) (Solute carrier family 4 member 2) Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane (PubMed:15184086, PubMed:34668226). Plays an important role in osteoclast differentiation and function (PubMed:34668226). Regulates bone resorption and calpain-dependent actin cytoskeleton organization in osteoclasts via anion exchange-dependent control of pH (By similarity). Essential for intracellular pH regulation in CD8(+) T-cells upon CD3 stimulation, modulating CD8(+) T-cell responses (By similarity). {ECO:0000250|UniProtKB:P13808, ECO:0000269|PubMed:15184086, ECO:0000269|PubMed:34668226}.
P05181 CYP2E1 T58 psp Cytochrome P450 2E1 (EC 1.14.14.1) (4-nitrophenol 2-hydroxylase) (EC 1.14.13.n7) (CYPIIE1) (Cytochrome P450-J) A cytochrome P450 monooxygenase involved in the metabolism of fatty acids (PubMed:10553002, PubMed:18577768). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10553002, PubMed:18577768). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates fatty acids specifically at the omega-1 position displaying the highest catalytic activity for saturated fatty acids (PubMed:10553002, PubMed:18577768). May be involved in the oxidative metabolism of xenobiotics (Probable). {ECO:0000269|PubMed:10553002, ECO:0000269|PubMed:18577768, ECO:0000305|PubMed:9348445}.
P0DJ93 SMIM13 T62 ochoa Small integral membrane protein 13 None
P10636 MAPT T446 ochoa Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}.
P16144 ITGB4 T1113 ochoa Integrin beta-4 (GP150) (CD antigen CD104) Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}.
P17302 GJA1 T275 ochoa Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}.
P23588 EIF4B T506 ochoa Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
P24394 IL4R T476 ochoa Interleukin-4 receptor subunit alpha (IL-4 receptor subunit alpha) (IL-4R subunit alpha) (IL-4R-alpha) (IL-4RA) (CD antigen CD124) [Cleaved into: Soluble interleukin-4 receptor subunit alpha (Soluble IL-4 receptor subunit alpha) (Soluble IL-4R-alpha) (sIL4Ralpha/prot) (IL-4-binding protein) (IL4-BP)] Receptor for both interleukin 4 and interleukin 13 (PubMed:17030238). Couples to the JAK1/2/3-STAT6 pathway. The IL4 response is involved in promoting Th2 differentiation. The IL4/IL13 responses are involved in regulating IgE production and, chemokine and mucus production at sites of allergic inflammation. In certain cell types, can signal through activation of insulin receptor substrates, IRS1/IRS2. {ECO:0000269|PubMed:17030238, ECO:0000269|PubMed:8124718}.; FUNCTION: Soluble IL4R (sIL4R) inhibits IL4-mediated cell proliferation and IL5 up-regulation by T-cells. {ECO:0000269|PubMed:8124718}.
P25054 APC T2623 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P27816 MAP4 T282 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P29966 MARCKS T120 ochoa Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P30048 PRDX3 T239 ochoa Thioredoxin-dependent peroxide reductase, mitochondrial (EC 1.11.1.24) (Antioxidant protein 1) (AOP-1) (HBC189) (Peroxiredoxin III) (Prx-III) (Peroxiredoxin-3) (Protein MER5 homolog) (Thioredoxin-dependent peroxiredoxin 3) Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides (PubMed:17707404, PubMed:29438714, PubMed:33889951, PubMed:7733872). Acts synergistically with MAP3K13 to regulate the activation of NF-kappa-B in the cytosol (PubMed:12492477). Required for the maintenance of physical strength (By similarity). {ECO:0000250|UniProtKB:P20108, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:17707404, ECO:0000269|PubMed:29438714, ECO:0000269|PubMed:33889951, ECO:0000269|PubMed:7733872}.
P33176 KIF5B T935 ochoa Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}.
P35716 SOX11 T280 ochoa Transcription factor SOX-11 Transcription factor that acts as a transcriptional activator (PubMed:24886874, PubMed:26543203). Binds cooperatively with POU3F2/BRN2 or POU3F1/OCT6 to gene promoters, which enhances transcriptional activation (By similarity). Acts as a transcriptional activator of TEAD2 by binding to its gene promoter and first intron (By similarity). Plays a redundant role with SOX4 and SOX12 in cell survival of developing tissues such as the neural tube, branchial arches and somites, thereby contributing to organogenesis (By similarity). {ECO:0000250|UniProtKB:Q7M6Y2, ECO:0000269|PubMed:24886874, ECO:0000269|PubMed:26543203}.
P36507 MAP2K2 T25 ochoa Dual specificity mitogen-activated protein kinase kinase 2 (MAP kinase kinase 2) (MAPKK 2) (EC 2.7.12.2) (ERK activator kinase 2) (MAPK/ERK kinase 2) (MEK 2) Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in MAP kinases. Activates the ERK1 and ERK2 MAP kinases (By similarity). Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). {ECO:0000250|UniProtKB:Q63932, ECO:0000269|PubMed:29433126}.
P37275 ZEB1 T324 ochoa Zinc finger E-box-binding homeobox 1 (NIL-2-A zinc finger protein) (Negative regulator of IL2) (Transcription factor 8) (TCF-8) Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). In the absence of TGFB1, acts as a repressor of COL1A2 transcription via binding to the E-box in the upstream enhancer region (By similarity). {ECO:0000250|UniProtKB:Q64318, ECO:0000269|PubMed:19935649, ECO:0000269|PubMed:20175752, ECO:0000269|PubMed:20418909}.
P42695 NCAPD3 T1331 ochoa Condensin-2 complex subunit D3 (Non-SMC condensin II complex subunit D3) (hCAP-D3) Regulatory subunit of the condensin-2 complex, a complex which establishes mitotic chromosome architecture and is involved in physical rigidity of the chromatid axis (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Specifically required for decatenation of centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:14532007, ECO:0000269|PubMed:27737959}.
P46019 PHKA2 T981 ochoa Phosphorylase b kinase regulatory subunit alpha, liver isoform (Phosphorylase kinase alpha L subunit) Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin.
P46821 MAP1B T1069 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P49023 PXN T132 ochoa Paxillin Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}.
P49792 RANBP2 T783 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 T2541 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P50548 ERF T156 ochoa ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}.
P53814 SMTN T253 ochoa Smoothelin Structural protein of the cytoskeleton.
P54845 NRL T52 psp Neural retina-specific leucine zipper protein (NRL) Acts as a transcriptional activator which regulates the expression of several rod-specific genes, including RHO and PDE6B (PubMed:21981118). Also functions as a transcriptional coactivator, stimulating transcription mediated by the transcription factor CRX and NR2E3 (PubMed:17335001). Binds to the rhodopsin promoter in a sequence-specific manner (PubMed:17335001). {ECO:0000269|PubMed:17335001, ECO:0000269|PubMed:21981118}.
P55197 MLLT10 T501 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P78559 MAP1A T898 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P98082 DAB2 T229 ochoa Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
P98082 DAB2 T678 ochoa Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
Q00587 CDC42EP1 T145 ochoa Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}.
Q01432 AMPD3 T109 ochoa AMP deaminase 3 (EC 3.5.4.6) (AMP deaminase isoform E) (Erythrocyte AMP deaminase) AMP deaminase plays a critical role in energy metabolism. {ECO:0000305|PubMed:9291127}.
Q03164 KMT2A T1839 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q04656 ATP7A T274 ochoa Copper-transporting ATPase 1 (EC 7.2.2.8) (Copper pump 1) (Menkes disease-associated protein) ATP-driven copper (Cu(+)) ion pump that plays an important role in intracellular copper ion homeostasis (PubMed:10419525, PubMed:11092760, PubMed:28389643). Within a catalytic cycle, acquires Cu(+) ion from donor protein on the cytoplasmic side of the membrane and delivers it to acceptor protein on the lumenal side. The transfer of Cu(+) ion across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:10419525, PubMed:19453293, PubMed:19917612, PubMed:28389643, PubMed:31283225). Under physiological conditions, at low cytosolic copper concentration, it is localized at the trans-Golgi network (TGN) where it transfers Cu(+) ions to cuproenzymes of the secretory pathway (PubMed:11092760, PubMed:28389643). Upon elevated cytosolic copper concentrations, it relocalizes to the plasma membrane where it is responsible for the export of excess Cu(+) ions (PubMed:10419525, PubMed:28389643). May play a dual role in neuron function and survival by regulating cooper efflux and neuronal transmission at the synapse as well as by supplying Cu(+) ions to enzymes such as PAM, TYR and SOD3 (By similarity) (PubMed:28389643). In the melanosomes of pigmented cells, provides copper cofactor to TYR to form an active TYR holoenzyme for melanin biosynthesis (By similarity). {ECO:0000250|UniProtKB:Q64430, ECO:0000269|PubMed:10419525, ECO:0000269|PubMed:11092760, ECO:0000269|PubMed:19453293, ECO:0000269|PubMed:19917612, ECO:0000269|PubMed:28389643, ECO:0000269|PubMed:31283225}.
Q06187 BTK T606 ochoa Tyrosine-protein kinase BTK (EC 2.7.10.2) (Agammaglobulinemia tyrosine kinase) (ATK) (B-cell progenitor kinase) (BPK) (Bruton tyrosine kinase) Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway (PubMed:16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831). ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1-mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810). {ECO:0000269|PubMed:11606584, ECO:0000269|PubMed:16415872, ECO:0000269|PubMed:16517732, ECO:0000269|PubMed:16738337, ECO:0000269|PubMed:17932028, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:9012831, ECO:0000303|PubMed:19290921, ECO:0000303|PubMed:9751072}.
Q07157 TJP1 T1067 ochoa Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}.
Q08050 FOXM1 T510 ochoa|psp Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}.
Q08999 RBL2 T954 ochoa Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor.
Q10570 CPSF1 T739 ochoa Cleavage and polyadenylation specificity factor subunit 1 (Cleavage and polyadenylation specificity factor 160 kDa subunit) (CPSF 160 kDa subunit) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (PubMed:14749727). May play a role in eye morphogenesis and the development of retinal ganglion cell projections to the midbrain (By similarity). {ECO:0000250|UniProtKB:A0A0R4IC37, ECO:0000269|PubMed:14749727}.
Q12873 CHD3 T715 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12873 CHD3 T1540 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q13428 TCOF1 T1269 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q14005 IL16 T1025 ochoa Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells.
Q14160 SCRIB T1441 ochoa Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}.
Q14449 GRB14 T421 ochoa Growth factor receptor-bound protein 14 (GRB14 adapter protein) Adapter protein which modulates coupling of cell surface receptor kinases with specific signaling pathways. Binds to, and suppresses signals from, the activated insulin receptor (INSR). Potent inhibitor of insulin-stimulated MAPK3 phosphorylation. Plays a critical role regulating PDPK1 membrane translocation in response to insulin stimulation and serves as an adapter protein to recruit PDPK1 to activated insulin receptor, thus promoting PKB/AKT1 phosphorylation and transduction of the insulin signal. {ECO:0000269|PubMed:15210700, ECO:0000269|PubMed:19648926}.
Q14511 NEDD9 T184 ochoa Enhancer of filamentation 1 (hEF1) (CRK-associated substrate-related protein) (CAS-L) (CasL) (Cas scaffolding protein family member 2) (CASS2) (Neural precursor cell expressed developmentally down-regulated protein 9) (NEDD-9) (Renal carcinoma antigen NY-REN-12) (p105) [Cleaved into: Enhancer of filamentation 1 p55] Scaffolding protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion (PubMed:24574519). As a focal adhesion protein, plays a role in embryonic fibroblast migration (By similarity). May play an important role in integrin beta-1 or B cell antigen receptor (BCR) mediated signaling in B- and T-cells. Integrin beta-1 stimulation leads to recruitment of various proteins including CRKL and SHPTP2 to the tyrosine phosphorylated form (PubMed:9020138). Promotes adhesion and migration of lymphocytes; as a result required for the correct migration of lymphocytes to the spleen and other secondary lymphoid organs (PubMed:17174122). Plays a role in the organization of T-cell F-actin cortical cytoskeleton and the centralization of T-cell receptor microclusters at the immunological synapse (By similarity). Negatively regulates cilia outgrowth in polarized cysts (By similarity). Modulates cilia disassembly via activation of AURKA-mediated phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723). Positively regulates RANKL-induced osteoclastogenesis (By similarity). Required for the maintenance of hippocampal dendritic spines in the dentate gyrus and CA1 regions, thereby involved in spatial learning and memory (By similarity). {ECO:0000250|UniProtKB:A0A8I3PDQ1, ECO:0000250|UniProtKB:O35177, ECO:0000269|PubMed:17174122, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:24574519, ECO:0000269|PubMed:9020138}.
Q15555 MAPRE2 T202 ochoa Microtubule-associated protein RP/EB family member 2 (APC-binding protein EB2) (End-binding protein 2) (EB2) Adapter protein that is involved in microtubule polymerization, and spindle function by stabilizing microtubules and anchoring them at centrosomes. Therefore, ensures mitotic progression and genome stability (PubMed:27030108). Acts as a central regulator of microtubule reorganization in apico-basal epithelial differentiation (By similarity). Plays a role during oocyte meiosis by regulating microtubule dynamics (By similarity). Participates in neurite growth by interacting with plexin B3/PLXNB3 and microtubule reorganization during apico-basal epithelial differentiation (PubMed:22373814). Also plays an essential role for cell migration and focal adhesion dynamics. Mechanistically, recruits HAX1 to microtubules in order to regulate focal adhesion dynamics (PubMed:26527684). {ECO:0000250|UniProtKB:Q8R001, ECO:0000269|PubMed:22373814, ECO:0000269|PubMed:23844040, ECO:0000269|PubMed:26527684, ECO:0000269|PubMed:27030108}.
Q15746 MYLK T1778 ochoa Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}.
Q2KHR3 QSER1 T490 ochoa Glutamine and serine-rich protein 1 Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}.
Q2LD37 BLTP1 T2605 ochoa Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}.
Q3KQU3 MAP7D1 T118 ochoa MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}.
Q3KR37 GRAMD1B T32 ochoa Protein Aster-B (GRAM domain-containing protein 1B) Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}.
Q3KR37 GRAMD1B T283 ochoa Protein Aster-B (GRAM domain-containing protein 1B) Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}.
Q3V6T2 CCDC88A T1535 ochoa Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}.
Q53ET0 CRTC2 T458 ochoa CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}.
Q5JSZ5 PRRC2B T982 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5JTC6 AMER1 T242 ochoa APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}.
Q5M775 SPECC1 T136 ochoa Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) None
Q5M775 SPECC1 T812 ochoa Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) None
Q5SY16 NOL9 T90 ochoa Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}.
Q5TCY1 TTBK1 T443 ochoa Tau-tubulin kinase 1 (EC 2.7.11.1) (Brain-derived tau kinase) Serine/threonine kinase which is able to phosphorylate TAU on serine, threonine and tyrosine residues. Induces aggregation of TAU. {ECO:0000269|PubMed:16923168}.
Q5TGY3 AHDC1 T959 ochoa Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}.
Q5THJ4 VPS13D T1767 ochoa Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}.
Q68CZ2 TNS3 T692 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q6KC79 NIPBL T914 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6UXY8 TMC5 T86 ochoa Transmembrane channel-like protein 5 Probable component of an ion channel (Probable). Molecular function hasn't been characterized yet (Probable). {ECO:0000305}.
Q6ZRV2 FAM83H T1027 ochoa Protein FAM83H May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}.
Q6ZW31 SYDE1 T246 ochoa Rho GTPase-activating protein SYDE1 (Synapse defective protein 1 homolog 1) (Protein syd-1 homolog 1) GTPase activator for the Rho-type GTPases. As a GCM1 downstream effector, it is involved in placental development and positively regulates trophoblast cells migration. It regulates cytoskeletal remodeling by controlling the activity of Rho GTPases including RHOA, CDC42 and RAC1 (PubMed:27917469). {ECO:0000269|PubMed:27917469}.
Q71F56 MED13L T779 ochoa Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway.
Q7L591 DOK3 T427 ochoa Docking protein 3 (Downstream of tyrosine kinase 3) DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}.
Q7LBC6 KDM3B T729 ochoa Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}.
Q7LBC6 KDM3B T746 ochoa Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}.
Q7Z589 EMSY T1104 ochoa BRCA2-interacting transcriptional repressor EMSY Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}.
Q7Z6J0 SH3RF1 T741 ochoa E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}.
Q7Z7B0 FILIP1 T940 ochoa Filamin-A-interacting protein 1 (FILIP) By acting through a filamin-A/F-actin axis, it controls the start of neocortical cell migration from the ventricular zone. May be able to induce the degradation of filamin-A. {ECO:0000250|UniProtKB:Q8K4T4}.
Q86UR5 RIMS1 T1418 ochoa Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}.
Q86UU0 BCL9L T989 ochoa B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}.
Q86XN8 MEX3D T516 ochoa RNA-binding protein MEX3D (RING finger and KH domain-containing protein 1) (RING finger protein 193) (TINO) RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. {ECO:0000250}.
Q8IVT2 MISP T577 ochoa|psp Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}.
Q8IWY9 CDAN1 T267 ochoa Codanin-1 May act as a negative regulator of ASF1 in chromatin assembly. {ECO:0000269|PubMed:22407294}.
Q8IX03 WWC1 T901 ochoa Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}.
Q8IYB3 SRRM1 T416 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYB3 SRRM1 T793 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8N1G0 ZNF687 T185 ochoa Zinc finger protein 687 May be involved in transcriptional regulation.
Q8N2M8 CLASRP T296 ochoa CLK4-associating serine/arginine rich protein (Splicing factor, arginine/serine-rich 16) (Suppressor of white-apricot homolog 2) Probably functions as an alternative splicing regulator. May regulate the mRNA splicing of genes such as CLK1. May act by regulating members of the CLK kinase family (By similarity). {ECO:0000250}.
Q8N3V7 SYNPO T756 ochoa Synaptopodin Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}.
Q8N960 CEP120 T382 ochoa Centrosomal protein of 120 kDa (Cep120) (Coiled-coil domain-containing protein 100) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors and for proper positioning of neurons during brain development. Also implicated in the migration and selfrenewal of neural progenitors. Required for centriole duplication and maturation during mitosis and subsequent ciliogenesis (By similarity). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000250|UniProtKB:Q7TSG1, ECO:0000269|PubMed:27185865}.
Q8NE01 CNNM3 T675 ochoa Metal transporter CNNM3 (Ancient conserved domain-containing protein 3) (Cyclin-M3) Probable metal transporter. {ECO:0000250}.
Q8NEM0 MCPH1 T335 ochoa Microcephalin Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}.
Q8TCU6 PREX1 T1184 ochoa Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (P-Rex1) (PtdIns(3,4,5)-dependent Rac exchanger 1) Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils.
Q8WX93 PALLD T643 ochoa Palladin (SIH002) (Sarcoma antigen NY-SAR-77) Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}.
Q8WXI7 MUC16 T6986 ochoa Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}.
Q8WZ73 RFFL T41 ochoa E3 ubiquitin-protein ligase rififylin (EC 2.3.2.27) (Caspase regulator CARP2) (Caspases-8 and -10-associated RING finger protein 2) (CARP-2) (FYVE-RING finger protein Sakura) (Fring) (RING finger and FYVE-like domain-containing protein 1) (RING finger protein 189) (RING finger protein 34-like) (RING-type E3 ubiquitin transferase rififylin) E3 ubiquitin-protein ligase that regulates several biological processes through the ubiquitin-mediated proteasomal degradation of various target proteins. Mediates 'Lys-48'-linked polyubiquitination of PRR5L and its subsequent proteasomal degradation thereby indirectly regulating cell migration through the mTORC2 complex. Ubiquitinates the caspases CASP8 and CASP10, promoting their proteasomal degradation, to negatively regulate cell death downstream of death domain receptors in the extrinsic pathway of apoptosis. Negatively regulates the tumor necrosis factor-mediated signaling pathway through targeting of RIPK1 to ubiquitin-mediated proteasomal degradation. Negatively regulates p53/TP53 through its direct ubiquitination and targeting to proteasomal degradation. Indirectly, may also negatively regulate p53/TP53 through ubiquitination and degradation of SFN. May also play a role in endocytic recycling. {ECO:0000269|PubMed:15069192, ECO:0000269|PubMed:17121812, ECO:0000269|PubMed:18382127, ECO:0000269|PubMed:18450452, ECO:0000269|PubMed:22609986}.
Q92560 BAP1 T487 ochoa|psp Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}.
Q969V6 MRTFA T314 ochoa Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}.
Q969V6 MRTFA T337 ochoa Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}.
Q96DR7 ARHGEF26 T331 ochoa Rho guanine nucleotide exchange factor 26 (SH3 domain-containing guanine exchange factor) Activates RhoG GTPase by promoting the exchange of GDP by GTP. Required for the formation of membrane ruffles during macropinocytosis. Required for the formation of cup-like structures during trans-endothelial migration of leukocytes. In case of Salmonella enterica infection, activated by SopB, which induces cytoskeleton rearrangements and promotes bacterial entry. {ECO:0000269|PubMed:15133129, ECO:0000269|PubMed:17074883, ECO:0000269|PubMed:17875742}.
Q96FA3 PELI1 T127 psp E3 ubiquitin-protein ligase pellino homolog 1 (Pellino-1) (EC 2.3.2.27) (Pellino-related intracellular-signaling molecule) (RING-type E3 ubiquitin transferase pellino homolog 1) E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:12496252, PubMed:17675297, PubMed:29883609, PubMed:30952868). Involved in the TLR and IL-1 signaling pathways via interaction with the complex containing IRAK kinases and TRAF6 (PubMed:12496252, PubMed:17675297). Acts as a positive regulator of inflammatory response in microglia through activation of NF-kappa-B and MAP kinase (By similarity). Mediates 'Lys-63'-linked polyubiquitination of IRAK1 allowing subsequent NF-kappa-B activation (PubMed:12496252, PubMed:17675297). Conjugates 'Lys-63'-linked ubiquitin chains to the adapter protein ASC/PYCARD, which in turn is crucial for NLRP3 inflammasome activation (PubMed:34706239). Mediates 'Lys-48'-linked polyubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation; preferentially recognizes and mediates the degradation of the 'Thr-182' phosphorylated form of RIPK3 (PubMed:29883609). Negatively regulates necroptosis by reducing RIPK3 expression (PubMed:29883609). Mediates 'Lys-63'-linked ubiquitination of RIPK1 (PubMed:29883609). Following phosphorylation by ATM, catalyzes 'Lys-63'-linked ubiquitination of NBN, promoting DNA repair via homologous recombination (PubMed:30952868). Negatively regulates activation of the metabolic mTORC1 signaling pathway by mediating 'Lys-63'-linked ubiquitination of mTORC1-inhibitory protein TSC1 and thereby promoting TSC1/TSC2 complex stability (PubMed:33215753). {ECO:0000250|UniProtKB:Q8C669, ECO:0000269|PubMed:12496252, ECO:0000269|PubMed:17675297, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:33215753}.
Q96HH9 GRAMD2B T51 ochoa GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) None
Q96J84 KIRREL1 T739 ochoa Kin of IRRE-like protein 1 (Kin of irregular chiasm-like protein 1) (Nephrin-like protein 1) Required for proper function of the glomerular filtration barrier. It is involved in the maintenance of a stable podocyte architecture with interdigitating foot processes connected by specialized cell-cell junctions, known as the slit diaphragm (PubMed:31472902). It is a signaling protein that needs the presence of TEC kinases to fully trans-activate the transcription factor AP-1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:31472902}.
Q96JK2 DCAF5 T630 ochoa DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}.
Q96JY6 PDLIM2 T126 ochoa PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}.
Q96MY1 NOL4L T402 ochoa Nucleolar protein 4-like None
Q96PU5 NEDD4L T344 ochoa E3 ubiquitin-protein ligase NEDD4-like (EC 2.3.2.26) (EC 2.3.2.36) (HECT-type E3 ubiquitin transferase NED4L) (NEDD4.2) (Nedd4-2) E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins and is thereby implicated in the regulation of various signaling pathways including autophagy, innate immunity or DNA repair (PubMed:20064473, PubMed:31959741, PubMed:33608556). Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation (PubMed:15496141). Downregulates autophagy and cell growth by ubiquitinating and reducing cellular ULK1 or ASCT2 levels (PubMed:28820317, PubMed:31959741). Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, SCN2A/Nav1.2, SCN3A/Nav1.3, SCN5A/Nav1.5, SCN9A/Nav1.7, SCN10A/Nav1.8, KCNA3/Kv1.3, KCNH2, EAAT1, KCNQ2/Kv7.2, KCNQ3/Kv7.3 or CLC5 (PubMed:26363003, PubMed:27445338). Promotes ubiquitination and degradation of SGK1 and TNK2. Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Plays a role in dendrite formation by melanocytes (PubMed:23999003). Involved in the regulation of TOR signaling (PubMed:27694961). Ubiquitinates and regulates protein levels of NTRK1 once this one is activated by NGF (PubMed:27445338). Plays a role in antiviral innate immunity by catalyzing 'Lys-29'-linked cysteine ubiquitination of TRAF3, resulting in enhanced 'Lys-48' and 'Lys-63'-linked ubiquitination of TRAF3 (PubMed:33608556). Ubiquitinates TTYH2 and TTYH3 and regulates protein levels of TTYH2 (PubMed:18577513). {ECO:0000250|UniProtKB:Q8CFI0, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15217910, ECO:0000269|PubMed:15489223, ECO:0000269|PubMed:15496141, ECO:0000269|PubMed:15576372, ECO:0000269|PubMed:18577513, ECO:0000269|PubMed:19144635, ECO:0000269|PubMed:23999003, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:26363003, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:27694961, ECO:0000269|PubMed:33608556}.
Q96PU5 NEDD4L T451 ochoa E3 ubiquitin-protein ligase NEDD4-like (EC 2.3.2.26) (EC 2.3.2.36) (HECT-type E3 ubiquitin transferase NED4L) (NEDD4.2) (Nedd4-2) E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins and is thereby implicated in the regulation of various signaling pathways including autophagy, innate immunity or DNA repair (PubMed:20064473, PubMed:31959741, PubMed:33608556). Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation (PubMed:15496141). Downregulates autophagy and cell growth by ubiquitinating and reducing cellular ULK1 or ASCT2 levels (PubMed:28820317, PubMed:31959741). Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, SCN2A/Nav1.2, SCN3A/Nav1.3, SCN5A/Nav1.5, SCN9A/Nav1.7, SCN10A/Nav1.8, KCNA3/Kv1.3, KCNH2, EAAT1, KCNQ2/Kv7.2, KCNQ3/Kv7.3 or CLC5 (PubMed:26363003, PubMed:27445338). Promotes ubiquitination and degradation of SGK1 and TNK2. Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Plays a role in dendrite formation by melanocytes (PubMed:23999003). Involved in the regulation of TOR signaling (PubMed:27694961). Ubiquitinates and regulates protein levels of NTRK1 once this one is activated by NGF (PubMed:27445338). Plays a role in antiviral innate immunity by catalyzing 'Lys-29'-linked cysteine ubiquitination of TRAF3, resulting in enhanced 'Lys-48' and 'Lys-63'-linked ubiquitination of TRAF3 (PubMed:33608556). Ubiquitinates TTYH2 and TTYH3 and regulates protein levels of TTYH2 (PubMed:18577513). {ECO:0000250|UniProtKB:Q8CFI0, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15217910, ECO:0000269|PubMed:15489223, ECO:0000269|PubMed:15496141, ECO:0000269|PubMed:15576372, ECO:0000269|PubMed:18577513, ECO:0000269|PubMed:19144635, ECO:0000269|PubMed:23999003, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:26363003, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:27694961, ECO:0000269|PubMed:33608556}.
Q99501 GAS2L1 T299 ochoa GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}.
Q9BQA9 CYBC1 T170 ochoa Cytochrome b-245 chaperone 1 (Essential for reactive oxygen species protein) (Eros) Functions as a chaperone necessary for a stable expression of the CYBA and CYBB subunits of the cytochrome b-245 heterodimer (PubMed:30361506). Controls the phagocyte respiratory burst and is essential for innate immunity (By similarity). {ECO:0000250|UniProtKB:Q3TYS2, ECO:0000269|PubMed:30361506}.
Q9BQL6 FERMT1 T172 ochoa Fermitin family homolog 1 (Kindlerin) (Kindlin syndrome protein) (Kindlin-1) (Unc-112-related protein 1) Involved in cell adhesion. Contributes to integrin activation. When coexpressed with talin, potentiates activation of ITGA2B. Required for normal keratinocyte proliferation. Required for normal polarization of basal keratinocytes in skin, and for normal cell shape. Required for normal adhesion of keratinocytes to fibronectin and laminin, and for normal keratinocyte migration to wound sites. May mediate TGF-beta 1 signaling in tumor progression. {ECO:0000269|PubMed:14634021, ECO:0000269|PubMed:17012746, ECO:0000269|PubMed:19804783}.
Q9BSJ6 PIMREG T133 ochoa Protein PIMREG (CALM-interactor expressed in thymus and spleen) (PICALM-interacting mitotic regulator) (Regulator of chromosome segregation protein 1) During mitosis, may play a role in the control of metaphase-to-anaphase transition. {ECO:0000269|PubMed:18757745}.
Q9BTA9 WAC T224 ochoa WW domain-containing adapter protein with coiled-coil Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}.
Q9BTC8 MTA3 T432 ochoa Metastasis-associated protein MTA3 Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:12705869, PubMed:16428440, PubMed:28977666). Plays a role in maintenance of the normal epithelial architecture through the repression of SNAI1 transcription in a histone deacetylase-dependent manner, and thus the regulation of E-cadherin levels (PubMed:12705869). Contributes to transcriptional repression by BCL6 (PubMed:15454082). {ECO:0000269|PubMed:12705869, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}.
Q9BUA3 SPINDOC T253 ochoa Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}.
Q9BUG6 ZSCAN5A T247 ochoa Zinc finger and SCAN domain-containing protein 5A (Zinc finger protein 495) May be involved in transcriptional regulation.
Q9BY89 KIAA1671 T1443 ochoa Uncharacterized protein KIAA1671 None
Q9BYB0 SHANK3 T1129 ochoa SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}.
Q9C0B5 ZDHHC5 T411 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0B5 ZDHHC5 T696 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0C4 SEMA4C T774 ochoa Semaphorin-4C Cell surface receptor for PLXNB2 that plays an important role in cell-cell signaling. PLXNB2 binding promotes downstream activation of RHOA and phosphorylation of ERBB2 at 'Tyr-1248'. Required for normal brain development, axon guidance and cell migration (By similarity). Probable signaling receptor which may play a role in myogenic differentiation through activation of the stress-activated MAPK cascade. {ECO:0000250, ECO:0000269|PubMed:17498836}.
Q9H3P2 NELFA T235 ochoa Negative elongation factor A (NELF-A) (Wolf-Hirschhorn syndrome candidate 2 protein) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II. The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex. {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:12563561, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
Q9H3P2 NELFA T365 ochoa Negative elongation factor A (NELF-A) (Wolf-Hirschhorn syndrome candidate 2 protein) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II. The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex. {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:12563561, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
Q9H3Z4 DNAJC5 T179 ochoa DnaJ homolog subfamily C member 5 (Ceroid-lipofuscinosis neuronal protein 4) (Cysteine string protein) (CSP) Acts as a general chaperone in regulated exocytosis (By similarity). Acts as a co-chaperone for the SNARE protein SNAP-25 (By similarity). Involved in the calcium-mediated control of a late stage of exocytosis (By similarity). May have an important role in presynaptic function. May be involved in calcium-dependent neurotransmitter release at nerve endings (By similarity). {ECO:0000250|UniProtKB:P60904, ECO:0000250|UniProtKB:Q29455}.
Q9H792 PEAK1 Y880 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9H987 SYNPO2L T347 ochoa Synaptopodin 2-like protein Actin-associated protein that may play a role in modulating actin-based shape. {ECO:0000250}.
Q9HBU1 BARX1 T211 ochoa Homeobox protein BarH-like 1 Transcription factor, which is involved in craniofacial development, in odontogenesis and in stomach organogenesis. May have a role in the differentiation of molars from incisors. Plays a role in suppressing endodermal Wnt activity (By similarity). Binds to a regulatory module of the NCAM promoter. {ECO:0000250, ECO:0000269|PubMed:9804553}.
Q9HC78 ZBTB20 T227 ochoa Zinc finger and BTB domain-containing protein 20 (Dendritic-derived BTB/POZ zinc finger protein) (Zinc finger protein 288) May be a transcription factor that may be involved in hematopoiesis, oncogenesis, and immune responses (PubMed:11352661). Plays a role in postnatal myogenesis, may be involved in the regulation of satellite cells self-renewal (By similarity). {ECO:0000250|UniProtKB:Q8K0L9, ECO:0000269|PubMed:11352661}.
Q9HD20 ATP13A1 T901 ochoa Endoplasmic reticulum transmembrane helix translocase (EC 7.4.2.-) (Endoplasmic reticulum P5A-ATPase) Endoplasmic reticulum translocase required to remove mitochondrial transmembrane proteins mistargeted to the endoplasmic reticulum (PubMed:32973005, PubMed:36264797). Acts as a dislocase that mediates the ATP-dependent extraction of mislocalized mitochondrial transmembrane proteins from the endoplasmic reticulum membrane (PubMed:32973005). Specifically binds mitochondrial tail-anchored transmembrane proteins: has an atypically large substrate-binding pocket that recognizes and binds moderately hydrophobic transmembranes with short hydrophilic lumenal domains (PubMed:32973005). {ECO:0000269|PubMed:32973005, ECO:0000269|PubMed:36264797}.
Q9NQS7 INCENP T150 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NSI6 BRWD1 T1477 ochoa Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}.
Q9NU19 TBC1D22B T118 ochoa TBC1 domain family member 22B May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000250}.
Q9NUY8 TBC1D23 T531 ochoa TBC1 domain family member 23 (HCV non-structural protein 4A-transactivated protein 1) Putative Rab GTPase-activating protein which plays a role in vesicular trafficking (PubMed:28823707). Involved in endosome-to-Golgi trafficking. Acts as a bridging protein by binding simultaneously to golgins, including GOLGA1 and GOLGA4, located at the trans-Golgi, and to the WASH complex, located on endosome-derived vesicles (PubMed:29084197, PubMed:29426865). Together with WDR11 complex facilitates the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). Plays a role in brain development, including in cortical neuron positioning (By similarity). May also be important for neurite outgrowth, possibly through its involvement in membrane trafficking and cargo delivery, 2 processes that are essential for axonal and dendritic growth (By similarity). May act as a general inhibitor of innate immunity signaling, strongly inhibiting multiple TLR and dectin/CLEC7A-signaling pathways. Does not alter initial activation events, but instead affects maintenance of inflammatory gene expression several hours after bacterial lipopolysaccharide (LPS) challenge (By similarity). {ECO:0000250|UniProtKB:Q8K0F1, ECO:0000269|PubMed:28823707, ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:29426865}.
Q9NY27 PPP4R2 T163 ochoa Serine/threonine-protein phosphatase 4 regulatory subunit 2 Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}.
Q9NY59 SMPD3 T175 ochoa Sphingomyelin phosphodiesterase 3 (EC 3.1.4.12) (Neutral sphingomyelinase 2) (nSMase-2) (nSMase2) (Neutral sphingomyelinase II) Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (PubMed:10823942, PubMed:14741383, PubMed:15051724). Binds to anionic phospholipids (APLs) such as phosphatidylserine (PS) and phosphatidic acid (PA) that modulate enzymatic activity and subcellular location. May be involved in IL-1-beta-induced JNK activation in hepatocytes (By similarity). May act as a mediator in transcriptional regulation of NOS2/iNOS via the NF-kappa-B activation under inflammatory conditions (By similarity). {ECO:0000250|UniProtKB:O35049, ECO:0000250|UniProtKB:Q9JJY3, ECO:0000269|PubMed:10823942, ECO:0000269|PubMed:14741383, ECO:0000269|PubMed:15051724}.
Q9NZJ0 DTL Y628 ochoa Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}.
Q9P0K7 RAI14 T283 ochoa Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}.
Q9P107 GMIP T439 ochoa GEM-interacting protein (GMIP) Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}.
Q9P1Q0 VPS54 T45 ochoa Vacuolar protein sorting-associated protein 54 (Hepatocellular carcinoma protein 8) (Tumor antigen HOM-HCC-8) (Tumor antigen SLP-8p) Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of the cycling of mannose 6-phosphate receptors between the TGN and endosomes, this cycling is necessary for proper lysosomal sorting of acid hydrolases such as CTSD (PubMed:18367545). Within the GARP complex, required to tether the complex to the TGN. Not involved in endocytic recycling (PubMed:25799061). {ECO:0000269|PubMed:18367545, ECO:0000269|PubMed:25799061}.
Q9P1Y5 CAMSAP3 T587 ochoa Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}.
Q9P1Y6 PHRF1 T1126 ochoa PHD and RING finger domain-containing protein 1 None
Q9P273 TENM3 T201 ochoa Teneurin-3 (Ten-3) (Protein Odd Oz/ten-m homolog 3) (Tenascin-M3) (Ten-m3) (Teneurin transmembrane protein 3) Involved in neural development by regulating the establishment of proper connectivity within the nervous system. Acts in both pre- and postsynaptic neurons in the hippocampus to control the assembly of a precise topographic projection: required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum, probably by promoting homophilic cell adhesion. Required for proper dendrite morphogenesis and axon targeting in the vertebrate visual system, thereby playing a key role in the development of the visual pathway. Regulates the formation in ipsilateral retinal mapping to both the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). May also be involved in the differentiation of the fibroblast-like cells in the superficial layer of mandibular condylar cartilage into chondrocytes. {ECO:0000250|UniProtKB:Q9WTS6}.
Q9P2R6 RERE T144 ochoa Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}.
Q9UBG0 MRC2 T1460 ochoa C-type mannose receptor 2 (C-type lectin domain family 13 member E) (Endocytic receptor 180) (Macrophage mannose receptor 2) (Urokinase-type plasminogen activator receptor-associated protein) (UPAR-associated protein) (Urokinase receptor-associated protein) (CD antigen CD280) May play a role as endocytotic lectin receptor displaying calcium-dependent lectin activity. Internalizes glycosylated ligands from the extracellular space for release in an endosomal compartment via clathrin-mediated endocytosis. May be involved in plasminogen activation system controlling the extracellular level of PLAUR/PLAU, and thus may regulate protease activity at the cell surface. May contribute to cellular uptake, remodeling and degradation of extracellular collagen matrices. May play a role during cancer progression as well as in other chronic tissue destructive diseases acting on collagen turnover. May participate in remodeling of extracellular matrix cooperating with the matrix metalloproteinases (MMPs). {ECO:0000269|PubMed:10683150, ECO:0000269|PubMed:12972549}.
Q9UBW5 BIN2 T438 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9UGJ0 PRKAG2 T221 ochoa 5'-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2) (AMPK subunit gamma-2) (H91620p) AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:14722619, PubMed:24563466). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:14722619, PubMed:24563466). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:14722619, PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:14722619, PubMed:24563466). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:14722619, PubMed:24563466). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:14722619, PubMed:24563466). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:14722619, PubMed:24563466). {ECO:0000269|PubMed:14722619, ECO:0000269|PubMed:24563466}.
Q9UHJ3 SFMBT1 T742 ochoa Scm-like with four MBT domains protein 1 (hSFMBT) (Renal ubiquitous protein 1) Histone-binding protein, which is part of various corepressor complexes. Mediates the recruitment of corepressor complexes to target genes, followed by chromatin compaction and repression of transcription. Plays a role during myogenesis: required for the maintenance of undifferentiated states of myogenic progenitor cells via interaction with MYOD1. Interaction with MYOD1 leads to the recruitment of associated corepressors and silencing of MYOD1 target genes. Part of the SLC complex in germ cells, where it may play a role during spermatogenesis. {ECO:0000269|PubMed:17599839, ECO:0000269|PubMed:23349461, ECO:0000269|PubMed:23592795}.
Q9UK58 CCNL1 T67 ochoa Cyclin-L1 (Cyclin-L) Involved in pre-mRNA splicing. Functions in association with cyclin-dependent kinases (CDKs) (PubMed:18216018). Inhibited by the CDK-specific inhibitor CDKN1A/p21 (PubMed:11980906). May play a role in the regulation of RNA polymerase II (pol II). May be a candidate proto-oncogene in head and neck squamous cell carcinomas (HNSCC) (PubMed:12414649, PubMed:15700036). {ECO:0000269|PubMed:11980906, ECO:0000269|PubMed:12414649, ECO:0000269|PubMed:15700036, ECO:0000269|PubMed:18216018}.
Q9UKE5 TNIK T987 ochoa TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.
Q9ULH1 ASAP1 T784 ochoa Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}.
Q9ULH7 MRTFB T545 ochoa Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}.
Q9ULJ3 ZBTB21 T1005 ochoa Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}.
Q9ULJ7 ANKRD50 T1215 ochoa Ankyrin repeat domain-containing protein 50 Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552).
Q9ULJ7 ANKRD50 T1402 ochoa Ankyrin repeat domain-containing protein 50 Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552).
Q9ULU4 ZMYND8 T700 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9UNF1 MAGED2 T87 ochoa Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}.
Q9UPN3 MACF1 T7232 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPT8 ZC3H4 T1106 ochoa Zinc finger CCCH domain-containing protein 4 RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}.
Q9UPV9 TRAK1 T922 ochoa Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}.
Q9UQ16 DNM3 T775 ochoa Dynamin-3 (EC 3.6.5.5) (Dynamin, testicular) (T-dynamin) Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP. Most probably involved in vesicular trafficking processes, in particular endocytosis (By similarity). {ECO:0000250}.
Q9UQ35 SRRM2 T2125 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ84 EXO1 T641 ochoa Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}.
Q9Y2K7 KDM2A T720 ochoa Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}.
Q9Y2U5 MAP3K2 T304 ochoa Mitogen-activated protein kinase kinase kinase 2 (EC 2.7.11.25) (MAPK/ERK kinase kinase 2) (MEK kinase 2) (MEKK 2) Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics. {ECO:0000250, ECO:0000269|PubMed:10713157, ECO:0000269|PubMed:16001074}.
Q9Y2X7 GIT1 T364 ochoa ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}.
Q9Y4D8 HECTD4 T1141 ochoa Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}.
Q9Y4W2 LAS1L T619 ochoa Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}.
Q9Y5Y0 FLVCR1 T538 ochoa Choline/ethanolamine transporter FLVCR1 (Feline leukemia virus subgroup C receptor-related protein 1) (Feline leukemia virus subgroup C receptor) (hFLVCR) (Heme transporter FLVCR1) Uniporter that mediates the transport of extracellular choline and ethanolamine into cells, thereby playing a key role in phospholipid biosynthesis (PubMed:37100056, PubMed:38693265, PubMed:38778100, PubMed:39306721). Choline and ethanolamine are the precursors of phosphatidylcholine and phosphatidylethanolamine, respectively, the two most abundant phospholipids (PubMed:38693265, PubMed:38778100). Transport is not coupled with proton transport and is exclusively driven by the choline (or ethanolamine) gradient across the plasma membrane (PubMed:38693265, PubMed:38778100). Also acts as a heme b transporter that mediates heme efflux from the cytoplasm to the extracellular compartment (PubMed:15369674, PubMed:20610401, PubMed:22483575, PubMed:23187127, PubMed:27923065). {ECO:0000269|PubMed:15369674, ECO:0000269|PubMed:20610401, ECO:0000269|PubMed:22483575, ECO:0000269|PubMed:23187127, ECO:0000269|PubMed:27923065, ECO:0000269|PubMed:37100056, ECO:0000269|PubMed:38693265, ECO:0000269|PubMed:38778100, ECO:0000269|PubMed:39306721}.; FUNCTION: [Isoform 1]: Uniporter that mediates the transport of extracellular choline and ethanolamine into cells (PubMed:37100056, PubMed:38693265). Choline and ethanolamine are the precursors of phosphatidylcholine and phosphatidylethanolamine, respectively, the two most abundant phospholipids (PubMed:38693265). Transport is not coupled with proton transport and is exclusively driven by the choline (or ethanolamine) gradient across the plasma membrane (PubMed:38693265). Also acts as a heme b transporter that mediates heme efflux from the cytoplasm to the extracellular compartment (PubMed:15369674, PubMed:20610401, PubMed:22483575, PubMed:23187127, PubMed:27923065). Heme export depends on the presence of HPX and is required to maintain intracellular free heme balance, protecting cells from heme toxicity (PubMed:20610401). Heme export provides protection from heme or ferrous iron toxicities in liver, brain, sensory neurons and during erythropoiesis, a process in which heme synthesis intensifies (PubMed:20610401, PubMed:23187127). Possibly export coproporphyrin and protoporphyrin IX, which are both intermediate products in the heme biosynthetic pathway (PubMed:20610401). Does not export bilirubin (PubMed:20610401). The molecular mechanism of heme transport, whether electrogenic, electroneutral or coupled to other ions, remains to be elucidated (PubMed:20610401, PubMed:23187127). {ECO:0000269|PubMed:15369674, ECO:0000269|PubMed:20610401, ECO:0000269|PubMed:22483575, ECO:0000269|PubMed:23187127, ECO:0000269|PubMed:27923065, ECO:0000269|PubMed:37100056, ECO:0000269|PubMed:38693265}.; FUNCTION: [Isoform 2]: Heme b transporter that promotes heme efflux from the mitochondrion to the cytoplasm. Essential for erythroid differentiation. {ECO:0000269|PubMed:23187127}.; FUNCTION: [Isoform 1]: (Microbial infection) Confers susceptibility to feline leukemia virus subgroup C (FeLV-C) infection in vitro. {ECO:0000269|PubMed:10400745}.
P04629 NTRK1 T734 Sugiyama High affinity nerve growth factor receptor (EC 2.7.10.1) (Neurotrophic tyrosine kinase receptor type 1) (TRK1-transforming tyrosine kinase protein) (Tropomyosin-related kinase A) (Tyrosine kinase receptor) (Tyrosine kinase receptor A) (Trk-A) (gp140trk) (p140-TrkA) Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand (PubMed:1281417, PubMed:15488758, PubMed:17196528, PubMed:1849459, PubMed:1850821, PubMed:22649032, PubMed:27445338, PubMed:8325889). Can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival (By similarity). Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation (PubMed:1281417). Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors. {ECO:0000250|UniProtKB:P35739, ECO:0000250|UniProtKB:Q3UFB7, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:1281417, ECO:0000269|PubMed:15488758, ECO:0000269|PubMed:17196528, ECO:0000269|PubMed:1849459, ECO:0000269|PubMed:1850821, ECO:0000269|PubMed:22649032, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:27676246, ECO:0000269|PubMed:8155326, ECO:0000269|PubMed:8325889}.; FUNCTION: [Isoform TrkA-III]: Resistant to NGF, it constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed. {ECO:0000269|PubMed:15488758}.
P27824 CANX T66 Sugiyama Calnexin (IP90) (Major histocompatibility complex class I antigen-binding protein p88) (p90) Calcium-binding protein that interacts with newly synthesized monoglucosylated glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at the synapse.
P15976 GATA1 T176 GPS6 Erythroid transcription factor (Eryf1) (GATA-binding factor 1) (GATA-1) (GF-1) (NF-E1 DNA-binding protein) Transcriptional activator or repressor which serves as a general switch factor for erythroid development (PubMed:35030251). It binds to DNA sites with the consensus sequence 5'-[AT]GATA[AG]-3' within regulatory regions of globin genes and of other genes expressed in erythroid cells. Activates the transcription of genes involved in erythroid differentiation of K562 erythroleukemia cells, including HBB, HBG1/2, ALAS2 and HMBS (PubMed:24245781). {ECO:0000269|PubMed:22235304, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:35030251}.
Q96PE2 ARHGEF17 T751 EPSD|PSP Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}.
P51957 NEK4 T469 Sugiyama Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}.
A3KN83 SBNO1 T216 ochoa Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}.
H0YC42 None T173 ochoa Tumor protein D52 None
O00409 FOXN3 T351 ochoa Forkhead box protein N3 (Checkpoint suppressor 1) Acts as a transcriptional repressor. May be involved in DNA damage-inducible cell cycle arrests (checkpoints). {ECO:0000269|PubMed:16102918}.
O00512 BCL9 T867 ochoa B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}.
O15355 PPM1G T207 ochoa Protein phosphatase 1G (EC 3.1.3.16) (Protein phosphatase 1C) (Protein phosphatase 2C isoform gamma) (PP2C-gamma) (Protein phosphatase magnesium-dependent 1 gamma) None
O75995 SASH3 T112 ochoa SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}.
O94885 SASH1 T1030 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
O95785 WIZ T1153 ochoa Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}.
P17600 SYN1 T512 ochoa Synapsin-1 (Brain protein 4.1) (Synapsin I) Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}.
P28370 SMARCA1 T118 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 1 (SMARCA1) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A1) (EC 3.6.4.-) (Global transcription activator SNF2L1) (Nucleosome-remodeling factor subunit SNF2L) (SNF2L) (SNF2 related chromatin remodeling ATPase 1) [Isoform 1]: ATPase that possesses intrinsic ATP-dependent chromatin-remodeling activity (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). ATPase activity is substrate-dependent, and is increased when nucleosomes are the substrate, but is also catalytically active when DNA alone is the substrate (PubMed:14609955, PubMed:15310751, PubMed:15640247). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A-, BAZ1B-, BAZ2A- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Within the NURF-1 and CERF-1 ISWI chromatin remodeling complexes, nucleosomes are the preferred substrate for its ATPase activity (PubMed:14609955, PubMed:15640247). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). May promote neurite outgrowth (PubMed:14609955). May be involved in the development of luteal cells (PubMed:16740656). Facilitates nucleosome assembly during DNA replication, ensuring replication fork progression and genomic stability by preventing replication stress and nascent DNA gaps (PubMed:39413208). {ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:15640247, ECO:0000269|PubMed:16740656, ECO:0000269|PubMed:28801535, ECO:0000269|PubMed:39413208}.; FUNCTION: [Isoform 2]: Catalytically inactive when either DNA or nucleosomes are the substrate and does not possess chromatin-remodeling activity (PubMed:15310751, PubMed:28801535). Acts as a negative regulator of chromatin remodelers by generating inactive complexes (PubMed:15310751). {ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:28801535}.
P31321 PRKAR1B T85 ochoa cAMP-dependent protein kinase type I-beta regulatory subunit Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. {ECO:0000269|PubMed:20819953}.
P35711 SOX5 T413 ochoa Transcription factor SOX-5 Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}.
P35712 SOX6 T441 ochoa Transcription factor SOX-6 Transcription factor that plays a key role in several developmental processes, including neurogenesis, chondrocytes differentiation and cartilage formation (Probable). Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX5, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene, and is thereby involved in the differentiation of oligodendroglia in the developing spinal tube. Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). {ECO:0000250|UniProtKB:P40645, ECO:0000305|PubMed:32442410}.
P40123 CAP2 T311 ochoa Adenylyl cyclase-associated protein 2 (CAP 2) Involved in the regulation of actin polymerization. {ECO:0000269|PubMed:30518548}.
P48681 NES T1309 ochoa Nestin Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}.
P49585 PCYT1A T325 ochoa Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}.
P51610 HCFC1 T413 ochoa Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}.
P78364 PHC1 T897 ochoa Polyhomeotic-like protein 1 (hPH1) (Early development regulatory protein 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Required for proper control of cellular levels of GMNN expression. {ECO:0000269|PubMed:23418308}.
Q02446 SP4 T138 ochoa Transcription factor Sp4 (SPR-1) Binds to GT and GC boxes promoters elements. Probable transcriptional activator.
Q12979 ABR T74 ochoa Active breakpoint cluster region-related protein Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:7479768). The central Dbl homology (DH) domain functions as a guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:7479768). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF-1 directed motility and phagocytosis through the modulation of RAC1 activity (By similarity). {ECO:0000250|UniProtKB:Q5SSL4, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:7479768}.
Q13620 CUL4B T148 ochoa Cullin-4B (CUL-4B) Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}.
Q14839 CHD4 T517 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q15047 SETDB1 T507 ochoa Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}.
Q15648 MED1 T623 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q32NC0 C18orf21 T132 ochoa UPF0711 protein C18orf21 (HBV X-transactivated gene 13 protein) (HBV XAg-transactivated protein 13) None
Q70SY1 CREB3L2 T71 ochoa Cyclic AMP-responsive element-binding protein 3-like protein 2 (cAMP-responsive element-binding protein 3-like protein 2) (BBF2 human homolog on chromosome 7) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 2] Transcription factor involved in unfolded protein response (UPR). In the absence of endoplasmic reticulum (ER) stress, inserted into ER membranes, with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane. In response to ER stress, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus to effect transcription of specific target genes. Plays a critical role in chondrogenesis by activating the transcription of SEC23A, which promotes the transport and secretion of cartilage matrix proteins, and possibly that of ER biogenesis-related genes (By similarity). In a neuroblastoma cell line, protects cells from ER stress-induced death (PubMed:17178827). In vitro activates transcription of target genes via direct binding to the CRE site (PubMed:17178827). {ECO:0000250|UniProtKB:Q8BH52, ECO:0000269|PubMed:17178827}.
Q7Z2Z1 TICRR T1148 ochoa Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}.
Q86UU0 BCL9L T936 ochoa B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}.
Q86WR7 PROSER2 T214 ochoa Proline and serine-rich protein 2 None
Q8IYJ0 PIANP T247 ochoa PILR alpha-associated neural protein (PILR-associating neural protein) (Paired immunoglobin-like type 2 receptor-associating neural protein) Acts as a ligand for PILRA in neural tissues, where it may be involved in immune regulation. {ECO:0000269|PubMed:21241660}.
Q8TEM1 NUP210 T1862 ochoa Nuclear pore membrane glycoprotein 210 (Nuclear pore protein gp210) (Nuclear envelope pore membrane protein POM 210) (POM210) (Nucleoporin Nup210) (Pore membrane protein of 210 kDa) Nucleoporin essential for nuclear pore assembly and fusion, nuclear pore spacing, as well as structural integrity. {ECO:0000269|PubMed:14517331}.
Q92625 ANKS1A T636 ochoa Ankyrin repeat and SAM domain-containing protein 1A (Odin) Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}.
Q92831 KAT2B T119 ochoa Histone acetyltransferase KAT2B (EC 2.3.1.48) (Histone acetyltransferase PCAF) (Histone acetylase PCAF) (Lysine acetyltransferase 2B) (P300/CBP-associated factor) (P/CAF) (Spermidine acetyltransferase KAT2B) (EC 2.3.1.57) Functions as a histone acetyltransferase (HAT) to promote transcriptional activation (PubMed:8945521). Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles (PubMed:8945521). Has a a strong preference for acetylation of H3 at 'Lys-9' (H3K9ac) (PubMed:21131905). Also acetylates non-histone proteins, such as ACLY, MAPRE1/EB1, PLK4, RRP9/U3-55K and TBX5 (PubMed:10675335, PubMed:23001180, PubMed:23932781, PubMed:26867678, PubMed:27796307, PubMed:29174768, PubMed:9707565). Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A (PubMed:8684459). Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Acetylates RRP9/U3-55K, a core subunit of the U3 snoRNP complex, impairing pre-rRNA processing (PubMed:26867678). Acetylates MAPRE1/EB1, promoting dynamic kinetochore-microtubule interactions in early mitosis (PubMed:23001180). Also acetylates spermidine (PubMed:27389534). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:23001180, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:26867678, ECO:0000269|PubMed:27389534, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:29174768, ECO:0000269|PubMed:8684459, ECO:0000269|PubMed:8945521, ECO:0000269|PubMed:9707565}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. {ECO:0000269|PubMed:12486002}.
Q96RT1 ERBIN T962 ochoa Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}.
Q9BU76 MMTAG2 T219 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9H3P2 NELFA T227 ochoa Negative elongation factor A (NELF-A) (Wolf-Hirschhorn syndrome candidate 2 protein) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II. The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex. {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:12563561, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
Q9H4X1 RGCC T99 ochoa Regulator of cell cycle RGCC (Response gene to complement 32 protein) (RGC-32) Modulates the activity of cell cycle-specific kinases. Enhances CDK1 activity. May contribute to the regulation of the cell cycle. May inhibit growth of glioma cells by promoting arrest of mitotic progression at the G2/M transition. Fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation. {ECO:0000269|PubMed:11687586, ECO:0000269|PubMed:17146433, ECO:0000269|PubMed:19158077, ECO:0000269|PubMed:22163048}.
Q9H5V7 IKZF5 T311 ochoa Zinc finger protein Pegasus (Ikaros family zinc finger protein 5) Transcriptional repressor that binds the core 5'GNNTGTNG-3' DNA consensus sequence (PubMed:10978333, PubMed:31217188). Involved in megakaryocyte differentiation. {ECO:0000269|PubMed:10978333, ECO:0000269|PubMed:31217188}.
Q9HBD1 RC3H2 T805 ochoa Roquin-2 (EC 2.3.2.27) (Membrane-associated nucleic acid-binding protein) (RING finger and CCCH-type zinc finger domain-containing protein 2) (RING finger protein 164) (RING-type E3 ubiquitin transferase Roquin-2) Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF and in many more mRNAs. Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs. In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity. In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression. Also recognizes CDE in its own mRNA and in that of paralogous RC3H1, possibly leading to feedback loop regulation (By similarity). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2B, UBE2D2, UBE2E2, UBE2E3, UBE2G2, UBE2K and UBE2Q2 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). Involved in the ubiquitination of MAP3K5 (PubMed:24448648, PubMed:26489670, PubMed:29186683). Able to interact with double-stranded RNA (dsRNA) (PubMed:26489670). {ECO:0000250|UniProtKB:P0C090, ECO:0000269|PubMed:24448648, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:29186683}.
Q9NR12 PDLIM7 T219 ochoa PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}.
Q9P2B4 CTTNBP2NL T570 ochoa CTTNBP2 N-terminal-like protein Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}.
Q9P2N6 KANSL3 T538 ochoa KAT8 regulatory NSL complex subunit 3 (NSL complex protein NSL3) (Non-specific lethal 3 homolog) (Serum inhibited-related protein) (Testis development protein PRTD) Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). Within the NSL complex, KANSL3 is required to promote KAT8 association with mitochondrial DNA (PubMed:27768893). Required for transcription of intraciliary transport genes in both ciliated and non-ciliated cells (By similarity). This is necessary for cilium assembly in ciliated cells and for organization of the microtubule cytoskeleton in non-ciliated cells (By similarity). Also required within the NSL complex to maintain nuclear architecture stability by promoting KAT8-mediated acetylation of lamin LMNA (By similarity). Plays an essential role in spindle assembly during mitosis (PubMed:26243146). Acts as a microtubule minus-end binding protein which stabilizes microtubules and promotes their assembly (PubMed:26243146). Indispensable during early embryonic development where it is required for proper lineage specification and maintenance during peri-implantation development and is essential for implantation (By similarity). {ECO:0000250|UniProtKB:A2RSY1, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}.
Q9UBW5 BIN2 T279 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9UBW5 BIN2 T446 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9ULD2 MTUS1 T1247 ochoa Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}.
Q9ULM3 YEATS2 T409 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9Y2I7 PIKFYVE T22 ochoa 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}.
O75794 CDC123 Y301 Sugiyama Translation initiation factor eIF2 assembly protein (Cell division cycle protein 123 homolog) (Protein D123) (HT-1080) (PZ32) ATP-dependent protein-folding chaperone for the eIF2 complex (PubMed:35031321, PubMed:37507029). Binds to the gamma subunit of the eIF2 complex which allows the subunit to assemble with the alpha and beta subunits (By similarity). {ECO:0000250|UniProtKB:Q05791, ECO:0000269|PubMed:35031321, ECO:0000269|PubMed:37507029}.
P35916 FLT4 T1263 Sugiyama Vascular endothelial growth factor receptor 3 (VEGFR-3) (EC 2.7.10.1) (Fms-like tyrosine kinase 4) (FLT-4) (Tyrosine-protein kinase receptor FLT4) Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFC and VEGFD, and plays an essential role in adult lymphangiogenesis and in the development of the vascular network and the cardiovascular system during embryonic development. Promotes proliferation, survival and migration of endothelial cells, and regulates angiogenic sprouting. Signaling by activated FLT4 leads to enhanced production of VEGFC, and to a lesser degree VEGFA, thereby creating a positive feedback loop that enhances FLT4 signaling. Modulates KDR signaling by forming heterodimers. The secreted isoform 3 may function as a decoy receptor for VEGFC and/or VEGFD and play an important role as a negative regulator of VEGFC-mediated lymphangiogenesis and angiogenesis. Binding of vascular growth factors to isoform 1 or isoform 2 leads to the activation of several signaling cascades; isoform 2 seems to be less efficient in signal transduction, because it has a truncated C-terminus and therefore lacks several phosphorylation sites. Mediates activation of the MAPK1/ERK2, MAPK3/ERK1 signaling pathway, of MAPK8 and the JUN signaling pathway, and of the AKT1 signaling pathway. Phosphorylates SHC1. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Promotes phosphorylation of MAPK8 at 'Thr-183' and 'Tyr-185', and of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:11532940, ECO:0000269|PubMed:15102829, ECO:0000269|PubMed:15474514, ECO:0000269|PubMed:16076871, ECO:0000269|PubMed:16452200, ECO:0000269|PubMed:17210781, ECO:0000269|PubMed:19610651, ECO:0000269|PubMed:19779139, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20431062, ECO:0000269|PubMed:20445537, ECO:0000269|PubMed:21273538, ECO:0000269|PubMed:7675451, ECO:0000269|PubMed:8700872, ECO:0000269|PubMed:9435229}.
Q6P5Z2 PKN3 T550 iPTMNet|EPSD Serine/threonine-protein kinase N3 (EC 2.7.11.13) (Protein kinase PKN-beta) (Protein-kinase C-related kinase 3) Contributes to invasiveness in malignant prostate cancer. {ECO:0000269|PubMed:15282551}.
A1L390 PLEKHG3 T782 ochoa Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}.
A4UGR9 XIRP2 T2542 ochoa Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}.
A6NKT7 RGPD3 T899 ochoa RanBP2-like and GRIP domain-containing protein 3 None
B8ZZF3 None T190 ochoa Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}.
J3KQ70 INO80B-WBP1 T87 ochoa HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) None
K7ELQ4 ATF7-NPFF T55 ochoa ATF7-NPFF readthrough None
O00750 PIK3C2B T90 ochoa Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit beta (PI3K-C2-beta) (PtdIns-3-kinase C2 subunit beta) (EC 2.7.1.137) (EC 2.7.1.154) (C2-PI3K) (Phosphoinositide 3-kinase-C2-beta) Phosphorylates PtdIns and PtdIns4P with a preference for PtdIns (PubMed:10805725, PubMed:11533253, PubMed:9830063). Does not phosphorylate PtdIns(4,5)P2 (PubMed:9830063). May be involved in EGF and PDGF signaling cascades (PubMed:10805725). {ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11533253, ECO:0000269|PubMed:9830063}.
O14686 KMT2D T382 ochoa Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}.
O14715 RGPD8 T898 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14733 MAP2K7 T42 ochoa Dual specificity mitogen-activated protein kinase kinase 7 (MAP kinase kinase 7) (MAPKK 7) (EC 2.7.12.2) (JNK-activating kinase 2) (MAPK/ERK kinase 7) (MEK 7) (Stress-activated protein kinase kinase 4) (SAPK kinase 4) (SAPKK-4) (SAPKK4) (c-Jun N-terminal kinase kinase 2) (JNK kinase 2) (JNKK 2) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by pro-inflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Part of a non-canonical MAPK signaling pathway, composed of the upstream MAP3K12 kinase and downstream MAP kinases MAPK1/ERK2 and MAPK3/ERK1, that enhances the AP-1-mediated transcription of APP in response to APOE (PubMed:28111074). {ECO:0000269|PubMed:28111074, ECO:0000269|PubMed:9312068, ECO:0000269|PubMed:9372971, ECO:0000269|PubMed:9535930, ECO:0000269|Ref.5}.
O14974 PPP1R12A T416 ochoa Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}.
O15014 ZNF609 T819 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15075 DCLK1 T336 ochoa Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system.
O15217 GSTA4 T193 psp Glutathione S-transferase A4 (EC 2.5.1.18) (GST class-alpha member 4) (Glutathione S-transferase A4-4) Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. This isozyme has a high catalytic efficiency with 4-hydroxyalkenals such as 4-hydroxynonenal (4-HNE). {ECO:0000269|PubMed:10329152, ECO:0000269|PubMed:20085333}.
O15234 CASC3 T446 ochoa Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}.
O15297 PPM1D T34 ochoa Protein phosphatase 1D (EC 3.1.3.16) (Protein phosphatase 2C isoform delta) (PP2C-delta) (Protein phosphatase magnesium-dependent 1 delta) (p53-induced protein phosphatase 1) Involved in the negative regulation of p53 expression (PubMed:23242139). Required for the relief of p53-dependent checkpoint mediated cell cycle arrest. Binds to and dephosphorylates 'Ser-15' of TP53 and 'Ser-345' of CHEK1 which contributes to the functional inactivation of these proteins (PubMed:15870257, PubMed:16311512). Mediates MAPK14 dephosphorylation and inactivation (PubMed:21283629). Is also an important regulator of global heterochromatin silencing and critical in maintaining genome integrity (By similarity). {ECO:0000250|UniProtKB:Q9QZ67, ECO:0000269|PubMed:15870257, ECO:0000269|PubMed:16311512, ECO:0000269|PubMed:21283629, ECO:0000269|PubMed:23242139}.
O15392 BIRC5 T48 psp Baculoviral IAP repeat-containing protein 5 (Apoptosis inhibitor 4) (Apoptosis inhibitor survivin) Multitasking protein that has dual roles in promoting cell proliferation and preventing apoptosis (PubMed:20627126, PubMed:21364656, PubMed:25778398, PubMed:28218735, PubMed:9859993). Component of a chromosome passage protein complex (CPC) which is essential for chromosome alignment and segregation during mitosis and cytokinesis (PubMed:16322459). Acts as an important regulator of the localization of this complex; directs CPC movement to different locations from the inner centromere during prometaphase to midbody during cytokinesis and participates in the organization of the center spindle by associating with polymerized microtubules (PubMed:20826784). Involved in the recruitment of CPC to centromeres during early mitosis via association with histone H3 phosphorylated at 'Thr-3' (H3pT3) during mitosis (PubMed:20929775). The complex with RAN plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules (PubMed:18591255). May counteract a default induction of apoptosis in G2/M phase (PubMed:9859993). The acetylated form represses STAT3 transactivation of target gene promoters (PubMed:20826784). May play a role in neoplasia (PubMed:10626797). Inhibitor of CASP3 and CASP7 (PubMed:21536684). Essential for the maintenance of mitochondrial integrity and function (PubMed:25778398). Isoform 2 and isoform 3 do not appear to play vital roles in mitosis (PubMed:12773388, PubMed:16291752). Isoform 3 shows a marked reduction in its anti-apoptotic effects when compared with the displayed wild-type isoform (PubMed:10626797). {ECO:0000269|PubMed:10626797, ECO:0000269|PubMed:12773388, ECO:0000269|PubMed:16291752, ECO:0000269|PubMed:16322459, ECO:0000269|PubMed:18591255, ECO:0000269|PubMed:20627126, ECO:0000269|PubMed:20826784, ECO:0000269|PubMed:20929775, ECO:0000269|PubMed:21364656, ECO:0000269|PubMed:21536684, ECO:0000269|PubMed:25778398, ECO:0000269|PubMed:28218735, ECO:0000269|PubMed:9859993}.
O15409 FOXP2 T448 ochoa Forkhead box protein P2 (CAG repeat protein 44) (Trinucleotide repeat-containing gene 10 protein) Transcriptional repressor that may play a role in the specification and differentiation of lung epithelium. May also play a role in developing neural, gastrointestinal and cardiovascular tissues. Can act with CTBP1 to synergistically repress transcription but CTPBP1 is not essential. Plays a role in synapse formation by regulating SRPX2 levels. Involved in neural mechanisms mediating the development of speech and language.
O15409 FOXP2 T451 ochoa Forkhead box protein P2 (CAG repeat protein 44) (Trinucleotide repeat-containing gene 10 protein) Transcriptional repressor that may play a role in the specification and differentiation of lung epithelium. May also play a role in developing neural, gastrointestinal and cardiovascular tissues. Can act with CTBP1 to synergistically repress transcription but CTPBP1 is not essential. Plays a role in synapse formation by regulating SRPX2 levels. Involved in neural mechanisms mediating the development of speech and language.
O15439 ABCC4 T648 ochoa ATP-binding cassette sub-family C member 4 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (MRP/cMOAT-related ABC transporter) (Multi-specific organic anion transporter B) (MOAT-B) (Multidrug resistance-associated protein 4) ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. Transports a range of endogenous molecules that have a key role in cellular communication and signaling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins (PubMed:11856762, PubMed:12523936, PubMed:12835412, PubMed:12883481, PubMed:15364914, PubMed:15454390, PubMed:16282361, PubMed:17959747, PubMed:18300232, PubMed:26721430). Mediates the ATP-dependent efflux of glutathione conjugates such as leukotriene C4 (LTC4) and leukotriene B4 (LTB4) too. The presence of GSH is necessary for the ATP-dependent transport of LTB4, whereas GSH is not required for the transport of LTC4 (PubMed:17959747). Mediates the cotransport of bile acids with reduced glutathione (GSH) (PubMed:12523936, PubMed:12883481, PubMed:16282361). Transports a wide range of drugs and their metabolites, including anticancer, antiviral and antibiotics molecules (PubMed:11856762, PubMed:12105214, PubMed:15454390, PubMed:17344354, PubMed:18300232). Confers resistance to anticancer agents such as methotrexate (PubMed:11106685). {ECO:0000269|PubMed:11106685, ECO:0000269|PubMed:11856762, ECO:0000269|PubMed:12105214, ECO:0000269|PubMed:12523936, ECO:0000269|PubMed:12835412, ECO:0000269|PubMed:12883481, ECO:0000269|PubMed:15364914, ECO:0000269|PubMed:15454390, ECO:0000269|PubMed:16282361, ECO:0000269|PubMed:17344354, ECO:0000269|PubMed:17959747, ECO:0000269|PubMed:18300232, ECO:0000269|PubMed:26721430}.
O43149 ZZEF1 T1270 ochoa Zinc finger ZZ-type and EF-hand domain-containing protein 1 Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}.
O43149 ZZEF1 T1523 ochoa Zinc finger ZZ-type and EF-hand domain-containing protein 1 Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}.
O43159 RRP8 T217 ochoa Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}.
O43166 SIPA1L1 T1575 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43167 ZBTB24 T138 ochoa Zinc finger and BTB domain-containing protein 24 (Zinc finger protein 450) May be involved in BMP2-induced transcription. {ECO:0000250}.
O43294 TGFB1I1 T180 ochoa Transforming growth factor beta-1-induced transcript 1 protein (Androgen receptor coactivator 55 kDa protein) (Androgen receptor-associated protein of 55 kDa) (Hydrogen peroxide-inducible clone 5 protein) (Hic-5) Functions as a molecular adapter coordinating multiple protein-protein interactions at the focal adhesion complex and in the nucleus. Links various intracellular signaling modules to plasma membrane receptors and regulates the Wnt and TGFB signaling pathways. May also regulate SLC6A3 and SLC6A4 targeting to the plasma membrane hence regulating their activity. In the nucleus, functions as a nuclear receptor coactivator regulating glucocorticoid, androgen, mineralocorticoid and progesterone receptor transcriptional activity. May play a role in the processes of cell growth, proliferation, migration, differentiation and senescence. May have a zinc-dependent DNA-binding activity. {ECO:0000269|PubMed:10075738, ECO:0000269|PubMed:11463817, ECO:0000269|PubMed:11856738, ECO:0000269|PubMed:12177201, ECO:0000269|PubMed:12445807, ECO:0000269|PubMed:12700349, ECO:0000269|PubMed:15211577, ECO:0000269|PubMed:15561701, ECO:0000269|PubMed:16141357, ECO:0000269|PubMed:16624805, ECO:0000269|PubMed:16803896, ECO:0000269|PubMed:16849583, ECO:0000269|PubMed:17166536, ECO:0000269|PubMed:17233630, ECO:0000269|PubMed:9032249}.
O43310 CTIF T240 ochoa CBP80/20-dependent translation initiation factor Specifically required for the pioneer round of mRNA translation mediated by the cap-binding complex (CBC), that takes place during or right after mRNA export via the nuclear pore complex (NPC). Acts via its interaction with the NCBP1/CBP80 component of the CBC complex and recruits the 40S small subunit of the ribosome via eIF3. In contrast, it is not involved in steady state translation, that takes place when the CBC complex is replaced by cytoplasmic cap-binding protein eIF4E. Also required for nonsense-mediated mRNA decay (NMD), the pioneer round of mRNA translation mediated by the cap-binding complex playing a central role in nonsense-mediated mRNA decay (NMD). {ECO:0000269|PubMed:19648179}.
O43312 MTSS1 T575 ochoa Protein MTSS 1 (Metastasis suppressor YGL-1) (Metastasis suppressor protein 1) (Missing in metastasis protein) May be related to cancer progression or tumor metastasis in a variety of organ sites, most likely through an interaction with the actin cytoskeleton.
O60237 PPP1R12B T679 ochoa Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}.
O60271 SPAG9 T290 ochoa C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}.
O60292 SIPA1L3 T1705 ochoa Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}.
O60307 MAST3 T53 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60502 OGA T711 ochoa Protein O-GlcNAcase (OGA) (EC 3.2.1.169) (Beta-N-acetylglucosaminidase) (Beta-N-acetylhexosaminidase) (Beta-hexosaminidase) (Meningioma-expressed antigen 5) (N-acetyl-beta-D-glucosaminidase) (N-acetyl-beta-glucosaminidase) (Nuclear cytoplasmic O-GlcNAcase and acetyltransferase) (NCOAT) [Isoform 1]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins (PubMed:11148210, PubMed:11788610, PubMed:20673219, PubMed:22365600, PubMed:24088714, PubMed:28939839, PubMed:37962578). Deglycosylates a large and diverse number of proteins, such as CRYAB, ELK1, GSDMD, LMNB1 and TAB1 (PubMed:28939839, PubMed:37962578). Can use p-nitrophenyl-beta-GlcNAc and 4-methylumbelliferone-GlcNAc as substrates but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro) (PubMed:20673219). Does not bind acetyl-CoA and does not have histone acetyltransferase activity (PubMed:24088714). {ECO:0000269|PubMed:11148210, ECO:0000269|PubMed:11788610, ECO:0000269|PubMed:20673219, ECO:0000269|PubMed:22365600, ECO:0000269|PubMed:24088714, ECO:0000269|PubMed:28939839, ECO:0000269|PubMed:37962578}.; FUNCTION: [Isoform 3]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins. Can use p-nitrophenyl-beta-GlcNAc as substrate but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro), but has about six times lower specific activity than isoform 1. {ECO:0000269|PubMed:20673219}.
O60749 SNX2 T106 ochoa Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}.
O60885 BRD4 T298 ochoa Bromodomain-containing protein 4 (Protein HUNK1) Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation (PubMed:20871596, PubMed:23086925, PubMed:23317504, PubMed:29176719, PubMed:29379197). Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure (PubMed:22334664, PubMed:23317504, PubMed:23589332). During interphase, plays a key role in regulating the transcription of signal-inducible genes by associating with the P-TEFb complex and recruiting it to promoters (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Also recruits P-TEFb complex to distal enhancers, so called anti-pause enhancers in collaboration with JMJD6 (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). BRD4 and JMJD6 are required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C-terminal domain (CTD) of RNA polymerase II (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Regulates differentiation of naive CD4(+) T-cells into T-helper Th17 by promoting recruitment of P-TEFb to promoters (By similarity). Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II (PubMed:23086925). According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo (PubMed:22509028). In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B (PubMed:19103749). Also acts as a regulator of p53/TP53-mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters (PubMed:23317504). {ECO:0000250|UniProtKB:Q9ESU6, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:19596240, ECO:0000269|PubMed:22334664, ECO:0000269|PubMed:22509028, ECO:0000269|PubMed:23086925, ECO:0000269|PubMed:23317504, ECO:0000269|PubMed:23589332, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:29176719}.; FUNCTION: [Isoform B]: Acts as a chromatin insulator in the DNA damage response pathway. Inhibits DNA damage response signaling by recruiting the condensin-2 complex to acetylated histones, leading to chromatin structure remodeling, insulating the region from DNA damage response by limiting spreading of histone H2AX/H2A.x phosphorylation. {ECO:0000269|PubMed:23728299}.
O60941 DTNB T358 ochoa Dystrobrevin beta (DTN-B) (Beta-dystrobrevin) Scaffolding protein that assembles DMD and SNTA1 molecules to the basal membrane of kidney cells and liver sinusoids (By similarity). May function as a repressor of the SYN1 promoter through the binding of repressor element-1 (RE-1), in turn regulates SYN1 expression and may be involved in cell proliferation regulation during the early phase of neural differentiation (PubMed:27223470). May be required for proper maturation and function of a subset of inhibitory synapses (By similarity). {ECO:0000250|UniProtKB:O70585, ECO:0000269|PubMed:27223470}.
O60941 DTNB T558 ochoa Dystrobrevin beta (DTN-B) (Beta-dystrobrevin) Scaffolding protein that assembles DMD and SNTA1 molecules to the basal membrane of kidney cells and liver sinusoids (By similarity). May function as a repressor of the SYN1 promoter through the binding of repressor element-1 (RE-1), in turn regulates SYN1 expression and may be involved in cell proliferation regulation during the early phase of neural differentiation (PubMed:27223470). May be required for proper maturation and function of a subset of inhibitory synapses (By similarity). {ECO:0000250|UniProtKB:O70585, ECO:0000269|PubMed:27223470}.
O75037 KIF21B T1244 ochoa Kinesin-like protein KIF21B Plus-end directed microtubule-dependent motor protein which displays processive activity. Is involved in regulation of microtubule dynamics, synapse function and neuronal morphology, including dendritic tree branching and spine formation. Plays a role in lerning and memory. Involved in delivery of gamma-aminobutyric acid (GABA(A)) receptor to cell surface. {ECO:0000250|UniProtKB:Q9QXL1}.
O75061 DNAJC6 T695 ochoa Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}.
O75112 LDB3 T141 ochoa LIM domain-binding protein 3 (Protein cypher) (Z-band alternatively spliced PDZ-motif protein) May function as an adapter in striated muscle to couple protein kinase C-mediated signaling via its LIM domains to the cytoskeleton. {ECO:0000305}.
O75152 ZC3H11A T104 ochoa Zinc finger CCCH domain-containing protein 11A Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.
O75152 ZC3H11A T181 ochoa Zinc finger CCCH domain-containing protein 11A Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.
O75369 FLNB T913 ochoa Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro.
O75369 FLNB T2553 ochoa Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro.
O75398 DEAF1 T434 ochoa Deformed epidermal autoregulatory factor 1 homolog (Nuclear DEAF-1-related transcriptional regulator) (NUDR) (Suppressin) (Zinc finger MYND domain-containing protein 5) Transcription factor that binds to sequence with multiple copies of 5'-TTC[CG]G-3' present in its own promoter and that of the HNRPA2B1 gene. Down-regulates transcription of these genes. Binds to the retinoic acid response element (RARE) 5'-AGGGTTCACCGAAAGTTCA-3'. Activates the proenkephalin gene independently of promoter binding, probably through protein-protein interaction. When secreted, behaves as an inhibitor of cell proliferation, by arresting cells in the G0 or G1 phase. Required for neural tube closure and skeletal patterning. Regulates epithelial cell proliferation and side-branching in the mammary gland. Controls the expression of peripheral tissue antigens in pancreatic lymph nodes. Isoform 1 displays greater transcriptional activity than isoform 4. Isoform 4 may inhibit transcriptional activity of isoform 1 by interacting with isoform 1 and retaining it in the cytoplasm. Transcriptional activator of EIF4G3. {ECO:0000269|PubMed:10521432, ECO:0000269|PubMed:11427895, ECO:0000269|PubMed:11705868, ECO:0000269|PubMed:18826651, ECO:0000269|PubMed:19668219, ECO:0000269|PubMed:24726472}.
O75420 GIGYF1 T374 ochoa GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}.
O75425 MOSPD3 T164 ochoa Motile sperm domain-containing protein 3 None
O75533 SF3B1 T328 ochoa Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
O75581 LRP6 T1529 ochoa Low-density lipoprotein receptor-related protein 6 (LRP-6) Component of the Wnt-Fzd-LRP5-LRP6 complex that triggers beta-catenin signaling through inducing aggregation of receptor-ligand complexes into ribosome-sized signalosomes (PubMed:11357136, PubMed:11448771, PubMed:15778503, PubMed:16341017, PubMed:16513652, PubMed:17326769, PubMed:17400545, PubMed:19107203, PubMed:19293931, PubMed:19801552, PubMed:28341812). Cell-surface coreceptor of Wnt/beta-catenin signaling, which plays a pivotal role in bone formation (PubMed:11357136, PubMed:11448771, PubMed:15778503, PubMed:16341017, PubMed:16513652, PubMed:17326769, PubMed:17400545, PubMed:19107203, PubMed:19293931, PubMed:19801552, PubMed:28341812). The Wnt-induced Fzd/LRP6 coreceptor complex recruits DVL1 polymers to the plasma membrane which, in turn, recruits the AXIN1/GSK3B-complex to the cell surface promoting the formation of signalosomes and inhibiting AXIN1/GSK3-mediated phosphorylation and destruction of beta-catenin (PubMed:16513652). Required for posterior patterning of the epiblast during gastrulation (By similarity). {ECO:0000250|UniProtKB:O88572, ECO:0000269|PubMed:11357136, ECO:0000269|PubMed:11448771, ECO:0000269|PubMed:15778503, ECO:0000269|PubMed:16341017, ECO:0000269|PubMed:16513652, ECO:0000269|PubMed:17326769, ECO:0000269|PubMed:17400545, ECO:0000269|PubMed:19107203, ECO:0000269|PubMed:19293931, ECO:0000269|PubMed:19801552, ECO:0000269|PubMed:28341812}.
O75791 GRAP2 T192 ochoa GRB2-related adapter protein 2 (Adapter protein GRID) (GRB-2-like protein) (GRB2L) (GRBLG) (GRBX) (Grf40 adapter protein) (Grf-40) (Growth factor receptor-binding protein) (Hematopoietic cell-associated adapter protein GrpL) (P38) (Protein GADS) (SH3-SH2-SH3 adapter Mona) Interacts with SLP-76 to regulate NF-AT activation. Binds to tyrosine-phosphorylated shc.
O75925 PIAS1 T487 ochoa E3 SUMO-protein ligase PIAS1 (EC 2.3.2.-) (DEAD/H box-binding protein 1) (E3 SUMO-protein transferase PIAS1) (Gu-binding protein) (GBP) (Protein inhibitor of activated STAT protein 1) (RNA helicase II-binding protein) Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Catalyzes sumoylation of various proteins, such as CEBPB, MRE11, MTA1, PTK2 and PML (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway (PubMed:11583632, PubMed:11867732). In vitro, binds A/T-rich DNA (PubMed:15133049). The effects of this transcriptional coregulation, transactivation or silencing, may vary depending upon the biological context (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Mediates sumoylation of MRE11, stabilizing MRE11 on chromatin during end resection (PubMed:36050397). Sumoylates PML (at 'Lys-65' and 'Lys-160') and PML-RAR and promotes their ubiquitin-mediated degradation (By similarity). PIAS1-mediated sumoylation of PML promotes its interaction with CSNK2A1/CK2 which in turn promotes PML phosphorylation and degradation (By similarity). Enhances the sumoylation of MTA1 and may participate in its paralog-selective sumoylation (PubMed:21965678). Plays a dynamic role in adipogenesis by promoting the SUMOylation and degradation of CEBPB (By similarity). Mediates the nuclear mobility and localization of MSX1 to the nuclear periphery, whereby MSX1 is brought into the proximity of target myoblast differentiation factor genes (By similarity). Also required for the binding of MSX1 to the core enhancer region in target gene promoter regions, independent of its sumoylation activity (By similarity). Capable of binding to the core enhancer region TAAT box in the MYOD1 gene promoter (By similarity). {ECO:0000250|UniProtKB:O88907, ECO:0000269|PubMed:11583632, ECO:0000269|PubMed:11867732, ECO:0000269|PubMed:14500712, ECO:0000269|PubMed:15133049, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:36050397}.; FUNCTION: (Microbial infection) Restricts Epstein-Barr virus (EBV) lytic replication by acting as an inhibitor for transcription factors involved in lytic gene expression (PubMed:29262325). The virus can use apoptotic caspases to antagonize PIAS1-mediated restriction and express its lytic genes (PubMed:29262325). {ECO:0000269|PubMed:29262325}.
O95251 KAT7 T130 ochoa Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}.
O95267 RASGRP1 T710 ochoa RAS guanyl-releasing protein 1 (Calcium and DAG-regulated guanine nucleotide exchange factor II) (CalDAG-GEFII) (Ras guanyl-releasing protein) Functions as a calcium- and diacylglycerol (DAG)-regulated nucleotide exchange factor specifically activating Ras through the exchange of bound GDP for GTP (PubMed:15899849, PubMed:23908768, PubMed:27776107, PubMed:29155103). Activates the Erk/MAP kinase cascade (PubMed:15899849). Regulates T-cell/B-cell development, homeostasis and differentiation by coupling T-lymphocyte/B-lymphocyte antigen receptors to Ras (PubMed:10807788, PubMed:12839994, PubMed:27776107, PubMed:29155103). Regulates NK cell cytotoxicity and ITAM-dependent cytokine production by activation of Ras-mediated ERK and JNK pathways (PubMed:19933860). Functions in mast cell degranulation and cytokine secretion, regulating FcERI-evoked allergic responses. May also function in differentiation of other cell types (PubMed:12845332). {ECO:0000250|UniProtKB:Q9Z1S3, ECO:0000269|PubMed:10807788, ECO:0000269|PubMed:12782630, ECO:0000269|PubMed:12839994, ECO:0000269|PubMed:12845332, ECO:0000269|PubMed:15060167, ECO:0000269|PubMed:15184873, ECO:0000269|PubMed:15899849, ECO:0000269|PubMed:19933860, ECO:0000269|PubMed:23908768, ECO:0000269|PubMed:27776107, ECO:0000269|PubMed:29155103}.
O95402 MED26 T182 ochoa Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors.
O95487 SEC24B T332 ochoa Protein transport protein Sec24B (SEC24-related protein B) Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24A may have a different specificity compared to SEC24C and SEC24D. May package preferentially cargos with cytoplasmic DxE or LxxLE motifs and may also recognize conformational epitopes (PubMed:17499046, PubMed:18843296). {ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}.
O95644 NFATC1 T284 ochoa Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}.
O96017 CHEK2 T389 ochoa|psp Serine/threonine-protein kinase Chk2 (EC 2.7.11.1) (CHK2 checkpoint homolog) (Cds1 homolog) (Hucds1) (hCds1) (Checkpoint kinase 2) Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T] (PubMed:37943659). Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978). Under oxidative stress, promotes ATG7 ubiquitination by phosphorylating the E3 ubiquitin ligase TRIM32 at 'Ser-55' leading to positive regulation of the autophagosme assembly (PubMed:37943659). {ECO:0000250|UniProtKB:Q9Z265, ECO:0000269|PubMed:10097108, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11298456, ECO:0000269|PubMed:12402044, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:17715138, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:18644861, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:20364141, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25619829, ECO:0000269|PubMed:37943659, ECO:0000269|PubMed:9836640, ECO:0000269|PubMed:9889122}.; FUNCTION: (Microbial infection) Phosphorylates herpes simplex virus 1/HHV-1 protein ICP0 and thus activates its SUMO-targeted ubiquitin ligase activity. {ECO:0000269|PubMed:32001251}.
P00533 EGFR T1074 ochoa Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.
P00533 EGFR T1145 ochoa Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.
P02545 LMNA T394 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P04083 ANXA1 T41 ochoa Annexin A1 (Annexin I) (Annexin-1) (Calpactin II) (Calpactin-2) (Chromobindin-9) (Lipocortin I) (Phospholipase A2 inhibitory protein) (p35) [Cleaved into: Annexin Ac2-26] Plays important roles in the innate immune response as effector of glucocorticoid-mediated responses and regulator of the inflammatory process. Has anti-inflammatory activity (PubMed:8425544). Plays a role in glucocorticoid-mediated down-regulation of the early phase of the inflammatory response (By similarity). Contributes to the adaptive immune response by enhancing signaling cascades that are triggered by T-cell activation, regulates differentiation and proliferation of activated T-cells (PubMed:17008549). Promotes the differentiation of T-cells into Th1 cells and negatively regulates differentiation into Th2 cells (PubMed:17008549). Has no effect on unstimulated T cells (PubMed:17008549). Negatively regulates hormone exocytosis via activation of the formyl peptide receptors and reorganization of the actin cytoskeleton (PubMed:19625660). Has high affinity for Ca(2+) and can bind up to eight Ca(2+) ions (By similarity). Displays Ca(2+)-dependent binding to phospholipid membranes (PubMed:2532504, PubMed:8557678). Plays a role in the formation of phagocytic cups and phagosomes. Plays a role in phagocytosis by mediating the Ca(2+)-dependent interaction between phagosomes and the actin cytoskeleton (By similarity). {ECO:0000250|UniProtKB:P10107, ECO:0000250|UniProtKB:P19619, ECO:0000269|PubMed:17008549, ECO:0000269|PubMed:19625660, ECO:0000269|PubMed:2532504, ECO:0000269|PubMed:2936963, ECO:0000269|PubMed:8425544, ECO:0000269|PubMed:8557678}.; FUNCTION: [Annexin Ac2-26]: Functions at least in part by activating the formyl peptide receptors and downstream signaling cascades (PubMed:15187149, PubMed:22879591, PubMed:25664854). Promotes chemotaxis of granulocytes and monocytes via activation of the formyl peptide receptors (PubMed:15187149). Promotes rearrangement of the actin cytoskeleton, cell polarization and cell migration (PubMed:15187149). Promotes resolution of inflammation and wound healing (PubMed:25664854). Acts via neutrophil N-formyl peptide receptors to enhance the release of CXCL2 (PubMed:22879591). {ECO:0000269|PubMed:15187149, ECO:0000269|PubMed:22879591, ECO:0000269|PubMed:25664854}.
P04275 VWF T1859 ochoa von Willebrand factor (vWF) [Cleaved into: von Willebrand antigen 2 (von Willebrand antigen II)] Important in the maintenance of hemostasis, it promotes adhesion of platelets to the sites of vascular injury by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. Also acts as a chaperone for coagulation factor VIII, delivering it to the site of injury, stabilizing its heterodimeric structure and protecting it from premature clearance from plasma.
P05129 PRKCG T332 ochoa Protein kinase C gamma type (PKC-gamma) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GRIA4/GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor GRM5/MGLUR5 and phosphorylates GRIN1/NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May be involved in desensitization of mu-type opioid receptor-mediated G-protein activation in the spinal cord, and may be critical for the development and/or maintenance of morphine-induced reinforcing effects in the limbic forebrain. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43 (GJA1/CX43), resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress (By similarity). Phosphorylates p53/TP53 and promotes p53/TP53-dependent apoptosis in response to DNA damage. Involved in the phase resetting of the cerebral cortex circadian clock during temporally restricted feeding. Stabilizes the core clock component BMAL1 by interfering with its ubiquitination, thus suppressing its degradation, resulting in phase resetting of the cerebral cortex clock (By similarity). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P63318, ECO:0000250|UniProtKB:P63319, ECO:0000269|PubMed:16377624, ECO:0000269|PubMed:36040231}.
P05412 JUN T95 psp Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}.
P05413 FABP3 T40 ochoa Fatty acid-binding protein, heart (Fatty acid-binding protein 3) (Heart-type fatty acid-binding protein) (H-FABP) (Mammary-derived growth inhibitor) (MDGI) (Muscle fatty acid-binding protein) (M-FABP) FABPs are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters.
P05771 PRKCB T644 ochoa Protein kinase C beta type (PKC-B) (PKC-beta) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity (PubMed:11598012). Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A (PubMed:20228790). In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. Participates in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4. Phosphorylates SLC2A1/GLUT1, promoting glucose uptake by SLC2A1/GLUT1 (PubMed:25982116). Under high glucose in pancreatic beta-cells, is probably involved in the inhibition of the insulin gene transcription, via regulation of MYC expression. In endothelial cells, activation of PRKCB induces increased phosphorylation of RB1, increased VEGFA-induced cell proliferation, and inhibits PI3K/AKT-dependent nitric oxide synthase (NOS3/eNOS) regulation by insulin, which causes endothelial dysfunction. Also involved in triglyceride homeostasis (By similarity). Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription (PubMed:19176525). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P68404, ECO:0000269|PubMed:11598012, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:20228790, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:36040231}.
P05976 MYL1 T87 ochoa Myosin light chain 1/3, skeletal muscle isoform (MLC1/MLC3) (MLC1F/MLC3F) (Myosin light chain alkali 1/2) (Myosin light chain A1/A2) Non-regulatory myosin light chain required for proper formation and/or maintenance of myofibers, and thus appropriate muscle function. {ECO:0000269|PubMed:30215711}.
P06127 CD5 T445 ochoa T-cell surface glycoprotein CD5 (Lymphocyte antigen T1/Leu-1) (CD antigen CD5) Lymphoid-specific receptor expressed by all T-cells and in a subset of B-cells known as B1a cells. Plays a role in the regulation of TCR and BCR signaling, thymocyte selection, T-cell effector differentiation and immune tolerance. Acts by interacting with several ligands expressed on B-cells such as CD5L or CD72 and thereby plays an important role in contact-mediated, T-dependent B-cell activation and in the maintenance of regulatory T and B-cell homeostasis. Functions as a negative regulator of TCR signaling during thymocyte development by associating with several signaling proteins including LCK, CD3Z chain, PI3K or CBL (PubMed:1384049, PubMed:1385158). Mechanistically, co-engagement of CD3 with CD5 enhances phosphorylated CBL recruitment leading to increased VAV1 phosphorylation and degradation (PubMed:23376399). Modulates B-cell biology through ERK1/2 activation in a Ca(2+)-dependent pathway via the non-selective Ca(2+) channel TRPC1, leading to IL-10 production (PubMed:27499044). {ECO:0000250|UniProtKB:P13379, ECO:0000269|PubMed:1384049, ECO:0000269|PubMed:1385158, ECO:0000269|PubMed:23376399, ECO:0000269|PubMed:27499044}.
P06400 RB1 T823 ochoa Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}.
P06732 CKM T103 ochoa Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}.
P07900 HSP90AA1 T704 ochoa Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
P08590 MYL3 T88 ochoa Myosin light chain 3 (Cardiac myosin light chain 1) (CMLC1) (Myosin light chain 1, slow-twitch muscle B/ventricular isoform) (MLC1SB) (Ventricular myosin alkali light chain) (Ventricular myosin light chain 1) (VLCl) (Ventricular/slow twitch myosin alkali light chain) (MLC-lV/sb) Regulatory light chain of myosin. Does not bind calcium.
P09661 SNRPA1 T189 ochoa U2 small nuclear ribonucleoprotein A' (U2 snRNP A') Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:27035939, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Associated with sn-RNP U2, where it contributes to the binding of stem loop IV of U2 snRNA (PubMed:27035939, PubMed:32494006, PubMed:9716128). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:27035939, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:9716128}.
P0DJD0 RGPD1 T883 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 T891 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P10071 GLI3 T669 ochoa Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}.
P10074 ZBTB48 T295 ochoa Zinc finger and BTB domain-containing protein 48 (Krueppel-related zinc finger protein 3) (hKR3) (Telomere zinc finger-associated protein) (TZAP) (Telomere-binding protein and transcriptional activator ZBTB48) (Zinc finger protein 855) Plays a critical role in transcriptional regulation and chromatin remodeling. Acts as a regulator of telomere length (PubMed:28082411, PubMed:28500257). Directly binds the telomeric double-stranded 5'-TTAGGG-3' repeat (PubMed:28082411, PubMed:28500257). Preferentially binds to telomeres that have a low concentration of shelterin complex and acts as a regulator of telomere length by initiating telomere trimming, a process that prevents the accumulation of aberrantly long telomeres (PubMed:28082411). Also acts as a transcription regulator that binds to promoter regions (PubMed:24382891, PubMed:28500257, PubMed:7969177). Regulates expression of a small subset of genes, including MTFP1 (PubMed:28500257). Acts as a negative regulator of cell proliferation by specifically activating expression of ARF, a tumor suppressor isoform of CDKN2A (PubMed:24382891). Acts as a transcription regulator of CIITA, the major factor regulating MHC class II gene expression (PubMed:39562739). In addition, regulates cellular m6A/m6Am methylation on RNA by facilitating the recruitment of the RNA demethylase, FTO, to target mRNAs (PubMed:39300486). {ECO:0000269|PubMed:24382891, ECO:0000269|PubMed:28082411, ECO:0000269|PubMed:28500257, ECO:0000269|PubMed:39300486, ECO:0000269|PubMed:39562739, ECO:0000269|PubMed:7969177}.
P10275 AR T851 psp Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.
P10966 CD8B T140 ochoa T-cell surface glycoprotein CD8 beta chain (CD antigen CD8b) Integral membrane glycoprotein that plays an essential role in the immune response and serves multiple functions in responses against both external and internal offenses. In T-cells, functions primarily as a coreceptor for MHC class I molecule:peptide complex. The antigens presented by class I peptides are derived from cytosolic proteins while class II derived from extracellular proteins. Interacts simultaneously with the T-cell receptor (TCR) and the MHC class I proteins presented by antigen presenting cells (APCs). In turn, recruits the Src kinase LCK to the vicinity of the TCR-CD3 complex. A palmitoylation site in the cytoplasmic tail of CD8B chain contributes to partitioning of CD8 into the plasma membrane lipid rafts where signaling proteins are enriched. Once LCK recruited, it initiates different intracellular signaling pathways by phosphorylating various substrates ultimately leading to lymphokine production, motility, adhesion and activation of cytotoxic T-lymphocytes (CTLs). Additionally, plays a critical role in thymic selection of CD8+ T-cells. {ECO:0000250|UniProtKB:P10300, ECO:0000269|PubMed:10925291, ECO:0000269|PubMed:11714755, ECO:0000269|PubMed:17145893}.
P10966 CD8B T145 ochoa T-cell surface glycoprotein CD8 beta chain (CD antigen CD8b) Integral membrane glycoprotein that plays an essential role in the immune response and serves multiple functions in responses against both external and internal offenses. In T-cells, functions primarily as a coreceptor for MHC class I molecule:peptide complex. The antigens presented by class I peptides are derived from cytosolic proteins while class II derived from extracellular proteins. Interacts simultaneously with the T-cell receptor (TCR) and the MHC class I proteins presented by antigen presenting cells (APCs). In turn, recruits the Src kinase LCK to the vicinity of the TCR-CD3 complex. A palmitoylation site in the cytoplasmic tail of CD8B chain contributes to partitioning of CD8 into the plasma membrane lipid rafts where signaling proteins are enriched. Once LCK recruited, it initiates different intracellular signaling pathways by phosphorylating various substrates ultimately leading to lymphokine production, motility, adhesion and activation of cytotoxic T-lymphocytes (CTLs). Additionally, plays a critical role in thymic selection of CD8+ T-cells. {ECO:0000250|UniProtKB:P10300, ECO:0000269|PubMed:10925291, ECO:0000269|PubMed:11714755, ECO:0000269|PubMed:17145893}.
P11137 MAP2 T1594 ochoa Microtubule-associated protein 2 (MAP-2) The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules.
P11171 EPB41 T559 ochoa Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
P11413 G6PD T145 psp Glucose-6-phosphate 1-dehydrogenase (G6PD) (EC 1.1.1.49) Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis. {ECO:0000269|PubMed:15858258, ECO:0000269|PubMed:24769394, ECO:0000269|PubMed:26479991, ECO:0000269|PubMed:35122041, ECO:0000269|PubMed:38066190, ECO:0000269|PubMed:743300}.
P11831 SRF T231 ochoa Serum response factor (SRF) SRF is a transcription factor that binds to the serum response element (SRE), a short sequence of dyad symmetry located 300 bp to the 5' of the site of transcription initiation of some genes (such as FOS). Together with MRTFA transcription coactivator, controls expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration. The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. Required for cardiac differentiation and maturation. {ECO:0000250|UniProtKB:Q9JM73}.
P12270 TPR T1666 ochoa Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}.
P14618 PKM T409 ochoa Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}.
P14649 MYL6B T101 ochoa Myosin light chain 6B (Myosin light chain 1 slow-twitch muscle A isoform) (MLC1sa) (Smooth muscle and nonmuscle myosin light chain alkali 6B) Regulatory light chain of myosin. Does not bind calcium.
P15336 ATF2 T73 ochoa|psp Cyclic AMP-dependent transcription factor ATF-2 (cAMP-dependent transcription factor ATF-2) (Activating transcription factor 2) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (HB16) (cAMP response element-binding protein CRE-BP1) Transcriptional activator which regulates the transcription of various genes, including those involved in anti-apoptosis, cell growth, and DNA damage response. Dependent on its binding partner, binds to CRE (cAMP response element) consensus sequences (5'-TGACGTCA-3') or to AP-1 (activator protein 1) consensus sequences (5'-TGACTCA-3'). In the nucleus, contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. In the cytoplasm, interacts with and perturbs HK1- and VDAC1-containing complexes at the mitochondrial outer membrane, thereby impairing mitochondrial membrane potential, inducing mitochondrial leakage and promoting cell death. The phosphorylated form (mediated by ATM) plays a role in the DNA damage response and is involved in the ionizing radiation (IR)-induced S phase checkpoint control and in the recruitment of the MRN complex into the IR-induced foci (IRIF). Exhibits histone acetyltransferase (HAT) activity which specifically acetylates histones H2B and H4 in vitro (PubMed:10821277). In concert with CUL3 and RBX1, promotes the degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. Can elicit oncogenic or tumor suppressor activities depending on the tissue or cell type. {ECO:0000269|PubMed:10821277, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:22304920}.
P15941 MUC1 T1211 ochoa Mucin-1 (MUC-1) (Breast carcinoma-associated antigen DF3) (Cancer antigen 15-3) (CA 15-3) (Carcinoma-associated mucin) (Episialin) (H23AG) (Krebs von den Lungen-6) (KL-6) (PEMT) (Peanut-reactive urinary mucin) (PUM) (Polymorphic epithelial mucin) (PEM) (Tumor-associated epithelial membrane antigen) (EMA) (Tumor-associated mucin) (CD antigen CD227) [Cleaved into: Mucin-1 subunit alpha (MUC1-NT) (MUC1-alpha); Mucin-1 subunit beta (MUC1-beta) (MUC1-CT)] The alpha subunit has cell adhesive properties. Can act both as an adhesion and an anti-adhesion protein. May provide a protective layer on epithelial cells against bacterial and enzyme attack.; FUNCTION: The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylations and protein-protein interactions. Modulates signaling in ERK, SRC and NF-kappa-B pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK pathway. Promotes tumor progression. Regulates TP53-mediated transcription and determines cell fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of TP53 and represses TP53 activity.
P16144 ITGB4 T1532 ochoa Integrin beta-4 (GP150) (CD antigen CD104) Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}.
P16989 YBX3 T286 ochoa Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}.
P17844 DDX5 T564 psp Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}.
P18858 LIG1 T182 ochoa DNA ligase 1 (EC 6.5.1.1) (DNA ligase I) (Polydeoxyribonucleotide synthase [ATP] 1) DNA ligase that seals nicks in double-stranded during DNA repair (PubMed:30395541). Also involved in DNA replication and DNA recombination. {ECO:0000269|PubMed:30395541}.
P20393 NR1D1 T284 ochoa Nuclear receptor subfamily 1 group D member 1 (Rev-erbA-alpha) (V-erbA-related protein 1) (EAR-1) Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity). {ECO:0000250|UniProtKB:Q3UV55, ECO:0000269|PubMed:12021280, ECO:0000269|PubMed:15761026, ECO:0000269|PubMed:16968709, ECO:0000269|PubMed:18006707, ECO:0000269|PubMed:19710360, ECO:0000269|PubMed:1971514, ECO:0000269|PubMed:21479263, ECO:0000269|PubMed:22184247, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:2539258}.
P20700 LMNB1 T19 ochoa Lamin-B1 Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}.
P21291 CSRP1 T101 ochoa Cysteine and glycine-rich protein 1 (Cysteine-rich protein 1) (CRP) (CRP1) (Epididymis luminal protein 141) (HEL-141) Could play a role in neuronal development.
P21333 FLNA T2109 ochoa Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}.
P21817 RYR1 T1406 ochoa Ryanodine receptor 1 (RYR-1) (RyR1) (Skeletal muscle calcium release channel) (Skeletal muscle ryanodine receptor) (Skeletal muscle-type ryanodine receptor) (Type 1 ryanodine receptor) Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:11741831, PubMed:16163667, PubMed:18268335, PubMed:18650434, PubMed:26115329). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (PubMed:18268335). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity). {ECO:0000250|UniProtKB:E9PZQ0, ECO:0000269|PubMed:18268335, ECO:0000269|PubMed:18650434, ECO:0000269|PubMed:26115329, ECO:0000305|PubMed:11741831, ECO:0000305|PubMed:16163667}.
P22607 FGFR3 T450 ochoa Fibroblast growth factor receptor 3 (FGFR-3) (EC 2.7.10.1) (CD antigen CD333) Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation and apoptosis. Plays an essential role in the regulation of chondrocyte differentiation, proliferation and apoptosis, and is required for normal skeleton development. Regulates both osteogenesis and postnatal bone mineralization by osteoblasts. Promotes apoptosis in chondrocytes, but can also promote cancer cell proliferation. Required for normal development of the inner ear. Phosphorylates PLCG1, CBL and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Plays a role in the regulation of vitamin D metabolism. Mutations that lead to constitutive kinase activation or impair normal FGFR3 maturation, internalization and degradation lead to aberrant signaling. Over-expressed or constitutively activated FGFR3 promotes activation of PTPN11/SHP2, STAT1, STAT5A and STAT5B. Secreted isoform 3 retains its capacity to bind FGF1 and FGF2 and hence may interfere with FGF signaling. {ECO:0000269|PubMed:10611230, ECO:0000269|PubMed:11294897, ECO:0000269|PubMed:11703096, ECO:0000269|PubMed:14534538, ECO:0000269|PubMed:16410555, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17145761, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17561467, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:19286672, ECO:0000269|PubMed:8663044}.
P22736 NR4A1 T48 psp Nuclear receptor subfamily 4immunitygroup A member 1 (Early response protein NAK1) (Nuclear hormone receptor NUR/77) (Nur77) (Orphan nuclear receptor HMR) (Orphan nuclear receptor TR3) (ST-59) (Testicular receptor 3) Orphan nuclear receptor. Binds the NGFI-B response element (NBRE) 5'-AAAGGTCA-3' (PubMed:18690216, PubMed:8121493, PubMed:9315652). Binds 9-cis-retinoic acid outside of its ligand-binding (NR LBD) domain (PubMed:18690216). Participates in energy homeostasis by sequestrating the kinase STK11 in the nucleus, thereby attenuating cytoplasmic AMPK activation (PubMed:22983157). Regulates the inflammatory response in macrophages by regulating metabolic adaptations during inflammation, including repressing the transcription of genes involved in the citric acid cycle (TCA) (By similarity). Inhibits NF-kappa-B signaling by binding to low-affinity NF-kappa-B binding sites, such as at the IL2 promoter (PubMed:15466594). May act concomitantly with NR4A2 in regulating the expression of delayed-early genes during liver regeneration (By similarity). Plays a role in the vascular response to injury (By similarity). {ECO:0000250|UniProtKB:P12813, ECO:0000250|UniProtKB:P22829, ECO:0000269|PubMed:15466594, ECO:0000269|PubMed:18690216, ECO:0000269|PubMed:22983157, ECO:0000269|PubMed:8121493, ECO:0000269|PubMed:9315652}.; FUNCTION: In the cytosol, upon its detection of both bacterial lipopolysaccharide (LPS) and NBRE-containing mitochondrial DNA released by GSDMD pores during pyroptosis, it promotes non-canonical NLRP3 inflammasome activation by stimulating association of NLRP3 and NEK7. {ECO:0000250|UniProtKB:P12813}.
P23396 RPS3 T220 ochoa Small ribosomal subunit protein uS3 (40S ribosomal protein S3) (EC 4.2.99.18) Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408). {ECO:0000269|PubMed:14706345, ECO:0000269|PubMed:14988002, ECO:0000269|PubMed:15518571, ECO:0000269|PubMed:15707971, ECO:0000269|PubMed:17049931, ECO:0000269|PubMed:18045535, ECO:0000269|PubMed:18610840, ECO:0000269|PubMed:18973764, ECO:0000269|PubMed:19656744, ECO:0000269|PubMed:20217897, ECO:0000269|PubMed:20605787, ECO:0000269|PubMed:22510408, ECO:0000269|PubMed:23131551, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:23911537, ECO:0000269|PubMed:7775413, ECO:0000269|PubMed:8706699}.
P24928 POLR2A T1933 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P25089 FPR3 T319 ochoa N-formyl peptide receptor 3 (FMLP-related receptor II) (FMLP-R-II) (Formyl peptide receptor-like 2) Low affinity receptor for N-formyl-methionyl peptides, which are powerful neutrophils chemotactic factors. Binding of FMLP to the receptor causes activation of neutrophils. This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system. Acts as a receptor for humanin (PubMed:15465011). {ECO:0000269|PubMed:15465011}.
P25090 FPR2 T332 psp N-formyl peptide receptor 2 (FMLP-related receptor I) (FMLP-R-I) (Formyl peptide receptor-like 1) (HM63) (Lipoxin A4 receptor) (LXA4 receptor) (RFP) Low affinity receptor for N-formyl-methionyl peptides, which are powerful neutrophil chemotactic factors (PubMed:1374236). Binding of FMLP to the receptor causes activation of neutrophils (PubMed:1374236). This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system (PubMed:1374236). The activation of LXA4R could result in an anti-inflammatory outcome counteracting the actions of pro-inflammatory signals such as LTB4 (leukotriene B4) (PubMed:9547339). Receptor for the chemokine-like protein FAM19A5, mediating FAM19A5-stimulated macrophage chemotaxis and the inhibitory effect on TNFSF11/RANKL-induced osteoclast differentiation (By similarity). Acts as a receptor for humanin (PubMed:15465011). {ECO:0000250|UniProtKB:O88536, ECO:0000269|PubMed:1374236, ECO:0000269|PubMed:15465011, ECO:0000269|PubMed:9547339}.
P26368 U2AF2 T124 ochoa Splicing factor U2AF 65 kDa subunit (U2 auxiliary factor 65 kDa subunit) (hU2AF(65)) (hU2AF65) (U2 snRNP auxiliary factor large subunit) Plays a role in pre-mRNA splicing and 3'-end processing (PubMed:17024186). By recruiting PRPF19 and the PRP19C/Prp19 complex/NTC/Nineteen complex to the RNA polymerase II C-terminal domain (CTD), and thereby pre-mRNA, may couple transcription to splicing (PubMed:21536736). Induces cardiac troponin-T (TNNT2) pre-mRNA exon inclusion in muscle. Regulates the TNNT2 exon 5 inclusion through competition with MBNL1. Binds preferentially to a single-stranded structure within the polypyrimidine tract of TNNT2 intron 4 during spliceosome assembly. Required for the export of mRNA out of the nucleus, even if the mRNA is encoded by an intron-less gene. Represses the splicing of MAPT/Tau exon 10. Positively regulates pre-mRNA 3'-end processing by recruiting the CFIm complex to cleavage and polyadenylation signals (PubMed:17024186). {ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:19470458, ECO:0000269|PubMed:19574390, ECO:0000269|PubMed:21536736}.
P26651 ZFP36 T92 ochoa mRNA decay activator protein ZFP36 (G0/G1 switch regulatory protein 24) (Growth factor-inducible nuclear protein NUP475) (Tristetraprolin) (Zinc finger protein 36) (Zfp-36) Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:10330172, PubMed:10751406, PubMed:11279239, PubMed:12115244, PubMed:12748283, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:23644599, PubMed:25815583, PubMed:27193233, PubMed:31439631, PubMed:9703499). Acts as an 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258, PubMed:23644599). Recruits deadenylase CNOT7 (and probably the CCR4-NOT complex) via association with CNOT1, and hence promotes ARE-mediated mRNA deadenylation (PubMed:23644599). Functions also by recruiting components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs (PubMed:11719186, PubMed:12748283, PubMed:15687258, PubMed:16364915). Self regulates by destabilizing its own mRNA (PubMed:15187101). Binds to 3'-UTR ARE of numerous mRNAs and of its own mRNA (PubMed:10330172, PubMed:10751406, PubMed:12115244, PubMed:15187101, PubMed:15634918, PubMed:16702957, PubMed:17030620, PubMed:19188452, PubMed:20221403, PubMed:20702587, PubMed:21775632, PubMed:25815583). Plays a role in anti-inflammatory responses; suppresses tumor necrosis factor (TNF)-alpha production by stimulating ARE-mediated TNF-alpha mRNA decay and several other inflammatory ARE-containing mRNAs in interferon (IFN)- and/or lipopolysaccharide (LPS)-induced macrophages (By similarity). Also plays a role in the regulation of dendritic cell maturation at the post-transcriptional level, and hence operates as part of a negative feedback loop to limit the inflammatory response (PubMed:18367721). Promotes ARE-mediated mRNA decay of hypoxia-inducible factor HIF1A mRNA during the response of endothelial cells to hypoxia (PubMed:21775632). Positively regulates early adipogenesis of preadipocytes by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Plays a role in maintaining skeletal muscle satellite cell quiescence by promoting ARE-mediated mRNA decay of the myogenic determination factor MYOD1 mRNA (By similarity). Associates also with and regulates the expression of non-ARE-containing target mRNAs at the post-transcriptional level, such as MHC class I mRNAs (PubMed:18367721). Participates in association with argonaute RISC catalytic components in the ARE-mediated mRNA decay mechanism; assists microRNA (miRNA) targeting ARE-containing mRNAs (PubMed:15766526). May also play a role in the regulation of cytoplasmic mRNA decapping; enhances decapping of ARE-containing RNAs, in vitro (PubMed:16364915). Involved in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, affects nuclear pre-mRNA processing (By similarity). Negatively regulates nuclear poly(A)-binding protein PABPN1-stimulated polyadenylation activity on ARE-containing pre-mRNA during LPS-stimulated macrophages (By similarity). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role as a tumor suppressor by inhibiting cell proliferation in breast cancer cells (PubMed:26926077). {ECO:0000250|UniProtKB:P22893, ECO:0000269|PubMed:10330172, ECO:0000269|PubMed:10751406, ECO:0000269|PubMed:11279239, ECO:0000269|PubMed:11719186, ECO:0000269|PubMed:12115244, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15187101, ECO:0000269|PubMed:15634918, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15766526, ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:16702957, ECO:0000269|PubMed:17030620, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18367721, ECO:0000269|PubMed:19188452, ECO:0000269|PubMed:20221403, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21775632, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:25815583, ECO:0000269|PubMed:26926077, ECO:0000269|PubMed:27182009, ECO:0000269|PubMed:27193233, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:9703499}.; FUNCTION: (Microbial infection) Negatively regulates HTLV-1 TAX-dependent transactivation of viral long terminal repeat (LTR) promoter. {ECO:0000269|PubMed:14679154}.
P27816 MAP4 T620 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P28290 ITPRID2 T742 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P28290 ITPRID2 T1158 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P28838 LAP3 T213 ochoa Cytosol aminopeptidase (EC 3.4.11.1) (Cysteinylglycine-S-conjugate dipeptidase) (EC 3.4.13.23) (Leucine aminopeptidase 3) (LAP-3) (Leucyl aminopeptidase) (Peptidase S) (Proline aminopeptidase) (EC 3.4.11.5) (Prolyl aminopeptidase) Cytosolic metallopeptidase that catalyzes the removal of unsubstituted N-terminal hydrophobic amino acids from various peptides. The presence of Zn(2+) ions is essential for the peptidase activity, and the association with other cofactors can modulate the substrate spectificity of the enzyme. For instance, in the presence of Mn(2+), it displays a specific Cys-Gly hydrolyzing activity of Cys-Gly-S-conjugates. Involved in the metabolism of glutathione and in the degradation of glutathione S-conjugates, which may play a role in the control of the cell redox status. {ECO:0000250|UniProtKB:P00727}.
P29372 MPG T66 ochoa DNA-3-methyladenine glycosylase (EC 3.2.2.21) (3-alkyladenine DNA glycosylase) (3-methyladenine DNA glycosidase) (ADPG) (N-methylpurine-DNA glycosylase) Hydrolysis of the deoxyribose N-glycosidic bond to excise 3-methyladenine, and 7-methylguanine from the damaged DNA polymer formed by alkylation lesions.
P29590 PML T42 ochoa Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}.
P30260 CDC27 T366 ochoa Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
P32926 DSG3 T980 ochoa Desmoglein-3 (130 kDa pemphigus vulgaris antigen) (PVA) (Cadherin family member 6) A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:31835537). Required for adherens and desmosome junction assembly in response to mechanical force in keratinocytes (PubMed:31835537). Required for desmosome-mediated cell-cell adhesion of cells surrounding the telogen hair club and the basal layer of the outer root sheath epithelium, consequently is essential for the anchoring of telogen hairs in the hair follicle (PubMed:9701552). Required for the maintenance of the epithelial barrier via promoting desmosome-mediated intercellular attachment of suprabasal epithelium to basal cells (By similarity). May play a role in the protein stability of the desmosome plaque components DSP, JUP, PKP1, PKP2 and PKP3 (PubMed:22294297). Required for YAP1 localization at the plasma membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, PKP1 and YWHAG (PubMed:31835537). May also be involved in the positive regulation of YAP1 target gene transcription and as a result cell proliferation (PubMed:31835537). Positively regulates cellular contractility and cell junction formation via organization of cortical F-actin bundles and anchoring of actin to tight junctions, in conjunction with RAC1 (PubMed:22796473). The cytoplasmic pool of DSG3 is required for the localization of CDH1 and CTNNB1 at developing adherens junctions, potentially via modulation of SRC activity (PubMed:22294297). Inhibits keratinocyte migration via suppression of p38MAPK signaling, may therefore play a role in moderating wound healing (PubMed:26763450). {ECO:0000250|UniProtKB:O35902, ECO:0000269|PubMed:22294297, ECO:0000269|PubMed:22796473, ECO:0000269|PubMed:26763450, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9701552}.
P35637 FUS T19 psp RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}.
P35711 SOX5 T410 ochoa Transcription factor SOX-5 Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}.
P35869 AHR T731 psp Aryl hydrocarbon receptor (Ah receptor) (AhR) (Class E basic helix-loop-helix protein 76) (bHLHe76) Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644, PubMed:33193710). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820). {ECO:0000269|PubMed:23275542, ECO:0000269|PubMed:28602820, ECO:0000269|PubMed:30373764, ECO:0000269|PubMed:32818467, ECO:0000269|PubMed:32866000, ECO:0000269|PubMed:33193710, ECO:0000269|PubMed:34521881, ECO:0000269|PubMed:7961644, ECO:0000303|PubMed:12213388, ECO:0000303|PubMed:18076143}.
P38159 RBMX T297 ochoa RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}.
P40337 VHL T100 psp von Hippel-Lindau disease tumor suppressor (Protein G7) (pVHL) Involved in the ubiquitination and subsequent proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:10944113, PubMed:17981124, PubMed:19584355). Seems to act as a target recruitment subunit in the E3 ubiquitin ligase complex and recruits hydroxylated hypoxia-inducible factor (HIF) under normoxic conditions (PubMed:10944113, PubMed:17981124). Involved in transcriptional repression through interaction with HIF1A, HIF1AN and histone deacetylases (PubMed:10944113, PubMed:17981124). Ubiquitinates, in an oxygen-responsive manner, ADRB2 (PubMed:19584355). Acts as a negative regulator of mTORC1 by promoting ubiquitination and degradation of RPTOR (PubMed:34290272). {ECO:0000269|PubMed:10944113, ECO:0000269|PubMed:17981124, ECO:0000269|PubMed:19584355, ECO:0000269|PubMed:34290272}.
P41182 BCL6 T246 ochoa B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}.
P42684 ABL2 T1050 ochoa Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}.
P42858 HTT T2654 ochoa Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}.
P46013 MKI67 T1141 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1263 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1484 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1505 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1749 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1848 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1871 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T1993 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T2211 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T2233 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 T2332 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46087 NOP2 T605 ochoa 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}.
P46100 ATRX T1529 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B T972 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B T1671 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B T1799 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46937 YAP1 T354 ochoa Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.
P48436 SOX9 T239 ochoa Transcription factor SOX-9 Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}.
P48730 CSNK1D T349 ochoa Casein kinase I isoform delta (CKI-delta) (CKId) (EC 2.7.11.1) (Tau-protein kinase CSNK1D) (EC 2.7.11.26) Essential serine/threonine-protein kinase that regulates diverse cellular growth and survival processes including Wnt signaling, DNA repair and circadian rhythms. It can phosphorylate a large number of proteins. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. Phosphorylates connexin-43/GJA1, MAP1A, SNAPIN, MAPT/TAU, TOP2A, DCK, HIF1A, EIF6, p53/TP53, DVL2, DVL3, ESR1, AIB1/NCOA3, DNMT1, PKD2, YAP1, PER1 and PER2. Central component of the circadian clock. In balance with PP1, determines the circadian period length through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation. Controls PER1 and PER2 nuclear transport and degradation. YAP1 phosphorylation promotes its SCF(beta-TRCP) E3 ubiquitin ligase-mediated ubiquitination and subsequent degradation. DNMT1 phosphorylation reduces its DNA-binding activity. Phosphorylation of ESR1 and AIB1/NCOA3 stimulates their activity and coactivation. Phosphorylation of DVL2 and DVL3 regulates WNT3A signaling pathway that controls neurite outgrowth. Phosphorylates NEDD9/HEF1 (By similarity). EIF6 phosphorylation promotes its nuclear export. Triggers down-regulation of dopamine receptors in the forebrain. Activates DCK in vitro by phosphorylation. TOP2A phosphorylation favors DNA cleavable complex formation. May regulate the formation of the mitotic spindle apparatus in extravillous trophoblast. Modulates connexin-43/GJA1 gap junction assembly by phosphorylation. Probably involved in lymphocyte physiology. Regulates fast synaptic transmission mediated by glutamate. {ECO:0000250|UniProtKB:Q9DC28, ECO:0000269|PubMed:10606744, ECO:0000269|PubMed:12270943, ECO:0000269|PubMed:14761950, ECO:0000269|PubMed:16027726, ECO:0000269|PubMed:17562708, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:19043076, ECO:0000269|PubMed:20041275, ECO:0000269|PubMed:20048001, ECO:0000269|PubMed:20407760, ECO:0000269|PubMed:20637175, ECO:0000269|PubMed:20696890, ECO:0000269|PubMed:20699359, ECO:0000269|PubMed:21084295, ECO:0000269|PubMed:21422228, ECO:0000269|PubMed:23636092}.
P49418 AMPH T274 ochoa Amphiphysin May participate in mechanisms of regulated exocytosis in synapses and certain endocrine cell types. May control the properties of the membrane associated cytoskeleton.
P49418 AMPH T312 psp Amphiphysin May participate in mechanisms of regulated exocytosis in synapses and certain endocrine cell types. May control the properties of the membrane associated cytoskeleton.
P49674 CSNK1E T334 psp Casein kinase I isoform epsilon (CKI-epsilon) (CKIe) (EC 2.7.11.1) Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates (Probable). Participates in Wnt signaling (PubMed:12556519, PubMed:23413191). Phosphorylates DVL1 (PubMed:12556519). Phosphorylates DVL2 (PubMed:23413191). Phosphorylates NEDD9/HEF1 (By similarity). Central component of the circadian clock (PubMed:16790549). In balance with PP1, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:15917222, PubMed:16790549). Controls PER1 and PER2 nuclear transport and degradation (By similarity). Inhibits cytokine-induced granuloytic differentiation (PubMed:15070676). {ECO:0000250|UniProtKB:Q9JMK2, ECO:0000269|PubMed:12556519, ECO:0000269|PubMed:15070676, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:23413191, ECO:0000305|PubMed:7797465}.
P49757 NUMB T243 ochoa Protein numb homolog (h-Numb) (Protein S171) Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}.
P49792 RANBP2 T898 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49841 GSK3B T392 ochoa Glycogen synthase kinase-3 beta (GSK-3 beta) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3B) (EC 2.7.11.1) Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1 (PubMed:11430833, PubMed:12554650, PubMed:14690523, PubMed:16484495, PubMed:1846781, PubMed:20937854, PubMed:9072970). Requires primed phosphorylation of the majority of its substrates (PubMed:11430833, PubMed:16484495). In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:8397507). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:8397507). Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase (PubMed:8397507). In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes (PubMed:12554650). Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA (PubMed:1846781). Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin (PubMed:9072970). Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules (PubMed:14690523). MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease (PubMed:14690523). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair (By similarity). Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA) (By similarity). Negatively regulates replication in pancreatic beta-cells, resulting in apoptosis, loss of beta-cells and diabetes (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Phosphorylates MUC1 in breast cancer cells, decreasing the interaction of MUC1 with CTNNB1/beta-catenin (PubMed:9819408). Is necessary for the establishment of neuronal polarity and axon outgrowth (PubMed:20067585). Phosphorylates MARK2, leading to inhibition of its activity (By similarity). Phosphorylates SIK1 at 'Thr-182', leading to sustainment of its activity (PubMed:18348280). Phosphorylates ZC3HAV1 which enhances its antiviral activity (PubMed:22514281). Phosphorylates SNAI1, leading to its ubiquitination and proteasomal degradation (PubMed:15448698, PubMed:15647282, PubMed:25827072, PubMed:29059170). Phosphorylates SFPQ at 'Thr-687' upon T-cell activation (PubMed:20932480). Phosphorylates NR1D1 st 'Ser-55' and 'Ser-59' and stabilizes it by protecting it from proteasomal degradation. Regulates the circadian clock via phosphorylation of the major clock components including BMAL1, CLOCK and PER2 (PubMed:19946213, PubMed:28903391). Phosphorylates FBXL2 at 'Thr-404' and primes it for ubiquitination by the SCF(FBXO3) complex and proteasomal degradation (By similarity). Phosphorylates CLOCK AT 'Ser-427' and targets it for proteasomal degradation (PubMed:19946213). Phosphorylates BMAL1 at 'Ser-17' and 'Ser-21' and primes it for ubiquitination and proteasomal degradation (PubMed:28903391). Phosphorylates OGT at 'Ser-3' or 'Ser-4' which positively regulates its activity. Phosphorylates MYCN in neuroblastoma cells which may promote its degradation (PubMed:24391509). Regulates the circadian rhythmicity of hippocampal long-term potentiation and BMAL1 and PER2 expression (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions, activating KAT5/TIP60 acetyltransferase activity and promoting acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (PubMed:18846110). Phosphorylates E2F1, promoting the interaction between E2F1 and USP11, stabilizing E2F1 and promoting its activity (PubMed:17050006, PubMed:28992046). Phosphorylates mTORC2 complex component RICTOR at 'Ser-1235' in response to endoplasmic stress, inhibiting mTORC2 (PubMed:21343617). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). Phosphorylates FXR1, promoting FXR1 ubiquitination by the SCF(FBXO4) complex and FXR1 degradation by the proteasome (By similarity). Phosphorylates interleukin-22 receptor subunit IL22RA1, preventing its proteasomal degradation (By similarity). {ECO:0000250|UniProtKB:P18266, ECO:0000250|UniProtKB:Q9WV60, ECO:0000269|PubMed:11430833, ECO:0000269|PubMed:12554650, ECO:0000269|PubMed:14690523, ECO:0000269|PubMed:15448698, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16484495, ECO:0000269|PubMed:17050006, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:1846781, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19946213, ECO:0000269|PubMed:20067585, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:22514281, ECO:0000269|PubMed:24391509, ECO:0000269|PubMed:25827072, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:28903391, ECO:0000269|PubMed:28992046, ECO:0000269|PubMed:29059170, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:8397507, ECO:0000269|PubMed:9072970, ECO:0000269|PubMed:9819408}.
P50851 LRBA T1127 ochoa Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}.
P51532 SMARCA4 T1425 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P52594 AGFG1 T170 ochoa Arf-GAP domain and FG repeat-containing protein 1 (HIV-1 Rev-binding protein) (Nucleoporin-like protein RIP) (Rev-interacting protein) (Rev/Rex activation domain-binding protein) Required for vesicle docking or fusion during acrosome biogenesis (By similarity). May play a role in RNA trafficking or localization. In case of infection by HIV-1, acts as a cofactor for viral Rev and promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm. This step is essential for HIV-1 replication. {ECO:0000250, ECO:0000269|PubMed:10613896, ECO:0000269|PubMed:14701878, ECO:0000269|PubMed:15749819}.
P52732 KIF11 T923 ochoa Kinesin-like protein KIF11 (Kinesin-like protein 1) (Kinesin-like spindle protein HKSP) (Kinesin-related motor protein Eg5) (Thyroid receptor-interacting protein 5) (TR-interacting protein 5) (TRIP-5) Motor protein required for establishing a bipolar spindle and thus contributing to chromosome congression during mitosis (PubMed:19001501, PubMed:37728657). Required in non-mitotic cells for transport of secretory proteins from the Golgi complex to the cell surface (PubMed:23857769). {ECO:0000269|PubMed:19001501, ECO:0000269|PubMed:23857769}.
P52746 ZNF142 T1256 ochoa Zinc finger protein 142 May be involved in transcriptional regulation. {ECO:0000305}.
P52926 HMGA2 T40 ochoa High mobility group protein HMGI-C (High mobility group AT-hook protein 2) Functions as a transcriptional regulator. Functions in cell cycle regulation through CCNA2. Plays an important role in chromosome condensation during the meiotic G2/M transition of spermatocytes. Plays a role in postnatal myogenesis, is involved in satellite cell activation (By similarity). Positively regulates IGF2 expression through PLAG1 and in a PLAG1-independent manner (PubMed:28796236). {ECO:0000250|UniProtKB:P52927, ECO:0000269|PubMed:14645522, ECO:0000269|PubMed:28796236}.
P52948 NUP98 T536 psp Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}.
P54132 BLM T127 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P55011 SLC12A2 T268 ochoa Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}.
P55196 AFDN T1223 ochoa Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}.
P56945 BCAR1 T216 ochoa Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}.
P57078 RIPK4 T373 ochoa Receptor-interacting serine/threonine-protein kinase 4 (EC 2.7.11.1) (Ankyrin repeat domain-containing protein 3) (PKC-delta-interacting protein kinase) Serine/threonine protein kinase (By similarity). Required for embryonic skin development and correct skin homeostasis in adults, via phosphorylation of PKP1 and subsequent promotion of keratinocyte differentiation and cell adhesion (By similarity). It is a direct transcriptional target of TP63 (PubMed:22197488). Plays a role in NF-kappa-B activation (PubMed:12446564). {ECO:0000250|UniProtKB:Q9ERK0, ECO:0000269|PubMed:12446564, ECO:0000269|PubMed:22197488}.
P60484 PTEN T232 psp Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (EC 3.1.3.16) (EC 3.1.3.48) (EC 3.1.3.67) (Inositol polyphosphate 3-phosphatase) (EC 3.1.3.-) (Mutated in multiple advanced cancers 1) (Phosphatase and tensin homolog) Dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins (PubMed:9187108, PubMed:9256433, PubMed:9616126). Also functions as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring of PtdIns(3,4,5)P3/phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4)P2/phosphatidylinositol 3,4-diphosphate and PtdIns3P/phosphatidylinositol 3-phosphate with a preference for PtdIns(3,4,5)P3 (PubMed:16824732, PubMed:26504226, PubMed:9593664, PubMed:9811831). Furthermore, this enzyme can also act as a cytosolic inositol 3-phosphatase acting on Ins(1,3,4,5,6)P5/inositol 1,3,4,5,6 pentakisphosphate and possibly Ins(1,3,4,5)P4/1D-myo-inositol 1,3,4,5-tetrakisphosphate (PubMed:11418101, PubMed:15979280). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (PubMed:31492966, PubMed:37279284). The unphosphorylated form cooperates with MAGI2 to suppress AKT1 activation (PubMed:11707428). In motile cells, suppresses the formation of lateral pseudopods and thereby promotes cell polarization and directed movement (PubMed:22279049). Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation (PubMed:22279049). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces PTEN phosphorylation which changes its binding preference from the p85 regulatory subunit of the PI3K kinase complex to DLC1 and results in translocation of the PTEN-DLC1 complex to the posterior of migrating cells to promote RHOA activation (PubMed:26166433). Meanwhile, TNS3 switches binding preference from DLC1 to p85 and the TNS3-p85 complex translocates to the leading edge of migrating cells to activate RAC1 activation (PubMed:26166433). Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Involved in the regulation of synaptic function in excitatory hippocampal synapses. Recruited to the postsynaptic membrane upon NMDA receptor activation, is required for the modulation of synaptic activity during plasticity. Enhancement of lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses, activity required for NMDA receptor-dependent long-term depression (LTD) (By similarity). May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability (PubMed:10468583, PubMed:18716620). {ECO:0000250|UniProtKB:O08586, ECO:0000250|UniProtKB:O54857, ECO:0000269|PubMed:10468583, ECO:0000269|PubMed:11418101, ECO:0000269|PubMed:11707428, ECO:0000269|PubMed:15979280, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26504226, ECO:0000269|PubMed:31492966, ECO:0000269|PubMed:37279284, ECO:0000269|PubMed:9187108, ECO:0000269|PubMed:9256433, ECO:0000269|PubMed:9593664, ECO:0000269|PubMed:9616126, ECO:0000269|PubMed:9811831}.; FUNCTION: [Isoform alpha]: Functional kinase, like isoform 1 it antagonizes the PI3K-AKT/PKB signaling pathway. Plays a role in mitochondrial energetic metabolism by promoting COX activity and ATP production, via collaboration with isoform 1 in increasing protein levels of PINK1. {ECO:0000269|PubMed:23744781}.
P60660 MYL6 T44 ochoa Myosin light polypeptide 6 (17 kDa myosin light chain) (LC17) (Myosin light chain 3) (MLC-3) (Myosin light chain alkali 3) (Myosin light chain A3) (Smooth muscle and nonmuscle myosin light chain alkali 6) Regulatory light chain of myosin. Does not bind calcium.
P62993 GRB2 T159 ochoa Growth factor receptor-bound protein 2 (Adapter protein GRB2) (Protein Ash) (SH2/SH3 adapter GRB2) Non-enzymatic adapter protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression (PubMed:11726515, PubMed:37626338). Thus, participates in many biological processes including regulation of innate and adaptive immunity, autophagy, DNA repair or necroptosis (PubMed:35831301, PubMed:37626338, PubMed:38182563). Controls signaling complexes at the T-cell antigen receptor to facilitate the activation, differentiation, and function of T-cells (PubMed:36864087, PubMed:9489702). Mechanistically, engagement of the TCR leads to phosphorylation of the adapter protein LAT, which serves as docking site for GRB2 (PubMed:9489702). In turn, GRB2 establishes a a connection with SOS1 that acts as a guanine nucleotide exchange factor and serves as a critical regulator of KRAS/RAF1 leading to MAPKs translocation to the nucleus and activation (PubMed:12171928, PubMed:25870599). Functions also a role in B-cell activation by amplifying Ca(2+) mobilization and activation of the ERK MAP kinase pathway upon recruitment to the phosphorylated B-cell antigen receptor (BCR) (PubMed:25413232, PubMed:29523808). Plays a role in switching between autophagy and programmed necrosis upstream of EGFR by interacting with components of necrosomes including RIPK1 and with autophagy regulators SQSTM1 and BECN1 (PubMed:35831301, PubMed:38182563). Regulates miRNA biogenesis by forming a functional ternary complex with AGO2 and DICER1 (PubMed:37328606). Functions in the replication stress response by protecting DNA at stalled replication forks from MRE11-mediated degradation. Mechanistically, inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks (PubMed:38459011). Additionally, directly recruits and later releases MRE11 at DNA damage sites during the homology-directed repair (HDR) process (PubMed:34348893). {ECO:0000269|PubMed:11726515, ECO:0000269|PubMed:12171928, ECO:0000269|PubMed:1322798, ECO:0000269|PubMed:19815557, ECO:0000269|PubMed:25413232, ECO:0000269|PubMed:25870599, ECO:0000269|PubMed:29523808, ECO:0000269|PubMed:34348893, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:36864087, ECO:0000269|PubMed:37328606, ECO:0000269|PubMed:37626338, ECO:0000269|PubMed:38182563, ECO:0000269|PubMed:38459011, ECO:0000269|PubMed:9489702}.; FUNCTION: [Isoform 2]: Does not bind to phosphorylated epidermal growth factor receptor (EGFR) but inhibits EGF-induced transactivation of a RAS-responsive element. Acts as a dominant negative protein over GRB2 and by suppressing proliferative signals, may trigger active programmed cell death. Mechanistically, inhibits RAS-ERK signaling and downstream cell proliferation by competing with GRB2 for SOS1 binding and thus by regulating SOS1 membrane recruitment (PubMed:36171279). {ECO:0000269|PubMed:36171279, ECO:0000269|PubMed:8178156}.
P62995 TRA2B T203 ochoa Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}.
P68104 EEF1A1 T239 ochoa Elongation factor 1-alpha 1 (EF-1-alpha-1) (EC 3.6.5.-) (Elongation factor Tu) (EF-Tu) (Eukaryotic elongation factor 1 A-1) (eEF1A-1) (Leukocyte receptor cluster member 7) Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623). Also plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with TXK and PARP1 (PubMed:17177976). Also plays a role in cytoskeleton organization by promoting actin bundling (By similarity). {ECO:0000250|UniProtKB:P68105, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:26593721, ECO:0000269|PubMed:26651998, ECO:0000269|PubMed:36123449, ECO:0000269|PubMed:36264623, ECO:0000269|PubMed:36638793}.; FUNCTION: (Microbial infection) Required for the translation of viral proteins and viral replication during human coronavirus SARS-CoV-2 infection. {ECO:0000269|PubMed:33495306}.
P78347 GTF2I T705 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
P78362 SRPK2 T376 ochoa SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
P78524 DENND2B T415 ochoa DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}.
P78559 MAP1A T1267 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P78559 MAP1A T2137 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P82094 TMF1 T931 ochoa TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}.
Q00013 MPP1 T403 ochoa 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}.
Q00577 PURA T252 ochoa Transcriptional activator protein Pur-alpha (Purine-rich single-stranded DNA-binding protein alpha) This is a probable transcription activator that specifically binds the purine-rich single strand of the PUR element located upstream of the MYC gene (PubMed:1448097, PubMed:20976240). May play a role in the initiation of DNA replication and in recombination. {ECO:0000269|PubMed:1448097, ECO:0000269|PubMed:20976240}.
Q00653 NFKB2 T682 ochoa Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}.
Q00872 MYBPC1 T802 ochoa Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}.
Q01082 SPTBN1 T2171 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q01844 EWSR1 T81 ochoa RNA-binding protein EWS (EWS oncogene) (Ewing sarcoma breakpoint region 1 protein) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Might normally function as a transcriptional repressor (PubMed:10767297). EWS-fusion-proteins (EFPS) may play a role in the tumorigenic process. They may disturb gene expression by mimicking, or interfering with the normal function of CTD-POLII within the transcription initiation complex. They may also contribute to an aberrant activation of the fusion protein target genes. {ECO:0000269|PubMed:10767297, ECO:0000269|PubMed:21256132}.
Q02086 SP2 T229 ochoa Transcription factor Sp2 Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites.
Q02952 AKAP12 T285 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q02952 AKAP12 T834 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03164 KMT2A T2171 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A T3534 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q04323 UBXN1 T207 ochoa UBX domain-containing protein 1 (SAPK substrate protein 1) (UBA/UBX 33.3 kDa protein) Ubiquitin-binding protein that plays a role in the modulation of innate immune response. Blocks both the RIG-I-like receptors (RLR) and NF-kappa-B pathways. Following viral infection, UBXN1 is induced and recruited to the RLR component MAVS. In turn, interferes with MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. This function probably serves as a brake to prevent excessive RLR signaling (PubMed:23545497). Interferes with the TNFalpha-triggered NF-kappa-B pathway by interacting with cellular inhibitors of apoptosis proteins (cIAPs) and thereby inhibiting their recruitment to TNFR1 (PubMed:25681446). Also prevents the activation of NF-kappa-B by associating with CUL1 and thus inhibiting NF-kappa-B inhibitor alpha/NFKBIA degradation that remains bound to NF-kappa-B (PubMed:28152074). Interacts with the BRCA1-BARD1 heterodimer and regulates its activity. Specifically binds 'Lys-6'-linked polyubiquitin chains. Interaction with autoubiquitinated BRCA1 leads to the inhibition of the E3 ubiquitin-protein ligase activity of the BRCA1-BARD1 heterodimer (PubMed:20351172). Component of a complex required to couple deglycosylation and proteasome-mediated degradation of misfolded proteins in the endoplasmic reticulum that are retrotranslocated in the cytosol. {ECO:0000269|PubMed:20351172, ECO:0000269|PubMed:23545497, ECO:0000269|PubMed:25681446, ECO:0000269|PubMed:28152074}.
Q05209 PTPN12 T376 ochoa Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}.
Q05397 PTK2 T914 ochoa Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}.
Q07157 TJP1 T960 ochoa Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}.
Q07157 TJP1 T1058 ochoa Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}.
Q07912 TNK2 T517 ochoa Activated CDC42 kinase 1 (ACK-1) (EC 2.7.10.2) (EC 2.7.11.1) (Tyrosine kinase non-receptor protein 2) Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR. Phosphorylates WASP (PubMed:20110370). {ECO:0000269|PubMed:10652228, ECO:0000269|PubMed:11278436, ECO:0000269|PubMed:16247015, ECO:0000269|PubMed:16257963, ECO:0000269|PubMed:16472662, ECO:0000269|PubMed:17038317, ECO:0000269|PubMed:18262180, ECO:0000269|PubMed:18435854, ECO:0000269|PubMed:19815557, ECO:0000269|PubMed:20110370, ECO:0000269|PubMed:20333297, ECO:0000269|PubMed:20383201}.
Q08379 GOLGA2 T959 ochoa Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}.
Q08999 RBL2 T988 ochoa Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor.
Q09666 AHNAK T5796 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q0VF96 CGNL1 T304 ochoa Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}.
Q0VG06 FAAP100 T672 ochoa Fanconi anemia core complex-associated protein 100 (Fanconi anemia-associated protein of 100 kDa) Plays a role in Fanconi anemia-associated DNA damage response network. Regulates FANCD2 monoubiquitination and the stability of the FA core complex. Induces chromosomal instability as well as hypersensitivity to DNA cross-linking agents, when repressed. {ECO:0000269|PubMed:17396147}.
Q12789 GTF3C1 T516 ochoa General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element.
Q12824 SMARCB1 T134 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (BRG1-associated factor 47) (BAF47) (Integrase interactor 1 protein) (SNF5 homolog) (hSNF5) Core component of the BAF (hSWI/SNF) complex. This ATP-dependent chromatin-remodeling complex plays important roles in cell proliferation and differentiation, in cellular antiviral activities and inhibition of tumor formation. The BAF complex is able to create a stable, altered form of chromatin that constrains fewer negative supercoils than normal. This change in supercoiling would be due to the conversion of up to one-half of the nucleosomes on polynucleosomal arrays into asymmetric structures, termed altosomes, each composed of 2 histones octamers. Stimulates in vitro the remodeling activity of SMARCA4/BRG1/BAF190A. Involved in activation of CSF1 promoter. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Plays a key role in cell-cycle control and causes cell cycle arrest in G0/G1. {ECO:0000250|UniProtKB:Q9Z0H3, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:12226744, ECO:0000269|PubMed:14604992, ECO:0000269|PubMed:16267391, ECO:0000269|PubMed:16314535, ECO:0000269|PubMed:9448295}.
Q12834 CDC20 T108 ochoa Cell division cycle protein 20 homolog (p55CDC) Substrate-specific adapter of the anaphase promoting complex/cyclosome (APC/C) complex that confers substrate specificity by binding to substrates and targeting them to the APC/C complex for ubiquitination and degradation (PubMed:9734353, PubMed:27030811, PubMed:29343641). Recognizes and binds the destruction box (D box) on protein substrates (PubMed:29343641). Involved in the metaphase/anaphase transition of cell cycle (PubMed:32666501). Is regulated by MAD2L1: in metaphase the MAD2L1-CDC20-APC/C ternary complex is inactive and in anaphase the CDC20-APC/C binary complex is active in degrading substrates (PubMed:9811605, PubMed:9637688). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 induces presynaptic differentiation (By similarity). The CDC20-APC/C complex promotes proper dilation formation and radial migration by degrading CCDC41 (By similarity). {ECO:0000250|UniProtKB:Q9JJ66, ECO:0000269|PubMed:27030811, ECO:0000269|PubMed:29343641, ECO:0000269|PubMed:32666501, ECO:0000269|PubMed:9637688, ECO:0000269|PubMed:9734353, ECO:0000269|PubMed:9811605}.
Q12888 TP53BP1 T1055 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 T1650 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q13153 PAK1 T214 ochoa Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}.
Q13415 ORC1 T226 ochoa Origin recognition complex subunit 1 (Replication control protein 1) Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication.
Q13439 GOLGA4 T33 ochoa Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}.
Q13459 MYO9B T1252 ochoa Unconventional myosin-IXb (Unconventional myosin-9b) Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}.
Q13469 NFATC2 T862 ochoa Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}.
Q13480 GAB1 T377 ochoa GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}.
Q13541 EIF4EBP1 T77 ochoa Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) (eIF4E-binding protein 1) (Phosphorylated heat- and acid-stable protein regulated by insulin 1) (PHAS-I) Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex: hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways. {ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:22684010, ECO:0000269|PubMed:7935836}.
Q14004 CDK13 T496 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14151 SAFB2 T339 ochoa Scaffold attachment factor B2 (SAF-B2) Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation.
Q14157 UBAP2L T843 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14160 SCRIB T1329 ochoa Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}.
Q14160 SCRIB T1549 ochoa Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}.
Q14244 MAP7 T346 ochoa Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}.
Q14247 CTTN T411 ochoa Src substrate cortactin (Amplaxin) (Oncogene EMS1) Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}.
Q14511 NEDD9 T122 ochoa Enhancer of filamentation 1 (hEF1) (CRK-associated substrate-related protein) (CAS-L) (CasL) (Cas scaffolding protein family member 2) (CASS2) (Neural precursor cell expressed developmentally down-regulated protein 9) (NEDD-9) (Renal carcinoma antigen NY-REN-12) (p105) [Cleaved into: Enhancer of filamentation 1 p55] Scaffolding protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion (PubMed:24574519). As a focal adhesion protein, plays a role in embryonic fibroblast migration (By similarity). May play an important role in integrin beta-1 or B cell antigen receptor (BCR) mediated signaling in B- and T-cells. Integrin beta-1 stimulation leads to recruitment of various proteins including CRKL and SHPTP2 to the tyrosine phosphorylated form (PubMed:9020138). Promotes adhesion and migration of lymphocytes; as a result required for the correct migration of lymphocytes to the spleen and other secondary lymphoid organs (PubMed:17174122). Plays a role in the organization of T-cell F-actin cortical cytoskeleton and the centralization of T-cell receptor microclusters at the immunological synapse (By similarity). Negatively regulates cilia outgrowth in polarized cysts (By similarity). Modulates cilia disassembly via activation of AURKA-mediated phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723). Positively regulates RANKL-induced osteoclastogenesis (By similarity). Required for the maintenance of hippocampal dendritic spines in the dentate gyrus and CA1 regions, thereby involved in spatial learning and memory (By similarity). {ECO:0000250|UniProtKB:A0A8I3PDQ1, ECO:0000250|UniProtKB:O35177, ECO:0000269|PubMed:17174122, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:24574519, ECO:0000269|PubMed:9020138}.
Q14653 IRF3 T75 psp Interferon regulatory factor 3 (IRF-3) Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses (PubMed:22394562, PubMed:24049179, PubMed:25636800, PubMed:27302953, PubMed:31340999, PubMed:36603579, PubMed:8524823). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:11846977, PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:32972995, PubMed:36603579, PubMed:8524823). Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction (PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:36603579). Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases (PubMed:22394562, PubMed:25636800, PubMed:27302953, PubMed:36603579). This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes (PubMed:16154084, PubMed:27302953, PubMed:33440148, PubMed:36603579). Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages (PubMed:16846591). In response to Sendai virus infection, is recruited by TOMM70:HSP90AA1 to mitochondrion and forms an apoptosis complex TOMM70:HSP90AA1:IRF3:BAX inducing apoptosis (PubMed:25609812). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:16154084, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:24049179, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27302953, ECO:0000269|PubMed:31340999, ECO:0000269|PubMed:31413131, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:8524823, ECO:0000303|PubMed:11846977, ECO:0000303|PubMed:16846591, ECO:0000303|PubMed:16979567, ECO:0000303|PubMed:20049431}.
Q14676 MDC1 T1347 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 T1470 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 T1492 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14676 MDC1 T1696 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14686 NCOA6 T2024 ochoa Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins.
Q14687 GSE1 T831 ochoa Genetic suppressor element 1 None
Q14814 MEF2D T256 ochoa Myocyte-specific enhancer factor 2D Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}.
Q14847 LASP1 T166 ochoa LIM and SH3 domain protein 1 (LASP-1) (Metastatic lymph node gene 50 protein) (MLN 50) Plays an important role in the regulation of dynamic actin-based, cytoskeletal activities. Agonist-dependent changes in LASP1 phosphorylation may also serve to regulate actin-associated ion transport activities, not only in the parietal cell but also in certain other F-actin-rich secretory epithelial cell types (By similarity). {ECO:0000250}.
Q15012 LAPTM4A T214 ochoa Lysosomal-associated transmembrane protein 4A (Golgi 4-transmembrane-spanning transporter MTP) May function in the transport of nucleosides and/or nucleoside derivatives between the cytosol and the lumen of an intracellular membrane-bound compartment. {ECO:0000250}.
Q15025 TNIP1 T438 ochoa TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}.
Q15059 BRD3 T252 ochoa Bromodomain-containing protein 3 (RING3-like protein) Chromatin reader that recognizes and binds acetylated histones, thereby controlling gene expression and remodeling chromatin structures (PubMed:18406326, PubMed:22464331, PubMed:27105114, PubMed:32895492). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:29567837, PubMed:32895492). In vitro, binds acetylated lysine residues on the N-terminus of histone H2A, H2B, H3 and H4 (PubMed:18406326). Involved in endoderm differentiation via its association with long non-coding RNA (lncRNA) DIGIT: BRD3 undergoes liquid-liquid phase separation upon binding to lncRNA DIGIT, promoting binding to histone H3 acetylated at 'Lys-18' (H3K18ac) to induce endoderm gene expression (PubMed:32895492). Also binds non-histones acetylated proteins, such as GATA1 and GATA2: regulates transcription by promoting the binding of the transcription factor GATA1 to its targets (By similarity). {ECO:0000250|UniProtKB:Q8K2F0, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:29567837, ECO:0000269|PubMed:32895492}.
Q15233 NONO T431 ochoa Non-POU domain-containing octamer-binding protein (NonO protein) (54 kDa nuclear RNA- and DNA-binding protein) (p54(nrb)) (p54nrb) (55 kDa nuclear protein) (NMT55) (DNA-binding p52/p100 complex, 52 kDa subunit) DNA- and RNA binding protein, involved in several nuclear processes (PubMed:11525732, PubMed:12403470, PubMed:26571461). Binds the conventional octamer sequence in double-stranded DNA (PubMed:11525732, PubMed:12403470, PubMed:26571461). Also binds single-stranded DNA and RNA at a site independent of the duplex site (PubMed:11525732, PubMed:12403470, PubMed:26571461). Involved in pre-mRNA splicing, probably as a heterodimer with SFPQ (PubMed:11525732, PubMed:12403470, PubMed:26571461). Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b (PubMed:12403470). Together with PSPC1, required for the formation of nuclear paraspeckles (PubMed:22416126). The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs (PubMed:11525732). The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1 (PubMed:10858305). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends (PubMed:15590677). In vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex (PubMed:15590677). NONO is involved in transcriptional regulation. The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity (PubMed:11897684). NONO binds to an enhancer element in long terminal repeats of endogenous intracisternal A particles (IAPs) and activates transcription (By similarity). Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer (By similarity). Important for the functional organization of GABAergic synapses (By similarity). Plays a specific and important role in the regulation of synaptic RNAs and GPHN/gephyrin scaffold structure, through the regulation of GABRA2 transcript (By similarity). Plays a key role during neuronal differentiation by recruiting TET1 to genomic loci and thereby regulating 5-hydroxymethylcytosine levels (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728, PubMed:30270045). Promotes activation of the cGAS-STING pathway in response to HIV-2 infection: acts by interacting with HIV-2 Capsid protein p24, thereby promoting detection of viral DNA by CGAS, leading to CGAS-mediated inmmune activation (PubMed:30270045). In contrast, the weak interaction with HIV-1 Capsid protein p24 does not allow activation of the cGAS-STING pathway (PubMed:30270045). {ECO:0000250|UniProtKB:Q99K48, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:12403470, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:22416126, ECO:0000269|PubMed:26571461, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:30270045}.
Q15424 SAFB T340 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15910 EZH2 T369 ochoa Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}.
Q16513 PKN2 T527 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16531 DDB1 T657 ochoa DNA damage-binding protein 1 (DDB p127 subunit) (DNA damage-binding protein a) (DDBa) (Damage-specific DNA-binding protein 1) (HBV X-associated protein 1) (XAP-1) (UV-damaged DNA-binding factor) (UV-damaged DNA-binding protein 1) (UV-DDB 1) (XPE-binding factor) (XPE-BF) (Xeroderma pigmentosum group E-complementing protein) (XPCe) Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:14739464, PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16407252, PubMed:16482215, PubMed:16940174, PubMed:17079684). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). Also functions as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355, PubMed:28886238). The functional specificity of the DCX E3 ubiquitin-protein ligase complex is determined by the variable substrate recognition component recruited by DDB1 (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355). DCX(DDB2) (also known as DDB1-CUL4-ROC1, CUL4-DDB-ROC1 and CUL4-DDB-RBX1) may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). DCX(DDB2) also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:17041588). DCX(ERCC8) (the CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). DDB1-mediated CRY1 degradation promotes FOXO1 protein stability and FOXO1-mediated gluconeogenesis in the liver (By similarity). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). Maternal factor required for proper zygotic genome activation and genome reprogramming (By similarity). {ECO:0000250|UniProtKB:Q3U1J4, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16407242, ECO:0000269|PubMed:16407252, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16482215, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:16940174, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:17079684, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18381890, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19966799, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:25043012, ECO:0000269|PubMed:25108355, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:28886238, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:38316879}.
Q16594 TAF9 T161 ochoa Transcription initiation factor TFIID subunit 9 (RNA polymerase II TBP-associated factor subunit G) (STAF31/32) (Transcription initiation factor TFIID 31 kDa subunit) (TAFII-31) (TAFII31) (Transcription initiation factor TFIID 32 kDa subunit) (TAFII-32) (TAFII32) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF9 is also a component of the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex (PubMed:15899866). TAF9 and its paralog TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes (PubMed:15899866). Essential for cell viability (PubMed:15899866). May have a role in gene regulation associated with apoptosis (PubMed:15899866). {ECO:0000269|PubMed:15899866, ECO:0000269|PubMed:33795473}.
Q16666 IFI16 T434 ochoa Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q16875 PFKFB3 T471 ochoa 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (6PF-2-K/Fru-2,6-P2ase 3) (PFK/FBPase 3) (6PF-2-K/Fru-2,6-P2ase brain/placenta-type isozyme) (Renal carcinoma antigen NY-REN-56) (iPFK-2) [Includes: 6-phosphofructo-2-kinase (EC 2.7.1.105); Fructose-2,6-bisphosphatase (EC 3.1.3.46)] Catalyzes both the synthesis and degradation of fructose 2,6-bisphosphate. {ECO:0000269|PubMed:10077634, ECO:0000269|PubMed:17499765, ECO:0000305|PubMed:16316985}.
Q16891 IMMT T589 ochoa MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}.
Q27J81 INF2 T561 ochoa Inverted formin-2 (HBEBP2-binding protein C) Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}.
Q2KHM9 KIAA0753 T193 ochoa Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}.
Q3KQU3 MAP7D1 T128 ochoa MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}.
Q3KQU3 MAP7D1 T554 ochoa MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}.
Q3KR37 GRAMD1B T587 ochoa Protein Aster-B (GRAM domain-containing protein 1B) Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}.
Q496Y0 LONRF3 T51 ochoa LON peptidase N-terminal domain and RING finger protein 3 (RING finger protein 127) None
Q4ADV7 RIC1 T998 ochoa Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}.
Q4L180 FILIP1L T1023 ochoa Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}.
Q4LE39 ARID4B T1025 ochoa AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}.
Q4ZG55 GREB1 T1150 ochoa Protein GREB1 (Gene regulated in breast cancer 1 protein) May play a role in estrogen-stimulated cell proliferation. Acts as a regulator of hormone-dependent cancer growth in breast and prostate cancers.
Q53ET0 CRTC2 T497 ochoa CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}.
Q5FBB7 SGO1 T427 ochoa Shugoshin 1 (Serologically defined breast cancer antigen NY-BR-85) (Shugoshin-like 1) Plays a central role in chromosome cohesion during mitosis by preventing premature dissociation of cohesin complex from centromeres after prophase, when most of cohesin complex dissociates from chromosomes arms. May act by preventing phosphorylation of the STAG2 subunit of cohesin complex at the centromere, ensuring cohesin persistence at centromere until cohesin cleavage by ESPL1/separase at anaphase. Essential for proper chromosome segregation during mitosis and this function requires interaction with PPP2R1A. Its phosphorylated form is necessary for chromosome congression and for the proper attachment of spindle microtubule to the kinetochore. Necessary for kinetochore localization of PLK1 and CENPF. May play a role in the tension sensing mechanism of the spindle-assembly checkpoint by regulating PLK1 kinetochore affinity. Isoform 3 plays a role in maintaining centriole cohesion involved in controlling spindle pole integrity. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000269|PubMed:15604152, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:15737064, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:20739936}.
Q5H9K5 ZMAT1 T383 ochoa Zinc finger matrin-type protein 1 None
Q5HYK7 SH3D19 T155 ochoa SH3 domain-containing protein 19 (ADAM-binding protein Eve-1) (EEN-binding protein) (EBP) May play a role in regulating A disintegrin and metalloproteases (ADAMs) in the signaling of EGFR-ligand shedding. May be involved in suppression of Ras-induced cellular transformation and Ras-mediated activation of ELK1. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:14551139, ECO:0000269|PubMed:15280379, ECO:0000269|PubMed:21834987}.
Q5JSP0 FGD3 T599 ochoa FYVE, RhoGEF and PH domain-containing protein 3 (Zinc finger FYVE domain-containing protein 5) Promotes the formation of filopodia. May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}.
Q5SW79 CEP170 T1535 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5SXM2 SNAPC4 T1157 ochoa snRNA-activating protein complex subunit 4 (SNAPc subunit 4) (Proximal sequence element-binding transcription factor subunit alpha) (PSE-binding factor subunit alpha) (PTF subunit alpha) (snRNA-activating protein complex 190 kDa subunit) (SNAPc 190 kDa subunit) Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023, ECO:0000269|PubMed:9418884}.
Q5SYE7 NHSL1 T864 ochoa NHS-like protein 1 None
Q5T0W9 FAM83B T919 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T1M5 FKBP15 T329 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5T200 ZC3H13 T82 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T2W1 PDZK1 T358 ochoa Na(+)/H(+) exchange regulatory cofactor NHE-RF3 (NHERF-3) (CFTR-associated protein of 70 kDa) (Na(+)/H(+) exchanger regulatory factor 3) (Na/Pi cotransporter C-terminal-associated protein 1) (NaPi-Cap1) (PDZ domain-containing protein 1) (Sodium-hydrogen exchanger regulatory factor 3) A scaffold protein that connects plasma membrane proteins and regulatory components, regulating their surface expression in epithelial cells apical domains. May be involved in the coordination of a diverse range of regulatory processes for ion transport and second messenger cascades. In complex with NHERF1, may cluster proteins that are functionally dependent in a mutual fashion and modulate the trafficking and the activity of the associated membrane proteins. May play a role in the cellular mechanisms associated with multidrug resistance through its interaction with ABCC2 and PDZK1IP1. May potentiate the CFTR chloride channel activity. Required for normal cell-surface expression of SCARB1. Plays a role in maintaining normal plasma cholesterol levels via its effects on SCARB1. Plays a role in the normal localization and function of the chloride-anion exchanger SLC26A6 to the plasma membrane in the brush border of the proximal tubule of the kidney. May be involved in the regulation of proximal tubular Na(+)-dependent inorganic phosphate cotransport therefore playing an important role in tubule function (By similarity). {ECO:0000250}.
Q5T481 RBM20 T500 ochoa RNA-binding protein 20 (RNA-binding motif protein 20) RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}.
Q5T5C0 STXBP5 T762 ochoa Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}.
Q5T5Y3 CAMSAP1 T1146 ochoa Calmodulin-regulated spectrin-associated protein 1 Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}.
Q5TF39 MFSD4B T479 ochoa Sodium-dependent glucose transporter 1 (Major facilitator superfamily domain-containing protein 4B) May function as a sodium-dependent glucose transporter. Potential channels for urea in the inner medulla of kidney. {ECO:0000250|UniProtKB:Q80T22}.
Q5VTE0 EEF1A1P5 T239 ochoa Putative elongation factor 1-alpha-like 3 (EF-1-alpha-like 3) (Eukaryotic elongation factor 1 A-like 3) (eEF1A-like 3) (Eukaryotic translation elongation factor 1 alpha-1 pseudogene 5) This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. {ECO:0000250}.
Q63HR2 TNS2 T937 ochoa Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}.
Q63ZY3 KANK2 T143 ochoa KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}.
Q641Q2 WASHC2A Y443 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q641Q2 WASHC2A T448 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q68CZ2 TNS3 T718 ochoa Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}.
Q6IAA8 LAMTOR1 T30 ochoa Ragulator complex protein LAMTOR1 (Late endosomal/lysosomal adaptor and MAPK and MTOR activator 1) (Lipid raft adaptor protein p18) (Protein associated with DRMs and endosomes) (p27Kip1-releasing factor from RhoA) (p27RF-Rho) Key component of the Ragulator complex, a multiprotein complex involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids (PubMed:20381137, PubMed:22980980, PubMed:29158492). Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator plays a dual role for the small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD): it (1) acts as a guanine nucleotide exchange factor (GEF), activating the small GTPases Rag and (2) mediates recruitment of Rag GTPases to the lysosome membrane (PubMed:22980980, PubMed:28935770, PubMed:29158492, PubMed:30181260, PubMed:31001086, PubMed:32686708, PubMed:36476874). Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated (PubMed:20381137, PubMed:22980980, PubMed:29158492). LAMTOR1 is directly responsible for anchoring the Ragulator complex to the lysosomal membrane (PubMed:31001086, PubMed:32686708). LAMTOR1 wraps around the other subunits of the Ragulator complex to hold them in place and interacts with the Rag GTPases, thereby playing a key role in the recruitment of the mTORC1 complex to lysosomes (PubMed:28935770, PubMed:29107538, PubMed:29123114, PubMed:29285400). Also involved in the control of embryonic stem cells differentiation via non-canonical RagC/RRAGC and RagD/RRAGD activation: together with FLCN, it is necessary to recruit and activate RagC/RRAGC and RagD/RRAGD at the lysosomes, and to induce exit of embryonic stem cells from pluripotency via non-canonical, mTOR-independent TFE3 inactivation (By similarity). Also required for late endosomes/lysosomes biogenesis it may regulate both the recycling of receptors through endosomes and the MAPK signaling pathway through recruitment of some of its components to late endosomes (PubMed:20381137, PubMed:22980980). May be involved in cholesterol homeostasis regulating LDL uptake and cholesterol release from late endosomes/lysosomes (PubMed:20544018). May also play a role in RHOA activation (PubMed:19654316). {ECO:0000250|UniProtKB:Q9CQ22, ECO:0000269|PubMed:19654316, ECO:0000269|PubMed:20381137, ECO:0000269|PubMed:20544018, ECO:0000269|PubMed:22980980, ECO:0000269|PubMed:28935770, ECO:0000269|PubMed:29107538, ECO:0000269|PubMed:29123114, ECO:0000269|PubMed:29158492, ECO:0000269|PubMed:29285400, ECO:0000269|PubMed:30181260, ECO:0000269|PubMed:31001086, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:36476874}.
Q6IE81 JADE1 T739 ochoa Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}.
Q6K0P9 PYHIN1 T474 ochoa Pyrin and HIN domain-containing protein 1 (Interferon-inducible protein X) Major mediator of the tumor suppressor activity of IFN in breast cancer cells. Promotes ubiquitination and subsequent degradation of MDM2, which leads to p53/TP53 stabilization. Promotes ubiquitination and subsequent degradation of HDAC1, which in turn enhances maspin expression, and impairs invasive activity of cancer cells. {ECO:0000269|PubMed:16479015, ECO:0000269|PubMed:18247378}.
Q6MZP7 LIN54 T237 ochoa Protein lin-54 homolog (CXC domain-containing protein 1) Component of the DREAM complex, a multiprotein complex that can both act as a transcription activator or repressor depending on the context (PubMed:17531812, PubMed:17671431). In G0 phase, the complex binds to more than 800 promoters and is required for repression of E2F target genes (PubMed:17531812, PubMed:17671431). In S phase, the complex selectively binds to the promoters of G2/M genes whose products are required for mitosis and participates in their cell cycle dependent activation (PubMed:17531812, PubMed:17671431). In the complex, acts as a DNA-binding protein that binds the promoter of CDK1 in a sequence-specific manner (PubMed:19725879). Specifically recognizes the consensus motif 5'-TTYRAA-3' in target DNA (PubMed:27465258). {ECO:0000269|PubMed:17531812, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:19725879, ECO:0000269|PubMed:27465258}.
Q6NXE6 ARMC6 T88 ochoa Armadillo repeat-containing protein 6 None
Q6P3W7 SCYL2 T813 ochoa SCY1-like protein 2 (Coated vesicle-associated kinase of 104 kDa) Component of the AP2-containing clathrin coat that may regulate clathrin-dependent trafficking at plasma membrane, TGN and endosomal system (Probable). A possible serine/threonine-protein kinase toward the beta2-subunit of the plasma membrane adapter complex AP2 and other proteins in presence of poly-L-lysine has not been confirmed (PubMed:15809293, PubMed:16914521). By regulating the expression of excitatory receptors at synapses, plays an essential role in neuronal function and signaling and in brain development (By similarity). {ECO:0000250|UniProtKB:Q8CFE4, ECO:0000269|PubMed:15809293, ECO:0000269|PubMed:16914521, ECO:0000305|PubMed:15809293, ECO:0000305|PubMed:16914521}.
Q6P5Z2 PKN3 T523 ochoa Serine/threonine-protein kinase N3 (EC 2.7.11.13) (Protein kinase PKN-beta) (Protein-kinase C-related kinase 3) Contributes to invasiveness in malignant prostate cancer. {ECO:0000269|PubMed:15282551}.
Q6PJ61 FBXO46 T194 ochoa F-box only protein 46 (F-box only protein 34-like) Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}.
Q6PKG0 LARP1 T530 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6PKG0 LARP1 T747 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6T4R5 NHS T560 ochoa Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}.
Q6T4R5 NHS T1264 ochoa Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}.
Q6UUV9 CRTC1 T163 ochoa CREB-regulated transcription coactivator 1 (Mucoepidermoid carcinoma translocated protein 1) (Transducer of regulated cAMP response element-binding protein 1) (TORC-1) (Transducer of CREB protein 1) Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PGC1alpha and inducer of mitochondrial biogenesis in muscle cells. In the hippocampus, involved in late-phase long-term potentiation (L-LTP) maintenance at the Schaffer collateral-CA1 synapses. May be required for dendritic growth of developing cortical neurons (By similarity). In concert with SIK1, regulates the light-induced entrainment of the circadian clock. In response to light stimulus, coactivates the CREB-mediated transcription of PER1 which plays an important role in the photic entrainment of the circadian clock. {ECO:0000250|UniProtKB:Q157S1, ECO:0000250|UniProtKB:Q68ED7, ECO:0000269|PubMed:23699513}.; FUNCTION: (Microbial infection) Plays a role of coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:16809310}.
Q6UWD8 C16orf54 T112 ochoa Transmembrane protein C16orf54 None
Q6ZN55 ZNF574 T154 ochoa Zinc finger protein 574 May be involved in transcriptional regulation.
Q6ZNC4 ZNF704 T297 ochoa Zinc finger protein 704 Transcription factor which binds to RE2 sequence elements in the MYOD1 enhancer. {ECO:0000250|UniProtKB:Q9ERQ3}.
Q6ZNJ1 NBEAL2 T1311 ochoa Neurobeachin-like protein 2 Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}.
Q6ZS17 RIPOR1 T1129 ochoa Rho family-interacting cell polarization regulator 1 Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}.
Q6ZU35 CRACD T968 ochoa Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}.
Q6ZU80 CEP128 T128 ochoa Centrosomal protein of 128 kDa (Cep128) None
Q6ZUT6 CCDC9B T204 ochoa Coiled-coil domain-containing protein 9B None
Q71F56 MED13L T558 ochoa Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway.
Q765P7 MTSS2 T544 ochoa Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}.
Q765P7 MTSS2 T608 ochoa Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}.
Q7L2J0 MEPCE T287 ochoa 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}.
Q7L9B9 EEPD1 T239 ochoa Endonuclease/exonuclease/phosphatase family domain-containing protein 1 None
Q7LBC6 KDM3B T751 ochoa Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}.
Q7LDG7 RASGRP2 T126 ochoa RAS guanyl-releasing protein 2 (Calcium and DAG-regulated guanine nucleotide exchange factor I) (CalDAG-GEFI) (Cdc25-like protein) (hCDC25L) (F25B3.3 kinase-like protein) Functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. May also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. Functions in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation. May function in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. {ECO:0000269|PubMed:10918068, ECO:0000269|PubMed:14702343, ECO:0000269|PubMed:17576779, ECO:0000269|PubMed:17702895, ECO:0000269|PubMed:24958846, ECO:0000269|PubMed:27235135}.
Q7LDG7 RASGRP2 T393 ochoa RAS guanyl-releasing protein 2 (Calcium and DAG-regulated guanine nucleotide exchange factor I) (CalDAG-GEFI) (Cdc25-like protein) (hCDC25L) (F25B3.3 kinase-like protein) Functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. May also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. Functions in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation. May function in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. {ECO:0000269|PubMed:10918068, ECO:0000269|PubMed:14702343, ECO:0000269|PubMed:17576779, ECO:0000269|PubMed:17702895, ECO:0000269|PubMed:24958846, ECO:0000269|PubMed:27235135}.
Q7Z2K8 GPRIN1 T25 ochoa G protein-regulated inducer of neurite outgrowth 1 (GRIN1) May be involved in neurite outgrowth. {ECO:0000250}.
Q7Z2K8 GPRIN1 T97 ochoa G protein-regulated inducer of neurite outgrowth 1 (GRIN1) May be involved in neurite outgrowth. {ECO:0000250}.
Q7Z3J3 RGPD4 T899 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z3K3 POGZ T260 ochoa Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}.
Q7Z3K3 POGZ T265 ochoa Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}.
Q7Z3K3 POGZ T448 ochoa Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}.
Q7Z6J6 FRMD5 T468 ochoa FERM domain-containing protein 5 May be involved in regulation of cell migration (PubMed:22846708, PubMed:25448675). May regulate cell-matrix interactions via its interaction with ITGB5 and modifying ITGB5 cytoplasmic tail interactions such as with FERMT2 and TLN1. May regulate ROCK1 kinase activity possibly involved in regulation of actin stress fiber formation (PubMed:25448675).
Q86U44 METTL3 T54 ochoa N(6)-adenosine-methyltransferase catalytic subunit METTL3 (EC 2.1.1.348) (Methyltransferase-like protein 3) (hMETTL3) (N(6)-adenosine-methyltransferase 70 kDa subunit) (MT-A70) The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:28297716, PubMed:29348140, PubMed:29506078, PubMed:30428350, PubMed:9409616). In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA destabilization and degradation (PubMed:28637692). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian clock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of hepatic lipid metabolism (PubMed:30428350). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). Also required for oogenesis (By similarity). Involved in the response to DNA damage: in response to ultraviolet irradiation, METTL3 rapidly catalyzes the formation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:28297716). M6A is also required for T-cell homeostasis and differentiation: m6A methylation of transcripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes mRNA destabilization and degradation, promoting T-cell differentiation (By similarity). Inhibits the type I interferon response by mediating m6A methylation of IFNB (PubMed:30559377). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates m6A methylation of Xist RNA, thereby participating in random X inactivation: m6A methylation of Xist leads to target YTHDC1 reader on Xist and promote transcription repression activity of Xist (PubMed:27602518). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). METTL3 mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998). Acts as a positive regulator of mRNA translation independently of the methyltransferase activity: promotes translation by interacting with the translation initiation machinery in the cytoplasm (PubMed:27117702). Its overexpression in a number of cancer cells suggests that it may participate in cancer cell proliferation by promoting mRNA translation (PubMed:27117702). During human coronavirus SARS-CoV-2 infection, adds m6A modifications in SARS-CoV-2 RNA leading to decreased RIGI binding and subsequently dampening the sensing and activation of innate immune responses (PubMed:33961823). {ECO:0000250|UniProtKB:Q8C3P7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26321680, ECO:0000269|PubMed:26593424, ECO:0000269|PubMed:27117702, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:28297716, ECO:0000269|PubMed:28637692, ECO:0000269|PubMed:29348140, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:33961823, ECO:0000269|PubMed:9409616}.
Q86U86 PBRM1 T43 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86UX7 FERMT3 T340 ochoa Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}.
Q86VM9 ZC3H18 T611 ochoa Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) None
Q86VP1 TAX1BP1 T702 ochoa Tax1-binding protein 1 (TRAF6-binding protein) Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}.
Q86W42 THOC6 T252 ochoa THO complex subunit 6 (Functional spliceosome-associated protein 35) (fSAP35) (WD repeat-containing protein 58) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Plays a key structural role in the oligomerization of the THO-DDX39B complex (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15998806, PubMed:17190602). Plays a role in apoptosis negative control involved in brain development (PubMed:15833825, PubMed:23621916). {ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:23621916, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q86W92 PPFIBP1 T39 ochoa Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}.
Q86X10 RALGAPB T733 ochoa Ral GTPase-activating protein subunit beta (p170) Non-catalytic subunit of the heterodimeric RalGAP1 and RalGAP2 complexes which act as GTPase activators for the Ras-like small GTPases RALA and RALB. {ECO:0000250}.
Q86YP4 GATAD2A T329 ochoa Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}.
Q8IVT5 KSR1 T273 ochoa Kinase suppressor of Ras 1 (EC 2.7.11.1) Part of a multiprotein signaling complex which promotes phosphorylation of Raf family members and activation of downstream MAP kinases (By similarity). Independently of its kinase activity, acts as MAP2K1/MEK1 and MAP2K2/MEK2-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1 or MAP2K2/MEK2, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 and/or MAP2K2/MEK2 (PubMed:29433126). Promotes activation of MAPK1 and/or MAPK3, both in response to EGF and to cAMP (By similarity). Its kinase activity is unsure (By similarity). Some protein kinase activity has been detected in vitro, however the physiological relevance of this activity is unknown (By similarity). {ECO:0000250|UniProtKB:Q61097, ECO:0000269|PubMed:29433126}.
Q8IWV8 UBR2 T1008 ochoa E3 ubiquitin-protein ligase UBR2 (EC 2.3.2.27) (N-recognin-2) (Ubiquitin-protein ligase E3-alpha-2) (Ubiquitin-protein ligase E3-alpha-II) E3 ubiquitin-protein ligase which is a component of the N-end rule pathway (PubMed:15548684, PubMed:20835242, PubMed:28392261). Recognizes and binds to proteins bearing specific N-terminal residues (N-degrons) that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation (PubMed:20835242, PubMed:28392261). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:20835242, PubMed:28392261). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:20835242). In contrast, it strongly binds methylated N-degrons (PubMed:28392261). Plays a critical role in chromatin inactivation and chromosome-wide transcriptional silencing during meiosis via ubiquitination of histone H2A (By similarity). Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth (PubMed:20298436). Required for spermatogenesis, promotes, with Tex19.1, SPO11-dependent recombination foci to accumulate and drive robust homologous chromosome synapsis (By similarity). Polyubiquitinates LINE-1 retrotransposon encoded, LIRE1, which induces degradation, inhibiting LINE-1 retrotransposon mobilization (By similarity). Catalyzes ubiquitination and degradation of the N-terminal part of NLRP1 following NLRP1 activation by pathogens and other damage-associated signals: ubiquitination promotes degradation of the N-terminal part and subsequent release of the cleaved C-terminal part of NLRP1, which polymerizes and forms the NLRP1 inflammasome followed by host cell pyroptosis (By similarity). Plays a role in T-cell receptor signaling by inducing 'Lys-63'-linked ubiquitination of lymphocyte cell-specific kinase LCK (PubMed:38225265). This activity is regulated by DUSP22, which induces 'Lys-48'-linked ubiquitination of UBR2, leading to its proteasomal degradation by SCF E3 ubiquitin-protein ligase complex (PubMed:38225265). {ECO:0000250|UniProtKB:Q6WKZ8, ECO:0000269|PubMed:15548684, ECO:0000269|PubMed:20298436, ECO:0000269|PubMed:20835242, ECO:0000269|PubMed:28392261, ECO:0000269|PubMed:38225265}.
Q8IWY9 CDAN1 T269 ochoa Codanin-1 May act as a negative regulator of ASF1 in chromatin assembly. {ECO:0000269|PubMed:22407294}.
Q8IX07 ZFPM1 T508 ochoa Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}.
Q8IXS8 HYCC2 T308 ochoa Hyccin 2 Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}.
Q8IY92 SLX4 T592 ochoa Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}.
Q8IYS2 KIAA2013 T212 ochoa Uncharacterized protein KIAA2013 None
Q8IZ21 PHACTR4 T31 ochoa Phosphatase and actin regulator 4 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}.
Q8IZL8 PELP1 T749 ochoa Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}.
Q8IZT6 ASPM T207 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8N1I0 DOCK4 T1795 ochoa Dedicator of cytokinesis protein 4 Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form (PubMed:12628187, PubMed:16464467). Involved in regulation of adherens junction between cells (PubMed:12628187). Plays a role in cell migration (PubMed:20679435). {ECO:0000269|PubMed:12628187, ECO:0000269|PubMed:16464467, ECO:0000269|PubMed:20679435}.; FUNCTION: [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms. {ECO:0000269|PubMed:16464467}.
Q8N4C8 MINK1 T627 ochoa Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration.
Q8N4L2 PIP4P2 T24 ochoa Type 2 phosphatidylinositol 4,5-bisphosphate 4-phosphatase (Type 2 PtdIns-4,5-P2 4-Ptase) (EC 3.1.3.78) (PtdIns-4,5-P2 4-Ptase II) (Transmembrane protein 55A) Catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) to phosphatidylinositol-4-phosphate (PtdIns-4-P) (PubMed:16365287). Does not hydrolyze phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-bisphosphate, inositol 3,5-bisphosphate, inositol 3,4-bisphosphate, phosphatidylinositol 5-monophosphate, phosphatidylinositol 4-monophosphate and phosphatidylinositol 3-monophosphate (PubMed:16365287). Negatively regulates the phagocytosis of large particles by reducing phagosomal phosphatidylinositol 4,5-bisphosphate accumulation during cup formation (By similarity). {ECO:0000250|UniProtKB:Q9CZX7, ECO:0000269|PubMed:16365287}.
Q8ND30 PPFIBP2 T424 ochoa Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}.
Q8ND82 ZNF280C T543 ochoa Zinc finger protein 280C (Suppressor of hairy wing homolog 3) (Zinc finger protein 633) May function as a transcription factor.
Q8NEL9 DDHD1 T710 ochoa Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}.
Q8NF91 SYNE1 T8362 ochoa Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}.
Q8NFH5 NUP35 T24 ochoa Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}.
Q8NFU7 TET1 T1164 psp Methylcytosine dioxygenase TET1 (EC 1.14.11.80) (CXXC-type zinc finger protein 6) (Leukemia-associated protein with a CXXC domain) (Ten-eleven translocation 1 gene protein) Dioxygenase that plays a key role in active DNA demethylation, by catalyzing the sequential oxidation of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (PubMed:19372391, PubMed:21496894, PubMed:21778364, PubMed:35798741). In addition to its role in DNA demethylation, plays a more general role in chromatin regulation by recruiting histone modifying protein complexes to alter histone marks and chromatin accessibility, leading to both activation and repression of gene expression (PubMed:33833093). Plays therefore a role in many biological processes, including stem cell maintenance, T- and B-cell development, inflammation regulation, genomic imprinting, neural activity or DNA repair (PubMed:31278917). Involved in the balance between pluripotency and lineage commitment of cells and plays a role in embryonic stem cells maintenance and inner cell mass cell specification. Together with QSER1, plays an essential role in the protection and maintenance of transcriptional and developmental programs to inhibit the binding of DNMT3A/3B and therefore de novo methylation (PubMed:33833093). May play a role in pancreatic beta-cell specification during development. In this context, may function as an upstream epigenetic regulator of PAX4 presumably through direct recruitment by FOXA2 to a PAX4 enhancer to preserve its unmethylated status, thereby potentiating PAX4 expression to adopt beta-cell fate during endocrine lineage commitment (PubMed:35798741). Under DNA hypomethylation conditions, such as in female meiotic germ cells, may induce epigenetic reprogramming of pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions. PCH forms chromocenters in the interphase nucleus and chromocenters cluster at the prophase of meiosis. In this context, may also be essential for chromocenter clustering in a catalytic activity-independent manner, possibly through the recruitment polycomb repressive complex 1 (PRC1) to the chromocenters (By similarity). During embryonic development, may be required for normal meiotic progression in oocytes and meiotic gene activation (By similarity). Binds preferentially to DNA containing cytidine-phosphate-guanosine (CpG) dinucleotides over CpH (H=A, T, and C), hemimethylated-CpG and hemimethylated-hydroxymethyl-CpG (PubMed:29276034). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:12124344, ECO:0000269|PubMed:19372391, ECO:0000269|PubMed:19372393, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21778364, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:29276034, ECO:0000269|PubMed:31278917, ECO:0000269|PubMed:33833093, ECO:0000269|PubMed:35798741}.; FUNCTION: [Isoform 1]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). Binds to promoters, particularly to those with high CG content (By similarity). In hippocampal neurons, isoform 1 regulates the expression of a unique subset of genes compared to isoform 2, although some overlap exists between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 1 controls both miniature excitatory postsynaptic current amplitude and frequency (By similarity). Isoform 1 may regulate genes involved in hippocampal-dependent memory, leading to positive regulation of memory, contrary to isoform 2 that may decrease memory (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}.; FUNCTION: [Isoform 2]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). As isoform 1, binds to promoters, particularly to those with high CG content, however displays reduced global chromatin affinity compared with isoform 1, leading to decreased global DNA demethylation compared with isoform 1 (By similarity). Contrary to isoform 1, isoform 2 localizes during S phase to sites of ongoing DNA replication in heterochromatin, causing a significant de novo 5hmC formation, globally, and more so in heterochromatin, including LINE 1 interspersed DNA repeats leading to their activation (By similarity). In hippocampal neurons, isoform 2 regulates the expression of a unique subset of genes compared to isoform 1, although some overlap between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 2 controls miniature excitatory postsynaptic current frequency, but not amplitude (By similarity). Isoform 2 may regulate genes involved in hippocampal-dependent memory, leading to negative regulation of memory, contrary to isoform 1 that may improve memory (By similarity). In immature and partially differentiated gonadotrope cells, directly represses luteinizing hormone gene LHB expression and does not catalyze 5hmC at the gene promoter (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}.
Q8TAD8 SNIP1 T57 ochoa Smad nuclear-interacting protein 1 (FHA domain-containing protein SNIP1) Required for pre-mRNA splicing as component of the spliceosome (PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Down-regulates NF-kappa-B signaling by competing with RELA for CREBBP/EP300 binding. Involved in the microRNA (miRNA) biogenesis. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:11567019, ECO:0000269|PubMed:15378006, ECO:0000269|PubMed:18632581, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}.
Q8TB45 DEPTOR T295 ochoa|psp DEP domain-containing mTOR-interacting protein (hDEPTOR) (DEP domain-containing protein 6) Negative regulator of the mTORC1 and mTORC2 complexes: inhibits the protein kinase activity of MTOR, thereby inactivating both complexes (PubMed:19446321, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:25936805, PubMed:29382726, PubMed:34519268, PubMed:34519269). DEPTOR inhibits mTORC1 and mTORC2 to induce autophagy (PubMed:22017875, PubMed:22017876, PubMed:22017877). In contrast to AKT1S1/PRAS40, only partially inhibits mTORC1 activity (PubMed:34519268, PubMed:34519269). {ECO:0000269|PubMed:19446321, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:34519268, ECO:0000269|PubMed:34519269}.
Q8TDD1 DDX54 T67 ochoa ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}.
Q8TDD1 DDX54 T70 ochoa ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}.
Q8TDZ2 MICAL1 T908 ochoa [F-actin]-monooxygenase MICAL1 (EC 1.14.13.225) (EC 1.6.3.1) (Molecule interacting with CasL protein 1) (MICAL-1) (NEDD9-interacting protein with calponin homology and LIM domains) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization (PubMed:29343822). In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2) (PubMed:21864500, PubMed:26845023, PubMed:29343822). Acts as a cytoskeletal regulator that connects NEDD9 to intermediate filaments. Also acts as a negative regulator of apoptosis via its interaction with STK38 and STK38L; acts by antagonizing STK38 and STK38L activation by MST1/STK4. Involved in regulation of lamina-specific connectivity in the nervous system such as the development of lamina-restricted hippocampal connections. Through redox regulation of the actin cytoskeleton controls the intracellular distribution of secretory vesicles containing L1/neurofascin/NgCAM family proteins in neurons, thereby regulating their cell surface levels (By similarity). May act as Rab effector protein and play a role in vesicle trafficking. Promotes endosomal tubule extension by associating with RAB8 (RAB8A or RAB8B), RAB10 and GRAF (GRAF1/ARHGAP26 or GRAF2/ARHGAP10) on the endosomal membrane which may connect GRAFs to Rabs, thereby participating in neosynthesized Rab8-Rab10-Rab11-dependent protein export (PubMed:32344433). {ECO:0000250|UniProtKB:Q8VDP3, ECO:0000269|PubMed:18305261, ECO:0000269|PubMed:21864500, ECO:0000269|PubMed:26845023, ECO:0000269|PubMed:28230050, ECO:0000269|PubMed:29343822, ECO:0000269|PubMed:32344433, ECO:0000305|PubMed:27552051}.
Q8TER5 ARHGEF40 T1494 ochoa Rho guanine nucleotide exchange factor 40 (Protein SOLO) May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}.
Q8WU20 FRS2 T137 ochoa Fibroblast growth factor receptor substrate 2 (FGFR substrate 2) (FGFR-signaling adaptor SNT) (Suc1-associated neurotrophic factor target 1) (SNT-1) Adapter protein that links activated FGR and NGF receptors to downstream signaling pathways. Plays an important role in the activation of MAP kinases and in the phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, in response to ligand-mediated activation of FGFR1. Modulates signaling via SHC1 by competing for a common binding site on NTRK1. {ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:21765395}.
Q8WU20 FRS2 T457 ochoa Fibroblast growth factor receptor substrate 2 (FGFR substrate 2) (FGFR-signaling adaptor SNT) (Suc1-associated neurotrophic factor target 1) (SNT-1) Adapter protein that links activated FGR and NGF receptors to downstream signaling pathways. Plays an important role in the activation of MAP kinases and in the phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, in response to ligand-mediated activation of FGFR1. Modulates signaling via SHC1 by competing for a common binding site on NTRK1. {ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:21765395}.
Q8WUM0 NUP133 T65 ochoa Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}.
Q8WUY3 PRUNE2 T1620 ochoa Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}.
Q8WWI1 LMO7 T990 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WWQ0 PHIP T1482 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q8WXE0 CASKIN2 T807 ochoa Caskin-2 (CASK-interacting protein 2) None
Q8WY36 BBX T152 ochoa HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}.
Q8WZ42 TTN T11932 psp Titin (EC 2.7.11.1) (Connectin) (Rhabdomyosarcoma antigen MU-RMS-40.14) Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase. {ECO:0000269|PubMed:11846417, ECO:0000269|PubMed:9804419}.
Q92619 ARHGAP45 T105 ochoa Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}.
Q92619 ARHGAP45 T944 ochoa Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}.
Q92633 LPAR1 T335 ochoa Lysophosphatidic acid receptor 1 (LPA receptor 1) (LPA-1) (Lysophosphatidic acid receptor Edg-2) Receptor for lysophosphatidic acid (LPA) (PubMed:19306925, PubMed:25025571, PubMed:26091040, PubMed:9070858). Plays a role in the reorganization of the actin cytoskeleton, cell migration, differentiation and proliferation, and thereby contributes to the responses to tissue damage and infectious agents. Activates downstream signaling cascades via the G(i)/G(o), G(12)/G(13), and G(q) families of heteromeric G proteins. Signaling inhibits adenylyl cyclase activity and decreases cellular cAMP levels (PubMed:26091040). Signaling triggers an increase of cytoplasmic Ca(2+) levels (PubMed:19656035, PubMed:19733258, PubMed:26091040). Activates RALA; this leads to the activation of phospholipase C (PLC) and the formation of inositol 1,4,5-trisphosphate (PubMed:19306925). Signaling mediates activation of down-stream MAP kinases (By similarity). Contributes to the regulation of cell shape. Promotes Rho-dependent reorganization of the actin cytoskeleton in neuronal cells and neurite retraction (PubMed:26091040). Promotes the activation of Rho and the formation of actin stress fibers (PubMed:26091040). Promotes formation of lamellipodia at the leading edge of migrating cells via activation of RAC1 (By similarity). Through its function as LPA receptor, plays a role in chemotaxis and cell migration, including responses to injury and wounding (PubMed:18066075, PubMed:19656035, PubMed:19733258). Plays a role in triggering inflammation in response to bacterial lipopolysaccharide (LPS) via its interaction with CD14. Promotes cell proliferation in response to LPA (By similarity). Inhibits the intracellular ciliogenesis pathway in response to LPA and through AKT1 activation (PubMed:31204173). Required for normal skeleton development. May play a role in osteoblast differentiation. Required for normal brain development. Required for normal proliferation, survival and maturation of newly formed neurons in the adult dentate gyrus. Plays a role in pain perception and in the initiation of neuropathic pain (By similarity). {ECO:0000250|UniProtKB:P61793, ECO:0000269|PubMed:18066075, ECO:0000269|PubMed:19306925, ECO:0000269|PubMed:19656035, ECO:0000269|PubMed:19733258, ECO:0000269|PubMed:25025571, ECO:0000269|PubMed:26091040, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:9070858, ECO:0000305|PubMed:11093753, ECO:0000305|PubMed:9069262}.
Q92826 HOXB13 T41 psp Homeobox protein Hox-B13 Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds preferentially to methylated DNA (PubMed:28473536). {ECO:0000269|PubMed:28473536}.
Q92870 APBB2 T312 ochoa Amyloid beta precursor protein binding family B member 2 (Amyloid-beta (A4) precursor protein-binding family B member 2) (Protein Fe65-like 1) Plays a role in the maintenance of lens transparency, and may also play a role in muscle cell strength (By similarity). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Activates transcription of APP (PubMed:14527950). {ECO:0000250|UniProtKB:Q9DBR4, ECO:0000269|PubMed:14527950}.
Q92922 SMARCC1 T337 ochoa SWI/SNF complex subunit SMARCC1 (BRG1-associated factor 155) (BAF155) (SWI/SNF complex 155 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:P97496, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q93052 LPP T316 ochoa Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}.
Q96CB8 INTS12 T357 ochoa Integrator complex subunit 12 (Int12) (PHD finger protein 22) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}.
Q96DF8 ESS2 T439 ochoa Splicing factor ESS-2 homolog (DiGeorge syndrome critical region 13) (DiGeorge syndrome critical region 14) (DiGeorge syndrome protein H) (DGS-H) (Protein ES2) May be involved in pre-mRNA splicing. {ECO:0000250|UniProtKB:P34420}.
Q96FA3 PELI1 T264 psp E3 ubiquitin-protein ligase pellino homolog 1 (Pellino-1) (EC 2.3.2.27) (Pellino-related intracellular-signaling molecule) (RING-type E3 ubiquitin transferase pellino homolog 1) E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:12496252, PubMed:17675297, PubMed:29883609, PubMed:30952868). Involved in the TLR and IL-1 signaling pathways via interaction with the complex containing IRAK kinases and TRAF6 (PubMed:12496252, PubMed:17675297). Acts as a positive regulator of inflammatory response in microglia through activation of NF-kappa-B and MAP kinase (By similarity). Mediates 'Lys-63'-linked polyubiquitination of IRAK1 allowing subsequent NF-kappa-B activation (PubMed:12496252, PubMed:17675297). Conjugates 'Lys-63'-linked ubiquitin chains to the adapter protein ASC/PYCARD, which in turn is crucial for NLRP3 inflammasome activation (PubMed:34706239). Mediates 'Lys-48'-linked polyubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation; preferentially recognizes and mediates the degradation of the 'Thr-182' phosphorylated form of RIPK3 (PubMed:29883609). Negatively regulates necroptosis by reducing RIPK3 expression (PubMed:29883609). Mediates 'Lys-63'-linked ubiquitination of RIPK1 (PubMed:29883609). Following phosphorylation by ATM, catalyzes 'Lys-63'-linked ubiquitination of NBN, promoting DNA repair via homologous recombination (PubMed:30952868). Negatively regulates activation of the metabolic mTORC1 signaling pathway by mediating 'Lys-63'-linked ubiquitination of mTORC1-inhibitory protein TSC1 and thereby promoting TSC1/TSC2 complex stability (PubMed:33215753). {ECO:0000250|UniProtKB:Q8C669, ECO:0000269|PubMed:12496252, ECO:0000269|PubMed:17675297, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:33215753}.
Q96FF9 CDCA5 T113 ochoa Sororin (Cell division cycle-associated protein 5) (p35) Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}.
Q96GX5 MASTL T380 ochoa Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}.
Q96GX8 C16orf74 T46 ochoa Uncharacterized protein C16orf74 None
Q96HH9 GRAMD2B T46 ochoa GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) None
Q96IY1 NSL1 T244 ochoa Kinetochore-associated protein NSL1 homolog Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:16585270}.
Q96KB5 PBK T26 ochoa Lymphokine-activated killer T-cell-originated protein kinase (EC 2.7.12.2) (Cancer/testis antigen 84) (CT84) (MAPKK-like protein kinase) (Nori-3) (PDZ-binding kinase) (Spermatogenesis-related protein kinase) (SPK) (T-LAK cell-originated protein kinase) Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play a role in the activation of lymphoid cells. When phosphorylated, forms a complex with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint during doxorubicin-induced DNA damage. {ECO:0000269|PubMed:10781613, ECO:0000269|PubMed:17482142}.
Q96L14 CEP170P1 T244 ochoa Cep170-like protein (CEP170 pseudogene 1) None
Q96MY1 NOL4L T396 ochoa Nucleolar protein 4-like None
Q96NT0 CCDC115 T108 ochoa Vacuolar ATPase assembly protein VMA22 (Coiled-coil domain-containing protein 115) Accessory component of the proton-transporting vacuolar (V)-ATPase protein pump involved in intracellular iron homeostasis. In aerobic conditions, required for intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation. Necessary for endolysosomal acidification and lysosomal degradation (PubMed:28296633). May be involved in Golgi homeostasis (PubMed:26833332). {ECO:0000269|PubMed:26833332, ECO:0000269|PubMed:28296633}.
Q96PC5 MIA2 T1147 ochoa Melanoma inhibitory activity protein 2 (MIA protein 2) (CTAGE family member 5 ER export factor) (Cutaneous T-cell lymphoma-associated antigen 5) (Meningioma-expressed antigen 6/11) Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum (PubMed:21525241, PubMed:25202031, PubMed:27138255, PubMed:27170179). Plays a role in the secretion of lipoproteins, pre-chylomicrons and pre-VLDLs, by participating in their export from the endoplasmic reticulum (PubMed:27138255). Thereby, may play a role in cholesterol and triglyceride homeostasis (By similarity). Required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers and recruiting PREB/SEC12 at the endoplasmic reticulum exit sites (PubMed:21525241, PubMed:25202031, PubMed:27170179). {ECO:0000250|UniProtKB:Q91ZV0, ECO:0000269|PubMed:21525241, ECO:0000269|PubMed:25202031, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:27170179}.
Q96PE2 ARHGEF17 T533 ochoa Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}.
Q96Q42 ALS2 T512 ochoa Alsin (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 6 protein) (Amyotrophic lateral sclerosis 2 protein) May act as a GTPase regulator. Controls survival and growth of spinal motoneurons (By similarity). {ECO:0000250}.
Q96QF0 RAB3IP T265 ochoa Rab-3A-interacting protein (Rab3A-interacting protein) (Rabin-3) (Rabin8) (SSX2-interacting protein) Guanine nucleotide exchange factor (GEF) which may activate RAB8A and RAB8B (PubMed:12221131, PubMed:26824392). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:12221131, PubMed:26824392). Mediates the release of GDP from RAB8A and RAB8B but not from RAB3A or RAB5 (PubMed:20937701, PubMed:26824392). Modulates actin organization and promotes polarized transport of RAB8A-specific vesicles to the cell surface (PubMed:12221131). Together with RAB11A, RAB8A, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Part of the ciliary targeting complex containing Rab11, ASAP1, RAB3IP and RAB11FIP3 and ARF4 that promotes RAB3IP preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879, PubMed:31204173). {ECO:0000269|PubMed:12221131, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:31204173}.
Q96T37 RBM15 T737 ochoa RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}.
Q96T58 SPEN T1946 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q99661 KIF2C T150 ochoa Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}.
Q99666 RGPD5 T898 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q99698 LYST T2111 ochoa Lysosomal-trafficking regulator (Beige homolog) Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}.
Q99700 ATXN2 T730 ochoa Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}.
Q99700 ATXN2 T936 ochoa Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}.
Q99741 CDC6 T37 psp Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated.
Q9BPU6 DPYSL5 T516 psp Dihydropyrimidinase-related protein 5 (DRP-5) (CRMP3-associated molecule) (CRAM) (Collapsin response mediator protein 5) (CRMP-5) (UNC33-like phosphoprotein 6) (ULIP-6) Involved in the negative regulation of dendrite outgrowth. {ECO:0000269|PubMed:33894126}.
Q9BRQ6 CHCHD6 T49 ochoa MICOS complex subunit MIC25 (Coiled-coil-helix cristae morphology protein 1) (Coiled-coil-helix-coiled-coil-helix domain-containing protein 6) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane. {ECO:0000269|PubMed:22228767}.
Q9BSQ5 CCM2 T241 ochoa Cerebral cavernous malformations 2 protein (Malcavernin) Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions (By similarity). May function as a scaffold protein for MAP2K3-MAP3K3 signaling. Seems to play a major role in the modulation of MAP3K3-dependent p38 activation induced by hyperosmotic shock (By similarity). {ECO:0000250}.
Q9BTA9 WAC T295 ochoa WW domain-containing adapter protein with coiled-coil Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}.
Q9BVV6 KIAA0586 T1100 ochoa Protein TALPID3 Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}.
Q9BVV6 KIAA0586 T1104 ochoa Protein TALPID3 Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}.
Q9BVV8 FAM174C T113 ochoa Protein FAM174C None
Q9BW19 KIFC1 T346 psp Kinesin-like protein KIFC1 (Kinesin-like protein 2) (Kinesin-related protein HSET) Minus end-directed microtubule-dependent motor required for bipolar spindle formation (PubMed:15843429). May contribute to movement of early endocytic vesicles (By similarity). Regulates cilium formation and structure (By similarity). {ECO:0000250|UniProtKB:Q9QWT9, ECO:0000269|PubMed:15843429}.
Q9BXP5 SRRT T549 ochoa Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}.
Q9BY89 KIAA1671 T1106 ochoa Uncharacterized protein KIAA1671 None
Q9BY89 KIAA1671 T1582 ochoa Uncharacterized protein KIAA1671 None
Q9BYG3 NIFK T240 ochoa MKI67 FHA domain-interacting nucleolar phosphoprotein (Nucleolar phosphoprotein Nopp34) (Nucleolar protein interacting with the FHA domain of pKI-67) (hNIFK) None
Q9C086 INO80B T87 ochoa INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}.
Q9C0B5 ZDHHC5 T385 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0B5 ZDHHC5 T521 ochoa Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.
Q9C0C9 UBE2O T838 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9C0E8 LNPK T179 ochoa Endoplasmic reticulum junction formation protein lunapark (ER junction formation factor lunapark) Endoplasmic reticulum (ER)-shaping membrane protein that plays a role in determining ER morphology (PubMed:30032983). Involved in the stabilization of nascent three-way ER tubular junctions within the ER network (PubMed:24223779, PubMed:25404289, PubMed:25548161, PubMed:27619977). May also play a role as a curvature-stabilizing protein within the three-way ER tubular junction network (PubMed:25404289). May be involved in limb development (By similarity). Is involved in central nervous system development (PubMed:30032983). {ECO:0000250|UniProtKB:Q7TQ95, ECO:0000269|PubMed:24223779, ECO:0000269|PubMed:25404289, ECO:0000269|PubMed:25548161, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:30032983}.
Q9H1E3 NUCKS1 T34 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H223 EHD4 T409 ochoa EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}.
Q9H2D6 TRIOBP T1889 ochoa TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.
Q9H330 TMEM245 T329 ochoa Transmembrane protein 245 (Protein CG-2) None
Q9H330 TMEM245 T334 ochoa Transmembrane protein 245 (Protein CG-2) None
Q9H3M7 TXNIP T348 ochoa Thioredoxin-interacting protein (Thioredoxin-binding protein 2) (Vitamin D3 up-regulated protein 1) May act as an oxidative stress mediator by inhibiting thioredoxin activity or by limiting its bioavailability (PubMed:17603038). Interacts with COPS5 and restores COPS5-induced suppression of CDKN1B stability, blocking the COPS5-mediated translocation of CDKN1B from the nucleus to the cytoplasm (By similarity). Functions as a transcriptional repressor, possibly by acting as a bridge molecule between transcription factors and corepressor complexes, and over-expression will induce G0/G1 cell cycle arrest (PubMed:12821938). Required for the maturation of natural killer cells (By similarity). Acts as a suppressor of tumor cell growth (PubMed:18541147). Inhibits the proteasomal degradation of DDIT4, and thereby contributes to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1) (PubMed:21460850). {ECO:0000250|UniProtKB:Q8BG60, ECO:0000269|PubMed:12821938, ECO:0000269|PubMed:17603038, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:21460850}.
Q9H4Z3 PCIF1 T152 ochoa mRNA (2'-O-methyladenosine-N(6)-)-methyltransferase (EC 2.1.1.62) (Cap-specific adenosine methyltransferase) (CAPAM) (hCAPAM) (Phosphorylated CTD-interacting factor 1) (hPCIF1) (Protein phosphatase 1 regulatory subunit 121) Cap-specific adenosine methyltransferase that catalyzes formation of N(6),2'-O-dimethyladenosine cap (m6A(m)) by methylating the adenosine at the second transcribed position of capped mRNAs (PubMed:30467178, PubMed:30487554, PubMed:31279658, PubMed:31279659, PubMed:33428944). Recruited to the early elongation complex of RNA polymerase II (RNAPII) via interaction with POLR2A and mediates formation of m6A(m) co-transcriptionally (PubMed:30467178). {ECO:0000269|PubMed:30467178, ECO:0000269|PubMed:30487554, ECO:0000269|PubMed:31279658, ECO:0000269|PubMed:31279659, ECO:0000269|PubMed:33428944}.
Q9H7P6 MVB12B T204 ochoa|psp Multivesicular body subunit 12B (ESCRT-I complex subunit MVB12B) (Protein FAM125B) Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies.
Q9H8K7 PAAT T427 ochoa ATPase PAAT (EC 3.6.1.-) (Protein associated with ABC transporters) (PAAT) ATPase that regulates mitochondrial ABC transporters ABCB7, ABCB8/MITOSUR and ABCB10 (PubMed:25063848). Regulates mitochondrial ferric concentration and heme biosynthesis and plays a role in the maintenance of mitochondrial homeostasis and cell survival (PubMed:25063848). {ECO:0000269|PubMed:25063848}.
Q9H8Y8 GORASP2 T418 ochoa Golgi reassembly-stacking protein 2 (GRS2) (Golgi phosphoprotein 6) (GOLPH6) (Golgi reassembly-stacking protein of 55 kDa) (GRASP55) (p59) Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP1/GRASP65, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP2 plays a role in the assembly and membrane stacking of the Golgi cisternae, and in the process by which Golgi stacks reform after breakdown during mitosis and meiosis (PubMed:10487747, PubMed:21515684, PubMed:22523075). May regulate the intracellular transport and presentation of a defined set of transmembrane proteins, such as transmembrane TGFA (PubMed:11101516). Required for normal acrosome formation during spermiogenesis and normal male fertility, probably by promoting colocalization of JAM2 and JAM3 at contact sites between germ cells and Sertoli cells (By similarity). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936, PubMed:27062250, PubMed:28067262). {ECO:0000250|UniProtKB:Q99JX3, ECO:0000269|PubMed:10487747, ECO:0000269|PubMed:11101516, ECO:0000269|PubMed:21515684, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:22523075, ECO:0000269|PubMed:27062250, ECO:0000269|PubMed:28067262}.
Q9H8Y8 GORASP2 T423 ochoa Golgi reassembly-stacking protein 2 (GRS2) (Golgi phosphoprotein 6) (GOLPH6) (Golgi reassembly-stacking protein of 55 kDa) (GRASP55) (p59) Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP1/GRASP65, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP2 plays a role in the assembly and membrane stacking of the Golgi cisternae, and in the process by which Golgi stacks reform after breakdown during mitosis and meiosis (PubMed:10487747, PubMed:21515684, PubMed:22523075). May regulate the intracellular transport and presentation of a defined set of transmembrane proteins, such as transmembrane TGFA (PubMed:11101516). Required for normal acrosome formation during spermiogenesis and normal male fertility, probably by promoting colocalization of JAM2 and JAM3 at contact sites between germ cells and Sertoli cells (By similarity). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936, PubMed:27062250, PubMed:28067262). {ECO:0000250|UniProtKB:Q99JX3, ECO:0000269|PubMed:10487747, ECO:0000269|PubMed:11101516, ECO:0000269|PubMed:21515684, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:22523075, ECO:0000269|PubMed:27062250, ECO:0000269|PubMed:28067262}.
Q9H9Q4 NHEJ1 T266 psp Non-homologous end-joining factor 1 (Protein cernunnos) (XRCC4-like factor) DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781, PubMed:17717001, PubMed:18158905, PubMed:18644470, PubMed:20558749, PubMed:26100018, PubMed:28369633). Plays a key role in NHEJ by promoting the ligation of various mismatched and non-cohesive ends (PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are non-complementary or partially complementary (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781). In some studies, has been shown to associate with XRCC4 to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22228831, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). Alternatively, it has also been shown that rather than forming filaments, a single NHEJ1 dimer interacts through both head domains with XRCC4 to promote the close alignment of DNA ends (By similarity). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Binds DNA in a length-dependent manner (PubMed:17317666, PubMed:18158905). {ECO:0000250|UniProtKB:A0A1L8ENT6, ECO:0000269|PubMed:16439204, ECO:0000269|PubMed:16439205, ECO:0000269|PubMed:17317666, ECO:0000269|PubMed:17470781, ECO:0000269|PubMed:17717001, ECO:0000269|PubMed:18158905, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:19056826, ECO:0000269|PubMed:20558749, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28369633, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:30250067}.
Q9HA65 TBC1D17 T606 ochoa TBC1 domain family member 17 Probable RAB GTPase-activating protein that inhibits RAB8A/B function. Reduces Rab8 recruitment to tubules emanating from the endocytic recycling compartment (ERC) and inhibits Rab8-mediated endocytic trafficking, such as that of transferrin receptor (TfR) (PubMed:22854040). Involved in regulation of autophagy. {ECO:0000269|PubMed:22854040, ECO:0000269|PubMed:24752605}.
Q9HAU0 PLEKHA5 T60 ochoa Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) None
Q9HAW4 CLSPN T802 ochoa Claspin (hClaspin) Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}.
Q9HBM6 TAF9B T156 ochoa Transcription initiation factor TFIID subunit 9B (Neuronal cell death-related protein 7) (DN-7) (Transcription initiation factor TFIID subunit 9-like) (Transcription-associated factor TAFII31L) Essential for cell viability. TAF9 and TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes. May have a role in gene regulation associated with apoptosis. TAFs are components of the transcription factor IID (TFIID) complex, the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex. TFIID or TFTC are essential for the regulation of RNA polymerase II-mediated transcription. {ECO:0000269|PubMed:15899866}.
Q9HBM6 TAF9B T159 ochoa Transcription initiation factor TFIID subunit 9B (Neuronal cell death-related protein 7) (DN-7) (Transcription initiation factor TFIID subunit 9-like) (Transcription-associated factor TAFII31L) Essential for cell viability. TAF9 and TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes. May have a role in gene regulation associated with apoptosis. TAFs are components of the transcription factor IID (TFIID) complex, the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex. TFIID or TFTC are essential for the regulation of RNA polymerase II-mediated transcription. {ECO:0000269|PubMed:15899866}.
Q9HC56 PCDH9 T926 ochoa Protocadherin-9 Potential calcium-dependent cell-adhesion protein.
Q9HCL0 PCDH18 T784 ochoa Protocadherin-18 Potential calcium-dependent cell-adhesion protein.
Q9NP74 PALMD T270 ochoa Palmdelphin (Paralemmin-like protein) None
Q9NPI6 DCP1A T309 ochoa mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}.
Q9NQ75 CASS4 T102 ochoa Cas scaffolding protein family member 4 (HEF-like protein) (HEF1-EFS-p130Cas-like protein) (HEPL) Docking protein that plays a role in tyrosine kinase-based signaling related to cell adhesion and cell spreading. Regulates PTK2/FAK1 activity, focal adhesion integrity, and cell spreading. {ECO:0000269|PubMed:18256281}.
Q9NQ84 GPRC5C T319 ochoa G-protein coupled receptor family C group 5 member C (Retinoic acid-induced gene 3 protein) (RAIG-3) This retinoic acid-inducible G-protein coupled receptor provide evidence for a possible interaction between retinoid and G-protein signaling pathways. {ECO:0000250}.
Q9NQS7 INCENP T207 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQS7 INCENP T509 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQX3 GPHN T286 ochoa Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}.
Q9NQZ2 UTP3 T23 ochoa Something about silencing protein 10 (Charged amino acid-rich leucine zipper 1) (CRL1) (Disrupter of silencing SAS10) (UTP3 homolog) Essential for gene silencing: has a role in the structure of silenced chromatin. Plays a role in the developing brain (By similarity). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:Q12136, ECO:0000250|UniProtKB:Q9JI13, ECO:0000269|PubMed:34516797}.
Q9NR12 PDLIM7 T253 ochoa PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma) May function as a scaffold on which the coordinated assembly of proteins can occur. May play a role as an adapter that, via its PDZ domain, localizes LIM-binding proteins to actin filaments of both skeletal muscle and nonmuscle tissues. Involved in both of the two fundamental mechanisms of bone formation, direct bone formation (e.g. embryonic flat bones mandible and cranium), and endochondral bone formation (e.g. embryonic long bone development). Plays a role during fracture repair. Involved in BMP6 signaling pathway (By similarity). {ECO:0000250, ECO:0000269|PubMed:11874232, ECO:0000269|PubMed:7929196}.
Q9NR33 POLE4 T31 ochoa DNA polymerase epsilon subunit 4 (DNA polymerase II subunit 4) (DNA polymerase epsilon subunit p12) Accessory component of the DNA polymerase epsilon complex (PubMed:10801849). Participates in DNA repair and in chromosomal DNA replication (By similarity). {ECO:0000250|UniProtKB:P27344, ECO:0000269|PubMed:10801849}.
Q9NR48 ASH1L T2341 ochoa Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}.
Q9NRH2 SNRK T365 ochoa SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}.
Q9NRR3 CDC42SE2 T33 ochoa CDC42 small effector protein 2 (Small effector of CDC42 protein 2) Probably involved in the organization of the actin cytoskeleton by acting downstream of CDC42, inducing actin filament assembly. Alters CDC42-induced cell shape changes. In activated T-cells, may play a role in CDC42-mediated F-actin accumulation at the immunological synapse. May play a role in early contractile events in phagocytosis in macrophages. {ECO:0000269|PubMed:10816584, ECO:0000269|PubMed:15840583}.
Q9NS37 CREBZF T18 ochoa CREB/ATF bZIP transcription factor (Host cell factor-binding transcription factor Zhangfei) (HCF-binding transcription factor Zhangfei) Strongly activates transcription when bound to HCFC1. Suppresses the expression of HSV proteins in cells infected with the virus in a HCFC1-dependent manner. Also suppresses the HCFC1-dependent transcriptional activation by CREB3 and reduces the amount of CREB3 in the cell. Able to down-regulate expression of some cellular genes in CREBZF-expressing cells. {ECO:0000269|PubMed:10871379, ECO:0000269|PubMed:15705566}.
Q9NSY1 BMP2K T829 ochoa BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}.
Q9NUA8 ZBTB40 T208 ochoa Zinc finger and BTB domain-containing protein 40 May be involved in transcriptional regulation.
Q9NUL3 STAU2 T405 ochoa Double-stranded RNA-binding protein Staufen homolog 2 RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}.
Q9NV88 INTS9 T563 ochoa Integrator complex subunit 9 (Int9) (Protein related to CPSF subunits of 74 kDa) (RC-74) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:33548203, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:22252320, PubMed:26308897, PubMed:30737432). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:22252320, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33548203, ECO:0000269|PubMed:38570683}.
Q9NWZ5 UCKL1 T19 ochoa Uridine-cytidine kinase-like 1 (EC 2.7.1.48) May contribute to UTP accumulation needed for blast transformation and proliferation. {ECO:0000269|PubMed:12199906}.
Q9NX09 DDIT4 T25 ochoa DNA damage-inducible transcript 4 protein (HIF-1 responsive protein RTP801) (Protein regulated in development and DNA damage response 1) (REDD-1) Regulates cell growth, proliferation and survival via inhibition of the activity of the mammalian target of rapamycin complex 1 (mTORC1). Inhibition of mTORC1 is mediated by a pathway that involves DDIT4/REDD1, AKT1, the TSC1-TSC2 complex and the GTPase RHEB. Plays an important role in responses to cellular energy levels and cellular stress, including responses to hypoxia and DNA damage. Regulates p53/TP53-mediated apoptosis in response to DNA damage via its effect on mTORC1 activity. Its role in the response to hypoxia depends on the cell type; it mediates mTORC1 inhibition in fibroblasts and thymocytes, but not in hepatocytes (By similarity). Required for mTORC1-mediated defense against viral protein synthesis and virus replication (By similarity). Inhibits neuronal differentiation and neurite outgrowth mediated by NGF via its effect on mTORC1 activity. Required for normal neuron migration during embryonic brain development. Plays a role in neuronal cell death. {ECO:0000250, ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:15632201, ECO:0000269|PubMed:15988001, ECO:0000269|PubMed:17005863, ECO:0000269|PubMed:17379067, ECO:0000269|PubMed:19557001, ECO:0000269|PubMed:20166753, ECO:0000269|PubMed:21460850}.
Q9NX70 MED29 T143 ochoa Mediator of RNA polymerase II transcription subunit 29 (Intersex-like protein) (Mediator complex subunit 29) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:15555573}.
Q9NYV4 CDK12 T1246 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NZJ0 DTL T466 ochoa Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}.
Q9P270 SLAIN2 T397 ochoa SLAIN motif-containing protein 2 Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}.
Q9P275 USP36 T523 ochoa Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}.
Q9P2B4 CTTNBP2NL T551 ochoa CTTNBP2 N-terminal-like protein Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}.
Q9P2P5 HECW2 T1026 ochoa E3 ubiquitin-protein ligase HECW2 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECW2) (NEDD4-like E3 ubiquitin-protein ligase 2) E3 ubiquitin-protein ligase that mediates ubiquitination of TP73. Acts to stabilize TP73 and enhance activation of transcription by TP73 (PubMed:12890487). Involved in the regulation of mitotic metaphase/anaphase transition (PubMed:24163370). {ECO:0000269|PubMed:12890487, ECO:0000269|PubMed:24163370}.
Q9UER7 DAXX T169 ochoa Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}.
Q9UF83 None T274 ochoa Uncharacterized protein DKFZp434B061 None
Q9UGP4 LIMD1 T260 ochoa LIM domain-containing protein 1 Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}.
Q9UGY1 NOL12 T145 ochoa Nucleolar protein 12 Multifunctional RNA binding protein that plays a role in RNA metabolism and DNA maintenance. Participates in the resolution of DNA stress and the maintenance of genome integrity by localizing to sites of DNA insults (PubMed:29069457). Also plays a role in proper nucleolar organization by limiting nucleolar size and regulating nucleolar number. Mechanistically, regulates the nucleolar levels of fibrillarin and nucleolin, two key players in pre-rRNA processing and ribosome assembly (PubMed:30988155). {ECO:0000269|PubMed:29069457, ECO:0000269|PubMed:30988155}.
Q9UKE5 TNIK T1028 ochoa TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.
Q9UKI8 TLK1 T192 ochoa Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}.
Q9UKN1 MUC12 T1173 ochoa Mucin-12 (MUC-12) (Mucin-11) (MUC-11) Involved in epithelial cell protection, adhesion modulation, and signaling. May be involved in epithelial cell growth regulation. Stimulated by both cytokine TNF-alpha and TGF-beta in intestinal epithelium. {ECO:0000269|PubMed:17058067}.
Q9UKX7 NUP50 T319 ochoa Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}.
Q9ULC4 MCTS1 T81 psp Malignant T-cell-amplified sequence 1 (MCT-1) (Multiple copies T-cell malignancies) Translation regulator forming a complex with DENR to promote translation reinitiation. Translation reinitiation is the process where the small ribosomal subunit remains attached to the mRNA following termination of translation of a regulatory upstream ORF (uORF), and resume scanning on the same mRNA molecule to initiate translation of a downstream ORF, usually the main ORF (mORF). The MCTS1/DENR complex is pivotal to two linked mechanisms essential for translation reinitiation. Firstly, the dissociation of deacylated tRNAs from post-termination 40S ribosomal complexes during ribosome recycling. Secondly, the recruitment in an EIF2-independent manner of aminoacylated initiator tRNA to P site of 40S ribosomes for a new round of translation (PubMed:16982740, PubMed:20713520, PubMed:37875108). This regulatory mechanism governs the translation of more than 150 genes which translation reinitiation is MCTS1/DENR complex-dependent (PubMed:16982740, PubMed:20713520, PubMed:37875108). Consequently, modulates various unrelated biological processes including cell cycle regulation and DNA damage signaling and repair (PubMed:10440924, PubMed:11709712, PubMed:12637315, PubMed:15897892, PubMed:16322206, PubMed:17016429, PubMed:17416211, PubMed:9766643). Notably, it positively regulates interferon gamma immunity to mycobacteria by enhancing the translation of JAK2 (PubMed:37875108). {ECO:0000269|PubMed:10440924, ECO:0000269|PubMed:11709712, ECO:0000269|PubMed:12637315, ECO:0000269|PubMed:15897892, ECO:0000269|PubMed:16322206, ECO:0000269|PubMed:16982740, ECO:0000269|PubMed:17016429, ECO:0000269|PubMed:17416211, ECO:0000269|PubMed:20713520, ECO:0000269|PubMed:37875108, ECO:0000269|PubMed:9766643}.
Q9ULH1 ASAP1 T1050 ochoa Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}.
Q9ULM3 YEATS2 T480 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9ULM3 YEATS2 T1011 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9UNE0 EDAR T266 ochoa Tumor necrosis factor receptor superfamily member EDAR (Anhidrotic ectodysplasin receptor 1) (Downless homolog) (EDA-A1 receptor) (Ectodermal dysplasia receptor) (Ectodysplasin-A receptor) Receptor for EDA isoform A1, but not for EDA isoform A2. Mediates the activation of NF-kappa-B and JNK. May promote caspase-independent cell death.
Q9UPN4 CEP131 T93 ochoa Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}.
Q9UPN4 CEP131 T96 ochoa Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}.
Q9UPQ9 TNRC6B T1464 ochoa Trinucleotide repeat-containing gene 6B protein Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}.
Q9UPS6 SETD1B T1435 ochoa Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.364) (Lysine N-methyltransferase 2G) (SET domain-containing protein 1B) (hSET1B) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:17355966, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17355966, PubMed:25561738). Plays an essential role in regulating the transcriptional programming of multipotent hematopoietic progenitor cells and lymphoid lineage specification during hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CFT2, ECO:0000269|PubMed:17355966, ECO:0000269|PubMed:25561738}.
Q9UPU9 SAMD4A T583 ochoa Protein Smaug homolog 1 (Smaug 1) (hSmaug1) (Sterile alpha motif domain-containing protein 4A) (SAM domain-containing protein 4A) Acts as a translational repressor of SRE-containing messengers. {ECO:0000269|PubMed:16221671}.
Q9UQ35 SRRM2 T400 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 T2291 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y253 POLH T505 ochoa DNA polymerase eta (EC 2.7.7.7) (RAD30 homolog A) (Xeroderma pigmentosum variant type protein) DNA polymerase specifically involved in the DNA repair by translesion synthesis (TLS) (PubMed:10385124, PubMed:11743006, PubMed:16357261, PubMed:24449906, PubMed:24553286, PubMed:38212351). Due to low processivity on both damaged and normal DNA, cooperates with the heterotetrameric (REV3L, REV7, POLD2 and POLD3) POLZ complex for complete bypass of DNA lesions. Inserts one or 2 nucleotide(s) opposite the lesion, the primer is further extended by the tetrameric POLZ complex. In the case of 1,2-intrastrand d(GpG)-cisplatin cross-link, inserts dCTP opposite the 3' guanine (PubMed:24449906). Particularly important for the repair of UV-induced pyrimidine dimers (PubMed:10385124, PubMed:11743006). Although inserts the correct base, may cause base transitions and transversions depending upon the context. May play a role in hypermutation at immunoglobulin genes (PubMed:11376341, PubMed:14734526). Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have any lyase activity, preventing the release of the 5'-deoxyribose phosphate (5'-dRP) residue. This covalent trapping of the enzyme by the 5'-dRP residue inhibits its DNA synthetic activity during base excision repair, thereby avoiding high incidence of mutagenesis (PubMed:14630940). Targets POLI to replication foci (PubMed:12606586). {ECO:0000269|PubMed:10385124, ECO:0000269|PubMed:11376341, ECO:0000269|PubMed:11743006, ECO:0000269|PubMed:12606586, ECO:0000269|PubMed:14630940, ECO:0000269|PubMed:14734526, ECO:0000269|PubMed:16357261, ECO:0000269|PubMed:24449906, ECO:0000269|PubMed:24553286, ECO:0000269|PubMed:38212351}.
Q9Y2U5 MAP3K2 T337 ochoa Mitogen-activated protein kinase kinase kinase 2 (EC 2.7.11.25) (MAPK/ERK kinase kinase 2) (MEK kinase 2) (MEKK 2) Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics. {ECO:0000250, ECO:0000269|PubMed:10713157, ECO:0000269|PubMed:16001074}.
Q9Y2V2 CARHSP1 T45 ochoa Calcium-regulated heat-stable protein 1 (Calcium-regulated heat-stable protein of 24 kDa) (CRHSP-24) Binds mRNA and regulates the stability of target mRNA. Binds single-stranded DNA (in vitro). {ECO:0000269|PubMed:21078874, ECO:0000269|PubMed:21177848}.
Q9Y3Z3 SAMHD1 T608 ochoa Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 (dNTPase) (EC 3.1.5.-) (Dendritic cell-derived IFNG-induced protein) (DCIP) (Monocyte protein 5) (MOP-5) (SAM domain and HD domain-containing protein 1) (hSAMHD1) Protein that acts both as a host restriction factor involved in defense response to virus and as a regulator of DNA end resection at stalled replication forks (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:26294762, PubMed:26431200, PubMed:28229507, PubMed:28834754, PubMed:29670289). Has deoxynucleoside triphosphate (dNTPase) activity, which is required to restrict infection by viruses, such as HIV-1: dNTPase activity reduces cellular dNTP levels to levels too low for retroviral reverse transcription to occur, blocking early-stage virus replication in dendritic and other myeloid cells (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23364794, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:25038827, PubMed:26101257, PubMed:26294762, PubMed:26431200, PubMed:28229507). Likewise, suppresses LINE-1 retrotransposon activity (PubMed:24035396, PubMed:24217394, PubMed:29610582). Not able to restrict infection by HIV-2 virus; because restriction activity is counteracted by HIV-2 viral protein Vpx (PubMed:21613998, PubMed:21720370). In addition to virus restriction, dNTPase activity acts as a regulator of DNA precursor pools by regulating dNTP pools (PubMed:23858451). Phosphorylation at Thr-592 acts as a switch to control dNTPase-dependent and -independent functions: it inhibits dNTPase activity and ability to restrict infection by viruses, while it promotes DNA end resection at stalled replication forks (PubMed:23601106, PubMed:23602554, PubMed:29610582, PubMed:29670289). Functions during S phase at stalled DNA replication forks to promote the resection of gapped or reversed forks: acts by stimulating the exonuclease activity of MRE11, activating the ATR-CHK1 pathway and allowing the forks to restart replication (PubMed:29670289). Its ability to promote degradation of nascent DNA at stalled replication forks is required to prevent induction of type I interferons, thereby preventing chronic inflammation (PubMed:27477283, PubMed:29670289). Ability to promote DNA end resection at stalled replication forks is independent of dNTPase activity (PubMed:29670289). Enhances immunoglobulin hypermutation in B-lymphocytes by promoting transversion mutation (By similarity). {ECO:0000250|UniProtKB:Q60710, ECO:0000269|PubMed:19525956, ECO:0000269|PubMed:21613998, ECO:0000269|PubMed:21720370, ECO:0000269|PubMed:22056990, ECO:0000269|PubMed:23364794, ECO:0000269|PubMed:23601106, ECO:0000269|PubMed:23602554, ECO:0000269|PubMed:23858451, ECO:0000269|PubMed:24035396, ECO:0000269|PubMed:24217394, ECO:0000269|PubMed:24336198, ECO:0000269|PubMed:25038827, ECO:0000269|PubMed:26101257, ECO:0000269|PubMed:26294762, ECO:0000269|PubMed:26431200, ECO:0000269|PubMed:27477283, ECO:0000269|PubMed:28229507, ECO:0000269|PubMed:28834754, ECO:0000269|PubMed:29610582, ECO:0000269|PubMed:29670289}.
Q9Y446 PKP3 T159 ochoa Plakophilin-3 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}.
Q9Y478 PRKAB1 T80 psp 5'-AMP-activated protein kinase subunit beta-1 (AMPK subunit beta-1) (AMPKb) Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
Q9Y4J8 DTNA T587 ochoa Dystrobrevin alpha (DTN-A) (Alpha-dystrobrevin) (Dystrophin-related protein 3) May be involved in the formation and stability of synapses as well as being involved in the clustering of nicotinic acetylcholine receptors.
Q9Y5S2 CDC42BPB T1108 psp Serine/threonine-protein kinase MRCK beta (EC 2.7.11.1) (CDC42-binding protein kinase beta) (CDC42BP-beta) (DMPK-like beta) (Myotonic dystrophy kinase-related CDC42-binding kinase beta) (MRCK beta) (Myotonic dystrophy protein kinase-like beta) Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715, PubMed:21949762). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates PPP1R12A (PubMed:21457715). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). {ECO:0000250|UniProtKB:Q7TT50, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:21949762}.
Q9Y6D5 ARFGEF2 T243 ochoa Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}.
Q9Y6I3 EPN1 T467 ochoa Epsin-1 (EH domain-binding mitotic phosphoprotein) (EPS-15-interacting protein 1) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Modifies membrane curvature and facilitates the formation of clathrin-coated invaginations (By similarity). Regulates receptor-mediated endocytosis (PubMed:10393179, PubMed:10557078). {ECO:0000250|UniProtKB:O88339, ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:10557078}.
Q9Y6J0 CABIN1 T1926 ochoa Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}.
Q9Y6K1 DNMT3A T251 ochoa DNA (cytosine-5)-methyltransferase 3A (Dnmt3a) (EC 2.1.1.37) (Cysteine methyltransferase DNMT3A) (EC 2.1.1.-) (DNA methyltransferase HsaIIIA) (DNA MTase HsaIIIA) (M.HsaIIIA) Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development (PubMed:12138111, PubMed:16357870, PubMed:30478443). DNA methylation is coordinated with methylation of histones (PubMed:12138111, PubMed:16357870, PubMed:30478443). It modifies DNA in a non-processive manner and also methylates non-CpG sites (PubMed:12138111, PubMed:16357870, PubMed:30478443). May preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1 (By similarity). Plays a role in paternal and maternal imprinting (By similarity). Required for methylation of most imprinted loci in germ cells (By similarity). Acts as a transcriptional corepressor for ZBTB18 (By similarity). Recruited to trimethylated 'Lys-36' of histone H3 (H3K36me3) sites (By similarity). Can actively repress transcription through the recruitment of HDAC activity (By similarity). Also has weak auto-methylation activity on Cys-710 in absence of DNA (By similarity). {ECO:0000250|UniProtKB:O88508, ECO:0000269|PubMed:12138111, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:30478443}.
Q9Y6M4 CSNK1G3 T421 ochoa Casein kinase I isoform gamma-3 (CKI-gamma 3) (EC 2.7.11.1) Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). {ECO:0000250}.
Q9Y6N7 ROBO1 T1591 ochoa Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}.
V9GYY5 None T138 ochoa Nucleolar protein 12 Multifunctional RNA binding protein that plays a role in RNA metabolism and DNA maintenance. Participates in the resolution of DNA stress and the maintenance of genome integrity by localizing to sites of DNA insults. Also plays a role in proper nucleolar organization by limiting nucleolar size and regulating nucleolar number. Mechanistically, regulates the nucleolar levels of fibrillarin and nucleolin, two key players in pre-rRNA processing and ribosome assembly. {ECO:0000256|ARBA:ARBA00057078}.
P13639 EEF2 T724 Sugiyama Elongation factor 2 (EF-2) (EC 3.6.5.-) Catalyzes the GTP-dependent ribosomal translocation step during translation elongation (PubMed:26593721). During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively (PubMed:26593721). Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (PubMed:26593721). {ECO:0000269|PubMed:26593721}.
Q15029 EFTUD2 T811 Sugiyama 116 kDa U5 small nuclear ribonucleoprotein component (Elongation factor Tu GTP-binding domain-containing protein 2) (SNU114 homolog) (hSNU114) (U5 snRNP-specific protein, 116 kDa) (U5-116 kDa) Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes (PubMed:25092792, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30315277, PubMed:30705154). Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome (PubMed:16723661). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:16723661, ECO:0000269|PubMed:25092792, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:30705154, ECO:0000305|PubMed:33509932}.
P07858 CTSB T95 Sugiyama Cathepsin B (EC 3.4.22.1) (APP secretase) (APPS) (Cathepsin B1) [Cleaved into: Cathepsin B light chain; Cathepsin B heavy chain] Thiol protease which is believed to participate in intracellular degradation and turnover of proteins (PubMed:12220505). Cleaves matrix extracellular phosphoglycoprotein MEPE (PubMed:12220505). Involved in the solubilization of cross-linked TG/thyroglobulin in the thyroid follicle lumen (By similarity). Has also been implicated in tumor invasion and metastasis (PubMed:3972105). {ECO:0000250|UniProtKB:P10605, ECO:0000269|PubMed:12220505, ECO:0000269|PubMed:3972105}.
P26639 TARS1 T248 Sugiyama Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}.
P51858 HDGF T94 Sugiyama Hepatoma-derived growth factor (HDGF) (High mobility group protein 1-like 2) (HMG-1L2) [Isoform 1]: Acts as a transcriptional repressor (PubMed:17974029). Has mitogenic activity for fibroblasts (PubMed:11751870, PubMed:26845719). Heparin-binding protein (PubMed:15491618). {ECO:0000269|PubMed:11751870, ECO:0000269|PubMed:15491618, ECO:0000269|PubMed:17974029, ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 2]: Does not have mitogenic activity for fibroblasts (PubMed:26845719). Does not bind heparin (PubMed:26845719). {ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 3]: Has mitogenic activity for fibroblasts (PubMed:26845719). Heparin-binding protein (PubMed:26845719). {ECO:0000269|PubMed:26845719}.
Q02878 RPL6 T118 Sugiyama Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}.
P30101 PDIA3 T102 Sugiyama Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
Q9NS23 RASSF1 T43 PSP Ras association domain-containing protein 1 Potential tumor suppressor. Required for death receptor-dependent apoptosis. Mediates activation of STK3/MST2 and STK4/MST1 during Fas-induced apoptosis by preventing their dephosphorylation. When associated with MOAP1, promotes BAX conformational change and translocation to mitochondrial membranes in response to TNF and TNFSF10 stimulation. Isoform A interacts with CDC20, an activator of the anaphase-promoting complex, APC, resulting in the inhibition of APC activity and mitotic progression. Inhibits proliferation by negatively regulating cell cycle progression at the level of G1/S-phase transition by regulating accumulation of cyclin D1 protein. Isoform C has been shown not to perform these roles, no function has been identified for this isoform. Isoform A disrupts interactions among MDM2, DAXX and USP7, thus contributing to the efficient activation of TP53 by promoting MDM2 self-ubiquitination in cell-cycle checkpoint control in response to DNA damage. {ECO:0000269|PubMed:10888881, ECO:0000269|PubMed:11333291, ECO:0000269|PubMed:12024041, ECO:0000269|PubMed:14743218, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:15949439, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:18566590, ECO:0000269|PubMed:21199877}.
P25205 MCM3 T368 Sugiyama DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
P07237 P4HB T442 Sugiyama Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}.
P13667 PDIA4 T139 Sugiyama Protein disulfide-isomerase A4 (EC 5.3.4.1) (Endoplasmic reticulum resident protein 70) (ER protein 70) (ERp70) (Endoplasmic reticulum resident protein 72) (ER protein 72) (ERp-72) (ERp72) None
P26639 TARS1 T629 Sugiyama Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}.
P55084 HADHB T356 Sugiyama Trifunctional enzyme subunit beta, mitochondrial (TP-beta) [Includes: 3-ketoacyl-CoA thiolase (EC 2.3.1.155) (EC 2.3.1.16) (Acetyl-CoA acyltransferase) (Beta-ketothiolase)] Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway (PubMed:29915090, PubMed:30850536, PubMed:8135828). The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA (PubMed:29915090). Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long-chain fatty acids (PubMed:30850536). Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional enzyme subunit alpha/HADHA carries the 2,3-enoyl-CoA hydratase and the 3-hydroxyacyl-CoA dehydrogenase activities, while the trifunctional enzyme subunit beta/HADHB described here bears the 3-ketoacyl-CoA thiolase activity (PubMed:29915090, PubMed:30850536, PubMed:8135828). {ECO:0000269|PubMed:29915090, ECO:0000269|PubMed:30850536, ECO:0000269|PubMed:8135828, ECO:0000303|PubMed:29915090, ECO:0000303|PubMed:30850536}.
Q15084 PDIA6 T239 Sugiyama Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}.
P04626 ERBB2 T1103 Sugiyama Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}.
Q9NXV6 CDKN2AIP T114 Sugiyama CDKN2A-interacting protein (Collaborator of ARF) Regulates DNA damage response in a dose-dependent manner through a number of signaling pathways involved in cell proliferation, apoptosis and senescence. {ECO:0000269|PubMed:15109303, ECO:0000269|PubMed:24825908}.
Q14694 USP10 T502 Sugiyama Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}.
P17980 PSMC3 T166 Sugiyama 26S proteasome regulatory subunit 6A (26S proteasome AAA-ATPase subunit RPT5) (Proteasome 26S subunit ATPase 3) (Proteasome subunit P50) (Tat-binding protein 1) (TBP-1) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC3 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798}.
Q01844 EWSR1 T422 Sugiyama RNA-binding protein EWS (EWS oncogene) (Ewing sarcoma breakpoint region 1 protein) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Might normally function as a transcriptional repressor (PubMed:10767297). EWS-fusion-proteins (EFPS) may play a role in the tumorigenic process. They may disturb gene expression by mimicking, or interfering with the normal function of CTD-POLII within the transcription initiation complex. They may also contribute to an aberrant activation of the fusion protein target genes. {ECO:0000269|PubMed:10767297, ECO:0000269|PubMed:21256132}.
P29320 EPHA3 T606 Sugiyama Ephrin type-A receptor 3 (EC 2.7.10.1) (EPH-like kinase 4) (EK4) (hEK4) (HEK) (Human embryo kinase) (Tyrosine-protein kinase TYRO4) (Tyrosine-protein kinase receptor ETK1) (Eph-like tyrosine kinase 1) Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous for ephrin-A ligands it binds preferentially EFNA5. Upon activation by EFNA5 regulates cell-cell adhesion, cytoskeletal organization and cell migration. Plays a role in cardiac cells migration and differentiation and regulates the formation of the atrioventricular canal and septum during development probably through activation by EFNA1. Involved in the retinotectal mapping of neurons. May also control the segregation but not the guidance of motor and sensory axons during neuromuscular circuit development. {ECO:0000269|PubMed:11870224}.
P29597 TYK2 T919 Sugiyama Non-receptor tyrosine-protein kinase TYK2 (EC 2.7.10.2) Tyrosine kinase of the non-receptor type involved in numerous cytokines and interferons signaling, which regulates cell growth, development, cell migration, innate and adaptive immunity (PubMed:10542297, PubMed:10995743, PubMed:7657660, PubMed:7813427, PubMed:8232552). Plays both structural and catalytic roles in numerous interleukins and interferons (IFN-alpha/beta) signaling (PubMed:10542297). Associates with heterodimeric cytokine receptor complexes and activates STAT family members including STAT1, STAT3, STAT4 or STAT6 (PubMed:10542297, PubMed:7638186). The heterodimeric cytokine receptor complexes are composed of (1) a TYK2-associated receptor chain (IFNAR1, IL12RB1, IL10RB or IL13RA1), and (2) a second receptor chain associated either with JAK1 or JAK2 (PubMed:10542297, PubMed:25762719, PubMed:7526154, PubMed:7813427). In response to cytokine-binding to receptors, phosphorylates and activates receptors (IFNAR1, IL12RB1, IL10RB or IL13RA1), creating docking sites for STAT members (PubMed:7526154, PubMed:7657660). In turn, recruited STATs are phosphorylated by TYK2 (or JAK1/JAK2 on the second receptor chain), form homo- and heterodimers, translocate to the nucleus, and regulate cytokine/growth factor responsive genes (PubMed:10542297, PubMed:25762719, PubMed:7657660). Negatively regulates STAT3 activity by promototing phosphorylation at a specific tyrosine that differs from the site used for signaling (PubMed:29162862). {ECO:0000269|PubMed:10542297, ECO:0000269|PubMed:10995743, ECO:0000269|PubMed:25762719, ECO:0000269|PubMed:29162862, ECO:0000269|PubMed:7526154, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:7813427, ECO:0000269|PubMed:8232552}.
P08174 CD55 T102 Sugiyama Complement decay-accelerating factor (CD antigen CD55) This protein recognizes C4b and C3b fragments that condense with cell-surface hydroxyl or amino groups when nascent C4b and C3b are locally generated during C4 and c3 activation. Interaction of daf with cell-associated C4b and C3b polypeptides interferes with their ability to catalyze the conversion of C2 and factor B to enzymatically active C2a and Bb and thereby prevents the formation of C4b2a and C3bBb, the amplification convertases of the complement cascade (PubMed:7525274). Inhibits complement activation by destabilizing and preventing the formation of C3 and C5 convertases, which prevents complement damage (PubMed:28657829). {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:28657829}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus A21, coxsackieviruses B1, B3 and B5. {ECO:0000269|PubMed:9151867}.; FUNCTION: (Microbial infection) Acts as a receptor for Human enterovirus 70 and D68 (Probable). {ECO:0000269|PubMed:8764022}.; FUNCTION: (Microbial infection) Acts as a receptor for Human echoviruses 6, 7, 11, 12, 20 and 21. {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:12409401}.
P36888 FLT3 T728 Sugiyama Receptor-type tyrosine-protein kinase FLT3 (EC 2.7.10.1) (FL cytokine receptor) (Fetal liver kinase-2) (FLK-2) (Fms-like tyrosine kinase 3) (FLT-3) (Stem cell tyrosine kinase 1) (STK-1) (CD antigen CD135) Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine FLT3LG and regulates differentiation, proliferation and survival of hematopoietic progenitor cells and of dendritic cells. Promotes phosphorylation of SHC1 and AKT1, and activation of the downstream effector MTOR. Promotes activation of RAS signaling and phosphorylation of downstream kinases, including MAPK1/ERK2 and/or MAPK3/ERK1. Promotes phosphorylation of FES, FER, PTPN6/SHP, PTPN11/SHP-2, PLCG1, and STAT5A and/or STAT5B. Activation of wild-type FLT3 causes only marginal activation of STAT5A or STAT5B. Mutations that cause constitutive kinase activity promote cell proliferation and resistance to apoptosis via the activation of multiple signaling pathways. {ECO:0000269|PubMed:10080542, ECO:0000269|PubMed:11090077, ECO:0000269|PubMed:14504097, ECO:0000269|PubMed:16266983, ECO:0000269|PubMed:16627759, ECO:0000269|PubMed:18490735, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:21067588, ECO:0000269|PubMed:21262971, ECO:0000269|PubMed:21516120, ECO:0000269|PubMed:7507245}.
P37023 ACVRL1 T450 Sugiyama Activin receptor type-1-like (EC 2.7.11.30) (Activin receptor-like kinase 1) (ALK-1) (Serine/threonine-protein kinase receptor R3) (SKR3) (TGF-B superfamily receptor type I) (TSR-I) Type I receptor for TGF-beta family ligands BMP9/GDF2 and BMP10 and important regulator of normal blood vessel development. On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. May bind activin as well. {ECO:0000269|PubMed:22718755, ECO:0000269|PubMed:22799562, ECO:0000269|PubMed:26176610}.
Q14204 DYNC1H1 T3900 Sugiyama Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}.
P45985 MAP2K4 T66 Sugiyama Dual specificity mitogen-activated protein kinase kinase 4 (MAP kinase kinase 4) (MAPKK 4) (EC 2.7.12.2) (JNK-activating kinase 1) (MAPK/ERK kinase 4) (MEK 4) (SAPK/ERK kinase 1) (SEK1) (Stress-activated protein kinase kinase 1) (SAPK kinase 1) (SAPKK-1) (SAPKK1) (c-Jun N-terminal kinase kinase 1) (JNKK) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to pro-inflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14. {ECO:0000269|PubMed:7716521}.
P30622 CLIP1 T27 Sugiyama CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}.
P61916 NPC2 T44 Sugiyama NPC intracellular cholesterol transporter 2 (Epididymal secretory protein E1) (Human epididymis-specific protein 1) (He1) (Niemann-Pick disease type C2 protein) Intracellular cholesterol transporter which acts in concert with NPC1 and plays an important role in the egress of cholesterol from the lysosomal compartment (PubMed:11125141, PubMed:15937921, PubMed:17018531, PubMed:18772377, PubMed:29580834). Unesterified cholesterol that has been released from LDLs in the lumen of the late endosomes/lysosomes is transferred by NPC2 to the cholesterol-binding pocket in the N-terminal domain of NPC1 (PubMed:17018531, PubMed:18772377, PubMed:27238017). May bind and mobilize cholesterol that is associated with membranes (PubMed:18823126). NPC2 binds cholesterol with a 1:1 stoichiometry (PubMed:17018531). Can bind a variety of sterols, including lathosterol, desmosterol and the plant sterols stigmasterol and beta-sitosterol (PubMed:17018531). The secreted form of NCP2 regulates biliary cholesterol secretion via stimulation of ABCG5/ABCG8-mediated cholesterol transport (By similarity). {ECO:0000250|UniProtKB:Q9Z0J0, ECO:0000269|PubMed:11125141, ECO:0000269|PubMed:15937921, ECO:0000269|PubMed:17018531, ECO:0000269|PubMed:18772377, ECO:0000269|PubMed:18823126, ECO:0000269|PubMed:27238017, ECO:0000269|PubMed:29580834}.
P55809 OXCT1 T159 Sugiyama Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial (SCOT) (EC 2.8.3.5) (3-oxoacid CoA-transferase 1) (Somatic-type succinyl-CoA:3-oxoacid CoA-transferase) (SCOT-s) (Succinyl-CoA:3-oxoacid CoA transferase) Key enzyme for ketone body catabolism. Catalyzes the first, rate-limiting step of ketone body utilization in extrahepatic tissues, by transferring coenzyme A (CoA) from a donor thiolester species (succinyl-CoA) to an acceptor carboxylate (acetoacetate), and produces acetoacetyl-CoA. Acetoacetyl-CoA is further metabolized by acetoacetyl-CoA thiolase into two acetyl-CoA molecules which enter the citric acid cycle for energy production (PubMed:10964512). Forms a dimeric enzyme where both of the subunits are able to form enzyme-CoA thiolester intermediates, but only one subunit is competent to transfer the CoA moiety to the acceptor carboxylate (3-oxo acid) and produce a new acyl-CoA. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity). {ECO:0000250|UniProtKB:Q29551, ECO:0000269|PubMed:10964512}.
Q96JJ7 TMX3 T101 Sugiyama Protein disulfide-isomerase TMX3 (EC 5.3.4.1) (Thioredoxin domain-containing protein 10) (Thioredoxin-related transmembrane protein 3) Probable disulfide isomerase, which participates in the folding of proteins containing disulfide bonds. May act as a dithiol oxidase (PubMed:15623505). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:31304984). {ECO:0000269|PubMed:15623505, ECO:0000269|PubMed:31304984}.
P23588 EIF4B T75 Sugiyama Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
O14974 PPP1R12A T500 SIGNOR Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}.
P08865 RPSA T144 Sugiyama Small ribosomal subunit protein uS2 (37 kDa laminin receptor precursor) (37LRP) (37/67 kDa laminin receptor) (LRP/LR) (40S ribosomal protein SA) (67 kDa laminin receptor) (67LR) (Colon carcinoma laminin-binding protein) (Laminin receptor 1) (LamR) (Laminin-binding protein precursor p40) (LBP/p40) (Multidrug resistance-associated protein MGr1-Ag) (NEM/1CHD4) Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Acts as a PPP1R16B-dependent substrate of PPP1CA. {ECO:0000255|HAMAP-Rule:MF_03016, ECO:0000269|PubMed:16263087, ECO:0000269|PubMed:6300843}.; FUNCTION: (Microbial infection) Acts as a receptor for the Adeno-associated viruses 2,3,8 and 9. {ECO:0000269|PubMed:16973587}.; FUNCTION: (Microbial infection) Acts as a receptor for the Dengue virus. {ECO:0000269|PubMed:15507651}.; FUNCTION: (Microbial infection) Acts as a receptor for the Sindbis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the Venezuelan equine encephalitis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the pathogenic prion protein. {ECO:0000269|PubMed:11689427, ECO:0000269|PubMed:9396609}.; FUNCTION: (Microbial infection) Acts as a receptor for bacteria. {ECO:0000269|PubMed:15516338}.
Q15084 PDIA6 T100 Sugiyama Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}.
P30101 PDIA3 T452 Sugiyama Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
Q16881 TXNRD1 T522 Sugiyama Thioredoxin reductase 1, cytoplasmic (TR) (EC 1.8.1.9) (Gene associated with retinoic and interferon-induced mortality 12 protein) (GRIM-12) (Gene associated with retinoic and IFN-induced mortality 12 protein) (KM-102-derived reductase-like factor) (Peroxidase TXNRD1) (EC 1.11.1.2) (Thioredoxin reductase TR1) Reduces disulfideprotein thioredoxin (Trx) to its dithiol-containing form (PubMed:8577704). Homodimeric flavoprotein involved in the regulation of cellular redox reactions, growth and differentiation. Contains a selenocysteine residue at the C-terminal active site that is essential for catalysis (Probable). Also has reductase activity on hydrogen peroxide (H2O2) (PubMed:10849437). {ECO:0000269|PubMed:10849437, ECO:0000269|PubMed:8577704, ECO:0000305|PubMed:17512005}.; FUNCTION: [Isoform 1]: Induces actin and tubulin polymerization, leading to formation of cell membrane protrusions. {ECO:0000269|PubMed:18042542, ECO:0000269|PubMed:8577704}.; FUNCTION: [Isoform 4]: Enhances the transcriptional activity of estrogen receptors ESR1 and ESR2. {ECO:0000269|PubMed:15199063}.; FUNCTION: [Isoform 5]: Enhances the transcriptional activity of the estrogen receptor ESR2 only (PubMed:15199063). Mediates cell death induced by a combination of interferon-beta and retinoic acid (PubMed:9774665). {ECO:0000269|PubMed:15199063, ECO:0000269|PubMed:9774665}.
P17544 ATF7 T55 Sugiyama Cyclic AMP-dependent transcription factor ATF-7 (cAMP-dependent transcription factor ATF-7) (Activating transcription factor 7) (Transcription factor ATF-A) Stress-responsive chromatin regulator that plays a role in various biological processes including innate immunological memory, adipocyte differentiation or telomerase regulation (PubMed:29490055). In absence of stress, contributes to the formation of heterochromatin and heterochromatin-like structure by recruiting histone H3K9 tri- and di-methyltransferases thus silencing the transcription of target genes such as STAT1 in adipocytes, or genes involved in innate immunity in macrophages and adipocytes (By similarity). Stress induces ATF7 phosphorylation that disrupts interactions with histone methyltransferase and enhances the association with coactivators containing histone acetyltransferase and/or histone demethylase, leading to disruption of the heterochromatin-like structure and subsequently transcriptional activation (By similarity). In response to TNF-alpha, which is induced by various stresses, phosphorylated ATF7 and telomerase are released from telomeres leading to telomere shortening (PubMed:29490055). Also plays a role in maintaining epithelial regenerative capacity and protecting against cell death during intestinal epithelial damage and repair (By similarity). {ECO:0000250|UniProtKB:Q8R0S1, ECO:0000269|PubMed:29490055}.; FUNCTION: [Isoform 4]: Acts as a dominant repressor of the E-selectin/NF-ELAM1/delta-A promoter.; FUNCTION: [Isoform 5]: Acts as a negative regulator, inhibiting both ATF2 and ATF7 transcriptional activities. It may exert these effects by sequestrating in the cytoplasm the Thr-53 phosphorylating kinase, preventing activation. {ECO:0000269|PubMed:21858082}.
O15355 PPM1G T234 Sugiyama Protein phosphatase 1G (EC 3.1.3.16) (Protein phosphatase 1C) (Protein phosphatase 2C isoform gamma) (PP2C-gamma) (Protein phosphatase magnesium-dependent 1 gamma) None
P41091 EIF2S3 T115 Sugiyama Eukaryotic translation initiation factor 2 subunit 3 (EC 3.6.5.3) (Eukaryotic translation initiation factor 2 subunit gamma X) (eIF2-gamma X) (eIF2gX) Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC) (By similarity). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex (By similarity). In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF-2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
Q9NQU5 PAK6 T210 Sugiyama Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}.
Q9NYY3 PLK2 T424 Sugiyama Serine/threonine-protein kinase PLK2 (EC 2.7.11.21) (Polo-like kinase 2) (PLK-2) (hPlk2) (Serine/threonine-protein kinase SNK) (hSNK) (Serum-inducible kinase) Tumor suppressor serine/threonine-protein kinase involved in synaptic plasticity, centriole duplication and G1/S phase transition. Polo-like kinases act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains. Phosphorylates CPAP, NPM1, RAPGEF2, RASGRF1, SNCA, SIPA1L1 and SYNGAP1. Plays a key role in synaptic plasticity and memory by regulating the Ras and Rap protein signaling: required for overactivity-dependent spine remodeling by phosphorylating the Ras activator RASGRF1 and the Rap inhibitor SIPA1L1 leading to their degradation by the proteasome. Conversely, phosphorylates the Rap activator RAPGEF2 and the Ras inhibitor SYNGAP1, promoting their activity. Also regulates synaptic plasticity independently of kinase activity, via its interaction with NSF that disrupts the interaction between NSF and the GRIA2 subunit of AMPARs, leading to a rapid rundown of AMPAR-mediated current that occludes long term depression. Required for procentriole formation and centriole duplication by phosphorylating CPAP and NPM1, respectively. Its induction by p53/TP53 suggests that it may participate in the mitotic checkpoint following stress. {ECO:0000269|PubMed:15242618, ECO:0000269|PubMed:19001868, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:20531387}.
P06576 ATP5F1B T334 Sugiyama ATP synthase F(1) complex subunit beta, mitochondrial (EC 7.1.2.2) (ATP synthase F1 subunit beta) Catalytic subunit beta, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable) (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the subunit alpha (ATP5F1A), forms the catalytic core in the F(1) domain (PubMed:37244256). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:25168243, ECO:0000305|PubMed:36239646, ECO:0000305|PubMed:37244256}.
P49327 FASN T2230 Sugiyama Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
Q9BRA2 TXNDC17 T95 Sugiyama Thioredoxin domain-containing protein 17 (14 kDa thioredoxin-related protein) (TRP14) (Protein 42-9-9) (Thioredoxin-like protein 5) Disulfide reductase. May participate in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyze dithiol-disulfide exchange reactions. Modulates TNF-alpha signaling and NF-kappa-B activation. Has peroxidase activity and may contribute to the elimination of cellular hydrogen peroxide. {ECO:0000269|PubMed:14607843, ECO:0000269|PubMed:14607844}.
Q9Y4K4 MAP4K5 T827 Sugiyama Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}.
O94967 WDR47 Y294 ochoa WD repeat-containing protein 47 (Neuronal enriched MAP-interacting protein) (Nemitin) None
P07814 EPRS1 Y690 ochoa Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}.
P08651 NFIC T472 ochoa Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication.
P24928 POLR2A T1943 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
P39880 CUX1 Y889 ochoa Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}.
Q13469 NFATC2 T803 ochoa Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}.
Q5BKZ1 ZNF326 T272 ochoa DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}.
Q86TC9 MYPN T126 ochoa Myopalladin (145 kDa sarcomeric protein) Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}.
Q8WWI1 LMO7 T1588 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q92545 TMEM131 T1601 ochoa Transmembrane protein 131 (Protein RW1) Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}.
Q92615 LARP4B T518 ochoa La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}.
Q96B36 AKT1S1 T90 ochoa Proline-rich AKT1 substrate 1 (40 kDa proline-rich AKT substrate) Negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:17277771, PubMed:17386266, PubMed:17510057, PubMed:29236692). In absence of insulin and nutrients, AKT1S1 associates with the mTORC1 complex and directly inhibits mTORC1 activity by blocking the MTOR substrate-recruitment site (PubMed:29236692). In response to insulin and nutrients, AKT1S1 dissociates from mTORC1 (PubMed:17386266, PubMed:18372248). Its activity is dependent on its phosphorylation state and binding to 14-3-3 (PubMed:16174443, PubMed:18372248). May also play a role in nerve growth factor-mediated neuroprotection (By similarity). {ECO:0000250|UniProtKB:Q9D1F4, ECO:0000269|PubMed:16174443, ECO:0000269|PubMed:17277771, ECO:0000269|PubMed:17386266, ECO:0000269|PubMed:17510057, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:29236692}.
Q99607 ELF4 T643 ochoa|psp ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
O94776 MTA2 Y437 ochoa Metastasis-associated protein MTA2 (Metastasis-associated 1-like 1) (MTA1-L1 protein) (p53 target protein in deacetylase complex) May function as a transcriptional coregulator (PubMed:16428440, PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}.
P24928 POLR2A T1880 ochoa DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}.
Q12906 ILF3 Y764 ochoa Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}.
Q9BZ29 DOCK9 Y1237 ochoa Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide exchange factor zizimin-1) (Zizimin-1) Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation. {ECO:0000269|PubMed:12172552, ECO:0000269|PubMed:19745154}.
Download
reactome_id name p -log10_p
R-HSA-8943724 Regulation of PTEN gene transcription 5.656012e-07 6.247
R-HSA-3247509 Chromatin modifying enzymes 1.071589e-05 4.970
R-HSA-4839726 Chromatin organization 1.806366e-05 4.743
R-HSA-2980766 Nuclear Envelope Breakdown 6.076183e-05 4.216
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 7.627292e-05 4.118
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 1.284819e-04 3.891
R-HSA-111465 Apoptotic cleavage of cellular proteins 2.165147e-04 3.665
R-HSA-6807070 PTEN Regulation 2.560741e-04 3.592
R-HSA-69278 Cell Cycle, Mitotic 3.760092e-04 3.425
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 5.648989e-04 3.248
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 6.946176e-04 3.158
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 6.946176e-04 3.158
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 6.753712e-04 3.170
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 6.352148e-04 3.197
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 5.681621e-04 3.246
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 6.650497e-04 3.177
R-HSA-1640170 Cell Cycle 6.439051e-04 3.191
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 7.594719e-04 3.119
R-HSA-3700989 Transcriptional Regulation by TP53 7.547016e-04 3.122
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 8.084890e-04 3.092
R-HSA-1855170 IPs transport between nucleus and cytosol 1.028041e-03 2.988
R-HSA-159227 Transport of the SLBP independent Mature mRNA 1.028041e-03 2.988
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 1.029399e-03 2.987
R-HSA-68875 Mitotic Prophase 8.874456e-04 3.052
R-HSA-8878171 Transcriptional regulation by RUNX1 9.166645e-04 3.038
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 1.028041e-03 2.988
R-HSA-73887 Death Receptor Signaling 1.044766e-03 2.981
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 1.238276e-03 2.907
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 1.218888e-03 2.914
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 1.238276e-03 2.907
R-HSA-9707616 Heme signaling 1.266570e-03 2.897
R-HSA-162582 Signal Transduction 1.481630e-03 2.829
R-HSA-180746 Nuclear import of Rev protein 1.482292e-03 2.829
R-HSA-1257604 PIP3 activates AKT signaling 1.627869e-03 2.788
R-HSA-9006925 Intracellular signaling by second messengers 2.223767e-03 2.653
R-HSA-180910 Vpr-mediated nuclear import of PICs 2.456979e-03 2.610
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 2.877241e-03 2.541
R-HSA-177504 Retrograde neurotrophin signalling 2.911619e-03 2.536
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 3.779615e-03 2.423
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 3.779615e-03 2.423
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 3.779615e-03 2.423
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 3.779615e-03 2.423
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 3.779615e-03 2.423
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 3.779615e-03 2.423
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 3.779615e-03 2.423
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 3.779615e-03 2.423
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 3.779615e-03 2.423
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 3.779615e-03 2.423
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 3.779615e-03 2.423
R-HSA-68886 M Phase 3.488239e-03 2.457
R-HSA-177243 Interactions of Rev with host cellular proteins 3.889188e-03 2.410
R-HSA-176033 Interactions of Vpr with host cellular proteins 3.889188e-03 2.410
R-HSA-75153 Apoptotic execution phase 3.501950e-03 2.456
R-HSA-168276 NS1 Mediated Effects on Host Pathways 3.352982e-03 2.475
R-HSA-212165 Epigenetic regulation of gene expression 4.067542e-03 2.391
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 4.308666e-03 2.366
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 4.603254e-03 2.337
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 4.491033e-03 2.348
R-HSA-193648 NRAGE signals death through JNK 4.506923e-03 2.346
R-HSA-163765 ChREBP activates metabolic gene expression 4.814179e-03 2.317
R-HSA-2132295 MHC class II antigen presentation 5.390553e-03 2.268
R-HSA-1169408 ISG15 antiviral mechanism 5.651177e-03 2.248
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 5.734541e-03 2.242
R-HSA-73762 RNA Polymerase I Transcription Initiation 5.913167e-03 2.228
R-HSA-4839748 Signaling by AMER1 mutants 6.391165e-03 2.194
R-HSA-4839735 Signaling by AXIN mutants 6.391165e-03 2.194
R-HSA-69205 G1/S-Specific Transcription 6.635289e-03 2.178
R-HSA-5633007 Regulation of TP53 Activity 6.418736e-03 2.193
R-HSA-2559583 Cellular Senescence 6.910427e-03 2.160
R-HSA-8865999 MET activates PTPN11 6.978966e-03 2.156
R-HSA-1592230 Mitochondrial biogenesis 7.000343e-03 2.155
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 7.122904e-03 2.147
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 7.737165e-03 2.111
R-HSA-9764560 Regulation of CDH1 Gene Transcription 8.205595e-03 2.086
R-HSA-74160 Gene expression (Transcription) 7.799968e-03 2.108
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 8.298969e-03 2.081
R-HSA-199991 Membrane Trafficking 8.463562e-03 2.072
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 8.676813e-03 2.062
R-HSA-9665348 Signaling by ERBB2 ECD mutants 9.240870e-03 2.034
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 9.050229e-03 2.043
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 9.329298e-03 2.030
R-HSA-9673013 Diseases of Telomere Maintenance 1.053890e-02 1.977
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 1.053890e-02 1.977
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 1.053890e-02 1.977
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 1.053890e-02 1.977
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 1.053890e-02 1.977
R-HSA-196025 Formation of annular gap junctions 1.067682e-02 1.972
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 1.056888e-02 1.976
R-HSA-1538133 G0 and Early G1 9.841624e-03 2.007
R-HSA-4791275 Signaling by WNT in cancer 9.841624e-03 2.007
R-HSA-3214815 HDACs deacetylate histones 1.044576e-02 1.981
R-HSA-9825895 Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... 1.067682e-02 1.972
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 9.789371e-03 2.009
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 1.135388e-02 1.945
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 1.136028e-02 1.945
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 1.136028e-02 1.945
R-HSA-9856651 MITF-M-dependent gene expression 1.192436e-02 1.924
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 1.295553e-02 1.888
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 1.323023e-02 1.878
R-HSA-190873 Gap junction degradation 1.425480e-02 1.846
R-HSA-68877 Mitotic Prometaphase 1.440462e-02 1.841
R-HSA-141424 Amplification of signal from the kinetochores 1.528974e-02 1.816
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 1.528974e-02 1.816
R-HSA-2559580 Oxidative Stress Induced Senescence 1.537529e-02 1.813
R-HSA-187037 Signaling by NTRK1 (TRKA) 1.616161e-02 1.792
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 1.631002e-02 1.788
R-HSA-416482 G alpha (12/13) signalling events 1.702024e-02 1.769
R-HSA-8875555 MET activates RAP1 and RAC1 1.851194e-02 1.733
R-HSA-3371556 Cellular response to heat stress 1.827094e-02 1.738
R-HSA-983189 Kinesins 1.734725e-02 1.761
R-HSA-168325 Viral Messenger RNA Synthesis 1.906072e-02 1.720
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 1.983262e-02 1.703
R-HSA-169893 Prolonged ERK activation events 1.983262e-02 1.703
R-HSA-5635851 GLI proteins bind promoters of Hh responsive genes to promote transcription 2.418762e-02 1.616
R-HSA-182218 Nef Mediated CD8 Down-regulation 2.418762e-02 1.616
R-HSA-4839744 Signaling by APC mutants 2.348068e-02 1.629
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 2.348068e-02 1.629
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 2.348068e-02 1.629
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 2.348068e-02 1.629
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 2.381951e-02 1.623
R-HSA-1227990 Signaling by ERBB2 in Cancer 2.228608e-02 1.652
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 2.285895e-02 1.641
R-HSA-380259 Loss of Nlp from mitotic centrosomes 2.285895e-02 1.641
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 2.253301e-02 1.647
R-HSA-9909396 Circadian clock 2.201499e-02 1.657
R-HSA-8863795 Downregulation of ERBB2 signaling 2.228608e-02 1.652
R-HSA-352238 Breakdown of the nuclear lamina 2.255544e-02 1.647
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 2.228608e-02 1.652
R-HSA-166208 mTORC1-mediated signalling 2.199750e-02 1.658
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 2.199750e-02 1.658
R-HSA-5688426 Deubiquitination 2.320626e-02 1.634
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 2.199750e-02 1.658
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 2.157505e-02 1.666
R-HSA-6784531 tRNA processing in the nucleus 2.089641e-02 1.680
R-HSA-193704 p75 NTR receptor-mediated signalling 2.472222e-02 1.607
R-HSA-69618 Mitotic Spindle Checkpoint 2.646430e-02 1.577
R-HSA-70171 Glycolysis 2.646430e-02 1.577
R-HSA-75893 TNF signaling 2.769295e-02 1.558
R-HSA-73894 DNA Repair 2.904983e-02 1.537
R-HSA-428540 Activation of RAC1 2.918519e-02 1.535
R-HSA-5339716 Signaling by GSK3beta mutants 2.918519e-02 1.535
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 2.938644e-02 1.532
R-HSA-8863678 Neurodegenerative Diseases 2.938644e-02 1.532
R-HSA-8854518 AURKA Activation by TPX2 2.955245e-02 1.529
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 3.015754e-02 1.521
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 3.564152e-02 1.448
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 3.564152e-02 1.448
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 3.564152e-02 1.448
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 3.564152e-02 1.448
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 3.564152e-02 1.448
R-HSA-9932451 SWI/SNF chromatin remodelers 3.362535e-02 1.473
R-HSA-9932444 ATP-dependent chromatin remodelers 3.362535e-02 1.473
R-HSA-166520 Signaling by NTRKs 3.383473e-02 1.471
R-HSA-194441 Metabolism of non-coding RNA 3.597814e-02 1.444
R-HSA-191859 snRNP Assembly 3.597814e-02 1.444
R-HSA-390522 Striated Muscle Contraction 3.618062e-02 1.442
R-HSA-9843745 Adipogenesis 3.724852e-02 1.429
R-HSA-8985801 Regulation of cortical dendrite branching 3.815451e-02 1.418
R-HSA-8851907 MET activates PI3K/AKT signaling 4.231212e-02 1.374
R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 4.231212e-02 1.374
R-HSA-5654710 PI-3K cascade:FGFR3 3.873423e-02 1.412
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 3.824091e-02 1.417
R-HSA-195253 Degradation of beta-catenin by the destruction complex 4.051281e-02 1.392
R-HSA-6804754 Regulation of TP53 Expression 3.815451e-02 1.418
R-HSA-139915 Activation of PUMA and translocation to mitochondria 4.231212e-02 1.374
R-HSA-165159 MTOR signalling 4.083345e-02 1.389
R-HSA-5336415 Uptake and function of diphtheria toxin 4.231212e-02 1.374
R-HSA-69620 Cell Cycle Checkpoints 4.067680e-02 1.391
R-HSA-8953897 Cellular responses to stimuli 3.786885e-02 1.422
R-HSA-9730414 MITF-M-regulated melanocyte development 3.886204e-02 1.410
R-HSA-170968 Frs2-mediated activation 4.285798e-02 1.368
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 4.285798e-02 1.368
R-HSA-5655332 Signaling by FGFR3 in disease 4.324128e-02 1.364
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 4.324128e-02 1.364
R-HSA-5693532 DNA Double-Strand Break Repair 4.348186e-02 1.362
R-HSA-72187 mRNA 3'-end processing 4.391303e-02 1.357
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 4.473047e-02 1.349
R-HSA-5578749 Transcriptional regulation by small RNAs 4.693234e-02 1.329
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 4.919395e-02 1.308
R-HSA-187042 TRKA activation by NGF 5.674502e-02 1.246
R-HSA-8875513 MET interacts with TNS proteins 5.674502e-02 1.246
R-HSA-8875656 MET receptor recycling 5.331770e-02 1.273
R-HSA-9664565 Signaling by ERBB2 KD Mutants 5.442067e-02 1.264
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 5.038813e-02 1.298
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 5.406916e-02 1.267
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 5.613094e-02 1.251
R-HSA-444473 Formyl peptide receptors bind formyl peptides and many other ligands 5.331770e-02 1.273
R-HSA-5689896 Ovarian tumor domain proteases 5.484208e-02 1.261
R-HSA-9842860 Regulation of endogenous retroelements 5.613094e-02 1.251
R-HSA-8853659 RET signaling 4.970842e-02 1.304
R-HSA-2262752 Cellular responses to stress 5.316509e-02 1.274
R-HSA-2219528 PI3K/AKT Signaling in Cancer 5.093712e-02 1.293
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 5.083556e-02 1.294
R-HSA-380287 Centrosome maturation 5.780503e-02 1.238
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 5.829780e-02 1.234
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 5.829780e-02 1.234
R-HSA-5357905 Regulation of TNFR1 signaling 5.859295e-02 1.232
R-HSA-196299 Beta-catenin phosphorylation cascade 5.956845e-02 1.225
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 5.962984e-02 1.225
R-HSA-9702506 Drug resistance of FLT3 mutants 7.354116e-02 1.133
R-HSA-9702509 FLT3 mutants bind TKIs 7.354116e-02 1.133
R-HSA-9636003 NEIL3-mediated resolution of ICLs 7.354116e-02 1.133
R-HSA-9702590 gilteritinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-5467345 Deletions in the AXIN1 gene destabilize the destruction complex 7.354116e-02 1.133
R-HSA-9702581 crenolanib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702998 linifanib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702636 tandutinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702605 pexidartinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 7.354116e-02 1.133
R-HSA-9703009 tamatinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702620 quizartinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702614 ponatinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702632 sunitinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9629232 Defective Base Excision Repair Associated with NEIL3 7.354116e-02 1.133
R-HSA-9702569 KW2449-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702596 lestaurtinib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-5467343 Deletions in the AMER1 gene destabilize the destruction complex 7.354116e-02 1.133
R-HSA-9702577 semaxanib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9661070 Defective translocation of RB1 mutants to the nucleus 7.354116e-02 1.133
R-HSA-9702624 sorafenib-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-9702600 midostaurin-resistant FLT3 mutants 7.354116e-02 1.133
R-HSA-191650 Regulation of gap junction activity 7.780336e-02 1.109
R-HSA-1251932 PLCG1 events in ERBB2 signaling 7.780336e-02 1.109
R-HSA-430116 GP1b-IX-V activation signalling 6.554995e-02 1.183
R-HSA-198693 AKT phosphorylates targets in the nucleus 6.554995e-02 1.183
R-HSA-428543 Inactivation of CDC42 and RAC1 6.554995e-02 1.183
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 8.257489e-02 1.083
R-HSA-72163 mRNA Splicing - Major Pathway 6.572296e-02 1.182
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 8.429924e-02 1.074
R-HSA-5675482 Regulation of necroptotic cell death 8.156679e-02 1.088
R-HSA-5696398 Nucleotide Excision Repair 6.998900e-02 1.155
R-HSA-1227986 Signaling by ERBB2 8.106863e-02 1.091
R-HSA-9031628 NGF-stimulated transcription 6.905213e-02 1.161
R-HSA-2025928 Calcineurin activates NFAT 6.554995e-02 1.183
R-HSA-354192 Integrin signaling 8.156679e-02 1.088
R-HSA-5099900 WNT5A-dependent internalization of FZD4 6.904465e-02 1.161
R-HSA-9930044 Nuclear RNA decay 8.156679e-02 1.088
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 7.181906e-02 1.144
R-HSA-73933 Resolution of Abasic Sites (AP sites) 7.857918e-02 1.105
R-HSA-5660489 MTF1 activates gene expression 7.780336e-02 1.109
R-HSA-9705677 SARS-CoV-2 targets PDZ proteins in cell-cell junction 7.780336e-02 1.109
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 8.257489e-02 1.083
R-HSA-73856 RNA Polymerase II Transcription Termination 8.674046e-02 1.062
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 8.253587e-02 1.083
R-HSA-9762293 Regulation of CDH11 gene transcription 6.554995e-02 1.183
R-HSA-9018519 Estrogen-dependent gene expression 8.416432e-02 1.075
R-HSA-73857 RNA Polymerase II Transcription 6.546668e-02 1.184
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 7.396497e-02 1.131
R-HSA-3214841 PKMTs methylate histone lysines 7.857918e-02 1.105
R-HSA-1500931 Cell-Cell communication 6.373234e-02 1.196
R-HSA-1852241 Organelle biogenesis and maintenance 7.207273e-02 1.142
R-HSA-212436 Generic Transcription Pathway 8.574812e-02 1.067
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 7.769574e-02 1.110
R-HSA-9700206 Signaling by ALK in cancer 7.769574e-02 1.110
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 6.554995e-02 1.183
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 7.396497e-02 1.131
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 7.924651e-02 1.101
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 6.543521e-02 1.184
R-HSA-70326 Glucose metabolism 8.293112e-02 1.081
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 7.436456e-02 1.129
R-HSA-5693538 Homology Directed Repair 8.696374e-02 1.061
R-HSA-5696394 DNA Damage Recognition in GG-NER 8.934609e-02 1.049
R-HSA-5637810 Constitutive Signaling by EGFRvIII 9.015137e-02 1.045
R-HSA-5637812 Signaling by EGFRvIII in Cancer 9.015137e-02 1.045
R-HSA-1963642 PI3K events in ERBB2 signaling 9.015137e-02 1.045
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 9.015137e-02 1.045
R-HSA-2028269 Signaling by Hippo 9.015137e-02 1.045
R-HSA-9839394 TGFBR3 expression 9.169095e-02 1.038
R-HSA-72172 mRNA Splicing 9.857246e-02 1.006
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 9.877398e-02 1.005
R-HSA-1483249 Inositol phosphate metabolism 9.928351e-02 1.003
R-HSA-445355 Smooth Muscle Contraction 9.989390e-02 1.000
R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR signaling 1.008666e-01 0.996
R-HSA-9673768 Signaling by membrane-tethered fusions of PDGFRA or PDGFRB 1.008666e-01 0.996
R-HSA-180292 GAB1 signalosome 1.017322e-01 0.993
R-HSA-3928664 Ephrin signaling 1.017322e-01 0.993
R-HSA-156711 Polo-like kinase mediated events 1.017322e-01 0.993
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 1.017322e-01 0.993
R-HSA-5358508 Mismatch Repair 1.017322e-01 0.993
R-HSA-4419969 Depolymerization of the Nuclear Lamina 1.017322e-01 0.993
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 1.017322e-01 0.993
R-HSA-1226099 Signaling by FGFR in disease 1.027059e-01 0.988
R-HSA-9764265 Regulation of CDH1 Expression and Function 1.056544e-01 0.976
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 1.056544e-01 0.976
R-HSA-187687 Signalling to ERKs 1.060652e-01 0.974
R-HSA-68689 CDC6 association with the ORC:origin complex 1.255266e-01 0.901
R-HSA-8985586 SLIT2:ROBO1 increases RHOA activity 1.255266e-01 0.901
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 1.255266e-01 0.901
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 1.088832e-01 0.963
R-HSA-198323 AKT phosphorylates targets in the cytosol 1.252625e-01 0.902
R-HSA-6807004 Negative regulation of MET activity 1.267950e-01 0.897
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 1.113923e-01 0.953
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 1.215720e-01 0.915
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 1.294336e-01 0.888
R-HSA-1989781 PPARA activates gene expression 1.205050e-01 0.919
R-HSA-177929 Signaling by EGFR 1.215720e-01 0.915
R-HSA-9823730 Formation of definitive endoderm 1.267950e-01 0.897
R-HSA-373753 Nephrin family interactions 1.267950e-01 0.897
R-HSA-69206 G1/S Transition 1.236514e-01 0.908
R-HSA-4641265 Repression of WNT target genes 1.252625e-01 0.902
R-HSA-73864 RNA Polymerase I Transcription 1.280381e-01 0.893
R-HSA-73854 RNA Polymerase I Promoter Clearance 1.149797e-01 0.939
R-HSA-5674499 Negative feedback regulation of MAPK pathway 1.255266e-01 0.901
R-HSA-437239 Recycling pathway of L1 1.323073e-01 0.878
R-HSA-1358803 Downregulation of ERBB2:ERBB3 signaling 1.252625e-01 0.902
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 1.219476e-01 0.914
R-HSA-8856688 Golgi-to-ER retrograde transport 1.087518e-01 0.964
R-HSA-8941326 RUNX2 regulates bone development 1.149901e-01 0.939
R-HSA-422475 Axon guidance 1.313269e-01 0.882
R-HSA-392517 Rap1 signalling 1.139581e-01 0.943
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 1.069325e-01 0.971
R-HSA-8935964 RUNX1 regulates expression of components of tight junctions 1.255266e-01 0.901
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 1.252625e-01 0.902
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 1.328070e-01 0.877
R-HSA-211000 Gene Silencing by RNA 1.300347e-01 0.886
R-HSA-9675108 Nervous system development 1.328587e-01 0.877
R-HSA-5654708 Downstream signaling of activated FGFR3 1.329492e-01 0.876
R-HSA-9759475 Regulation of CDH11 Expression and Function 1.329492e-01 0.876
R-HSA-8875878 MET promotes cell motility 1.339240e-01 0.873
R-HSA-5213460 RIPK1-mediated regulated necrosis 1.339240e-01 0.873
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 1.348558e-01 0.870
R-HSA-9659379 Sensory processing of sound 1.348558e-01 0.870
R-HSA-9734091 Drug-mediated inhibition of MET activation 1.416781e-01 0.849
R-HSA-9672393 Defective F8 binding to von Willebrand factor 1.416781e-01 0.849
R-HSA-5632968 Defective Mismatch Repair Associated With MSH6 1.416781e-01 0.849
R-HSA-2033515 t(4;14) translocations of FGFR3 2.048076e-01 0.689
R-HSA-8853334 Signaling by FGFR3 fusions in cancer 2.048076e-01 0.689
R-HSA-9845622 Defective VWF binding to collagen type I 2.048076e-01 0.689
R-HSA-5674404 PTEN Loss of Function in Cancer 2.048076e-01 0.689
R-HSA-5339700 Signaling by TCF7L2 mutants 2.048076e-01 0.689
R-HSA-9845621 Defective VWF cleavage by ADAMTS13 variant 2.632975e-01 0.580
R-HSA-9845619 Enhanced cleavage of VWF variant by ADAMTS13 2.632975e-01 0.580
R-HSA-9672391 Defective F8 cleavage by thrombin 2.632975e-01 0.580
R-HSA-2980767 Activation of NIMA Kinases NEK9, NEK6, NEK7 1.514241e-01 0.820
R-HSA-9645135 STAT5 Activation 1.514241e-01 0.820
R-HSA-187015 Activation of TRKA receptors 1.782441e-01 0.749
R-HSA-8948747 Regulation of PTEN localization 1.782441e-01 0.749
R-HSA-114516 Disinhibition of SNARE formation 1.782441e-01 0.749
R-HSA-112412 SOS-mediated signalling 1.782441e-01 0.749
R-HSA-75157 FasL/ CD95L signaling 3.174884e-01 0.498
R-HSA-167021 PLC-gamma1 signalling 3.174884e-01 0.498
R-HSA-8853336 Signaling by plasma membrane FGFR1 fusions 3.174884e-01 0.498
R-HSA-9944971 Loss of Function of KMT2D in Kabuki Syndrome 3.174884e-01 0.498
R-HSA-198745 Signalling to STAT3 3.174884e-01 0.498
R-HSA-9944997 Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome 3.174884e-01 0.498
R-HSA-446107 Type I hemidesmosome assembly 2.057112e-01 0.687
R-HSA-9028335 Activated NTRK2 signals through PI3K 2.057112e-01 0.687
R-HSA-2033514 FGFR3 mutant receptor activation 1.424606e-01 0.846
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 1.424606e-01 0.846
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 1.424606e-01 0.846
R-HSA-162658 Golgi Cisternae Pericentriolar Stack Reorganization 1.424606e-01 0.846
R-HSA-1839130 Signaling by activated point mutants of FGFR3 1.424606e-01 0.846
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 1.424606e-01 0.846
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 1.603858e-01 0.795
R-HSA-112411 MAPK1 (ERK2) activation 2.335854e-01 0.632
R-HSA-9706374 FLT3 signaling through SRC family kinases 3.676961e-01 0.435
R-HSA-8952158 RUNX3 regulates BCL2L11 (BIM) transcription 3.676961e-01 0.435
R-HSA-69200 Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... 3.676961e-01 0.435
R-HSA-9652169 Signaling by MAP2K mutants 3.676961e-01 0.435
R-HSA-1306955 GRB7 events in ERBB2 signaling 3.676961e-01 0.435
R-HSA-9027284 Erythropoietin activates RAS 1.789471e-01 0.747
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 1.402061e-01 0.853
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 1.402061e-01 0.853
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 1.980548e-01 0.703
R-HSA-5083636 Defective GALNT12 causes CRCS1 1.980548e-01 0.703
R-HSA-5083625 Defective GALNT3 causes HFTC 1.980548e-01 0.703
R-HSA-5654706 FRS-mediated FGFR3 signaling 1.541525e-01 0.812
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 1.541525e-01 0.812
R-HSA-77595 Processing of Intronless Pre-mRNAs 2.176215e-01 0.662
R-HSA-1963640 GRB2 events in ERBB2 signaling 2.176215e-01 0.662
R-HSA-74713 IRS activation 4.142131e-01 0.383
R-HSA-9845620 Enhanced binding of GP1BA variant to VWF multimer:collagen 4.142131e-01 0.383
R-HSA-9706377 FLT3 signaling by CBL mutants 4.142131e-01 0.383
R-HSA-9846298 Defective binding of VWF variant to GPIb:IX:V 4.142131e-01 0.383
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 2.375629e-01 0.624
R-HSA-5083632 Defective C1GALT1C1 causes TNPS 2.375629e-01 0.624
R-HSA-429947 Deadenylation of mRNA 1.987927e-01 0.702
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 3.177074e-01 0.498
R-HSA-9675126 Diseases of mitotic cell cycle 1.684284e-01 0.774
R-HSA-9613829 Chaperone Mediated Autophagy 2.577984e-01 0.589
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 2.577984e-01 0.589
R-HSA-164378 PKA activation in glucagon signalling 2.577984e-01 0.589
R-HSA-9607240 FLT3 Signaling 1.648582e-01 0.783
R-HSA-1643713 Signaling by EGFR in Cancer 2.304620e-01 0.637
R-HSA-9709603 Impaired BRCA2 binding to PALB2 2.782509e-01 0.556
R-HSA-8851805 MET activates RAS signaling 3.453967e-01 0.462
R-HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 3.453967e-01 0.462
R-HSA-9820865 Z-decay: degradation of maternal mRNAs by zygotically expressed factors 3.453967e-01 0.462
R-HSA-179812 GRB2 events in EGFR signaling 3.453967e-01 0.462
R-HSA-9823587 Defects of platelet adhesion to exposed collagen 4.573106e-01 0.340
R-HSA-187024 NGF-independant TRKA activation 4.573106e-01 0.340
R-HSA-187706 Signalling to p38 via RIT and RIN 4.573106e-01 0.340
R-HSA-5638303 Inhibition of Signaling by Overexpressed EGFR 4.573106e-01 0.340
R-HSA-176417 Phosphorylation of Emi1 4.573106e-01 0.340
R-HSA-5638302 Signaling by Overexpressed Wild-Type EGFR in Cancer 4.573106e-01 0.340
R-HSA-5603029 IkBA variant leads to EDA-ID 4.573106e-01 0.340
R-HSA-5340588 Signaling by RNF43 mutants 4.573106e-01 0.340
R-HSA-5696400 Dual Incision in GG-NER 2.071394e-01 0.684
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 1.372930e-01 0.862
R-HSA-174414 Processive synthesis on the C-strand of the telomere 2.467410e-01 0.608
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 2.467410e-01 0.608
R-HSA-5654720 PI-3K cascade:FGFR4 2.988481e-01 0.525
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 2.988481e-01 0.525
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 2.988481e-01 0.525
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 2.988481e-01 0.525
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 2.988481e-01 0.525
R-HSA-389359 CD28 dependent Vav1 pathway 3.727068e-01 0.429
R-HSA-170660 Adenylate cyclase activating pathway 3.727068e-01 0.429
R-HSA-9659787 Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects 3.727068e-01 0.429
R-HSA-9661069 Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) 3.727068e-01 0.429
R-HSA-5654704 SHC-mediated cascade:FGFR3 3.195217e-01 0.495
R-HSA-9006335 Signaling by Erythropoietin 2.799774e-01 0.553
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 2.799774e-01 0.553
R-HSA-9649948 Signaling downstream of RAS mutants 2.344132e-01 0.630
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 3.402082e-01 0.468
R-HSA-205043 NRIF signals cell death from the nucleus 3.995438e-01 0.398
R-HSA-5654227 Phospholipase C-mediated cascade; FGFR3 3.995438e-01 0.398
R-HSA-8847993 ERBB2 Activates PTK6 Signaling 3.995438e-01 0.398
R-HSA-8857538 PTK6 promotes HIF1A stabilization 4.972397e-01 0.303
R-HSA-9842640 Signaling by LTK in cancer 4.972397e-01 0.303
R-HSA-8951671 RUNX3 regulates YAP1-mediated transcription 4.972397e-01 0.303
R-HSA-9027283 Erythropoietin activates STAT5 4.972397e-01 0.303
R-HSA-5263617 Metabolism of ingested MeSeO2H into MeSeH 4.972397e-01 0.303
R-HSA-6802953 RAS signaling downstream of NF1 loss-of-function variants 4.972397e-01 0.303
R-HSA-113507 E2F-enabled inhibition of pre-replication complex formation 4.972397e-01 0.303
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 1.995820e-01 0.700
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 1.892662e-01 0.723
R-HSA-5654689 PI-3K cascade:FGFR1 3.608486e-01 0.443
R-HSA-350054 Notch-HLH transcription pathway 3.608486e-01 0.443
R-HSA-6782135 Dual incision in TC-NER 2.435889e-01 0.613
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 4.258294e-01 0.371
R-HSA-69183 Processive synthesis on the lagging strand 4.258294e-01 0.371
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 4.258294e-01 0.371
R-HSA-3270619 IRF3-mediated induction of type I IFN 4.258294e-01 0.371
R-HSA-170670 Adenylate cyclase inhibitory pathway 4.258294e-01 0.371
R-HSA-180336 SHC1 events in EGFR signaling 4.258294e-01 0.371
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 4.258294e-01 0.371
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 4.258294e-01 0.371
R-HSA-6785631 ERBB2 Regulates Cell Motility 4.258294e-01 0.371
R-HSA-8943723 Regulation of PTEN mRNA translation 3.813883e-01 0.419
R-HSA-977068 Termination of O-glycan biosynthesis 3.813883e-01 0.419
R-HSA-5674135 MAP2K and MAPK activation 3.209776e-01 0.494
R-HSA-9656223 Signaling by RAF1 mutants 3.209776e-01 0.494
R-HSA-5693607 Processing of DNA double-strand break ends 2.445707e-01 0.612
R-HSA-9706369 Negative regulation of FLT3 4.514998e-01 0.345
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 4.514998e-01 0.345
R-HSA-8951430 RUNX3 regulates WNT signaling 5.342332e-01 0.272
R-HSA-9732724 IFNG signaling activates MAPKs 5.342332e-01 0.272
R-HSA-9632974 NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis 5.342332e-01 0.272
R-HSA-9031525 NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake 5.342332e-01 0.272
R-HSA-190371 FGFR3b ligand binding and activation 5.342332e-01 0.272
R-HSA-72731 Recycling of eIF2:GDP 5.342332e-01 0.272
R-HSA-9031528 NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... 5.342332e-01 0.272
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 5.342332e-01 0.272
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 3.243978e-01 0.489
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 3.822873e-01 0.418
R-HSA-5673000 RAF activation 3.822873e-01 0.418
R-HSA-5654695 PI-3K cascade:FGFR2 4.219709e-01 0.375
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 4.219709e-01 0.375
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 4.765031e-01 0.322
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 4.765031e-01 0.322
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 3.259605e-01 0.487
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 3.746270e-01 0.426
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 3.912998e-01 0.407
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 3.912998e-01 0.407
R-HSA-8949613 Cristae formation 4.616089e-01 0.336
R-HSA-174437 Removal of the Flap Intermediate from the C-strand 5.007987e-01 0.300
R-HSA-9619483 Activation of AMPK downstream of NMDARs 4.809835e-01 0.318
R-HSA-9709570 Impaired BRCA2 binding to RAD51 5.000215e-01 0.301
R-HSA-9670095 Inhibition of DNA recombination at telomere 4.828440e-01 0.316
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 4.395458e-01 0.357
R-HSA-68949 Orc1 removal from chromatin 4.837784e-01 0.315
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 5.186973e-01 0.285
R-HSA-927802 Nonsense-Mediated Decay (NMD) 4.747068e-01 0.324
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 4.747068e-01 0.324
R-HSA-72649 Translation initiation complex formation 5.122480e-01 0.291
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 5.306875e-01 0.275
R-HSA-72702 Ribosomal scanning and start codon recognition 5.400516e-01 0.268
R-HSA-9614657 FOXO-mediated transcription of cell death genes 2.577984e-01 0.589
R-HSA-76046 RNA Polymerase III Transcription Initiation 2.968531e-01 0.527
R-HSA-6806834 Signaling by MET 3.597874e-01 0.444
R-HSA-182971 EGFR downregulation 3.138480e-01 0.503
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 4.047217e-01 0.393
R-HSA-68962 Activation of the pre-replicative complex 1.443775e-01 0.841
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 4.104498e-01 0.387
R-HSA-5693606 DNA Double Strand Break Response 5.101137e-01 0.292
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 4.053595e-01 0.392
R-HSA-9646399 Aggrephagy 4.828440e-01 0.316
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 2.577984e-01 0.589
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 2.344132e-01 0.630
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 2.344132e-01 0.630
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 2.968531e-01 0.527
R-HSA-8953750 Transcriptional Regulation by E2F6 4.664640e-01 0.331
R-HSA-6802957 Oncogenic MAPK signaling 1.795939e-01 0.746
R-HSA-1250196 SHC1 events in ERBB2 signaling 2.968531e-01 0.527
R-HSA-418885 DCC mediated attractive signaling 4.258294e-01 0.371
R-HSA-399954 Sema3A PAK dependent Axon repulsion 4.258294e-01 0.371
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 5.149736e-01 0.288
R-HSA-9682385 FLT3 signaling in disease 2.344120e-01 0.630
R-HSA-450341 Activation of the AP-1 family of transcription factors 2.335854e-01 0.632
R-HSA-198203 PI3K/AKT activation 2.616585e-01 0.582
R-HSA-5696395 Formation of Incision Complex in GG-NER 1.542264e-01 0.812
R-HSA-8937144 Aryl hydrocarbon receptor signalling 4.573106e-01 0.340
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 3.608486e-01 0.443
R-HSA-9937080 Developmental Lineage of Multipotent Pancreatic Progenitor Cells 3.309244e-01 0.480
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 3.047112e-01 0.516
R-HSA-5610787 Hedgehog 'off' state 3.440069e-01 0.463
R-HSA-6802949 Signaling by RAS mutants 2.344132e-01 0.630
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 3.995438e-01 0.398
R-HSA-9690406 Transcriptional regulation of testis differentiation 4.765031e-01 0.322
R-HSA-8856828 Clathrin-mediated endocytosis 2.547423e-01 0.594
R-HSA-400685 Sema4D in semaphorin signaling 2.144650e-01 0.669
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 2.344120e-01 0.630
R-HSA-5693537 Resolution of D-Loop Structures 3.651779e-01 0.437
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 1.734209e-01 0.761
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 2.478173e-01 0.606
R-HSA-74158 RNA Polymerase III Transcription 2.344120e-01 0.630
R-HSA-453279 Mitotic G1 phase and G1/S transition 1.951191e-01 0.710
R-HSA-9931529 Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK 4.142131e-01 0.383
R-HSA-163615 PKA activation 2.577984e-01 0.589
R-HSA-113510 E2F mediated regulation of DNA replication 2.782509e-01 0.556
R-HSA-9931530 Phosphorylation and nuclear translocation of the CRY:PER:kinase complex 3.453967e-01 0.462
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 3.480459e-01 0.458
R-HSA-203641 NOSTRIN mediated eNOS trafficking 5.342332e-01 0.272
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 3.134893e-01 0.504
R-HSA-9609690 HCMV Early Events 4.761505e-01 0.322
R-HSA-5619507 Activation of HOX genes during differentiation 1.829394e-01 0.738
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 1.829394e-01 0.738
R-HSA-5654741 Signaling by FGFR3 3.806165e-01 0.420
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 2.577984e-01 0.589
R-HSA-5689603 UCH proteinases 1.980845e-01 0.703
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 2.898634e-01 0.538
R-HSA-74749 Signal attenuation 2.616585e-01 0.582
R-HSA-9028731 Activated NTRK2 signals through FRS2 and FRS3 3.453967e-01 0.462
R-HSA-432722 Golgi Associated Vesicle Biogenesis 1.895523e-01 0.722
R-HSA-157858 Gap junction trafficking and regulation 4.400698e-01 0.356
R-HSA-9634815 Transcriptional Regulation by NPAS4 4.837784e-01 0.315
R-HSA-5654716 Downstream signaling of activated FGFR4 5.186973e-01 0.285
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 3.822873e-01 0.418
R-HSA-5655302 Signaling by FGFR1 in disease 1.757912e-01 0.755
R-HSA-9020933 Interleukin-23 signaling 2.057112e-01 0.687
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 1.789471e-01 0.747
R-HSA-5357786 TNFR1-induced proapoptotic signaling 1.402061e-01 0.853
R-HSA-9832991 Formation of the posterior neural plate 2.897507e-01 0.538
R-HSA-1606341 IRF3 mediated activation of type 1 IFN 4.142131e-01 0.383
R-HSA-110381 Resolution of AP sites via the single-nucleotide replacement pathway 4.142131e-01 0.383
R-HSA-426496 Post-transcriptional silencing by small RNAs 4.142131e-01 0.383
R-HSA-113501 Inhibition of replication initiation of damaged DNA by RB1/E2F1 3.177074e-01 0.498
R-HSA-937041 IKK complex recruitment mediated by RIP1 2.782509e-01 0.556
R-HSA-5656169 Termination of translesion DNA synthesis 2.799774e-01 0.553
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 2.484101e-01 0.605
R-HSA-69190 DNA strand elongation 3.309244e-01 0.480
R-HSA-190239 FGFR3 ligand binding and activation 4.258294e-01 0.371
R-HSA-162599 Late Phase of HIV Life Cycle 1.709831e-01 0.767
R-HSA-8849473 PTK6 Expression 5.342332e-01 0.272
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 5.007987e-01 0.300
R-HSA-2424491 DAP12 signaling 5.186973e-01 0.285
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 2.292788e-01 0.640
R-HSA-9614085 FOXO-mediated transcription 3.340938e-01 0.476
R-HSA-76009 Platelet Aggregation (Plug Formation) 2.222172e-01 0.653
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 2.710803e-01 0.567
R-HSA-2467813 Separation of Sister Chromatids 2.346185e-01 0.630
R-HSA-5685942 HDR through Homologous Recombination (HRR) 3.501170e-01 0.456
R-HSA-201681 TCF dependent signaling in response to WNT 2.876166e-01 0.541
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 3.379234e-01 0.471
R-HSA-9703465 Signaling by FLT3 fusion proteins 4.419270e-01 0.355
R-HSA-167590 Nef Mediated CD4 Down-regulation 1.782441e-01 0.749
R-HSA-9692913 SARS-CoV-1-mediated effects on programmed cell death 3.676961e-01 0.435
R-HSA-9614399 Regulation of localization of FOXO transcription factors 2.897507e-01 0.538
R-HSA-399956 CRMPs in Sema3A signaling 3.995438e-01 0.398
R-HSA-6806942 MET Receptor Activation 4.972397e-01 0.303
R-HSA-74751 Insulin receptor signalling cascade 3.137240e-01 0.503
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 4.419270e-01 0.355
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 2.304620e-01 0.637
R-HSA-447043 Neurofascin interactions 1.514241e-01 0.820
R-HSA-525793 Myogenesis 2.304620e-01 0.637
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 2.988481e-01 0.525
R-HSA-2682334 EPH-Ephrin signaling 1.632733e-01 0.787
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 3.062062e-01 0.514
R-HSA-1660517 Synthesis of PIPs at the late endosome membrane 5.007987e-01 0.300
R-HSA-4420097 VEGFA-VEGFR2 Pathway 5.240411e-01 0.281
R-HSA-376176 Signaling by ROBO receptors 3.404841e-01 0.468
R-HSA-9006931 Signaling by Nuclear Receptors 3.970369e-01 0.401
R-HSA-1839124 FGFR1 mutant receptor activation 3.480459e-01 0.458
R-HSA-9020956 Interleukin-27 signaling 2.616585e-01 0.582
R-HSA-5683057 MAPK family signaling cascades 3.789436e-01 0.421
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 4.252961e-01 0.371
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 2.254258e-01 0.647
R-HSA-194138 Signaling by VEGF 5.034462e-01 0.298
R-HSA-69236 G1 Phase 3.656704e-01 0.437
R-HSA-69231 Cyclin D associated events in G1 3.656704e-01 0.437
R-HSA-201451 Signaling by BMP 4.616089e-01 0.336
R-HSA-5218859 Regulated Necrosis 5.228496e-01 0.282
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 3.993429e-01 0.399
R-HSA-69242 S Phase 1.411985e-01 0.850
R-HSA-195721 Signaling by WNT 1.915987e-01 0.718
R-HSA-190827 Transport of connexins along the secretory pathway 2.048076e-01 0.689
R-HSA-5632928 Defective Mismatch Repair Associated With MSH2 2.048076e-01 0.689
R-HSA-446343 Localization of the PINCH-ILK-PARVIN complex to focal adhesions 2.632975e-01 0.580
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 1.514241e-01 0.820
R-HSA-8875791 MET activates STAT3 3.174884e-01 0.498
R-HSA-176974 Unwinding of DNA 2.335854e-01 0.632
R-HSA-211163 AKT-mediated inactivation of FOXO1A 3.676961e-01 0.435
R-HSA-2179392 EGFR Transactivation by Gastrin 2.616585e-01 0.582
R-HSA-2151209 Activation of PPARGC1A (PGC-1alpha) by phosphorylation 2.616585e-01 0.582
R-HSA-5140745 WNT5A-dependent internalization of FZD2, FZD5 and ROR2 2.616585e-01 0.582
R-HSA-110362 POLB-Dependent Long Patch Base Excision Repair 3.177074e-01 0.498
R-HSA-68884 Mitotic Telophase/Cytokinesis 3.177074e-01 0.498
R-HSA-8866427 VLDLR internalisation and degradation 3.453967e-01 0.462
R-HSA-9017802 Noncanonical activation of NOTCH3 4.573106e-01 0.340
R-HSA-73893 DNA Damage Bypass 1.503371e-01 0.823
R-HSA-69478 G2/M DNA replication checkpoint 4.972397e-01 0.303
R-HSA-399719 Trafficking of AMPA receptors 3.138480e-01 0.503
R-HSA-2428928 IRS-related events triggered by IGF1R 2.780938e-01 0.556
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 4.017776e-01 0.396
R-HSA-2470946 Cohesin Loading onto Chromatin 5.342332e-01 0.272
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 2.760126e-01 0.559
R-HSA-4641263 Regulation of FZD by ubiquitination 5.007987e-01 0.300
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 5.243553e-01 0.280
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 4.990201e-01 0.302
R-HSA-199418 Negative regulation of the PI3K/AKT network 4.297947e-01 0.367
R-HSA-5684996 MAPK1/MAPK3 signaling 5.391550e-01 0.268
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 4.457070e-01 0.351
R-HSA-5653656 Vesicle-mediated transport 2.105811e-01 0.677
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 2.943429e-01 0.531
R-HSA-2559585 Oncogene Induced Senescence 2.206464e-01 0.656
R-HSA-2428924 IGF1R signaling cascade 3.137240e-01 0.503
R-HSA-5655291 Signaling by FGFR4 in disease 1.603858e-01 0.795
R-HSA-9645723 Diseases of programmed cell death 3.253563e-01 0.488
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 4.419270e-01 0.355
R-HSA-162587 HIV Life Cycle 1.908644e-01 0.719
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 1.539815e-01 0.813
R-HSA-9860931 Response of endothelial cells to shear stress 5.159553e-01 0.287
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 2.468100e-01 0.608
R-HSA-5358606 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 2.375629e-01 0.624
R-HSA-112399 IRS-mediated signalling 2.323999e-01 0.634
R-HSA-9686347 Microbial modulation of RIPK1-mediated regulated necrosis 5.342332e-01 0.272
R-HSA-9855142 Cellular responses to mechanical stimuli 4.945920e-01 0.306
R-HSA-373755 Semaphorin interactions 1.807147e-01 0.743
R-HSA-69275 G2/M Transition 1.632669e-01 0.787
R-HSA-73884 Base Excision Repair 3.463696e-01 0.460
R-HSA-111931 PKA-mediated phosphorylation of CREB 3.195217e-01 0.495
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 2.498976e-01 0.602
R-HSA-9027307 Biosynthesis of maresin-like SPMs 4.765031e-01 0.322
R-HSA-3295583 TRP channels 4.419270e-01 0.355
R-HSA-168273 Influenza Viral RNA Transcription and Replication 3.464721e-01 0.460
R-HSA-8953854 Metabolism of RNA 3.872780e-01 0.412
R-HSA-453274 Mitotic G2-G2/M phases 1.734075e-01 0.761
R-HSA-6794361 Neurexins and neuroligins 1.793794e-01 0.746
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 3.257880e-01 0.487
R-HSA-199992 trans-Golgi Network Vesicle Budding 4.115102e-01 0.386
R-HSA-5676594 TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway 3.727068e-01 0.429
R-HSA-69481 G2/M Checkpoints 2.940685e-01 0.532
R-HSA-180024 DARPP-32 events 5.000215e-01 0.301
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 2.162219e-01 0.665
R-HSA-5628897 TP53 Regulates Metabolic Genes 1.869948e-01 0.728
R-HSA-373760 L1CAM interactions 2.010540e-01 0.697
R-HSA-68882 Mitotic Anaphase 2.011773e-01 0.696
R-HSA-111448 Activation of NOXA and translocation to mitochondria 3.676961e-01 0.435
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 2.375629e-01 0.624
R-HSA-9758919 Epithelial-Mesenchymal Transition (EMT) during gastrulation 4.573106e-01 0.340
R-HSA-3214847 HATs acetylate histones 1.423750e-01 0.847
R-HSA-9007101 Rab regulation of trafficking 3.034669e-01 0.518
R-HSA-162906 HIV Infection 3.405688e-01 0.468
R-HSA-2555396 Mitotic Metaphase and Anaphase 2.064719e-01 0.685
R-HSA-9839373 Signaling by TGFBR3 2.344132e-01 0.630
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 4.219709e-01 0.375
R-HSA-418597 G alpha (z) signalling events 5.262393e-01 0.279
R-HSA-8939211 ESR-mediated signaling 3.244482e-01 0.489
R-HSA-8931987 RUNX1 regulates estrogen receptor mediated transcription 1.782441e-01 0.749
R-HSA-9683686 Maturation of spike protein 2.616585e-01 0.582
R-HSA-446728 Cell junction organization 2.106702e-01 0.676
R-HSA-418990 Adherens junctions interactions 1.534812e-01 0.814
R-HSA-114452 Activation of BH3-only proteins 2.968531e-01 0.527
R-HSA-9768759 Regulation of NPAS4 gene expression 5.007987e-01 0.300
R-HSA-9913351 Formation of the dystrophin-glycoprotein complex (DGC) 5.369887e-01 0.270
R-HSA-5654732 Negative regulation of FGFR3 signaling 2.632599e-01 0.580
R-HSA-9022692 Regulation of MECP2 expression and activity 3.480459e-01 0.458
R-HSA-421270 Cell-cell junction organization 3.339934e-01 0.476
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 2.222172e-01 0.653
R-HSA-190704 Oligomerization of connexins into connexons 2.048076e-01 0.689
R-HSA-5423599 Diseases of Mismatch Repair (MMR) 3.174884e-01 0.498
R-HSA-5607763 CLEC7A (Dectin-1) induces NFAT activation 1.603858e-01 0.795
R-HSA-193670 p75NTR negatively regulates cell cycle via SC1 3.676961e-01 0.435
R-HSA-5626978 TNFR1-mediated ceramide production 3.676961e-01 0.435
R-HSA-9013957 TLR3-mediated TICAM1-dependent programmed cell death 3.676961e-01 0.435
R-HSA-9675151 Disorders of Developmental Biology 2.176215e-01 0.662
R-HSA-77108 Utilization of Ketone Bodies 2.897507e-01 0.538
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 1.810051e-01 0.742
R-HSA-9733709 Cardiogenesis 1.810051e-01 0.742
R-HSA-8941855 RUNX3 regulates CDKN1A transcription 4.573106e-01 0.340
R-HSA-195399 VEGF binds to VEGFR leading to receptor dimerization 4.573106e-01 0.340
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 3.195217e-01 0.495
R-HSA-1483152 Hydrolysis of LPE 4.972397e-01 0.303
R-HSA-480985 Synthesis of dolichyl-phosphate-glucose 4.972397e-01 0.303
R-HSA-8876725 Protein methylation 4.258294e-01 0.371
R-HSA-8964041 LDL remodeling 5.342332e-01 0.272
R-HSA-2562578 TRIF-mediated programmed cell death 5.342332e-01 0.272
R-HSA-8964046 VLDL clearance 5.342332e-01 0.272
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 4.331764e-01 0.363
R-HSA-9616222 Transcriptional regulation of granulopoiesis 4.447925e-01 0.352
R-HSA-9694548 Maturation of spike protein 4.990201e-01 0.302
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 5.083645e-01 0.294
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 3.915971e-01 0.407
R-HSA-8878166 Transcriptional regulation by RUNX2 3.210374e-01 0.493
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 1.715866e-01 0.766
R-HSA-391160 Signal regulatory protein family interactions 1.603858e-01 0.795
R-HSA-8964038 LDL clearance 1.685937e-01 0.773
R-HSA-9842663 Signaling by LTK 3.453967e-01 0.462
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 3.813883e-01 0.419
R-HSA-200425 Carnitine shuttle 3.813883e-01 0.419
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 1.514241e-01 0.820
R-HSA-2892245 POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation 1.782441e-01 0.749
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 2.057112e-01 0.687
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 1.541525e-01 0.812
R-HSA-9702518 STAT5 activation downstream of FLT3 ITD mutants 4.765031e-01 0.322
R-HSA-210993 Tie2 Signaling 5.243553e-01 0.280
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 4.400698e-01 0.356
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 1.789471e-01 0.747
R-HSA-445144 Signal transduction by L1 2.988481e-01 0.525
R-HSA-6794362 Protein-protein interactions at synapses 2.841742e-01 0.546
R-HSA-1483255 PI Metabolism 3.639689e-01 0.439
R-HSA-397014 Muscle contraction 5.055423e-01 0.296
R-HSA-913531 Interferon Signaling 5.145633e-01 0.289
R-HSA-9827857 Specification of primordial germ cells 2.375629e-01 0.624
R-HSA-5357801 Programmed Cell Death 2.061908e-01 0.686
R-HSA-6806003 Regulation of TP53 Expression and Degradation 1.439104e-01 0.842
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 3.644490e-01 0.438
R-HSA-110357 Displacement of DNA glycosylase by APEX1 1.782441e-01 0.749
R-HSA-9927353 Co-inhibition by BTLA 4.142131e-01 0.383
R-HSA-447038 NrCAM interactions 4.142131e-01 0.383
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 3.177074e-01 0.498
R-HSA-194313 VEGF ligand-receptor interactions 4.573106e-01 0.340
R-HSA-9671555 Signaling by PDGFR in disease 3.402082e-01 0.468
R-HSA-9662001 Defective factor VIII causes hemophilia A 4.972397e-01 0.303
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 2.769994e-01 0.558
R-HSA-186763 Downstream signal transduction 3.138480e-01 0.503
R-HSA-426117 Cation-coupled Chloride cotransporters 5.342332e-01 0.272
R-HSA-3371599 Defective HLCS causes multiple carboxylase deficiency 5.342332e-01 0.272
R-HSA-5576890 Phase 3 - rapid repolarisation 5.342332e-01 0.272
R-HSA-69202 Cyclin E associated events during G1/S transition 3.869179e-01 0.412
R-HSA-8964043 Plasma lipoprotein clearance 4.664640e-01 0.331
R-HSA-9012852 Signaling by NOTCH3 5.262393e-01 0.279
R-HSA-162909 Host Interactions of HIV factors 1.771848e-01 0.752
R-HSA-9006115 Signaling by NTRK2 (TRKB) 4.616089e-01 0.336
R-HSA-9006936 Signaling by TGFB family members 4.925727e-01 0.308
R-HSA-3214842 HDMs demethylate histones 2.144650e-01 0.669
R-HSA-264876 Insulin processing 2.467410e-01 0.608
R-HSA-9675135 Diseases of DNA repair 3.955499e-01 0.403
R-HSA-1266695 Interleukin-7 signaling 2.144650e-01 0.669
R-HSA-8984722 Interleukin-35 Signalling 3.453967e-01 0.462
R-HSA-196780 Biotin transport and metabolism 4.258294e-01 0.371
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 5.369887e-01 0.270
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 5.186973e-01 0.285
R-HSA-176187 Activation of ATR in response to replication stress 1.810051e-01 0.742
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 3.480459e-01 0.458
R-HSA-111933 Calmodulin induced events 4.163152e-01 0.381
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 5.364509e-01 0.270
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 4.115102e-01 0.386
R-HSA-111997 CaM pathway 4.163152e-01 0.381
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 2.057112e-01 0.687
R-HSA-9613354 Lipophagy 2.335854e-01 0.632
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 4.142131e-01 0.383
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 4.142131e-01 0.383
R-HSA-9697154 Disorders of Nervous System Development 3.453967e-01 0.462
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 3.453967e-01 0.462
R-HSA-9005895 Pervasive developmental disorders 3.453967e-01 0.462
R-HSA-446388 Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... 4.573106e-01 0.340
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 3.195217e-01 0.495
R-HSA-8866423 VLDL assembly 4.972397e-01 0.303
R-HSA-9823739 Formation of the anterior neural plate 4.258294e-01 0.371
R-HSA-446353 Cell-extracellular matrix interactions 4.258294e-01 0.371
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 3.480459e-01 0.458
R-HSA-447041 CHL1 interactions 5.342332e-01 0.272
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 3.046018e-01 0.516
R-HSA-8874211 CREB3 factors activate genes 4.972397e-01 0.303
R-HSA-111996 Ca-dependent events 5.306875e-01 0.275
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 2.176215e-01 0.662
R-HSA-3214858 RMTs methylate histone arginines 2.102398e-01 0.677
R-HSA-9705683 SARS-CoV-2-host interactions 4.341614e-01 0.362
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 3.037312e-01 0.518
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 2.475264e-01 0.606
R-HSA-168255 Influenza Infection 4.446765e-01 0.352
R-HSA-5689877 Josephin domain DUBs 2.616585e-01 0.582
R-HSA-109704 PI3K Cascade 1.597612e-01 0.797
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 4.514998e-01 0.345
R-HSA-9679191 Potential therapeutics for SARS 2.207780e-01 0.656
R-HSA-6804757 Regulation of TP53 Degradation 4.163152e-01 0.381
R-HSA-109581 Apoptosis 2.217018e-01 0.654
R-HSA-8986944 Transcriptional Regulation by MECP2 2.391363e-01 0.621
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 2.304620e-01 0.637
R-HSA-5210891 Uptake and function of anthrax toxins 2.375629e-01 0.624
R-HSA-9682706 Replication of the SARS-CoV-1 genome 1.424606e-01 0.846
R-HSA-9694686 Replication of the SARS-CoV-2 genome 2.375629e-01 0.624
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 2.102398e-01 0.677
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 2.213890e-01 0.655
R-HSA-201556 Signaling by ALK 4.664640e-01 0.331
R-HSA-9679514 SARS-CoV-1 Genome Replication and Transcription 1.603858e-01 0.795
R-HSA-381119 Unfolded Protein Response (UPR) 5.292525e-01 0.276
R-HSA-9679506 SARS-CoV Infections 3.429298e-01 0.465
R-HSA-9694516 SARS-CoV-2 Infection 3.901929e-01 0.409
R-HSA-9694682 SARS-CoV-2 Genome Replication and Transcription 2.782509e-01 0.556
R-HSA-381038 XBP1(S) activates chaperone genes 1.958669e-01 0.708
R-HSA-381070 IRE1alpha activates chaperones 2.481862e-01 0.605
R-HSA-5339562 Uptake and actions of bacterial toxins 3.111748e-01 0.507
R-HSA-5660526 Response to metal ions 4.765031e-01 0.322
R-HSA-168316 Assembly of Viral Components at the Budding Site 4.142131e-01 0.383
R-HSA-9605308 Diseases of Base Excision Repair 4.573106e-01 0.340
R-HSA-9707564 Cytoprotection by HMOX1 5.433487e-01 0.265
R-HSA-8854214 TBC/RABGAPs 5.461463e-01 0.263
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 5.471501e-01 0.262
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 5.471501e-01 0.262
R-HSA-9754189 Germ layer formation at gastrulation 5.471501e-01 0.262
R-HSA-912631 Regulation of signaling by CBL 5.471501e-01 0.262
R-HSA-9856532 Mechanical load activates signaling by PIEZO1 and integrins in osteocytes 5.471501e-01 0.262
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 5.471501e-01 0.262
R-HSA-1834941 STING mediated induction of host immune responses 5.471501e-01 0.262
R-HSA-449836 Other interleukin signaling 5.471501e-01 0.262
R-HSA-844456 The NLRP3 inflammasome 5.471501e-01 0.262
R-HSA-9694631 Maturation of nucleoprotein 5.471501e-01 0.262
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 5.479102e-01 0.261
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 5.548765e-01 0.256
R-HSA-69239 Synthesis of DNA 5.566212e-01 0.254
R-HSA-190828 Gap junction trafficking 5.613362e-01 0.251
R-HSA-5687128 MAPK6/MAPK4 signaling 5.660844e-01 0.247
R-HSA-212718 EGFR interacts with phospholipase C-gamma 5.685067e-01 0.245
R-HSA-9768778 Regulation of NPAS4 mRNA translation 5.685067e-01 0.245
R-HSA-1169092 Activation of RAS in B cells 5.685067e-01 0.245
R-HSA-9660537 Signaling by MRAS-complex mutants 5.685067e-01 0.245
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 5.685067e-01 0.245
R-HSA-3371378 Regulation by c-FLIP 5.685067e-01 0.245
R-HSA-9839383 TGFBR3 PTM regulation 5.685067e-01 0.245
R-HSA-69416 Dimerization of procaspase-8 5.685067e-01 0.245
R-HSA-425986 Sodium/Proton exchangers 5.685067e-01 0.245
R-HSA-5620916 VxPx cargo-targeting to cilium 5.691678e-01 0.245
R-HSA-6807878 COPI-mediated anterograde transport 5.714507e-01 0.243
R-HSA-397795 G-protein beta:gamma signalling 5.723447e-01 0.242
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 5.723447e-01 0.242
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 5.723447e-01 0.242
R-HSA-9924644 Developmental Lineages of the Mammary Gland 5.723634e-01 0.242
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 5.762449e-01 0.239
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 5.762449e-01 0.239
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 5.762449e-01 0.239
R-HSA-1489509 DAG and IP3 signaling 5.762449e-01 0.239
R-HSA-5673001 RAF/MAP kinase cascade 5.781444e-01 0.238
R-HSA-429914 Deadenylation-dependent mRNA decay 5.803062e-01 0.236
R-HSA-69052 Switching of origins to a post-replicative state 5.843424e-01 0.233
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 5.854778e-01 0.232
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 5.861787e-01 0.232
R-HSA-166166 MyD88-independent TLR4 cascade 5.861787e-01 0.232
R-HSA-163359 Glucagon signaling in metabolic regulation 5.893800e-01 0.230
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 5.893800e-01 0.230
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 5.893800e-01 0.230
R-HSA-114508 Effects of PIP2 hydrolysis 5.893800e-01 0.230
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 5.893800e-01 0.230
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 5.903992e-01 0.229
R-HSA-69186 Lagging Strand Synthesis 5.903992e-01 0.229
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 5.903992e-01 0.229
R-HSA-167044 Signalling to RAS 5.903992e-01 0.229
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 5.908616e-01 0.229
R-HSA-72165 mRNA Splicing - Minor Pathway 5.908616e-01 0.229
R-HSA-69473 G2/M DNA damage checkpoint 5.961471e-01 0.225
R-HSA-447115 Interleukin-12 family signaling 5.991733e-01 0.222
R-HSA-438064 Post NMDA receptor activation events 5.991733e-01 0.222
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 5.994197e-01 0.222
R-HSA-170984 ARMS-mediated activation 6.002601e-01 0.222
R-HSA-5218900 CASP8 activity is inhibited 6.002601e-01 0.222
R-HSA-163680 AMPK inhibits chREBP transcriptional activation activity 6.002601e-01 0.222
R-HSA-2465910 MASTL Facilitates Mitotic Progression 6.002601e-01 0.222
R-HSA-5649702 APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... 6.002601e-01 0.222
R-HSA-428542 Regulation of commissural axon pathfinding by SLIT and ROBO 6.002601e-01 0.222
R-HSA-9619229 Activation of RAC1 downstream of NMDARs 6.002601e-01 0.222
R-HSA-201688 WNT mediated activation of DVL 6.002601e-01 0.222
R-HSA-9768777 Regulation of NPAS4 gene transcription 6.002601e-01 0.222
R-HSA-9013700 NOTCH4 Activation and Transmission of Signal to the Nucleus 6.002601e-01 0.222
R-HSA-193692 Regulated proteolysis of p75NTR 6.002601e-01 0.222
R-HSA-9834752 Respiratory syncytial virus genome replication 6.002601e-01 0.222
R-HSA-448706 Interleukin-1 processing 6.002601e-01 0.222
R-HSA-9840373 Cellular response to mitochondrial stress 6.002601e-01 0.222
R-HSA-3323169 Defects in biotin (Btn) metabolism 6.002601e-01 0.222
R-HSA-5689880 Ub-specific processing proteases 6.051194e-01 0.218
R-HSA-9768919 NPAS4 regulates expression of target genes 6.059719e-01 0.218
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 6.059719e-01 0.218
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 6.059719e-01 0.218
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 6.059719e-01 0.218
R-HSA-901042 Calnexin/calreticulin cycle 6.059719e-01 0.218
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 6.059719e-01 0.218
R-HSA-168638 NOD1/2 Signaling Pathway 6.059719e-01 0.218
R-HSA-199977 ER to Golgi Anterograde Transport 6.062765e-01 0.217
R-HSA-9663891 Selective autophagy 6.099094e-01 0.215
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 6.108409e-01 0.214
R-HSA-8876384 Listeria monocytogenes entry into host cells 6.108409e-01 0.214
R-HSA-186797 Signaling by PDGF 6.185986e-01 0.209
R-HSA-389356 Co-stimulation by CD28 6.191832e-01 0.208
R-HSA-9020591 Interleukin-12 signaling 6.192088e-01 0.208
R-HSA-3858494 Beta-catenin independent WNT signaling 6.199723e-01 0.208
R-HSA-5654696 Downstream signaling of activated FGFR2 6.221120e-01 0.206
R-HSA-5654687 Downstream signaling of activated FGFR1 6.221120e-01 0.206
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 6.221120e-01 0.206
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 6.283693e-01 0.202
R-HSA-9027277 Erythropoietin activates Phospholipase C gamma (PLCG) 6.296785e-01 0.201
R-HSA-5221030 TET1,2,3 and TDG demethylate DNA 6.296785e-01 0.201
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 6.296785e-01 0.201
R-HSA-68952 DNA replication initiation 6.296785e-01 0.201
R-HSA-6803544 Ion influx/efflux at host-pathogen interface 6.296785e-01 0.201
R-HSA-9693928 Defective RIPK1-mediated regulated necrosis 6.296785e-01 0.201
R-HSA-8934903 Receptor Mediated Mitophagy 6.296785e-01 0.201
R-HSA-9820962 Assembly and release of respiratory syncytial virus (RSV) virions 6.296785e-01 0.201
R-HSA-110056 MAPK3 (ERK1) activation 6.296785e-01 0.201
R-HSA-2586552 Signaling by Leptin 6.296785e-01 0.201
R-HSA-9762292 Regulation of CDH11 function 6.296785e-01 0.201
R-HSA-5617833 Cilium Assembly 6.303268e-01 0.200
R-HSA-9694635 Translation of Structural Proteins 6.304549e-01 0.200
R-HSA-9938206 Developmental Lineage of Mammary Stem Cells 6.304941e-01 0.200
R-HSA-5654712 FRS-mediated FGFR4 signaling 6.304941e-01 0.200
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 6.304941e-01 0.200
R-HSA-112409 RAF-independent MAPK1/3 activation 6.304941e-01 0.200
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 6.304941e-01 0.200
R-HSA-8848021 Signaling by PTK6 6.308928e-01 0.200
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 6.308928e-01 0.200
R-HSA-5358351 Signaling by Hedgehog 6.366703e-01 0.196
R-HSA-168898 Toll-like Receptor Cascades 6.374703e-01 0.196
R-HSA-3371511 HSF1 activation 6.377944e-01 0.195
R-HSA-383280 Nuclear Receptor transcription pathway 6.415051e-01 0.193
R-HSA-4086400 PCP/CE pathway 6.415051e-01 0.193
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 6.429428e-01 0.192
R-HSA-5655253 Signaling by FGFR2 in disease 6.462416e-01 0.190
R-HSA-9018682 Biosynthesis of maresins 6.493641e-01 0.188
R-HSA-74182 Ketone body metabolism 6.493641e-01 0.188
R-HSA-4641257 Degradation of AXIN 6.530151e-01 0.185
R-HSA-110331 Cleavage of the damaged purine 6.530151e-01 0.185
R-HSA-9759811 Regulation of CDH11 mRNA translation by microRNAs 6.569335e-01 0.182
R-HSA-9034864 Activated NTRK3 signals through RAS 6.569335e-01 0.182
R-HSA-192905 vRNP Assembly 6.569335e-01 0.182
R-HSA-8963888 Chylomicron assembly 6.569335e-01 0.182
R-HSA-9706019 RHOBTB3 ATPase cycle 6.569335e-01 0.182
R-HSA-425381 Bicarbonate transporters 6.569335e-01 0.182
R-HSA-9635465 Suppression of apoptosis 6.569335e-01 0.182
R-HSA-8941332 RUNX2 regulates genes involved in cell migration 6.569335e-01 0.182
R-HSA-9662834 CD163 mediating an anti-inflammatory response 6.569335e-01 0.182
R-HSA-9020558 Interleukin-2 signaling 6.569335e-01 0.182
R-HSA-3371571 HSF1-dependent transactivation 6.592842e-01 0.181
R-HSA-9833110 RSV-host interactions 6.603216e-01 0.180
R-HSA-74752 Signaling by Insulin receptor 6.611818e-01 0.180
R-HSA-9772573 Late SARS-CoV-2 Infection Events 6.611818e-01 0.180
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 6.630014e-01 0.178
R-HSA-9703648 Signaling by FLT3 ITD and TKD mutants 6.674597e-01 0.176
R-HSA-5621575 CD209 (DC-SIGN) signaling 6.674597e-01 0.176
R-HSA-8963898 Plasma lipoprotein assembly 6.674597e-01 0.176
R-HSA-73927 Depurination 6.677720e-01 0.175
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 6.677720e-01 0.175
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 6.677720e-01 0.175
R-HSA-9609646 HCMV Infection 6.711924e-01 0.173
R-HSA-9612973 Autophagy 6.768648e-01 0.169
R-HSA-416550 Sema4D mediated inhibition of cell attachment and migration 6.821842e-01 0.166
R-HSA-5358493 Synthesis of diphthamide-EEF2 6.821842e-01 0.166
R-HSA-5693548 Sensing of DNA Double Strand Breaks 6.821842e-01 0.166
R-HSA-3772470 Negative regulation of TCF-dependent signaling by WNT ligand antagonists 6.821842e-01 0.166
R-HSA-9026519 Activated NTRK2 signals through RAS 6.821842e-01 0.166
R-HSA-9013973 TICAM1-dependent activation of IRF3/IRF7 6.821842e-01 0.166
R-HSA-2514853 Condensation of Prometaphase Chromosomes 6.821842e-01 0.166
R-HSA-9610379 HCMV Late Events 6.842391e-01 0.165
R-HSA-8948751 Regulation of PTEN stability and activity 6.843795e-01 0.165
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 6.843795e-01 0.165
R-HSA-1221632 Meiotic synapsis 6.843795e-01 0.165
R-HSA-5654693 FRS-mediated FGFR1 signaling 6.847927e-01 0.164
R-HSA-174411 Polymerase switching on the C-strand of the telomere 6.847927e-01 0.164
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 6.847927e-01 0.164
R-HSA-9711123 Cellular response to chemical stress 6.958472e-01 0.157
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 6.958944e-01 0.157
R-HSA-1251985 Nuclear signaling by ERBB4 6.958944e-01 0.157
R-HSA-451927 Interleukin-2 family signaling 6.958944e-01 0.157
R-HSA-2672351 Stimuli-sensing channels 6.960956e-01 0.157
R-HSA-73929 Base-Excision Repair, AP Site Formation 6.964287e-01 0.157
R-HSA-8874081 MET activates PTK2 signaling 7.013773e-01 0.154
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 7.013773e-01 0.154
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 7.013773e-01 0.154
R-HSA-1855183 Synthesis of IP2, IP, and Ins in the cytosol 7.013773e-01 0.154
R-HSA-73886 Chromosome Maintenance 7.021937e-01 0.154
R-HSA-3000484 Scavenging by Class F Receptors 7.055777e-01 0.151
R-HSA-8951936 RUNX3 regulates p14-ARF 7.055777e-01 0.151
R-HSA-77285 Beta oxidation of myristoyl-CoA to lauroyl-CoA 7.055777e-01 0.151
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 7.055777e-01 0.151
R-HSA-937039 IRAK1 recruits IKK complex 7.055777e-01 0.151
R-HSA-77305 Beta oxidation of palmitoyl-CoA to myristoyl-CoA 7.055777e-01 0.151
R-HSA-8941856 RUNX3 regulates NOTCH signaling 7.055777e-01 0.151
R-HSA-380615 Serotonin clearance from the synaptic cleft 7.055777e-01 0.151
R-HSA-2428933 SHC-related events triggered by IGF1R 7.055777e-01 0.151
R-HSA-69109 Leading Strand Synthesis 7.055777e-01 0.151
R-HSA-69091 Polymerase switching 7.055777e-01 0.151
R-HSA-877312 Regulation of IFNG signaling 7.055777e-01 0.151
R-HSA-879415 Advanced glycosylation endproduct receptor signaling 7.055777e-01 0.151
R-HSA-8983432 Interleukin-15 signaling 7.055777e-01 0.151
R-HSA-1679131 Trafficking and processing of endosomal TLR 7.055777e-01 0.151
R-HSA-8983711 OAS antiviral response 7.055777e-01 0.151
R-HSA-5218920 VEGFR2 mediated vascular permeability 7.092637e-01 0.149
R-HSA-8853884 Transcriptional Regulation by VENTX 7.092637e-01 0.149
R-HSA-1500620 Meiosis 7.130876e-01 0.147
R-HSA-157579 Telomere Maintenance 7.169945e-01 0.144
R-HSA-8878159 Transcriptional regulation by RUNX3 7.169945e-01 0.144
R-HSA-445095 Interaction between L1 and Ankyrins 7.172297e-01 0.144
R-HSA-3928663 EPHA-mediated growth cone collapse 7.172297e-01 0.144
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 7.172297e-01 0.144
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 7.172297e-01 0.144
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 7.172297e-01 0.144
R-HSA-193807 Synthesis of bile acids and bile salts via 27-hydroxycholesterol 7.172297e-01 0.144
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 7.172297e-01 0.144
R-HSA-3299685 Detoxification of Reactive Oxygen Species 7.195281e-01 0.143
R-HSA-109606 Intrinsic Pathway for Apoptosis 7.195281e-01 0.143
R-HSA-5632684 Hedgehog 'on' state 7.201676e-01 0.143
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 7.201676e-01 0.143
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 7.221763e-01 0.141
R-HSA-5610780 Degradation of GLI1 by the proteasome 7.221763e-01 0.141
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 7.221763e-01 0.141
R-HSA-167161 HIV Transcription Initiation 7.221763e-01 0.141
R-HSA-75953 RNA Polymerase II Transcription Initiation 7.221763e-01 0.141
R-HSA-5675221 Negative regulation of MAPK pathway 7.221763e-01 0.141
R-HSA-189451 Heme biosynthesis 7.221763e-01 0.141
R-HSA-9683701 Translation of Structural Proteins 7.221763e-01 0.141
R-HSA-9861559 PDH complex synthesizes acetyl-CoA from PYR 7.272506e-01 0.138
R-HSA-9796292 Formation of axial mesoderm 7.272506e-01 0.138
R-HSA-1059683 Interleukin-6 signaling 7.272506e-01 0.138
R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 7.272506e-01 0.138
R-HSA-75892 Platelet Adhesion to exposed collagen 7.272506e-01 0.138
R-HSA-174490 Membrane binding and targetting of GAG proteins 7.272506e-01 0.138
R-HSA-442720 CREB1 phosphorylation through the activation of Adenylate Cyclase 7.272506e-01 0.138
R-HSA-9683610 Maturation of nucleoprotein 7.272506e-01 0.138
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 7.272506e-01 0.138
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 7.272506e-01 0.138
R-HSA-8877330 RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) 7.272506e-01 0.138
R-HSA-9758941 Gastrulation 7.280814e-01 0.138
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 7.301604e-01 0.137
R-HSA-163685 Integration of energy metabolism 7.303690e-01 0.136
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 7.323678e-01 0.135
R-HSA-113418 Formation of the Early Elongation Complex 7.323678e-01 0.135
R-HSA-167287 HIV elongation arrest and recovery 7.323678e-01 0.135
R-HSA-167290 Pausing and recovery of HIV elongation 7.323678e-01 0.135
R-HSA-5654700 FRS-mediated FGFR2 signaling 7.323678e-01 0.135
R-HSA-622312 Inflammasomes 7.323678e-01 0.135
R-HSA-110329 Cleavage of the damaged pyrimidine 7.346373e-01 0.134
R-HSA-73928 Depyrimidination 7.346373e-01 0.134
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 7.398924e-01 0.131
R-HSA-4086398 Ca2+ pathway 7.398924e-01 0.131
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 7.408073e-01 0.130
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 7.408073e-01 0.130
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 7.408073e-01 0.130
R-HSA-73776 RNA Polymerase II Promoter Escape 7.466524e-01 0.127
R-HSA-5654743 Signaling by FGFR4 7.466524e-01 0.127
R-HSA-9615710 Late endosomal microautophagy 7.468109e-01 0.127
R-HSA-9674555 Signaling by CSF3 (G-CSF) 7.468109e-01 0.127
R-HSA-5654733 Negative regulation of FGFR4 signaling 7.468109e-01 0.127
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 7.468109e-01 0.127
R-HSA-69166 Removal of the Flap Intermediate 7.473293e-01 0.126
R-HSA-9764562 Regulation of CDH1 mRNA translation by microRNAs 7.473293e-01 0.126
R-HSA-190372 FGFR3c ligand binding and activation 7.473293e-01 0.126
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 7.473293e-01 0.126
R-HSA-77348 Beta oxidation of octanoyl-CoA to hexanoyl-CoA 7.473293e-01 0.126
R-HSA-77310 Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA 7.473293e-01 0.126
R-HSA-77350 Beta oxidation of hexanoyl-CoA to butanoyl-CoA 7.473293e-01 0.126
R-HSA-1483115 Hydrolysis of LPC 7.473293e-01 0.126
R-HSA-5578768 Physiological factors 7.473293e-01 0.126
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 7.473293e-01 0.126
R-HSA-1433559 Regulation of KIT signaling 7.473293e-01 0.126
R-HSA-8963896 HDL assembly 7.473293e-01 0.126
R-HSA-1482798 Acyl chain remodeling of CL 7.473293e-01 0.126
R-HSA-9013694 Signaling by NOTCH4 7.493645e-01 0.125
R-HSA-1236394 Signaling by ERBB4 7.493645e-01 0.125
R-HSA-180786 Extension of Telomeres 7.516968e-01 0.124
R-HSA-1280215 Cytokine Signaling in Immune system 7.539473e-01 0.123
R-HSA-114608 Platelet degranulation 7.552588e-01 0.122
R-HSA-2172127 DAP12 interactions 7.582286e-01 0.120
R-HSA-373752 Netrin-1 signaling 7.582286e-01 0.120
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 7.584965e-01 0.120
R-HSA-888590 GABA synthesis, release, reuptake and degradation 7.605792e-01 0.119
R-HSA-9008059 Interleukin-37 signaling 7.605792e-01 0.119
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 7.617676e-01 0.118
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 7.617676e-01 0.118
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 7.617676e-01 0.118
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 7.617676e-01 0.118
R-HSA-2644603 Signaling by NOTCH1 in Cancer 7.617676e-01 0.118
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 7.648450e-01 0.116
R-HSA-1632852 Macroautophagy 7.648450e-01 0.116
R-HSA-8948700 Competing endogenous RNAs (ceRNAs) regulate PTEN translation 7.659310e-01 0.116
R-HSA-8964315 G beta:gamma signalling through BTK 7.659310e-01 0.116
R-HSA-174430 Telomere C-strand synthesis initiation 7.659310e-01 0.116
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants 7.659310e-01 0.116
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants 7.659310e-01 0.116
R-HSA-9857492 Protein lipoylation 7.659310e-01 0.116
R-HSA-419408 Lysosphingolipid and LPA receptors 7.659310e-01 0.116
R-HSA-9755779 SARS-CoV-2 targets host intracellular signalling and regulatory pathways 7.659310e-01 0.116
R-HSA-111447 Activation of BAD and translocation to mitochondria 7.659310e-01 0.116
R-HSA-1295596 Spry regulation of FGF signaling 7.659310e-01 0.116
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 7.659310e-01 0.116
R-HSA-1980143 Signaling by NOTCH1 7.675347e-01 0.115
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 7.693734e-01 0.114
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 7.693734e-01 0.114
R-HSA-450294 MAP kinase activation 7.715179e-01 0.113
R-HSA-445717 Aquaporin-mediated transport 7.715179e-01 0.113
R-HSA-112043 PLC beta mediated events 7.715179e-01 0.113
R-HSA-9820960 Respiratory syncytial virus (RSV) attachment and entry 7.736938e-01 0.111
R-HSA-162588 Budding and maturation of HIV virion 7.736938e-01 0.111
R-HSA-5694530 Cargo concentration in the ER 7.736938e-01 0.111
R-HSA-9833109 Evasion by RSV of host interferon responses 7.736938e-01 0.111
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 7.738123e-01 0.111
R-HSA-72306 tRNA processing 7.765984e-01 0.110
R-HSA-1266738 Developmental Biology 7.774303e-01 0.109
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 7.800951e-01 0.108
R-HSA-2299718 Condensation of Prophase Chromosomes 7.800951e-01 0.108
R-HSA-1474165 Reproduction 7.824503e-01 0.107
R-HSA-176412 Phosphorylation of the APC/C 7.831642e-01 0.106
R-HSA-140534 Caspase activation via Death Receptors in the presence of ligand 7.831642e-01 0.106
R-HSA-9754706 Atorvastatin ADME 7.831642e-01 0.106
R-HSA-9942503 Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) 7.831642e-01 0.106
R-HSA-9945266 Differentiation of T cells 7.831642e-01 0.106
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 7.831642e-01 0.106
R-HSA-9634600 Regulation of glycolysis by fructose 2,6-bisphosphate metabolism 7.831642e-01 0.106
R-HSA-9733458 Induction of Cell-Cell Fusion 7.831642e-01 0.106
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 7.831642e-01 0.106
R-HSA-9664420 Killing mechanisms 7.831642e-01 0.106
R-HSA-168268 Virus Assembly and Release 7.831642e-01 0.106
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 7.861762e-01 0.104
R-HSA-9909648 Regulation of PD-L1(CD274) expression 7.880881e-01 0.103
R-HSA-156842 Eukaryotic Translation Elongation 7.897462e-01 0.103
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 7.897462e-01 0.103
R-HSA-69615 G1/S DNA Damage Checkpoints 7.900741e-01 0.102
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 7.904024e-01 0.102
R-HSA-68867 Assembly of the pre-replicative complex 7.972053e-01 0.098
R-HSA-5654726 Negative regulation of FGFR1 signaling 7.980485e-01 0.098
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 7.980485e-01 0.098
R-HSA-8964616 G beta:gamma signalling through CDC42 7.991297e-01 0.097
R-HSA-918233 TRAF3-dependent IRF activation pathway 7.991297e-01 0.097
R-HSA-1250347 SHC1 events in ERBB4 signaling 7.991297e-01 0.097
R-HSA-77288 mitochondrial fatty acid beta-oxidation of unsaturated fatty acids 7.991297e-01 0.097
R-HSA-5576893 Phase 2 - plateau phase 7.991297e-01 0.097
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 7.991297e-01 0.097
R-HSA-936964 Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) 7.991297e-01 0.097
R-HSA-3134975 Regulation of innate immune responses to cytosolic DNA 7.991297e-01 0.097
R-HSA-77346 Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA 7.991297e-01 0.097
R-HSA-399997 Acetylcholine regulates insulin secretion 7.991297e-01 0.097
R-HSA-9651496 Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) 7.991297e-01 0.097
R-HSA-9634597 GPER1 signaling 8.003047e-01 0.097
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 8.003047e-01 0.097
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 8.008404e-01 0.096
R-HSA-9678108 SARS-CoV-1 Infection 8.045223e-01 0.094
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 8.074034e-01 0.093
R-HSA-9759194 Nuclear events mediated by NFE2L2 8.076977e-01 0.093
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 8.093328e-01 0.092
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 8.098116e-01 0.092
R-HSA-9766229 Degradation of CDH1 8.098116e-01 0.092
R-HSA-9734767 Developmental Cell Lineages 8.125135e-01 0.090
R-HSA-190840 Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 8.139205e-01 0.089
R-HSA-2408550 Metabolism of ingested H2SeO4 and H2SeO3 into H2Se 8.139205e-01 0.089
R-HSA-69002 DNA Replication Pre-Initiation 8.154386e-01 0.089
R-HSA-5658442 Regulation of RAS by GAPs 8.189332e-01 0.087
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 8.200512e-01 0.086
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 8.200512e-01 0.086
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 8.200512e-01 0.086
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 8.200512e-01 0.086
R-HSA-5654727 Negative regulation of FGFR2 signaling 8.200512e-01 0.086
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 8.232583e-01 0.084
R-HSA-112040 G-protein mediated events 8.235490e-01 0.084
R-HSA-190872 Transport of connexons to the plasma membrane 8.276230e-01 0.082
R-HSA-73980 RNA Polymerase III Transcription Termination 8.276230e-01 0.082
R-HSA-6804760 Regulation of TP53 Activity through Methylation 8.276230e-01 0.082
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 8.276797e-01 0.082
R-HSA-9755511 KEAP1-NFE2L2 pathway 8.294764e-01 0.081
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 8.302259e-01 0.081
R-HSA-167172 Transcription of the HIV genome 8.311926e-01 0.080
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 8.311926e-01 0.080
R-HSA-170834 Signaling by TGF-beta Receptor Complex 8.314658e-01 0.080
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 8.346071e-01 0.079
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 8.360616e-01 0.078
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 8.360616e-01 0.078
R-HSA-190236 Signaling by FGFR 8.377297e-01 0.077
R-HSA-975871 MyD88 cascade initiated on plasma membrane 8.377297e-01 0.077
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 8.377297e-01 0.077
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 8.377297e-01 0.077
R-HSA-69306 DNA Replication 8.396181e-01 0.076
R-HSA-212300 PRC2 methylates histones and DNA 8.398788e-01 0.076
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 8.398788e-01 0.076
R-HSA-432720 Lysosome Vesicle Biogenesis 8.398788e-01 0.076
R-HSA-163560 Triglyceride catabolism 8.398788e-01 0.076
R-HSA-110320 Translesion Synthesis by POLH 8.403173e-01 0.076
R-HSA-8851708 Signaling by FGFR2 IIIa TM 8.403173e-01 0.076
R-HSA-9671793 Diseases of hemostasis 8.403173e-01 0.076
R-HSA-9834899 Specification of the neural plate border 8.403173e-01 0.076
R-HSA-9913635 Strand-asynchronous mitochondrial DNA replication 8.403173e-01 0.076
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 8.440896e-01 0.074
R-HSA-9639288 Amino acids regulate mTORC1 8.440896e-01 0.074
R-HSA-204005 COPII-mediated vesicle transport 8.456530e-01 0.073
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 8.456530e-01 0.073
R-HSA-448424 Interleukin-17 signaling 8.456530e-01 0.073
R-HSA-75105 Fatty acyl-CoA biosynthesis 8.456530e-01 0.073
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 8.490316e-01 0.071
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 8.517744e-01 0.070
R-HSA-9909620 Regulation of PD-L1(CD274) translation 8.520774e-01 0.070
R-HSA-163210 Formation of ATP by chemiosmotic coupling 8.520774e-01 0.070
R-HSA-389513 Co-inhibition by CTLA4 8.520774e-01 0.070
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 8.520774e-01 0.070
R-HSA-71288 Creatine metabolism 8.520774e-01 0.070
R-HSA-9629569 Protein hydroxylation 8.520774e-01 0.070
R-HSA-1181150 Signaling by NODAL 8.520774e-01 0.070
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 8.524827e-01 0.069
R-HSA-453276 Regulation of mitotic cell cycle 8.524827e-01 0.069
R-HSA-427413 NoRC negatively regulates rRNA expression 8.524827e-01 0.069
R-HSA-189445 Metabolism of porphyrins 8.524827e-01 0.069
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 8.529964e-01 0.069
R-HSA-9009391 Extra-nuclear estrogen signaling 8.553998e-01 0.068
R-HSA-76002 Platelet activation, signaling and aggregation 8.558559e-01 0.068
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 8.577055e-01 0.067
R-HSA-9958790 SLC-mediated transport of inorganic anions 8.577055e-01 0.067
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 8.591267e-01 0.066
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 8.591267e-01 0.066
R-HSA-909733 Interferon alpha/beta signaling 8.613772e-01 0.065
R-HSA-156902 Peptide chain elongation 8.619564e-01 0.065
R-HSA-5602498 MyD88 deficiency (TLR2/4) 8.629720e-01 0.064
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 8.629720e-01 0.064
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 8.629720e-01 0.064
R-HSA-422085 Synthesis, secretion, and deacylation of Ghrelin 8.629720e-01 0.064
R-HSA-9819196 Zygotic genome activation (ZGA) 8.629720e-01 0.064
R-HSA-140837 Intrinsic Pathway of Fibrin Clot Formation 8.629720e-01 0.064
R-HSA-162594 Early Phase of HIV Life Cycle 8.629720e-01 0.064
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 8.645519e-01 0.063
R-HSA-8868773 rRNA processing in the nucleus and cytosol 8.650042e-01 0.063
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 8.659215e-01 0.063
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 8.659215e-01 0.063
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 8.659215e-01 0.063
R-HSA-69541 Stabilization of p53 8.659215e-01 0.063
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 8.661572e-01 0.062
R-HSA-5654736 Signaling by FGFR1 8.661572e-01 0.062
R-HSA-72737 Cap-dependent Translation Initiation 8.664024e-01 0.062
R-HSA-72613 Eukaryotic Translation Initiation 8.664024e-01 0.062
R-HSA-674695 RNA Polymerase II Pre-transcription Events 8.714498e-01 0.060
R-HSA-111885 Opioid Signalling 8.714579e-01 0.060
R-HSA-9764561 Regulation of CDH1 Function 8.728767e-01 0.059
R-HSA-5621480 Dectin-2 family 8.728767e-01 0.059
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 8.730649e-01 0.059
R-HSA-5603041 IRAK4 deficiency (TLR2/4) 8.730649e-01 0.059
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 8.730649e-01 0.059
R-HSA-5654719 SHC-mediated cascade:FGFR4 8.730649e-01 0.059
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 8.730649e-01 0.059
R-HSA-947581 Molybdenum cofactor biosynthesis 8.730649e-01 0.059
R-HSA-175474 Assembly Of The HIV Virion 8.730649e-01 0.059
R-HSA-9034015 Signaling by NTRK3 (TRKC) 8.730649e-01 0.059
R-HSA-8949215 Mitochondrial calcium ion transport 8.730649e-01 0.059
R-HSA-3371568 Attenuation phase 8.736998e-01 0.059
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 8.736998e-01 0.059
R-HSA-167169 HIV Transcription Elongation 8.736998e-01 0.059
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 8.736998e-01 0.059
R-HSA-202433 Generation of second messenger molecules 8.736998e-01 0.059
R-HSA-5260271 Diseases of Immune System 8.736998e-01 0.059
R-HSA-5602358 Diseases associated with the TLR signaling cascade 8.736998e-01 0.059
R-HSA-3000171 Non-integrin membrane-ECM interactions 8.772874e-01 0.057
R-HSA-1912408 Pre-NOTCH Transcription and Translation 8.784767e-01 0.056
R-HSA-9772572 Early SARS-CoV-2 Infection Events 8.792959e-01 0.056
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 8.805862e-01 0.055
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 8.805862e-01 0.055
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 8.810604e-01 0.055
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 8.810604e-01 0.055
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 8.822500e-01 0.054
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 8.824150e-01 0.054
R-HSA-6803529 FGFR2 alternative splicing 8.824150e-01 0.054
R-HSA-912694 Regulation of IFNA/IFNB signaling 8.824150e-01 0.054
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 8.824150e-01 0.054
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 8.824150e-01 0.054
R-HSA-9669938 Signaling by KIT in disease 8.824150e-01 0.054
R-HSA-189200 Cellular hexose transport 8.824150e-01 0.054
R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 8.854251e-01 0.053
R-HSA-9692914 SARS-CoV-1-host interactions 8.859997e-01 0.053
R-HSA-5610783 Degradation of GLI2 by the proteasome 8.880225e-01 0.052
R-HSA-6811438 Intra-Golgi traffic 8.880225e-01 0.052
R-HSA-442660 SLC-mediated transport of neurotransmitters 8.880225e-01 0.052
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 8.910768e-01 0.050
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 8.910768e-01 0.050
R-HSA-912526 Interleukin receptor SHC signaling 8.910768e-01 0.050
R-HSA-8854691 Interleukin-20 family signaling 8.910768e-01 0.050
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 8.910768e-01 0.050
R-HSA-392451 G beta:gamma signalling through PI3Kgamma 8.910768e-01 0.050
R-HSA-3000170 Syndecan interactions 8.910768e-01 0.050
R-HSA-982772 Growth hormone receptor signaling 8.910768e-01 0.050
R-HSA-5362517 Signaling by Retinoic Acid 8.912750e-01 0.050
R-HSA-157118 Signaling by NOTCH 8.915028e-01 0.050
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 8.934927e-01 0.049
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 8.934927e-01 0.049
R-HSA-388841 Regulation of T cell activation by CD28 family 8.941388e-01 0.049
R-HSA-991365 Activation of GABAB receptors 8.946050e-01 0.048
R-HSA-977444 GABA B receptor activation 8.946050e-01 0.048
R-HSA-379716 Cytosolic tRNA aminoacylation 8.946050e-01 0.048
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 8.946050e-01 0.048
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 8.946050e-01 0.048
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 8.949005e-01 0.048
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 8.949005e-01 0.048
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 8.949005e-01 0.048
R-HSA-8939902 Regulation of RUNX2 expression and activity 8.968557e-01 0.047
R-HSA-5619102 SLC transporter disorders 8.979896e-01 0.047
R-HSA-211999 CYP2E1 reactions 8.991010e-01 0.046
R-HSA-6783589 Interleukin-6 family signaling 8.991010e-01 0.046
R-HSA-933542 TRAF6 mediated NF-kB activation 8.991010e-01 0.046
R-HSA-5654688 SHC-mediated cascade:FGFR1 8.991010e-01 0.046
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 8.991010e-01 0.046
R-HSA-5669034 TNFs bind their physiological receptors 8.991010e-01 0.046
R-HSA-975155 MyD88 dependent cascade initiated on endosome 8.991240e-01 0.046
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 8.992455e-01 0.046
R-HSA-9710421 Defective pyroptosis 9.008259e-01 0.045
R-HSA-1433557 Signaling by SCF-KIT 9.008259e-01 0.045
R-HSA-75876 Synthesis of very long-chain fatty acyl-CoAs 9.008259e-01 0.045
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 9.021773e-01 0.045
R-HSA-1268020 Mitochondrial protein import 9.021773e-01 0.045
R-HSA-375165 NCAM signaling for neurite out-growth 9.021773e-01 0.045
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 9.021773e-01 0.045
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 9.022645e-01 0.045
R-HSA-5654738 Signaling by FGFR2 9.031453e-01 0.044
R-HSA-9833482 PKR-mediated signaling 9.031453e-01 0.044
R-HSA-449147 Signaling by Interleukins 9.034972e-01 0.044
R-HSA-9620244 Long-term potentiation 9.065346e-01 0.043
R-HSA-5218921 VEGFR2 mediated cell proliferation 9.065346e-01 0.043
R-HSA-1482801 Acyl chain remodelling of PS 9.065346e-01 0.043
R-HSA-2160916 Hyaluronan degradation 9.065346e-01 0.043
R-HSA-203927 MicroRNA (miRNA) biogenesis 9.065346e-01 0.043
R-HSA-3000157 Laminin interactions 9.065346e-01 0.043
R-HSA-70221 Glycogen breakdown (glycogenolysis) 9.065346e-01 0.043
R-HSA-3928662 EPHB-mediated forward signaling 9.067028e-01 0.043
R-HSA-389948 Co-inhibition by PD-1 9.067122e-01 0.043
R-HSA-5607764 CLEC7A (Dectin-1) signaling 9.105817e-01 0.041
R-HSA-2871796 FCERI mediated MAPK activation 9.109313e-01 0.041
R-HSA-9664407 Parasite infection 9.112215e-01 0.040
R-HSA-9664422 FCGR3A-mediated phagocytosis 9.112215e-01 0.040
R-HSA-9664417 Leishmania phagocytosis 9.112215e-01 0.040
R-HSA-211981 Xenobiotics 9.120826e-01 0.040
R-HSA-936837 Ion transport by P-type ATPases 9.120826e-01 0.040
R-HSA-774815 Nucleosome assembly 9.122525e-01 0.040
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 9.122525e-01 0.040
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 9.122525e-01 0.040
R-HSA-6783310 Fanconi Anemia Pathway 9.122525e-01 0.040
R-HSA-4608870 Asymmetric localization of PCP proteins 9.122525e-01 0.040
R-HSA-948021 Transport to the Golgi and subsequent modification 9.125000e-01 0.040
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 9.134209e-01 0.039
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 9.134209e-01 0.039
R-HSA-400042 Adrenaline,noradrenaline inhibits insulin secretion 9.134209e-01 0.039
R-HSA-5689901 Metalloprotease DUBs 9.134209e-01 0.039
R-HSA-70635 Urea cycle 9.134209e-01 0.039
R-HSA-9845614 Sphingolipid catabolism 9.134209e-01 0.039
R-HSA-5621481 C-type lectin receptors (CLRs) 9.140216e-01 0.039
R-HSA-983169 Class I MHC mediated antigen processing & presentation 9.145355e-01 0.039
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 9.145917e-01 0.039
R-HSA-1234174 Cellular response to hypoxia 9.166855e-01 0.038
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 9.174914e-01 0.037
R-HSA-9861718 Regulation of pyruvate metabolism 9.174914e-01 0.037
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 9.174914e-01 0.037
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 9.174914e-01 0.037
R-HSA-171306 Packaging Of Telomere Ends 9.198002e-01 0.036
R-HSA-73863 RNA Polymerase I Transcription Termination 9.198002e-01 0.036
R-HSA-389357 CD28 dependent PI3K/Akt signaling 9.198002e-01 0.036
R-HSA-5654699 SHC-mediated cascade:FGFR2 9.198002e-01 0.036
R-HSA-983712 Ion channel transport 9.200489e-01 0.036
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 9.225785e-01 0.035
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 9.247979e-01 0.034
R-HSA-171319 Telomere Extension By Telomerase 9.257099e-01 0.034
R-HSA-73614 Pyrimidine salvage 9.257099e-01 0.034
R-HSA-9757110 Prednisone ADME 9.257099e-01 0.034
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 9.277234e-01 0.033
R-HSA-2871809 FCERI mediated Ca+2 mobilization 9.279537e-01 0.032
R-HSA-913709 O-linked glycosylation of mucins 9.292058e-01 0.032
R-HSA-72086 mRNA Capping 9.311844e-01 0.031
R-HSA-204174 Regulation of pyruvate dehydrogenase (PDH) complex 9.311844e-01 0.031
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 9.311844e-01 0.031
R-HSA-5334118 DNA methylation 9.311844e-01 0.031
R-HSA-210745 Regulation of gene expression in beta cells 9.311844e-01 0.031
R-HSA-69563 p53-Dependent G1 DNA Damage Response 9.314965e-01 0.031
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 9.314965e-01 0.031
R-HSA-2980736 Peptide hormone metabolism 9.339170e-01 0.030
R-HSA-1280218 Adaptive Immune System 9.348255e-01 0.029
R-HSA-9748787 Azathioprine ADME 9.356425e-01 0.029
R-HSA-112311 Neurotransmitter clearance 9.362558e-01 0.029
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 9.362558e-01 0.029
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 9.379491e-01 0.028
R-HSA-912446 Meiotic recombination 9.395498e-01 0.027
R-HSA-1169091 Activation of NF-kappaB in B cells 9.395498e-01 0.027
R-HSA-5358346 Hedgehog ligand biogenesis 9.395498e-01 0.027
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 9.399748e-01 0.027
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 9.409537e-01 0.026
R-HSA-112382 Formation of RNA Pol II elongation complex 9.432310e-01 0.025
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 9.432310e-01 0.025
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 9.453057e-01 0.024
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 9.464479e-01 0.024
R-HSA-75955 RNA Polymerase II Transcription Elongation 9.466983e-01 0.024
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 9.491906e-01 0.023
R-HSA-9816359 Maternal to zygotic transition (MZT) 9.492638e-01 0.023
R-HSA-68616 Assembly of the ORC complex at the origin of replication 9.493371e-01 0.023
R-HSA-159418 Recycling of bile acids and salts 9.493371e-01 0.023
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 9.499632e-01 0.022
R-HSA-9753281 Paracetamol ADME 9.530367e-01 0.021
R-HSA-1482788 Acyl chain remodelling of PC 9.530716e-01 0.021
R-HSA-180534 Vpu mediated degradation of CD4 9.530716e-01 0.021
R-HSA-189483 Heme degradation 9.530716e-01 0.021
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 9.530716e-01 0.021
R-HSA-1474290 Collagen formation 9.564574e-01 0.019
R-HSA-190861 Gap junction assembly 9.565310e-01 0.019
R-HSA-203615 eNOS activation 9.565310e-01 0.019
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 9.565310e-01 0.019
R-HSA-6814122 Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding 9.565310e-01 0.019
R-HSA-2142845 Hyaluronan metabolism 9.565310e-01 0.019
R-HSA-1980145 Signaling by NOTCH2 9.565310e-01 0.019
R-HSA-5365859 RA biosynthesis pathway 9.565310e-01 0.019
R-HSA-5205647 Mitophagy 9.565310e-01 0.019
R-HSA-9711097 Cellular response to starvation 9.580463e-01 0.019
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 9.580463e-01 0.019
R-HSA-1483166 Synthesis of PA 9.586507e-01 0.018
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 9.597357e-01 0.018
R-HSA-1482839 Acyl chain remodelling of PE 9.597357e-01 0.018
R-HSA-169911 Regulation of Apoptosis 9.597357e-01 0.018
R-HSA-381042 PERK regulates gene expression 9.597357e-01 0.018
R-HSA-917977 Transferrin endocytosis and recycling 9.597357e-01 0.018
R-HSA-193775 Synthesis of bile acids and bile salts via 24-hydroxycholesterol 9.597357e-01 0.018
R-HSA-3296482 Defects in vitamin and cofactor metabolism 9.597357e-01 0.018
R-HSA-877300 Interferon gamma signaling 9.597440e-01 0.018
R-HSA-1912422 Pre-NOTCH Expression and Processing 9.614692e-01 0.017
R-HSA-9925561 Developmental Lineage of Pancreatic Acinar Cells 9.617149e-01 0.017
R-HSA-180585 Vif-mediated degradation of APOBEC3G 9.627042e-01 0.017
R-HSA-1839126 FGFR2 mutant receptor activation 9.627042e-01 0.017
R-HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 9.627042e-01 0.017
R-HSA-186712 Regulation of beta-cell development 9.636181e-01 0.016
R-HSA-8979227 Triglyceride metabolism 9.636181e-01 0.016
R-HSA-1296072 Voltage gated Potassium channels 9.654540e-01 0.015
R-HSA-427359 SIRT1 negatively regulates rRNA expression 9.654540e-01 0.015
R-HSA-4641258 Degradation of DVL 9.654540e-01 0.015
R-HSA-933541 TRAF6 mediated IRF7 activation 9.654540e-01 0.015
R-HSA-8948216 Collagen chain trimerization 9.654540e-01 0.015
R-HSA-977443 GABA receptor activation 9.658816e-01 0.015
R-HSA-379724 tRNA Aminoacylation 9.658816e-01 0.015
R-HSA-156590 Glutathione conjugation 9.658816e-01 0.015
R-HSA-8957275 Post-translational protein phosphorylation 9.664704e-01 0.015
R-HSA-9824446 Viral Infection Pathways 9.665827e-01 0.015
R-HSA-1483257 Phospholipid metabolism 9.677338e-01 0.014
R-HSA-74217 Purine salvage 9.680013e-01 0.014
R-HSA-211976 Endogenous sterols 9.680094e-01 0.014
R-HSA-9793380 Formation of paraxial mesoderm 9.680094e-01 0.014
R-HSA-8956321 Nucleotide salvage 9.680094e-01 0.014
R-HSA-1442490 Collagen degradation 9.680094e-01 0.014
R-HSA-112316 Neuronal System 9.694235e-01 0.013
R-HSA-9658195 Leishmania infection 9.699545e-01 0.013
R-HSA-9824443 Parasitic Infection Pathways 9.699545e-01 0.013
R-HSA-72312 rRNA processing 9.701321e-01 0.013
R-HSA-381771 Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 9.703608e-01 0.013
R-HSA-71336 Pentose phosphate pathway 9.703608e-01 0.013
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 9.703608e-01 0.013
R-HSA-2408557 Selenocysteine synthesis 9.714024e-01 0.013
R-HSA-9020702 Interleukin-1 signaling 9.714024e-01 0.013
R-HSA-6790901 rRNA modification in the nucleus and cytosol 9.718879e-01 0.012
R-HSA-9854311 Maturation of TCA enzymes and regulation of TCA cycle 9.725466e-01 0.012
R-HSA-9604323 Negative regulation of NOTCH4 signaling 9.725466e-01 0.012
R-HSA-8941858 Regulation of RUNX3 expression and activity 9.725466e-01 0.012
R-HSA-8982491 Glycogen metabolism 9.725466e-01 0.012
R-HSA-5423646 Aflatoxin activation and detoxification 9.745712e-01 0.011
R-HSA-5362768 Hh mutants are degraded by ERAD 9.745712e-01 0.011
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 9.745712e-01 0.011
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 9.764466e-01 0.010
R-HSA-9932298 Degradation of CRY and PER proteins 9.764466e-01 0.010
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 9.764466e-01 0.010
R-HSA-70268 Pyruvate metabolism 9.772555e-01 0.010
R-HSA-390466 Chaperonin-mediated protein folding 9.772555e-01 0.010
R-HSA-400508 Incretin synthesis, secretion, and inactivation 9.781839e-01 0.010
R-HSA-112315 Transmission across Chemical Synapses 9.782901e-01 0.010
R-HSA-193368 Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 9.783286e-01 0.010
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 9.797005e-01 0.009
R-HSA-1236974 ER-Phagosome pathway 9.797794e-01 0.009
R-HSA-5387390 Hh mutants abrogate ligand secretion 9.797931e-01 0.009
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 9.797931e-01 0.009
R-HSA-9637690 Response of Mtb to phagocytosis 9.797931e-01 0.009
R-HSA-112310 Neurotransmitter release cycle 9.809389e-01 0.008
R-HSA-9907900 Proteasome assembly 9.812836e-01 0.008
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 9.812836e-01 0.008
R-HSA-5683826 Surfactant metabolism 9.812836e-01 0.008
R-HSA-1236975 Antigen processing-Cross presentation 9.814367e-01 0.008
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 9.820347e-01 0.008
R-HSA-77286 mitochondrial fatty acid beta-oxidation of saturated fatty acids 9.826644e-01 0.008
R-HSA-5678895 Defective CFTR causes cystic fibrosis 9.826644e-01 0.008
R-HSA-9824272 Somitogenesis 9.826644e-01 0.008
R-HSA-5620920 Cargo trafficking to the periciliary membrane 9.833295e-01 0.007
R-HSA-202403 TCR signaling 9.833657e-01 0.007
R-HSA-391251 Protein folding 9.840484e-01 0.007
R-HSA-109582 Hemostasis 9.849259e-01 0.007
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 9.851279e-01 0.007
R-HSA-1483191 Synthesis of PC 9.851279e-01 0.007
R-HSA-9749641 Aspirin ADME 9.853898e-01 0.006
R-HSA-9837999 Mitochondrial protein degradation 9.858448e-01 0.006
R-HSA-70263 Gluconeogenesis 9.862253e-01 0.006
R-HSA-425410 Metal ion SLC transporters 9.862253e-01 0.006
R-HSA-8963899 Plasma lipoprotein remodeling 9.862253e-01 0.006
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 9.866686e-01 0.006
R-HSA-917937 Iron uptake and transport 9.872015e-01 0.006
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 9.873908e-01 0.006
R-HSA-72689 Formation of a pool of free 40S subunits 9.874463e-01 0.005
R-HSA-72764 Eukaryotic Translation Termination 9.874463e-01 0.005
R-HSA-8951664 Neddylation 9.881649e-01 0.005
R-HSA-2162123 Synthesis of Prostaglandins (PG) and Thromboxanes (TX) 9.881831e-01 0.005
R-HSA-446652 Interleukin-1 family signaling 9.894576e-01 0.005
R-HSA-422356 Regulation of insulin secretion 9.895262e-01 0.005
R-HSA-73772 RNA Polymerase I Promoter Escape 9.898629e-01 0.004
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 9.898629e-01 0.004
R-HSA-382556 ABC-family proteins mediated transport 9.907239e-01 0.004
R-HSA-9018677 Biosynthesis of DHA-derived SPMs 9.914194e-01 0.004
R-HSA-5619115 Disorders of transmembrane transporters 9.916751e-01 0.004
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 9.919755e-01 0.003
R-HSA-192823 Viral mRNA Translation 9.922762e-01 0.003
R-HSA-5578775 Ion homeostasis 9.925405e-01 0.003
R-HSA-6798695 Neutrophil degranulation 9.938158e-01 0.003
R-HSA-4085001 Sialic acid metabolism 9.940737e-01 0.003
R-HSA-352230 Amino acid transport across the plasma membrane 9.940737e-01 0.003
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.942681e-01 0.002
R-HSA-2408522 Selenoamino acid metabolism 9.942880e-01 0.002
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 9.943219e-01 0.002
R-HSA-1660661 Sphingolipid de novo biosynthesis 9.945113e-01 0.002
R-HSA-351202 Metabolism of polyamines 9.945113e-01 0.002
R-HSA-597592 Post-translational protein modification 9.949743e-01 0.002
R-HSA-202424 Downstream TCR signaling 9.956279e-01 0.002
R-HSA-418555 G alpha (s) signalling events 9.962428e-01 0.002
R-HSA-6782315 tRNA modification in the nucleus and cytosol 9.965362e-01 0.002
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 9.966696e-01 0.001
R-HSA-196807 Nicotinate metabolism 9.967921e-01 0.001
R-HSA-9958863 SLC-mediated transport of amino acids 9.967921e-01 0.001
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 9.972868e-01 0.001
R-HSA-9840310 Glycosphingolipid catabolism 9.974518e-01 0.001
R-HSA-9948299 Ribosome-associated quality control 9.974903e-01 0.001
R-HSA-8978934 Metabolism of cofactors 9.976401e-01 0.001
R-HSA-975634 Retinoid metabolism and transport 9.976401e-01 0.001
R-HSA-499943 Interconversion of nucleotide di- and triphosphates 9.978145e-01 0.001
R-HSA-192105 Synthesis of bile acids and bile salts 9.979377e-01 0.001
R-HSA-446203 Asparagine N-linked glycosylation 9.980753e-01 0.001
R-HSA-71403 Citric acid cycle (TCA cycle) 9.982641e-01 0.001
R-HSA-8852135 Protein ubiquitination 9.982641e-01 0.001
R-HSA-6809371 Formation of the cornified envelope 9.982797e-01 0.001
R-HSA-416476 G alpha (q) signalling events 9.983045e-01 0.001
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 9.985799e-01 0.001
R-HSA-6783783 Interleukin-10 signaling 9.986212e-01 0.001
R-HSA-5619084 ABC transporter disorders 9.986212e-01 0.001
R-HSA-216083 Integrin cell surface interactions 9.986212e-01 0.001
R-HSA-6806667 Metabolism of fat-soluble vitamins 9.989050e-01 0.000
R-HSA-168256 Immune System 9.989380e-01 0.000
R-HSA-5576891 Cardiac conduction 9.990345e-01 0.000
R-HSA-1474228 Degradation of the extracellular matrix 9.990949e-01 0.000
R-HSA-194068 Bile acid and bile salt metabolism 9.991003e-01 0.000
R-HSA-6803157 Antimicrobial peptides 9.991607e-01 0.000
R-HSA-1483206 Glycerophospholipid biosynthesis 9.993449e-01 0.000
R-HSA-5173105 O-linked glycosylation 9.993867e-01 0.000
R-HSA-373080 Class B/2 (Secretin family receptors) 9.994921e-01 0.000
R-HSA-211897 Cytochrome P450 - arranged by substrate type 9.995946e-01 0.000
R-HSA-2871837 FCERI mediated NF-kB activation 9.996365e-01 0.000
R-HSA-77289 Mitochondrial Fatty Acid Beta-Oxidation 9.996798e-01 0.000
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 9.997254e-01 0.000
R-HSA-1296071 Potassium Channels 9.997254e-01 0.000
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.997380e-01 0.000
R-HSA-9664433 Leishmania parasite growth and survival 9.997380e-01 0.000
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.997624e-01 0.000
R-HSA-8957322 Metabolism of steroids 9.997658e-01 0.000
R-HSA-9609507 Protein localization 9.997993e-01 0.000
R-HSA-9937383 Mitochondrial ribosome-associated quality control 9.998397e-01 0.000
R-HSA-446219 Synthesis of substrates in N-glycan biosythesis 9.998443e-01 0.000
R-HSA-388396 GPCR downstream signalling 9.999014e-01 0.000
R-HSA-5663205 Infectious disease 9.999290e-01 0.000
R-HSA-9018678 Biosynthesis of specialized proresolving mediators (SPMs) 9.999424e-01 0.000
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.999680e-01 0.000
R-HSA-9635486 Infection with Mycobacterium tuberculosis 9.999682e-01 0.000
R-HSA-1660662 Glycosphingolipid metabolism 9.999727e-01 0.000
R-HSA-977606 Regulation of Complement cascade 9.999766e-01 0.000
R-HSA-3781865 Diseases of glycosylation 9.999766e-01 0.000
R-HSA-72766 Translation 9.999771e-01 0.000
R-HSA-446193 Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... 9.999789e-01 0.000
R-HSA-375276 Peptide ligand-binding receptors 9.999796e-01 0.000
R-HSA-1474244 Extracellular matrix organization 9.999819e-01 0.000
R-HSA-8956319 Nucleotide catabolism 9.999841e-01 0.000
R-HSA-9748784 Drug ADME 9.999863e-01 0.000
R-HSA-418594 G alpha (i) signalling events 9.999912e-01 0.000
R-HSA-372790 Signaling by GPCR 9.999921e-01 0.000
R-HSA-428157 Sphingolipid metabolism 9.999927e-01 0.000
R-HSA-5368287 Mitochondrial translation 9.999932e-01 0.000
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.999933e-01 0.000
R-HSA-6805567 Keratinization 9.999952e-01 0.000
R-HSA-15869 Metabolism of nucleotides 9.999958e-01 0.000
R-HSA-202733 Cell surface interactions at the vascular wall 9.999961e-01 0.000
R-HSA-166658 Complement cascade 9.999963e-01 0.000
R-HSA-2187338 Visual phototransduction 9.999969e-01 0.000
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.999975e-01 0.000
R-HSA-168249 Innate Immune System 9.999977e-01 0.000
R-HSA-2142753 Arachidonate metabolism 9.999979e-01 0.000
R-HSA-1643685 Disease 9.999991e-01 0.000
R-HSA-9824439 Bacterial Infection Pathways 9.999994e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.999998e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.999998e-01 0.000
R-HSA-392499 Metabolism of proteins 9.999998e-01 0.000
R-HSA-1630316 Glycosaminoglycan metabolism 9.999999e-01 0.000
R-HSA-8978868 Fatty acid metabolism 1.000000e+00 0.000
R-HSA-156580 Phase II - Conjugation of compounds 1.000000e+00 0.000
R-HSA-1428517 Aerobic respiration and respiratory electron transport 1.000000e+00 0.000
R-HSA-425407 SLC-mediated transmembrane transport 1.000000e+00 0.000
R-HSA-382551 Transport of small molecules 1.000000e+00 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-5668914 Diseases of metabolism 1.000000e+00 0.000
R-HSA-211859 Biological oxidations 1.000000e+00 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 1.000000e+00 0.000
R-HSA-500792 GPCR ligand binding 1.000000e+00 0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
GAKGAK 0.801 0.103 1 0.868
MPSK1MPSK1 0.796 0.211 1 0.821
GCKGCK 0.787 0.049 1 0.825
PASKPASK 0.786 0.243 -3 0.861
TAK1TAK1 0.785 -0.064 1 0.833
VRK2VRK2 0.783 -0.038 1 0.895
TTKTTK 0.783 0.009 -2 0.554
MOSMOS 0.782 0.211 1 0.897
ALPHAK3ALPHAK3 0.781 0.006 -1 0.183
LRRK2LRRK2 0.781 -0.065 2 0.857
KHS1KHS1 0.780 0.036 1 0.797
TNIKTNIK 0.780 -0.027 3 0.884
MINKMINK 0.779 -0.043 1 0.808
GRK7GRK7 0.779 0.201 1 0.798
LATS1LATS1 0.779 0.229 -3 0.852
PKRPKR 0.779 -0.060 1 0.879
BMPR1BBMPR1B 0.777 0.114 1 0.846
KHS2KHS2 0.777 0.008 1 0.814
VRK1VRK1 0.776 -0.110 2 0.844
MST3MST3 0.776 0.022 2 0.856
MAP3K15MAP3K15 0.775 0.002 1 0.765
HPK1HPK1 0.775 -0.026 1 0.809
ALK4ALK4 0.774 0.015 -2 0.590
TAO3TAO3 0.774 -0.019 1 0.810
ASK1ASK1 0.774 -0.061 1 0.749
MEKK2MEKK2 0.774 -0.047 2 0.813
EEF2KEEF2K 0.774 -0.016 3 0.838
MST2MST2 0.773 -0.052 1 0.820
BMPR2BMPR2 0.773 -0.107 -2 0.577
MST1MST1 0.773 -0.038 1 0.805
PDK1PDK1 0.773 -0.039 1 0.807
HGKHGK 0.772 -0.053 3 0.882
LKB1LKB1 0.772 -0.071 -3 0.822
GRK1GRK1 0.772 0.327 -2 0.757
NIKNIK 0.771 -0.031 -3 0.859
OSR1OSR1 0.771 -0.052 2 0.811
NEK1NEK1 0.771 -0.130 1 0.823
MEK5MEK5 0.771 -0.097 2 0.835
DAPK2DAPK2 0.770 -0.010 -3 0.843
PRPKPRPK 0.769 0.033 -1 0.246
MEK1MEK1 0.769 -0.120 2 0.846
PBKPBK 0.769 0.005 1 0.783
DMPK1DMPK1 0.769 0.041 -3 0.736
TAO2TAO2 0.768 -0.097 2 0.862
ALK2ALK2 0.768 0.017 -2 0.612
SKMLCKSKMLCK 0.768 0.102 -2 0.573
NEK5NEK5 0.768 -0.117 1 0.848
MYO3BMYO3B 0.768 -0.068 2 0.845
HIPK1HIPK1 0.768 0.125 1 0.789
JNK3JNK3 0.768 0.085 1 0.714
P38BP38B 0.768 0.081 1 0.703
JNK2JNK2 0.768 0.076 1 0.680
CAMLCKCAMLCK 0.767 -0.031 -2 0.533
BIKEBIKE 0.767 -0.017 1 0.739
NLKNLK 0.767 0.056 1 0.878
AAK1AAK1 0.767 0.062 1 0.637
MYO3AMYO3A 0.767 -0.077 1 0.816
MEKK6MEKK6 0.766 -0.067 1 0.810
BRAFBRAF 0.766 -0.145 -4 0.806
CLK3CLK3 0.766 0.204 1 0.894
ICKICK 0.765 0.050 -3 0.823
ROCK2ROCK2 0.765 0.020 -3 0.768
DLKDLK 0.765 -0.068 1 0.848
MAKMAK 0.765 0.085 -2 0.491
MEKK3MEKK3 0.765 -0.018 1 0.818
NEK11NEK11 0.764 -0.074 1 0.803
CAMKK2CAMKK2 0.764 -0.167 -2 0.478
TGFBR1TGFBR1 0.764 0.015 -2 0.586
P38AP38A 0.764 0.050 1 0.771
BUB1BUB1 0.763 0.087 -5 0.814
PRP4PRP4 0.763 0.024 -3 0.770
ATRATR 0.763 0.044 1 0.837
ERK5ERK5 0.762 0.084 1 0.864
CAMKK1CAMKK1 0.762 -0.190 -2 0.492
YSK4YSK4 0.762 -0.026 1 0.779
CDKL1CDKL1 0.762 0.013 -3 0.783
HASPINHASPIN 0.761 -0.010 -1 0.172
MLK2MLK2 0.761 -0.014 2 0.835
MEKK1MEKK1 0.761 -0.082 1 0.815
ACVR2BACVR2B 0.760 -0.003 -2 0.552
CHAK2CHAK2 0.760 0.043 -1 0.232
NEK8NEK8 0.760 -0.130 2 0.831
GRK2GRK2 0.760 0.097 -2 0.609
GRK5GRK5 0.760 0.073 -3 0.879
DAPK3DAPK3 0.760 -0.016 -3 0.779
ACVR2AACVR2A 0.759 -0.010 -2 0.532
ANKRD3ANKRD3 0.759 -0.141 1 0.866
NEK4NEK4 0.759 -0.156 1 0.809
CAMK1BCAMK1B 0.759 -0.027 -3 0.836
YSK1YSK1 0.758 -0.108 2 0.825
ZAKZAK 0.757 -0.084 1 0.784
LOKLOK 0.757 -0.086 -2 0.462
COTCOT 0.757 0.132 2 0.877
P38DP38D 0.757 0.110 1 0.617
BMPR1ABMPR1A 0.757 0.037 1 0.817
STLK3STLK3 0.757 -0.147 1 0.749
SLKSLK 0.756 -0.040 -2 0.468
PIM3PIM3 0.755 0.144 -3 0.830
PERKPERK 0.754 -0.069 -2 0.578
MLK1MLK1 0.753 -0.009 2 0.822
SMMLCKSMMLCK 0.752 -0.061 -3 0.788
PIM1PIM1 0.752 0.094 -3 0.774
RAF1RAF1 0.752 -0.065 1 0.854
ERK1ERK1 0.751 0.071 1 0.690
TLK2TLK2 0.751 -0.052 1 0.812
CDK1CDK1 0.751 0.102 1 0.705
DYRK2DYRK2 0.750 0.089 1 0.775
P38GP38G 0.750 0.065 1 0.613
MOKMOK 0.750 0.053 1 0.816
CK1DCK1D 0.750 0.197 -3 0.638
HIPK4HIPK4 0.750 0.155 1 0.862
ERK2ERK2 0.750 0.032 1 0.741
DAPK1DAPK1 0.749 -0.017 -3 0.765
GRK6GRK6 0.749 -0.001 1 0.866
MASTLMASTL 0.749 0.018 -2 0.538
MLK3MLK3 0.749 0.028 2 0.755
MEK2MEK2 0.748 -0.231 2 0.819
HIPK2HIPK2 0.747 0.128 1 0.690
CDC7CDC7 0.747 0.071 1 0.869
JNK1JNK1 0.747 0.068 1 0.670
HIPK3HIPK3 0.747 0.069 1 0.779
CDK5CDK5 0.747 0.077 1 0.754
CDK14CDK14 0.746 0.085 1 0.713
PIM2PIM2 0.745 0.052 -3 0.716
TLK1TLK1 0.745 -0.070 -2 0.603
IRAK4IRAK4 0.744 -0.083 1 0.833
MLK4MLK4 0.744 -0.026 2 0.731
ROCK1ROCK1 0.743 -0.035 -3 0.722
CDKL5CDKL5 0.743 0.028 -3 0.771
GRK3GRK3 0.743 0.118 -2 0.628
TSSK2TSSK2 0.743 0.028 -5 0.860
RIPK3RIPK3 0.743 -0.014 3 0.766
TGFBR2TGFBR2 0.743 0.024 -2 0.554
PKCDPKCD 0.742 0.022 2 0.801
DYRK1ADYRK1A 0.742 0.068 1 0.797
AMPKA1AMPKA1 0.742 0.018 -3 0.835
RIPK1RIPK1 0.742 -0.109 1 0.842
TAO1TAO1 0.742 -0.127 1 0.729
GSK3AGSK3A 0.742 0.084 4 0.546
NUAK2NUAK2 0.741 0.034 -3 0.825
PLK1PLK1 0.741 -0.123 -2 0.497
HRIHRI 0.740 -0.182 -2 0.536
PKN3PKN3 0.740 0.022 -3 0.805
CRIKCRIK 0.740 0.011 -3 0.687
CDK18CDK18 0.740 0.100 1 0.670
PDHK4PDHK4 0.740 -0.161 1 0.869
NEK9NEK9 0.740 -0.178 2 0.848
CAMK2GCAMK2G 0.739 -0.074 2 0.803
WNK1WNK1 0.739 -0.081 -2 0.567
GRK4GRK4 0.739 0.087 -2 0.687
MRCKAMRCKA 0.738 -0.012 -3 0.725
MTORMTOR 0.738 -0.030 1 0.811
GSK3BGSK3B 0.738 0.044 4 0.539
SRPK1SRPK1 0.737 0.098 -3 0.735
TSSK1TSSK1 0.737 0.062 -3 0.849
CDK17CDK17 0.737 0.085 1 0.619
PKN2PKN2 0.737 -0.003 -3 0.820
DYRK1BDYRK1B 0.737 0.063 1 0.729
DCAMKL1DCAMKL1 0.737 -0.018 -3 0.762
KISKIS 0.737 0.246 1 0.752
WNK4WNK4 0.737 -0.157 -2 0.545
CHAK1CHAK1 0.736 -0.059 2 0.804
RSK2RSK2 0.736 0.103 -3 0.747
DSTYKDSTYK 0.736 -0.064 2 0.891
CLK4CLK4 0.736 0.015 -3 0.745
ERK7ERK7 0.735 0.010 2 0.552
CK1ECK1E 0.735 0.181 -3 0.681
CDK16CDK16 0.735 0.083 1 0.636
MRCKBMRCKB 0.735 -0.040 -3 0.707
P90RSKP90RSK 0.734 0.115 -3 0.748
MST4MST4 0.734 -0.042 2 0.868
SRPK3SRPK3 0.734 0.057 -3 0.708
HUNKHUNK 0.733 -0.007 2 0.815
SGK3SGK3 0.733 -0.012 -3 0.743
CHK1CHK1 0.733 0.015 -3 0.794
IRE1IRE1 0.733 -0.023 1 0.838
PKCZPKCZ 0.733 -0.017 2 0.795
CDK3CDK3 0.733 0.089 1 0.638
CDK6CDK6 0.733 0.037 1 0.687
CK1A2CK1A2 0.732 0.134 -3 0.636
PDHK1PDHK1 0.732 -0.184 1 0.847
TTBK2TTBK2 0.732 0.021 2 0.713
IKKAIKKA 0.732 0.098 -2 0.527
AKT2AKT2 0.732 0.003 -3 0.664
PINK1PINK1 0.732 -0.150 1 0.877
MYLK4MYLK4 0.732 -0.036 -2 0.500
P70S6KBP70S6KB 0.732 -0.035 -3 0.765
AMPKA2AMPKA2 0.731 0.025 -3 0.800
NEK2NEK2 0.731 -0.181 2 0.830
RSK4RSK4 0.731 0.123 -3 0.729
IKKBIKKB 0.731 0.023 -2 0.522
TBK1TBK1 0.731 -0.001 1 0.734
IRE2IRE2 0.731 0.019 2 0.761
MARK4MARK4 0.731 -0.002 4 0.844
DYRK3DYRK3 0.731 0.027 1 0.792
PKCAPKCA 0.730 0.020 2 0.745
SMG1SMG1 0.730 -0.073 1 0.782
DNAPKDNAPK 0.730 -0.043 1 0.690
PRKD1PRKD1 0.730 0.152 -3 0.800
DYRK4DYRK4 0.730 0.076 1 0.695
DRAK1DRAK1 0.730 -0.070 1 0.797
CDK7CDK7 0.729 0.039 1 0.734
AURCAURC 0.728 0.026 -2 0.414
AURBAURB 0.728 -0.020 -2 0.407
CDK8CDK8 0.728 0.052 1 0.720
CDK10CDK10 0.728 0.071 1 0.701
CAMK2DCAMK2D 0.728 0.004 -3 0.808
PKCBPKCB 0.727 0.011 2 0.754
PAK2PAK2 0.727 -0.072 -2 0.485
ATMATM 0.727 -0.054 1 0.766
SGK1SGK1 0.727 0.002 -3 0.588
PLK3PLK3 0.726 -0.079 2 0.765
NDR2NDR2 0.726 0.194 -3 0.841
PAK1PAK1 0.726 -0.055 -2 0.494
CDK13CDK13 0.726 0.021 1 0.709
NDR1NDR1 0.726 0.042 -3 0.820
PKG2PKG2 0.725 0.007 -2 0.414
CLK2CLK2 0.725 0.099 -3 0.727
IKKEIKKE 0.725 -0.025 1 0.730
PKACGPKACG 0.724 0.003 -2 0.475
PKCHPKCH 0.724 -0.022 2 0.735
CDK4CDK4 0.724 0.008 1 0.671
NEK7NEK7 0.724 -0.169 -3 0.847
NEK3NEK3 0.724 -0.224 1 0.764
PLK2PLK2 0.724 -0.003 -3 0.776
CDK2CDK2 0.723 -0.007 1 0.780
CDK12CDK12 0.723 0.023 1 0.682
NEK6NEK6 0.723 -0.106 -2 0.536
MNK1MNK1 0.723 0.049 -2 0.479
IRAK1IRAK1 0.722 -0.196 -1 0.150
CAMK2ACAMK2A 0.722 0.054 2 0.786
CLK1CLK1 0.722 0.011 -3 0.714
PKCGPKCG 0.722 0.002 2 0.749
PDHK3_TYRPDHK3_TYR 0.722 0.163 4 0.922
SSTKSSTK 0.722 0.024 4 0.810
DCAMKL2DCAMKL2 0.722 -0.075 -3 0.775
PKACBPKACB 0.721 0.030 -2 0.412
AKT1AKT1 0.721 -0.015 -3 0.683
PKCEPKCE 0.721 0.002 2 0.737
ULK2ULK2 0.721 -0.173 2 0.796
CAMK2BCAMK2B 0.720 0.016 2 0.767
WNK3WNK3 0.720 -0.210 1 0.829
CAMK4CAMK4 0.720 -0.061 -3 0.796
MELKMELK 0.720 -0.051 -3 0.770
MSK1MSK1 0.719 0.018 -3 0.725
LATS2LATS2 0.718 0.101 -5 0.751
CHK2CHK2 0.718 -0.028 -3 0.603
CDK19CDK19 0.718 0.069 1 0.683
MAPKAPK3MAPKAPK3 0.718 -0.017 -3 0.746
PDHK4_TYRPDHK4_TYR 0.718 0.140 2 0.887
PAK3PAK3 0.718 -0.085 -2 0.476
PRKD2PRKD2 0.717 0.047 -3 0.744
PRKD3PRKD3 0.717 -0.016 -3 0.711
CDK9CDK9 0.717 0.014 1 0.715
QSKQSK 0.717 0.013 4 0.818
CAMK1DCAMK1D 0.716 -0.019 -3 0.650
QIKQIK 0.716 -0.084 -3 0.807
AURAAURA 0.715 -0.038 -2 0.404
MAP2K6_TYRMAP2K6_TYR 0.714 0.046 -1 0.230
RSK3RSK3 0.714 0.016 -3 0.734
MAP2K4_TYRMAP2K4_TYR 0.713 0.025 -1 0.234
PKCIPKCI 0.713 -0.067 2 0.759
TESK1_TYRTESK1_TYR 0.713 0.079 3 0.900
STK33STK33 0.712 -0.123 2 0.619
CAMK1GCAMK1G 0.711 -0.035 -3 0.726
PKMYT1_TYRPKMYT1_TYR 0.711 0.085 3 0.871
PKCTPKCT 0.710 -0.049 2 0.745
NIM1NIM1 0.710 -0.105 3 0.788
FGRFGR 0.710 0.202 1 0.872
MARK3MARK3 0.710 -0.010 4 0.773
SRPK2SRPK2 0.710 0.047 -3 0.651
PDHK1_TYRPDHK1_TYR 0.710 0.023 -1 0.224
MSK2MSK2 0.710 -0.022 -3 0.726
MARK2MARK2 0.709 -0.041 4 0.734
BMPR2_TYRBMPR2_TYR 0.709 -0.035 -1 0.189
SBKSBK 0.708 0.010 -3 0.538
YANK3YANK3 0.708 0.016 2 0.403
MAPKAPK2MAPKAPK2 0.707 0.035 -3 0.709
LIMK2_TYRLIMK2_TYR 0.707 0.042 -3 0.867
GCN2GCN2 0.707 -0.114 2 0.802
MNK2MNK2 0.707 -0.094 -2 0.462
RIPK2RIPK2 0.707 -0.208 1 0.730
AKT3AKT3 0.706 -0.000 -3 0.608
PKACAPKACA 0.706 -0.002 -2 0.373
BCKDKBCKDK 0.706 -0.144 -1 0.171
NUAK1NUAK1 0.706 -0.007 -3 0.759
PRKXPRKX 0.705 0.046 -3 0.673
PLK4PLK4 0.705 -0.132 2 0.628
MARK1MARK1 0.705 -0.062 4 0.793
MAP2K7_TYRMAP2K7_TYR 0.705 -0.087 2 0.867
YANK2YANK2 0.704 0.006 2 0.416
CK2A2CK2A2 0.704 0.021 1 0.743
TXKTXK 0.704 0.023 1 0.859
CAMK1ACAMK1A 0.703 -0.025 -3 0.625
ABL2ABL2 0.703 -0.015 -1 0.179
P70S6KP70S6K 0.703 -0.034 -3 0.670
TTBK1TTBK1 0.702 -0.064 2 0.631
ULK1ULK1 0.702 -0.184 -3 0.806
PHKG1PHKG1 0.701 -0.049 -3 0.803
SIKSIK 0.700 -0.033 -3 0.731
YES1YES1 0.700 0.035 -1 0.263
ABL1ABL1 0.699 -0.029 -1 0.179
PINK1_TYRPINK1_TYR 0.698 -0.143 1 0.862
LCKLCK 0.698 0.013 -1 0.201
EPHB4EPHB4 0.698 -0.077 -1 0.175
CK2A1CK2A1 0.698 0.020 1 0.724
FERFER 0.698 -0.020 1 0.881
ROS1ROS1 0.697 0.030 3 0.793
EPHA6EPHA6 0.696 -0.083 -1 0.169
FYNFYN 0.696 0.049 -1 0.222
CSF1RCSF1R 0.696 -0.015 3 0.821
CK1G1CK1G1 0.696 0.129 -3 0.672
LIMK1_TYRLIMK1_TYR 0.696 -0.085 2 0.866
RETRET 0.695 -0.097 1 0.815
BLKBLK 0.695 0.017 -1 0.191
TNK2TNK2 0.695 -0.006 3 0.792
SYKSYK 0.695 0.082 -1 0.162
TYRO3TYRO3 0.694 -0.081 3 0.821
JAK2JAK2 0.693 -0.049 1 0.801
TYK2TYK2 0.693 -0.076 1 0.807
HCKHCK 0.693 -0.047 -1 0.199
SRMSSRMS 0.693 -0.054 1 0.866
BMXBMX 0.693 -0.049 -1 0.155
PAK6PAK6 0.692 -0.066 -2 0.409
INSRRINSRR 0.692 -0.028 3 0.764
CK1G3CK1G3 0.692 0.101 -3 0.515
MST1RMST1R 0.691 -0.105 3 0.838
METMET 0.691 -0.004 3 0.818
PKN1PKN1 0.690 -0.042 -3 0.687
KITKIT 0.690 -0.049 3 0.820
BRSK2BRSK2 0.690 -0.033 -3 0.780
WEE1_TYRWEE1_TYR 0.690 -0.049 -1 0.185
ITKITK 0.690 -0.073 -1 0.170
BRSK1BRSK1 0.689 -0.023 -3 0.761
FAM20CFAM20C 0.689 -0.010 2 0.609
JAK1JAK1 0.688 0.030 1 0.737
TECTEC 0.688 -0.075 -1 0.159
SNRKSNRK 0.687 -0.141 2 0.690
CK1G2CK1G2 0.687 0.126 -3 0.600
JAK3JAK3 0.686 -0.110 1 0.787
KDRKDR 0.686 -0.057 3 0.780
MERTKMERTK 0.686 -0.086 3 0.798
ZAP70ZAP70 0.686 0.068 -1 0.140
EPHA4EPHA4 0.685 -0.066 2 0.769
DDR1DDR1 0.685 -0.124 4 0.837
TNNI3K_TYRTNNI3K_TYR 0.685 -0.019 1 0.831
TNK1TNK1 0.685 -0.042 3 0.801
EPHB1EPHB1 0.684 -0.122 1 0.854
PTK2PTK2 0.684 0.003 -1 0.153
SRCSRC 0.684 0.017 -1 0.230
MATKMATK 0.683 -0.058 -1 0.161
PTK6PTK6 0.683 -0.118 -1 0.197
EPHB2EPHB2 0.683 -0.107 -1 0.154
CK1ACK1A 0.682 0.157 -3 0.558
EPHB3EPHB3 0.682 -0.123 -1 0.164
FLT1FLT1 0.681 -0.079 -1 0.171
BTKBTK 0.681 -0.141 -1 0.178
FGFR2FGFR2 0.681 -0.110 3 0.811
LYNLYN 0.681 -0.045 3 0.735
PAK5PAK5 0.680 -0.089 -2 0.385
AXLAXL 0.680 -0.128 3 0.801
MAPKAPK5MAPKAPK5 0.680 -0.128 -3 0.679
ALKALK 0.680 -0.067 3 0.740
PDGFRBPDGFRB 0.680 -0.130 3 0.829
FLT3FLT3 0.679 -0.116 3 0.817
PTK2BPTK2B 0.678 -0.048 -1 0.176
NTRK3NTRK3 0.678 -0.056 -1 0.217
NEK10_TYRNEK10_TYR 0.677 -0.122 1 0.686
LTKLTK 0.676 -0.105 3 0.760
DDR2DDR2 0.676 0.007 3 0.756
ERBB2ERBB2 0.676 -0.082 1 0.767
FGFR1FGFR1 0.675 -0.108 3 0.785
FGFR3FGFR3 0.675 -0.085 3 0.781
TEKTEK 0.675 -0.118 3 0.753
FRKFRK 0.674 -0.094 -1 0.169
NTRK1NTRK1 0.674 -0.121 -1 0.214
EPHA7EPHA7 0.673 -0.115 2 0.774
EGFREGFR 0.672 -0.049 1 0.673
INSRINSR 0.672 -0.085 3 0.742
EPHA3EPHA3 0.672 -0.122 2 0.744
FGFR4FGFR4 0.671 -0.065 -1 0.177
PHKG2PHKG2 0.671 -0.096 -3 0.762
PDGFRAPDGFRA 0.671 -0.143 3 0.826
PAK4PAK4 0.671 -0.078 -2 0.391
PKG1PKG1 0.670 -0.066 -2 0.341
EPHA5EPHA5 0.670 -0.100 2 0.752
EPHA8EPHA8 0.669 -0.094 -1 0.152
NTRK2NTRK2 0.668 -0.147 3 0.775
EPHA1EPHA1 0.667 -0.149 3 0.796
ERBB4ERBB4 0.665 -0.020 1 0.703
FLT4FLT4 0.664 -0.162 3 0.763
CSKCSK 0.663 -0.141 2 0.777
IGF1RIGF1R 0.661 -0.078 3 0.677
EPHA2EPHA2 0.660 -0.113 -1 0.133
FESFES 0.657 -0.081 -1 0.164
MUSKMUSK 0.653 -0.133 1 0.667