Motif 942 (n=700)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0A0A0MRY4 None S581 ochoa Spermatogenesis-associated protein 13 None
A0AVK6 E2F8 S71 ochoa Transcription factor E2F8 (E2F-8) Atypical E2F transcription factor that participates in various processes such as angiogenesis and polyploidization of specialized cells. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5'-TTTC[CG]CGC-3'. Directly represses transcription of classical E2F transcription factors such as E2F1: component of a feedback loop in S phase by repressing the expression of E2F1, thereby preventing p53/TP53-dependent apoptosis. Plays a key role in polyploidization of cells in placenta and liver by regulating the endocycle, probably by repressing genes promoting cytokinesis and antagonizing action of classical E2F proteins (E2F1, E2F2 and/or E2F3). Required for placental development by promoting polyploidization of trophoblast giant cells. Acts as a promoter of sprouting angiogenesis, possibly by acting as a transcription activator: associates with HIF1A, recognizes and binds the VEGFA promoter, which is different from canonical E2 recognition site, and activates expression of the VEGFA gene. {ECO:0000269|PubMed:15897886, ECO:0000269|PubMed:16179649, ECO:0000269|PubMed:18202719, ECO:0000269|PubMed:22903062}.
A6NE02 BTBD17 S42 ochoa BTB/POZ domain-containing protein 17 (Galectin-3-binding protein-like) None
A8MVS5 HIDE1 S196 ochoa Protein HIDE1 None
C9J069 AJM1 S448 ochoa Apical junction component 1 homolog May be involved in the control of adherens junction integrity. {ECO:0000250|UniProtKB:A0A1C3NSL9}.
O00186 STXBP3 S508 ochoa Syntaxin-binding protein 3 (Platelet Sec1 protein) (PSP) (Protein unc-18 homolog 3) (Unc18-3) (Protein unc-18 homolog C) (Unc-18C) Together with STX4 and VAMP2, may play a role in insulin-dependent movement of GLUT4 and in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes. {ECO:0000250}.
O00193 SMAP S87 ochoa Small acidic protein None
O00220 TNFRSF10A S424 ochoa Tumor necrosis factor receptor superfamily member 10A (Death receptor 4) (TNF-related apoptosis-inducing ligand receptor 1) (TRAIL receptor 1) (TRAIL-R1) (CD antigen CD261) Receptor for the cytotoxic ligand TNFSF10/TRAIL (PubMed:26457518, PubMed:38532423). The adapter molecule FADD recruits caspase-8 to the activated receptor. The resulting death-inducing signaling complex (DISC) performs caspase-8 proteolytic activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apoptosis (PubMed:19090789). Promotes the activation of NF-kappa-B (PubMed:9430227). {ECO:0000269|PubMed:19090789, ECO:0000269|PubMed:38532423, ECO:0000269|PubMed:9430227}.
O00231 PSMD11 S23 ochoa 26S proteasome non-ATPase regulatory subunit 11 (26S proteasome regulatory subunit RPN6) (26S proteasome regulatory subunit S9) (26S proteasome regulatory subunit p44.5) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. In the complex, PSMD11 is required for proteasome assembly. Plays a key role in increased proteasome activity in embryonic stem cells (ESCs): its high expression in ESCs promotes enhanced assembly of the 26S proteasome, followed by higher proteasome activity. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:22972301}.
O14531 DPYSL4 S542 ochoa Dihydropyrimidinase-related protein 4 (DRP-4) (Collapsin response mediator protein 3) (CRMP-3) (UNC33-like phosphoprotein 4) (ULIP-4) Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. Plays a role in axon guidance, neuronal growth cone collapse and cell migration (By similarity). {ECO:0000250}.
O14641 DVL2 S227 ochoa Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}.
O14641 DVL2 S228 ochoa Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}.
O14777 NDC80 S50 ochoa|psp Kinetochore protein NDC80 homolog (Highly expressed in cancer protein) (Kinetochore protein Hec1) (HsHec1) (Kinetochore-associated protein 2) (Retinoblastoma-associated protein HEC) Acts as a component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity (PubMed:12351790, PubMed:14654001, PubMed:14699129, PubMed:15062103, PubMed:15235793, PubMed:15239953, PubMed:15548592, PubMed:16732327, PubMed:30409912, PubMed:9315664). Required for kinetochore integrity and the organization of stable microtubule binding sites in the outer plate of the kinetochore (PubMed:15548592, PubMed:30409912). The NDC80 complex synergistically enhances the affinity of the SKA1 complex for microtubules and may allow the NDC80 complex to track depolymerizing microtubules (PubMed:23085020). Plays a role in chromosome congression and is essential for the end-on attachment of the kinetochores to spindle microtubules (PubMed:23891108, PubMed:25743205). {ECO:0000269|PubMed:12351790, ECO:0000269|PubMed:14654001, ECO:0000269|PubMed:14699129, ECO:0000269|PubMed:15062103, ECO:0000269|PubMed:15235793, ECO:0000269|PubMed:15239953, ECO:0000269|PubMed:15548592, ECO:0000269|PubMed:16732327, ECO:0000269|PubMed:23085020, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:9315664}.
O14936 CASK S562 ochoa Peripheral plasma membrane protein CASK (hCASK) (EC 2.7.11.1) (Calcium/calmodulin-dependent serine protein kinase) (Protein lin-2 homolog) Multidomain scaffolding Mg(2+)-independent protein kinase that catalyzes the phosphotransfer from ATP to proteins such as NRXN1, and plays a role in synaptic transmembrane protein anchoring and ion channel trafficking (PubMed:18423203). Contributes to neural development and regulation of gene expression via interaction with the transcription factor TBR1. Binds to cell-surface proteins, including amyloid precursor protein, neurexins and syndecans. May mediate a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with the actin/spectrin-binding protein 4.1. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:O70589, ECO:0000269|PubMed:18423203}.
O15062 ZBTB5 S516 ochoa Zinc finger and BTB domain-containing protein 5 May be involved in transcriptional regulation.
O15391 YY2 S323 ochoa Transcription factor YY2 (Yin and yang 2) (YY-2) (Zinc finger protein 631) Functions as a multifunctional transcription factor that may exhibit positive and negative control on a large number of genes. May antagonize YY1 and function in development and differentiation. {ECO:0000269|PubMed:16260628}.
O43314 PPIP5K2 S1073 ochoa Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}.
O43353 RIPK2 S393 ochoa Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}.
O43464 HTRA2 S350 ochoa Serine protease HTRA2, mitochondrial (EC 3.4.21.108) (High temperature requirement protein A2) (HtrA2) (Omi stress-regulated endoprotease) (Serine protease 25) (Serine proteinase OMI) [Isoform 1]: Serine protease that shows proteolytic activity against a non-specific substrate beta-casein (PubMed:10873535). Promotes apoptosis by either relieving the inhibition of BIRC proteins on caspases, leading to an increase in caspase activity; or by a BIRC inhibition-independent, caspase-independent and serine protease activity-dependent mechanism (PubMed:15200957). Cleaves BIRC6 and relieves its inhibition on CASP3, CASP7 and CASP9, but it is also prone to inhibition by BIRC6 (PubMed:36758104, PubMed:36758105). Cleaves THAP5 and promotes its degradation during apoptosis (PubMed:19502560). {ECO:0000269|PubMed:10873535, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:19502560, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105}.; FUNCTION: [Isoform 2]: Seems to be proteolytically inactive. {ECO:0000269|PubMed:10995577}.
O43524 FOXO3 S209 psp Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}.
O43583 DENR S20 ochoa Density-regulated protein (DRP) (Protein DRP1) (Smooth muscle cell-associated protein 3) (SMAP-3) Translation regulator forming a complex with MCTS1 to promote translation reinitiation. Translation reinitiation is the process where the small ribosomal subunit remains attached to the mRNA following termination of translation of a regulatory upstream ORF (uORF), and resume scanning on the same mRNA molecule to initiate translation of a downstream ORF, usually the main ORF (mORF). The MCTS1/DENR complex is pivotal to two linked mechanisms essential for translation reinitiation. Firstly, the dissociation of deacylated tRNAs from post-termination 40S ribosomal complexes during ribosome recycling. Secondly, the recruitment in an EIF2-independent manner of aminoacylated initiator tRNA to P site of 40S ribosomes for a new round of translation. This regulatory mechanism governs the translation of more than 150 genes which translation reinitiation is MCTS1/DENR complex-dependent. {ECO:0000269|PubMed:16982740, ECO:0000269|PubMed:20713520, ECO:0000269|PubMed:37875108}.
O43752 STX6 S86 ochoa Syntaxin-6 SNARE promoting movement of transport vesicles to target membranes. Targets endosomes to the trans-Golgi network, and may therefore function in retrograde trafficking. Together with SNARE STX12, promotes movement of vesicles from endosomes to the cell membrane, and may therefore function in the endocytic recycling pathway. {ECO:0000250|UniProtKB:Q63635}.
O43823 AKAP8 S328 ochoa A-kinase anchor protein 8 (AKAP-8) (A-kinase anchor protein 95 kDa) (AKAP 95) Anchoring protein that mediates the subcellular compartmentation of cAMP-dependent protein kinase (PKA type II) (PubMed:9473338). Acts as an anchor for a PKA-signaling complex onto mitotic chromosomes, which is required for maintenance of chromosomes in a condensed form throughout mitosis. Recruits condensin complex subunit NCAPD2 to chromosomes required for chromatin condensation; the function appears to be independent from PKA-anchoring (PubMed:10601332, PubMed:10791967, PubMed:11964380). May help to deliver cyclin D/E to CDK4 to facilitate cell cycle progression (PubMed:14641107). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function may act redundantly with AKAP8L (PubMed:16980585). Involved in nuclear retention of RPS6KA1 upon ERK activation thus inducing cell proliferation (PubMed:22130794). May be involved in regulation of DNA replication by acting as scaffold for MCM2 (PubMed:12740381). Enhances HMT activity of the KMT2 family MLL4/WBP7 complex and is involved in transcriptional regulation. In a teratocarcinoma cell line is involved in retinoic acid-mediated induction of developmental genes implicating H3 'Lys-4' methylation (PubMed:23995757). May be involved in recruitment of active CASP3 to the nucleus in apoptotic cells (PubMed:16227597). May act as a carrier protein of GJA1 for its transport to the nucleus (PubMed:26880274). May play a repressive role in the regulation of rDNA transcription. Preferentially binds GC-rich DNA in vitro. In cells, associates with ribosomal RNA (rRNA) chromatin, preferentially with rRNA promoter and transcribed regions (PubMed:26683827). Involved in modulation of Toll-like receptor signaling. Required for the cAMP-dependent suppression of TNF-alpha in early stages of LPS-induced macrophage activation; the function probably implicates targeting of PKA to NFKB1 (By similarity). {ECO:0000250|UniProtKB:Q63014, ECO:0000250|UniProtKB:Q9DBR0, ECO:0000269|PubMed:10601332, ECO:0000269|PubMed:10791967, ECO:0000269|PubMed:11964380, ECO:0000269|PubMed:16980585, ECO:0000269|PubMed:22130794, ECO:0000269|PubMed:26683827, ECO:0000269|PubMed:26880274, ECO:0000305|PubMed:14641107, ECO:0000305|PubMed:9473338}.
O43933 PEX1 S1216 ochoa Peroxisomal ATPase PEX1 (EC 3.6.4.-) (Peroxin-1) (Peroxisome biogenesis disorder protein 1) (Peroxisome biogenesis factor 1) Component of the PEX1-PEX6 AAA ATPase complex, a protein dislocase complex that mediates the ATP-dependent extraction of the PEX5 receptor from peroxisomal membranes, an essential step for PEX5 recycling (PubMed:11439091, PubMed:16314507, PubMed:16854980, PubMed:21362118, PubMed:29884772). Specifically recognizes PEX5 monoubiquitinated at 'Cys-11', and pulls it out of the peroxisome lumen through the PEX2-PEX10-PEX12 retrotranslocation channel (PubMed:29884772). Extraction by the PEX1-PEX6 AAA ATPase complex is accompanied by unfolding of the TPR repeats and release of bound cargo from PEX5 (PubMed:29884772). {ECO:0000269|PubMed:11439091, ECO:0000269|PubMed:16314507, ECO:0000269|PubMed:16854980, ECO:0000269|PubMed:21362118, ECO:0000269|PubMed:29884772}.
O60231 DHX16 S715 ochoa Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}.
O60271 SPAG9 S190 ochoa C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}.
O60292 SIPA1L3 S1617 ochoa Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}.
O60292 SIPA1L3 S1619 ochoa Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}.
O60294 LCMT2 S20 ochoa tRNA wybutosine-synthesizing protein 4 (tRNA yW-synthesizing protein 4) (EC 2.1.1.290) (EC 2.3.1.231) (Leucine carboxyl methyltransferase 2) (tRNA(Phe) (7-(3-amino-3-(methoxycarbonyl)propyl)wyosine(37)-N)-methoxycarbonyltransferase) (tRNA(Phe) (7-(3-amino-3-carboxypropyl)wyosine(37)-O)-methyltransferase) Probable S-adenosyl-L-methionine-dependent methyltransferase that acts as a component of the wybutosine biosynthesis pathway. Wybutosine is a hyper modified guanosine with a tricyclic base found at the 3'-position adjacent to the anticodon of eukaryotic phenylalanine tRNA (By similarity). May methylate the carboxyl group of leucine residues to form alpha-leucine ester residues. {ECO:0000250}.
O60307 MAST3 S135 ochoa Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) None
O60343 TBC1D4 S314 ochoa TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}.
O60437 PPL S1657 ochoa Periplakin (190 kDa paraneoplastic pemphigus antigen) (195 kDa cornified envelope precursor protein) Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. May act as a localization signal in PKB/AKT-mediated signaling. {ECO:0000269|PubMed:9412476}.
O60565 GREM1 S76 ochoa Gremlin-1 (Cell proliferation-inducing gene 2 protein) (Cysteine knot superfamily 1, BMP antagonist 1) (DAN domain family member 2) (Down-regulated in Mos-transformed cells protein) (Increased in high glucose protein 2) (IHG-2) Cytokine that may play an important role during carcinogenesis and metanephric kidney organogenesis, as a BMP antagonist required for early limb outgrowth and patterning in maintaining the FGF4-SHH feedback loop. Down-regulates the BMP4 signaling in a dose-dependent manner (By similarity). Antagonist of BMP2; inhibits BMP2-mediated differentiation of osteoblasts (in vitro) (PubMed:27036124). Acts as inhibitor of monocyte chemotaxis. Can inhibit the growth or viability of normal cells but not transformed cells when is overexpressed (By similarity). {ECO:0000250|UniProtKB:O35793, ECO:0000250|UniProtKB:O70326, ECO:0000269|PubMed:27036124}.
O60716 CTNND1 S905 ochoa Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}.
O60741 HCN1 S116 psp Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1 (Brain cyclic nucleotide-gated channel 1) (BCNG-1) Hyperpolarization-activated ion channel that are permeable to sodium and potassium ions (PubMed:15351778, PubMed:28086084). Displays lower selectivity for K(+) over Na(+) ions (PubMed:28086084). Contributes to the native pacemaker currents in heart (If) and in the generation of the I(h) current which controls neuron excitability (PubMed:29936235, PubMed:30351409). Participates in cerebellar mechanisms of motor learning (By similarity). May mediate responses to sour stimuli (By similarity). {ECO:0000250|UniProtKB:O88704, ECO:0000269|PubMed:15351778, ECO:0000269|PubMed:28086084, ECO:0000269|PubMed:29936235, ECO:0000269|PubMed:30351409}.
O60927 PPP1R11 S45 ochoa E3 ubiquitin-protein ligase PPP1R11 (EC 2.3.2.27) (Hemochromatosis candidate gene V protein) (HCG V) (Protein phosphatase 1 regulatory subunit 11) (Protein phosphatase inhibitor 3) Atypical E3 ubiquitin-protein ligase which ubiquitinates TLR2 at 'Lys-754' leading to its degradation by the proteasome. Plays a role in regulating inflammatory cytokine release and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2 (PubMed:27805901). Inhibitor of protein phosphatase 1 (PubMed:9843442). {ECO:0000269|PubMed:27805901, ECO:0000269|PubMed:9843442}.
O75052 NOS1AP S371 ochoa Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (C-terminal PDZ ligand of neuronal nitric oxide synthase protein) (Nitric oxide synthase 1 adaptor protein) Adapter protein involved in neuronal nitric-oxide (NO) synthesis regulation via its association with nNOS/NOS1. The complex formed with NOS1 and synapsins is necessary for specific NO and synapsin functions at a presynaptic level. Mediates an indirect interaction between NOS1 and RASD1 leading to enhance the ability of NOS1 to activate RASD1. Competes with DLG4 for interaction with NOS1, possibly affecting NOS1 activity by regulating the interaction between NOS1 and DLG4 (By similarity). In kidney podocytes, plays a role in podosomes and filopodia formation through CDC42 activation (PubMed:33523862). {ECO:0000250|UniProtKB:O54960, ECO:0000269|PubMed:33523862}.
O75128 COBL S974 ochoa Protein cordon-bleu Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}.
O75396 SEC22B S137 ochoa Vesicle-trafficking protein SEC22b (ER-Golgi SNARE of 24 kDa) (ERS-24) (ERS24) (SEC22 vesicle-trafficking protein homolog B) (SEC22 vesicle-trafficking protein-like 1) SNARE involved in targeting and fusion of ER-derived transport vesicles with the Golgi complex as well as Golgi-derived retrograde transport vesicles with the ER. {ECO:0000269|PubMed:15272311}.
O75400 PRPF40A S935 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75533 SF3B1 S377 ochoa Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
O75694 NUP155 S914 ochoa Nuclear pore complex protein Nup155 (155 kDa nucleoporin) (Nucleoporin Nup155) Essential component of nuclear pore complex. Could be essessential for embryogenesis. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport. {ECO:0000250|UniProtKB:Q99P88}.
O75943 RAD17 S367 psp Cell cycle checkpoint protein RAD17 (hRad17) (RF-C/activator 1 homolog) Essential for sustained cell growth, maintenance of chromosomal stability, and ATR-dependent checkpoint activation upon DNA damage (PubMed:10208430, PubMed:11418864, PubMed:11687627, PubMed:11799063, PubMed:12672690, PubMed:14624239, PubMed:15235112). Has a weak ATPase activity required for binding to chromatin (PubMed:10208430, PubMed:11418864, PubMed:11687627, PubMed:11799063, PubMed:12672690, PubMed:14624239, PubMed:15235112). Participates in the recruitment of the 9-1-1 (RAD1-RAD9-HUS1) complex and RHNO1 onto chromatin, and in CHEK1 activation (PubMed:21659603). Involved in homologous recombination by mediating recruitment of the MRN complex to DNA damage sites (PubMed:24534091). May also serve as a sensor of DNA replication progression (PubMed:12578958, PubMed:14500819, PubMed:15538388). {ECO:0000269|PubMed:10208430, ECO:0000269|PubMed:11418864, ECO:0000269|PubMed:11687627, ECO:0000269|PubMed:11799063, ECO:0000269|PubMed:12578958, ECO:0000269|PubMed:12672690, ECO:0000269|PubMed:14500819, ECO:0000269|PubMed:14624239, ECO:0000269|PubMed:15235112, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:24534091}.
O75995 SASH3 S349 ochoa SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}.
O76039 CDKL5 S468 ochoa Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}.
O94823 ATP10B S1380 ochoa Phospholipid-transporting ATPase VB (EC 7.6.2.1) (ATPase class V type 10B) (P4-ATPase flippase complex alpha subunit ATP10B) Catalytic component of a P4-ATPase flippase complex, which catalyzes the hydrolysis of ATP coupled to the transport of glucosylceramide (GlcCer) from the outer to the inner leaflet of lysosome membranes. Plays an important role in the maintenance of lysosome membrane integrity and function in cortical neurons. {ECO:0000269|PubMed:32172343}.
O94875 SORBS2 S246 ochoa Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}.
O94875 SORBS2 S841 ochoa Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}.
O94915 FRYL S1941 ochoa Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}.
O94915 FRYL S1945 ochoa Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}.
O94973 AP2A2 S622 ochoa AP-2 complex subunit alpha-2 (100 kDa coated vesicle protein C) (Adaptor protein complex AP-2 subunit alpha-2) (Adaptor-related protein complex 2 subunit alpha-2) (Alpha-adaptin C) (Alpha2-adaptin) (Clathrin assembly protein complex 2 alpha-C large chain) (Huntingtin yeast partner J) (Huntingtin-interacting protein 9) (HIP-9) (Huntingtin-interacting protein J) (Plasma membrane adaptor HA2/AP2 adaptin alpha C subunit) Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:12960147, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}.
O94979 SEC31A S251 ochoa Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}.
O95071 UBR5 S1702 ochoa E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}.
O95239 KIF4A S508 ochoa Chromosome-associated kinesin KIF4A (Chromokinesin-A) Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}.
O95391 SLU7 S256 ochoa Pre-mRNA-splicing factor SLU7 (hSlu7) Required for pre-mRNA splicing as component of the spliceosome (PubMed:10197984, PubMed:28502770, PubMed:30705154). Participates in the second catalytic step of pre-mRNA splicing, when the free hydroxyl group of exon I attacks the 3'-splice site to generate spliced mRNA and the excised lariat intron. Required for holding exon 1 properly in the spliceosome and for correct AG identification when more than one possible AG exists in 3'-splicing site region. May be involved in the activation of proximal AG. Probably also involved in alternative splicing regulation. {ECO:0000269|PubMed:10197984, ECO:0000269|PubMed:10647016, ECO:0000269|PubMed:12764196, ECO:0000269|PubMed:15181151, ECO:0000269|PubMed:15728250, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:30705154}.
O95622 ADCY5 S96 ochoa Adenylate cyclase type 5 (EC 4.6.1.1) (ATP pyrophosphate-lyase 5) (Adenylate cyclase type V) (Adenylyl cyclase 5) (AC5) Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling (PubMed:15385642, PubMed:24700542, PubMed:26206488). Mediates signaling downstream of ADRB1 (PubMed:24700542). Regulates the increase of free cytosolic Ca(2+) in response to increased blood glucose levels and contributes to the regulation of Ca(2+)-dependent insulin secretion (PubMed:24740569). {ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:24700542, ECO:0000269|PubMed:24740569, ECO:0000269|PubMed:26206488}.
O95671 ASMTL S246 ochoa Probable bifunctional dTTP/UTP pyrophosphatase/methyltransferase protein [Includes: dTTP/UTP pyrophosphatase (dTTPase/UTPase) (EC 3.6.1.9) (Nucleoside triphosphate pyrophosphatase) (Nucleotide pyrophosphatase) (Nucleotide PPase); N-acetylserotonin O-methyltransferase-like protein (ASMTL) (EC 2.1.1.-)] Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. Can also hydrolyze CTP and the modified nucleotides pseudo-UTP, 5-methyl-UTP (m(5)UTP) and 5-methyl-CTP (m(5)CTP). Has weak activity with dCTP, 8-oxo-GTP and N(4)-methyl-dCTP (PubMed:24210219). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids (PubMed:24210219). In addition, the presence of the putative catalytic domain of S-adenosyl-L-methionine binding in the C-terminal region argues for a methyltransferase activity (Probable). {ECO:0000269|PubMed:24210219, ECO:0000305}.
P00338 LDHA S89 ochoa L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}.
P00387 CYB5R3 S82 ochoa NADH-cytochrome b5 reductase 3 (B5R) (Cytochrome b5 reductase) (EC 1.6.2.2) (Diaphorase-1) Catalyzes the reduction of two molecules of cytochrome b5 using NADH as the electron donor. {ECO:0000269|PubMed:10807796, ECO:0000269|PubMed:1400360, ECO:0000269|PubMed:15953014, ECO:0000269|PubMed:1898726, ECO:0000269|PubMed:2019583, ECO:0000269|PubMed:8119939, ECO:0000269|PubMed:9639531}.
P00505 GOT2 S143 ochoa Aspartate aminotransferase, mitochondrial (mAspAT) (EC 2.6.1.1) (EC 2.6.1.7) (Fatty acid-binding protein) (FABP-1) (Glutamate oxaloacetate transaminase 2) (Kynurenine aminotransferase 4) (Kynurenine aminotransferase IV) (Kynurenine--oxoglutarate transaminase 4) (Kynurenine--oxoglutarate transaminase IV) (Plasma membrane-associated fatty acid-binding protein) (FABPpm) (Transaminase A) Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). As a member of the malate-aspartate shuttle, it has a key role in the intracellular NAD(H) redox balance. Is important for metabolite exchange between mitochondria and cytosol, and for amino acid metabolism. Facilitates cellular uptake of long-chain free fatty acids. {ECO:0000269|PubMed:31422819, ECO:0000269|PubMed:9537447}.
P01008 SERPINC1 S68 ochoa Antithrombin-III (ATIII) (Serpin C1) Most important serine protease inhibitor in plasma that regulates the blood coagulation cascade (PubMed:15140129, PubMed:15853774). AT-III inhibits thrombin, matriptase-3/TMPRSS7, as well as factors IXa, Xa and XIa (PubMed:15140129). Its inhibitory activity is greatly enhanced in the presence of heparin. {ECO:0000269|PubMed:15140129, ECO:0000269|PubMed:15853774}.
P01236 PRL S194 psp Prolactin (PRL) Prolactin acts primarily on the mammary gland by promoting lactation.
P02748 C9 S261 ochoa Complement component C9 [Cleaved into: Complement component C9a; Complement component C9b] Pore-forming component of the membrane attack complex (MAC), a multiprotein complex activated by the complement cascade, which inserts into a target cell membrane and forms a pore, leading to target cell membrane rupture and cell lysis (PubMed:22832194, PubMed:26841837, PubMed:26841934, PubMed:27052168, PubMed:30552328, PubMed:6177822, PubMed:9212048, PubMed:9634479). The MAC is initiated by proteolytic cleavage of C5 into complement C5b in response to the classical, alternative, lectin and GZMK complement pathways (PubMed:9212048, PubMed:9634479). The complement pathways consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system (PubMed:9212048, PubMed:9634479). Constitutes the pore-forming subunit of the MAC complex: during MAC assembly, C9 associates with the C5b8 intermediate complex, and polymerizes to complete the pore (PubMed:26841934, PubMed:30111885, PubMed:30552328, PubMed:34752492, PubMed:4055801, PubMed:6177822). {ECO:0000269|PubMed:22832194, ECO:0000269|PubMed:26841837, ECO:0000269|PubMed:26841934, ECO:0000269|PubMed:27052168, ECO:0000269|PubMed:30111885, ECO:0000269|PubMed:30552328, ECO:0000269|PubMed:34752492, ECO:0000269|PubMed:4055801, ECO:0000269|PubMed:6177822, ECO:0000269|PubMed:9212048, ECO:0000269|PubMed:9634479}.
P02808 STATH S22 psp Statherin Salivary protein that stabilizes saliva supersaturated with calcium salts by inhibiting the precipitation of calcium phosphate salts. It also modulates hydroxyapatite crystal formation on the tooth surface.
P04075 ALDOA S46 ochoa Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}.
P04233 CD74 S25 ochoa|psp HLA class II histocompatibility antigen gamma chain (HLA-DR antigens-associated invariant chain) (Ia antigen-associated invariant chain) (Ii) (CD antigen CD74) [Cleaved into: Class-II-associated invariant chain peptide (CLIP)] Plays a critical role in MHC class II antigen processing by stabilizing peptide-free class II alpha/beta heterodimers in a complex soon after their synthesis and directing transport of the complex from the endoplasmic reticulum to the endosomal/lysosomal system where the antigen processing and binding of antigenic peptides to MHC class II takes place. Serves as cell surface receptor for the cytokine MIF.; FUNCTION: [Class-II-associated invariant chain peptide]: Binds to the peptide-binding site of MHC class II alpha/beta heterodimers forming an alpha-beta-CLIP complex, thereby preventing the loading of antigenic peptides to the MHC class II complex until its release by HLA-DM in the endosome. {ECO:0000269|PubMed:1448172}.; FUNCTION: [Isoform p41]: Stabilizes the conformation of mature CTSL by binding to its active site and serving as a chaperone to help maintain a pool of mature enzyme in endocytic compartments and extracellular space of antigen-presenting cells (APCs). Has antiviral activity by stymieing the endosomal entry of Ebola virus and coronaviruses, including SARS-CoV-2 (PubMed:32855215). Disrupts cathepsin-mediated Ebola virus glycoprotein processing, which prevents viral fusion and entry. This antiviral activity is specific to p41 isoform (PubMed:32855215). {ECO:0000250|UniProtKB:P04441, ECO:0000269|PubMed:32855215}.
P05787 KRT8 S291 psp Keratin, type II cytoskeletal 8 (Cytokeratin-8) (CK-8) (Keratin-8) (K8) (Type-II keratin Kb8) Together with KRT19, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}.
P06127 CD5 S428 ochoa T-cell surface glycoprotein CD5 (Lymphocyte antigen T1/Leu-1) (CD antigen CD5) Lymphoid-specific receptor expressed by all T-cells and in a subset of B-cells known as B1a cells. Plays a role in the regulation of TCR and BCR signaling, thymocyte selection, T-cell effector differentiation and immune tolerance. Acts by interacting with several ligands expressed on B-cells such as CD5L or CD72 and thereby plays an important role in contact-mediated, T-dependent B-cell activation and in the maintenance of regulatory T and B-cell homeostasis. Functions as a negative regulator of TCR signaling during thymocyte development by associating with several signaling proteins including LCK, CD3Z chain, PI3K or CBL (PubMed:1384049, PubMed:1385158). Mechanistically, co-engagement of CD3 with CD5 enhances phosphorylated CBL recruitment leading to increased VAV1 phosphorylation and degradation (PubMed:23376399). Modulates B-cell biology through ERK1/2 activation in a Ca(2+)-dependent pathway via the non-selective Ca(2+) channel TRPC1, leading to IL-10 production (PubMed:27499044). {ECO:0000250|UniProtKB:P13379, ECO:0000269|PubMed:1384049, ECO:0000269|PubMed:1385158, ECO:0000269|PubMed:23376399, ECO:0000269|PubMed:27499044}.
P06239 LCK S158 ochoa|psp Tyrosine-protein kinase Lck (EC 2.7.10.2) (Leukocyte C-terminal Src kinase) (LSK) (Lymphocyte cell-specific protein-tyrosine kinase) (Protein YT16) (Proto-oncogene Lck) (T cell-specific protein-tyrosine kinase) (p56-LCK) Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Interacts with FYB2 (PubMed:27335501). {ECO:0000269|PubMed:16339550, ECO:0000269|PubMed:16709819, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20851766, ECO:0000269|PubMed:21269457, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:27335501, ECO:0000269|PubMed:38614099}.
P07359 GP1BA S608 ochoa Platelet glycoprotein Ib alpha chain (GP-Ib alpha) (GPIb-alpha) (GPIbA) (Glycoprotein Ibalpha) (Antigen CD42b-alpha) (CD antigen CD42b) [Cleaved into: Glycocalicin] GP-Ib, a surface membrane protein of platelets, participates in the formation of platelet plugs by binding to the A1 domain of vWF, which is already bound to the subendothelium.
P08514 ITGA2B S98 ochoa Integrin alpha-IIb (GPalpha IIb) (GPIIb) (Platelet membrane glycoprotein IIb) (CD antigen CD41) [Cleaved into: Integrin alpha-IIb heavy chain; Integrin alpha-IIb light chain, form 1; Integrin alpha-IIb light chain, form 2] Integrin alpha-IIb/beta-3 is a receptor for fibronectin, fibrinogen, plasminogen, prothrombin, thrombospondin and vitronectin. It recognizes the sequence R-G-D in a wide array of ligands. It recognizes the sequence H-H-L-G-G-G-A-K-Q-A-G-D-V in fibrinogen gamma chain (By similarity). Following activation integrin alpha-IIb/beta-3 brings about platelet/platelet interaction through binding of soluble fibrinogen (PubMed:9111081). This step leads to rapid platelet aggregation which physically plugs ruptured endothelial cell surface (By similarity). {ECO:0000250|UniProtKB:O54890, ECO:0000269|PubMed:9111081}.
P08865 RPSA S43 ochoa Small ribosomal subunit protein uS2 (37 kDa laminin receptor precursor) (37LRP) (37/67 kDa laminin receptor) (LRP/LR) (40S ribosomal protein SA) (67 kDa laminin receptor) (67LR) (Colon carcinoma laminin-binding protein) (Laminin receptor 1) (LamR) (Laminin-binding protein precursor p40) (LBP/p40) (Multidrug resistance-associated protein MGr1-Ag) (NEM/1CHD4) Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Acts as a PPP1R16B-dependent substrate of PPP1CA. {ECO:0000255|HAMAP-Rule:MF_03016, ECO:0000269|PubMed:16263087, ECO:0000269|PubMed:6300843}.; FUNCTION: (Microbial infection) Acts as a receptor for the Adeno-associated viruses 2,3,8 and 9. {ECO:0000269|PubMed:16973587}.; FUNCTION: (Microbial infection) Acts as a receptor for the Dengue virus. {ECO:0000269|PubMed:15507651}.; FUNCTION: (Microbial infection) Acts as a receptor for the Sindbis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the Venezuelan equine encephalitis virus. {ECO:0000269|PubMed:1385835}.; FUNCTION: (Microbial infection) Acts as a receptor for the pathogenic prion protein. {ECO:0000269|PubMed:11689427, ECO:0000269|PubMed:9396609}.; FUNCTION: (Microbial infection) Acts as a receptor for bacteria. {ECO:0000269|PubMed:15516338}.
P09382 LGALS1 S39 ochoa Galectin-1 (Gal-1) (14 kDa laminin-binding protein) (HLBP14) (14 kDa lectin) (Beta-galactoside-binding lectin L-14-I) (Galaptin) (HBL) (HPL) (Lactose-binding lectin 1) (Lectin galactoside-binding soluble 1) (Putative MAPK-activating protein PM12) (S-Lac lectin 1) Lectin that binds beta-galactoside and a wide array of complex carbohydrates. Plays a role in regulating apoptosis, cell proliferation and cell differentiation. Inhibits CD45 protein phosphatase activity and therefore the dephosphorylation of Lyn kinase. Strong inducer of T-cell apoptosis. Plays a negative role in Th17 cell differentiation via activation of the receptor CD69 (PubMed:24752896). {ECO:0000269|PubMed:14617626, ECO:0000269|PubMed:18796645, ECO:0000269|PubMed:19497882, ECO:0000269|PubMed:24752896, ECO:0000269|PubMed:24945728}.
P0C0S8 H2AC11 S20 ochoa Histone H2A type 1 (H2A.1) (Histone H2A/ptl) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P0DPH7 TUBA3C S54 ochoa Tubulin alpha-3C chain (EC 3.6.5.-) (Alpha-tubulin 2) (Alpha-tubulin 3C) (Tubulin alpha-2 chain) [Cleaved into: Detyrosinated tubulin alpha-3C chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P0DPH8 TUBA3D S54 ochoa Tubulin alpha-3D chain (EC 3.6.5.-) (Alpha-tubulin 3D) [Cleaved into: Detyrosinated tubulin alpha-3D chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P10588 NR2F6 S83 psp Nuclear receptor subfamily 2 group F member 6 (V-erbA-related protein 2) (EAR-2) Transcription factor predominantly involved in transcriptional repression. Binds to promoter/enhancer response elements that contain the imperfect 5'-AGGTCA-3' direct or inverted repeats with various spacings which are also recognized by other nuclear hormone receptors. Involved in modulation of hormonal responses. Represses transcriptional activity of the lutropin-choriogonadotropic hormone receptor/LHCGR gene, the renin/REN gene and the oxytocin-neurophysin/OXT gene. Represses the triiodothyronine-dependent and -independent transcriptional activity of the thyroid hormone receptor gene in a cell type-specific manner. The corepressing function towards thyroid hormone receptor beta/THRB involves at least in part the inhibition of THRB binding to triiodothyronine response elements (TREs) by NR2F6. Inhibits NFATC transcription factor DNA binding and subsequently its transcriptional activity. Acts as transcriptional repressor of IL-17 expression in Th-17 differentiated CD4(+) T cells and may be involved in induction and/or maintenance of peripheral immunological tolerance and autoimmunity. Involved in development of forebrain circadian clock; is required early in the development of the locus coeruleus (LC). {ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:10713182, ECO:0000269|PubMed:11682620, ECO:0000269|PubMed:18701084}.
P11055 MYH3 S181 ochoa Myosin-3 (Muscle embryonic myosin heavy chain) (Myosin heavy chain 3) (Myosin heavy chain, fast skeletal muscle, embryonic) (SMHCE) Muscle contraction.
P11274 BCR S222 ochoa Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}.
P11940 PABPC1 S39 ochoa Polyadenylate-binding protein 1 (PABP-1) (Poly(A)-binding protein 1) Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability (PubMed:11051545, PubMed:17212783, PubMed:25480299). Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2 (PubMed:11051545, PubMed:20573744). Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Involved in translationally coupled mRNA turnover (PubMed:11051545). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545). Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585). By binding to long poly(A) tails, may protect them from uridylation by ZCCHC6/ZCCHC11 and hence contribute to mRNA stability (PubMed:25480299). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:17212783, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:32245947}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
P12724 RNASE3 S121 ochoa Eosinophil cationic protein (ECP) (EC 3.1.27.-) (Ribonuclease 3) (RNase 3) Cytotoxin and helminthotoxin with low-efficiency ribonuclease activity. Possesses a wide variety of biological activities. Exhibits antibacterial activity, including cytoplasmic membrane depolarization of preferentially Gram-negative, but also Gram-positive strains. Promotes E.coli outer membrane detachment, alteration of the overall cell shape and partial loss of cell content. {ECO:0000269|PubMed:19450231, ECO:0000269|PubMed:2501794}.
P12882 MYH1 S181 ochoa Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}.
P12883 MYH7 S180 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P12956 XRCC6 S155 psp X-ray repair cross-complementing protein 6 (EC 3.6.4.-) (EC 4.2.99.-) (5'-deoxyribose-5-phosphate lyase Ku70) (5'-dRP lyase Ku70) (70 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 1) (ATP-dependent DNA helicase II 70 kDa subunit) (CTC box-binding factor 75 kDa subunit) (CTC75) (CTCBF) (DNA repair protein XRCC6) (Lupus Ku autoantigen protein p70) (Ku70) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 6) Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). 5'-dRP lyase activity allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Negatively regulates apoptosis by interacting with BAX and sequestering it from the mitochondria (PubMed:15023334). Might have deubiquitination activity, acting on BAX (PubMed:18362350). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:15023334, ECO:0000269|PubMed:18362350, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:2466842, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:9742108}.
P13533 MYH6 S180 ochoa Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) Muscle contraction.
P13535 MYH8 S183 ochoa Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) Muscle contraction.
P13639 EEF2 S623 ochoa Elongation factor 2 (EF-2) (EC 3.6.5.-) Catalyzes the GTP-dependent ribosomal translocation step during translation elongation (PubMed:26593721). During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively (PubMed:26593721). Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (PubMed:26593721). {ECO:0000269|PubMed:26593721}.
P14598 NCF1 S320 ochoa|psp Neutrophil cytosol factor 1 (NCF-1) (47 kDa autosomal chronic granulomatous disease protein) (47 kDa neutrophil oxidase factor) (NCF-47K) (Neutrophil NADPH oxidase factor 1) (Nox organizer 2) (Nox-organizing protein 2) (SH3 and PX domain-containing protein 1A) (p47-phox) Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (PubMed:2547247, PubMed:2550933, PubMed:38355798). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (PubMed:38355798). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (PubMed:38355798). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (PubMed:12732142, PubMed:19801500). {ECO:0000269|PubMed:12732142, ECO:0000269|PubMed:19801500, ECO:0000269|PubMed:2547247, ECO:0000269|PubMed:2550933, ECO:0000269|PubMed:38355798}.
P14625 HSP90B1 S501 ochoa Endoplasmin (EC 3.6.4.-) (94 kDa glucose-regulated protein) (GRP-94) (Heat shock protein 90 kDa beta member 1) (Heat shock protein family C member 4) (Tumor rejection antigen 1) (gp96 homolog) ATP-dependent chaperone involved in the processing of proteins in the endoplasmic reticulum, regulating their transport (PubMed:23572575, PubMed:39509507). Together with MESD, acts as a modulator of the Wnt pathway by promoting the folding of LRP6, a coreceptor of the canonical Wnt pathway (PubMed:23572575, PubMed:39509507). When associated with CNPY3, required for proper folding of Toll-like receptors (PubMed:11584270). Promotes folding and trafficking of TLR4 to the cell surface (PubMed:11584270). May participate in the unfolding of cytosolic leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1 to facilitate their translocation into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) and secretion; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:11584270, ECO:0000269|PubMed:23572575, ECO:0000269|PubMed:32272059, ECO:0000269|PubMed:39509507}.
P15515 HTN1 S21 psp Histatin-1 (Hst1) (Histidine-rich protein 1) (Post-PB protein) (PPB) [Cleaved into: His1-(31-57)-peptide (His1 31/57) (His1-(12-38)-peptide) (His1 12/38) (Histatin 2) (Hst2) (Histatin-2)] Histatins (Hsts) are cationic and histidine-rich secreted peptides mainly synthesized by saliva glands of humans and higher primates (PubMed:3286634, PubMed:3944083). Hsts are considered to be major precursors of the protective proteinaceous structure on tooth surfaces (enamel pellicle). Hsts can be divided into two major groups according to their biological functions: antimicrobial Hsts (e.g. Hst 5/HTN3) and cell-activating Hsts (e.g. Hst 1/HTN1 and Hst 2/HTN1) (PubMed:32225006). Hst 1/HTN1 and Hst 2/HTN1 act in different cell types (epithelium, fibroblasts and endothelium) in oral and non-oral mucosa (PubMed:25903106, PubMed:28542418, PubMed:28751526, PubMed:32225006). {ECO:0000269|PubMed:25903106, ECO:0000269|PubMed:28542418, ECO:0000269|PubMed:28751526, ECO:0000269|PubMed:32225006, ECO:0000269|PubMed:3286634, ECO:0000269|PubMed:3944083}.; FUNCTION: [Histatin-1]: Hst 1 functions primarily as a wound healing factor by activating cell-surface and cell-cell adhesions, cell spreading and migration and it can also stimulate cellular metabolic activity (PubMed:18650243, PubMed:25903106, PubMed:28542418, PubMed:28751526, PubMed:32225006, PubMed:35970844). Hst 1 is internalized in host cells in a stereospecific and energy-dependent process, which is partially mediated by the G protein-coupled receptors (GPCR)-activated endocytosis (PubMed:35970844). Internalized Hst 1 is targeted and released via early endosomes trafficking to the mitochondria, where it significantly enhances mitochondrial energy metabolism (PubMed:32225006, PubMed:35970844). At the mitochondria, Hst 1 increases mitochondria-ER contacts through binding with ER receptor TMEM97, which also stimulates metabolic activity and cell migration and may as well regulate calcium homeostasis of the cell (PubMed:32225006, PubMed:34233061, PubMed:35970844). Also activates the ERK1/2 signaling pathway to promote cell migration, possibly upon interaction with GPRCs at the plasma membrane (PubMed:28751526). Also triggers the RIN2/Rab5/Rac1 signaling cascade which activates endothelial cell adhesion, spreading and migration required for angiogenesis in the oral wound healing process, however the receptor that transduces Hst 1 signal has not yet been identified (PubMed:28751526). Also displays antimicrobial functions against pathogenic yeast Candida albicans, although with less effectiveness than Hst 5 (PubMed:28751526, PubMed:3286634, PubMed:3944083). {ECO:0000269|PubMed:18650243, ECO:0000269|PubMed:25903106, ECO:0000269|PubMed:28542418, ECO:0000269|PubMed:28751526, ECO:0000269|PubMed:32225006, ECO:0000269|PubMed:3286634, ECO:0000269|PubMed:34233061, ECO:0000269|PubMed:35970844, ECO:0000269|PubMed:3944083}.; FUNCTION: [His1-(31-57)-peptide]: Hst 2 consists of the fragment sequence 12-28 of Hst 1. Similar to Hst 1, actively and stereospecifically internalized in host cells and targeted to the mitochondria and the ER and promotes cell metabolic activity (PubMed:18650243, PubMed:32225006). Also activates the ERK1/2 signaling pathway to promote cell migration and wound closure (PubMed:18650243). In contrast with Hst 1, not able to promote cell-substrate and cell-cell adhesion (PubMed:25903106). {ECO:0000269|PubMed:18650243, ECO:0000269|PubMed:25903106, ECO:0000269|PubMed:32225006}.
P17028 ZNF24 S289 ochoa Zinc finger protein 24 (Retinoic acid suppression protein A) (RSG-A) (Zinc finger and SCAN domain-containing protein 3) (Zinc finger protein 191) (Zinc finger protein KOX17) Transcription factor required for myelination of differentiated oligodendrocytes. Required for the conversion of oligodendrocytes from the premyelinating to the myelinating state. In the developing central nervous system (CNS), involved in the maintenance in the progenitor stage by promoting the cell cycle. Specifically binds to the 5'-TCAT-3' DNA sequence (By similarity). Has transcription repressor activity in vitro. {ECO:0000250, ECO:0000269|PubMed:10585455}.
P17540 CKMT2 S162 ochoa Creatine kinase S-type, mitochondrial (EC 2.7.3.2) (Basic-type mitochondrial creatine kinase) (Mib-CK) (Sarcomeric mitochondrial creatine kinase) (S-MtCK) Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa.
P18031 PTPN1 S363 ochoa Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}.
P18146 EGR1 S378 psp Early growth response protein 1 (EGR-1) (AT225) (Nerve growth factor-induced protein A) (NGFI-A) (Transcription factor ETR103) (Transcription factor Zif268) (Zinc finger protein 225) (Zinc finger protein Krox-24) Transcriptional regulator (PubMed:20121949). Recognizes and binds to the DNA sequence 5'-GCG(T/G)GGGCG-3'(EGR-site) in the promoter region of target genes (By similarity). Binds double-stranded target DNA, irrespective of the cytosine methylation status (PubMed:25258363, PubMed:25999311). Regulates the transcription of numerous target genes, and thereby plays an important role in regulating the response to growth factors, DNA damage, and ischemia. Plays a role in the regulation of cell survival, proliferation and cell death. Activates expression of p53/TP53 and TGFB1, and thereby helps prevent tumor formation. Required for normal progress through mitosis and normal proliferation of hepatocytes after partial hepatectomy. Mediates responses to ischemia and hypoxia; regulates the expression of proteins such as IL1B and CXCL2 that are involved in inflammatory processes and development of tissue damage after ischemia. Regulates biosynthesis of luteinizing hormone (LHB) in the pituitary (By similarity). Regulates the amplitude of the expression rhythms of clock genes: BMAL1, PER2 and NR1D1 in the liver via the activation of PER1 (clock repressor) transcription. Regulates the rhythmic expression of core-clock gene BMAL1 in the suprachiasmatic nucleus (SCN) (By similarity). {ECO:0000250|UniProtKB:P08046, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:25258363, ECO:0000269|PubMed:25999311}.
P18615 NELFE S115 ochoa|psp Negative elongation factor E (NELF-E) (RNA-binding protein RD) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
P19174 PLCG1 S1233 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (EC 3.1.4.11) (PLC-148) (Phosphoinositide phospholipase C-gamma-1) (Phospholipase C-II) (PLC-II) (Phospholipase C-gamma-1) (PLC-gamma-1) Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, EGFR, FGFR1, FGFR2, FGFR3 and FGFR4 (By similarity). Plays a role in actin reorganization and cell migration (PubMed:17229814). Guanine nucleotide exchange factor that binds the GTPase DNM1 and catalyzes the dissociation of GDP, allowing a GTP molecule to bind in its place, therefore enhancing DNM1-dependent endocytosis (By similarity). {ECO:0000250|UniProtKB:P10686, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:37422272}.
P19544 WT1 S365 psp Wilms tumor protein (WT33) Transcription factor that plays an important role in cellular development and cell survival (PubMed:7862533). Recognizes and binds to the DNA sequence 5'-GCG(T/G)GGGCG-3' (PubMed:17716689, PubMed:25258363, PubMed:7862533). Regulates the expression of numerous target genes, including EPO. Plays an essential role for development of the urogenital system. It has a tumor suppressor as well as an oncogenic role in tumor formation. Function may be isoform-specific: isoforms lacking the KTS motif may act as transcription factors (PubMed:15520190). Isoforms containing the KTS motif may bind mRNA and play a role in mRNA metabolism or splicing (PubMed:16934801). Isoform 1 has lower affinity for DNA, and can bind RNA (PubMed:19123921). {ECO:0000269|PubMed:15520190, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17716689, ECO:0000269|PubMed:19123921, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:25258363, ECO:0000269|PubMed:7862533}.
P19544 WT1 S393 psp Wilms tumor protein (WT33) Transcription factor that plays an important role in cellular development and cell survival (PubMed:7862533). Recognizes and binds to the DNA sequence 5'-GCG(T/G)GGGCG-3' (PubMed:17716689, PubMed:25258363, PubMed:7862533). Regulates the expression of numerous target genes, including EPO. Plays an essential role for development of the urogenital system. It has a tumor suppressor as well as an oncogenic role in tumor formation. Function may be isoform-specific: isoforms lacking the KTS motif may act as transcription factors (PubMed:15520190). Isoforms containing the KTS motif may bind mRNA and play a role in mRNA metabolism or splicing (PubMed:16934801). Isoform 1 has lower affinity for DNA, and can bind RNA (PubMed:19123921). {ECO:0000269|PubMed:15520190, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17716689, ECO:0000269|PubMed:19123921, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:25258363, ECO:0000269|PubMed:7862533}.
P20671 H2AC7 S20 ochoa Histone H2A type 1-D (Histone H2A.3) (Histone H2A/g) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P21333 FLNA S1835 ochoa Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}.
P21399 ACO1 S711 psp Cytoplasmic aconitate hydratase (Aconitase) (EC 4.2.1.3) (Citrate hydro-lyase) (Ferritin repressor protein) (Iron regulatory protein 1) (IRP1) (Iron-responsive element-binding protein 1) (IRE-BP 1) Bifunctional iron sensor that switches between 2 activities depending on iron availability (PubMed:1281544, PubMed:1946430, PubMed:8041788). Iron deprivation, promotes its mRNA binding activity through which it regulates the expression of genes involved in iron uptake, sequestration and utilization (PubMed:1281544, PubMed:1946430, PubMed:23891004, PubMed:8041788). Binds to iron-responsive elements (IRES) in the untranslated region of target mRNAs preventing for instance the translation of ferritin and aminolevulinic acid synthase and stabilizing the transferrin receptor mRNA (PubMed:1281544, PubMed:1946430, PubMed:23891004, PubMed:8041788). {ECO:0000269|PubMed:1281544, ECO:0000269|PubMed:1946430, ECO:0000269|PubMed:23891004, ECO:0000269|PubMed:8041788}.; FUNCTION: Conversely, when cellular iron levels are high, binds a 4Fe-4S cluster which precludes RNA binding activity and promotes the aconitase activity, the isomerization of citrate to isocitrate via cis-aconitate. {ECO:0000269|PubMed:1281544, ECO:0000269|PubMed:1946430, ECO:0000269|PubMed:8041788}.
P23588 EIF4B S192 ochoa Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
P23588 EIF4B S543 ochoa Eukaryotic translation initiation factor 4B (eIF-4B) Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
P23634 ATP2B4 S570 ochoa Plasma membrane calcium-transporting ATPase 4 (PMCA4) (EC 7.2.2.10) (Matrix-remodeling-associated protein 1) (Plasma membrane calcium ATPase isoform 4) (Plasma membrane calcium pump isoform 4) Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity). {ECO:0000250|UniProtKB:Q6Q477, ECO:0000269|PubMed:8530416}.
P25054 APC S293 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25490 YY1 S365 ochoa|psp Transcriptional repressor protein YY1 (Delta transcription factor) (INO80 complex subunit S) (NF-E1) (Yin and yang 1) (YY-1) Multifunctional transcription factor that exhibits positive and negative control on a large number of cellular and viral genes by binding to sites overlapping the transcription start site (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Binds to the consensus sequence 5'-CCGCCATNTT-3'; some genes have been shown to contain a longer binding motif allowing enhanced binding; the initial CG dinucleotide can be methylated greatly reducing the binding affinity (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). The effect on transcription regulation is depending upon the context in which it binds and diverse mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Its activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). For example, it acts as a repressor in absence of adenovirus E1A protein but as an activator in its presence (PubMed:1655281). Acts synergistically with the SMAD1 and SMAD4 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (PubMed:15329343). Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (PubMed:15329343). May play an important role in development and differentiation. Proposed to recruit the PRC2/EED-EZH2 complex to target genes that are transcriptional repressed (PubMed:11158321). Involved in DNA repair (PubMed:18026119, PubMed:28575647). In vitro, binds to DNA recombination intermediate structures (Holliday junctions). Plays a role in regulating enhancer activation (PubMed:28575647). Recruits the PR-DUB complex to specific gene-regulatory regions (PubMed:20805357). {ECO:0000269|PubMed:11158321, ECO:0000269|PubMed:15329343, ECO:0000269|PubMed:1655281, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24326773, ECO:0000269|PubMed:25787250, ECO:0000269|PubMed:28575647}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair; proposed to target the INO80 complex to YY1-responsive elements. {ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119}.
P25705 ATP5F1A S517 ochoa ATP synthase F(1) complex subunit alpha, mitochondrial (ATP synthase F1 subunit alpha) Subunit alpha, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the catalytic subunit beta (ATP5F1B), forms the catalytic core in the F(1) domain (PubMed:37244256). Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (Probable). Binds the bacterial siderophore enterobactin and can promote mitochondrial accumulation of enterobactin-derived iron ions (PubMed:30146159). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:30146159, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}.
P27348 YWHAQ S45 ochoa 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}.
P27708 CAD S1938 ochoa Multifunctional protein CAD (Carbamoyl phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase) [Includes: Glutamine-dependent carbamoyl phosphate synthase (EC 6.3.5.5); Glutamine amidotransferase (GATase) (GLNase) (EC 3.5.1.2); Ammonium-dependent carbamoyl phosphate synthase (CPS) (CPSase) (EC 6.3.4.16); Aspartate carbamoyltransferase (EC 2.1.3.2); Dihydroorotase (EC 3.5.2.3)] Multifunctional protein that encodes the first 3 enzymatic activities of the de novo pyrimidine pathway: carbamoylphosphate synthetase (CPSase; EC 6.3.5.5), aspartate transcarbamylase (ATCase; EC 2.1.3.2) and dihydroorotase (DHOase; EC 3.5.2.3). The CPSase-function is accomplished in 2 steps, by a glutamine-dependent amidotransferase activity (GATase) that binds and cleaves glutamine to produce ammonia, followed by an ammonium-dependent carbamoyl phosphate synthetase, which reacts with the ammonia, hydrogencarbonate and ATP to form carbamoyl phosphate. The endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site. ATCase then catalyzes the formation of carbamoyl-L-aspartate from L-aspartate and carbamoyl phosphate. In the last step, DHOase catalyzes the cyclization of carbamoyl aspartate to dihydroorotate. {ECO:0000269|PubMed:24332717}.
P28290 ITPRID2 S687 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P30291 WEE1 S242 psp Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}.
P30307 CDC25C S129 ochoa M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}.
P30414 NKTR S390 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P31946 YWHAB S47 ochoa 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}.
P32241 VIPR1 S435 psp Vasoactive intestinal polypeptide receptor 1 (VIP-R-1) (Pituitary adenylate cyclase-activating polypeptide type II receptor) (PACAP type II receptor) (PACAP-R-2) (PACAP-R2) (VPAC1 receptor) (VPAC1R) G protein-coupled receptor activated by the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (ADCYAP1/PACAP) (PubMed:35477937, PubMed:36385145, PubMed:8179610). Binds VIP and both PACAP27 and PACAP38 bioactive peptides with the following order of ligand affinity VIP = PACAP27 > PACAP38 (PubMed:35477937, PubMed:8179610). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors. Activates cAMP-dependent pathway (PubMed:35477937, PubMed:36385145, PubMed:8179610). {ECO:0000269|PubMed:35477937, ECO:0000269|PubMed:36385145, ECO:0000269|PubMed:8179610}.
P32322 PYCR1 S109 ochoa Pyrroline-5-carboxylate reductase 1, mitochondrial (P5C reductase 1) (P5CR 1) (EC 1.5.1.2) Oxidoreductase that catalyzes the last step in proline biosynthesis, which corresponds to the reduction of pyrroline-5-carboxylate to L-proline using NAD(P)H (PubMed:16730026, PubMed:19648921, PubMed:23024808, PubMed:28258219). At physiologic concentrations, has higher specific activity in the presence of NADH (PubMed:16730026, PubMed:23024808). Involved in the cellular response to oxidative stress (PubMed:16730026, PubMed:19648921). {ECO:0000269|PubMed:16730026, ECO:0000269|PubMed:19648921, ECO:0000269|PubMed:23024808, ECO:0000269|PubMed:28258219}.
P35348 ADRA1A S250 psp Alpha-1A adrenergic receptor (Alpha-1A adrenoreceptor) (Alpha-1A adrenoceptor) (Alpha-1C adrenergic receptor) (Alpha-adrenergic receptor 1c) This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}.
P35573 AGL S738 ochoa Glycogen debranching enzyme (Glycogen debrancher) [Includes: 4-alpha-glucanotransferase (EC 2.4.1.25) (Oligo-1,4-1,4-glucantransferase); Amylo-alpha-1,6-glucosidase (Amylo-1,6-glucosidase) (EC 3.2.1.33) (Dextrin 6-alpha-D-glucosidase)] Multifunctional enzyme acting as 1,4-alpha-D-glucan:1,4-alpha-D-glucan 4-alpha-D-glycosyltransferase and amylo-1,6-glucosidase in glycogen degradation.
P35749 MYH11 S1935 ochoa Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) Muscle contraction.
P36551 CPOX S416 ochoa Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial (COX) (Coprogen oxidase) (Coproporphyrinogenase) (EC 1.3.3.3) Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen-IX and participates to the sixth step in the heme biosynthetic pathway. {ECO:0000269|PubMed:8159699}.
P38646 HSPA9 S89 ochoa Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}.
P40763 STAT3 S719 ochoa Signal transducer and activator of transcription 3 (Acute-phase response factor) Signal transducer and transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors (PubMed:10688651, PubMed:12359225, PubMed:12873986, PubMed:15194700, PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18242580, PubMed:18782771, PubMed:22306293, PubMed:23084476, PubMed:28262505, PubMed:32929201, PubMed:38404237). Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene (PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18782771, PubMed:28262505, PubMed:32929201). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:12873986). Upon activation of IL6ST/gp130 signaling by interleukin-6 (IL6), binds to the IL6-responsive elements identified in the promoters of various acute-phase protein genes (PubMed:12359225). Activated by IL31 through IL31RA (PubMed:15194700). Acts as a regulator of inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells (Treg): acetylation promotes its transcription activity and cell differentiation while deacetylation and oxidation of lysine residues by LOXL3 inhibits differentiation (PubMed:28065600, PubMed:28262505). Involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1 (PubMed:17344214). Mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). May play an apoptotic role by transctivating BIRC5 expression under LEP activation (PubMed:18242580). Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity (PubMed:23084476). Plays a crucial role in basal beta cell functions, such as regulation of insulin secretion (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC3 and NFATC4, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:P42227, ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:12359225, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15194700, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:17344214, ECO:0000269|PubMed:18242580, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:28065600, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:32929201, ECO:0000269|PubMed:38404237}.
P42331 ARHGAP25 S473 ochoa Rho GTPase-activating protein 25 (Rho-type GTPase-activating protein 25) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}.
P42331 ARHGAP25 S474 ochoa Rho GTPase-activating protein 25 (Rho-type GTPase-activating protein 25) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}.
P43004 SLC1A2 S21 ochoa Excitatory amino acid transporter 2 (Glutamate/aspartate transporter II) (Sodium-dependent glutamate/aspartate transporter 2) (Solute carrier family 1 member 2) Sodium-dependent, high-affinity amino acid transporter that mediates the uptake of L-glutamate and also L-aspartate and D-aspartate (PubMed:14506254, PubMed:15265858, PubMed:26690923, PubMed:7521911). Functions as a symporter that transports one amino acid molecule together with two or three Na(+) ions and one proton, in parallel with the counter-transport of one K(+) ion (PubMed:14506254). Mediates Cl(-) flux that is not coupled to amino acid transport; this avoids the accumulation of negative charges due to aspartate and Na(+) symport (PubMed:14506254). Essential for the rapid removal of released glutamate from the synaptic cleft, and for terminating the postsynaptic action of glutamate (By similarity). {ECO:0000250|UniProtKB:P43006, ECO:0000269|PubMed:15265858, ECO:0000269|PubMed:26690923, ECO:0000269|PubMed:7521911}.
P45983 MAPK8 S179 ochoa Mitogen-activated protein kinase 8 (MAP kinase 8) (MAPK 8) (EC 2.7.11.24) (JNK-46) (Stress-activated protein kinase 1c) (SAPK1c) (Stress-activated protein kinase JNK1) (c-Jun N-terminal kinase 1) Serine/threonine-protein kinase involved in various processes such as cell proliferation, differentiation, migration, transformation and programmed cell death. Extracellular stimuli such as pro-inflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway (PubMed:28943315). In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK8/JNK1. In turn, MAPK8/JNK1 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN, JDP2 and ATF2 and thus regulates AP-1 transcriptional activity (PubMed:18307971). Phosphorylates the replication licensing factor CDT1, inhibiting the interaction between CDT1 and the histone H4 acetylase HBO1 to replication origins (PubMed:21856198). Loss of this interaction abrogates the acetylation required for replication initiation (PubMed:21856198). Promotes stressed cell apoptosis by phosphorylating key regulatory factors including p53/TP53 and Yes-associates protein YAP1 (PubMed:21364637). In T-cells, MAPK8 and MAPK9 are required for polarized differentiation of T-helper cells into Th1 cells. Contributes to the survival of erythroid cells by phosphorylating the antagonist of cell death BAD upon EPO stimulation (PubMed:21095239). Mediates starvation-induced BCL2 phosphorylation, BCL2 dissociation from BECN1, and thus activation of autophagy (PubMed:18570871). Phosphorylates STMN2 and hence regulates microtubule dynamics, controlling neurite elongation in cortical neurons (By similarity). In the developing brain, through its cytoplasmic activity on STMN2, negatively regulates the rate of exit from multipolar stage and of radial migration from the ventricular zone (By similarity). Phosphorylates several other substrates including heat shock factor protein 4 (HSF4), the deacetylase SIRT1, ELK1, or the E3 ligase ITCH (PubMed:16581800, PubMed:17296730, PubMed:20027304). Phosphorylates the CLOCK-BMAL1 heterodimer and plays a role in the regulation of the circadian clock (PubMed:22441692). Phosphorylates the heat shock transcription factor HSF1, suppressing HSF1-induced transcriptional activity (PubMed:10747973). Phosphorylates POU5F1, which results in the inhibition of POU5F1's transcriptional activity and enhances its proteasomal degradation (By similarity). Phosphorylates JUND and this phosphorylation is inhibited in the presence of MEN1 (PubMed:22327296). In neurons, phosphorylates SYT4 which captures neuronal dense core vesicles at synapses (By similarity). Phosphorylates EIF4ENIF1/4-ET in response to oxidative stress, promoting P-body assembly (PubMed:22966201). Phosphorylates SIRT6 in response to oxidative stress, stimulating its mono-ADP-ribosyltransferase activity (PubMed:27568560). Phosphorylates NLRP3, promoting assembly of the NLRP3 inflammasome (PubMed:28943315). Phosphorylates ALKBH5 in response to reactive oxygen species (ROS), promoting ALKBH5 sumoylation and inactivation (PubMed:34048572). {ECO:0000250|UniProtKB:P49185, ECO:0000250|UniProtKB:Q91Y86, ECO:0000269|PubMed:10747973, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:17296730, ECO:0000269|PubMed:18307971, ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20027304, ECO:0000269|PubMed:21095239, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22327296, ECO:0000269|PubMed:22441692, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:27568560, ECO:0000269|PubMed:28943315, ECO:0000269|PubMed:34048572}.; FUNCTION: JNK1 isoforms display different binding patterns: beta-1 preferentially binds to c-Jun, whereas alpha-1, alpha-2, and beta-2 have a similar low level of binding to both c-Jun or ATF2. However, there is no correlation between binding and phosphorylation, which is achieved at about the same efficiency by all isoforms.
P45985 MAP2K4 S257 ochoa|psp Dual specificity mitogen-activated protein kinase kinase 4 (MAP kinase kinase 4) (MAPKK 4) (EC 2.7.12.2) (JNK-activating kinase 1) (MAPK/ERK kinase 4) (MEK 4) (SAPK/ERK kinase 1) (SEK1) (Stress-activated protein kinase kinase 1) (SAPK kinase 1) (SAPKK-1) (SAPKK1) (c-Jun N-terminal kinase kinase 1) (JNKK) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to pro-inflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14. {ECO:0000269|PubMed:7716521}.
P46087 NOP2 S44 ochoa 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}.
P47710 CSN1S1 S41 psp Alpha-S1-casein [Cleaved into: Casoxin-D] Important role in the capacity of milk to transport calcium phosphate.; FUNCTION: Casoxin D acts as opioid antagonist and has vasorelaxing activity mediated by bradykinin B1 receptors.
P48058 GRIA4 S862 psp Glutamate receptor 4 (GluR-4) (GluR4) (AMPA-selective glutamate receptor 4) (GluR-D) (Glutamate receptor ionotropic, AMPA 4) Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (By similarity). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system and plays an important role in fast excitatory synaptic transmission (By similarity). Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (PubMed:21172611). {ECO:0000250|UniProtKB:P19493, ECO:0000250|UniProtKB:P42262, ECO:0000269|PubMed:21172611}.
P48730 CSNK1D S298 psp Casein kinase I isoform delta (CKI-delta) (CKId) (EC 2.7.11.1) (Tau-protein kinase CSNK1D) (EC 2.7.11.26) Essential serine/threonine-protein kinase that regulates diverse cellular growth and survival processes including Wnt signaling, DNA repair and circadian rhythms. It can phosphorylate a large number of proteins. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. Phosphorylates connexin-43/GJA1, MAP1A, SNAPIN, MAPT/TAU, TOP2A, DCK, HIF1A, EIF6, p53/TP53, DVL2, DVL3, ESR1, AIB1/NCOA3, DNMT1, PKD2, YAP1, PER1 and PER2. Central component of the circadian clock. In balance with PP1, determines the circadian period length through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation. Controls PER1 and PER2 nuclear transport and degradation. YAP1 phosphorylation promotes its SCF(beta-TRCP) E3 ubiquitin ligase-mediated ubiquitination and subsequent degradation. DNMT1 phosphorylation reduces its DNA-binding activity. Phosphorylation of ESR1 and AIB1/NCOA3 stimulates their activity and coactivation. Phosphorylation of DVL2 and DVL3 regulates WNT3A signaling pathway that controls neurite outgrowth. Phosphorylates NEDD9/HEF1 (By similarity). EIF6 phosphorylation promotes its nuclear export. Triggers down-regulation of dopamine receptors in the forebrain. Activates DCK in vitro by phosphorylation. TOP2A phosphorylation favors DNA cleavable complex formation. May regulate the formation of the mitotic spindle apparatus in extravillous trophoblast. Modulates connexin-43/GJA1 gap junction assembly by phosphorylation. Probably involved in lymphocyte physiology. Regulates fast synaptic transmission mediated by glutamate. {ECO:0000250|UniProtKB:Q9DC28, ECO:0000269|PubMed:10606744, ECO:0000269|PubMed:12270943, ECO:0000269|PubMed:14761950, ECO:0000269|PubMed:16027726, ECO:0000269|PubMed:17562708, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:19043076, ECO:0000269|PubMed:20041275, ECO:0000269|PubMed:20048001, ECO:0000269|PubMed:20407760, ECO:0000269|PubMed:20637175, ECO:0000269|PubMed:20696890, ECO:0000269|PubMed:20699359, ECO:0000269|PubMed:21084295, ECO:0000269|PubMed:21422228, ECO:0000269|PubMed:23636092}.
P48730 CSNK1D S384 ochoa Casein kinase I isoform delta (CKI-delta) (CKId) (EC 2.7.11.1) (Tau-protein kinase CSNK1D) (EC 2.7.11.26) Essential serine/threonine-protein kinase that regulates diverse cellular growth and survival processes including Wnt signaling, DNA repair and circadian rhythms. It can phosphorylate a large number of proteins. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. Phosphorylates connexin-43/GJA1, MAP1A, SNAPIN, MAPT/TAU, TOP2A, DCK, HIF1A, EIF6, p53/TP53, DVL2, DVL3, ESR1, AIB1/NCOA3, DNMT1, PKD2, YAP1, PER1 and PER2. Central component of the circadian clock. In balance with PP1, determines the circadian period length through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation. Controls PER1 and PER2 nuclear transport and degradation. YAP1 phosphorylation promotes its SCF(beta-TRCP) E3 ubiquitin ligase-mediated ubiquitination and subsequent degradation. DNMT1 phosphorylation reduces its DNA-binding activity. Phosphorylation of ESR1 and AIB1/NCOA3 stimulates their activity and coactivation. Phosphorylation of DVL2 and DVL3 regulates WNT3A signaling pathway that controls neurite outgrowth. Phosphorylates NEDD9/HEF1 (By similarity). EIF6 phosphorylation promotes its nuclear export. Triggers down-regulation of dopamine receptors in the forebrain. Activates DCK in vitro by phosphorylation. TOP2A phosphorylation favors DNA cleavable complex formation. May regulate the formation of the mitotic spindle apparatus in extravillous trophoblast. Modulates connexin-43/GJA1 gap junction assembly by phosphorylation. Probably involved in lymphocyte physiology. Regulates fast synaptic transmission mediated by glutamate. {ECO:0000250|UniProtKB:Q9DC28, ECO:0000269|PubMed:10606744, ECO:0000269|PubMed:12270943, ECO:0000269|PubMed:14761950, ECO:0000269|PubMed:16027726, ECO:0000269|PubMed:17562708, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:19043076, ECO:0000269|PubMed:20041275, ECO:0000269|PubMed:20048001, ECO:0000269|PubMed:20407760, ECO:0000269|PubMed:20637175, ECO:0000269|PubMed:20696890, ECO:0000269|PubMed:20699359, ECO:0000269|PubMed:21084295, ECO:0000269|PubMed:21422228, ECO:0000269|PubMed:23636092}.
P49327 FASN S1997 ochoa Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
P50613 CDK7 S321 ochoa Cyclin-dependent kinase 7 (EC 2.7.11.22) (EC 2.7.11.23) (39 kDa protein kinase) (p39 Mo15) (CDK-activating kinase 1) (Cell division protein kinase 7) (Serine/threonine-protein kinase 1) (TFIIH basal transcription factor complex kinase subunit) Serine/threonine kinase involved in cell cycle control and in RNA polymerase II-mediated RNA transcription (PubMed:9852112, PubMed:19136461, PubMed:26257281, PubMed:28768201). Cyclin-dependent kinases (CDKs) are activated by the binding to a cyclin and mediate the progression through the cell cycle. Each different complex controls a specific transition between 2 subsequent phases in the cell cycle. Required for both activation and complex formation of CDK1/cyclin-B during G2-M transition, and for activation of CDK2/cyclins during G1-S transition (but not complex formation). CDK7 is the catalytic subunit of the CDK-activating kinase (CAK) complex. Phosphorylates SPT5/SUPT5H, SF1/NR5A1, POLR2A, p53/TP53, CDK1, CDK2, CDK4, CDK6 and CDK11B/CDK11 (PubMed:9372954, PubMed:9840937, PubMed:19136461, PubMed:26257281, PubMed:28768201). Initiates transcription by RNA polymerase II by mediating phosphorylation of POLR2A at 'Ser-5' of the repetitive C-terminal domain (CTD) when POLR2A is in complex with DNA, promoting dissociation from DNA and initiation (PubMed:19136461, PubMed:26257281, PubMed:28768201). CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation, thus regulating cell cycle progression. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the CTD of POLR2A, allowing its escape from the promoter and elongation of the transcripts (PubMed:9852112). Its expression and activity are constant throughout the cell cycle. Upon DNA damage, triggers p53/TP53 activation by phosphorylation, but is inactivated in turn by p53/TP53; this feedback loop may lead to an arrest of the cell cycle and of the transcription, helping in cell recovery, or to apoptosis. Required for DNA-bound peptides-mediated transcription and cellular growth inhibition. {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:11113184, ECO:0000269|PubMed:16327805, ECO:0000269|PubMed:17373709, ECO:0000269|PubMed:17386261, ECO:0000269|PubMed:17901130, ECO:0000269|PubMed:19015234, ECO:0000269|PubMed:19071173, ECO:0000269|PubMed:19136461, ECO:0000269|PubMed:19450536, ECO:0000269|PubMed:19667075, ECO:0000269|PubMed:20360007, ECO:0000269|PubMed:26257281, ECO:0000269|PubMed:28768201, ECO:0000269|PubMed:9372954, ECO:0000269|PubMed:9840937, ECO:0000269|PubMed:9852112}.
P52333 JAK3 S789 ochoa Tyrosine-protein kinase JAK3 (EC 2.7.10.2) (Janus kinase 3) (JAK-3) (Leukocyte janus kinase) (L-JAK) Non-receptor tyrosine kinase involved in various processes such as cell growth, development, or differentiation. Mediates essential signaling events in both innate and adaptive immunity and plays a crucial role in hematopoiesis during T-cells development. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors sharing the common subunit gamma such as IL2R, IL4R, IL7R, IL9R, IL15R and IL21R. Following ligand binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, upon IL2R activation by IL2, JAK1 and JAK3 molecules bind to IL2R beta (IL2RB) and gamma chain (IL2RG) subunits inducing the tyrosine phosphorylation of both receptor subunits on their cytoplasmic domain. Then, STAT5A and STAT5B are recruited, phosphorylated and activated by JAK1 and JAK3. Once activated, dimerized STAT5 translocates to the nucleus and promotes the transcription of specific target genes in a cytokine-specific fashion. {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:20440074, ECO:0000269|PubMed:7662955, ECO:0000269|PubMed:8022485}.
P52597 HNRNPF S104 ochoa Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}.
P52597 HNRNPF S265 ochoa Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}.
P52948 NUP98 S1771 ochoa|psp Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}.
P53621 COPA S402 ochoa Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor.
P53779 MAPK10 S217 ochoa Mitogen-activated protein kinase 10 (MAP kinase 10) (MAPK 10) (EC 2.7.11.24) (MAP kinase p49 3F12) (Stress-activated protein kinase 1b) (SAPK1b) (Stress-activated protein kinase JNK3) (c-Jun N-terminal kinase 3) Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as pro-inflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the amyloid-beta precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Also participates in neurite growth in spiral ganglion neurons. Phosphorylates the CLOCK-BMAL1 heterodimer and plays a role in the photic regulation of the circadian clock (PubMed:22441692). Phosphorylates JUND and this phosphorylation is inhibited in the presence of MEN1 (PubMed:22327296). {ECO:0000269|PubMed:11718727, ECO:0000269|PubMed:22327296, ECO:0000269|PubMed:22441692}.
P53814 SMTN S800 ochoa Smoothelin Structural protein of the cytoskeleton.
P54132 BLM S419 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P54198 HIRA S112 ochoa Protein HIRA (TUP1-like enhancer of split protein 1) Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit. {ECO:0000269|PubMed:12370293, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527}.
P54296 MYOM2 S76 ochoa|psp Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P54296 MYOM2 S151 ochoa Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P54819 AK2 S176 ochoa Adenylate kinase 2, mitochondrial (AK 2) (EC 2.7.4.3) (ATP-AMP transphosphorylase 2) (ATP:AMP phosphotransferase) (Adenylate monophosphate kinase) [Cleaved into: Adenylate kinase 2, mitochondrial, N-terminally processed] Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways. Plays a key role in hematopoiesis. {ECO:0000255|HAMAP-Rule:MF_03168, ECO:0000269|PubMed:19043416}.
P55072 VCP S352 ochoa|psp Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}.
P55317 FOXA1 S223 ochoa Hepatocyte nuclear factor 3-alpha (HNF-3-alpha) (HNF-3A) (Forkhead box protein A1) (Transcription factor 3A) (TCF-3A) Transcription factor that is involved in embryonic development, establishment of tissue-specific gene expression and regulation of gene expression in differentiated tissues. Is thought to act as a 'pioneer' factor opening the compacted chromatin for other proteins through interactions with nucleosomal core histones and thereby replacing linker histones at target enhancer and/or promoter sites. Binds DNA with the consensus sequence 5'-[AC]A[AT]T[AG]TT[GT][AG][CT]T[CT]-3' (By similarity). Proposed to play a role in translating the epigenetic signatures into cell type-specific enhancer-driven transcriptional programs. Its differential recruitment to chromatin is dependent on distribution of histone H3 methylated at 'Lys-5' (H3K4me2) in estrogen-regulated genes. Involved in the development of multiple endoderm-derived organ systems such as liver, pancreas, lung and prostate; FOXA1 and FOXA2 seem to have at least in part redundant roles (By similarity). Modulates the transcriptional activity of nuclear hormone receptors. Is involved in ESR1-mediated transcription; required for ESR1 binding to the NKX2-1 promoter in breast cancer cells; binds to the RPRM promoter and is required for the estrogen-induced repression of RPRM. Involved in regulation of apoptosis by inhibiting the expression of BCL2. Involved in cell cycle regulation by activating expression of CDKN1B, alone or in conjunction with BRCA1. Originally described as a transcription activator for a number of liver genes such as AFP, albumin, tyrosine aminotransferase, PEPCK, etc. Interacts with the cis-acting regulatory regions of these genes. Involved in glucose homeostasis. {ECO:0000250, ECO:0000269|PubMed:16087863, ECO:0000269|PubMed:16331276, ECO:0000269|PubMed:18358809, ECO:0000269|PubMed:19127412, ECO:0000269|PubMed:19917725}.
P55318 FOXA3 S170 ochoa Hepatocyte nuclear factor 3-gamma (HNF-3-gamma) (HNF-3G) (Fork head-related protein FKH H3) (Forkhead box protein A3) (Transcription factor 3G) (TCF-3G) Transcription factor that is thought to act as a 'pioneer' factor opening the compacted chromatin for other proteins through interactions with nucleosomal core histones and thereby replacing linker histones at target enhancer and/or promoter sites (By similarity). Originally described as a transcription activator for a number of liver genes such as AFP, albumin, tyrosine aminotransferase, PEPCK, etc. Interacts with the cis-acting regulatory regions of these genes. Involved in glucose homeostasis; binds to and activates transcription from the G6PC1 promoter. Binds to the CYP3A4 promoter and activates its transcription in cooperation with CEBPA. Binds to the CYP3A7 promoter together with members of the CTF/NF-I family. Involved in regulation of neuronal-specific transcription. May be involved in regulation of spermatogenesis. {ECO:0000250, ECO:0000269|PubMed:12695546}.
P56470 LGALS4 S230 ochoa Galectin-4 (Gal-4) (Antigen NY-CO-27) (L-36 lactose-binding protein) (L36LBP) (Lactose-binding lectin 4) Galectin that binds lactose and a related range of sugars. May be involved in the assembly of adherens junctions.
P60201 PLP1 S114 ochoa Myelin proteolipid protein (PLP) (Lipophilin) This is the major myelin protein from the central nervous system. It plays an important role in the formation or maintenance of the multilamellar structure of myelin.
P61019 RAB2A S67 ochoa Ras-related protein Rab-2A (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology (PubMed:37821429). RAB2A regulates autophagy by promoting autophagosome-lysosome fusion via recruitment of the HOPS endosomal tethering complex; this process involves autophagosomal RAB2A and lysosomal RAB39A recruitment of HOPS subcomplexes VPS39-VPS11 and VPS41-VPS16-VPS18-VPS33A, respectively, which assemble into a functional complex to mediate membrane tethering and SNAREs-driven membrane fusion (PubMed:37821429). Required for protein transport from the endoplasmic reticulum to the Golgi complex. Regulates the compacted morphology of the Golgi (PubMed:26209634). Together with RAB2B, redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:28483915, ECO:0000269|PubMed:37821429}.
P61073 CXCR4 S312 ochoa C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (FB22) (Fusin) (HM89) (LCR1) (Leukocyte-derived seven transmembrane domain receptor) (LESTR) (Lipopolysaccharide-associated protein 3) (LAP-3) (LPS-associated protein 3) (NPYRL) (Stromal cell-derived factor 1 receptor) (SDF-1 receptor) (CD antigen CD184) Receptor for the C-X-C chemokine CXCL12/SDF-1 that transduces a signal by increasing intracellular calcium ion levels and enhancing MAPK1/MAPK3 activation (PubMed:10452968, PubMed:18799424, PubMed:24912431, PubMed:28978524). Involved in the AKT signaling cascade (PubMed:24912431). Plays a role in regulation of cell migration, e.g. during wound healing (PubMed:28978524). Acts as a receptor for extracellular ubiquitin; leading to enhanced intracellular calcium ions and reduced cellular cAMP levels (PubMed:20228059). Binds bacterial lipopolysaccharide (LPS) et mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Involved in hematopoiesis and in cardiac ventricular septum formation. Also plays an essential role in vascularization of the gastrointestinal tract, probably by regulating vascular branching and/or remodeling processes in endothelial cells. Involved in cerebellar development. In the CNS, could mediate hippocampal-neuron survival (By similarity). {ECO:0000250|UniProtKB:P70658, ECO:0000269|PubMed:10074102, ECO:0000269|PubMed:10452968, ECO:0000269|PubMed:10644702, ECO:0000269|PubMed:10825158, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:17197449, ECO:0000269|PubMed:18799424, ECO:0000269|PubMed:20048153, ECO:0000269|PubMed:20228059, ECO:0000269|PubMed:20505072, ECO:0000269|PubMed:24912431, ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:8752280, ECO:0000269|PubMed:8752281}.; FUNCTION: (Microbial infection) Acts as a coreceptor (CD4 being the primary receptor) for human immunodeficiency virus-1/HIV-1 X4 isolates and as a primary receptor for some HIV-2 isolates. Promotes Env-mediated fusion of the virus (PubMed:10074122, PubMed:10756055, PubMed:8849450, PubMed:8929542, PubMed:9427609). {ECO:0000269|PubMed:10074122, ECO:0000269|PubMed:10756055, ECO:0000269|PubMed:8849450, ECO:0000269|PubMed:8929542, ECO:0000269|PubMed:9427609}.
P61981 YWHAG S46 ochoa 14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein gamma, N-terminally processed] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binding generally results in the modulation of the activity of the binding partner (PubMed:16511572). Promotes inactivation of WDR24 component of the GATOR2 complex by binding to phosphorylated WDR24 (PubMed:36732624). Participates in the positive regulation of NMDA glutamate receptor activity by promoting the L-glutamate secretion through interaction with BEST1 (PubMed:29121962). Reduces keratinocyte intercellular adhesion, via interacting with PKP1 and sequestering it in the cytoplasm, thereby reducing its incorporation into desmosomes (PubMed:29678907). Plays a role in mitochondrial protein catabolic process (also named MALM) that promotes the degradation of damaged proteins inside mitochondria (PubMed:22532927). {ECO:0000269|PubMed:15696159, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:22532927, ECO:0000269|PubMed:29121962, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:36732624}.
P62258 YWHAE S46 ochoa 14-3-3 protein epsilon (14-3-3E) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:21189250). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35343654). Binding generally results in the modulation of the activity of the binding partner (By similarity). Positively regulates phosphorylated protein HSF1 nuclear export to the cytoplasm (PubMed:12917326). Plays a positive role in the antiviral signaling pathway upstream of TBK1 via interaction with RIGI (PubMed:37555661). Mechanistically, directs RIGI redistribution from the cytosol to mitochondrial associated membranes where it mediates MAVS-dependent innate immune signaling during viral infection (PubMed:22607805). Plays a role in proliferation inhibition and cell cycle arrest by exporting HNRNPC from the nucleus to the cytoplasm to be degraded by ubiquitination (PubMed:37599448). {ECO:0000250|UniProtKB:P62261, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:21189250, ECO:0000269|PubMed:22607805, ECO:0000269|PubMed:35343654, ECO:0000269|PubMed:37555661, ECO:0000269|PubMed:37599448}.
P62906 RPL10A S50 ochoa Large ribosomal subunit protein uL1 (60S ribosomal protein L10a) (CSA-19) (Neural precursor cell expressed developmentally down-regulated protein 6) (NEDD-6) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
P63104 YWHAZ S45 ochoa 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}.
P67809 YBX1 S136 ochoa Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}.
P68363 TUBA1B S54 ochoa Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}.
P78332 RBM6 S240 ochoa RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) Specifically binds poly(G) RNA homopolymers in vitro.
P78527 PRKDC S3314 ochoa DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}.
P79483 HLA-DRB3 S208 ochoa HLA class II histocompatibility antigen, DR beta 3 chain (MHC class II antigen DRB3) A beta chain of antigen-presenting major histocompatibility complex class II (MHCII) molecule. In complex with the alpha chain HLA-DRA, displays antigenic peptides on professional antigen presenting cells (APCs) for recognition by alpha-beta T cell receptor (TCR) on HLA-DRB3-restricted CD4-positive T cells. This guides antigen-specific T-helper effector functions, both antibody-mediated immune response and macrophage activation, to ultimately eliminate the infectious agents and transformed cells. Typically presents extracellular peptide antigens of 10 to 30 amino acids that arise from proteolysis of endocytosed antigens in lysosomes (PubMed:16148104, PubMed:19531622, PubMed:19830726, PubMed:20368442, PubMed:22929521, PubMed:23569328, PubMed:2463305, PubMed:2788702, PubMed:30282837, PubMed:31020640, PubMed:31308093, PubMed:31333679). In the tumor microenvironment, presents antigenic peptides that are primarily generated in tumor-resident APCs likely via phagocytosis of apoptotic tumor cells or macropinocytosis of secreted tumor proteins (By similarity). Presents peptides derived from intracellular proteins that are trapped in autolysosomes after macroautophagy, a mechanism especially relevant for T cell selection in the thymus and central immune tolerance (By similarity). The selection of the immunodominant epitopes follows two processing modes: 'bind first, cut/trim later' for pathogen-derived antigenic peptides and 'cut first, bind later' for autoantigens/self-peptides. The anchor residue at position 1 of the peptide N-terminus, usually a large hydrophobic residue, is essential for high affinity interaction with MHCII molecules (By similarity). {ECO:0000250|UniProtKB:P01911, ECO:0000269|PubMed:16148104, ECO:0000269|PubMed:19531622, ECO:0000269|PubMed:19830726, ECO:0000269|PubMed:20368442, ECO:0000269|PubMed:22929521, ECO:0000269|PubMed:23569328, ECO:0000269|PubMed:2463305, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:30282837, ECO:0000269|PubMed:31020640, ECO:0000269|PubMed:31308093, ECO:0000269|PubMed:31333679}.; FUNCTION: ALLELE DRB3*01:01: Exclusively presents several immunogenic epitopes derived from C.tetani neurotoxin tetX, playing a significant role in immune recognition and long-term protection (PubMed:19830726, PubMed:2463305, PubMed:2788702). Presents viral epitopes derived from HHV-6B U11, TRX2/U56 and U85 antigens to polyfunctional CD4-positive T cells with cytotoxic activity implicated in control of HHV-6B infection (PubMed:31020640). {ECO:0000269|PubMed:19830726, ECO:0000269|PubMed:2463305, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:31020640}.; FUNCTION: ALLELE DRB3*02:02 Exclusively presents several immunogenic epitopes derived from C.tetani neurotoxin tetX, playing a significant role in immune recognition and long-term protection (PubMed:19830726, PubMed:2788702). Upon EBV infection, presents to CD4-positive T cells latent antigen EBNA2 (PRSPTVFYNIPPMPLPPSQL) and lytic antigen BZLF1 (LTAYHVSTAPTGSWF) peptides, driving oligoclonal expansion and selection of virus-specific memory T cell subsets with cytotoxic potential to directly eliminate virus-infected B cells (PubMed:23569328, PubMed:31308093). Presents viral epitopes derived from HHV-6B U11, gB/U39 and gH/U48 antigens to polyfunctional CD4-positive T cells with cytotoxic activity implicated in control of HHV-6B infection (PubMed:31020640). Plays a minor role in CD4-positive T cell immune response against Dengue virus by presenting conserved peptides from capsid and non-structural NS3 proteins (PubMed:31333679). Displays peptides derived from IAV matrix protein M, implying a role in protection against IAV infection (PubMed:19830726). In the context of tumor immunesurveillance, may present to T-helper 1 cells an immunogenic epitope derived from tumor-associated antigen WT1 (KRYFKLSHLQMHSRKH), likely providing for effective antitumor immunity in a wide range of solid and hematological malignancies (PubMed:22929521). Presents to Vbeta2-positive T-helper 1 cells specifically an immunodominant peptide derived from tumor antigen CTAG1A/NY-ESO-1(PGVLLKEFTVSGNILTIRLTAADHR) and confers protective memory response (PubMed:19531622, PubMed:20368442). In metastatic epithelial tumors, presents to intratumoral CD4-positive T cells a TP53 neoantigen (HYNYMCNSSCMGSMNRRPILTIITL) carrying G245S hotspot driver mutation and may mediate tumor regression (PubMed:30282837). {ECO:0000269|PubMed:19531622, ECO:0000269|PubMed:19830726, ECO:0000269|PubMed:20368442, ECO:0000269|PubMed:22929521, ECO:0000269|PubMed:23569328, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:30282837, ECO:0000269|PubMed:31020640, ECO:0000269|PubMed:31308093, ECO:0000269|PubMed:31333679}.; FUNCTION: ALLELE DRB3*03:01: Presents a series of conserved peptides derived from the M.tuberculosis PPE family of proteins, in particular PPE29 and PPE33, known to be highly immunogenic (PubMed:32341563). Presents immunogenic epitopes derived from C.tetani neurotoxin tetX, playing a role in immune recognition and long-term protection (PubMed:2788702). Displays immunodominant viral peptides from HCV non-structural protein NS2, as part of a broad range T-helper response to resolve infection (PubMed:16148104). {ECO:0000269|PubMed:16148104, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:32341563}.
P83731 RPL24 S64 ochoa Large ribosomal subunit protein eL24 (60S ribosomal protein L24) (60S ribosomal protein L30) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P98175 RBM10 S22 ochoa RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}.
P98198 ATP8B2 S1169 ochoa Phospholipid-transporting ATPase ID (EC 7.6.2.1) (ATPase class I type 8B member 2) (P4-ATPase flippase complex alpha subunit ATP8B2) Catalytic component of P4-ATPase flippase complex, which catalyzes the hydrolysis of ATP coupled to the transport of phosphatidylcholine (PC) from the outer to the inner leaflet of the plasma membrane. May contribute to the maintenance of membrane lipid asymmetry. {ECO:0000269|PubMed:25315773}.
Q00872 MYBPC1 S474 ochoa Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}.
Q01105 SET S184 ochoa Protein SET (HLA-DR-associated protein II) (Inhibitor of granzyme A-activated DNase) (IGAAD) (PHAPII) (Phosphatase 2A inhibitor I2PP2A) (I-2PP2A) (Template-activating factor I) (TAF-I) Multitasking protein, involved in apoptosis, transcription, nucleosome assembly and histone chaperoning. Isoform 2 anti-apoptotic activity is mediated by inhibition of the GZMA-activated DNase, NME1. In the course of cytotoxic T-lymphocyte (CTL)-induced apoptosis, GZMA cleaves SET, disrupting its binding to NME1 and releasing NME1 inhibition. Isoform 1 and isoform 2 are potent inhibitors of protein phosphatase 2A. Isoform 1 and isoform 2 inhibit EP300/CREBBP and PCAF-mediated acetylation of histones (HAT) and nucleosomes, most probably by masking the accessibility of lysines of histones to the acetylases. The predominant target for inhibition is histone H4. HAT inhibition leads to silencing of HAT-dependent transcription and prevents active demethylation of DNA. Both isoforms stimulate DNA replication of the adenovirus genome complexed with viral core proteins; however, isoform 2 specific activity is higher. {ECO:0000269|PubMed:11555662, ECO:0000269|PubMed:12628186}.
Q01813 PFKP S386 ochoa|psp ATP-dependent 6-phosphofructokinase, platelet type (ATP-PFK) (PFK-P) (EC 2.7.1.11) (6-phosphofructokinase type C) (Phosphofructo-1-kinase isozyme C) (PFK-C) (Phosphohexokinase) Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis.
Q02388 COL7A1 S1966 ochoa Collagen alpha-1(VII) chain (Long-chain collagen) (LC collagen) Stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen.
Q02388 COL7A1 S1967 ochoa Collagen alpha-1(VII) chain (Long-chain collagen) (LC collagen) Stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen.
Q02641 CACNB1 S192 ochoa Voltage-dependent L-type calcium channel subunit beta-1 (CAB1) (Calcium channel voltage-dependent subunit beta 1) Regulatory subunit of L-type calcium channels (PubMed:1309651, PubMed:15615847, PubMed:8107964). Regulates the activity of L-type calcium channels that contain CACNA1A as pore-forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (PubMed:15615847). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit (PubMed:1309651). Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit (PubMed:8107964). {ECO:0000250|UniProtKB:P19517, ECO:0000269|PubMed:1309651, ECO:0000269|PubMed:15615847, ECO:0000269|PubMed:8107964}.
Q04917 YWHAH S46 ochoa 14-3-3 protein eta (Protein AS1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}.
Q07889 SOS1 S757 ochoa Son of sevenless homolog 1 (SOS-1) Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}.
Q08043 ACTN3 S321 ochoa Alpha-actinin-3 (Alpha-actinin skeletal muscle isoform 3) (F-actin cross-linking protein) F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein.
Q12756 KIF1A S932 ochoa Kinesin-like protein KIF1A (EC 5.6.1.3) (Axonal transporter of synaptic vesicles) (Microtubule-based motor KIF1A) (Unc-104- and KIF1A-related protein) (hUnc-104) Kinesin motor with a plus-end-directed microtubule motor activity (By similarity). It is required for anterograde axonal transport of synaptic vesicle precursors (PubMed:33880452). Also required for neuronal dense core vesicles (DCVs) transport to the dendritic spines and axons. The interaction calcium-dependent with CALM1 increases vesicle motility and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. {ECO:0000250|UniProtKB:F1M4A4, ECO:0000250|UniProtKB:P33173, ECO:0000269|PubMed:33880452}.
Q12923 PTPN13 S512 ochoa Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}.
Q13123 IK S328 ochoa Protein Red (Cytokine IK) (IK factor) (Protein RER) Involved in pre-mRNA splicing as a component of the spliceosome (PubMed:28781166). Auxiliary spliceosomal protein that regulates selection of alternative splice sites in a small set of target pre-mRNA species (Probable). Required for normal mitotic cell cycle progression (PubMed:22351768, PubMed:24252166). Recruits MAD1L1 and MAD2L1 to kinetochores, and is required to trigger the spindle assembly checkpoint (PubMed:22351768). Required for normal accumulation of SMU1 (PubMed:24945353). {ECO:0000269|PubMed:22351768, ECO:0000269|PubMed:24252166, ECO:0000269|PubMed:24945353, ECO:0000269|PubMed:28781166, ECO:0000305}.; FUNCTION: (Microbial infection) Required, together with SMU1, for normal splicing of influenza A virus NS1 pre-mRNA, which is required for the production of the exportin NS2 and for the production of influenza A virus particles. Not required for the production of VSV virus particles. {ECO:0000269|PubMed:24945353}.
Q13224 GRIN2B S1166 psp Glutamate receptor ionotropic, NMDA 2B (GluN2B) (Glutamate [NMDA] receptor subunit epsilon-2) (N-methyl D-aspartate receptor subtype 2B) (NMDAR2B) (NR2B) (N-methyl-D-aspartate receptor subunit 3) (NR3) (hNR3) Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). Participates in synaptic plasticity for learning and memory formation by contributing to the long-term depression (LTD) of hippocampus membrane currents (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). {ECO:0000250|UniProtKB:P35438, ECO:0000250|UniProtKB:Q01097, ECO:0000269|PubMed:24272827, ECO:0000269|PubMed:24863970, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27839871, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}.
Q13232 NME3 S142 ochoa Nucleoside diphosphate kinase 3 (NDK 3) (NDP kinase 3) (EC 2.7.4.6) (DR-nm23) (Nucleoside diphosphate kinase C) (NDPKC) (nm23-H3) Catalyzes the phosphorylation of ribonucleosides and deoxyribonucleoside diphosphates, other than ATP, into the corresponding triphosphates with ATP as the major phosphate donor (PubMed:11277919, PubMed:30587587). The ATP gamma phosphate is transferred to the nucleoside diphosphate beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Through the catalyzed exchange of gamma-phosphate between di- and triphosphonucleosides participates in regulation of intracellular nucleotide homeostasis (PubMed:11277919, PubMed:30587587). Inhibits granulocyte differentiation (PubMed:7638209). May be required for ciliary function during renal development (By similarity). {ECO:0000250|UniProtKB:Q9PTF3, ECO:0000269|PubMed:11277919, ECO:0000269|PubMed:30587587, ECO:0000269|PubMed:7638209}.; FUNCTION: Independently of its kinase activity, facilitates mitochondrial tethering prior to membrane fusion through its direct membrane-binding and hexamerization (PubMed:30587587, PubMed:37584589). Implicated in repair of both single- and double-stranded breaks in DNA through its association with the ribonucleotide reductase complex (RNR complex) via its interaction with the histone acetyltransferase KAT5, this interaction enables recruitment of NME3 at DNA damage sites where it plays a role in the repair of DNA, independently of its kinase activity (PubMed:37584589). {ECO:0000269|PubMed:30587587, ECO:0000269|PubMed:37584589}.
Q13310 PABPC4 S39 ochoa Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}.
Q13427 PPIG S386 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13507 TRPC3 S837 psp Short transient receptor potential channel 3 (TrpC3) (Transient receptor protein 3) (TRP-3) (hTrp-3) (hTrp3) Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:29726814, PubMed:30139744, PubMed:35051376, PubMed:9417057, PubMed:9930701, PubMed:10611319). {ECO:0000269|PubMed:10611319, ECO:0000269|PubMed:29726814, ECO:0000269|PubMed:30139744, ECO:0000269|PubMed:35051376, ECO:0000269|PubMed:9417057, ECO:0000269|PubMed:9930701}.; FUNCTION: [Isoform 2]: Forms a receptor-activated non-selective calcium permeant cation channel. May be operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. {ECO:0000269|PubMed:8646775}.
Q14151 SAFB2 S613 ochoa Scaffold attachment factor B2 (SAF-B2) Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation.
Q14151 SAFB2 S832 ochoa Scaffold attachment factor B2 (SAF-B2) Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation.
Q14154 DELE1 S473 ochoa DAP3-binding cell death enhancer 1 (DAP3-binding cell death enhancer 1, long form) (DELE1(L)) (Death ligand signal enhancer) [Cleaved into: DAP3-binding cell death enhancer 1 short form (DELE1(S)) (S-DELE1) (cDELE1)] Protein kinase activator that acts as a key activator of the integrated stress response (ISR) following various stresses, such as iron deficiency, mitochondrial stress or mitochondrial DNA breaks (PubMed:32132706, PubMed:32132707, PubMed:35388015, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). Detects impaired protein import and processing in mitochondria, activating the ISR (PubMed:35388015). May also required for the induction of death receptor-mediated apoptosis through the regulation of caspase activation (PubMed:20563667). {ECO:0000269|PubMed:20563667, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:35388015, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}.; FUNCTION: [DAP3-binding cell death enhancer 1]: Protein kinase activator that activates the ISR in response to iron deficiency: iron deficiency impairs mitochondrial import, promoting DELE1 localization at the mitochondrial surface, where it binds and activates EIF2AK1/HRI to trigger the ISR. {ECO:0000269|PubMed:37327776}.; FUNCTION: [DAP3-binding cell death enhancer 1 short form]: Protein kinase activator generated by protein cleavage in response to mitochondrial stress, which accumulates in the cytosol and specifically binds to and activates the protein kinase activity of EIF2AK1/HRI (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). It thereby activates the integrated stress response (ISR): EIF2AK1/HRI activation promotes eIF-2-alpha (EIF2S1) phosphorylation, leading to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, the master transcriptional regulator of the ISR (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546). Also acts as an activator of PRKN-independent mitophagy: activates the protein kinase activity of EIF2AK1/HRI in response to mitochondrial damage, promoting eIF-2-alpha (EIF2S1) phosphorylation, leading to mitochondrial localization of EIF2S1 followed by induction of mitophagy (PubMed:38340717). {ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}.
Q14247 CTTN S109 ochoa Src substrate cortactin (Amplaxin) (Oncogene EMS1) Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}.
Q14315 FLNC S1972 ochoa Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}.
Q14315 FLNC S2457 ochoa Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}.
Q14524 SCN5A S525 psp Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}.
Q14566 MCM6 S219 ochoa DNA replication licensing factor MCM6 (EC 3.6.4.12) (p105MCM) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}.
Q14573 ITPR3 S1839 ochoa Inositol 1,4,5-trisphosphate-gated calcium channel ITPR3 (IP3 receptor isoform 3) (IP3R-3) (InsP3R3) (Type 3 inositol 1,4,5-trisphosphate receptor) (Type 3 InsP3 receptor) Inositol 1,4,5-trisphosphate-gated calcium channel that, upon 1D-myo-inositol 1,4,5-trisphosphate binding, transports calcium from the endoplasmic reticulum lumen to cytoplasm, thus releasing the intracellular calcium and therefore participates in cellular calcium ion homeostasis (PubMed:32949214, PubMed:37898605, PubMed:8081734, PubMed:8288584). 1D-myo-inositol 1,4,5-trisphosphate binds to the ligand-free channel without altering its global conformation, yielding the low-energy resting state, then progresses through resting-to preactivated transitions to the higher energy preactivated state, which increases affinity for calcium, promoting binding of the low basal cytosolic calcium at the juxtamembrane domain (JD) site, favoring the transition through the ensemble of high-energy intermediate states along the trajectory to the fully-open activated state (PubMed:30013099, PubMed:35301323, PubMed:37898605). Upon opening, releases calcium in the cytosol where it can bind to the low-affinity cytoplasmic domain (CD) site and stabilizes the inhibited state to terminate calcium release (PubMed:30013099, PubMed:35301323, PubMed:37898605). {ECO:0000269|PubMed:30013099, ECO:0000269|PubMed:32949214, ECO:0000269|PubMed:35301323, ECO:0000269|PubMed:37898605, ECO:0000269|PubMed:8081734, ECO:0000269|PubMed:8288584}.
Q14669 TRIP12 S1376 ochoa E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}.
Q14684 RRP1B S680 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q15036 SNX17 S38 ochoa Sorting nexin-17 Critical regulator of endosomal recycling of numerous surface proteins, including integrins, signaling receptor and channels (PubMed:15121882, PubMed:15769472, PubMed:39587083). Binds to NPxY sequences in the cytoplasmic tails of target cargos (PubMed:21512128). Associates with retriever and CCC complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGB1, ITGB5 and their associated alpha subunits (PubMed:22492727, PubMed:28892079, PubMed:39587083). Also required for maintenance of normal cell surface levels of APP and LRP1 (PubMed:16712798, PubMed:19005208). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:16712798). {ECO:0000269|PubMed:15121882, ECO:0000269|PubMed:15769472, ECO:0000269|PubMed:16712798, ECO:0000269|PubMed:19005208, ECO:0000269|PubMed:21512128, ECO:0000269|PubMed:22492727, ECO:0000269|PubMed:28892079}.
Q15047 SETDB1 S919 ochoa Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}.
Q15124 PGM5 S510 ochoa Phosphoglucomutase-like protein 5 (Aciculin) (Phosphoglucomutase-related protein) (PGM-RP) Component of adherens-type cell-cell and cell-matrix junctions (PubMed:8175905). Has no phosphoglucomutase activity in vitro (PubMed:8175905). {ECO:0000269|PubMed:8175905}.
Q15149 PLEC S2958 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15149 PLEC S3993 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15417 CNN3 S215 ochoa Calponin-3 (Calponin, acidic isoform) Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity.
Q15424 SAFB S582 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15424 SAFB S587 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15424 SAFB S808 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15652 JMJD1C S1748 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15696 ZRSR2 S356 ochoa U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 2 (CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 2) (Renal carcinoma antigen NY-REN-20) (U2(RNU2) small nuclear RNA auxiliary factor 1-like 2) (U2AF35-related protein) (URP) Pre-mRNA-binding protein required for splicing of both U2- and U12-type introns. Selectively interacts with the 3'-splice site of U2- and U12-type pre-mRNAs and promotes different steps in U2 and U12 intron splicing. Recruited to U12 pre-mRNAs in an ATP-dependent manner and is required for assembly of the pre-spliceosome, a precursor to other spliceosomal complexes. For U2-type introns, it is selectively and specifically required for the second step of splicing. {ECO:0000269|PubMed:21041408, ECO:0000269|PubMed:9237760}.
Q15796 SMAD2 S110 psp Mothers against decapentaplegic homolog 2 (MAD homolog 2) (Mothers against DPP homolog 2) (JV18-1) (Mad-related protein 2) (hMAD-2) (SMAD family member 2) (SMAD 2) (Smad2) (hSMAD2) Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. Promotes TGFB1-mediated transcription of odontoblastic differentiation genes in dental papilla cells (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. May act as a tumor suppressor in colorectal carcinoma (PubMed:8752209). {ECO:0000250|UniProtKB:Q62432, ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:16862174, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:8752209, ECO:0000269|PubMed:9892009}.
Q15796 SMAD2 S417 psp Mothers against decapentaplegic homolog 2 (MAD homolog 2) (Mothers against DPP homolog 2) (JV18-1) (Mad-related protein 2) (hMAD-2) (SMAD family member 2) (SMAD 2) (Smad2) (hSMAD2) Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. Promotes TGFB1-mediated transcription of odontoblastic differentiation genes in dental papilla cells (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. May act as a tumor suppressor in colorectal carcinoma (PubMed:8752209). {ECO:0000250|UniProtKB:Q62432, ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:16862174, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:8752209, ECO:0000269|PubMed:9892009}.
Q15910 EZH2 S21 psp Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}.
Q16555 DPYSL2 S542 ochoa Dihydropyrimidinase-related protein 2 (DRP-2) (Collapsin response mediator protein 2) (CRMP-2) (N2A3) (Unc-33-like phosphoprotein 2) (ULIP-2) Plays a role in neuronal development and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. May play a role in endocytosis. {ECO:0000269|PubMed:11477421, ECO:0000269|PubMed:15466863, ECO:0000269|PubMed:20801876}.
Q16760 DGKD S70 psp Diacylglycerol kinase delta (DAG kinase delta) (EC 2.7.1.107) (130 kDa diacylglycerol kinase) (Diglyceride kinase delta) (DGK-delta) Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12200442, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable). By controlling the levels of diacylglycerol, regulates for instance the PKC and EGF receptor signaling pathways and plays a crucial role during development (By similarity). May also regulate clathrin-dependent endocytosis (PubMed:17880279). {ECO:0000250|UniProtKB:E9PUQ8, ECO:0000269|PubMed:12200442, ECO:0000269|PubMed:17880279, ECO:0000269|PubMed:23949095, ECO:0000305}.
Q17RY0 CPEB4 S340 ochoa Cytoplasmic polyadenylation element-binding protein 4 (CPE-BP4) (CPE-binding protein 4) (hCPEB-4) Sequence-specific RNA-binding protein that binds to the cytoplasmic polyadenylation element (CPE), an uridine-rich sequence element (consensus sequence 5'-UUUUUAU-3') within the mRNA 3'-UTR (PubMed:24990967). RNA binding results in a clear conformational change analogous to the Venus fly trap mechanism (PubMed:24990967). Regulates activation of unfolded protein response (UPR) in the process of adaptation to ER stress in liver, by maintaining translation of CPE-regulated mRNAs in conditions in which global protein synthesis is inhibited (By similarity). Required for cell cycle progression, specifically for cytokinesis and chromosomal segregation (PubMed:26398195). Plays a role as an oncogene promoting tumor growth and progression by positively regulating translation of t-plasminogen activator/PLAT (PubMed:22138752). Stimulates proliferation of melanocytes (PubMed:27857118). In contrast to CPEB1 and CPEB3, does not play role in synaptic plasticity, learning and memory (By similarity). {ECO:0000250|UniProtKB:Q7TN98, ECO:0000269|PubMed:22138752, ECO:0000269|PubMed:24990967, ECO:0000269|PubMed:26398195, ECO:0000269|PubMed:27857118}.
Q24JP5 TMEM132A S988 ochoa Transmembrane protein 132A (HSPA5-binding protein 1) May play a role in embryonic and postnatal development of the brain. Increased resistance to cell death induced by serum starvation in cultured cells. Regulates cAMP-induced GFAP gene expression via STAT3 phosphorylation (By similarity). {ECO:0000250}.
Q2M3G4 SHROOM1 S224 ochoa Protein Shroom1 (Apical protein 2) May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}.
Q32MZ4 LRRFIP1 S124 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q49A26 GLYR1 S152 ochoa Cytokine-like nuclear factor N-PAC (NPAC) (3-hydroxyisobutyrate dehydrogenase-like protein) (Glyoxylate reductase 1 homolog) (Nuclear protein NP60) (Nuclear protein of 60 kDa) (Nucleosome-destabilizing factor) (hNDF) (Putative oxidoreductase GLYR1) Cytokine-like nuclear factor with chromatin gene reader activity involved in chromatin modification and regulation of gene expression (PubMed:23260659, PubMed:30970244). Acts as a nucleosome-destabilizing factor that is recruited to genes during transcriptional activation (PubMed:29759984, PubMed:30970244). Recognizes and binds histone H3 without a preference for specific epigenetic markers and also binds DNA (PubMed:20850016, PubMed:30970244). Interacts with KDM1B and promotes its histone demethylase activity by facilitating the capture of H3 tails, they form a multifunctional enzyme complex that modifies transcribed chromatin and facilitates Pol II transcription through nucleosomes (PubMed:23260659, PubMed:29759984, PubMed:30970244). Stimulates the acetylation of 'Lys-56' of nucleosomal histone H3 (H3K56ac) by EP300 (PubMed:29759984). With GATA4, co-binds a defined set of heart development genes and coregulates their expression during cardiomyocyte differentiation (PubMed:35182466). Regulates p38 MAP kinase activity by mediating stress activation of MAPK14/p38alpha and specifically regulating MAPK14 signaling (PubMed:16352664). Indirectly promotes phosphorylation of MAPK14 and activation of ATF2 (PubMed:16352664). The phosphorylation of MAPK14 requires upstream activity of MAP2K4 and MAP2K6 (PubMed:16352664). {ECO:0000269|PubMed:16352664, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:23260659, ECO:0000269|PubMed:29759984, ECO:0000269|PubMed:30970244, ECO:0000269|PubMed:35182466}.
Q4FZB7 KMT5B S116 ochoa Histone-lysine N-methyltransferase KMT5B (Lysine N-methyltransferase 5B) (Lysine-specific methyltransferase 5B) (Suppressor of variegation 4-20 homolog 1) (Su(var)4-20 homolog 1) (Suv4-20h1) ([histone H4]-N-methyl-L-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.362) ([histone H4]-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.361) Histone methyltransferase that specifically methylates monomethylated 'Lys-20' (H4K20me1) and dimethylated 'Lys-20' (H4K20me2) of histone H4 to produce respectively dimethylated 'Lys-20' (H4K20me2) and trimethylated 'Lys-20' (H4K20me3) and thus regulates transcription and maintenance of genome integrity (PubMed:24396869, PubMed:28114273). In vitro also methylates unmodified 'Lys-20' (H4K20me0) of histone H4 and nucleosomes (PubMed:24396869). H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression. Mainly functions in pericentric heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin in these regions. KMT5B is targeted to histone H3 via its interaction with RB1 family proteins (RB1, RBL1 and RBL2) (By similarity). Plays a role in myogenesis by regulating the expression of target genes, such as EID3 (PubMed:23720823). Facilitates TP53BP1 foci formation upon DNA damage and proficient non-homologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (PubMed:28114273). May play a role in class switch reconbination by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (By similarity). {ECO:0000250|UniProtKB:Q3U8K7, ECO:0000269|PubMed:23720823, ECO:0000269|PubMed:24396869, ECO:0000269|PubMed:28114273}.
Q4VXU2 PABPC1L S39 ochoa Polyadenylate-binding protein 1-like (Embryonic poly(A)-binding protein) (Poly(A) binding protein cytoplasmic 1 like) Poly(A)-binding protein involved in oocyte maturation and early embryo development (PubMed:37723834, PubMed:37052235). It is required for cytosolic mRNA polyadenylation and translational activation of maternally stored mRNA in oocytes (By similarity). {ECO:0000250|UniProtKB:A2A5N3, ECO:0000269|PubMed:37052235, ECO:0000269|PubMed:37723834}.
Q58FF3 HSP90B2P S158 ochoa Putative endoplasmin-like protein (Putative heat shock protein 90 kDa beta member 2) Putative molecular chaperone. {ECO:0000250}.
Q5BKX6 SLC45A4 S411 ochoa Solute carrier family 45 member 4 Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}.
Q5BKX6 SLC45A4 S456 ochoa Solute carrier family 45 member 4 Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}.
Q5JQF8 PABPC1L2A S30 ochoa Polyadenylate-binding protein 1-like 2 (RNA-binding motif protein 32) (RNA-binding protein 32) None
Q5JSZ5 PRRC2B S1291 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5QJE6 DNTTIP2 S191 ochoa Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}.
Q5SW79 CEP170 S452 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T200 ZC3H13 S1065 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T7W0 ZNF618 S131 ochoa Zinc finger protein 618 Regulates UHRF2 function as a specific 5-hydroxymethylcytosine (5hmC) reader by regulating its chromatin localization. {ECO:0000269|PubMed:27129234}.
Q5TEJ8 THEMIS2 S606 ochoa Protein THEMIS2 (Induced by contact to basement membrane 1 protein) (Protein ICB-1) (Thymocyte-expressed molecule involved in selection protein 2) May constitute a control point in macrophage inflammatory response, promoting LPS-induced TLR4-mediated TNF production (PubMed:20644716). Determines the threshold for activation of B cells by low-affinity and low-avidity ligands via PLCG2 activation and its downstream pathways (By similarity). {ECO:0000250|UniProtKB:Q91YX0, ECO:0000269|PubMed:20644716}.
Q5VST9 OBSCN S5387 ochoa Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}.
Q5VTR2 RNF20 S172 psp E3 ubiquitin-protein ligase BRE1A (BRE1-A) (hBRE1) (EC 2.3.2.27) (RING finger protein 20) (RING-type E3 ubiquitin transferase BRE1A) Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role inb histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradictory. Required for transcriptional activation of Hox genes. Recruited to the MDM2 promoter, probably by being recruited by p53/TP53, and thereby acts as a transcriptional coactivator. Mediates the polyubiquitination of isoform 2 of PA2G4 in cancer cells leading to its proteasome-mediated degradation. {ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:16337599, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19410543}.; FUNCTION: (Microbial infection) Promotes the human herpesvirus 8 (KSHV) lytic cycle by inducing the expression of lytic viral genes including the latency switch gene RTA/ORF50. {ECO:0000269|PubMed:37888983}.
Q5VU97 CACHD1 S1178 ochoa VWFA and cache domain-containing protein 1 (Cache domain-containing protein 1) May regulate voltage-dependent calcium channels. {ECO:0000250}.
Q63HR2 TNS2 S885 ochoa Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}.
Q68DH5 LMBRD2 S633 ochoa G-protein coupled receptor-associated protein LMBRD2 (LMBR1 domain-containing protein 2) Recruited to ligand-activated beta-2 adrenergic receptor/ADRB2, it negatively regulates the adrenergic receptor signaling pathway (PubMed:28388415). May also regulate other G-protein coupled receptors including type-1 angiotensin II receptor/AGTR1 (Probable). {ECO:0000269|PubMed:28388415, ECO:0000305|PubMed:28388415}.
Q6DD87 ZNF787 S132 ochoa Zinc finger protein 787 (TTF-I-interacting peptide 20) May be involved in transcriptional regulation.
Q6GYQ0 RALGAPA1 S721 ochoa Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}.
Q6IQ23 PLEKHA7 S604 ochoa Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}.
Q6NXS1 PPP1R2B S24 ochoa Protein phosphatase inhibitor 2 family member B (PPP1R2 family member B) (Protein phosphatase 1, regulatory subunit 2 pseudogene 3) (Protein phosphatase inhibitor 2-like protein 3) Inhibitor of protein-phosphatase 1. {ECO:0000269|PubMed:23506001}.
Q6P1N0 CC2D1A S292 ochoa Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}.
Q6P4R8 NFRKB S495 ochoa Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}.
Q6PEY2 TUBA3E S54 ochoa Tubulin alpha-3E chain (EC 3.6.5.-) (Alpha-tubulin 3E) [Cleaved into: Detyrosinated tubulin alpha-3E chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Q6PFW1 PPIP5K1 S1036 ochoa Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 1) (Histidine acid phosphatase domain-containing protein 2A) (IP6 kinase) (Inositol pyrophosphate synthase 1) (InsP6 and PP-IP5 kinase 1) (VIP1 homolog) (hsVIP1) Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4. Activated when cells are exposed to hyperosmotic stress. {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752}.
Q6PJF5 RHBDF2 S227 ochoa Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}.
Q6PL18 ATAD2 S1157 ochoa ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}.
Q6T4R5 NHS S388 ochoa Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}.
Q6UX73 C16orf89 S174 ochoa UPF0764 protein C16orf89 None
Q6UXT9 ABHD15 S429 ochoa Protein ABHD15 (Alpha/beta hydrolase domain-containing protein 15) (Abhydrolase domain-containing protein 15) May regulate adipocyte lipolysis and liver lipid accumulation. {ECO:0000250|UniProtKB:Q5F2F2}.
Q6Y7W6 GIGYF2 S671 ochoa GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}.
Q6ZN55 ZNF574 S748 ochoa Zinc finger protein 574 May be involved in transcriptional regulation.
Q6ZNE5 ATG14 S232 ochoa Beclin 1-associated autophagy-related key regulator (Barkor) (Autophagy-related protein 14-like protein) (Atg14L) Required for both basal and inducible autophagy. Determines the localization of the autophagy-specific PI3-kinase complex PI3KC3-C1 (PubMed:18843052, PubMed:19050071). Plays a role in autophagosome formation and MAP1LC3/LC3 conjugation to phosphatidylethanolamine (PubMed:19270696, PubMed:20713597). Promotes BECN1 translocation from the trans-Golgi network to autophagosomes (PubMed:20713597). Enhances PIK3C3 activity in a BECN1-dependent manner. Essential for the autophagy-dependent phosphorylation of BECN1 (PubMed:23878393). Stimulates the phosphorylation of BECN1, but suppresses the phosphorylation PIK3C3 by AMPK (PubMed:23878393). Binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion (PubMed:25686604, PubMed:37632749). Modulates the hepatic lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q8CDJ3, ECO:0000269|PubMed:18843052, ECO:0000269|PubMed:19050071, ECO:0000269|PubMed:19270696, ECO:0000269|PubMed:20713597, ECO:0000269|PubMed:23878393, ECO:0000269|PubMed:25686604, ECO:0000269|PubMed:37632749}.
Q6ZSZ5 ARHGEF18 S67 ochoa Rho guanine nucleotide exchange factor 18 (114 kDa Rho-specific guanine nucleotide exchange factor) (p114-Rho-GEF) (p114RhoGEF) (Septin-associated RhoGEF) (SA-RhoGEF) Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. Its activation induces formation of actin stress fibers. Also acts as a GEF for RAC1, inducing production of reactive oxygen species (ROS). Does not act as a GEF for CDC42. The G protein beta-gamma (Gbetagamma) subunits of heterotrimeric G proteins act as activators, explaining the integrated effects of LPA and other G-protein coupled receptor agonists on actin stress fiber formation, cell shape change and ROS production. Required for EPB41L4B-mediated regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). {ECO:0000269|PubMed:11085924, ECO:0000269|PubMed:14512443, ECO:0000269|PubMed:15558029, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:28132693}.
Q6ZUJ8 PIK3AP1 S696 ochoa Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}.
Q709C8 VPS13C S3641 ochoa Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}.
Q71U36 TUBA1A S54 ochoa Tubulin alpha-1A chain (EC 3.6.5.-) (Alpha-tubulin 3) (Tubulin B-alpha-1) (Tubulin alpha-3 chain) [Cleaved into: Detyrosinated tubulin alpha-1A chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Q76FK4 NOL8 S361 ochoa Nucleolar protein 8 (Nucleolar protein Nop132) Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}.
Q7L590 MCM10 S435 ochoa Protein MCM10 homolog (HsMCM10) Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}.
Q7Z309 PABIR2 S58 ochoa PABIR family member 2 None
Q7Z3G6 PRICKLE2 S740 ochoa Prickle-like protein 2 None
Q7Z3K3 POGZ S340 ochoa Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}.
Q7Z5J4 RAI1 S1550 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z5K2 WAPL S387 ochoa Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}.
Q7Z6Z7 HUWE1 S3116 ochoa E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}.
Q7Z7L9 ZSCAN2 S316 ochoa Zinc finger and SCAN domain-containing protein 2 (Zinc finger protein 29 homolog) (Zfp-29) (Zinc finger protein 854) May be involved in transcriptional regulation during the post-meiotic stages of spermatogenesis. {ECO:0000250}.
Q86TB9 PATL1 S124 ochoa Protein PAT1 homolog 1 (PAT1-like protein 1) (Protein PAT1 homolog b) (Pat1b) (hPat1b) RNA-binding protein involved in deadenylation-dependent decapping of mRNAs, leading to the degradation of mRNAs (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). Acts as a scaffold protein that connects deadenylation and decapping machinery (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). Required for cytoplasmic mRNA processing body (P-body) assembly (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). {ECO:0000269|PubMed:17936923, ECO:0000269|PubMed:20543818, ECO:0000269|PubMed:20584987, ECO:0000269|PubMed:20852261}.; FUNCTION: (Microbial infection) In case of infection, required for translation and replication of hepatitis C virus (HCV). {ECO:0000269|PubMed:19628699}.
Q86TV6 TTC7B S630 ochoa Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}.
Q86TV6 TTC7B S657 ochoa Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}.
Q86UX7 FERMT3 S60 ochoa Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}.
Q86V48 LUZP1 S381 ochoa Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}.
Q86V48 LUZP1 S957 ochoa Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}.
Q86WX3 RPS19BP1 S89 ochoa Active regulator of SIRT1 (40S ribosomal protein S19-binding protein 1) (RPS19-binding protein 1) (S19BP) Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Acts as a chaperone that specifically mediates the integration of RPS19 in state post-A1 (PubMed:34516797). Direct regulator of SIRT1. Enhances SIRT1-mediated deacetylation of p53/TP53, thereby participating in inhibition of p53/TP53-mediated transcriptional activity (PubMed:17964266). {ECO:0000269|PubMed:17964266, ECO:0000269|PubMed:34516797}.
Q86XK3 SFR1 S61 ochoa Swi5-dependent recombination DNA repair protein 1 homolog (Meiosis protein 5 homolog) Component of the SWI5-SFR1 complex, a complex required for double-strand break repair via homologous recombination (PubMed:21252223). Acts as a transcriptional modulator for ESR1 (PubMed:23874500). {ECO:0000269|PubMed:21252223, ECO:0000269|PubMed:23874500}.
Q86YS3 RAB11FIP4 S320 ochoa Rab11 family-interacting protein 4 (FIP4-Rab11) (Rab11-FIP4) (Arfophilin-2) Acts as a regulator of endocytic traffic by participating in membrane delivery. Required for the abscission step in cytokinesis, possibly by acting as an 'address tag' delivering recycling endosome membranes to the cleavage furrow during late cytokinesis. In case of infection by HCMV (human cytomegalovirus), may participate in egress of the virus out of nucleus; this function is independent of ARF6. {ECO:0000269|PubMed:12470645}.
Q86YV0 RASAL3 S58 ochoa RAS protein activator like-3 Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}.
Q8IVE3 PLEKHH2 S1458 ochoa Pleckstrin homology domain-containing family H member 2 In the kidney glomerulus may play a role in linking podocyte foot processes to the glomerular basement membrane. May be involved in stabilization of F-actin by attenuating its depolymerization. Can recruit TGFB1I1 from focal adhesions to podocyte lamellipodia.
Q8IZT6 ASPM S280 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8IZT6 ASPM S565 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8N1W1 ARHGEF28 S736 ochoa Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}.
Q8N1W1 ARHGEF28 S758 ochoa Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}.
Q8N4S9 MARVELD2 S146 ochoa MARVEL domain-containing protein 2 (Tricellulin) Plays a role in the formation of tricellular tight junctions and of epithelial barriers (By similarity). Required for normal hearing via its role in the separation of the endolymphatic and perilymphatic spaces of the organ of Corti in the inner ear, and for normal survival of hair cells in the organ of Corti (PubMed:17186462). {ECO:0000250|UniProtKB:Q3UZP0, ECO:0000269|PubMed:17186462}.
Q8N720 ZNF655 S250 ochoa Zinc finger protein 655 (Vav-interacting Krueppel-like protein) Probable transcription factor. {ECO:0000305}.
Q8N7R7 CCNYL1 S93 ochoa Cyclin-Y-like protein 1 Key regulator of Wnt signaling implicated in various biological processes including male fertility, embryonic neurogenesis and cortex development. Activates the cyclin-dependent kinase CDK16, and promotes sperm maturation. {ECO:0000250|UniProtKB:D3YUJ3}.
Q8NCV1 ADAD2 S201 ochoa Adenosine deaminase domain-containing protein 2 (Testis nuclear RNA-binding protein-like) Required for male fertility and normal male germ cell differentiation. {ECO:0000250|UniProtKB:Q9D5P4}.
Q8ND76 CCNY S288 psp Cyclin-Y (Cyc-Y) (Cyclin box protein 1) (Cyclin fold protein 1) (cyclin-X) Positive regulatory subunit of the cyclin-dependent kinases CDK14/PFTK1 and CDK16. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by recruiting CDK14/PFTK1 to the plasma membrane and promoting phosphorylation of LRP6, leading to the activation of the Wnt signaling pathway. Recruits CDK16 to the plasma membrane. Isoform 3 might play a role in the activation of MYC-mediated transcription. {ECO:0000269|PubMed:18060517, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949, ECO:0000269|PubMed:22184064}.
Q8NDF8 TENT4B S509 ochoa Terminal nucleotidyltransferase 4B (Non-canonical poly(A) RNA polymerase PAPD5) (EC 2.7.7.19) (PAP-associated domain-containing protein 5) (Terminal guanylyltransferase) (EC 2.7.7.-) (Terminal uridylyltransferase 3) (TUTase 3) (Topoisomerase-related function protein 4-2) (TRF4-2) Terminal nucleotidyltransferase that catalyzes preferentially the transfer of ATP and GTP on RNA 3' poly(A) tail creating a heterogeneous 3' poly(A) tail leading to mRNAs stabilization by protecting mRNAs from active deadenylation (PubMed:21788334, PubMed:30026317). Also functions as a catalytic subunit of a TRAMP-like complex which has a poly(A) RNA polymerase activity and is involved in a post-transcriptional quality control mechanism. Polyadenylation with short oligo(A) tails is required for the degradative activity of the exosome on several of its nuclear RNA substrates. Doesn't need a cofactor for polyadenylation activity (in vitro) (PubMed:21788334, PubMed:21855801). Required for cytoplasmic polyadenylation of mRNAs involved in carbohydrate metabolism, including the glucose transporter SLC2A1/GLUT1 (PubMed:28383716). Plays a role in replication-dependent histone mRNA degradation, probably through terminal uridylation of mature histone mRNAs. May play a role in sister chromatid cohesion (PubMed:18172165). Mediates 3' adenylation of the microRNA MIR21 followed by its 3'-to-5' trimming by the exoribonuclease PARN leading to degradation (PubMed:25049417). Mediates 3' adenylation of H/ACA box snoRNAs (small nucleolar RNAs) followed by its 3'-to-5' trimming by the exoribonuclease PARN which enhances snoRNA stability and maturation (PubMed:22442037). {ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21788334, ECO:0000269|PubMed:21855801, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:28383716, ECO:0000269|PubMed:30026317}.
Q8NEJ9 NGDN S214 ochoa Neuroguidin (Centromere accumulated nuclear protein 1) (CANu1) (EIF4E-binding protein) Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Its dissociation from the complex determines the transition from state pre-A1 to state pre-A1* (PubMed:34516797). Inhibits mRNA translation in a cytoplasmic polyadenylation element (CPE)-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q9DB96, ECO:0000269|PubMed:34516797}.
Q8NEK8 TENT5D S309 ochoa Terminal nucleotidyltransferase 5D (EC 2.7.7.19) (Non-canonical poly(A) polymerase FAM46D) Catalyzes the transfer of one adenosine molecule from an ATP to an mRNA poly(A) tail bearing a 3'-OH terminal group. {ECO:0000269|PubMed:28931820, ECO:0000269|PubMed:32433990}.
Q8NEM0 MCPH1 S338 ochoa Microcephalin Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}.
Q8NFC6 BOD1L1 S2943 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFT8 DNER S688 ochoa Delta and Notch-like epidermal growth factor-related receptor Activator of the NOTCH1 pathway. May mediate neuron-glia interaction during astrocytogenesis (By similarity). {ECO:0000250}.
Q8TAA9 VANGL1 S325 ochoa Vang-like protein 1 (Loop-tail protein 2 homolog) (LPP2) (Strabismus 2) (Van Gogh-like protein 1) None
Q8TB72 PUM2 S102 ochoa Pumilio homolog 2 (Pumilio-2) Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}.
Q8TE60 ADAMTS18 S236 ochoa A disintegrin and metalloproteinase with thrombospondin motifs 18 (ADAM-TS 18) (ADAM-TS18) (ADAMTS-18) (EC 3.4.24.-) None
Q8TEW8 PARD3B S1054 ochoa Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions.
Q8TF72 SHROOM3 S663 ochoa Protein Shroom3 (Shroom-related protein) (hShrmL) Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}.
Q8WUA4 GTF3C2 S85 ochoa General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1.
Q8WUB8 PHF10 S36 ochoa PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}.
Q8WUD1 RAB2B S67 ochoa Ras-related protein Rab-2B (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology. Regulates the compacted morphology of the Golgi (Probable). Promotes cytosolic DNA-induced innate immune responses. Regulates IFN responses against DNA viruses by regulating the CGAS-STING signaling axis (By similarity). Together with RAB2A redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000250|UniProtKB:P59279, ECO:0000269|PubMed:28483915, ECO:0000305|PubMed:26209634}.
Q8WV44 TRIM41 S526 ochoa E3 ubiquitin-protein ligase TRIM41 (EC 2.3.2.27) (RING finger-interacting protein with C kinase) (RINCK) (Tripartite motif-containing protein 41) E3 ligase that plays essential roles in innate antiviral response (PubMed:28169297, PubMed:29760876, PubMed:29899090, PubMed:31979016). Directly binds to influenza A virus or vesicular stomatitis virus nucleoproteins and targets them for ubiquitination and proteasomal degradation, thereby limiting viral infections (PubMed:28169297, PubMed:29899090, PubMed:31979016). Activates the innate antiviral response by catalyzing monoubiquitination of CGAS, thereby activating CGAS (PubMed:29760876). Also involved in innate antiviral response by mediating 'Lys-63'-linked polyubiquitylation of BCL10 which in turn hubs NEMO for activation of NF-kappa-B and IRF3 pathways (By similarity). Catalyzes the ubiquitin-mediated degradation of other substrates including protein kinase C, ZSCAN21 or TOP3B suggesting additional roles besides its function in immune response (PubMed:17893151, PubMed:33378676). {ECO:0000250|UniProtKB:Q5NCC3, ECO:0000269|PubMed:17893151, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:29760876, ECO:0000269|PubMed:29899090, ECO:0000269|PubMed:31979016, ECO:0000269|PubMed:33378676}.
Q8WWY3 PRPF31 S432 ochoa U4/U6 small nuclear ribonucleoprotein Prp31 (Pre-mRNA-processing factor 31) (Serologically defined breast cancer antigen NY-BR-99) (U4/U6 snRNP 61 kDa protein) (Protein 61K) (hPrp31) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11867543, PubMed:20118938, PubMed:28781166). Required for the assembly of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome (PubMed:11867543). {ECO:0000269|PubMed:11867543, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:28781166}.
Q8WXE0 CASKIN2 S825 ochoa Caskin-2 (CASK-interacting protein 2) None
Q92508 PIEZO1 S393 ochoa Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}.
Q92613 JADE3 S780 ochoa Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}.
Q92619 ARHGAP45 S54 ochoa Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}.
Q92736 RYR2 S2814 psp Ryanodine receptor 2 (RYR-2) (RyR2) (hRYR-2) (Cardiac muscle ryanodine receptor) (Cardiac muscle ryanodine receptor-calcium release channel) (Type 2 ryanodine receptor) Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) cytosolic levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. {ECO:0000269|PubMed:10830164, ECO:0000269|PubMed:17984046, ECO:0000269|PubMed:20056922, ECO:0000269|PubMed:27733687, ECO:0000269|PubMed:33536282}.
Q92817 EVPL S1392 ochoa Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments.
Q92859 NEO1 S1220 ochoa Neogenin (Immunoglobulin superfamily DCC subclass member 2) Multi-functional cell surface receptor regulating cell adhesion in many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Receptor for members of the BMP, netrin, and repulsive guidance molecule (RGM) families. Netrin-Neogenin interactions result in a chemoattractive axon guidance response and cell-cell adhesion, the interaction between NEO1/Neogenin and RGMa and RGMb induces a chemorepulsive response. {ECO:0000269|PubMed:21149453}.
Q92917 GPKOW S20 ochoa G-patch domain and KOW motifs-containing protein (G-patch domain-containing protein 5) (Protein MOS2 homolog) (Protein T54) RNA-binding protein involved in pre-mRNA splicing. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:25296192, ECO:0000305|PubMed:33509932}.
Q92974 ARHGEF2 S107 ochoa Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}.
Q96AC1 FERMT2 S414 ochoa Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}.
Q96D70 R3HDM4 S36 ochoa R3H domain-containing protein 4 None
Q96F86 EDC3 S110 ochoa Enhancer of mRNA-decapping protein 3 (LSM16 homolog) (YjeF N-terminal domain-containing protein 2) (YjeF_N2) (hYjeF_N2) (YjeF domain-containing protein 1) Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping. May play a role in spermiogenesis and oogenesis. {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:17533573, ECO:0000269|PubMed:18678652, ECO:0000269|PubMed:25701870}.
Q96FJ0 STAMBPL1 S43 ochoa AMSH-like protease (AMSH-LP) (EC 3.4.19.-) (STAM-binding protein-like 1) Zinc metalloprotease that specifically cleaves 'Lys-63'-linked polyubiquitin chains (PubMed:18758443, PubMed:35114100). Acts as a positive regulator of the TORC1 signaling pathway by mediating 'Lys-63'-linked deubiquitination of SESN2, thereby inhibiting SESN2-interaction with the GATOR2 complex (PubMed:35114100). Does not cleave 'Lys-48'-linked polyubiquitin chains (PubMed:18758443). {ECO:0000269|PubMed:18758443, ECO:0000269|PubMed:35114100}.
Q96HU8 DIRAS2 S35 ochoa GTP-binding protein Di-Ras2 (EC 3.6.5.-) (Distinct subgroup of the Ras family member 2) Displays low GTPase activity and exists predominantly in the GTP-bound form. {ECO:0000269|PubMed:12194967}.
Q96KK5 H2AC12 S20 ochoa Histone H2A type 1-H (H2A-clustered histone 12) (Histone H2A/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q96MF7 NSMCE2 S223 ochoa E3 SUMO-protein ligase NSE2 (EC 2.3.2.-) (E3 SUMO-protein transferase NSE2) (MMS21 homolog) (hMMS21) (Non-structural maintenance of chromosomes element 2 homolog) (Non-SMC element 2 homolog) E3 SUMO-protein ligase component of the SMC5-SMC6 complex, a complex involved in DNA double-strand break repair by homologous recombination (PubMed:16055714, PubMed:16810316). Is not be required for the stability of the complex (PubMed:16055714, PubMed:16810316). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks (PubMed:16055714, PubMed:16810316). The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs) (PubMed:17589526). Acts as an E3 ligase mediating SUMO attachment to various proteins such as SMC6L1 and TSNAX, the shelterin complex subunits TERF1, TERF2, TINF2 and TERF2IP, RAD51AP1, and maybe the cohesin components RAD21 and STAG2 (PubMed:16055714, PubMed:16810316, PubMed:17589526, PubMed:31400850). Required for recruitment of telomeres to PML nuclear bodies (PubMed:17589526). SUMO protein-ligase activity is required for the prevention of DNA damage-induced apoptosis by facilitating DNA repair, and for formation of APBs in ALT cell lines (PubMed:17589526). Required for sister chromatid cohesion during prometaphase and mitotic progression (PubMed:19502785). {ECO:0000269|PubMed:16055714, ECO:0000269|PubMed:16810316, ECO:0000269|PubMed:17589526, ECO:0000269|PubMed:19502785, ECO:0000269|PubMed:31400850}.
Q96MM3 ZFP42 S257 ochoa Zinc finger protein 42 homolog (Zfp-42) (Reduced expression protein 1) (REX-1) (hREX-1) (Zinc finger protein 754) Involved in the reprogramming of X-chromosome inactivation during the acquisition of pluripotency. Required for efficient elongation of TSIX, a non-coding RNA antisense to XIST. Binds DXPas34 enhancer within the TSIX promoter. Involved in ES cell self-renewal (By similarity). {ECO:0000250}.
Q96N96 SPATA13 S78 ochoa|psp Spermatogenesis-associated protein 13 (APC-stimulated guanine nucleotide exchange factor 2) (Asef2) Acts as a guanine nucleotide exchange factor (GEF) for RHOA, RAC1 and CDC42 GTPases. Regulates cell migration and adhesion assembly and disassembly through a RAC1, PI3K, RHOA and AKT1-dependent mechanism. Increases both RAC1 and CDC42 activity, but decreases the amount of active RHOA. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Involved in tumor angiogenesis and may play a role in intestinal adenoma formation and tumor progression. {ECO:0000269|PubMed:17145773, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:19934221}.
Q96PU5 NEDD4L S795 psp E3 ubiquitin-protein ligase NEDD4-like (EC 2.3.2.26) (EC 2.3.2.36) (HECT-type E3 ubiquitin transferase NED4L) (NEDD4.2) (Nedd4-2) E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins and is thereby implicated in the regulation of various signaling pathways including autophagy, innate immunity or DNA repair (PubMed:20064473, PubMed:31959741, PubMed:33608556). Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation (PubMed:15496141). Downregulates autophagy and cell growth by ubiquitinating and reducing cellular ULK1 or ASCT2 levels (PubMed:28820317, PubMed:31959741). Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, SCN2A/Nav1.2, SCN3A/Nav1.3, SCN5A/Nav1.5, SCN9A/Nav1.7, SCN10A/Nav1.8, KCNA3/Kv1.3, KCNH2, EAAT1, KCNQ2/Kv7.2, KCNQ3/Kv7.3 or CLC5 (PubMed:26363003, PubMed:27445338). Promotes ubiquitination and degradation of SGK1 and TNK2. Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Plays a role in dendrite formation by melanocytes (PubMed:23999003). Involved in the regulation of TOR signaling (PubMed:27694961). Ubiquitinates and regulates protein levels of NTRK1 once this one is activated by NGF (PubMed:27445338). Plays a role in antiviral innate immunity by catalyzing 'Lys-29'-linked cysteine ubiquitination of TRAF3, resulting in enhanced 'Lys-48' and 'Lys-63'-linked ubiquitination of TRAF3 (PubMed:33608556). Ubiquitinates TTYH2 and TTYH3 and regulates protein levels of TTYH2 (PubMed:18577513). {ECO:0000250|UniProtKB:Q8CFI0, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15217910, ECO:0000269|PubMed:15489223, ECO:0000269|PubMed:15496141, ECO:0000269|PubMed:15576372, ECO:0000269|PubMed:18577513, ECO:0000269|PubMed:19144635, ECO:0000269|PubMed:23999003, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:26363003, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:27694961, ECO:0000269|PubMed:33608556}.
Q96Q45 TMEM237 S205 ochoa Transmembrane protein 237 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 4 protein) Component of the transition zone in primary cilia. Required for ciliogenesis. {ECO:0000269|PubMed:22152675}.
Q96QB1 DLC1 S991 ochoa Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}.
Q96QD9 FYTTD1 S61 ochoa UAP56-interacting factor (Forty-two-three domain-containing protein 1) (Protein 40-2-3) Required for mRNA export from the nucleus to the cytoplasm. Acts as an adapter that uses the DDX39B/UAP56-NFX1 pathway to ensure efficient mRNA export and delivering to the nuclear pore. Associates with spliced and unspliced mRNAs simultaneously with ALYREF/THOC4. {ECO:0000269|PubMed:19836239}.
Q96T58 SPEN S1194 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q96T88 UHRF1 S76 ochoa E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}.
Q96TC7 RMDN3 S57 ochoa Regulator of microtubule dynamics protein 3 (RMD-3) (hRMD-3) (Cerebral protein 10) (Protein FAM82A2) (Protein FAM82C) (Protein tyrosine phosphatase-interacting protein 51) (TCPTP-interacting protein 51) Involved in cellular calcium homeostasis regulation. May participate in differentiation and apoptosis of keratinocytes. Overexpression induces apoptosis. {ECO:0000269|PubMed:16820967, ECO:0000269|PubMed:22131369}.
Q99569 PKP4 S457 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99570 PIK3R4 S926 ochoa Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}.
Q99661 KIF2C S22 ochoa Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}.
Q99878 H2AC14 S20 ochoa Histone H2A type 1-J (Histone H2A/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99959 PKP2 S183 ochoa Plakophilin-2 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}.
Q9BQE3 TUBA1C S54 ochoa Tubulin alpha-1C chain (EC 3.6.5.-) (Alpha-tubulin 6) (Tubulin alpha-6 chain) [Cleaved into: Detyrosinated tubulin alpha-1C chain] Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Q9BSM1 PCGF1 S195 psp Polycomb group RING finger protein 1 (Nervous system Polycomb-1) (NSPc1) (RING finger protein 68) Component of the Polycomb group (PcG) multiprotein BCOR complex, a complex required to maintain the transcriptionally repressive state of some genes, such as BCL6 and the cyclin-dependent kinase inhibitor, CDKN1A. Transcriptional repressor that may be targeted to the DNA by BCL6; this transcription repressor activity may be related to PKC signaling pathway. Represses CDKN1A expression by binding to its promoter, and this repression is dependent on the retinoic acid response element (RARE element). Promotes cell cycle progression and enhances cell proliferation as well. May have a positive role in tumor cell growth by down-regulating CDKN1A. Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:26151332). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). Regulates the expression of DPPA4 and NANOG in the NT2 embryonic carcinoma cells (PubMed:26687479). {ECO:0000269|PubMed:15620699, ECO:0000269|PubMed:16943429, ECO:0000269|PubMed:17088287, ECO:0000269|PubMed:26151332, ECO:0000269|PubMed:26687479}.
Q9BUH8 BEGAIN S229 ochoa Brain-enriched guanylate kinase-associated protein May sustain the structure of the postsynaptic density (PSD).
Q9BWN1 PRR14 S526 ochoa Proline-rich protein 14 Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}.
Q9BXS6 NUSAP1 S285 ochoa Nucleolar and spindle-associated protein 1 (NuSAP) Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}.
Q9BXW4 MAP1LC3C S96 psp Microtubule-associated protein 1 light chain 3 gamma (Autophagy-related protein LC3 C) (Autophagy-related ubiquitin-like modifier LC3 C) (MAP1 light chain 3-like protein 3) (Microtubule-associated proteins 1A/1B light chain 3C) (MAP1A/MAP1B LC3 C) (MAP1A/MAP1B light chain 3 C) Ubiquitin-like modifier that plays a crucial role in antibacterial autophagy (xenophagy) through the selective binding of CALCOCO2 (PubMed:23022382). Recruits all ATG8 family members to infecting bacteria such as S.typhimurium (PubMed:23022382). May also play a role in aggrephagy, the macroautophagic degradation of ubiquitinated and aggregated proteins (PubMed:28404643). {ECO:0000269|PubMed:23022382, ECO:0000269|PubMed:28404643}.
Q9BYI3 HYCC1 S415 ochoa Hyccin (Down-regulated by CTNNB1 protein A) Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (PubMed:26571211). HYCC1 plays a key role in oligodendrocytes formation, a cell type with expanded plasma membrane that requires generation of PtdIns(4)P (PubMed:26571211). Its role in oligodendrocytes formation probably explains its importance in myelination of the central and peripheral nervous system (PubMed:16951682, PubMed:26571211). May also have a role in the beta-catenin/Lef signaling pathway (Probable). {ECO:0000269|PubMed:16951682, ECO:0000269|PubMed:26571211, ECO:0000305|PubMed:10910037}.
Q9BZ72 PITPNM2 S1324 ochoa Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}.
Q9BZE0 GLIS2 S245 psp Zinc finger protein GLIS2 (GLI-similar 2) (Neuronal Krueppel-like protein) Can act either as a transcriptional repressor or as a transcriptional activator, depending on the cell context. Acts as a repressor of the Hedgehog signaling pathway (By similarity). Represses the Hedgehog-dependent expression of Wnt4 (By similarity). Necessary to maintain the differentiated epithelial phenotype in renal cells through the inhibition of SNAI1, which itself induces the epithelial-to-mesenchymal transition (By similarity). Represses transcriptional activation mediated by CTNNB1 in the Wnt signaling pathway. May act by recruiting the corepressors CTBP1 and HDAC3. May be involved in neuron differentiation (By similarity). {ECO:0000250}.
Q9C0C2 TNKS1BP1 S1121 ochoa 182 kDa tankyrase-1-binding protein None
Q9C0C2 TNKS1BP1 S1533 ochoa 182 kDa tankyrase-1-binding protein None
Q9C0D5 TANC1 S243 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9GZZ9 UBA5 S45 ochoa Ubiquitin-like modifier-activating enzyme 5 (Ubiquitin-activating enzyme 5) (ThiFP1) (UFM1-activating enzyme) (Ubiquitin-activating enzyme E1 domain-containing protein 1) E1-like enzyme which specifically catalyzes the first step in ufmylation (PubMed:15071506, PubMed:18442052, PubMed:20368332, PubMed:25219498, PubMed:26929408, PubMed:27545674, PubMed:27545681, PubMed:27653677, PubMed:30412706, PubMed:30626644, PubMed:34588452). Activates UFM1 by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a UFM1-E1 thioester and free AMP (PubMed:20368332, PubMed:26929408, PubMed:27653677, PubMed:30412706). Activates UFM1 via a trans-binding mechanism, in which UFM1 interacts with distinct sites in both subunits of the UBA5 homodimer (PubMed:27653677). Trans-binding also promotes stabilization of the UBA5 homodimer, and enhances ATP-binding (PubMed:29295865). Transfer of UFM1 from UBA5 to the E2-like enzyme UFC1 also takes place using a trans mechanism (PubMed:27653677, PubMed:34588452). Ufmylation plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:30412706, PubMed:32160526, PubMed:35394863). Ufmylation is essential for erythroid differentiation of both megakaryocytes and erythrocytes (By similarity). {ECO:0000250|UniProtKB:Q8VE47, ECO:0000269|PubMed:15071506, ECO:0000269|PubMed:18442052, ECO:0000269|PubMed:20368332, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26929408, ECO:0000269|PubMed:27545674, ECO:0000269|PubMed:27545681, ECO:0000269|PubMed:27653677, ECO:0000269|PubMed:29295865, ECO:0000269|PubMed:30412706, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:34588452, ECO:0000269|PubMed:35394863}.
Q9H1D0 TRPV6 S184 psp Transient receptor potential cation channel subfamily V member 6 (TrpV6) (CaT-like) (CaT-L) (Calcium transport protein 1) (CaT1) (Epithelial calcium channel 2) (ECaC2) Calcium selective cation channel that mediates Ca(2+) uptake in various tissues, including the intestine (PubMed:11097838, PubMed:11248124, PubMed:11278579, PubMed:15184369, PubMed:23612980, PubMed:29258289). Important for normal Ca(2+) ion homeostasis in the body, including bone and skin (By similarity). The channel is activated by low internal calcium level, probably including intracellular calcium store depletion, and the current exhibits an inward rectification (PubMed:15184369). Inactivation includes both a rapid Ca(2+)-dependent and a slower Ca(2+)-calmodulin-dependent mechanism; the latter may be regulated by phosphorylation. In vitro, is slowly inhibited by Mg(2+) in a voltage-independent manner. Heteromeric assembly with TRPV5 seems to modify channel properties. TRPV5-TRPV6 heteromultimeric concatemers exhibit voltage-dependent gating. {ECO:0000250|UniProtKB:Q91WD2, ECO:0000269|PubMed:11097838, ECO:0000269|PubMed:11248124, ECO:0000269|PubMed:11278579, ECO:0000269|PubMed:15184369, ECO:0000269|PubMed:23612980, ECO:0000269|PubMed:29258289, ECO:0000269|PubMed:29861107}.
Q9H2G4 TSPYL2 S182 ochoa Testis-specific Y-encoded-like protein 2 (TSPY-like protein 2) (Cell division autoantigen 1) (Cutaneous T-cell lymphoma-associated antigen se20-4) (CTCL-associated antigen se20-4) (Differentially-expressed nucleolar TGF-beta1 target protein) (Nuclear protein of 79 kDa) (NP79) Part of the CASK/TBR1/TSPYL2 transcriptional complex which modulates gene expression in response to neuronal synaptic activity, probably by facilitating nucleosome assembly. May inhibit cell proliferation by inducing p53-dependent CDKN1A expression. {ECO:0000269|PubMed:11395479, ECO:0000269|PubMed:17317670}.
Q9H2G9 BLZF1 S32 ochoa Golgin-45 (Basic leucine zipper nuclear factor 1) (JEM-1) (p45 basic leucine-zipper nuclear factor) Required for normal Golgi structure and for protein transport from the endoplasmic reticulum (ER) through the Golgi apparatus to the cell surface. {ECO:0000269|PubMed:11739401}.
Q9H2K8 TAOK3 S424 ochoa Serine/threonine-protein kinase TAO3 (EC 2.7.11.1) (Cutaneous T-cell lymphoma-associated antigen HD-CL-09) (CTCL-associated antigen HD-CL-09) (Dendritic cell-derived protein kinase) (JNK/SAPK-inhibitory kinase) (Jun kinase-inhibitory kinase) (Kinase from chicken homolog A) (hKFC-A) (Thousand and one amino acid protein 3) Serine/threonine-protein kinase that acts as a regulator of the p38/MAPK14 stress-activated MAPK cascade and of the MAPK8/JNK cascade. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Inhibits basal activity of the MAPK8/JNK cascade and diminishes its activation in response to epidermal growth factor (EGF). Positively regulates canonical T cell receptor (TCR) signaling by preventing early PTPN6/SHP1-mediated inactivation of LCK, ensuring sustained TCR signaling that is required for optimal activation and differentiation of T cells (PubMed:30373850). Phosphorylates PTPN6/SHP1 on 'Thr-394', leading to its polyubiquitination and subsequent proteasomal degradation (PubMed:38166031). Required for cell surface expression of metalloprotease ADAM10 on type 1 transitional B cells which is necessary for their NOTCH-mediated development into marginal zone B cells (By similarity). Also required for the NOTCH-mediated terminal differentiation of splenic conventional type 2 dendritic cells (By similarity). Positively regulates osteoblast differentiation by acting as an upstream activator of the JNK pathway (PubMed:32807497). Promotes JNK signaling in hepatocytes and positively regulates hepatocyte lipid storage by inhibiting beta-oxidation and triacylglycerol secretion while enhancing lipid synthesis (PubMed:34634521). Restricts age-associated inflammation by negatively regulating differentiation of macrophages and their production of pro-inflammatory cytokines (By similarity). Plays a role in negatively regulating the abundance of regulatory T cells in white adipose tissue (By similarity). {ECO:0000250|UniProtKB:Q8BYC6, ECO:0000269|PubMed:10559204, ECO:0000269|PubMed:10924369, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:30373850, ECO:0000269|PubMed:32807497, ECO:0000269|PubMed:34634521, ECO:0000269|PubMed:38166031}.
Q9H2M9 RAB3GAP2 S450 ochoa Rab3 GTPase-activating protein non-catalytic subunit (RGAP-iso) (Rab3 GTPase-activating protein 150 kDa subunit) (Rab3-GAP p150) (Rab3-GAP150) (Rab3-GAP regulatory subunit) Regulatory subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:24891604, PubMed:9733780). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (By similarity). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (By similarity). The Rab3GAP complex acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in human fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (By similarity). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (By similarity). {ECO:0000250|UniProtKB:Q15042, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9733780}.
Q9H2V7 SPNS1 S505 ochoa Protein spinster homolog 1 (HSpin1) (SPNS1) (Spinster-like protein 1) Plays a critical role in the phospholipid salvage pathway from lysosomes to the cytosol (PubMed:36161949, PubMed:37075117). Mediates the rate-limiting, proton-dependent, lysosomal efflux of lysophospholipids, which can then be reacylated by acyltransferases in the endoplasmic reticulum to form phospholipids (PubMed:36161949, PubMed:37075117). Selective for zwitterionic headgroups such as lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), can also transport lysophosphatidylglycerol (LPG), but not other anionic lysophospholipids, sphingosine, nor sphingomyelin (PubMed:36161949). Transports lysophospholipids with saturated, monounsaturated, and polyunsaturated fatty acids, such as 1-hexadecanoyl-sn-glycero-3-phosphocholine, 1-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine and 1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine, respectively (PubMed:36161949, PubMed:37075117). Can also transport lysoplasmalogen (LPC with a fatty alcohol) such as 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine (PubMed:36161949). Lysosomal LPC could function as intracellular signaling messenger (PubMed:37075117). Essential player in lysosomal homeostasis (PubMed:36161949). Crucial for cell survival under conditions of nutrient limitation (PubMed:37075117). May be involved in necrotic or autophagic cell death (PubMed:12815463). {ECO:0000269|PubMed:12815463, ECO:0000269|PubMed:36161949, ECO:0000269|PubMed:37075117, ECO:0000303|PubMed:37075117}.
Q9H2X9 SLC12A5 S963 psp Solute carrier family 12 member 5 (Electroneutral potassium-chloride cotransporter 2) (K-Cl cotransporter 2) (hKCC2) (Neuronal K-Cl cotransporter) Mediates electroneutral potassium-chloride cotransport in mature neurons and is required for neuronal Cl(-) homeostasis (PubMed:12106695). As major extruder of intracellular chloride, it establishes the low neuronal Cl(-) levels required for chloride influx after binding of GABA-A and glycine to their receptors, with subsequent hyperpolarization and neuronal inhibition (By similarity). Involved in the regulation of dendritic spine formation and maturation (PubMed:24668262). {ECO:0000250|UniProtKB:Q63633, ECO:0000269|PubMed:12106695, ECO:0000269|PubMed:24668262}.
Q9H400 LIME1 S256 ochoa Lck-interacting transmembrane adapter 1 (Lck-interacting membrane protein) (Lck-interacting molecule) Involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and TCR (T-cell antigen receptor)-mediated T-cell signaling in T-cells. In absence of TCR signaling, may be involved in CD4-mediated inhibition of T-cell activation. Couples activation of these receptors and their associated kinases with distal intracellular events such as calcium mobilization or MAPK activation through the recruitment of PLCG2, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:14610046}.
Q9H4B6 SAV1 S136 ochoa Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}.
Q9H4L4 SENP3 S143 psp Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}.
Q9H582 ZNF644 S673 ochoa Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) May be involved in transcriptional regulation.
Q9H694 BICC1 S766 ochoa Protein bicaudal C homolog 1 (Bic-C) Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}.
Q9H6H4 REEP4 S114 ochoa Receptor expression-enhancing protein 4 Microtubule-binding protein required to ensure proper cell division and nuclear envelope reassembly by sequestering the endoplasmic reticulum away from chromosomes during mitosis. Probably acts by clearing the endoplasmic reticulum membrane from metaphase chromosomes. {ECO:0000269|PubMed:23911198}.
Q9H706 GAREM1 S590 ochoa GRB2-associated and regulator of MAPK protein 1 (GRB2-associated and regulator of MAPK1) [Isoform 1]: Acts as an adapter protein that plays a role in intracellular signaling cascades triggered either by the cell surface activated epidermal growth factor receptor and/or cytoplasmic protein tyrosine kinases. Promotes activation of the MAPK/ERK signaling pathway. Plays a role in the regulation of cell proliferation. {ECO:0000269|PubMed:19509291}.
Q9H875 PRKRIP1 S76 ochoa PRKR-interacting protein 1 Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:30705154). Binds double-stranded RNA. Inhibits EIF2AK2 kinase activity (By similarity). {ECO:0000250|UniProtKB:Q9CWV6, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:30705154}.
Q9H8V3 ECT2 S842 ochoa Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}.
Q9H902 REEP1 S114 ochoa Receptor expression-enhancing protein 1 (Spastic paraplegia 31 protein) Required for endoplasmic reticulum (ER) network formation, shaping and remodeling; it links ER tubules to the cytoskeleton. May also enhance the cell surface expression of odorant receptors (PubMed:20200447). May play a role in long-term axonal maintenance (PubMed:24478229). {ECO:0000269|PubMed:20200447, ECO:0000269|PubMed:24478229}.
Q9HAC8 UBTD1 S166 ochoa Ubiquitin domain-containing protein 1 May be involved in the regulation of cellular senescence through a positive feedback loop with TP53. Is a TP53 downstream target gene that increases the stability of TP53 protein by promoting the ubiquitination and degradation of MDM2. {ECO:0000269|PubMed:25382750}.
Q9HCD5 NCOA5 S378 ochoa Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}.
Q9HCD6 TANC2 S22 ochoa Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}.
Q9NPA3 MID1IP1 S75 ochoa Mid1-interacting protein 1 (Gastrulation-specific G12-like protein) (Mid1-interacting G12-like protein) (Protein STRAIT11499) (Spot 14-related protein) (S14R) (Spot 14-R) Plays a role in the regulation of lipogenesis in liver. Up-regulates ACACA enzyme activity. Required for efficient lipid biosynthesis, including triacylglycerol, diacylglycerol and phospholipid. Involved in stabilization of microtubules (By similarity). {ECO:0000250}.
Q9NR55 BATF3 S31 ochoa Basic leucine zipper transcriptional factor ATF-like 3 (B-ATF-3) (21 kDa small nuclear factor isolated from T-cells) (Jun dimerization protein p21SNFT) AP-1 family transcription factor that controls the differentiation of CD8(+) thymic conventional dendritic cells in the immune system. Required for development of CD8-alpha(+) classical dendritic cells (cDCs) and related CD103(+) dendritic cells that cross-present antigens to CD8 T-cells and produce interleukin-12 (IL12) in response to pathogens (By similarity). Acts via the formation of a heterodimer with JUN family proteins that recognizes and binds DNA sequence 5'-TGA[CG]TCA-3' and regulates expression of target genes. {ECO:0000250, ECO:0000269|PubMed:10878360, ECO:0000269|PubMed:12087103, ECO:0000269|PubMed:15467742}.
Q9NS56 TOPORS S569 ochoa E3 ubiquitin-protein ligase Topors (EC 2.3.2.27) (RING-type E3 ubiquitin transferase Topors) (SUMO1-protein E3 ligase Topors) (Topoisomerase I-binding RING finger protein) (Topoisomerase I-binding arginine/serine-rich protein) (Tumor suppressor p53-binding protein 3) (p53-binding protein 3) (p53BP3) Functions as an E3 ubiquitin-protein ligase and as an E3 SUMO1-protein ligase. Probable tumor suppressor involved in cell growth, cell proliferation and apoptosis that regulates p53/TP53 stability through ubiquitin-dependent degradation. May regulate chromatin modification through sumoylation of several chromatin modification-associated proteins. May be involved in DNA damage-induced cell death through IKBKE sumoylation. {ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15735665, ECO:0000269|PubMed:16122737, ECO:0000269|PubMed:17803295, ECO:0000269|PubMed:18077445, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:20188669}.
Q9NW64 RBM22 S142 ochoa Pre-mRNA-splicing factor RBM22 (RNA-binding motif protein 22) (Zinc finger CCCH domain-containing protein 16) Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154). Involved in the first step of pre-mRNA splicing. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5' splice site during the activation and catalytic phases of the spliceosome cycle. Involved in both translocations of the nuclear SLU7 to the cytoplasm and the cytosolic calcium-binding protein PDCD6 to the nucleus upon cellular stress responses. {ECO:0000269|PubMed:17045351, ECO:0000269|PubMed:21122810, ECO:0000269|PubMed:22246180, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154}.
Q9NW75 GPATCH2 S146 ochoa G patch domain-containing protein 2 Enhances the ATPase activity of DHX15 in vitro. {ECO:0000269|PubMed:19432882}.
Q9NWH9 SLTM S800 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NY27 PPP4R2 S139 ochoa Serine/threonine-protein phosphatase 4 regulatory subunit 2 Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}.
Q9P1Z0 ZBTB4 S715 ochoa Zinc finger and BTB domain-containing protein 4 (KAISO-like zinc finger protein 1) (KAISO-L1) Transcriptional repressor with bimodal DNA-binding specificity. Represses transcription in a methyl-CpG-dependent manner. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to the non-methylated consensus sequence 5'-CTGCNA-3' also known as the consensus kaiso binding site (KBS). Can also bind specifically to a single methyl-CpG pair and can bind hemimethylated DNA but with a lower affinity compared to methylated DNA (PubMed:16354688). Plays a role in postnatal myogenesis, may be involved in the regulation of satellite cells self-renewal (By similarity). {ECO:0000250|UniProtKB:Q5F293, ECO:0000269|PubMed:16354688}.
Q9P206 NHSL3 S145 ochoa NHS-like protein 3 Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}.
Q9P244 LRFN1 S718 ochoa Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}.
Q9P266 JCAD S947 ochoa Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) None
Q9P266 JCAD S1010 ochoa Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) None
Q9P2D1 CHD7 S2395 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9UBU7 DBF4 S260 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UBZ4 APEX2 S238 ochoa DNA-(apurinic or apyrimidinic site) endonuclease 2 (EC 3.1.11.2) (AP endonuclease XTH2) (APEX nuclease 2) (APEX nuclease-like 2) (Apurinic-apyrimidinic endonuclease 2) (AP endonuclease 2) Functions as a weak apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents (PubMed:16687656). Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also displays double-stranded DNA 3'-5' exonuclease, 3'-phosphodiesterase activities (PubMed:16687656, PubMed:19443450, PubMed:32516598). Shows robust 3'-5' exonuclease activity on 3'-recessed heteroduplex DNA and is able to remove mismatched nucleotides preferentially (PubMed:16687656, PubMed:19443450). Also exhibits 3'-5' exonuclease activity on a single nucleotide gap containing heteroduplex DNA and on blunt-ended substrates (PubMed:16687656). Shows fairly strong 3'-phosphodiesterase activity involved in the removal of 3'-damaged termini formed in DNA by oxidative agents (PubMed:16687656, PubMed:19443450). In the nucleus functions in the PCNA-dependent BER pathway (PubMed:11376153). Plays a role in reversing blocked 3' DNA ends, problematic lesions that preclude DNA synthesis (PubMed:32516598). Required for somatic hypermutation (SHM) and DNA cleavage step of class switch recombination (CSR) of immunoglobulin genes (By similarity). Required for proper cell cycle progression during proliferation of peripheral lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q68G58, ECO:0000269|PubMed:11376153, ECO:0000269|PubMed:16687656, ECO:0000269|PubMed:19443450, ECO:0000269|PubMed:32516598}.
Q9UDY2 TJP2 S150 ochoa Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}.
Q9UGP8 SEC63 S466 ochoa Translocation protein SEC63 homolog (DnaJ homolog subfamily C member 23) Mediates cotranslational and post-translational transport of certain precursor polypeptides across endoplasmic reticulum (ER) (PubMed:22375059, PubMed:29719251). Proposed to play an auxiliary role in recognition of precursors with short and apolar signal peptides. May cooperate with SEC62 and HSPA5/BiP to facilitate targeting of small presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen (PubMed:29719251). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:Q8VHE0, ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
Q9UGU0 TCF20 S889 ochoa Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}.
Q9UH17 APOBEC3B S46 psp DNA dC->dU-editing enzyme APOBEC-3B (A3B) (EC 3.5.4.38) (Phorbolin-1-related protein) (Phorbolin-2/3) DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase-dependent and -independent mechanisms. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels of mutations in the proviral genome, along with a deamination-independent mechanism that works prior to the proviral integration, together exert efficient antiretroviral effects in infected target cells. Selectively targets single-stranded DNA and does not deaminate double-stranded DNA or single- or double-stranded RNA. Exhibits antiviral activity against simian immunodeficiency virus (SIV), hepatitis B virus (HBV) and human T-cell leukemia virus type 1 (HTLV-1) and may inhibit the mobility of LTR and non-LTR retrotransposons. {ECO:0000269|PubMed:12859895, ECO:0000269|PubMed:15466872, ECO:0000269|PubMed:16060832, ECO:0000269|PubMed:16527742, ECO:0000269|PubMed:20062055, ECO:0000269|PubMed:22457529}.
Q9UHG2 PCSK1N S209 ochoa ProSAAS (Proprotein convertase subtilisin/kexin type 1 inhibitor) (Proprotein convertase 1 inhibitor) (pro-SAAS) [Cleaved into: KEP; Big SAAS (b-SAAS); Little SAAS (l-SAAS) (N-proSAAS); Big PEN-LEN (b-PEN-LEN) (SAAS CT(1-49)); PEN; Little LEN (l-LEN); Big LEN (b-LEN) (SAAS CT(25-40))] May function in the control of the neuroendocrine secretory pathway. Proposed be a specific endogenous inhibitor of PCSK1. ProSAAS and Big PEN-LEN, both containing the C-terminal inhibitory domain, but not the further processed peptides reduce PCSK1 activity in the endoplasmic reticulum and Golgi. It reduces the activity of the 84 kDa form but not the autocatalytically derived 66 kDa form of PCSK1. Subsequent processing of proSAAS may eliminate the inhibition. Slows down convertase-mediated processing of proopiomelanocortin and proenkephalin. May control the intracellular timing of PCSK1 rather than its total level of activity (By similarity). {ECO:0000250|UniProtKB:Q9QXV0}.; FUNCTION: [Big LEN]: Endogenous ligand for GPR171. Neuropeptide involved in the regulation of feeding. {ECO:0000250|UniProtKB:Q9QXV0}.; FUNCTION: [PEN]: Endogenous ligand for GPR171. Neuropeptide involved in the regulation of feeding. {ECO:0000250|UniProtKB:Q9QXV0}.
Q9UIF9 BAZ2A S1778 ochoa Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}.
Q9UIQ6 LNPEP S86 ochoa Leucyl-cystinyl aminopeptidase (Cystinyl aminopeptidase) (EC 3.4.11.3) (Insulin-regulated membrane aminopeptidase) (Insulin-responsive aminopeptidase) (IRAP) (Oxytocinase) (OTase) (Placental leucine aminopeptidase) (P-LAP) [Cleaved into: Leucyl-cystinyl aminopeptidase, pregnancy serum form] Release of an N-terminal amino acid, cleaves before cysteine, leucine as well as other amino acids. Degrades peptide hormones such as oxytocin, vasopressin and angiotensin III, and plays a role in maintaining homeostasis during pregnancy. May be involved in the inactivation of neuronal peptides in the brain. Cleaves Met-enkephalin and dynorphin. Binds angiotensin IV and may be the angiotensin IV receptor in the brain. {ECO:0000269|PubMed:11389728, ECO:0000269|PubMed:11707427, ECO:0000269|PubMed:1731608}.
Q9UJF2 RASAL2 S754 ochoa Ras GTPase-activating protein nGAP (RAS protein activator-like 2) Inhibitory regulator of the Ras-cyclic AMP pathway.
Q9UKT9 IKZF3 S386 ochoa Zinc finger protein Aiolos (Ikaros family zinc finger protein 3) Transcription factor that plays an important role in the regulation of lymphocyte differentiation. Plays an essential role in regulation of B-cell differentiation, proliferation and maturation to an effector state. Involved in regulating BCL2 expression and controlling apoptosis in T-cells in an IL2-dependent manner. {ECO:0000269|PubMed:10369681, ECO:0000269|PubMed:34155405}.
Q9UKV3 ACIN1 S698 ochoa Apoptotic chromatin condensation inducer in the nucleus (Acinus) Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}.
Q9UKX2 MYH2 S181 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9ULH0 KIDINS220 S1296 ochoa Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}.
Q9ULI0 ATAD2B S1126 ochoa ATPase family AAA domain-containing protein 2B None
Q9ULU4 ZMYND8 S829 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9UMN6 KMT2B S1095 ochoa Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}.
Q9UNA1 ARHGAP26 S589 ochoa Rho GTPase-activating protein 26 (GTPase regulator associated with focal adhesion kinase) (GRAF1) (Oligophrenin-1-like protein) (Rho-type GTPase-activating protein 26) GTPase-activating protein for RHOA and CDC42. Facilitates mitochondrial quality control by promoting Parkin-mediated recruitment of autophagosomes to damaged mitochondria (PubMed:38081847). Negatively regulates the growth of human parainfluenza virus type 2 by inhibiting hPIV-2-mediated RHOA activation via interaction with two of its viral proteins P and V (PubMed:27512058). {ECO:0000269|PubMed:27512058, ECO:0000269|PubMed:38081847}.; FUNCTION: [Isoform 2]: Associates with MICAL1 on the endosomal membrane to promote Rab8-Rab10-dependent tubule extension. After dissociation of MICAL1, recruits WDR44 which connects the endoplasmic reticulum (ER) with the endosomal tubule, thereby participating in the export of a subset of neosynthesized proteins. {ECO:0000269|PubMed:32344433}.
Q9UPN4 CEP131 S21 ochoa|psp Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}.
Q9UQ84 EXO1 S610 ochoa Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}.
Q9Y266 NUDC S274 ochoa|psp Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q9Y2B0 CNPY2 S63 ochoa Protein canopy homolog 2 (MIR-interacting saposin-like protein) (Putative secreted protein Zsig9) (Transmembrane protein 4) Positive regulator of neurite outgrowth by stabilizing myosin regulatory light chain (MRLC). It prevents MIR-mediated MRLC ubiquitination and its subsequent proteasomal degradation.
Q9Y2U8 LEMD3 S180 ochoa Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}.
Q9Y2W1 THRAP3 S891 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y3B9 RRP15 S240 ochoa RRP15-like protein (Ribosomal RNA-processing protein 15) None
Q9Y3X0 CCDC9 S335 ochoa Coiled-coil domain-containing protein 9 Probable component of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. {ECO:0000305|PubMed:33973408}.
Q9Y4D8 HECTD4 S1715 ochoa Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}.
Q9Y4F5 CEP170B S337 ochoa Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}.
Q9Y4F5 CEP170B S1413 ochoa Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}.
Q9Y4G8 RAPGEF2 S585 ochoa Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}.
Q9Y520 PRRC2C S1544 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y561 LRP12 S652 ochoa Low-density lipoprotein receptor-related protein 12 (LDLR-related protein 12) (LRP-12) (Suppressor of tumorigenicity 7 protein) Probable receptor, which may be involved in the internalization of lipophilic molecules and/or signal transduction. May act as a tumor suppressor. {ECO:0000269|PubMed:12809483}.
Q9Y5Y4 PTGDR2 S331 ochoa Prostaglandin D2 receptor 2 (Chemoattractant receptor-homologous molecule expressed on Th2 cells) (G-protein coupled receptor 44) (CD antigen CD294) Receptor for prostaglandin D2 (PGD2). Coupled to the G(i)-protein. Receptor activation may result in pertussis toxin-sensitive decreases in cAMP levels and Ca(2+) mobilization. PI3K signaling is also implicated in mediating PTGDR2 effects. PGD2 induced receptor internalization. CRTH2 internalization can be regulated by diverse kinases such as, PKC, PKA, GRK2, GPRK5/GRK5 and GRK6. Receptor activation is responsible, at least in part, in immune regulation and allergic/inflammation responses. {ECO:0000269|PubMed:11208866, ECO:0000269|PubMed:11535533, ECO:0000269|PubMed:17196174}.
Q9Y5Y4 PTGDR2 S339 ochoa Prostaglandin D2 receptor 2 (Chemoattractant receptor-homologous molecule expressed on Th2 cells) (G-protein coupled receptor 44) (CD antigen CD294) Receptor for prostaglandin D2 (PGD2). Coupled to the G(i)-protein. Receptor activation may result in pertussis toxin-sensitive decreases in cAMP levels and Ca(2+) mobilization. PI3K signaling is also implicated in mediating PTGDR2 effects. PGD2 induced receptor internalization. CRTH2 internalization can be regulated by diverse kinases such as, PKC, PKA, GRK2, GPRK5/GRK5 and GRK6. Receptor activation is responsible, at least in part, in immune regulation and allergic/inflammation responses. {ECO:0000269|PubMed:11208866, ECO:0000269|PubMed:11535533, ECO:0000269|PubMed:17196174}.
Q9Y623 MYH4 S181 ochoa Myosin-4 (Myosin heavy chain 2b) (MyHC-2b) (Myosin heavy chain 4) (Myosin heavy chain IIb) (MyHC-IIb) (Myosin heavy chain, skeletal muscle, fetal) Muscle contraction.
Q9Y6J0 CABIN1 S386 ochoa Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}.
Q9Y6J0 CABIN1 S2067 ochoa Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}.
P00491 PNP S163 Sugiyama Purine nucleoside phosphorylase (PNP) (EC 2.4.2.1) (Inosine phosphorylase) (Inosine-guanosine phosphorylase) Catalyzes the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate (PubMed:23438750, PubMed:9305964). Preferentially acts on 6-oxopurine nucleosides including inosine and guanosine (PubMed:9305964). {ECO:0000269|PubMed:23438750, ECO:0000269|PubMed:9305964}.
O14618 CCS S245 Sugiyama Copper chaperone for superoxide dismutase (Superoxide dismutase copper chaperone) Delivers copper to copper zinc superoxide dismutase (SOD1).
P06493 CDK1 S208 EPSD|PSP Cyclin-dependent kinase 1 (CDK1) (EC 2.7.11.22) (EC 2.7.11.23) (Cell division control protein 2 homolog) (Cell division protein kinase 1) (p34 protein kinase) Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition via association with multiple interphase cyclins (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30139873, PubMed:30704899). Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, KAT5, LMNA, LMNB, LBR, MKI67, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MLST8, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RBBP8/CtIP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2, CGAS and RUNX2 (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19202191, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25012651, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30704899, PubMed:32351706, PubMed:34741373). CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs (PubMed:18480403, PubMed:20360007). Essential for early stages of embryonic development (PubMed:18480403, PubMed:20360007). During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation (PubMed:18480403, PubMed:20360007, PubMed:2188730, PubMed:2344612, PubMed:30139873). Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis (PubMed:18480403, PubMed:20360007). Phosphorylates KRT5 during prometaphase and metaphase (By similarity). Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair (PubMed:20360007). Reactivated after successful DNA repair through WIP1-dependent signaling leading to CDC25A/B/C-mediated dephosphorylation and restoring cell cycle progression (PubMed:20395957). Catalyzes lamin (LMNA, LMNB1 and LMNB2) phosphorylation at the onset of mitosis, promoting nuclear envelope breakdown (PubMed:2188730, PubMed:2344612, PubMed:37788673). In proliferating cells, CDK1-mediated FOXO1 phosphorylation at the G2-M phase represses FOXO1 interaction with 14-3-3 proteins and thereby promotes FOXO1 nuclear accumulation and transcription factor activity, leading to cell death of postmitotic neurons (PubMed:18356527). The phosphorylation of beta-tubulins regulates microtubule dynamics during mitosis (PubMed:16371510). NEDD1 phosphorylation promotes PLK1-mediated NEDD1 phosphorylation and subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). In addition, CC2D1A phosphorylation regulates CC2D1A spindle pole localization and association with SCC1/RAD21 and centriole cohesion during mitosis (PubMed:20171170). The phosphorylation of Bcl-xL/BCL2L1 after prolongated G2 arrest upon DNA damage triggers apoptosis (PubMed:19917720). In contrast, CASP8 phosphorylation during mitosis prevents its activation by proteolysis and subsequent apoptosis (PubMed:20937773). This phosphorylation occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes (PubMed:20937773). EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing (PubMed:20935635). CALD1 phosphorylation promotes Schwann cell migration during peripheral nerve regeneration (By similarity). CDK1-cyclin-B complex phosphorylates NCKAP5L and mediates its dissociation from centrosomes during mitosis (PubMed:26549230). Regulates the amplitude of the cyclic expression of the core clock gene BMAL1 by phosphorylating its transcriptional repressor NR1D1, and this phosphorylation is necessary for SCF(FBXW7)-mediated ubiquitination and proteasomal degradation of NR1D1 (PubMed:27238018). Phosphorylates EML3 at 'Thr-881' which is essential for its interaction with HAUS augmin-like complex and TUBG1 (PubMed:30723163). Phosphorylates CGAS during mitosis, leading to its inhibition, thereby preventing CGAS activation by self DNA during mitosis (PubMed:32351706). Phosphorylates SKA3 on multiple sites during mitosis which promotes SKA3 binding to the NDC80 complex and anchoring of the SKA complex to kinetochores, to enable stable attachment of mitotic spindle microtubules to kinetochores (PubMed:28479321, PubMed:31804178, PubMed:32491969). {ECO:0000250|UniProtKB:P11440, ECO:0000250|UniProtKB:P39951, ECO:0000269|PubMed:16371510, ECO:0000269|PubMed:16407259, ECO:0000269|PubMed:16933150, ECO:0000269|PubMed:17459720, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:18480403, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19917720, ECO:0000269|PubMed:20171170, ECO:0000269|PubMed:20360007, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:20937773, ECO:0000269|PubMed:21063390, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23601106, ECO:0000269|PubMed:23602554, ECO:0000269|PubMed:25012651, ECO:0000269|PubMed:25556658, ECO:0000269|PubMed:26549230, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:27238018, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:28479321, ECO:0000269|PubMed:30139873, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:30723163, ECO:0000269|PubMed:31804178, ECO:0000269|PubMed:32351706, ECO:0000269|PubMed:32491969, ECO:0000269|PubMed:34741373, ECO:0000269|PubMed:37788673}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. {ECO:0000269|PubMed:21516087}.
O14910 LIN7A S135 Sugiyama Protein lin-7 homolog A (Lin-7A) (hLin-7) (Mammalian lin-seven protein 1) (MALS-1) (Tax interaction protein 33) (TIP-33) (Vertebrate lin-7 homolog 1) (Veli-1) Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. {ECO:0000250|UniProtKB:Q8JZS0, ECO:0000269|PubMed:12967566}.
P08236 GUSB S46 Sugiyama Beta-glucuronidase (EC 3.2.1.31) (Beta-G1) Plays an important role in the degradation of dermatan and keratan sulfates.
P14868 DARS1 S33 Sugiyama Aspartate--tRNA ligase, cytoplasmic (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS) (Cell proliferation-inducing gene 40 protein) Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. {ECO:0000250|UniProtKB:P15178}.
Q99816 TSG101 S229 Sugiyama Tumor susceptibility gene 101 protein (ESCRT-I complex subunit TSG101) Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Binds to ubiquitinated cargo proteins and is required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs). Mediates the association between the ESCRT-0 and ESCRT-I complex. Required for completion of cytokinesis; the function requires CEP55. May be involved in cell growth and differentiation. Acts as a negative growth regulator. Involved in the budding of many viruses through an interaction with viral proteins that contain a late-budding motif P-[ST]-A-P. This interaction is essential for viral particle budding of numerous retroviruses. Required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). It may also play a role in the extracellular release of microvesicles that differ from the exosomes (PubMed:22315426). {ECO:0000269|PubMed:11916981, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:21070952, ECO:0000269|PubMed:21757351, ECO:0000269|PubMed:22315426, ECO:0000269|PubMed:22660413}.
Q9H4F8 SMOC1 S65 Sugiyama SPARC-related modular calcium-binding protein 1 (Secreted modular calcium-binding protein 1) (SMOC-1) Plays essential roles in both eye and limb development. Probable regulator of osteoblast differentiation. {ECO:0000269|PubMed:20359165, ECO:0000269|PubMed:21194678, ECO:0000269|PubMed:21194680}.
Q9HAP6 LIN7B S120 Sugiyama Protein lin-7 homolog B (Lin-7B) (hLin7B) (Mammalian lin-seven protein 2) (MALS-2) (Vertebrate lin-7 homolog 2) (Veli-2) (hVeli2) Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. May increase the amplitude of ASIC3 acid-evoked currents by stabilizing the channel at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:O88951, ECO:0000269|PubMed:11742811}.
Q9NUP9 LIN7C S120 Sugiyama Protein lin-7 homolog C (Lin-7C) (Mammalian lin-seven protein 3) (MALS-3) (Vertebrate lin-7 homolog 3) (Veli-3) Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. {ECO:0000250|UniProtKB:O88952}.
P49588 AARS1 S188 Sugiyama Alanine--tRNA ligase, cytoplasmic (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS) (Protein lactyltransferase AARS1) (EC 6.-.-.-) (Renal carcinoma antigen NY-REN-42) Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala) (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:33909043). Also edits incorrectly charged tRNA(Ala) via its editing domain (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:29273753). In presence of high levels of lactate, also acts as a protein lactyltransferase that mediates lactylation of lysine residues in target proteins, such as TEAD1, TP53/p53 and YAP1 (PubMed:38512451, PubMed:38653238). Protein lactylation takes place in a two-step reaction: lactate is first activated by ATP to form lactate-AMP and then transferred to lysine residues of target proteins (PubMed:38512451, PubMed:38653238, PubMed:39322678). Acts as an inhibitor of TP53/p53 activity by catalyzing lactylation of TP53/p53 (PubMed:38653238). Acts as a positive regulator of the Hippo pathway by mediating lactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000269|PubMed:27622773, ECO:0000269|PubMed:27911835, ECO:0000269|PubMed:28493438, ECO:0000269|PubMed:29273753, ECO:0000269|PubMed:33909043, ECO:0000269|PubMed:38512451, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:39322678}.
Q16576 RBBP7 S163 Sugiyama Histone-binding protein RBBP7 (Histone acetyltransferase type B subunit 2) (Nucleosome-remodeling factor subunit RBAP46) (Retinoblastoma-binding protein 7) (RBBP-7) (Retinoblastoma-binding protein p46) Core histone-binding subunit that may target chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the type B histone acetyltransferase (HAT) complex, which is required for chromatin assembly following DNA replication; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling; and the PRC2/EED-EZH2 complex, which promotes repression of homeotic genes during development; and the NURF (nucleosome remodeling factor) complex. {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}.
Q9GZM8 NDEL1 S251 GPS6|SIGNOR Nuclear distribution protein nudE-like 1 (Protein Nudel) (Mitosin-associated protein 1) Required for organization of the cellular microtubule array and microtubule anchoring at the centrosome. May regulate microtubule organization at least in part by targeting the microtubule severing protein KATNA1 to the centrosome. Also positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus ends. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the centripetal motion of secretory vesicles and the coupling of the nucleus and centrosome. Also required during brain development for the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Plays a role, together with DISC1, in the regulation of neurite outgrowth. Required for mitosis in some cell types but appears to be dispensible for mitosis in cortical neuronal progenitors, which instead requires NDE1. Facilitates the polymerization of neurofilaments from the individual subunits NEFH and NEFL. Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). Plays a role, together with DISC1, in the regulation of neurite outgrowth (By similarity). May act as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000250|UniProtKB:Q78PB6, ECO:0000250|UniProtKB:Q9ERR1, ECO:0000269|PubMed:12556484, ECO:0000269|PubMed:14970193, ECO:0000269|PubMed:16291865, ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:34793709}.
O15075 DCLK1 S151 Sugiyama Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system.
O43615 TIMM44 S193 Sugiyama Mitochondrial import inner membrane translocase subunit TIM44 Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner (By similarity). Recruits mitochondrial HSP70 to drive protein translocation into the matrix using ATP as an energy source (By similarity). {ECO:0000250|UniProtKB:O35857, ECO:0000250|UniProtKB:Q01852}.
O15111 CHUK S414 Sugiyama Inhibitor of nuclear factor kappa-B kinase subunit alpha (I-kappa-B kinase alpha) (IKK-A) (IKK-alpha) (IkBKA) (IkappaB kinase) (EC 2.7.11.10) (Conserved helix-loop-helix ubiquitous kinase) (I-kappa-B kinase 1) (IKK-1) (IKK1) (Nuclear factor NF-kappa-B inhibitor kinase alpha) (NFKBIKA) (Transcription factor 16) (TCF-16) Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed:35952808, PubMed:9244310, PubMed:9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed:21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B-responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed:30217973). {ECO:0000250|UniProtKB:Q60680, ECO:0000269|PubMed:12789342, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17434128, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20501937, ECO:0000269|PubMed:21765415, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35952808, ECO:0000269|PubMed:9244310, ECO:0000269|PubMed:9252186, ECO:0000269|PubMed:9346484, ECO:0000303|PubMed:18626576}.
Q6DD87 ZNF787 S104 Sugiyama Zinc finger protein 787 (TTF-I-interacting peptide 20) May be involved in transcriptional regulation.
P04629 NTRK1 S498 Sugiyama High affinity nerve growth factor receptor (EC 2.7.10.1) (Neurotrophic tyrosine kinase receptor type 1) (TRK1-transforming tyrosine kinase protein) (Tropomyosin-related kinase A) (Tyrosine kinase receptor) (Tyrosine kinase receptor A) (Trk-A) (gp140trk) (p140-TrkA) Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand (PubMed:1281417, PubMed:15488758, PubMed:17196528, PubMed:1849459, PubMed:1850821, PubMed:22649032, PubMed:27445338, PubMed:8325889). Can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival (By similarity). Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation (PubMed:1281417). Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors. {ECO:0000250|UniProtKB:P35739, ECO:0000250|UniProtKB:Q3UFB7, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:1281417, ECO:0000269|PubMed:15488758, ECO:0000269|PubMed:17196528, ECO:0000269|PubMed:1849459, ECO:0000269|PubMed:1850821, ECO:0000269|PubMed:22649032, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:27676246, ECO:0000269|PubMed:8155326, ECO:0000269|PubMed:8325889}.; FUNCTION: [Isoform TrkA-III]: Resistant to NGF, it constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed. {ECO:0000269|PubMed:15488758}.
P41143 OPRD1 S344 ELM Delta-type opioid receptor (D-OR-1) (DOR-1) G-protein coupled receptor that functions as a receptor for endogenous enkephalins and for a subset of other opioids. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling leads to the inhibition of adenylate cyclase activity. Inhibits neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance. Plays a role in the perception of pain and in opiate-mediated analgesia. Plays a role in developing analgesic tolerance to morphine. {ECO:0000269|PubMed:22184124, ECO:0000269|PubMed:7808419, ECO:0000269|PubMed:8201839}.
P10721 KIT S729 Sugiyama Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}.
Q9BTE6 AARSD1 S242 Sugiyama Alanyl-tRNA editing protein Aarsd1 (Alanyl-tRNA synthetase domain-containing protein 1) Functions in trans to edit the amino acid moiety from incorrectly charged tRNA(Ala). {ECO:0000250}.
P52742 ZNF135 S308 Sugiyama Zinc finger protein 135 (Zinc finger protein 61) (Zinc finger protein 78-like 1) Plays a role in the regulation of cell morphology and cytoskeletal organization. May be involved in transcriptional regulation. {ECO:0000269|PubMed:21834987}.
Q99614 TTC1 S155 Sugiyama Tetratricopeptide repeat protein 1 (TPR repeat protein 1) None
P07384 CAPN1 S418 EPSD|PSP Calpain-1 catalytic subunit (EC 3.4.22.52) (Calcium-activated neutral proteinase 1) (CANP 1) (Calpain mu-type) (Calpain-1 large subunit) (Cell proliferation-inducing gene 30 protein) (Micromolar-calpain) (muCANP) Calcium-regulated non-lysosomal thiol-protease which catalyzes limited proteolysis of substrates involved in cytoskeletal remodeling and signal transduction (PubMed:19617626, PubMed:21531719, PubMed:2400579). Proteolytically cleaves CTBP1 at 'Asn-375', 'Gly-387' and 'His-409' (PubMed:23707407). Cleaves and activates caspase-7 (CASP7) (PubMed:19617626). {ECO:0000269|PubMed:19617626, ECO:0000269|PubMed:21531719, ECO:0000269|PubMed:23707407, ECO:0000269|PubMed:2400579}.
Q92747 ARPC1A S292 Sugiyama Actin-related protein 2/3 complex subunit 1A (SOP2-like protein) Probably functions as a component of the Arp2/3 complex which is involved in regulation of actin polymerization and together with an activating nucleation-promoting factor (NPF) mediates the formation of branched actin networks. {ECO:0000305|PubMed:8978670}.
P17948 FLT1 S1295 Sugiyama Vascular endothelial growth factor receptor 1 (VEGFR-1) (EC 2.7.10.1) (Fms-like tyrosine kinase 1) (FLT-1) (Tyrosine-protein kinase FRT) (Tyrosine-protein kinase receptor FLT) (FLT) (Vascular permeability factor receptor) Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. Acts as a positive regulator of postnatal retinal hyaloid vessel regression (By similarity). May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1 (PubMed:16685275). {ECO:0000250|UniProtKB:P35969, ECO:0000269|PubMed:11141500, ECO:0000269|PubMed:11312102, ECO:0000269|PubMed:11811792, ECO:0000269|PubMed:12796773, ECO:0000269|PubMed:14633857, ECO:0000269|PubMed:15735759, ECO:0000269|PubMed:16685275, ECO:0000269|PubMed:18079407, ECO:0000269|PubMed:18515749, ECO:0000269|PubMed:18583712, ECO:0000269|PubMed:18593464, ECO:0000269|PubMed:20512933, ECO:0000269|PubMed:20551949, ECO:0000269|PubMed:21752276, ECO:0000269|PubMed:7824266, ECO:0000269|PubMed:8248162, ECO:0000269|PubMed:8605350, ECO:0000269|PubMed:9299537, ECO:0000269|Ref.11}.; FUNCTION: [Isoform 1]: Phosphorylates PLCG. {ECO:0000269|PubMed:9299537}.; FUNCTION: [Isoform 2]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 3]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 4]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 7]: Has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion. {ECO:0000269|PubMed:20512933}.
O60343 TBC1D4 S759 Sugiyama TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}.
P04908 H2AC4 S20 Sugiyama Histone H2A type 1-B/E (Histone H2A.2) (Histone H2A/a) (Histone H2A/m) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P16104 H2AX S20 Sugiyama Histone H2AX (H2a/x) (Histone H2A.X) Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Required for checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by C-terminal phosphorylation. {ECO:0000269|PubMed:10959836, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:17709392, ECO:0000269|PubMed:26438602}.
Q16777 H2AC20 S20 Sugiyama Histone H2A type 2-C (H2A-clustered histone 20) (Histone H2A-GL101) (Histone H2A/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6FI13 H2AC18 S20 Sugiyama Histone H2A type 2-A (H2A-clustered histone 18) (H2A-clustered histone 19) (Histone H2A.2) (Histone H2A/o) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q7L7L0 H2AC25 S20 Sugiyama Histone H2A type 3 (H2A-clustered histone 25) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8IUE6 H2AC21 S20 Sugiyama Histone H2A type 2-B (H2A-clustered histone 21) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q93077 H2AC6 S20 Sugiyama Histone H2A type 1-C (H2A-clustered histone 6) (Histone H2A/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q96QV6 H2AC1 S20 Sugiyama Histone H2A type 1-A (H2A-clustered histone 1) (Histone H2A/r) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q9BTM1 H2AJ S20 Sugiyama Histone H2A.J (H2a/j) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P49591 SARS1 S394 Sugiyama Serine--tRNA ligase, cytoplasmic (EC 6.1.1.11) (Seryl-tRNA synthetase) (SerRS) (Seryl-tRNA(Ser/Sec) synthetase) Catalyzes the attachment of serine to tRNA(Ser) in a two-step reaction: serine is first activated by ATP to form Ser-AMP and then transferred to the acceptor end of tRNA(Ser) (PubMed:22353712, PubMed:24095058, PubMed:26433229, PubMed:28236339, PubMed:34570399, PubMed:36041817, PubMed:9431993). Is probably also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec) (PubMed:26433229, PubMed:28236339, PubMed:34570399, PubMed:9431993). In the nucleus, binds to the VEGFA core promoter and prevents MYC binding and transcriptional activation by MYC (PubMed:24940000). Recruits SIRT2 to the VEGFA promoter, promoting deacetylation of histone H4 at 'Lys-16' (H4K16). Thereby, inhibits the production of VEGFA and sprouting angiogenesis mediated by VEGFA (PubMed:19423847, PubMed:19423848, PubMed:24940000). {ECO:0000269|PubMed:19423847, ECO:0000269|PubMed:19423848, ECO:0000269|PubMed:22353712, ECO:0000269|PubMed:24095058, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:26433229, ECO:0000269|PubMed:28236339, ECO:0000269|PubMed:34570399, ECO:0000269|PubMed:36041817, ECO:0000269|PubMed:9431993}.
Q13347 EIF3I S217 Sugiyama Eukaryotic translation initiation factor 3 subunit I (eIF3i) (Eukaryotic translation initiation factor 3 subunit 2) (TGF-beta receptor-interacting protein 1) (TRIP-1) (eIF-3-beta) (eIF3 p36) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03008, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
Q9HAS0 C17orf75 S42 Sugiyama Protein Njmu-R1 As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). May have a role in spermatogenesis. {ECO:0000269|PubMed:29426865}.
Q9HCN8 SDF2L1 S75 Sugiyama Stromal cell-derived factor 2-like protein 1 (SDF2-like protein 1) (PWP1-interacting protein 8) None
P09132 SRP19 S69 Sugiyama Signal recognition particle 19 kDa protein (SRP19) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (By similarity). Binds directly to 7SL RNA (By similarity). Mediates binding of SRP54 to the SRP complex (By similarity). {ECO:0000250|UniProtKB:J9PAS6}.
O75821 EIF3G S223 Sugiyama Eukaryotic translation initiation factor 3 subunit G (eIF3g) (Eukaryotic translation initiation factor 3 RNA-binding subunit) (eIF-3 RNA-binding subunit) (Eukaryotic translation initiation factor 3 subunit 4) (eIF-3-delta) (eIF3 p42) (eIF3 p44) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). This subunit can bind 18S rRNA. {ECO:0000255|HAMAP-Rule:MF_03006, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
P30101 PDIA3 S169 Sugiyama Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
P49336 CDK8 S244 Sugiyama Cyclin-dependent kinase 8 (EC 2.7.11.22) (EC 2.7.11.23) (Cell division protein kinase 8) (Mediator complex subunit CDK8) (Mediator of RNA polymerase II transcription subunit CDK8) (Protein kinase K35) Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. Phosphorylates the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAp II), which may inhibit the formation of a transcription initiation complex. Phosphorylates CCNH leading to down-regulation of the TFIIH complex and transcriptional repression. Recruited through interaction with MAML1 to hyperphosphorylate the intracellular domain of NOTCH, leading to its degradation. {ECO:0000269|PubMed:10993082, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:30905399}.
O14640 DVL1 S139 SIGNOR Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ).
Q32M45 ANO4 S849 Sugiyama Anoctamin-4 (Transmembrane protein 16D) Has calcium-dependent phospholipid scramblase activity; scrambles phosphatidylserine, phosphatidylcholine and galactosylceramide (By similarity). Does not exhibit calcium-activated chloride channel (CaCC) activity (By similarity). {ECO:0000250|UniProtKB:Q8C5H1}.
Q9Y266 NUDC S60 Sugiyama Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q00526 CDK3 S207 iPTMNet Cyclin-dependent kinase 3 (EC 2.7.11.22) (Cell division protein kinase 3) Serine/threonine-protein kinase that plays a critical role in the control of the eukaryotic cell cycle; involved in G0-G1 and G1-S cell cycle transitions. Interacts with CCNC/cyclin-C during interphase. Phosphorylates histone H1, ATF1, RB1 and CABLES1. ATF1 phosphorylation triggers ATF1 transactivation and transcriptional activities, and promotes cell proliferation and transformation. CDK3/cyclin-C mediated RB1 phosphorylation is required for G0-G1 transition. Promotes G1-S transition probably by contributing to the activation of E2F1, E2F2 and E2F3 in a RB1-independent manner. {ECO:0000269|PubMed:15084261, ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:8846921}.
Q8TDN4 CABLES1 S273 SIGNOR CDK5 and ABL1 enzyme substrate 1 (Interactor with CDK3 1) (Ik3-1) Cyclin-dependent kinase binding protein. Enhances cyclin-dependent kinase tyrosine phosphorylation by nonreceptor tyrosine kinases, such as that of CDK5 by activated ABL1, which leads to increased CDK5 activity and is critical for neuronal development, and that of CDK2 by WEE1, which leads to decreased CDK2 activity and growth inhibition. Positively affects neuronal outgrowth. Plays a role as a regulator for p53/p73-induced cell death (By similarity). {ECO:0000250}.
P18077 RPL35A S90 Sugiyama Large ribosomal subunit protein eL33 (60S ribosomal protein L35a) (Cell growth-inhibiting gene 33 protein) Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). Required for the proliferation and viability of hematopoietic cells (PubMed:18535205). {ECO:0000269|PubMed:18535205, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
O00625 PIR S225 Sugiyama Pirin (EC 1.13.11.24) (Probable quercetin 2,3-dioxygenase PIR) (Probable quercetinase) Transcriptional coregulator of NF-kappa-B which facilitates binding of NF-kappa-B proteins to target kappa-B genes in a redox-state-dependent manner. May be required for efficient terminal myeloid maturation of hematopoietic cells. Has quercetin 2,3-dioxygenase activity (in vitro). {ECO:0000269|PubMed:15951572, ECO:0000269|PubMed:17288615, ECO:0000269|PubMed:20010624, ECO:0000269|PubMed:20711196, ECO:0000269|PubMed:23716661}.
P51114 FXR1 S60 Sugiyama RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}.
P62829 RPL23 S41 Sugiyama Large ribosomal subunit protein uL14 (60S ribosomal protein L17) (60S ribosomal protein L23) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P04040 CAT S120 Sugiyama Catalase (EC 1.11.1.6) Catalyzes the degradation of hydrogen peroxide (H(2)O(2)) generated by peroxisomal oxidases to water and oxygen, thereby protecting cells from the toxic effects of hydrogen peroxide (PubMed:7882369). Promotes growth of cells including T-cells, B-cells, myeloid leukemia cells, melanoma cells, mastocytoma cells and normal and transformed fibroblast cells (PubMed:7882369). {ECO:0000269|PubMed:7882369}.
P08151 GLI1 S521 GPS6 Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}.
Q5JRX3 PITRM1 S997 Sugiyama Presequence protease, mitochondrial (hPreP) (EC 3.4.24.-) (Pitrilysin metalloproteinase 1) (Metalloprotease 1) (hMP1) Metalloendopeptidase of the mitochondrial matrix that functions in peptide cleavage and degradation rather than in protein processing (PubMed:10360838, PubMed:16849325, PubMed:19196155, PubMed:24931469). Has an ATP-independent activity (PubMed:16849325). Specifically cleaves peptides in the range of 5 to 65 residues (PubMed:19196155). Shows a preference for cleavage after small polar residues and before basic residues, but without any positional preference (PubMed:10360838, PubMed:19196155, PubMed:24931469). Degrades the transit peptides of mitochondrial proteins after their cleavage (PubMed:19196155). Also degrades other unstructured peptides (PubMed:19196155). It is also able to degrade amyloid-beta protein 40, one of the peptides produced by APP processing, when it accumulates in mitochondrion (PubMed:16849325, PubMed:24931469, PubMed:26697887). It is a highly efficient protease, at least toward amyloid-beta protein 40 (PubMed:24931469, PubMed:29383861, PubMed:29764912). Cleaves that peptide at a specific position and is probably not processive, releasing digested peptides intermediates that can be further cleaved subsequently (PubMed:24931469). It is also able to degrade amyloid-beta protein 42 (PubMed:29764912). {ECO:0000269|PubMed:10360838, ECO:0000269|PubMed:16849325, ECO:0000269|PubMed:19196155, ECO:0000269|PubMed:24931469, ECO:0000269|PubMed:26697887, ECO:0000269|PubMed:29383861, ECO:0000269|PubMed:29764912}.
O15067 PFAS S407 Sugiyama Phosphoribosylformylglycinamidine synthase (FGAM synthase) (FGAMS) (EC 6.3.5.3) (Formylglycinamide ribonucleotide amidotransferase) (FGAR amidotransferase) (FGAR-AT) (Formylglycinamide ribotide amidotransferase) (Phosphoribosylformylglycineamide amidotransferase) Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. {ECO:0000305|PubMed:10548741}.
Q9NPD3 EXOSC4 S78 Sugiyama Exosome complex component RRP41 (Exosome component 4) (Ribosomal RNA-processing protein 41) (p12A) Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC4 binds to ARE-containing RNAs. {ECO:0000269|PubMed:16912217, ECO:0000269|PubMed:17545563, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:20368444, ECO:0000269|PubMed:21255825}.
P49641 MAN2A2 S662 Sugiyama Alpha-mannosidase 2x (EC 3.2.1.114) (Alpha-mannosidase IIx) (Man IIx) (Mannosidase alpha class 2A member 2) (Mannosyl-oligosaccharide 1,3-1,6-alpha-mannosidase) Catalyzes the first committed step in the biosynthesis of complex N-glycans. It controls conversion of high mannose to complex N-glycans; the final hydrolytic step in the N-glycan maturation pathway.
Q15303 ERBB4 S1263 Sugiyama Receptor tyrosine-protein kinase erbB-4 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-4) (Tyrosine kinase-type cell surface receptor HER4) (p180erbB4) [Cleaved into: ERBB4 intracellular domain (4ICD) (E4ICD) (s80HER4)] Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous system, especially for normal neural crest cell migration and normal axon guidance. Required for mammary gland differentiation, induction of milk proteins and lactation. Acts as cell-surface receptor for the neuregulins NRG1, NRG2, NRG3 and NRG4 and the EGF family members BTC, EREG and HBEGF. Ligand binding triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Ligand specificity and signaling is modulated by alternative splicing, proteolytic processing, and by the formation of heterodimers with other ERBB family members, thereby creating multiple combinations of intracellular phosphotyrosines that trigger ligand- and context-specific cellular responses. Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Isoform JM-A CYT-1 and isoform JM-B CYT-1 phosphorylate PIK3R1, leading to the activation of phosphatidylinositol 3-kinase and AKT1 and protect cells against apoptosis. Isoform JM-A CYT-1 and isoform JM-B CYT-1 mediate reorganization of the actin cytoskeleton and promote cell migration in response to NRG1. Isoform JM-A CYT-2 and isoform JM-B CYT-2 lack the phosphotyrosine that mediates interaction with PIK3R1, and hence do not phosphorylate PIK3R1, do not protect cells against apoptosis, and do not promote reorganization of the actin cytoskeleton and cell migration. Proteolytic processing of isoform JM-A CYT-1 and isoform JM-A CYT-2 gives rise to the corresponding soluble intracellular domains (4ICD) that translocate to the nucleus, promote nuclear import of STAT5A, activation of STAT5A, mammary epithelium differentiation, cell proliferation and activation of gene expression. The ERBB4 soluble intracellular domains (4ICD) colocalize with STAT5A at the CSN2 promoter to regulate transcription of milk proteins during lactation. The ERBB4 soluble intracellular domains can also translocate to mitochondria and promote apoptosis. {ECO:0000269|PubMed:10348342, ECO:0000269|PubMed:10353604, ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:10722704, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:11178955, ECO:0000269|PubMed:11390655, ECO:0000269|PubMed:12807903, ECO:0000269|PubMed:15534001, ECO:0000269|PubMed:15746097, ECO:0000269|PubMed:16251361, ECO:0000269|PubMed:16778220, ECO:0000269|PubMed:16837552, ECO:0000269|PubMed:17486069, ECO:0000269|PubMed:17638867, ECO:0000269|PubMed:19098003, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:8383326, ECO:0000269|PubMed:8617750, ECO:0000269|PubMed:9135143, ECO:0000269|PubMed:9168115, ECO:0000269|PubMed:9334263}.
Q92731 ESR2 S165 GPS6 Estrogen receptor beta (ER-beta) (Nuclear receptor subfamily 3 group A member 2) Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1/ER-alpha, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). {ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:29261182, ECO:0000269|PubMed:30113650, ECO:0000269|PubMed:9325313}.; FUNCTION: [Isoform 2]: Lacks ligand binding ability and has no or only very low ERE binding activity resulting in the loss of ligand-dependent transactivation ability. {ECO:0000269|PubMed:9671811}.
Q5VUE5 C1orf53 S67 Sugiyama Uncharacterized protein C1orf53 None
P18754 RCC1 S129 Sugiyama Regulator of chromosome condensation (Cell cycle regulatory protein) (Chromosome condensation protein 1) Guanine-nucleotide releasing factor that promotes the exchange of Ran-bound GDP by GTP, and thereby plays an important role in RAN-mediated functions in nuclear import and mitosis (PubMed:11336674, PubMed:17435751, PubMed:1944575, PubMed:20668449, PubMed:22215983, PubMed:29042532). Contributes to the generation of high levels of chromosome-associated, GTP-bound RAN, which is important for mitotic spindle assembly and normal progress through mitosis (PubMed:12194828, PubMed:17435751, PubMed:22215983). Via its role in maintaining high levels of GTP-bound RAN in the nucleus, contributes to the release of cargo proteins from importins after nuclear import (PubMed:22215983). Involved in the regulation of onset of chromosome condensation in the S phase (PubMed:3678831). Binds both to the nucleosomes and double-stranded DNA (PubMed:17435751, PubMed:18762580). {ECO:0000269|PubMed:11336674, ECO:0000269|PubMed:12194828, ECO:0000269|PubMed:17435751, ECO:0000269|PubMed:18762580, ECO:0000269|PubMed:1944575, ECO:0000269|PubMed:20668449, ECO:0000269|PubMed:22215983, ECO:0000269|PubMed:29042532, ECO:0000269|PubMed:3678831}.
P09497 CLTB S206 Sugiyama Clathrin light chain B (Lcb) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles.
Q9C0C2 TNKS1BP1 S1110 Sugiyama 182 kDa tankyrase-1-binding protein None
Q09028 RBBP4 S164 Sugiyama Histone-binding protein RBBP4 (Chromatin assembly factor 1 subunit C) (CAF-1 subunit C) (Chromatin assembly factor I p48 subunit) (CAF-I 48 kDa subunit) (CAF-I p48) (Nucleosome-remodeling factor subunit RBAP48) (Retinoblastoma-binding protein 4) (RBBP-4) (Retinoblastoma-binding protein p48) Core histone-binding subunit that may target chromatin assembly factors, chromatin remodeling factors and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA (PubMed:10866654). Component of the chromatin assembly factor 1 (CAF-1) complex, which is required for chromatin assembly following DNA replication and DNA repair (PubMed:8858152). Component of the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression (PubMed:9150135). Component of the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling (PubMed:16428440, PubMed:28977666, PubMed:39460621). Component of the PRC2 complex, which promotes repression of homeotic genes during development (PubMed:29499137, PubMed:31959557). Component of the NURF (nucleosome remodeling factor) complex (PubMed:14609955, PubMed:15310751). {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557, ECO:0000269|PubMed:39460621, ECO:0000269|PubMed:8858152, ECO:0000269|PubMed:9150135}.
Q9UHV9 PFDN2 S22 Sugiyama Prefoldin subunit 2 Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins. {ECO:0000269|PubMed:9630229}.
Q7KZF4 SND1 S52 Sugiyama Staphylococcal nuclease domain-containing protein 1 (EC 3.1.31.1) (100 kDa coactivator) (EBNA2 coactivator p100) (Tudor domain-containing protein 11) (p100 co-activator) Endonuclease that mediates miRNA decay of both protein-free and AGO2-loaded miRNAs (PubMed:18453631, PubMed:28546213). As part of its function in miRNA decay, regulates mRNAs involved in G1-to-S phase transition (PubMed:28546213). Functions as a bridging factor between STAT6 and the basal transcription factor (PubMed:12234934). Plays a role in PIM1 regulation of MYB activity (PubMed:9809063). Functions as a transcriptional coactivator for STAT5 (By similarity). {ECO:0000250|UniProtKB:Q78PY7, ECO:0000269|PubMed:12234934, ECO:0000269|PubMed:18453631, ECO:0000269|PubMed:28546213, ECO:0000269|PubMed:9809063}.; FUNCTION: (Microbial infection) Functions as a transcriptional coactivator for the Epstein-Barr virus nuclear antigen 2 (EBNA2). {ECO:0000269|PubMed:7651391}.; FUNCTION: (Microbial infection) Promotes SARS-CoV-2 RNA synthesis by binding to negative-sense RNA and the viral protein nsp9. {ECO:0000269|PubMed:37794589}.
Q99575 POP1 S127 Sugiyama Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q8N568 DCLK2 S143 Sugiyama Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}.
Q8NE63 HIPK4 S298 Sugiyama Homeodomain-interacting protein kinase 4 (EC 2.7.11.1) Protein kinase that phosphorylates human TP53 at Ser-9, and thus induces TP53 repression of BIRC5 promoter (By similarity). May act as a corepressor of transcription factors (Potential). {ECO:0000250, ECO:0000305}.
Q8TD08 MAPK15 S311 Sugiyama Mitogen-activated protein kinase 15 (MAP kinase 15) (MAPK 15) (EC 2.7.11.24) (Extracellular signal-regulated kinase 7) (ERK-7) (Extracellular signal-regulated kinase 8) (ERK-8) Atypical MAPK protein that regulates several process such as autophagy, ciliogenesis, protein trafficking/secretion and genome integrity, in a kinase activity-dependent manner (PubMed:20733054, PubMed:21847093, PubMed:22948227, PubMed:24618899, PubMed:29021280). Controls both, basal and starvation-induced autophagy throught its interaction with GABARAP, MAP1LC3B and GABARAPL1 leading to autophagosome formation, SQSTM1 degradation and reduced MAP1LC3B inhibitory phosphorylation (PubMed:22948227). Regulates primary cilium formation and the localization of ciliary proteins involved in cilium structure, transport, and signaling (PubMed:29021280). Prevents the relocation of the sugar-adding enzymes from the Golgi to the endoplasmic reticulum, thereby restricting the production of sugar-coated proteins (PubMed:24618899). Upon amino-acid starvation, mediates transitional endoplasmic reticulum site disassembly and inhibition of secretion (PubMed:21847093). Binds to chromatin leading to MAPK15 activation and interaction with PCNA, that which protects genomic integrity by inhibiting MDM2-mediated degradation of PCNA (PubMed:20733054). Regulates DA transporter (DAT) activity and protein expression via activation of RhoA (PubMed:28842414). In response to H(2)O(2) treatment phosphorylates ELAVL1, thus preventing it from binding to the PDCD4 3'UTR and rendering the PDCD4 mRNA accessible to miR-21 and leading to its degradation and loss of protein expression (PubMed:26595526). Also functions in a kinase activity-independent manner as a negative regulator of growth (By similarity). Phosphorylates in vitro FOS and MBP (PubMed:11875070, PubMed:16484222, PubMed:19166846, PubMed:20638370). During oocyte maturation, plays a key role in the microtubule organization and meiotic cell cycle progression in oocytes, fertilized eggs, and early embryos (By similarity). Interacts with ESRRA promoting its re-localization from the nucleus to the cytoplasm and then prevents its transcriptional activity (PubMed:21190936). {ECO:0000250|UniProtKB:Q80Y86, ECO:0000250|UniProtKB:Q9Z2A6, ECO:0000269|PubMed:11875070, ECO:0000269|PubMed:16484222, ECO:0000269|PubMed:19166846, ECO:0000269|PubMed:20638370, ECO:0000269|PubMed:20733054, ECO:0000269|PubMed:21190936, ECO:0000269|PubMed:21847093, ECO:0000269|PubMed:22948227, ECO:0000269|PubMed:24618899, ECO:0000269|PubMed:26595526, ECO:0000269|PubMed:28842414, ECO:0000269|PubMed:29021280}.
Q96PF2 TSSK2 S153 Sugiyama Testis-specific serine/threonine-protein kinase 2 (TSK-2) (TSK2) (TSSK-2) (Testis-specific kinase 2) (EC 2.7.11.1) (DiGeorge syndrome protein G) (DGS-G) (Serine/threonine-protein kinase 22B) Testis-specific serine/threonine-protein kinase required during spermatid development. Phosphorylates TSKS at 'Ser-288' and SPAG16. Involved in the late stages of spermatogenesis, during the reconstruction of the cytoplasm. During spermatogenesis, required for the transformation of a ring-shaped structure around the base of the flagellum originating from the chromatoid body. {ECO:0000269|PubMed:15044604, ECO:0000269|PubMed:18533145, ECO:0000269|PubMed:20729278}.
P12109 COL6A1 S201 Sugiyama Collagen alpha-1(VI) chain Collagen VI acts as a cell-binding protein.
Q9NW75 GPATCH2 S58 Sugiyama G patch domain-containing protein 2 Enhances the ATPase activity of DHX15 in vitro. {ECO:0000269|PubMed:19432882}.
P60484 PTEN S179 SIGNOR Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (EC 3.1.3.16) (EC 3.1.3.48) (EC 3.1.3.67) (Inositol polyphosphate 3-phosphatase) (EC 3.1.3.-) (Mutated in multiple advanced cancers 1) (Phosphatase and tensin homolog) Dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins (PubMed:9187108, PubMed:9256433, PubMed:9616126). Also functions as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring of PtdIns(3,4,5)P3/phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4)P2/phosphatidylinositol 3,4-diphosphate and PtdIns3P/phosphatidylinositol 3-phosphate with a preference for PtdIns(3,4,5)P3 (PubMed:16824732, PubMed:26504226, PubMed:9593664, PubMed:9811831). Furthermore, this enzyme can also act as a cytosolic inositol 3-phosphatase acting on Ins(1,3,4,5,6)P5/inositol 1,3,4,5,6 pentakisphosphate and possibly Ins(1,3,4,5)P4/1D-myo-inositol 1,3,4,5-tetrakisphosphate (PubMed:11418101, PubMed:15979280). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (PubMed:31492966, PubMed:37279284). The unphosphorylated form cooperates with MAGI2 to suppress AKT1 activation (PubMed:11707428). In motile cells, suppresses the formation of lateral pseudopods and thereby promotes cell polarization and directed movement (PubMed:22279049). Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation (PubMed:22279049). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces PTEN phosphorylation which changes its binding preference from the p85 regulatory subunit of the PI3K kinase complex to DLC1 and results in translocation of the PTEN-DLC1 complex to the posterior of migrating cells to promote RHOA activation (PubMed:26166433). Meanwhile, TNS3 switches binding preference from DLC1 to p85 and the TNS3-p85 complex translocates to the leading edge of migrating cells to activate RAC1 activation (PubMed:26166433). Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Involved in the regulation of synaptic function in excitatory hippocampal synapses. Recruited to the postsynaptic membrane upon NMDA receptor activation, is required for the modulation of synaptic activity during plasticity. Enhancement of lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses, activity required for NMDA receptor-dependent long-term depression (LTD) (By similarity). May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability (PubMed:10468583, PubMed:18716620). {ECO:0000250|UniProtKB:O08586, ECO:0000250|UniProtKB:O54857, ECO:0000269|PubMed:10468583, ECO:0000269|PubMed:11418101, ECO:0000269|PubMed:11707428, ECO:0000269|PubMed:15979280, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26504226, ECO:0000269|PubMed:31492966, ECO:0000269|PubMed:37279284, ECO:0000269|PubMed:9187108, ECO:0000269|PubMed:9256433, ECO:0000269|PubMed:9593664, ECO:0000269|PubMed:9616126, ECO:0000269|PubMed:9811831}.; FUNCTION: [Isoform alpha]: Functional kinase, like isoform 1 it antagonizes the PI3K-AKT/PKB signaling pathway. Plays a role in mitochondrial energetic metabolism by promoting COX activity and ATP production, via collaboration with isoform 1 in increasing protein levels of PINK1. {ECO:0000269|PubMed:23744781}.
Q9BYP7 WNK3 S47 Sugiyama Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}.
Q9HBH9 MKNK2 S394 Sugiyama MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}.
Q9NRM7 LATS2 S839 Sugiyama Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}.
Q9P2K8 EIF2AK4 S1049 Sugiyama eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}.
A6NC98 CCDC88B S1408 ochoa Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}.
A6NC98 CCDC88B S1410 ochoa Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}.
H0YJW9 None S22 ochoa Uncharacterized protein None
K7ERJ3 None S30 ochoa KS6B1 kinase None
O00182 LGALS9 S286 ochoa Galectin-9 (Gal-9) (Ecalectin) (Tumor antigen HOM-HD-21) Binds galactosides (PubMed:18005988). Has high affinity for the Forssman pentasaccharide (PubMed:18005988). Ligand for HAVCR2/TIM3 (PubMed:16286920). Binding to HAVCR2 induces T-helper type 1 lymphocyte (Th1) death (PubMed:16286920). Also stimulates bactericidal activity in infected macrophages by causing macrophage activation and IL1B secretion which restricts intracellular bacterial growth (By similarity). Ligand for P4HB; the interaction retains P4HB at the cell surface of Th2 T-helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). Ligand for CD44; the interaction enhances binding of SMAD3 to the FOXP3 promoter, leading to up-regulation of FOXP3 expression and increased induced regulatory T (iTreg) cell stability and suppressive function (By similarity). Promotes ability of mesenchymal stromal cells to suppress T-cell proliferation (PubMed:23817958). Expands regulatory T-cells and induces cytotoxic T-cell apoptosis following virus infection (PubMed:20209097). Activates ERK1/2 phosphorylation inducing cytokine (IL-6, IL-8, IL-12) and chemokine (CCL2) production in mast and dendritic cells (PubMed:16116184, PubMed:24465902). Inhibits degranulation and induces apoptosis of mast cells (PubMed:24465902). Induces maturation and migration of dendritic cells (PubMed:16116184, PubMed:25754930). Inhibits natural killer (NK) cell function (PubMed:23408620). Can transform NK cell phenotype from peripheral to decidual during pregnancy (PubMed:25578313). Astrocyte derived galectin-9 enhances microglial TNF production (By similarity). May play a role in thymocyte-epithelial interactions relevant to the biology of the thymus. May provide the molecular basis for urate flux across cell membranes, allowing urate that is formed during purine metabolism to efflux from cells and serving as an electrogenic transporter that plays an important role in renal and gastrointestinal urate excretion (By similarity). Highly selective to the anion urate (By similarity). {ECO:0000250|UniProtKB:O08573, ECO:0000250|UniProtKB:P97840, ECO:0000269|PubMed:16116184, ECO:0000269|PubMed:16286920, ECO:0000269|PubMed:18005988, ECO:0000269|PubMed:18977853, ECO:0000269|PubMed:20209097, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:23408620, ECO:0000269|PubMed:23817958, ECO:0000269|PubMed:24465902, ECO:0000269|PubMed:25578313, ECO:0000269|PubMed:25754930}.; FUNCTION: [Isoform 2]: Acts as an eosinophil chemoattractant (PubMed:9642261). It also inhibits angiogenesis (PubMed:24333696). Suppresses IFNG production by natural killer cells (By similarity). {ECO:0000250|UniProtKB:O08573, ECO:0000269|PubMed:24333696, ECO:0000269|PubMed:9642261}.
O00192 ARVCF S902 ochoa Splicing regulator ARVCF (Armadillo repeat protein deleted in velo-cardio-facial syndrome) Contributes to the regulation of alternative splicing of pre-mRNAs. {ECO:0000269|PubMed:24644279}.
O14641 DVL2 S155 ochoa|psp Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}.
O14646 CHD1 S1102 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O14647 CHD2 S130 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14681 EI24 S56 ochoa Etoposide-induced protein 2.4 homolog (p53-induced gene 8 protein) Acts as a negative growth regulator via p53-mediated apoptosis pathway. Regulates formation of degradative autolysosomes during autophagy (By similarity). {ECO:0000250}.
O14974 PPP1R12A S680 ochoa|psp Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}.
O15213 WDR46 S560 ochoa WD repeat-containing protein 46 (WD repeat-containing protein BING4) Scaffold component of the nucleolar structure. Required for localization of DDX21 and NCL to the granular compartment of the nucleolus (PubMed:23848194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23848194, ECO:0000269|PubMed:34516797}.
O43166 SIPA1L1 S161 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43167 ZBTB24 S278 ochoa Zinc finger and BTB domain-containing protein 24 (Zinc finger protein 450) May be involved in BMP2-induced transcription. {ECO:0000250}.
O60237 PPP1R12B S790 ochoa Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}.
O60353 FZD6 S641 ochoa Frizzled-6 (Fz-6) (hFz6) Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Together with FZD3, is involved in the neural tube closure and plays a role in the regulation of the establishment of planar cell polarity (PCP), particularly in the orientation of asymmetric bundles of stereocilia on the apical faces of a subset of auditory and vestibular sensory cells located in the inner ear (By similarity). {ECO:0000250|UniProtKB:Q61089}.
O60563 CCNT1 S564 ochoa|psp Cyclin-T1 (CycT1) (Cyclin-T) Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II) (PubMed:16109376, PubMed:16109377, PubMed:30134174, PubMed:35393539). Required to activate the protein kinase activity of CDK9: acts by mediating formation of liquid-liquid phase separation (LLPS) that enhances binding of P-TEFb to the CTD of RNA Pol II (PubMed:29849146, PubMed:35393539). {ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:35393539}.; FUNCTION: (Microbial infection) In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. {ECO:0000269|PubMed:10329125, ECO:0000269|PubMed:10329126}.
O60716 CTNND1 S230 ochoa Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}.
O60716 CTNND1 S232 ochoa Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}.
O75122 CLASP2 S955 ochoa CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}.
O75420 GIGYF1 S237 ochoa GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}.
O94887 FARP2 S358 ochoa FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}.
O95067 CCNB2 S22 ochoa G2/mitotic-specific cyclin-B2 Essential for the control of the cell cycle at the G2/M (mitosis) transition.
O95071 UBR5 S2470 ochoa E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}.
O95425 SVIL S97 ochoa Supervillin (Archvillin) (p205/p250) [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}.
O95466 FMNL1 S921 ochoa Formin-like protein 1 (CLL-associated antigen KW-13) (Leukocyte formin) May play a role in the control of cell motility and survival of macrophages (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O95977 S1PR4 S346 ochoa Sphingosine 1-phosphate receptor 4 (S1P receptor 4) (S1P4) (Endothelial differentiation G-protein coupled receptor 6) (Sphingosine 1-phosphate receptor Edg-6) (S1P receptor Edg-6) Receptor for the lysosphingolipid sphingosine 1-phosphate (S1P). S1P is a bioactive lysophospholipid that elicits diverse physiological effect on most types of cells and tissues. May be involved in cell migration processes that are specific for lymphocytes. {ECO:0000269|PubMed:10679247, ECO:0000269|PubMed:10753843}.
O96013 PAK4 S244 ochoa Serine/threonine-protein kinase PAK 4 (EC 2.7.11.1) (p21-activated kinase 4) (PAK-4) Serine/threonine-protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell adhesion turnover, cell migration, growth, proliferation or cell survival (PubMed:26598620). Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN. Promotes kinase-independent stabilization of RHOU, thereby contributing to focal adhesion disassembly during cell migration (PubMed:26598620). {ECO:0000269|PubMed:11278822, ECO:0000269|PubMed:11313478, ECO:0000269|PubMed:14560027, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:20507994, ECO:0000269|PubMed:20631255, ECO:0000269|PubMed:20805321, ECO:0000269|PubMed:26598620, ECO:0000269|PubMed:26607847}.
P03372 ESR1 S154 psp Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}.
P04004 VTN S364 ochoa Vitronectin (VN) (S-protein) (Serum-spreading factor) (V75) [Cleaved into: Vitronectin V65 subunit; Vitronectin V10 subunit; Somatomedin-B] Vitronectin is a cell adhesion and spreading factor found in serum and tissues. Vitronectin interact with glycosaminoglycans and proteoglycans. Is recognized by certain members of the integrin family and serves as a cell-to-substrate adhesion molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic complement pathway.; FUNCTION: Somatomedin-B is a growth hormone-dependent serum factor with protease-inhibiting activity.
P05060 CHGB S272 ochoa Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides.
P05412 JUN S249 ochoa|psp Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}.
P10451 SPP1 S234 ochoa|psp Osteopontin (Bone sialoprotein 1) (Nephropontin) (Secreted phosphoprotein 1) (SPP-1) (Urinary stone protein) (Uropontin) Major non-collagenous bone protein that binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction. {ECO:0000250|UniProtKB:P31096}.; FUNCTION: Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity. {ECO:0000250|UniProtKB:P10923}.
P14598 NCF1 S315 psp Neutrophil cytosol factor 1 (NCF-1) (47 kDa autosomal chronic granulomatous disease protein) (47 kDa neutrophil oxidase factor) (NCF-47K) (Neutrophil NADPH oxidase factor 1) (Nox organizer 2) (Nox-organizing protein 2) (SH3 and PX domain-containing protein 1A) (p47-phox) Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (PubMed:2547247, PubMed:2550933, PubMed:38355798). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (PubMed:38355798). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (PubMed:38355798). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (PubMed:12732142, PubMed:19801500). {ECO:0000269|PubMed:12732142, ECO:0000269|PubMed:19801500, ECO:0000269|PubMed:2547247, ECO:0000269|PubMed:2550933, ECO:0000269|PubMed:38355798}.
P15941 MUC1 S1207 ochoa Mucin-1 (MUC-1) (Breast carcinoma-associated antigen DF3) (Cancer antigen 15-3) (CA 15-3) (Carcinoma-associated mucin) (Episialin) (H23AG) (Krebs von den Lungen-6) (KL-6) (PEMT) (Peanut-reactive urinary mucin) (PUM) (Polymorphic epithelial mucin) (PEM) (Tumor-associated epithelial membrane antigen) (EMA) (Tumor-associated mucin) (CD antigen CD227) [Cleaved into: Mucin-1 subunit alpha (MUC1-NT) (MUC1-alpha); Mucin-1 subunit beta (MUC1-beta) (MUC1-CT)] The alpha subunit has cell adhesive properties. Can act both as an adhesion and an anti-adhesion protein. May provide a protective layer on epithelial cells against bacterial and enzyme attack.; FUNCTION: The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylations and protein-protein interactions. Modulates signaling in ERK, SRC and NF-kappa-B pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK pathway. Promotes tumor progression. Regulates TP53-mediated transcription and determines cell fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of TP53 and represses TP53 activity.
P17706 PTPN2 S347 ochoa Tyrosine-protein phosphatase non-receptor type 2 (EC 3.1.3.48) (T-cell protein-tyrosine phosphatase) (TCPTP) Non-receptor type tyrosine-specific phosphatase that dephosphorylates receptor protein tyrosine kinases including INSR, EGFR, CSF1R, PDGFR. Also dephosphorylates non-receptor protein tyrosine kinases like JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3 and STAT6 either in the nucleus or the cytoplasm. Negatively regulates numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis. Plays a multifaceted and important role in the development of the immune system. Functions in T-cell receptor signaling through dephosphorylation of FYN and LCK to control T-cells differentiation and activation. Dephosphorylates CSF1R, negatively regulating its downstream signaling and macrophage differentiation. Negatively regulates cytokine (IL2/interleukin-2 and interferon)-mediated signaling through dephosphorylation of the cytoplasmic kinases JAK1, JAK3 and their substrate STAT1, that propagate signaling downstream of the cytokine receptors. Also regulates the IL6/interleukin-6 and IL4/interleukin-4 cytokine signaling through dephosphorylation of STAT3 and STAT6 respectively. In addition to the immune system, it is involved in anchorage-dependent, negative regulation of EGF-stimulated cell growth. Activated by the integrin ITGA1/ITGB1, it dephosphorylates EGFR and negatively regulates EGF signaling. Dephosphorylates PDGFRB and negatively regulates platelet-derived growth factor receptor-beta signaling pathway and therefore cell proliferation. Negatively regulates tumor necrosis factor-mediated signaling downstream via MAPK through SRC dephosphorylation. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of the hepatocyte growth factor receptor MET. Also plays an important role in glucose homeostasis. For instance, negatively regulates the insulin receptor signaling pathway through the dephosphorylation of INSR and control gluconeogenesis and liver glucose production through negative regulation of the IL6 signaling pathways. May also bind DNA. {ECO:0000269|PubMed:10734133, ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12138178, ECO:0000269|PubMed:12612081, ECO:0000269|PubMed:14966296, ECO:0000269|PubMed:15592458, ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:9488479}.
P18825 ADRA2C S352 ochoa Alpha-2C adrenergic receptor (Alpha-2 adrenergic receptor subtype C4) (Alpha-2C adrenoreceptor) (Alpha-2C adrenoceptor) (Alpha-2CAR) Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins.
P20963 CD247 S124 ochoa T-cell surface glycoprotein CD3 zeta chain (T-cell receptor T3 zeta chain) (CD antigen CD247) Part of the TCR-CD3 complex present on T-lymphocyte cell surface that plays an essential role in adaptive immune response. When antigen presenting cells (APCs) activate T-cell receptor (TCR), TCR-mediated signals are transmitted across the cell membrane by the CD3 chains CD3D, CD3E, CD3G and CD3Z. All CD3 chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic domain. Upon TCR engagement, these motifs become phosphorylated by Src family protein tyrosine kinases LCK and FYN, resulting in the activation of downstream signaling pathways (PubMed:1384049, PubMed:1385158, PubMed:2470098, PubMed:7509083). CD3Z ITAMs phosphorylation creates multiple docking sites for the protein kinase ZAP70 leading to ZAP70 phosphorylation and its conversion into a catalytically active enzyme (PubMed:7509083). Plays an important role in intrathymic T-cell differentiation. Additionally, participates in the activity-dependent synapse formation of retinal ganglion cells (RGCs) in both the retina and dorsal lateral geniculate nucleus (dLGN) (By similarity). {ECO:0000250|UniProtKB:P24161, ECO:0000269|PubMed:1384049, ECO:0000269|PubMed:1385158, ECO:0000269|PubMed:16027224, ECO:0000269|PubMed:2470098, ECO:0000269|PubMed:28465009, ECO:0000269|PubMed:7509083}.
P26232 CTNNA2 S320 ochoa Catenin alpha-2 (Alpha N-catenin) (Alpha-catenin-related protein) May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system (By similarity). Required for proper regulation of cortical neuronal migration and neurite growth (PubMed:30013181). It acts as a negative regulator of Arp2/3 complex activity and Arp2/3-mediated actin polymerization (PubMed:30013181). It thereby suppresses excessive actin branching which would impair neurite growth and stability (PubMed:30013181). Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation (By similarity). {ECO:0000250|UniProtKB:Q61301, ECO:0000269|PubMed:30013181}.
P29692 EEF1D S44 ochoa Elongation factor 1-delta (EF-1-delta) (Antigen NY-CO-4) [Isoform 1]: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1-alpha for another round of transfer of aminoacyl-tRNAs to the ribosome.; FUNCTION: [Isoform 2]: Regulates induction of heat-shock-responsive genes through association with heat shock transcription factors and direct DNA-binding at heat shock promoter elements (HSE).
P35221 CTNNA1 S322 ochoa Catenin alpha-1 (Alpha E-catenin) (Cadherin-associated protein) (Renal carcinoma antigen NY-REN-13) Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. Can associate with both E- and N-cadherins. Originally believed to be a stable component of E-cadherin/catenin adhesion complexes and to mediate the linkage of cadherins to the actin cytoskeleton at adherens junctions. In contrast, cortical actin was found to be much more dynamic than E-cadherin/catenin complexes and CTNNA1 was shown not to bind to F-actin when assembled in the complex suggesting a different linkage between actin and adherens junctions components. The homodimeric form may regulate actin filament assembly and inhibit actin branching by competing with the Arp2/3 complex for binding to actin filaments. Involved in the regulation of WWTR1/TAZ, YAP1 and TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). May play a crucial role in cell differentiation. {ECO:0000250|UniProtKB:P26231, ECO:0000269|PubMed:25653389}.
P36915 GNL1 S33 ochoa Guanine nucleotide-binding protein-like 1 (GTP-binding protein HSR1) Possible regulatory or functional link with the histocompatibility cluster.
P42695 NCAPD3 S1357 ochoa Condensin-2 complex subunit D3 (Non-SMC condensin II complex subunit D3) (hCAP-D3) Regulatory subunit of the condensin-2 complex, a complex which establishes mitotic chromosome architecture and is involved in physical rigidity of the chromatid axis (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Specifically required for decatenation of centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:14532007, ECO:0000269|PubMed:27737959}.
P43243 MATR3 S157 ochoa Matrin-3 May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}.
P43243 MATR3 S206 ochoa Matrin-3 May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}.
P46087 NOP2 S36 ochoa 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}.
P46087 NOP2 S40 ochoa 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}.
P47712 PLA2G4A S51 ochoa Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}.
P48382 RFX5 S460 ochoa DNA-binding protein RFX5 (Regulatory factor X 5) Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters.
P48634 PRRC2A S1092 ochoa Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}.
P48634 PRRC2A S1387 ochoa Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}.
P49069 CAMLG S148 ochoa Guided entry of tail-anchored proteins factor CAMLG (Calcium signal-modulating cyclophilin ligand) Required for the post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (PubMed:23041287, PubMed:24392163, PubMed:27226539). Together with GET1/WRB, acts as a membrane receptor for soluble GET3/TRC40, which recognizes and selectively binds the transmembrane domain of TA proteins in the cytosol (PubMed:23041287, PubMed:24392163, PubMed:27226539). Required for the stability of GET1 (PubMed:32187542). Stimulates calcium signaling in T cells through its involvement in elevation of intracellular calcium (PubMed:7522304). Essential for the survival of peripheral follicular B cells (By similarity). {ECO:0000250|UniProtKB:P49070, ECO:0000269|PubMed:23041287, ECO:0000269|PubMed:24392163, ECO:0000269|PubMed:27226539, ECO:0000269|PubMed:32187542, ECO:0000269|PubMed:7522304}.
P49674 CSNK1E S391 ochoa Casein kinase I isoform epsilon (CKI-epsilon) (CKIe) (EC 2.7.11.1) Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates (Probable). Participates in Wnt signaling (PubMed:12556519, PubMed:23413191). Phosphorylates DVL1 (PubMed:12556519). Phosphorylates DVL2 (PubMed:23413191). Phosphorylates NEDD9/HEF1 (By similarity). Central component of the circadian clock (PubMed:16790549). In balance with PP1, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:15917222, PubMed:16790549). Controls PER1 and PER2 nuclear transport and degradation (By similarity). Inhibits cytokine-induced granuloytic differentiation (PubMed:15070676). {ECO:0000250|UniProtKB:Q9JMK2, ECO:0000269|PubMed:12556519, ECO:0000269|PubMed:15070676, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:23413191, ECO:0000305|PubMed:7797465}.
P49685 GPR15 S342 ochoa G-protein coupled receptor 15 (Brother of Bonzo) (BoB) G protein-coupled receptor that plays an important role in immune homeostasis (PubMed:33758080, PubMed:38918398). Acts via its natural ligand GPR15LG, a chemokine-like polypeptide strongly expressed in gastrointestinal tissues. GPR15-GPR15LG signaling axis regulates intestinal homeostasis and inflammation through the migration of immune cells (PubMed:33758080, PubMed:38918398). Controls thereby the specific homing of T-cells, particularly FOXP3+ regulatory T-cells (Tregs), to the large intestine lamina propria (By similarity). Also required for skin localization of thymus-derived dendritic epidermal T-cells (By similarity). Plays an important role in mediating cytoprotective function as well as angiogenesis of thrombomodulin (By similarity). Mechanistically, preferentially signals through the Gi/o pathway to inhibit adenylate cyclase activity and activate a phosphatidylinositol-calcium second messenger system that regulates the release of Ca(2+) ions from intracellular stores (PubMed:35510660). {ECO:0000250|UniProtKB:Q0VDU3, ECO:0000269|PubMed:33758080, ECO:0000269|PubMed:35510660, ECO:0000269|PubMed:38918398}.; FUNCTION: (Microbial infection) Acts as an alternative coreceptor with CD4 for HIV-1 infection. {ECO:0000269|PubMed:9791028}.
P49792 RANBP2 S1117 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P51114 FXR1 S494 ochoa RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}.
P51114 FXR1 S496 ochoa RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}.
P51114 FXR1 S499 ochoa RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}.
P51116 FXR2 S542 ochoa RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}.
P51816 AFF2 S918 ochoa AF4/FMR2 family member 2 (Protein FMR-2) (FMR2P) (Protein Ox19) RNA-binding protein. Might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure. {ECO:0000269|PubMed:19136466}.
P52272 HNRNPM S468 ochoa Heterogeneous nuclear ribonucleoprotein M (hnRNP M) Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines.
P52701 MSH6 S292 ochoa DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}.
P55957 BID S78 ochoa|psp BH3-interacting domain death agonist (p22 BID) (BID) [Cleaved into: BH3-interacting domain death agonist p15 (p15 BID); BH3-interacting domain death agonist p13 (p13 BID); BH3-interacting domain death agonist p11 (p11 BID)] Induces caspases and apoptosis (PubMed:14583606). Counters the protective effect of BCL2 (By similarity). {ECO:0000250|UniProtKB:P70444, ECO:0000269|PubMed:14583606}.; FUNCTION: [BH3-interacting domain death agonist p15]: Induces caspase activation and apoptosis (PubMed:15661737, PubMed:32029622). Allows the release of cytochrome c (PubMed:32029622). {ECO:0000269|PubMed:15661737, ECO:0000269|PubMed:32029622}.; FUNCTION: [Isoform 1]: Induces ICE-like proteases and apoptosis. {ECO:0000269|PubMed:14583606}.; FUNCTION: [Isoform 2]: Induces ICE-like proteases and apoptosis. {ECO:0000269|PubMed:14583606}.; FUNCTION: [Isoform 3]: Does not induce apoptosis. {ECO:0000269|PubMed:14583606}.; FUNCTION: [Isoform 4]: Induces ICE-like proteases and apoptosis. {ECO:0000269|PubMed:14583606}.
P78332 RBM6 T252 ochoa RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) Specifically binds poly(G) RNA homopolymers in vitro.
P98175 RBM10 S73 ochoa RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}.
Q01082 SPTBN1 S1556 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q03188 CENPC S515 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q04637 EIF4G1 S1185 ochoa|psp Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}.
Q08170 SRSF4 S179 ochoa Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}.
Q12873 CHD3 S93 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q13136 PPFIA1 S549 ochoa Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}.
Q13263 TRIM28 S460 ochoa Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}.
Q13671 RIN1 S356 ochoa Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}.
Q14004 CDK13 S328 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14152 EIF3A S1263 ochoa Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
Q14493 SLBP S23 ochoa|psp Histone RNA hairpin-binding protein (Histone stem-loop-binding protein) RNA-binding protein involved in the histone pre-mRNA processing (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Binds the stem-loop structure of replication-dependent histone pre-mRNAs and contributes to efficient 3'-end processing by stabilizing the complex between histone pre-mRNA and U7 small nuclear ribonucleoprotein (snRNP), via the histone downstream element (HDE) (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Plays an important role in targeting mature histone mRNA from the nucleus to the cytoplasm and to the translation machinery (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Stabilizes mature histone mRNA and could be involved in cell-cycle regulation of histone gene expression (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Involved in the mechanism by which growing oocytes accumulate histone proteins that support early embryogenesis (By similarity). Binds to the 5' side of the stem-loop structure of histone pre-mRNAs (By similarity). {ECO:0000250|UniProtKB:P97440, ECO:0000269|PubMed:12588979, ECO:0000269|PubMed:19155325, ECO:0000269|PubMed:8957003, ECO:0000269|PubMed:9049306}.
Q14534 SQLE S87 psp Squalene monooxygenase (EC 1.14.14.17) (Squalene epoxidase) (SE) Catalyzes the stereospecific oxidation of squalene to (S)-2,3-epoxysqualene, and is considered to be a rate-limiting enzyme in steroid biosynthesis. {ECO:0000269|PubMed:10666321, ECO:0000269|PubMed:30626872}.
Q14669 TRIP12 S1575 ochoa E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}.
Q14674 ESPL1 S1305 psp Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}.
Q14676 MDC1 S1508 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14677 CLINT1 S210 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14738 PPP2R5D S75 ochoa|psp Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform (PP2A B subunit isoform B'-delta) (PP2A B subunit isoform B56-delta) (PP2A B subunit isoform PR61-delta) (PP2A B subunit isoform R5-delta) The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment.
Q14739 LBR S71 ochoa|psp Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}.
Q14739 LBR S73 ochoa Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}.
Q14980 NUMA1 S1800 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15464 SHB S101 ochoa SH2 domain-containing adapter protein B Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}.
Q15654 TRIP6 S101 ochoa Thyroid receptor-interacting protein 6 (TR-interacting protein 6) (TRIP-6) (Opa-interacting protein 1) (OIP-1) (Zyxin-related protein 1) (ZRP-1) Relays signals from the cell surface to the nucleus to weaken adherens junction and promote actin cytoskeleton reorganization and cell invasiveness. Involved in lysophosphatidic acid-induced cell adhesion and migration. Acts as a transcriptional coactivator for NF-kappa-B and JUN, and mediates the transrepression of these transcription factors induced by glucocorticoid receptor. {ECO:0000269|PubMed:14688263, ECO:0000269|PubMed:15489293, ECO:0000269|PubMed:16624523, ECO:0000269|PubMed:19017743}.
Q16629 SRSF7 S123 ochoa Serine/arginine-rich splicing factor 7 (Splicing factor 9G8) (Splicing factor, arginine/serine-rich 7) Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10. May function as export adapter involved in mRNA nuclear export such as of histone H2A. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA-binding activity. RNA-binding is semi-sequence specific. {ECO:0000269|PubMed:11336712, ECO:0000269|PubMed:12667464, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:18364396}.
Q27J81 INF2 S1201 ochoa Inverted formin-2 (HBEBP2-binding protein C) Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}.
Q2NKQ1 SGSM1 S685 ochoa Small G protein signaling modulator 1 (RUN and TBC1 domain-containing protein 2) Interacts with numerous Rab family members, functioning as Rab effector for some, and as GTPase activator for others. Promotes GTP hydrolysis by RAB34 and RAB36. Probably functions as a GTPase effector with RAB9A and RAB9B; does not stimulate GTP hydrolysis with RAB9A and RAB9B. {ECO:0000269|PubMed:22637480}.
Q3L8U1 CHD9 S1472 ochoa Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}.
Q5BKX6 SLC45A4 S410 ochoa Solute carrier family 45 member 4 Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}.
Q5FWE3 PRRT3 S865 ochoa Proline-rich transmembrane protein 3 None
Q5JSZ5 PRRC2B S1139 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5QJE6 DNTTIP2 S623 ochoa Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}.
Q5SRE5 NUP188 S1264 ochoa Nucleoporin NUP188 (hNup188) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope (Probable). Required for proper protein transport into the nucleus (PubMed:32275884). {ECO:0000269|PubMed:32275884, ECO:0000305|PubMed:32275884}.
Q5SW79 CEP170 S866 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5SYE7 NHSL1 S1367 ochoa NHS-like protein 1 None
Q5T200 ZC3H13 S110 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S621 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S1292 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T4S7 UBR4 S1747 ochoa E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}.
Q5T8A7 PPP1R26 S1163 ochoa Protein phosphatase 1 regulatory subunit 26 Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. May positively regulate cell proliferation. {ECO:0000269|PubMed:16053918, ECO:0000269|PubMed:19389623}.
Q5T8P6 RBM26 S131 ochoa RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q5UIP0 RIF1 S1525 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VUA4 ZNF318 S646 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VUA4 ZNF318 S665 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VWN6 TASOR2 S2062 ochoa Protein TASOR 2 None
Q6F5E8 CARMIL2 S1157 ochoa Capping protein, Arp2/3 and myosin-I linker protein 2 (Capping protein regulator and myosin 1 linker 2) (F-actin-uncapping protein RLTPR) (Leucine-rich repeat-containing protein 16C) (RGD, leucine-rich repeat, tropomodulin and proline-rich-containing protein) Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization (PubMed:26466680). Plays a role in cell protrusion formations; involved in cell polarity, lamellipodial assembly, membrane ruffling and macropinosome formations (PubMed:19846667, PubMed:26466680, PubMed:26578515). Involved as well in cell migration and invadopodia formation during wound healing (PubMed:19846667, PubMed:26466680, PubMed:26578515). Required for CD28-mediated stimulation of NF-kappa-B signaling, involved in naive T cells activation, maturation into T memory cells, and differentiation into T helper and T regulatory cells (PubMed:27647348, PubMed:27647349, PubMed:28112205). {ECO:0000269|PubMed:19846667, ECO:0000269|PubMed:26466680, ECO:0000269|PubMed:26578515, ECO:0000269|PubMed:27647348, ECO:0000269|PubMed:27647349, ECO:0000269|PubMed:28112205}.
Q6PJG2 MIDEAS S718 ochoa Mitotic deacetylase-associated SANT domain protein (ELM2 and SANT domain-containing protein 1) None
Q6WCQ1 MPRIP S329 ochoa Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}.
Q6Y7W6 GIGYF2 S242 ochoa GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}.
Q70EL4 USP43 S1068 ochoa Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}.
Q7L2J0 MEPCE S254 ochoa 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}.
Q7L2J0 MEPCE S353 ochoa 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}.
Q7L2J0 MEPCE S357 ochoa 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}.
Q7L4I2 RSRC2 S36 ochoa Arginine/serine-rich coiled-coil protein 2 None
Q7Z2Z1 TICRR S1881 ochoa Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}.
Q7Z460 CLASP1 S633 ochoa CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}.
Q7Z5J4 RAI1 S1532 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z6Z7 HUWE1 S2595 ochoa E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}.
Q86UU0 BCL9L S105 ochoa B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}.
Q86WG5 SBF2 S1129 ochoa Myotubularin-related protein 13 (Inactive phosphatidylinositol 3-phosphatase 13) (SET-binding factor 2) Guanine nucleotide exchange factor (GEF) which activates RAB21 and possibly RAB28 (PubMed:20937701, PubMed:25648148). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:20937701, PubMed:25648148). In response to starvation-induced autophagy, activates RAB21 which in turn binds to and regulates SNARE protein VAMP8 endolysosomal transport required for SNARE-mediated autophagosome-lysosome fusion (PubMed:25648148). Acts as an adapter for the phosphatase MTMR2 (By similarity). Increases MTMR2 catalytic activity towards phosphatidylinositol 3,5-bisphosphate and to a lesser extent towards phosphatidylinositol 3-phosphate (By similarity). {ECO:0000250|UniProtKB:E9PXF8, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25648148}.
Q86X51 EZHIP S338 ochoa EZH inhibitory protein Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}.
Q8IVF2 AHNAK2 S497 ochoa Protein AHNAK2 None
Q8IYM1 SEPTIN12 S198 psp Septin-12 Filament-forming cytoskeletal GTPase (By similarity). Involved in spermatogenesis. Involved in the morphogenesis of sperm heads and the elongation of sperm tails probably implicating the association with alpha- and beta-tubulins (PubMed:24213608). Forms a filamentous structure with SEPTIN7, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). May play a role in cytokinesis (Potential). {ECO:0000250, ECO:0000269|PubMed:24213608, ECO:0000269|PubMed:25588830, ECO:0000305}.
Q8N108 MIER1 S141 ochoa Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}.
Q8N573 OXR1 S307 ochoa Oxidation resistance protein 1 May be involved in protection from oxidative damage. {ECO:0000269|PubMed:11114193, ECO:0000269|PubMed:15060142}.
Q8N684 CPSF7 S416 ochoa Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}.
Q8N8Z6 DCBLD1 S657 ochoa|psp Discoidin, CUB and LCCL domain-containing protein 1 None
Q8NEV8 EXPH5 S318 ochoa Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) May act as Rab effector protein and play a role in vesicle trafficking.
Q8TAD8 SNIP1 S128 ochoa Smad nuclear-interacting protein 1 (FHA domain-containing protein SNIP1) Required for pre-mRNA splicing as component of the spliceosome (PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Down-regulates NF-kappa-B signaling by competing with RELA for CREBBP/EP300 binding. Involved in the microRNA (miRNA) biogenesis. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:11567019, ECO:0000269|PubMed:15378006, ECO:0000269|PubMed:18632581, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}.
Q8TE60 ADAMTS18 S238 ochoa A disintegrin and metalloproteinase with thrombospondin motifs 18 (ADAM-TS 18) (ADAM-TS18) (ADAMTS-18) (EC 3.4.24.-) None
Q8WWQ0 PHIP S1296 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q8WXA9 SREK1 S181 ochoa Splicing regulatory glutamine/lysine-rich protein 1 (Serine/arginine-rich-splicing regulatory protein 86) (SRrp86) (Splicing factor, arginine/serine-rich 12) (Splicing regulatory protein 508) (SRrp508) Participates in the regulation of alternative splicing by modulating the activity of other splice facors. Inhibits the splicing activity of SFRS1, SFRS2 and SFRS6. Augments the splicing activity of SFRS3 (By similarity). {ECO:0000250}.
Q92551 IP6K1 S184 ochoa Inositol hexakisphosphate kinase 1 (InsP6 kinase 1) (EC 2.7.4.21) (Inositol hexaphosphate kinase 1) Converts inositol hexakisphosphate (InsP6) to diphosphoinositol pentakisphosphate (InsP7/PP-InsP5). Converts 1,3,4,5,6-pentakisphosphate (InsP5) to PP-InsP4.
Q92575 UBXN4 S457 ochoa UBX domain-containing protein 4 (Erasin) (UBX domain-containing protein 2) Involved in endoplasmic reticulum-associated protein degradation (ERAD). Acts as a platform to recruit both UBQLN1 and VCP to the ER during ERAD (PubMed:19822669). {ECO:0000269|PubMed:16968747, ECO:0000269|PubMed:19822669}.
Q92994 BRF1 S564 ochoa Transcription factor IIIB 90 kDa subunit (TFIIIB90) (hTFIIIB90) (B-related factor 1) (BRF-1) (hBRF) (TAF3B2) (TATA box-binding protein-associated factor, RNA polymerase III, subunit 2) General activator of RNA polymerase which utilizes different TFIIIB complexes at structurally distinct promoters. The isoform 1 is involved in the transcription of tRNA, adenovirus VA1, 7SL and 5S RNA. Isoform 2 is required for transcription of the U6 promoter.
Q92997 DVL3 S137 ochoa|psp Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}.
Q92997 DVL3 S209 ochoa|psp Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}.
Q92997 DVL3 S211 psp Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}.
Q96CC6 RHBDF1 S191 ochoa Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}.
Q96HA7 TONSL S863 ochoa Tonsoku-like protein (Inhibitor of kappa B-related protein) (I-kappa-B-related protein) (IkappaBR) (NF-kappa-B inhibitor-like protein 2) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 2) Component of the MMS22L-TONSL complex, a complex that promotes homologous recombination-mediated repair of double-strand breaks (DSBs) at stalled or collapsed replication forks (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:21113133, PubMed:26527279, PubMed:27338793, PubMed:27797818, PubMed:29478807, PubMed:30773278). The MMS22L-TONSL complex is required to maintain genome integrity during DNA replication (PubMed:21055983, PubMed:21055984, PubMed:21055985). It mediates the assembly of RAD51 filaments on single-stranded DNA (ssDNA): the MMS22L-TONSL complex is recruited to DSBs following histone replacement by histone chaperones and eviction of the replication protein A complex (RPA/RP-A) from DSBs (PubMed:21055983, PubMed:21055984, PubMed:21055985, PubMed:27797818, PubMed:29478807). Following recruitment to DSBs, the TONSL-MMS22L complex promotes recruitment of RAD51 filaments and subsequent homologous recombination (PubMed:27797818, PubMed:29478807). Within the complex, TONSL acts as a histone reader, which recognizes and binds newly synthesized histones following their replacement by histone chaperones (PubMed:27338793, PubMed:29478807). Specifically binds histone H4 lacking methylation at 'Lys-20' (H4K20me0) and histone H3.1 (PubMed:27338793). {ECO:0000269|PubMed:21055983, ECO:0000269|PubMed:21055984, ECO:0000269|PubMed:21055985, ECO:0000269|PubMed:21113133, ECO:0000269|PubMed:26527279, ECO:0000269|PubMed:27338793, ECO:0000269|PubMed:27797818, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30773278}.
Q96K58 ZNF668 S176 ochoa Zinc finger protein 668 May be involved in transcriptional regulation. May play a role in DNA repair process. {ECO:0000269|PubMed:34313816}.
Q96L91 EP400 S928 ochoa E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}.
Q96RU2 USP28 S131 ochoa Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}.
Q96T58 SPEN S1358 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q9BRD0 BUD13 S372 ochoa BUD13 homolog Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9BRD0 BUD13 S386 ochoa BUD13 homolog Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9BVI0 PHF20 S248 ochoa PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}.
Q9H329 EPB41L4B S401 ochoa Band 4.1-like protein 4B (Erythrocyte membrane protein band 4.1-like 4B) (FERM-containing protein CG1) (Protein EHM2) Up-regulates the activity of the Rho guanine nucleotide exchange factor ARHGEF18 (By similarity). Involved in the regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). Promotes cellular adhesion, migration and motility in vitro and may play a role in wound healing (PubMed:23664528). May have a role in mediating cytoskeletal changes associated with steroid-induced cell differentiation (PubMed:14521927). {ECO:0000250|UniProtKB:Q9JMC8, ECO:0000269|PubMed:14521927, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:23664528}.
Q9H3R0 KDM4C S352 ochoa Lysine-specific demethylase 4C (EC 1.14.11.66) (Gene amplified in squamous cell carcinoma 1 protein) (GASC-1 protein) (JmjC domain-containing histone demethylation protein 3C) (Jumonji domain-containing protein 2C) ([histone H3]-trimethyl-L-lysine(9) demethylase 4C) Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. {ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}.
Q9H410 DSN1 S88 ochoa Kinetochore-associated protein DSN1 homolog Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}.
Q9H4G0 EPB41L1 S564 ochoa Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases.
Q9H4L5 OSBPL3 S265 ochoa Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}.
Q9H4M7 PLEKHA4 S194 ochoa Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}.
Q9H5I5 PIEZO2 S376 ochoa Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Expressed in sensory neurons, is essential for diverse physiological processes, including respiratory control, systemic metabolism, urinary function, and proprioception (By similarity). Mediates airway stretch sensing, enabling efficient respiration at birth and maintaining normal breathing in adults (By similarity). It regulates brown and beige adipose tissue morphology and function, preventing systemic hypermetabolism (By similarity). In the lower urinary tract, acts as a sensor in both the bladder urothelium and innervating sensory neurons being required for bladder-stretch sensing and urethral micturition reflexes, ensuring proper urinary function (PubMed:33057202). Additionally, PIEZO2 serves as the principal mechanotransducer in proprioceptors, facilitating proprioception and coordinated body movements (By similarity). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). Required for Merkel-cell mechanotransduction (By similarity). Plays a major role in light-touch mechanosensation (By similarity). {ECO:0000250|UniProtKB:Q8CD54, ECO:0000269|PubMed:33057202, ECO:0000269|PubMed:37590348}.
Q9H8E8 KAT14 S288 ochoa Cysteine-rich protein 2-binding protein (CSRP2-binding protein) (ADA2A-containing complex subunit 2) (ATAC2) (CRP2-binding partner) (CRP2BP) (Lysine acetyltransferase 14) Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. May function as a scaffold for the ATAC complex to promote ATAC complex stability. Has also weak histone acetyltransferase activity toward histone H4. Required for the normal progression through G1 and G2/M phases of the cell cycle. {ECO:0000269|PubMed:19103755}.
Q9H9C1 VIPAS39 S108 ochoa Spermatogenesis-defective protein 39 homolog (hSPE-39) (VPS33B-interacting protein in apical-basolateral polarity regulator) (VPS33B-interacting protein in polarity and apical restriction) Proposed to be involved in endosomal maturation implicating in part VPS33B. In epithelial cells, the VPS33B:VIPAS39 complex may play a role in the apical RAB11A-dependent recycling pathway and in the maintenance of the apical-basolateral polarity (PubMed:20190753). May play a role in lysosomal trafficking, probably via association with the core HOPS complex in a discrete population of endosomes; the functions seems to be independent of VPS33B (PubMed:19109425). May play a role in vesicular trafficking during spermatogenesis (By similarity). May be involved in direct or indirect transcriptional regulation of E-cadherin (By similarity). {ECO:0000250|UniProtKB:Q23288, ECO:0000269|PubMed:19109425, ECO:0000269|PubMed:20190753}.
Q9HCD5 NCOA5 S162 ochoa Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}.
Q9HCG8 CWC22 S61 ochoa Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}.
Q9NXH8 TOR4A S106 ochoa Torsin-4A (Torsin family 4 member A) None
Q9NYA4 MTMR4 S594 ochoa Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR4 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 2) (FYVE-DSP2) (Myotubularin-related protein 4) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Zinc finger FYVE domain-containing protein 11) Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11302699, PubMed:16787938, PubMed:20736309, PubMed:27625994, PubMed:29962048, PubMed:30944173). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic, in a subset of endosomal membranes to negatively regulate both endocytic recycling and trafficking and/or maturation of endosomes toward lysosomes (PubMed:16787938, PubMed:20736309, PubMed:29962048). Through phosphatidylinositol 3-phosphate turnover in phagosome membranes regulates phagocytosis and phagosome maturation (PubMed:31543504). By decreasing phosphatidylinositol 3-monophosphate (PI3P) levels in immune cells it can also regulate the innate immune response (PubMed:30944173). Beside its lipid phosphatase activity, can also function as a molecular adapter to regulate midbody abscission during mitotic cytokinesis (PubMed:25659891). Can also negatively regulate TGF-beta and BMP signaling through Smad proteins dephosphorylation and retention in endosomes (PubMed:20061380, PubMed:23150675). {ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:16787938, ECO:0000269|PubMed:20061380, ECO:0000269|PubMed:20736309, ECO:0000269|PubMed:23150675, ECO:0000269|PubMed:25659891, ECO:0000269|PubMed:27625994, ECO:0000269|PubMed:29962048, ECO:0000269|PubMed:30944173, ECO:0000269|PubMed:31543504}.
Q9NYA4 MTMR4 S616 ochoa Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR4 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 2) (FYVE-DSP2) (Myotubularin-related protein 4) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Zinc finger FYVE domain-containing protein 11) Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11302699, PubMed:16787938, PubMed:20736309, PubMed:27625994, PubMed:29962048, PubMed:30944173). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic, in a subset of endosomal membranes to negatively regulate both endocytic recycling and trafficking and/or maturation of endosomes toward lysosomes (PubMed:16787938, PubMed:20736309, PubMed:29962048). Through phosphatidylinositol 3-phosphate turnover in phagosome membranes regulates phagocytosis and phagosome maturation (PubMed:31543504). By decreasing phosphatidylinositol 3-monophosphate (PI3P) levels in immune cells it can also regulate the innate immune response (PubMed:30944173). Beside its lipid phosphatase activity, can also function as a molecular adapter to regulate midbody abscission during mitotic cytokinesis (PubMed:25659891). Can also negatively regulate TGF-beta and BMP signaling through Smad proteins dephosphorylation and retention in endosomes (PubMed:20061380, PubMed:23150675). {ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:16787938, ECO:0000269|PubMed:20061380, ECO:0000269|PubMed:20736309, ECO:0000269|PubMed:23150675, ECO:0000269|PubMed:25659891, ECO:0000269|PubMed:27625994, ECO:0000269|PubMed:29962048, ECO:0000269|PubMed:30944173, ECO:0000269|PubMed:31543504}.
Q9NYL2 MAP3K20 S668 ochoa Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.
Q9NZM5 NOP53 S29 ochoa Ribosome biogenesis protein NOP53 (Glioma tumor suppressor candidate region gene 2 protein) (Protein interacting with carboxyl terminus 1) (PICT-1) (p60) Nucleolar protein which is involved in the integration of the 5S RNP into the ribosomal large subunit during ribosome biogenesis (PubMed:24120868). In ribosome biogenesis, may also play a role in rRNA transcription (PubMed:27729611). Also functions as a nucleolar sensor that regulates the activation of p53/TP53 in response to ribosome biogenesis perturbation, DNA damage and other stress conditions (PubMed:21741933, PubMed:24120868, PubMed:27829214). DNA damage or perturbation of ribosome biogenesis disrupt the interaction between NOP53 and RPL11 allowing RPL11 transport to the nucleoplasm where it can inhibit MDM2 and allow p53/TP53 activation (PubMed:24120868, PubMed:27829214). It may also positively regulate the function of p53/TP53 in cell cycle arrest and apoptosis through direct interaction, preventing its MDM2-dependent ubiquitin-mediated proteasomal degradation (PubMed:22522597). Originally identified as a tumor suppressor, it may also play a role in cell proliferation and apoptosis by positively regulating the stability of PTEN, thereby antagonizing the PI3K-AKT/PKB signaling pathway (PubMed:15355975, PubMed:16971513, PubMed:27729611). May also inhibit cell proliferation and increase apoptosis through its interaction with NF2 (PubMed:21167305). May negatively regulate NPM1 by regulating its nucleoplasmic localization, oligomerization and ubiquitin-mediated proteasomal degradation (PubMed:25818168). Thereby, may prevent NPM1 interaction with MYC and negatively regulate transcription mediated by the MYC-NPM1 complex (PubMed:25956029). May also regulate cellular aerobic respiration (PubMed:24556985). In the cellular response to viral infection, may play a role in the attenuation of interferon-beta through the inhibition of RIGI (PubMed:27824081). {ECO:0000269|PubMed:15355975, ECO:0000269|PubMed:16971513, ECO:0000269|PubMed:21167305, ECO:0000269|PubMed:21741933, ECO:0000269|PubMed:22522597, ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:24556985, ECO:0000269|PubMed:25818168, ECO:0000269|PubMed:25956029, ECO:0000269|PubMed:27729611, ECO:0000269|PubMed:27824081, ECO:0000269|PubMed:27829214}.
Q9P015 MRPL15 S33 ochoa Large ribosomal subunit protein uL15m (39S ribosomal protein L15, mitochondrial) (L15mt) (MRP-L15) None
Q9P0L2 MARK1 S612 ochoa Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}.
Q9P107 GMIP S247 ochoa GEM-interacting protein (GMIP) Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}.
Q9P244 LRFN1 S716 ochoa Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}.
Q9P2D1 CHD7 S2501 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2D1 CHD7 S2619 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2N5 RBM27 S128 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q9P2P5 HECW2 S1027 ochoa E3 ubiquitin-protein ligase HECW2 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECW2) (NEDD4-like E3 ubiquitin-protein ligase 2) E3 ubiquitin-protein ligase that mediates ubiquitination of TP73. Acts to stabilize TP73 and enhance activation of transcription by TP73 (PubMed:12890487). Involved in the regulation of mitotic metaphase/anaphase transition (PubMed:24163370). {ECO:0000269|PubMed:12890487, ECO:0000269|PubMed:24163370}.
Q9UKV3 ACIN1 S216 ochoa Apoptotic chromatin condensation inducer in the nucleus (Acinus) Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}.
Q9UL54 TAOK2 S453 ochoa Serine/threonine-protein kinase TAO2 (EC 2.7.11.1) (Kinase from chicken homolog C) (hKFC-C) (Prostate-derived sterile 20-like kinase 1) (PSK-1) (PSK1) (Prostate-derived STE20-like kinase 1) (Thousand and one amino acid protein kinase 2) Serine/threonine-protein kinase involved in different processes such as membrane blebbing and apoptotic bodies formation DNA damage response and MAPK14/p38 MAPK stress-activated MAPK cascade. Phosphorylates itself, MBP, activated MAPK8, MAP2K3, MAP2K6 and tubulins. Activates the MAPK14/p38 MAPK signaling pathway through the specific activation and phosphorylation of the upstream MAP2K3 and MAP2K6 kinases. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Isoform 1, but not isoform 2, plays a role in apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation. This function, which requires the activation of MAPK8/JNK and nuclear localization of C-terminally truncated isoform 1, may be linked to the mitochondrial CASP9-associated death pathway. Isoform 1 binds to microtubules and affects their organization and stability independently of its kinase activity. Prevents MAP3K7-mediated activation of CHUK, and thus NF-kappa-B activation, but not that of MAPK8/JNK. May play a role in the osmotic stress-MAPK8 pathway. Isoform 2, but not isoform 1, is required for PCDH8 endocytosis. Following homophilic interactions between PCDH8 extracellular domains, isoform 2 phosphorylates and activates MAPK14/p38 MAPK which in turn phosphorylates isoform 2. This process leads to PCDH8 endocytosis and CDH2 cointernalization. Both isoforms are involved in MAPK14 phosphorylation. {ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:11279118, ECO:0000269|PubMed:12639963, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:17158878, ECO:0000269|PubMed:17396146}.
Q9ULD4 BRPF3 S965 ochoa Bromodomain and PHD finger-containing protein 3 Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}.
Q9UMD9 COL17A1 S135 ochoa Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies.
Q9UPT8 ZC3H4 S1064 ochoa Zinc finger CCCH domain-containing protein 4 RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}.
Q9UQ35 SRRM2 S543 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S1831 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S2714 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y276 BCS1L S174 ochoa Mitochondrial chaperone BCS1 (h-BCS1) (EC 3.6.1.-) (BCS1-like protein) Chaperone necessary for the incorporation of Rieske iron-sulfur protein UQCRFS1 into the mitochondrial respiratory chain complex III (PubMed:11528392, PubMed:9878253). Plays an important role in the maintenance of mitochondrial tubular networks, respiratory chain assembly and formation of the LETM1 complex (PubMed:18628306). {ECO:0000269|PubMed:11528392, ECO:0000269|PubMed:18628306, ECO:0000269|PubMed:9878253}.
Q9Y2K7 KDM2A S562 ochoa Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}.
Q9Y383 LUC7L2 S347 ochoa Putative RNA-binding protein Luc7-like 2 May bind to RNA via its Arg/Ser-rich domain.
Q9Y383 LUC7L2 S354 ochoa Putative RNA-binding protein Luc7-like 2 May bind to RNA via its Arg/Ser-rich domain.
Q9Y3S1 WNK2 S1844 ochoa Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}.
Q9Y3Z3 SAMHD1 S601 ochoa Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 (dNTPase) (EC 3.1.5.-) (Dendritic cell-derived IFNG-induced protein) (DCIP) (Monocyte protein 5) (MOP-5) (SAM domain and HD domain-containing protein 1) (hSAMHD1) Protein that acts both as a host restriction factor involved in defense response to virus and as a regulator of DNA end resection at stalled replication forks (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:26294762, PubMed:26431200, PubMed:28229507, PubMed:28834754, PubMed:29670289). Has deoxynucleoside triphosphate (dNTPase) activity, which is required to restrict infection by viruses, such as HIV-1: dNTPase activity reduces cellular dNTP levels to levels too low for retroviral reverse transcription to occur, blocking early-stage virus replication in dendritic and other myeloid cells (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23364794, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:25038827, PubMed:26101257, PubMed:26294762, PubMed:26431200, PubMed:28229507). Likewise, suppresses LINE-1 retrotransposon activity (PubMed:24035396, PubMed:24217394, PubMed:29610582). Not able to restrict infection by HIV-2 virus; because restriction activity is counteracted by HIV-2 viral protein Vpx (PubMed:21613998, PubMed:21720370). In addition to virus restriction, dNTPase activity acts as a regulator of DNA precursor pools by regulating dNTP pools (PubMed:23858451). Phosphorylation at Thr-592 acts as a switch to control dNTPase-dependent and -independent functions: it inhibits dNTPase activity and ability to restrict infection by viruses, while it promotes DNA end resection at stalled replication forks (PubMed:23601106, PubMed:23602554, PubMed:29610582, PubMed:29670289). Functions during S phase at stalled DNA replication forks to promote the resection of gapped or reversed forks: acts by stimulating the exonuclease activity of MRE11, activating the ATR-CHK1 pathway and allowing the forks to restart replication (PubMed:29670289). Its ability to promote degradation of nascent DNA at stalled replication forks is required to prevent induction of type I interferons, thereby preventing chronic inflammation (PubMed:27477283, PubMed:29670289). Ability to promote DNA end resection at stalled replication forks is independent of dNTPase activity (PubMed:29670289). Enhances immunoglobulin hypermutation in B-lymphocytes by promoting transversion mutation (By similarity). {ECO:0000250|UniProtKB:Q60710, ECO:0000269|PubMed:19525956, ECO:0000269|PubMed:21613998, ECO:0000269|PubMed:21720370, ECO:0000269|PubMed:22056990, ECO:0000269|PubMed:23364794, ECO:0000269|PubMed:23601106, ECO:0000269|PubMed:23602554, ECO:0000269|PubMed:23858451, ECO:0000269|PubMed:24035396, ECO:0000269|PubMed:24217394, ECO:0000269|PubMed:24336198, ECO:0000269|PubMed:25038827, ECO:0000269|PubMed:26101257, ECO:0000269|PubMed:26294762, ECO:0000269|PubMed:26431200, ECO:0000269|PubMed:27477283, ECO:0000269|PubMed:28229507, ECO:0000269|PubMed:28834754, ECO:0000269|PubMed:29610582, ECO:0000269|PubMed:29670289}.
Q9Y520 PRRC2C S1249 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
U3KPZ7 LOC127814297 S128 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000256|ARBA:ARBA00043866}.
Q9NS23 RASSF1 S188 SIGNOR Ras association domain-containing protein 1 Potential tumor suppressor. Required for death receptor-dependent apoptosis. Mediates activation of STK3/MST2 and STK4/MST1 during Fas-induced apoptosis by preventing their dephosphorylation. When associated with MOAP1, promotes BAX conformational change and translocation to mitochondrial membranes in response to TNF and TNFSF10 stimulation. Isoform A interacts with CDC20, an activator of the anaphase-promoting complex, APC, resulting in the inhibition of APC activity and mitotic progression. Inhibits proliferation by negatively regulating cell cycle progression at the level of G1/S-phase transition by regulating accumulation of cyclin D1 protein. Isoform C has been shown not to perform these roles, no function has been identified for this isoform. Isoform A disrupts interactions among MDM2, DAXX and USP7, thus contributing to the efficient activation of TP53 by promoting MDM2 self-ubiquitination in cell-cycle checkpoint control in response to DNA damage. {ECO:0000269|PubMed:10888881, ECO:0000269|PubMed:11333291, ECO:0000269|PubMed:12024041, ECO:0000269|PubMed:14743218, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:15949439, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:18566590, ECO:0000269|PubMed:21199877}.
Q14152 EIF3A S1258 Sugiyama Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
Q6UN15 FIP1L1 Y453 Sugiyama Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}.
Q92785 DPF2 S73 Sugiyama Zinc finger protein ubi-d4 (Apoptosis response zinc finger protein) (BRG1-associated factor 45D) (BAF45D) (D4, zinc and double PHD fingers family 2) (Protein requiem) Plays an active role in transcriptional regulation by binding modified histones H3 and H4 (PubMed:27775714, PubMed:28533407). Is a negative regulator of myeloid differentiation of hematopoietic progenitor cells (PubMed:28533407). Might also have a role in the development and maturation of lymphoid cells (By similarity). Involved in the regulation of non-canonical NF-kappa-B pathway (PubMed:20460684). {ECO:0000250|UniProtKB:Q61103, ECO:0000269|PubMed:20460684, ECO:0000269|PubMed:27775714, ECO:0000269|PubMed:28533407}.
Q92785 DPF2 Y74 Sugiyama Zinc finger protein ubi-d4 (Apoptosis response zinc finger protein) (BRG1-associated factor 45D) (BAF45D) (D4, zinc and double PHD fingers family 2) (Protein requiem) Plays an active role in transcriptional regulation by binding modified histones H3 and H4 (PubMed:27775714, PubMed:28533407). Is a negative regulator of myeloid differentiation of hematopoietic progenitor cells (PubMed:28533407). Might also have a role in the development and maturation of lymphoid cells (By similarity). Involved in the regulation of non-canonical NF-kappa-B pathway (PubMed:20460684). {ECO:0000250|UniProtKB:Q61103, ECO:0000269|PubMed:20460684, ECO:0000269|PubMed:27775714, ECO:0000269|PubMed:28533407}.
Q07020 RPL18 Y166 Sugiyama Large ribosomal subunit protein eL18 (60S ribosomal protein L18) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
Q8N684 CPSF7 Y451 Sugiyama Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}.
Q8NBP7 PCSK9 S485 Sugiyama Proprotein convertase subtilisin/kexin type 9 (EC 3.4.21.-) (Neural apoptosis-regulated convertase 1) (NARC-1) (Proprotein convertase 9) (PC9) (Subtilisin/kexin-like protease PC9) Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:17461796, PubMed:18197702, PubMed:18799458, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways. {ECO:0000269|PubMed:17461796, ECO:0000269|PubMed:18039658, ECO:0000269|PubMed:18197702, ECO:0000269|PubMed:18660751, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22074827, ECO:0000269|PubMed:22493497, ECO:0000269|PubMed:22580899}.
P15735 PHKG2 S297 Sugiyama Phosphorylase b kinase gamma catalytic chain, liver/testis isoform (PHK-gamma-LT) (PHK-gamma-T) (EC 2.7.11.19) (PSK-C3) (Phosphorylase kinase subunit gamma-2) Catalytic subunit of the phosphorylase b kinase (PHK), which mediates the neural and hormonal regulation of glycogen breakdown (glycogenolysis) by phosphorylating and thereby activating glycogen phosphorylase. May regulate glycogeneolysis in the testis. In vitro, phosphorylates PYGM (PubMed:35549678). {ECO:0000250|UniProtKB:P31325, ECO:0000269|PubMed:10487978, ECO:0000269|PubMed:35549678}.
P11586 MTHFD1 S765 Sugiyama C-1-tetrahydrofolate synthase, cytoplasmic (C1-THF synthase) (Epididymis secretory sperm binding protein) [Cleaved into: C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed] [Includes: Methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5); Methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9); Formyltetrahydrofolate synthetase (EC 6.3.4.3)] Trifunctional enzyme that catalyzes the interconversion of three forms of one-carbon-substituted tetrahydrofolate: (6R)-5,10-methylene-5,6,7,8-tetrahydrofolate, 5,10-methenyltetrahydrofolate and (6S)-10-formyltetrahydrofolate (PubMed:10828945, PubMed:18767138, PubMed:1881876). These derivatives of tetrahydrofolate are differentially required in nucleotide and amino acid biosynthesis, (6S)-10-formyltetrahydrofolate being required for purine biosynthesis while (6R)-5,10-methylene-5,6,7,8-tetrahydrofolate is used for serine and methionine biosynthesis for instance (PubMed:18767138, PubMed:25633902). {ECO:0000269|PubMed:10828945, ECO:0000269|PubMed:18767138, ECO:0000269|PubMed:1881876, ECO:0000269|PubMed:25633902}.
P41279 MAP3K8 S368 Sugiyama Mitogen-activated protein kinase kinase kinase 8 (EC 2.7.11.25) (Cancer Osaka thyroid oncogene) (Proto-oncogene c-Cot) (Serine/threonine-protein kinase cot) (Tumor progression locus 2) (TPL-2) Required for lipopolysaccharide (LPS)-induced, TLR4-mediated activation of the MAPK/ERK pathway in macrophages, thus being critical for production of the pro-inflammatory cytokine TNF-alpha (TNF) during immune responses. Involved in the regulation of T-helper cell differentiation and IFNG expression in T-cells. Involved in mediating host resistance to bacterial infection through negative regulation of type I interferon (IFN) production. In vitro, activates MAPK/ERK pathway in response to IL1 in an IRAK1-independent manner, leading to up-regulation of IL8 and CCL4. Transduces CD40 and TNFRSF1A signals that activate ERK in B-cells and macrophages, and thus may play a role in the regulation of immunoglobulin production. May also play a role in the transduction of TNF signals that activate JNK and NF-kappa-B in some cell types. In adipocytes, activates MAPK/ERK pathway in an IKBKB-dependent manner in response to IL1B and TNF, but not insulin, leading to induction of lipolysis. Plays a role in the cell cycle. Isoform 1 shows some transforming activity, although it is much weaker than that of the activated oncogenic variant. {ECO:0000269|PubMed:11342626, ECO:0000269|PubMed:12667451, ECO:0000269|PubMed:15169888, ECO:0000269|PubMed:16371247, ECO:0000269|PubMed:1833717, ECO:0000269|PubMed:19001140, ECO:0000269|PubMed:19808894}.
O14640 DVL1 S142 SIGNOR Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ).
P14868 DARS1 S37 Sugiyama Aspartate--tRNA ligase, cytoplasmic (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS) (Cell proliferation-inducing gene 40 protein) Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. {ECO:0000250|UniProtKB:P15178}.
P51957 NEK4 S526 Sugiyama Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}.
P51957 NEK4 S531 Sugiyama Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}.
Q04637 EIF4G1 S1058 Sugiyama Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}.
Q6P0Q8 MAST2 S1019 Sugiyama Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q92499 DDX1 S113 Sugiyama ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}.
O43143 DHX15 S656 Sugiyama ATP-dependent RNA helicase DHX15 (EC 3.6.4.13) (ATP-dependent RNA helicase #46) (DEAH box protein 15) (Splicing factor Prp43) (hPrp43) RNA helicase involved in mRNA processing and antiviral innate immunity (PubMed:19103666, PubMed:19432882, PubMed:24782566, PubMed:24990078, PubMed:32179686, PubMed:34161762). Pre-mRNA processing factor involved in disassembly of spliceosomes after the release of mature mRNA (PubMed:19103666). In cooperation with TFIP11 seem to be involved in the transition of the U2, U5 and U6 snRNP-containing IL complex to the snRNP-free IS complex leading to efficient debranching and turnover of excised introns (PubMed:19103666). Plays a key role in antiviral innate immunity by promoting both MAVS-dependent signaling and NLRP6 inflammasome (PubMed:24782566, PubMed:24990078, PubMed:34161762). Acts as an RNA virus sensor: recognizes and binds viral double stranded RNA (dsRNA) and activates the MAVS-dependent signaling to produce interferon-beta and interferon lambda-3 (IFNL3) (PubMed:24782566, PubMed:24990078, PubMed:34161762). Involved in intestinal antiviral innate immunity together with NLRP6: recognizes and binds viral dsRNA and promotes activation of the NLRP6 inflammasome in intestinal epithelial cells to restrict infection by enteric viruses (PubMed:34161762). The NLRP6 inflammasome acts by promoting maturation and secretion of IL18 in the extracellular milieu (PubMed:34161762). Also involved in antibacterial innate immunity by promoting Wnt-induced antimicrobial protein expression in Paneth cells (By similarity). {ECO:0000250|UniProtKB:O35286, ECO:0000269|PubMed:19103666, ECO:0000269|PubMed:19432882, ECO:0000269|PubMed:24782566, ECO:0000269|PubMed:24990078, ECO:0000269|PubMed:32179686, ECO:0000269|PubMed:34161762}.
Q8WUA2 PPIL4 S425 Sugiyama Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}.
Q14524 SCN5A S471 PSP Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}.
Download
reactome_id name p -log10_p
R-HSA-1640170 Cell Cycle 1.134451e-10 9.945
R-HSA-68886 M Phase 3.749517e-10 9.426
R-HSA-69278 Cell Cycle, Mitotic 4.253329e-10 9.371
R-HSA-5689901 Metalloprotease DUBs 3.202774e-08 7.494
R-HSA-68875 Mitotic Prophase 5.987712e-08 7.223
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 9.832714e-08 7.007
R-HSA-3214858 RMTs methylate histone arginines 1.336809e-07 6.874
R-HSA-69620 Cell Cycle Checkpoints 1.669948e-07 6.777
R-HSA-9609690 HCMV Early Events 6.165204e-07 6.210
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 8.433032e-07 6.074
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 1.054807e-06 5.977
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 1.032734e-06 5.986
R-HSA-3214815 HDACs deacetylate histones 1.265527e-06 5.898
R-HSA-8953854 Metabolism of RNA 1.386223e-06 5.858
R-HSA-68877 Mitotic Prometaphase 1.472119e-06 5.832
R-HSA-3214847 HATs acetylate histones 3.082108e-06 5.511
R-HSA-68882 Mitotic Anaphase 3.565751e-06 5.448
R-HSA-2555396 Mitotic Metaphase and Anaphase 3.853958e-06 5.414
R-HSA-212300 PRC2 methylates histones and DNA 4.681754e-06 5.330
R-HSA-69473 G2/M DNA damage checkpoint 5.535027e-06 5.257
R-HSA-4839726 Chromatin organization 5.357201e-06 5.271
R-HSA-2299718 Condensation of Prophase Chromosomes 7.156352e-06 5.145
R-HSA-69481 G2/M Checkpoints 8.025786e-06 5.096
R-HSA-9645723 Diseases of programmed cell death 9.735880e-06 5.012
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 1.064648e-05 4.973
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 1.101295e-05 4.958
R-HSA-3247509 Chromatin modifying enzymes 1.343291e-05 4.872
R-HSA-9609646 HCMV Infection 1.518829e-05 4.818
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 1.556878e-05 4.808
R-HSA-5578749 Transcriptional regulation by small RNAs 1.824352e-05 4.739
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 1.880442e-05 4.726
R-HSA-69275 G2/M Transition 2.145528e-05 4.668
R-HSA-9710421 Defective pyroptosis 2.235419e-05 4.651
R-HSA-453274 Mitotic G2-G2/M phases 2.497854e-05 4.602
R-HSA-111447 Activation of BAD and translocation to mitochondria 2.662077e-05 4.575
R-HSA-774815 Nucleosome assembly 3.155966e-05 4.501
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 3.155966e-05 4.501
R-HSA-5689603 UCH proteinases 3.081851e-05 4.511
R-HSA-5334118 DNA methylation 3.256908e-05 4.487
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 3.456485e-05 4.461
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 3.783564e-05 4.422
R-HSA-114452 Activation of BH3-only proteins 4.038132e-05 4.394
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 4.517417e-05 4.345
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 5.043959e-05 4.297
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 5.851289e-05 4.233
R-HSA-2559580 Oxidative Stress Induced Senescence 5.912878e-05 4.228
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 6.558326e-05 4.183
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 6.558326e-05 4.183
R-HSA-72172 mRNA Splicing 8.347835e-05 4.078
R-HSA-2467813 Separation of Sister Chromatids 8.390568e-05 4.076
R-HSA-72163 mRNA Splicing - Major Pathway 1.040611e-04 3.983
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 1.073864e-04 3.969
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 1.108707e-04 3.955
R-HSA-171306 Packaging Of Telomere Ends 1.320751e-04 3.879
R-HSA-73728 RNA Polymerase I Promoter Opening 1.320751e-04 3.879
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 1.320751e-04 3.879
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 1.979001e-04 3.704
R-HSA-9018519 Estrogen-dependent gene expression 2.085793e-04 3.681
R-HSA-9755779 SARS-CoV-2 targets host intracellular signalling and regulatory pathways 2.283586e-04 3.641
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 2.283586e-04 3.641
R-HSA-9764560 Regulation of CDH1 Gene Transcription 2.298757e-04 3.639
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 2.575600e-04 3.589
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 3.391568e-04 3.470
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 3.391568e-04 3.470
R-HSA-162582 Signal Transduction 3.400515e-04 3.468
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 3.376945e-04 3.471
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 3.468793e-04 3.460
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 3.694097e-04 3.432
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 3.867796e-04 3.413
R-HSA-68616 Assembly of the ORC complex at the origin of replication 4.002296e-04 3.398
R-HSA-9614399 Regulation of localization of FOXO transcription factors 4.378566e-04 3.359
R-HSA-73854 RNA Polymerase I Promoter Clearance 4.423467e-04 3.354
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 4.536263e-04 3.343
R-HSA-2028269 Signaling by Hippo 4.928679e-04 3.307
R-HSA-190840 Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 4.928679e-04 3.307
R-HSA-73864 RNA Polymerase I Transcription 5.425680e-04 3.266
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 5.535618e-04 3.257
R-HSA-190872 Transport of connexons to the plasma membrane 6.203290e-04 3.207
R-HSA-9842860 Regulation of endogenous retroelements 6.223255e-04 3.206
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 6.463318e-04 3.190
R-HSA-109606 Intrinsic Pathway for Apoptosis 6.628260e-04 3.179
R-HSA-2559583 Cellular Senescence 6.933937e-04 3.159
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 8.008892e-04 3.096
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 7.980317e-04 3.098
R-HSA-5619507 Activation of HOX genes during differentiation 7.980317e-04 3.098
R-HSA-2262752 Cellular responses to stress 8.142840e-04 3.089
R-HSA-72737 Cap-dependent Translation Initiation 8.263424e-04 3.083
R-HSA-72613 Eukaryotic Translation Initiation 8.263424e-04 3.083
R-HSA-427359 SIRT1 negatively regulates rRNA expression 8.694480e-04 3.061
R-HSA-437239 Recycling pathway of L1 8.835338e-04 3.054
R-HSA-422475 Axon guidance 8.704129e-04 3.060
R-HSA-110331 Cleavage of the damaged purine 8.694480e-04 3.061
R-HSA-389977 Post-chaperonin tubulin folding pathway 9.507326e-04 3.022
R-HSA-9924644 Developmental Lineages of the Mammary Gland 1.022096e-03 2.991
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 9.643732e-04 3.016
R-HSA-9610379 HCMV Late Events 9.732921e-04 3.012
R-HSA-73927 Depurination 1.002115e-03 2.999
R-HSA-211000 Gene Silencing by RNA 1.013902e-03 2.994
R-HSA-983189 Kinesins 1.041813e-03 2.982
R-HSA-6794362 Protein-protein interactions at synapses 1.055990e-03 2.976
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 1.095961e-03 2.960
R-HSA-8953897 Cellular responses to stimuli 1.103472e-03 2.957
R-HSA-141424 Amplification of signal from the kinetochores 1.154722e-03 2.938
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 1.154722e-03 2.938
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 1.315893e-03 2.881
R-HSA-9670095 Inhibition of DNA recombination at telomere 1.315893e-03 2.881
R-HSA-9646399 Aggrephagy 1.315893e-03 2.881
R-HSA-109581 Apoptosis 1.324407e-03 2.878
R-HSA-389958 Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 1.441140e-03 2.841
R-HSA-912446 Meiotic recombination 1.426828e-03 2.846
R-HSA-9816359 Maternal to zygotic transition (MZT) 1.376634e-03 2.861
R-HSA-5688426 Deubiquitination 1.467192e-03 2.834
R-HSA-5368598 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 1.497548e-03 2.825
R-HSA-73772 RNA Polymerase I Promoter Escape 1.597800e-03 2.796
R-HSA-6794361 Neurexins and neuroligins 1.597800e-03 2.796
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 1.784828e-03 2.748
R-HSA-110329 Cleavage of the damaged pyrimidine 1.927987e-03 2.715
R-HSA-73928 Depyrimidination 1.927987e-03 2.715
R-HSA-201688 WNT mediated activation of DVL 2.111776e-03 2.675
R-HSA-9664420 Killing mechanisms 2.102543e-03 2.677
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 2.102543e-03 2.677
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 2.211323e-03 2.655
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 2.224858e-03 2.653
R-HSA-389960 Formation of tubulin folding intermediates by CCT/TriC 2.364857e-03 2.626
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 2.447332e-03 2.611
R-HSA-180746 Nuclear import of Rev protein 2.548334e-03 2.594
R-HSA-2980766 Nuclear Envelope Breakdown 2.715206e-03 2.566
R-HSA-9675108 Nervous system development 2.756545e-03 2.560
R-HSA-72689 Formation of a pool of free 40S subunits 3.062162e-03 2.514
R-HSA-8939211 ESR-mediated signaling 2.843266e-03 2.546
R-HSA-8856688 Golgi-to-ER retrograde transport 2.843145e-03 2.546
R-HSA-427413 NoRC negatively regulates rRNA expression 3.059300e-03 2.514
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 2.999088e-03 2.523
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 3.238498e-03 2.490
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 3.297017e-03 2.482
R-HSA-2132295 MHC class II antigen presentation 3.595177e-03 2.444
R-HSA-3700989 Transcriptional Regulation by TP53 3.619871e-03 2.441
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 3.638875e-03 2.439
R-HSA-156711 Polo-like kinase mediated events 3.801279e-03 2.420
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 4.216280e-03 2.375
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 4.739105e-03 2.324
R-HSA-69618 Mitotic Spindle Checkpoint 4.386197e-03 2.358
R-HSA-201681 TCF dependent signaling in response to WNT 4.406738e-03 2.356
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 4.376359e-03 2.359
R-HSA-9619483 Activation of AMPK downstream of NMDARs 4.332549e-03 2.363
R-HSA-389948 Co-inhibition by PD-1 4.625563e-03 2.335
R-HSA-9616222 Transcriptional regulation of granulopoiesis 4.376359e-03 2.359
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 4.787549e-03 2.320
R-HSA-380259 Loss of Nlp from mitotic centrosomes 4.787549e-03 2.320
R-HSA-177243 Interactions of Rev with host cellular proteins 5.309319e-03 2.275
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 5.677696e-03 2.246
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 5.904205e-03 2.229
R-HSA-212165 Epigenetic regulation of gene expression 6.052205e-03 2.218
R-HSA-8854518 AURKA Activation by TPX2 6.203019e-03 2.207
R-HSA-1221632 Meiotic synapsis 6.262958e-03 2.203
R-HSA-156842 Eukaryotic Translation Elongation 6.332153e-03 2.198
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 6.380908e-03 2.195
R-HSA-9833482 PKR-mediated signaling 6.380908e-03 2.195
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 6.454077e-03 2.190
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 6.454077e-03 2.190
R-HSA-162658 Golgi Cisternae Pericentriolar Stack Reorganization 7.168241e-03 2.145
R-HSA-73929 Base-Excision Repair, AP Site Formation 6.871449e-03 2.163
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 7.402804e-03 2.131
R-HSA-69478 G2/M DNA replication checkpoint 7.674234e-03 2.115
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 7.894810e-03 2.103
R-HSA-913531 Interferon Signaling 7.966040e-03 2.099
R-HSA-1855170 IPs transport between nucleus and cytosol 8.233636e-03 2.084
R-HSA-159227 Transport of the SLBP independent Mature mRNA 8.233636e-03 2.084
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 8.233636e-03 2.084
R-HSA-176187 Activation of ATR in response to replication stress 8.233636e-03 2.084
R-HSA-9668328 Sealing of the nuclear envelope (NE) by ESCRT-III 8.233636e-03 2.084
R-HSA-69002 DNA Replication Pre-Initiation 8.391555e-03 2.076
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 8.516901e-03 2.070
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 8.546718e-03 2.068
R-HSA-190828 Gap junction trafficking 8.961568e-03 2.048
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 9.116821e-03 2.040
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 9.244378e-03 2.034
R-HSA-389957 Prefoldin mediated transfer of substrate to CCT/TriC 9.798940e-03 2.009
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 1.074631e-02 1.969
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 1.057634e-02 1.976
R-HSA-1483249 Inositol phosphate metabolism 1.002938e-02 1.999
R-HSA-190861 Gap junction assembly 1.034071e-02 1.985
R-HSA-168273 Influenza Viral RNA Transcription and Replication 1.109546e-02 1.955
R-HSA-380287 Centrosome maturation 1.241474e-02 1.906
R-HSA-156902 Peptide chain elongation 1.199962e-02 1.921
R-HSA-169893 Prolonged ERK activation events 1.240065e-02 1.907
R-HSA-8943724 Regulation of PTEN gene transcription 1.150450e-02 1.939
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 1.120760e-02 1.950
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 1.120760e-02 1.950
R-HSA-8863678 Neurodegenerative Diseases 1.120760e-02 1.950
R-HSA-450294 MAP kinase activation 1.245786e-02 1.905
R-HSA-5620924 Intraflagellar transport 1.299935e-02 1.886
R-HSA-388841 Regulation of T cell activation by CD28 family 1.225595e-02 1.912
R-HSA-9909648 Regulation of PD-L1(CD274) expression 1.200730e-02 1.921
R-HSA-1169408 ISG15 antiviral mechanism 1.241474e-02 1.906
R-HSA-1266738 Developmental Biology 1.265911e-02 1.898
R-HSA-5357801 Programmed Cell Death 1.237333e-02 1.908
R-HSA-5689880 Ub-specific processing proteases 1.255245e-02 1.901
R-HSA-438064 Post NMDA receptor activation events 1.123670e-02 1.949
R-HSA-1253288 Downregulation of ERBB4 signaling 1.314011e-02 1.881
R-HSA-390696 Adrenoceptors 1.314011e-02 1.881
R-HSA-6784531 tRNA processing in the nucleus 1.346793e-02 1.871
R-HSA-373760 L1CAM interactions 1.403846e-02 1.853
R-HSA-180910 Vpr-mediated nuclear import of PICs 1.417911e-02 1.848
R-HSA-5689896 Ovarian tumor domain proteases 1.417911e-02 1.848
R-HSA-157858 Gap junction trafficking and regulation 1.418485e-02 1.848
R-HSA-1963640 GRB2 events in ERBB2 signaling 1.457093e-02 1.837
R-HSA-1250347 SHC1 events in ERBB4 signaling 1.457093e-02 1.837
R-HSA-2219528 PI3K/AKT Signaling in Cancer 1.561493e-02 1.806
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 1.624598e-02 1.789
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 1.624598e-02 1.789
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 1.630561e-02 1.788
R-HSA-170984 ARMS-mediated activation 1.652231e-02 1.782
R-HSA-450341 Activation of the AP-1 family of transcription factors 1.652231e-02 1.782
R-HSA-430116 GP1b-IX-V activation signalling 1.652231e-02 1.782
R-HSA-9824446 Viral Infection Pathways 1.679585e-02 1.775
R-HSA-168276 NS1 Mediated Effects on Host Pathways 1.723000e-02 1.764
R-HSA-9664565 Signaling by ERBB2 KD Mutants 2.032965e-02 1.692
R-HSA-9006925 Intracellular signaling by second messengers 1.988845e-02 1.701
R-HSA-68867 Assembly of the pre-replicative complex 1.742433e-02 1.759
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 1.910402e-02 1.719
R-HSA-3214841 PKMTs methylate histone lysines 2.070416e-02 1.684
R-HSA-73886 Chromosome Maintenance 1.822616e-02 1.739
R-HSA-176033 Interactions of Vpr with host cellular proteins 1.891268e-02 1.723
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 2.070416e-02 1.684
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 2.073173e-02 1.683
R-HSA-187042 TRKA activation by NGF 2.087653e-02 1.680
R-HSA-167021 PLC-gamma1 signalling 2.087653e-02 1.680
R-HSA-198745 Signalling to STAT3 2.087653e-02 1.680
R-HSA-111446 Activation of BIM and translocation to mitochondria 2.087653e-02 1.680
R-HSA-162909 Host Interactions of HIV factors 2.115169e-02 1.675
R-HSA-72649 Translation initiation complex formation 2.128769e-02 1.672
R-HSA-376176 Signaling by ROBO receptors 2.140830e-02 1.669
R-HSA-74160 Gene expression (Transcription) 2.198995e-02 1.658
R-HSA-1227990 Signaling by ERBB2 in Cancer 2.260162e-02 1.646
R-HSA-9008059 Interleukin-37 signaling 2.260162e-02 1.646
R-HSA-927802 Nonsense-Mediated Decay (NMD) 2.342623e-02 1.630
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 2.342623e-02 1.630
R-HSA-1500620 Meiosis 2.376354e-02 1.624
R-HSA-448424 Interleukin-17 signaling 2.380307e-02 1.623
R-HSA-1257604 PIP3 activates AKT signaling 2.485021e-02 1.605
R-HSA-162587 HIV Life Cycle 2.526455e-02 1.597
R-HSA-9764265 Regulation of CDH1 Expression and Function 2.528767e-02 1.597
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 2.528767e-02 1.597
R-HSA-1500931 Cell-Cell communication 2.698475e-02 1.569
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 2.707444e-02 1.567
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 2.892753e-02 1.539
R-HSA-390522 Striated Muscle Contraction 3.330296e-02 1.478
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 3.335815e-02 1.477
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 2.851020e-02 1.545
R-HSA-429914 Deadenylation-dependent mRNA decay 3.054600e-02 1.515
R-HSA-9930044 Nuclear RNA decay 3.037985e-02 1.517
R-HSA-199977 ER to Golgi Anterograde Transport 3.357255e-02 1.474
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 3.138645e-02 1.503
R-HSA-162906 HIV Infection 2.795601e-02 1.554
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 3.253209e-02 1.488
R-HSA-2408557 Selenocysteine synthesis 2.868166e-02 1.542
R-HSA-75153 Apoptotic execution phase 3.388417e-02 1.470
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 3.337798e-02 1.477
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 3.388417e-02 1.470
R-HSA-111465 Apoptotic cleavage of cellular proteins 2.762366e-02 1.559
R-HSA-168255 Influenza Infection 3.180006e-02 1.498
R-HSA-9820865 Z-decay: degradation of maternal mRNAs by zygotically expressed factors 3.448636e-02 1.462
R-HSA-8983432 Interleukin-15 signaling 3.448636e-02 1.462
R-HSA-73856 RNA Polymerase II Transcription Termination 3.490560e-02 1.457
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 3.518398e-02 1.454
R-HSA-8986944 Transcriptional Regulation by MECP2 3.518398e-02 1.454
R-HSA-1912408 Pre-NOTCH Transcription and Translation 3.518398e-02 1.454
R-HSA-9669938 Signaling by KIT in disease 3.638767e-02 1.439
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 3.638767e-02 1.439
R-HSA-8955332 Carboxyterminal post-translational modifications of tubulin 3.650694e-02 1.438
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 3.872797e-02 1.412
R-HSA-187687 Signalling to ERKs 3.965824e-02 1.402
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 3.965824e-02 1.402
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 4.007832e-02 1.397
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 4.044247e-02 1.393
R-HSA-1855167 Synthesis of pyrophosphates in the cytosol 4.049541e-02 1.393
R-HSA-9669937 Drug resistance of KIT mutants 4.301573e-02 1.366
R-HSA-9669921 KIT mutants bind TKIs 4.301573e-02 1.366
R-HSA-9669924 Masitinib-resistant KIT mutants 4.301573e-02 1.366
R-HSA-9669929 Regorafenib-resistant KIT mutants 4.301573e-02 1.366
R-HSA-9669926 Nilotinib-resistant KIT mutants 4.301573e-02 1.366
R-HSA-9669936 Sorafenib-resistant KIT mutants 4.301573e-02 1.366
R-HSA-9669914 Dasatinib-resistant KIT mutants 4.301573e-02 1.366
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 4.301573e-02 1.366
R-HSA-9669917 Imatinib-resistant KIT mutants 4.301573e-02 1.366
R-HSA-9669934 Sunitinib-resistant KIT mutants 4.301573e-02 1.366
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 4.317175e-02 1.365
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 4.328695e-02 1.364
R-HSA-1280218 Adaptive Immune System 4.354712e-02 1.361
R-HSA-8868773 rRNA processing in the nucleus and cytosol 4.375494e-02 1.359
R-HSA-5635851 GLI proteins bind promoters of Hh responsive genes to promote transcription 4.905999e-02 1.309
R-HSA-9833576 CDH11 homotypic and heterotypic interactions 4.905999e-02 1.309
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 4.609884e-02 1.336
R-HSA-1433559 Regulation of KIT signaling 4.609884e-02 1.336
R-HSA-8847993 ERBB2 Activates PTK6 Signaling 4.609884e-02 1.336
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 5.253851e-02 1.280
R-HSA-6785631 ERBB2 Regulates Cell Motility 5.253851e-02 1.280
R-HSA-429947 Deadenylation of mRNA 4.485565e-02 1.348
R-HSA-1251985 Nuclear signaling by ERBB4 5.857531e-02 1.232
R-HSA-72187 mRNA 3'-end processing 5.154656e-02 1.288
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 4.534416e-02 1.343
R-HSA-451927 Interleukin-2 family signaling 5.857531e-02 1.232
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 5.433120e-02 1.265
R-HSA-187037 Signaling by NTRK1 (TRKA) 5.482985e-02 1.261
R-HSA-162599 Late Phase of HIV Life Cycle 5.402299e-02 1.267
R-HSA-525793 Myogenesis 5.433120e-02 1.265
R-HSA-72764 Eukaryotic Translation Termination 4.758832e-02 1.322
R-HSA-6807878 COPI-mediated anterograde transport 4.990493e-02 1.302
R-HSA-9006931 Signaling by Nuclear Receptors 5.607910e-02 1.251
R-HSA-195721 Signaling by WNT 4.568958e-02 1.340
R-HSA-9620244 Long-term potentiation 4.946796e-02 1.306
R-HSA-199991 Membrane Trafficking 4.807617e-02 1.318
R-HSA-73894 DNA Repair 5.227295e-02 1.282
R-HSA-5617833 Cilium Assembly 4.679380e-02 1.330
R-HSA-73857 RNA Polymerase II Transcription 5.784234e-02 1.238
R-HSA-9764302 Regulation of CDH19 Expression and Function 4.905999e-02 1.309
R-HSA-446353 Cell-extracellular matrix interactions 5.253851e-02 1.280
R-HSA-446728 Cell junction organization 4.395187e-02 1.357
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 5.679393e-02 1.246
R-HSA-157579 Telomere Maintenance 5.229465e-02 1.282
R-HSA-9705683 SARS-CoV-2-host interactions 5.109069e-02 1.292
R-HSA-977225 Amyloid fiber formation 4.564921e-02 1.341
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 5.332716e-02 1.273
R-HSA-199418 Negative regulation of the PI3K/AKT network 5.925891e-02 1.227
R-HSA-5099900 WNT5A-dependent internalization of FZD4 5.938632e-02 1.226
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 5.938632e-02 1.226
R-HSA-5610787 Hedgehog 'off' state 5.990807e-02 1.223
R-HSA-70171 Glycolysis 5.990807e-02 1.223
R-HSA-164944 Nef and signal transduction 6.035841e-02 1.219
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 6.035841e-02 1.219
R-HSA-2980767 Activation of NIMA Kinases NEK9, NEK6, NEK7 6.035841e-02 1.219
R-HSA-1474165 Reproduction 6.155941e-02 1.211
R-HSA-212436 Generic Transcription Pathway 6.178129e-02 1.209
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 6.278618e-02 1.202
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 6.288182e-02 1.201
R-HSA-390466 Chaperonin-mediated protein folding 6.480427e-02 1.188
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 6.535864e-02 1.185
R-HSA-72702 Ribosomal scanning and start codon recognition 6.594412e-02 1.181
R-HSA-193648 NRAGE signals death through JNK 6.594412e-02 1.181
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 6.662987e-02 1.176
R-HSA-166520 Signaling by NTRKs 6.698611e-02 1.174
R-HSA-5655302 Signaling by FGFR1 in disease 6.736206e-02 1.172
R-HSA-9663891 Selective autophagy 6.789277e-02 1.168
R-HSA-192823 Viral mRNA Translation 6.819754e-02 1.166
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 6.962481e-02 1.157
R-HSA-9709570 Impaired BRCA2 binding to RAD51 7.040471e-02 1.152
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 7.040471e-02 1.152
R-HSA-187015 Activation of TRKA receptors 7.244463e-02 1.140
R-HSA-167590 Nef Mediated CD4 Down-regulation 7.244463e-02 1.140
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 7.244463e-02 1.140
R-HSA-8949275 RUNX3 Regulates Immune Response and Cell Migration 7.244463e-02 1.140
R-HSA-73884 Base Excision Repair 7.433713e-02 1.129
R-HSA-1250196 SHC1 events in ERBB2 signaling 7.624678e-02 1.118
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 7.667007e-02 1.115
R-HSA-194441 Metabolism of non-coding RNA 7.813503e-02 1.107
R-HSA-191859 snRNP Assembly 7.813503e-02 1.107
R-HSA-3371556 Cellular response to heat stress 7.869896e-02 1.104
R-HSA-69306 DNA Replication 7.922342e-02 1.101
R-HSA-9734767 Developmental Cell Lineages 7.968425e-02 1.099
R-HSA-8878171 Transcriptional regulation by RUNX1 8.150672e-02 1.089
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 8.224897e-02 1.085
R-HSA-8849932 Synaptic adhesion-like molecules 8.224897e-02 1.085
R-HSA-112315 Transmission across Chemical Synapses 8.411926e-02 1.075
R-HSA-5632968 Defective Mismatch Repair Associated With MSH6 8.418361e-02 1.075
R-HSA-111452 Activation and oligomerization of BAK protein 8.418361e-02 1.075
R-HSA-114294 Activation, translocation and oligomerization of BAX 8.418361e-02 1.075
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 8.466375e-02 1.072
R-HSA-391251 Protein folding 8.467318e-02 1.072
R-HSA-9948299 Ribosome-associated quality control 8.489635e-02 1.071
R-HSA-446107 Type I hemidesmosome assembly 8.523019e-02 1.069
R-HSA-8985947 Interleukin-9 signaling 8.523019e-02 1.069
R-HSA-111453 BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members 8.523019e-02 1.069
R-HSA-168325 Viral Messenger RNA Synthesis 8.692033e-02 1.061
R-HSA-76009 Platelet Aggregation (Plug Formation) 8.699720e-02 1.060
R-HSA-9612973 Autophagy 8.720340e-02 1.059
R-HSA-2206292 MPS VII - Sly syndrome (Hyaluronan metabolism) 1.235829e-01 0.908
R-HSA-176034 Interactions of Tat with host cellular proteins 1.235829e-01 0.908
R-HSA-9680187 Signaling by extracellular domain mutants of KIT 1.235829e-01 0.908
R-HSA-9669935 Signaling by juxtamembrane domain KIT mutants 1.235829e-01 0.908
R-HSA-3315487 SMAD2/3 MH2 Domain Mutants in Cancer 1.235829e-01 0.908
R-HSA-3311021 SMAD4 MH2 Domain Mutants in Cancer 1.235829e-01 0.908
R-HSA-5674404 PTEN Loss of Function in Cancer 1.235829e-01 0.908
R-HSA-5603027 IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... 1.235829e-01 0.908
R-HSA-9953080 MPS VII - Sly syndrome (CS/DS degradation) 1.235829e-01 0.908
R-HSA-3304347 Loss of Function of SMAD4 in Cancer 1.235829e-01 0.908
R-HSA-5602636 IKBKB deficiency causes SCID 1.235829e-01 0.908
R-HSA-9669933 Signaling by kinase domain mutants of KIT 1.235829e-01 0.908
R-HSA-4839744 Signaling by APC mutants 1.269880e-01 0.896
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 1.269880e-01 0.896
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 1.269880e-01 0.896
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 1.269880e-01 0.896
R-HSA-4641258 Degradation of DVL 1.310087e-01 0.883
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 1.034729e-01 0.985
R-HSA-9823730 Formation of definitive endoderm 9.927650e-02 1.003
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 9.411333e-02 1.026
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 9.411333e-02 1.026
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 9.411333e-02 1.026
R-HSA-9020958 Interleukin-21 signaling 9.863275e-02 1.006
R-HSA-9762292 Regulation of CDH11 function 1.125757e-01 0.949
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 1.310087e-01 0.883
R-HSA-9020558 Interleukin-2 signaling 1.269880e-01 0.896
R-HSA-9614085 FOXO-mediated transcription 1.161255e-01 0.935
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 9.516655e-02 1.022
R-HSA-4086400 PCP/CE pathway 8.858942e-02 1.053
R-HSA-5693607 Processing of DNA double-strand break ends 1.012369e-01 0.995
R-HSA-1268020 Mitochondrial protein import 9.150804e-02 1.039
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 1.088880e-01 0.963
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 1.088880e-01 0.963
R-HSA-5632928 Defective Mismatch Repair Associated With MSH2 1.235829e-01 0.908
R-HSA-5140745 WNT5A-dependent internalization of FZD2, FZD5 and ROR2 1.125757e-01 0.949
R-HSA-166208 mTORC1-mediated signalling 1.271724e-01 0.896
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 1.088880e-01 0.963
R-HSA-975871 MyD88 cascade initiated on plasma membrane 1.118896e-01 0.951
R-HSA-948021 Transport to the Golgi and subsequent modification 1.142556e-01 0.942
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 1.118896e-01 0.951
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 1.118896e-01 0.951
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 1.271724e-01 0.896
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 1.159500e-01 0.936
R-HSA-9671555 Signaling by PDGFR in disease 1.175825e-01 0.930
R-HSA-1280215 Cytokine Signaling in Immune system 1.080178e-01 0.967
R-HSA-210990 PECAM1 interactions 1.269880e-01 0.896
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 9.516655e-02 1.022
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 1.160631e-01 0.935
R-HSA-69206 G1/S Transition 9.411333e-02 1.026
R-HSA-9856532 Mechanical load activates signaling by PIEZO1 and integrins in osteocytes 9.059461e-02 1.043
R-HSA-416482 G alpha (12/13) signalling events 8.858942e-02 1.053
R-HSA-1632852 Macroautophagy 9.374180e-02 1.028
R-HSA-9675135 Diseases of DNA repair 9.232619e-02 1.035
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 9.863275e-02 1.006
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 9.622433e-02 1.017
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 9.142968e-02 1.039
R-HSA-5628897 TP53 Regulates Metabolic Genes 1.159500e-01 0.936
R-HSA-418990 Adherens junctions interactions 1.082551e-01 0.966
R-HSA-193704 p75 NTR receptor-mediated signalling 1.161255e-01 0.935
R-HSA-163765 ChREBP activates metabolic gene expression 1.269880e-01 0.896
R-HSA-373753 Nephrin family interactions 9.927650e-02 1.003
R-HSA-70326 Glucose metabolism 1.280982e-01 0.892
R-HSA-157118 Signaling by NOTCH 1.156326e-01 0.937
R-HSA-1912422 Pre-NOTCH Expression and Processing 1.044660e-01 0.981
R-HSA-446652 Interleukin-1 family signaling 1.344304e-01 0.872
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 1.370305e-01 0.863
R-HSA-982772 Growth hormone receptor signaling 1.370305e-01 0.863
R-HSA-5693532 DNA Double-Strand Break Repair 1.381960e-01 0.860
R-HSA-5620920 Cargo trafficking to the periciliary membrane 1.383985e-01 0.859
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 1.387649e-01 0.858
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 1.387649e-01 0.858
R-HSA-1250342 PI3K events in ERBB4 signaling 1.418036e-01 0.848
R-HSA-5339716 Signaling by GSK3beta mutants 1.418036e-01 0.848
R-HSA-428540 Activation of RAC1 1.418036e-01 0.848
R-HSA-4839748 Signaling by AMER1 mutants 1.418036e-01 0.848
R-HSA-4839735 Signaling by AXIN mutants 1.418036e-01 0.848
R-HSA-2514853 Condensation of Prometaphase Chromosomes 1.418036e-01 0.848
R-HSA-381183 ATF6 (ATF6-alpha) activates chaperone genes 1.418036e-01 0.848
R-HSA-72766 Translation 1.418635e-01 0.848
R-HSA-8953750 Transcriptional Regulation by E2F6 1.467003e-01 0.834
R-HSA-202430 Translocation of ZAP-70 to Immunological synapse 1.471394e-01 0.832
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 1.471394e-01 0.832
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 1.481054e-01 0.829
R-HSA-202424 Downstream TCR signaling 1.499379e-01 0.824
R-HSA-72312 rRNA processing 1.500994e-01 0.824
R-HSA-5358351 Signaling by Hedgehog 1.502238e-01 0.823
R-HSA-9692914 SARS-CoV-1-host interactions 1.529942e-01 0.815
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 1.541224e-01 0.812
R-HSA-6807070 PTEN Regulation 1.544685e-01 0.811
R-HSA-202433 Generation of second messenger molecules 1.548071e-01 0.810
R-HSA-1236394 Signaling by ERBB4 1.561187e-01 0.807
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 1.569612e-01 0.804
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 1.569612e-01 0.804
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 1.569612e-01 0.804
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 1.569612e-01 0.804
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 1.569612e-01 0.804
R-HSA-8866427 VLDLR internalisation and degradation 1.569612e-01 0.804
R-HSA-9931530 Phosphorylation and nuclear translocation of the CRY:PER:kinase complex 1.569612e-01 0.804
R-HSA-418890 Role of second messengers in netrin-1 signaling 1.569612e-01 0.804
R-HSA-877312 Regulation of IFNG signaling 1.569612e-01 0.804
R-HSA-76002 Platelet activation, signaling and aggregation 1.572467e-01 0.803
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 1.610749e-01 0.793
R-HSA-75108 Activation, myristolyation of BID and translocation to mitochondria 1.612895e-01 0.792
R-HSA-194306 Neurophilin interactions with VEGF and VEGFR 1.612895e-01 0.792
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 1.630002e-01 0.788
R-HSA-975155 MyD88 dependent cascade initiated on endosome 1.681146e-01 0.774
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 1.715037e-01 0.766
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 1.720343e-01 0.764
R-HSA-9796292 Formation of axial mesoderm 1.724041e-01 0.763
R-HSA-170968 Frs2-mediated activation 1.724041e-01 0.763
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 1.724041e-01 0.763
R-HSA-381033 ATF6 (ATF6-alpha) activates chaperones 1.724041e-01 0.763
R-HSA-202403 TCR signaling 1.733013e-01 0.761
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 1.733013e-01 0.761
R-HSA-166166 MyD88-independent TLR4 cascade 1.733013e-01 0.761
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 1.787960e-01 0.748
R-HSA-9006115 Signaling by NTRK2 (TRKB) 1.787960e-01 0.748
R-HSA-73762 RNA Polymerase I Transcription Initiation 1.800775e-01 0.745
R-HSA-8875791 MET activates STAT3 1.973760e-01 0.705
R-HSA-9034793 Activated NTRK3 signals through PLCG1 1.973760e-01 0.705
R-HSA-9673766 Signaling by cytosolic PDGFRA and PDGFRB fusion proteins 1.973760e-01 0.705
R-HSA-392023 Adrenaline signalling through Alpha-2 adrenergic receptor 1.973760e-01 0.705
R-HSA-9026527 Activated NTRK2 signals through PLCG1 2.319120e-01 0.635
R-HSA-1296061 HCN channels 2.319120e-01 0.635
R-HSA-8952158 RUNX3 regulates BCL2L11 (BIM) transcription 2.319120e-01 0.635
R-HSA-9735786 Nucleotide catabolism defects 2.319120e-01 0.635
R-HSA-9735763 Defective PNP disrupts phosphorolysis of (deoxy)guanosine and (deoxy)inosine 2.319120e-01 0.635
R-HSA-1251932 PLCG1 events in ERBB2 signaling 2.319120e-01 0.635
R-HSA-3656532 TGFBR1 KD Mutants in Cancer 2.319120e-01 0.635
R-HSA-399710 Activation of AMPA receptors 2.649639e-01 0.577
R-HSA-3304356 SMAD2/3 Phosphorylation Motif Mutants in Cancer 2.649639e-01 0.577
R-HSA-9846298 Defective binding of VWF variant to GPIb:IX:V 2.649639e-01 0.577
R-HSA-9673221 Defective F9 activation 2.649639e-01 0.577
R-HSA-9845620 Enhanced binding of GP1BA variant to VWF multimer:collagen 2.649639e-01 0.577
R-HSA-75158 TRAIL signaling 2.965955e-01 0.528
R-HSA-187024 NGF-independant TRKA activation 2.965955e-01 0.528
R-HSA-182218 Nef Mediated CD8 Down-regulation 2.965955e-01 0.528
R-HSA-187706 Signalling to p38 via RIT and RIN 2.965955e-01 0.528
R-HSA-9017802 Noncanonical activation of NOTCH3 2.965955e-01 0.528
R-HSA-3304349 Loss of Function of SMAD2/3 in Cancer 2.965955e-01 0.528
R-HSA-5340588 Signaling by RNF43 mutants 2.965955e-01 0.528
R-HSA-177504 Retrograde neurotrophin signalling 1.880799e-01 0.726
R-HSA-113507 E2F-enabled inhibition of pre-replication complex formation 3.268676e-01 0.486
R-HSA-196299 Beta-catenin phosphorylation cascade 2.039399e-01 0.690
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 2.199395e-01 0.658
R-HSA-8931987 RUNX1 regulates estrogen receptor mediated transcription 3.558388e-01 0.449
R-HSA-8948747 Regulation of PTEN localization 3.558388e-01 0.449
R-HSA-163767 PP2A-mediated dephosphorylation of key metabolic factors 3.558388e-01 0.449
R-HSA-2470946 Cohesin Loading onto Chromatin 3.558388e-01 0.449
R-HSA-112412 SOS-mediated signalling 3.558388e-01 0.449
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 3.558388e-01 0.449
R-HSA-77595 Processing of Intronless Pre-mRNAs 2.360374e-01 0.627
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 2.360374e-01 0.627
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 2.683789e-01 0.571
R-HSA-2424491 DAP12 signaling 2.120887e-01 0.673
R-HSA-9709603 Impaired BRCA2 binding to PALB2 2.845557e-01 0.546
R-HSA-399719 Trafficking of AMPA receptors 2.234723e-01 0.651
R-HSA-389513 Co-inhibition by CTLA4 3.006964e-01 0.522
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 3.006964e-01 0.522
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 3.006964e-01 0.522
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 3.006964e-01 0.522
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 3.006964e-01 0.522
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 3.006964e-01 0.522
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 2.465735e-01 0.608
R-HSA-72165 mRNA Splicing - Minor Pathway 2.156869e-01 0.666
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 3.327650e-01 0.478
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 3.327650e-01 0.478
R-HSA-912526 Interleukin receptor SHC signaling 3.643978e-01 0.438
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 2.207759e-01 0.656
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 3.294166e-01 0.482
R-HSA-8957275 Post-translational protein phosphorylation 2.075602e-01 0.683
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 3.413285e-01 0.467
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 3.413285e-01 0.467
R-HSA-1433557 Signaling by SCF-KIT 1.887909e-01 0.724
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 3.327650e-01 0.478
R-HSA-68962 Activation of the pre-replicative complex 2.120887e-01 0.673
R-HSA-167169 HIV Transcription Elongation 3.413285e-01 0.467
R-HSA-354192 Integrin signaling 2.465735e-01 0.608
R-HSA-8853659 RET signaling 2.936973e-01 0.532
R-HSA-166665 Terminal pathway of complement 2.965955e-01 0.528
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 3.486462e-01 0.458
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 2.360374e-01 0.627
R-HSA-6803529 FGFR2 alternative splicing 3.486462e-01 0.458
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 2.936973e-01 0.532
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 2.521955e-01 0.598
R-HSA-8849474 PTK6 Activates STAT3 2.649639e-01 0.577
R-HSA-8849472 PTK6 Down-Regulation 2.649639e-01 0.577
R-HSA-72200 mRNA Editing: C to U Conversion 3.558388e-01 0.449
R-HSA-4791275 Signaling by WNT in cancer 2.349724e-01 0.629
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 3.199478e-01 0.495
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 2.649639e-01 0.577
R-HSA-399956 CRMPs in Sema3A signaling 1.880799e-01 0.726
R-HSA-1538133 G0 and Early G1 2.349724e-01 0.629
R-HSA-170834 Signaling by TGF-beta Receptor Complex 2.014510e-01 0.696
R-HSA-3304351 Signaling by TGF-beta Receptor Complex in Cancer 3.268676e-01 0.486
R-HSA-1839124 FGFR1 mutant receptor activation 2.465735e-01 0.608
R-HSA-8943723 Regulation of PTEN mRNA translation 3.643978e-01 0.438
R-HSA-5358508 Mismatch Repair 2.683789e-01 0.571
R-HSA-5693538 Homology Directed Repair 3.620608e-01 0.441
R-HSA-139910 Activation of BMF and translocation to mitochondria 1.973760e-01 0.705
R-HSA-3656534 Loss of Function of TGFBR1 in Cancer 2.649639e-01 0.577
R-HSA-176417 Phosphorylation of Emi1 2.965955e-01 0.528
R-HSA-75094 Formation of the Editosome 2.965955e-01 0.528
R-HSA-5603029 IkBA variant leads to EDA-ID 2.965955e-01 0.528
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 3.268676e-01 0.486
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 2.039399e-01 0.690
R-HSA-114516 Disinhibition of SNARE formation 3.558388e-01 0.449
R-HSA-4419969 Depolymerization of the Nuclear Lamina 2.683789e-01 0.571
R-HSA-167044 Signalling to RAS 3.167744e-01 0.499
R-HSA-8854691 Interleukin-20 family signaling 3.643978e-01 0.438
R-HSA-1227986 Signaling by ERBB2 1.826594e-01 0.738
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 2.521955e-01 0.598
R-HSA-201556 Signaling by ALK 3.294166e-01 0.482
R-HSA-114508 Effects of PIP2 hydrolysis 2.582608e-01 0.588
R-HSA-3858494 Beta-catenin independent WNT signaling 3.604790e-01 0.443
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants 2.039399e-01 0.690
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants 2.039399e-01 0.690
R-HSA-1660517 Synthesis of PIPs at the late endosome membrane 2.521955e-01 0.598
R-HSA-1181150 Signaling by NODAL 3.006964e-01 0.522
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 1.839217e-01 0.735
R-HSA-9823587 Defects of platelet adhesion to exposed collagen 2.965955e-01 0.528
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 2.039399e-01 0.690
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 2.199395e-01 0.658
R-HSA-139853 Elevation of cytosolic Ca2+ levels 2.521955e-01 0.598
R-HSA-9665348 Signaling by ERBB2 ECD mutants 2.683789e-01 0.571
R-HSA-9937080 Developmental Lineage of Multipotent Pancreatic Progenitor Cells 2.349724e-01 0.629
R-HSA-5637810 Constitutive Signaling by EGFRvIII 2.521955e-01 0.598
R-HSA-5637812 Signaling by EGFRvIII in Cancer 2.521955e-01 0.598
R-HSA-418360 Platelet calcium homeostasis 2.008373e-01 0.697
R-HSA-186763 Downstream signal transduction 2.234723e-01 0.651
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 2.721451e-01 0.565
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 2.346770e-01 0.630
R-HSA-5653656 Vesicle-mediated transport 2.954732e-01 0.529
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 2.346770e-01 0.630
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 2.526078e-01 0.598
R-HSA-397014 Muscle contraction 3.255458e-01 0.487
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 3.055892e-01 0.515
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 3.413285e-01 0.467
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 3.413285e-01 0.467
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 2.526078e-01 0.598
R-HSA-5673001 RAF/MAP kinase cascade 2.890384e-01 0.539
R-HSA-1226099 Signaling by FGFR in disease 2.943801e-01 0.531
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 1.892808e-01 0.723
R-HSA-5423599 Diseases of Mismatch Repair (MMR) 1.973760e-01 0.705
R-HSA-205025 NADE modulates death signalling 2.319120e-01 0.635
R-HSA-195399 VEGF binds to VEGFR leading to receptor dimerization 2.965955e-01 0.528
R-HSA-5655291 Signaling by FGFR4 in disease 1.880799e-01 0.726
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 2.156869e-01 0.666
R-HSA-5684996 MAPK1/MAPK3 signaling 2.331519e-01 0.632
R-HSA-112310 Neurotransmitter release cycle 2.718034e-01 0.566
R-HSA-112316 Neuronal System 1.880667e-01 0.726
R-HSA-9609507 Protein localization 3.401986e-01 0.468
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 3.167744e-01 0.499
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 3.167744e-01 0.499
R-HSA-200425 Carnitine shuttle 3.643978e-01 0.438
R-HSA-453279 Mitotic G1 phase and G1/S transition 1.904985e-01 0.720
R-HSA-5683057 MAPK family signaling cascades 2.671973e-01 0.573
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 1.880799e-01 0.726
R-HSA-1963642 PI3K events in ERBB2 signaling 2.521955e-01 0.598
R-HSA-392517 Rap1 signalling 2.845557e-01 0.546
R-HSA-9034015 Signaling by NTRK3 (TRKC) 3.327650e-01 0.478
R-HSA-9706374 FLT3 signaling through SRC family kinases 2.319120e-01 0.635
R-HSA-194313 VEGF ligand-receptor interactions 2.965955e-01 0.528
R-HSA-389542 NADPH regeneration 3.268676e-01 0.486
R-HSA-426117 Cation-coupled Chloride cotransporters 3.558388e-01 0.449
R-HSA-8964038 LDL clearance 3.486462e-01 0.458
R-HSA-216083 Integrin cell surface interactions 3.283819e-01 0.484
R-HSA-162594 Early Phase of HIV Life Cycle 3.167744e-01 0.499
R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 3.405984e-01 0.468
R-HSA-186797 Signaling by PDGF 1.976086e-01 0.704
R-HSA-8876725 Protein methylation 2.039399e-01 0.690
R-HSA-432142 Platelet sensitization by LDL 2.683789e-01 0.571
R-HSA-1852241 Organelle biogenesis and maintenance 2.449620e-01 0.611
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 2.776081e-01 0.557
R-HSA-140837 Intrinsic Pathway of Fibrin Clot Formation 3.167744e-01 0.499
R-HSA-9007892 Interleukin-38 signaling 2.319120e-01 0.635
R-HSA-3270619 IRF3-mediated induction of type I IFN 2.039399e-01 0.690
R-HSA-5336415 Uptake and function of diphtheria toxin 3.558388e-01 0.449
R-HSA-69202 Cyclin E associated events during G1/S transition 2.610404e-01 0.583
R-HSA-8848021 Signaling by PTK6 2.052368e-01 0.688
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 2.052368e-01 0.688
R-HSA-2682334 EPH-Ephrin signaling 2.941660e-01 0.531
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 2.818365e-01 0.550
R-HSA-1483255 PI Metabolism 2.326620e-01 0.633
R-HSA-9860276 SLC15A4:TASL-dependent IRF5 activation 2.965955e-01 0.528
R-HSA-421270 Cell-cell junction organization 2.187581e-01 0.660
R-HSA-9607240 FLT3 Signaling 3.532243e-01 0.452
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 1.876950e-01 0.727
R-HSA-73887 Death Receptor Signaling 2.298705e-01 0.639
R-HSA-5663205 Infectious disease 2.990092e-01 0.524
R-HSA-8863795 Downregulation of ERBB2 signaling 2.120887e-01 0.673
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 3.486462e-01 0.458
R-HSA-69205 G1/S-Specific Transcription 2.936973e-01 0.532
R-HSA-9830674 Formation of the ureteric bud 3.643978e-01 0.438
R-HSA-9711097 Cellular response to starvation 2.506363e-01 0.601
R-HSA-3000170 Syndecan interactions 3.643978e-01 0.438
R-HSA-2892247 POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation 2.360374e-01 0.627
R-HSA-2672351 Stimuli-sensing channels 2.787735e-01 0.555
R-HSA-2408522 Selenoamino acid metabolism 1.831806e-01 0.737
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 3.643978e-01 0.438
R-HSA-8948216 Collagen chain trimerization 3.055892e-01 0.515
R-HSA-9827857 Specification of primordial germ cells 2.521955e-01 0.598
R-HSA-5633007 Regulation of TP53 Activity 2.612554e-01 0.583
R-HSA-6807004 Negative regulation of MET activity 3.006964e-01 0.522
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 3.269163e-01 0.486
R-HSA-9694516 SARS-CoV-2 Infection 2.747124e-01 0.561
R-HSA-1834941 STING mediated induction of host immune responses 2.845557e-01 0.546
R-HSA-9678108 SARS-CoV-1 Infection 3.504989e-01 0.455
R-HSA-375165 NCAM signaling for neurite out-growth 3.702051e-01 0.432
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 3.702051e-01 0.432
R-HSA-379716 Cytosolic tRNA aminoacylation 3.769259e-01 0.424
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 3.769259e-01 0.424
R-HSA-165159 MTOR signalling 3.769259e-01 0.424
R-HSA-9821993 Replacement of protamines by nucleosomes in the male pronucleus 3.800014e-01 0.420
R-HSA-9865881 Complex III assembly 3.800014e-01 0.420
R-HSA-373755 Semaphorin interactions 3.800616e-01 0.420
R-HSA-381119 Unfolded Protein Response (UPR) 3.801603e-01 0.420
R-HSA-77588 SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs 3.835647e-01 0.416
R-HSA-212718 EGFR interacts with phospholipase C-gamma 3.835647e-01 0.416
R-HSA-111995 phospho-PLA2 pathway 3.835647e-01 0.416
R-HSA-196025 Formation of annular gap junctions 3.835647e-01 0.416
R-HSA-9660537 Signaling by MRAS-complex mutants 3.835647e-01 0.416
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 3.835647e-01 0.416
R-HSA-9020933 Interleukin-23 signaling 3.835647e-01 0.416
R-HSA-3371378 Regulation by c-FLIP 3.835647e-01 0.416
R-HSA-69416 Dimerization of procaspase-8 3.835647e-01 0.416
R-HSA-210455 Astrocytic Glutamate-Glutamine Uptake And Metabolism 3.835647e-01 0.416
R-HSA-112313 Neurotransmitter uptake and metabolism In glial cells 3.835647e-01 0.416
R-HSA-9032500 Activated NTRK2 signals through FYN 3.835647e-01 0.416
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 3.835647e-01 0.416
R-HSA-6802957 Oncogenic MAPK signaling 3.885807e-01 0.411
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 3.887121e-01 0.410
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 3.954408e-01 0.403
R-HSA-1266695 Interleukin-7 signaling 3.954408e-01 0.403
R-HSA-5218921 VEGFR2 mediated cell proliferation 3.954408e-01 0.403
R-HSA-9932451 SWI/SNF chromatin remodelers 3.954408e-01 0.403
R-HSA-9932444 ATP-dependent chromatin remodelers 3.954408e-01 0.403
R-HSA-3214842 HDMs demethylate histones 3.954408e-01 0.403
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 3.954408e-01 0.403
R-HSA-70221 Glycogen breakdown (glycogenolysis) 3.954408e-01 0.403
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 3.997198e-01 0.398
R-HSA-2172127 DAP12 interactions 4.004431e-01 0.397
R-HSA-3928662 EPHB-mediated forward signaling 4.004431e-01 0.397
R-HSA-373752 Netrin-1 signaling 4.004431e-01 0.397
R-HSA-375280 Amine ligand-binding receptors 4.004431e-01 0.397
R-HSA-381038 XBP1(S) activates chaperone genes 4.057734e-01 0.392
R-HSA-449147 Signaling by Interleukins 4.058778e-01 0.392
R-HSA-190873 Gap junction degradation 4.100988e-01 0.387
R-HSA-5218900 CASP8 activity is inhibited 4.100988e-01 0.387
R-HSA-9840373 Cellular response to mitochondrial stress 4.100988e-01 0.387
R-HSA-176974 Unwinding of DNA 4.100988e-01 0.387
R-HSA-450520 HuR (ELAVL1) binds and stabilizes mRNA 4.100988e-01 0.387
R-HSA-198693 AKT phosphorylates targets in the nucleus 4.100988e-01 0.387
R-HSA-2465910 MASTL Facilitates Mitotic Progression 4.100988e-01 0.387
R-HSA-75072 mRNA Editing 4.100988e-01 0.387
R-HSA-9013700 NOTCH4 Activation and Transmission of Signal to the Nucleus 4.100988e-01 0.387
R-HSA-8851680 Butyrophilin (BTN) family interactions 4.100988e-01 0.387
R-HSA-9703465 Signaling by FLT3 fusion proteins 4.107012e-01 0.386
R-HSA-400042 Adrenaline,noradrenaline inhibits insulin secretion 4.107012e-01 0.386
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 4.107012e-01 0.386
R-HSA-1643713 Signaling by EGFR in Cancer 4.107012e-01 0.386
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 4.107012e-01 0.386
R-HSA-3295583 TRP channels 4.107012e-01 0.386
R-HSA-1489509 DAG and IP3 signaling 4.121102e-01 0.385
R-HSA-447115 Interleukin-12 family signaling 4.143483e-01 0.383
R-HSA-194138 Signaling by VEGF 4.187455e-01 0.378
R-HSA-5685942 HDR through Homologous Recombination (HRR) 4.192676e-01 0.378
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 4.248382e-01 0.372
R-HSA-9700206 Signaling by ALK in cancer 4.248382e-01 0.372
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 4.257694e-01 0.371
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 4.257694e-01 0.371
R-HSA-8949613 Cristae formation 4.257694e-01 0.371
R-HSA-445095 Interaction between L1 and Ankyrins 4.257694e-01 0.371
R-HSA-389357 CD28 dependent PI3K/Akt signaling 4.257694e-01 0.371
R-HSA-5655332 Signaling by FGFR3 in disease 4.257694e-01 0.371
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 4.257694e-01 0.371
R-HSA-983712 Ion channel transport 4.318286e-01 0.365
R-HSA-1236975 Antigen processing-Cross presentation 4.325345e-01 0.364
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 4.354924e-01 0.361
R-HSA-164843 2-LTR circle formation 4.354924e-01 0.361
R-HSA-9027277 Erythropoietin activates Phospholipase C gamma (PLCG) 4.354924e-01 0.361
R-HSA-140342 Apoptosis induced DNA fragmentation 4.354924e-01 0.361
R-HSA-198203 PI3K/AKT activation 4.354924e-01 0.361
R-HSA-173107 Binding and entry of HIV virion 4.354924e-01 0.361
R-HSA-74749 Signal attenuation 4.354924e-01 0.361
R-HSA-2179392 EGFR Transactivation by Gastrin 4.354924e-01 0.361
R-HSA-1236973 Cross-presentation of particulate exogenous antigens (phagosomes) 4.354924e-01 0.361
R-HSA-2586552 Signaling by Leptin 4.354924e-01 0.361
R-HSA-9020956 Interleukin-27 signaling 4.354924e-01 0.361
R-HSA-9668250 Defective factor IX causes hemophilia B 4.354924e-01 0.361
R-HSA-110056 MAPK3 (ERK1) activation 4.354924e-01 0.361
R-HSA-5689877 Josephin domain DUBs 4.354924e-01 0.361
R-HSA-167287 HIV elongation arrest and recovery 4.406337e-01 0.356
R-HSA-5576892 Phase 0 - rapid depolarisation 4.406337e-01 0.356
R-HSA-167290 Pausing and recovery of HIV elongation 4.406337e-01 0.356
R-HSA-113418 Formation of the Early Elongation Complex 4.406337e-01 0.356
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 4.406337e-01 0.356
R-HSA-168898 Toll-like Receptor Cascades 4.434683e-01 0.353
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 4.459019e-01 0.351
R-HSA-389356 Co-stimulation by CD28 4.466496e-01 0.350
R-HSA-204005 COPII-mediated vesicle transport 4.482910e-01 0.348
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 4.482910e-01 0.348
R-HSA-72306 tRNA processing 4.508587e-01 0.346
R-HSA-5654708 Downstream signaling of activated FGFR3 4.552838e-01 0.342
R-HSA-9759475 Regulation of CDH11 Expression and Function 4.552838e-01 0.342
R-HSA-9006335 Signaling by Erythropoietin 4.552838e-01 0.342
R-HSA-210745 Regulation of gene expression in beta cells 4.552838e-01 0.342
R-HSA-381070 IRE1alpha activates chaperones 4.568626e-01 0.340
R-HSA-9766229 Degradation of CDH1 4.579848e-01 0.339
R-HSA-112308 Presynaptic depolarization and calcium channel opening 4.597943e-01 0.337
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 4.597943e-01 0.337
R-HSA-9034864 Activated NTRK3 signals through RAS 4.597943e-01 0.337
R-HSA-177135 Conjugation of benzoate with glycine 4.597943e-01 0.337
R-HSA-1483226 Synthesis of PI 4.597943e-01 0.337
R-HSA-9662834 CD163 mediating an anti-inflammatory response 4.597943e-01 0.337
R-HSA-933543 NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 4.597943e-01 0.337
R-HSA-391908 Prostanoid ligand receptors 4.597943e-01 0.337
R-HSA-2871796 FCERI mediated MAPK activation 4.631204e-01 0.334
R-HSA-5658442 Regulation of RAS by GAPs 4.692203e-01 0.329
R-HSA-76046 RNA Polymerase III Transcription Initiation 4.697105e-01 0.328
R-HSA-5654716 Downstream signaling of activated FGFR4 4.697105e-01 0.328
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 4.697105e-01 0.328
R-HSA-9679506 SARS-CoV Infections 4.733684e-01 0.325
R-HSA-9855142 Cellular responses to mechanical stimuli 4.782587e-01 0.320
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 4.819055e-01 0.317
R-HSA-109582 Hemostasis 4.823255e-01 0.317
R-HSA-5358493 Synthesis of diphthamide-EEF2 4.830514e-01 0.316
R-HSA-2214320 Anchoring fibril formation 4.830514e-01 0.316
R-HSA-9026519 Activated NTRK2 signals through RAS 4.830514e-01 0.316
R-HSA-68884 Mitotic Telophase/Cytokinesis 4.830514e-01 0.316
R-HSA-202670 ERKs are inactivated 4.830514e-01 0.316
R-HSA-418359 Reduction of cytosolic Ca++ levels 4.830514e-01 0.316
R-HSA-1236977 Endosomal/Vacuolar pathway 4.830514e-01 0.316
R-HSA-162592 Integration of provirus 4.830514e-01 0.316
R-HSA-162588 Budding and maturation of HIV virion 4.839060e-01 0.315
R-HSA-5694530 Cargo concentration in the ER 4.839060e-01 0.315
R-HSA-112382 Formation of RNA Pol II elongation complex 4.913684e-01 0.309
R-HSA-8852135 Protein ubiquitination 4.955593e-01 0.305
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 4.955593e-01 0.305
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 4.978634e-01 0.303
R-HSA-4420097 VEGFA-VEGFR2 Pathway 5.007203e-01 0.300
R-HSA-75955 RNA Polymerase II Transcription Elongation 5.022707e-01 0.299
R-HSA-9020591 Interleukin-12 signaling 5.048106e-01 0.297
R-HSA-179812 GRB2 events in EGFR signaling 5.053086e-01 0.296
R-HSA-8851805 MET activates RAS signaling 5.053086e-01 0.296
R-HSA-177128 Conjugation of salicylate with glycine 5.053086e-01 0.296
R-HSA-2428933 SHC-related events triggered by IGF1R 5.053086e-01 0.296
R-HSA-1679131 Trafficking and processing of endosomal TLR 5.053086e-01 0.296
R-HSA-9028731 Activated NTRK2 signals through FRS2 and FRS3 5.053086e-01 0.296
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 5.053086e-01 0.296
R-HSA-937039 IRAK1 recruits IKK complex 5.053086e-01 0.296
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 5.053086e-01 0.296
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 5.053086e-01 0.296
R-HSA-8984722 Interleukin-35 Signalling 5.053086e-01 0.296
R-HSA-209543 p75NTR recruits signalling complexes 5.053086e-01 0.296
R-HSA-198323 AKT phosphorylates targets in the cytosol 5.053086e-01 0.296
R-HSA-9842663 Signaling by LTK 5.053086e-01 0.296
R-HSA-8983711 OAS antiviral response 5.053086e-01 0.296
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 5.115769e-01 0.291
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 5.115769e-01 0.291
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 5.115769e-01 0.291
R-HSA-9012852 Signaling by NOTCH3 5.237078e-01 0.281
R-HSA-5693537 Resolution of D-Loop Structures 5.250418e-01 0.280
R-HSA-5696394 DNA Damage Recognition in GG-NER 5.250418e-01 0.280
R-HSA-8964539 Glutamate and glutamine metabolism 5.250418e-01 0.280
R-HSA-5223345 Miscellaneous transport and binding events 5.250418e-01 0.280
R-HSA-170660 Adenylate cyclase activating pathway 5.266088e-01 0.279
R-HSA-389359 CD28 dependent Vav1 pathway 5.266088e-01 0.279
R-HSA-174490 Membrane binding and targetting of GAG proteins 5.266088e-01 0.279
R-HSA-9735804 Diseases of nucleotide metabolism 5.266088e-01 0.279
R-HSA-1059683 Interleukin-6 signaling 5.266088e-01 0.279
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 5.266088e-01 0.279
R-HSA-75892 Platelet Adhesion to exposed collagen 5.266088e-01 0.279
R-HSA-6798695 Neutrophil degranulation 5.317603e-01 0.274
R-HSA-5578775 Ion homeostasis 5.342345e-01 0.272
R-HSA-3299685 Detoxification of Reactive Oxygen Species 5.342345e-01 0.272
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 5.342345e-01 0.272
R-HSA-5673000 RAF activation 5.382538e-01 0.269
R-HSA-168638 NOD1/2 Signaling Pathway 5.382538e-01 0.269
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 5.382538e-01 0.269
R-HSA-5654738 Signaling by FGFR2 5.410261e-01 0.267
R-HSA-6806834 Signaling by MET 5.410261e-01 0.267
R-HSA-9764561 Regulation of CDH1 Function 5.446283e-01 0.264
R-HSA-9009391 Extra-nuclear estrogen signaling 5.466993e-01 0.262
R-HSA-9020702 Interleukin-1 signaling 5.466993e-01 0.262
R-HSA-5654227 Phospholipase C-mediated cascade; FGFR3 5.469931e-01 0.262
R-HSA-1170546 Prolactin receptor signaling 5.469931e-01 0.262
R-HSA-1855191 Synthesis of IPs in the nucleus 5.469931e-01 0.262
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 5.469931e-01 0.262
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 5.469931e-01 0.262
R-HSA-5607763 CLEC7A (Dectin-1) induces NFAT activation 5.469931e-01 0.262
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 5.469931e-01 0.262
R-HSA-1483115 Hydrolysis of LPC 5.469931e-01 0.262
R-HSA-205043 NRIF signals cell death from the nucleus 5.469931e-01 0.262
R-HSA-9856872 Malate-aspartate shuttle 5.469931e-01 0.262
R-HSA-1482798 Acyl chain remodeling of CL 5.469931e-01 0.262
R-HSA-5654696 Downstream signaling of activated FGFR2 5.512100e-01 0.259
R-HSA-5654687 Downstream signaling of activated FGFR1 5.512100e-01 0.259
R-HSA-74158 RNA Polymerase III Transcription 5.639078e-01 0.249
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 5.639078e-01 0.249
R-HSA-3371511 HSF1 activation 5.639078e-01 0.249
R-HSA-9682385 FLT3 signaling in disease 5.639078e-01 0.249
R-HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 5.639078e-01 0.249
R-HSA-6804757 Regulation of TP53 Degradation 5.639078e-01 0.249
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 5.650045e-01 0.248
R-HSA-6809371 Formation of the cornified envelope 5.658209e-01 0.247
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 5.665009e-01 0.247
R-HSA-2173791 TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 5.665009e-01 0.247
R-HSA-170670 Adenylate cyclase inhibitory pathway 5.665009e-01 0.247
R-HSA-5654228 Phospholipase C-mediated cascade; FGFR4 5.665009e-01 0.247
R-HSA-9857492 Protein lipoylation 5.665009e-01 0.247
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 5.665009e-01 0.247
R-HSA-180336 SHC1 events in EGFR signaling 5.665009e-01 0.247
R-HSA-1502540 Signaling by Activin 5.665009e-01 0.247
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 5.665009e-01 0.247
R-HSA-9027284 Erythropoietin activates RAS 5.665009e-01 0.247
R-HSA-419408 Lysosphingolipid and LPA receptors 5.665009e-01 0.247
R-HSA-193639 p75NTR signals via NF-kB 5.665009e-01 0.247
R-HSA-379724 tRNA Aminoacylation 5.749812e-01 0.240
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 5.763454e-01 0.239
R-HSA-419037 NCAM1 interactions 5.763454e-01 0.239
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 5.813203e-01 0.236
R-HSA-5687128 MAPK6/MAPK4 signaling 5.843098e-01 0.233
R-HSA-112043 PLC beta mediated events 5.848138e-01 0.233
R-HSA-1442490 Collagen degradation 5.848138e-01 0.233
R-HSA-5083625 Defective GALNT3 causes HFTC 5.851697e-01 0.233
R-HSA-5083636 Defective GALNT12 causes CRCS1 5.851697e-01 0.233
R-HSA-9758274 Regulation of NF-kappa B signaling 5.851697e-01 0.233
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 5.851697e-01 0.233
R-HSA-176412 Phosphorylation of the APC/C 5.851697e-01 0.233
R-HSA-140534 Caspase activation via Death Receptors in the presence of ligand 5.851697e-01 0.233
R-HSA-6782861 Synthesis of wybutosine at G37 of tRNA(Phe) 5.851697e-01 0.233
R-HSA-9634600 Regulation of glycolysis by fructose 2,6-bisphosphate metabolism 5.851697e-01 0.233
R-HSA-6804116 TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest 5.851697e-01 0.233
R-HSA-9733458 Induction of Cell-Cell Fusion 5.851697e-01 0.233
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 5.851697e-01 0.233
R-HSA-9678110 Attachment and Entry 5.851697e-01 0.233
R-HSA-168256 Immune System 5.862712e-01 0.232
R-HSA-418346 Platelet homeostasis 5.926062e-01 0.227
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 5.926786e-01 0.227
R-HSA-114608 Platelet degranulation 5.934151e-01 0.227
R-HSA-69242 S Phase 5.947132e-01 0.226
R-HSA-8964043 Plasma lipoprotein clearance 6.004361e-01 0.222
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 6.004361e-01 0.222
R-HSA-69541 Stabilization of p53 6.004361e-01 0.222
R-HSA-6806003 Regulation of TP53 Expression and Degradation 6.004361e-01 0.222
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 6.009472e-01 0.221
R-HSA-6783984 Glycine degradation 6.030356e-01 0.220
R-HSA-5576893 Phase 2 - plateau phase 6.030356e-01 0.220
R-HSA-1566977 Fibronectin matrix formation 6.030356e-01 0.220
R-HSA-9690406 Transcriptional regulation of testis differentiation 6.030356e-01 0.220
R-HSA-9651496 Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) 6.030356e-01 0.220
R-HSA-69615 G1/S DNA Damage Checkpoints 6.040385e-01 0.219
R-HSA-983169 Class I MHC mediated antigen processing & presentation 6.057350e-01 0.218
R-HSA-9604323 Negative regulation of NOTCH4 signaling 6.120887e-01 0.213
R-HSA-8982491 Glycogen metabolism 6.120887e-01 0.213
R-HSA-936837 Ion transport by P-type ATPases 6.134273e-01 0.212
R-HSA-5654219 Phospholipase C-mediated cascade: FGFR1 6.201332e-01 0.208
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 6.201332e-01 0.208
R-HSA-5083632 Defective C1GALT1C1 causes TNPS 6.201332e-01 0.208
R-HSA-4641263 Regulation of FZD by ubiquitination 6.201332e-01 0.208
R-HSA-5358606 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 6.201332e-01 0.208
R-HSA-9909505 Modulation of host responses by IFN-stimulated genes 6.201332e-01 0.208
R-HSA-5210891 Uptake and function of anthrax toxins 6.201332e-01 0.208
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 6.234798e-01 0.205
R-HSA-5362768 Hh mutants are degraded by ERAD 6.234798e-01 0.205
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 6.234798e-01 0.205
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 6.234798e-01 0.205
R-HSA-5218920 VEGFR2 mediated vascular permeability 6.234798e-01 0.205
R-HSA-1236974 ER-Phagosome pathway 6.251359e-01 0.204
R-HSA-9843745 Adipogenesis 6.265629e-01 0.203
R-HSA-1474228 Degradation of the extracellular matrix 6.330024e-01 0.199
R-HSA-9656223 Signaling by RAF1 mutants 6.346103e-01 0.197
R-HSA-5610780 Degradation of GLI1 by the proteasome 6.346103e-01 0.197
R-HSA-5674135 MAP2K and MAPK activation 6.346103e-01 0.197
R-HSA-6811438 Intra-Golgi traffic 6.346103e-01 0.197
R-HSA-5675221 Negative regulation of MAPK pathway 6.346103e-01 0.197
R-HSA-9614657 FOXO-mediated transcription of cell death genes 6.364953e-01 0.196
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 6.364953e-01 0.196
R-HSA-164378 PKA activation in glucagon signalling 6.364953e-01 0.196
R-HSA-163615 PKA activation 6.364953e-01 0.196
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 6.364953e-01 0.196
R-HSA-210993 Tie2 Signaling 6.364953e-01 0.196
R-HSA-9831926 Nephron development 6.364953e-01 0.196
R-HSA-9679504 Translation of Replicase and Assembly of the Replication Transcription Complex 6.364953e-01 0.196
R-HSA-5693606 DNA Double Strand Break Response 6.406845e-01 0.193
R-HSA-112040 G-protein mediated events 6.406845e-01 0.193
R-HSA-9830369 Kidney development 6.406845e-01 0.193
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 6.410394e-01 0.193
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 6.454816e-01 0.190
R-HSA-111996 Ca-dependent events 6.454816e-01 0.190
R-HSA-167172 Transcription of the HIV genome 6.494645e-01 0.187
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 6.494645e-01 0.187
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 6.494645e-01 0.187
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 6.521536e-01 0.186
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 6.521536e-01 0.186
R-HSA-9754189 Germ layer formation at gastrulation 6.521536e-01 0.186
R-HSA-500753 Pyrimidine biosynthesis 6.521536e-01 0.186
R-HSA-159424 Conjugation of carboxylic acids 6.521536e-01 0.186
R-HSA-156587 Amino Acid conjugation 6.521536e-01 0.186
R-HSA-937041 IKK complex recruitment mediated by RIP1 6.521536e-01 0.186
R-HSA-429958 mRNA decay by 3' to 5' exoribonuclease 6.521536e-01 0.186
R-HSA-110320 Translesion Synthesis by POLH 6.521536e-01 0.186
R-HSA-113510 E2F mediated regulation of DNA replication 6.521536e-01 0.186
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 6.521536e-01 0.186
R-HSA-9671793 Diseases of hemostasis 6.521536e-01 0.186
R-HSA-5387390 Hh mutants abrogate ligand secretion 6.560954e-01 0.183
R-HSA-5654743 Signaling by FGFR4 6.560954e-01 0.183
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 6.580906e-01 0.182
R-HSA-163685 Integration of energy metabolism 6.642037e-01 0.178
R-HSA-9006936 Signaling by TGFB family members 6.662239e-01 0.176
R-HSA-195253 Degradation of beta-catenin by the destruction complex 6.665627e-01 0.176
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 6.671383e-01 0.176
R-HSA-163210 Formation of ATP by chemiosmotic coupling 6.671383e-01 0.176
R-HSA-5654221 Phospholipase C-mediated cascade; FGFR2 6.671383e-01 0.176
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 6.671383e-01 0.176
R-HSA-140875 Common Pathway of Fibrin Clot Formation 6.671383e-01 0.176
R-HSA-1482922 Acyl chain remodelling of PI 6.671383e-01 0.176
R-HSA-71288 Creatine metabolism 6.671383e-01 0.176
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 6.671383e-01 0.176
R-HSA-445144 Signal transduction by L1 6.671383e-01 0.176
R-HSA-391903 Eicosanoid ligand-binding receptors 6.671383e-01 0.176
R-HSA-909733 Interferon alpha/beta signaling 6.696065e-01 0.174
R-HSA-9837999 Mitochondrial protein degradation 6.706373e-01 0.174
R-HSA-1474290 Collagen formation 6.706373e-01 0.174
R-HSA-9824443 Parasitic Infection Pathways 6.722143e-01 0.172
R-HSA-9658195 Leishmania infection 6.722143e-01 0.172
R-HSA-5632684 Hedgehog 'on' state 6.748807e-01 0.171
R-HSA-3000178 ECM proteoglycans 6.748807e-01 0.171
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 6.765586e-01 0.170
R-HSA-4608870 Asymmetric localization of PCP proteins 6.765586e-01 0.170
R-HSA-5678895 Defective CFTR causes cystic fibrosis 6.765586e-01 0.170
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 6.765586e-01 0.170
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 6.765586e-01 0.170
R-HSA-5654741 Signaling by FGFR3 6.765586e-01 0.170
R-HSA-5654704 SHC-mediated cascade:FGFR3 6.814784e-01 0.167
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 6.814784e-01 0.167
R-HSA-198753 ERK/MAPK targets 6.814784e-01 0.167
R-HSA-111931 PKA-mediated phosphorylation of CREB 6.814784e-01 0.167
R-HSA-196836 Vitamin C (ascorbate) metabolism 6.814784e-01 0.167
R-HSA-1482925 Acyl chain remodelling of PG 6.814784e-01 0.167
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 6.830448e-01 0.166
R-HSA-9649948 Signaling downstream of RAS mutants 6.864129e-01 0.163
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 6.864129e-01 0.163
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 6.864129e-01 0.163
R-HSA-6802949 Signaling by RAS mutants 6.864129e-01 0.163
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 6.952015e-01 0.158
R-HSA-5654719 SHC-mediated cascade:FGFR4 6.952015e-01 0.158
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 6.952015e-01 0.158
R-HSA-8876384 Listeria monocytogenes entry into host cells 6.952015e-01 0.158
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 6.952015e-01 0.158
R-HSA-5654706 FRS-mediated FGFR3 signaling 6.952015e-01 0.158
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 6.952015e-01 0.158
R-HSA-175474 Assembly Of The HIV Virion 6.952015e-01 0.158
R-HSA-9694614 Attachment and Entry 6.952015e-01 0.158
R-HSA-9755088 Ribavirin ADME 6.952015e-01 0.158
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 6.960194e-01 0.157
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 6.960194e-01 0.157
R-HSA-8878159 Transcriptional regulation by RUNX3 6.987817e-01 0.156
R-HSA-674695 RNA Polymerase II Pre-transcription Events 6.989126e-01 0.156
R-HSA-597592 Post-translational protein modification 7.001828e-01 0.155
R-HSA-9031628 NGF-stimulated transcription 7.053811e-01 0.152
R-HSA-190236 Signaling by FGFR 7.055413e-01 0.151
R-HSA-5654712 FRS-mediated FGFR4 signaling 7.083342e-01 0.150
R-HSA-912694 Regulation of IFNA/IFNB signaling 7.083342e-01 0.150
R-HSA-975578 Reactions specific to the complex N-glycan synthesis pathway 7.083342e-01 0.150
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 7.083342e-01 0.150
R-HSA-6807062 Cholesterol biosynthesis via lathosterol 7.083342e-01 0.150
R-HSA-112409 RAF-independent MAPK1/3 activation 7.083342e-01 0.150
R-HSA-9694676 Translation of Replicase and Assembly of the Replication Transcription Complex 7.083342e-01 0.150
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 7.145013e-01 0.146
R-HSA-389661 Glyoxylate metabolism and glycine degradation 7.145013e-01 0.146
R-HSA-73893 DNA Damage Bypass 7.145013e-01 0.146
R-HSA-69563 p53-Dependent G1 DNA Damage Response 7.145013e-01 0.146
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 7.145013e-01 0.146
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 7.209018e-01 0.142
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 7.209018e-01 0.142
R-HSA-977068 Termination of O-glycan biosynthesis 7.209018e-01 0.142
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 7.209018e-01 0.142
R-HSA-5655253 Signaling by FGFR2 in disease 7.233834e-01 0.141
R-HSA-383280 Nuclear Receptor transcription pathway 7.288235e-01 0.137
R-HSA-191273 Cholesterol biosynthesis 7.288235e-01 0.137
R-HSA-1169091 Activation of NF-kappaB in B cells 7.320310e-01 0.135
R-HSA-5358346 Hedgehog ligand biogenesis 7.320310e-01 0.135
R-HSA-933542 TRAF6 mediated NF-kB activation 7.329286e-01 0.135
R-HSA-5654688 SHC-mediated cascade:FGFR1 7.329286e-01 0.135
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 7.329286e-01 0.135
R-HSA-6783589 Interleukin-6 family signaling 7.329286e-01 0.135
R-HSA-418592 ADP signalling through P2Y purinoceptor 1 7.329286e-01 0.135
R-HSA-9703648 Signaling by FLT3 ITD and TKD mutants 7.329286e-01 0.135
R-HSA-9659379 Sensory processing of sound 7.359262e-01 0.133
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 7.404478e-01 0.131
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 7.404478e-01 0.131
R-HSA-68949 Orc1 removal from chromatin 7.404478e-01 0.131
R-HSA-5339562 Uptake and actions of bacterial toxins 7.404478e-01 0.131
R-HSA-111885 Opioid Signalling 7.437856e-01 0.129
R-HSA-9860931 Response of endothelial cells to shear stress 7.437856e-01 0.129
R-HSA-1482801 Acyl chain remodelling of PS 7.444378e-01 0.128
R-HSA-5654693 FRS-mediated FGFR1 signaling 7.444378e-01 0.128
R-HSA-2160916 Hyaluronan degradation 7.444378e-01 0.128
R-HSA-3000157 Laminin interactions 7.444378e-01 0.128
R-HSA-400685 Sema4D in semaphorin signaling 7.444378e-01 0.128
R-HSA-392499 Metabolism of proteins 7.449765e-01 0.128
R-HSA-9679191 Potential therapeutics for SARS 7.473289e-01 0.126
R-HSA-8948751 Regulation of PTEN stability and activity 7.486376e-01 0.126
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 7.486376e-01 0.126
R-HSA-445355 Smooth Muscle Contraction 7.486376e-01 0.126
R-HSA-8956320 Nucleotide biosynthesis 7.486376e-01 0.126
R-HSA-1643685 Disease 7.522196e-01 0.124
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 7.554517e-01 0.122
R-HSA-9845614 Sphingolipid catabolism 7.554517e-01 0.122
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 7.554517e-01 0.122
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 7.571978e-01 0.121
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 7.643520e-01 0.117
R-HSA-418597 G alpha (z) signalling events 7.643520e-01 0.117
R-HSA-73863 RNA Polymerase I Transcription Termination 7.659917e-01 0.116
R-HSA-5654699 SHC-mediated cascade:FGFR2 7.659917e-01 0.116
R-HSA-3928663 EPHA-mediated growth cone collapse 7.659917e-01 0.116
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 7.659917e-01 0.116
R-HSA-174414 Processive synthesis on the C-strand of the telomere 7.659917e-01 0.116
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 7.692496e-01 0.114
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 7.718847e-01 0.112
R-HSA-177929 Signaling by EGFR 7.718847e-01 0.112
R-HSA-5654736 Signaling by FGFR1 7.718847e-01 0.112
R-HSA-5576891 Cardiac conduction 7.734578e-01 0.112
R-HSA-5654700 FRS-mediated FGFR2 signaling 7.760779e-01 0.110
R-HSA-77387 Insulin receptor recycling 7.760779e-01 0.110
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 7.760779e-01 0.110
R-HSA-9909396 Circadian clock 7.784122e-01 0.109
R-HSA-112399 IRS-mediated signalling 7.792065e-01 0.108
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 7.815841e-01 0.107
R-HSA-72086 mRNA Capping 7.857300e-01 0.105
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 7.857300e-01 0.105
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 7.857300e-01 0.105
R-HSA-9674555 Signaling by CSF3 (G-CSF) 7.857300e-01 0.105
R-HSA-9615710 Late endosomal microautophagy 7.857300e-01 0.105
R-HSA-5656169 Termination of translesion DNA synthesis 7.857300e-01 0.105
R-HSA-420092 Glucagon-type ligand receptors 7.857300e-01 0.105
R-HSA-180024 DARPP-32 events 7.857300e-01 0.105
R-HSA-9772572 Early SARS-CoV-2 Infection Events 7.863217e-01 0.104
R-HSA-9033241 Peroxisomal protein import 7.932343e-01 0.101
R-HSA-186712 Regulation of beta-cell development 7.932343e-01 0.101
R-HSA-2206281 Mucopolysaccharidoses 7.949666e-01 0.100
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 7.949666e-01 0.100
R-HSA-8873719 RAB geranylgeranylation 7.999487e-01 0.097
R-HSA-9730414 MITF-M-regulated melanocyte development 8.029577e-01 0.095
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 8.038056e-01 0.095
R-HSA-2129379 Molecules associated with elastic fibres 8.038056e-01 0.095
R-HSA-8963693 Aspartate and asparagine metabolism 8.038056e-01 0.095
R-HSA-2428928 IRS-related events triggered by IGF1R 8.064691e-01 0.093
R-HSA-8939902 Regulation of RUNX2 expression and activity 8.064691e-01 0.093
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 8.122641e-01 0.090
R-HSA-69190 DNA strand elongation 8.122641e-01 0.090
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 8.127997e-01 0.090
R-HSA-9707616 Heme signaling 8.127997e-01 0.090
R-HSA-446203 Asparagine N-linked glycosylation 8.183527e-01 0.087
R-HSA-6790901 rRNA modification in the nucleus and cytosol 8.189448e-01 0.087
R-HSA-5083635 Defective B3GALTL causes PpS 8.203584e-01 0.086
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 8.203584e-01 0.086
R-HSA-5675482 Regulation of necroptotic cell death 8.203584e-01 0.086
R-HSA-9022692 Regulation of MECP2 expression and activity 8.203584e-01 0.086
R-HSA-5619102 SLC transporter disorders 8.222972e-01 0.085
R-HSA-74751 Insulin receptor signalling cascade 8.249085e-01 0.084
R-HSA-2428924 IGF1R signaling cascade 8.249085e-01 0.084
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 8.249085e-01 0.084
R-HSA-74752 Signaling by Insulin receptor 8.255803e-01 0.083
R-HSA-9007101 Rab regulation of trafficking 8.271579e-01 0.082
R-HSA-163359 Glucagon signaling in metabolic regulation 8.281041e-01 0.082
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 8.281041e-01 0.082
R-HSA-1482788 Acyl chain remodelling of PC 8.281041e-01 0.082
R-HSA-180534 Vpu mediated degradation of CD4 8.281041e-01 0.082
R-HSA-2024101 CS/DS degradation 8.281041e-01 0.082
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 8.281041e-01 0.082
R-HSA-189483 Heme degradation 8.281041e-01 0.082
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 8.305101e-01 0.081
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 8.306952e-01 0.081
R-HSA-8856828 Clathrin-mediated endocytosis 8.354278e-01 0.078
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 8.355164e-01 0.078
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 8.355164e-01 0.078
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 8.355164e-01 0.078
R-HSA-901042 Calnexin/calreticulin cycle 8.355164e-01 0.078
R-HSA-2142845 Hyaluronan metabolism 8.355164e-01 0.078
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 8.355164e-01 0.078
R-HSA-392518 Signal amplification 8.355164e-01 0.078
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 8.426094e-01 0.074
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 8.426094e-01 0.074
R-HSA-1482839 Acyl chain remodelling of PE 8.426094e-01 0.074
R-HSA-169911 Regulation of Apoptosis 8.426094e-01 0.074
R-HSA-381042 PERK regulates gene expression 8.426094e-01 0.074
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 8.490496e-01 0.071
R-HSA-5607764 CLEC7A (Dectin-1) signaling 8.490496e-01 0.071
R-HSA-180585 Vif-mediated degradation of APOBEC3G 8.493970e-01 0.071
R-HSA-432720 Lysosome Vesicle Biogenesis 8.493970e-01 0.071
R-HSA-111933 Calmodulin induced events 8.493970e-01 0.071
R-HSA-111997 CaM pathway 8.493970e-01 0.071
R-HSA-114604 GPVI-mediated activation cascade 8.493970e-01 0.071
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 8.542211e-01 0.068
R-HSA-5173214 O-glycosylation of TSR domain-containing proteins 8.558923e-01 0.068
R-HSA-4641257 Degradation of AXIN 8.558923e-01 0.068
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 8.558923e-01 0.068
R-HSA-196757 Metabolism of folate and pterines 8.558923e-01 0.068
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 8.571164e-01 0.067
R-HSA-9758941 Gastrulation 8.573868e-01 0.067
R-HSA-422356 Regulation of insulin secretion 8.576402e-01 0.067
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 8.619267e-01 0.065
R-HSA-453276 Regulation of mitotic cell cycle 8.619267e-01 0.065
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 8.619267e-01 0.065
R-HSA-189445 Metabolism of porphyrins 8.619267e-01 0.065
R-HSA-74217 Purine salvage 8.621078e-01 0.064
R-HSA-5213460 RIPK1-mediated regulated necrosis 8.621078e-01 0.064
R-HSA-1566948 Elastic fibre formation 8.621078e-01 0.064
R-HSA-9958790 SLC-mediated transport of inorganic anions 8.621078e-01 0.064
R-HSA-199992 trans-Golgi Network Vesicle Budding 8.665884e-01 0.062
R-HSA-499943 Interconversion of nucleotide di- and triphosphates 8.665884e-01 0.062
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 8.668498e-01 0.062
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 8.680556e-01 0.061
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 8.680556e-01 0.061
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 8.680556e-01 0.061
R-HSA-69052 Switching of origins to a post-replicative state 8.711052e-01 0.060
R-HSA-4086398 Ca2+ pathway 8.711052e-01 0.060
R-HSA-5602358 Diseases associated with the TLR signaling cascade 8.737472e-01 0.059
R-HSA-5260271 Diseases of Immune System 8.737472e-01 0.059
R-HSA-9854311 Maturation of TCA enzymes and regulation of TCA cycle 8.737472e-01 0.059
R-HSA-5696395 Formation of Incision Complex in GG-NER 8.737472e-01 0.059
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 8.737472e-01 0.059
R-HSA-8941858 Regulation of RUNX3 expression and activity 8.737472e-01 0.059
R-HSA-975576 N-glycan antennae elongation in the medial/trans-Golgi 8.737472e-01 0.059
R-HSA-9013694 Signaling by NOTCH4 8.754810e-01 0.058
R-HSA-73817 Purine ribonucleoside monophosphate biosynthesis 8.791936e-01 0.056
R-HSA-3000171 Non-integrin membrane-ECM interactions 8.797195e-01 0.056
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 8.808923e-01 0.055
R-HSA-1980143 Signaling by NOTCH1 8.838245e-01 0.054
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 8.844054e-01 0.053
R-HSA-167161 HIV Transcription Initiation 8.844054e-01 0.053
R-HSA-75953 RNA Polymerase II Transcription Initiation 8.844054e-01 0.053
R-HSA-9932298 Degradation of CRY and PER proteins 8.844054e-01 0.053
R-HSA-3000480 Scavenging by Class A Receptors 8.844054e-01 0.053
R-HSA-5610783 Degradation of GLI2 by the proteasome 8.844054e-01 0.053
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 8.844054e-01 0.053
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 8.844054e-01 0.053
R-HSA-189451 Heme biosynthesis 8.844054e-01 0.053
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 8.856984e-01 0.053
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 8.877995e-01 0.052
R-HSA-5696398 Nucleotide Excision Repair 8.878573e-01 0.052
R-HSA-877300 Interferon gamma signaling 8.885258e-01 0.051
R-HSA-991365 Activation of GABAB receptors 8.893926e-01 0.051
R-HSA-977444 GABA B receptor activation 8.893926e-01 0.051
R-HSA-5619084 ABC transporter disorders 8.916482e-01 0.050
R-HSA-73776 RNA Polymerase II Promoter Escape 8.941649e-01 0.049
R-HSA-9907900 Proteasome assembly 8.987317e-01 0.046
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 8.987317e-01 0.046
R-HSA-69236 G1 Phase 8.987317e-01 0.046
R-HSA-69231 Cyclin D associated events in G1 8.987317e-01 0.046
R-HSA-5683826 Surfactant metabolism 8.987317e-01 0.046
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 8.989802e-01 0.046
R-HSA-5619115 Disorders of transmembrane transporters 9.003840e-01 0.046
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 9.031016e-01 0.044
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 9.031016e-01 0.044
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 9.031016e-01 0.044
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 9.031016e-01 0.044
R-HSA-9824272 Somitogenesis 9.031016e-01 0.044
R-HSA-1614558 Degradation of cysteine and homocysteine 9.031016e-01 0.044
R-HSA-6803157 Antimicrobial peptides 9.066172e-01 0.043
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 9.072832e-01 0.042
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 9.072832e-01 0.042
R-HSA-9861718 Regulation of pyruvate metabolism 9.072832e-01 0.042
R-HSA-5357905 Regulation of TNFR1 signaling 9.072832e-01 0.042
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 9.091157e-01 0.041
R-HSA-9707564 Cytoprotection by HMOX1 9.091157e-01 0.041
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 9.112846e-01 0.040
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 9.112846e-01 0.040
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 9.151136e-01 0.039
R-HSA-9634597 GPER1 signaling 9.151136e-01 0.039
R-HSA-70263 Gluconeogenesis 9.151136e-01 0.039
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 9.187775e-01 0.037
R-HSA-380108 Chemokine receptors bind chemokines 9.187775e-01 0.037
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 9.211537e-01 0.036
R-HSA-109704 PI3K Cascade 9.222835e-01 0.035
R-HSA-2029485 Role of phospholipids in phagocytosis 9.224912e-01 0.035
R-HSA-2871809 FCERI mediated Ca+2 mobilization 9.224912e-01 0.035
R-HSA-9664433 Leishmania parasite growth and survival 9.242238e-01 0.034
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.242238e-01 0.034
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 9.256383e-01 0.034
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 9.261974e-01 0.033
R-HSA-1592230 Mitochondrial biogenesis 9.272082e-01 0.033
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 9.288486e-01 0.032
R-HSA-8878166 Transcriptional regulation by RUNX2 9.316605e-01 0.031
R-HSA-373080 Class B/2 (Secretin family receptors) 9.316791e-01 0.031
R-HSA-6805567 Keratinization 9.318286e-01 0.031
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 9.319204e-01 0.031
R-HSA-432722 Golgi Associated Vesicle Biogenesis 9.319204e-01 0.031
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 9.348598e-01 0.029
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 9.348598e-01 0.029
R-HSA-1483257 Phospholipid metabolism 9.350763e-01 0.029
R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 9.376724e-01 0.028
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 9.386859e-01 0.027
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 9.403638e-01 0.027
R-HSA-75893 TNF signaling 9.403638e-01 0.027
R-HSA-8935690 Digestion 9.403638e-01 0.027
R-HSA-1483166 Synthesis of PA 9.429391e-01 0.026
R-HSA-5621480 Dectin-2 family 9.429391e-01 0.026
R-HSA-1474244 Extracellular matrix organization 9.449044e-01 0.025
R-HSA-6782135 Dual incision in TC-NER 9.454033e-01 0.024
R-HSA-180786 Extension of Telomeres 9.477613e-01 0.023
R-HSA-5389840 Mitochondrial translation elongation 9.488715e-01 0.023
R-HSA-977443 GABA receptor activation 9.500176e-01 0.022
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 9.500176e-01 0.022
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 9.500176e-01 0.022
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 9.500176e-01 0.022
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 9.500176e-01 0.022
R-HSA-351202 Metabolism of polyamines 9.500176e-01 0.022
R-HSA-2644603 Signaling by NOTCH1 in Cancer 9.500176e-01 0.022
R-HSA-8956321 Nucleotide salvage 9.521765e-01 0.021
R-HSA-445717 Aquaporin-mediated transport 9.521765e-01 0.021
R-HSA-9793380 Formation of paraxial mesoderm 9.521765e-01 0.021
R-HSA-5368286 Mitochondrial translation initiation 9.524761e-01 0.021
R-HSA-382556 ABC-family proteins mediated transport 9.558372e-01 0.020
R-HSA-6799198 Complex I biogenesis 9.562191e-01 0.019
R-HSA-8963743 Digestion and absorption 9.562191e-01 0.019
R-HSA-1234174 Cellular response to hypoxia 9.599203e-01 0.018
R-HSA-9937383 Mitochondrial ribosome-associated quality control 9.604558e-01 0.018
R-HSA-6782315 tRNA modification in the nucleus and cytosol 9.616520e-01 0.017
R-HSA-9958863 SLC-mediated transport of amino acids 9.633091e-01 0.016
R-HSA-913709 O-linked glycosylation of mucins 9.648946e-01 0.016
R-HSA-5218859 Regulated Necrosis 9.648946e-01 0.016
R-HSA-69239 Synthesis of DNA 9.671419e-01 0.015
R-HSA-5621481 C-type lectin receptors (CLRs) 9.674175e-01 0.014
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.678633e-01 0.014
R-HSA-9664407 Parasite infection 9.686868e-01 0.014
R-HSA-9664417 Leishmania phagocytosis 9.686868e-01 0.014
R-HSA-9664422 FCGR3A-mediated phagocytosis 9.686868e-01 0.014
R-HSA-15869 Metabolism of nucleotides 9.687901e-01 0.014
R-HSA-975634 Retinoid metabolism and transport 9.692522e-01 0.014
R-HSA-8978934 Metabolism of cofactors 9.692522e-01 0.014
R-HSA-5419276 Mitochondrial translation termination 9.694997e-01 0.013
R-HSA-9711123 Cellular response to chemical stress 9.695854e-01 0.013
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 9.697140e-01 0.013
R-HSA-74259 Purine catabolism 9.705813e-01 0.013
R-HSA-5663084 Diseases of carbohydrate metabolism 9.718529e-01 0.012
R-HSA-9749641 Aspirin ADME 9.718529e-01 0.012
R-HSA-1222556 ROS and RNS production in phagocytes 9.730697e-01 0.012
R-HSA-168249 Innate Immune System 9.733887e-01 0.012
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 9.742339e-01 0.011
R-HSA-71403 Citric acid cycle (TCA cycle) 9.742339e-01 0.011
R-HSA-917937 Iron uptake and transport 9.742339e-01 0.011
R-HSA-6783783 Interleukin-10 signaling 9.774336e-01 0.010
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 9.802364e-01 0.009
R-HSA-6806667 Metabolism of fat-soluble vitamins 9.802364e-01 0.009
R-HSA-8951664 Neddylation 9.808519e-01 0.008
R-HSA-1989781 PPARA activates gene expression 9.817653e-01 0.008
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 9.829740e-01 0.007
R-HSA-8957322 Metabolism of steroids 9.840828e-01 0.007
R-HSA-977606 Regulation of Complement cascade 9.845289e-01 0.007
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.848421e-01 0.007
R-HSA-1614635 Sulfur amino acid metabolism 9.848421e-01 0.007
R-HSA-70268 Pyruvate metabolism 9.854979e-01 0.006
R-HSA-416476 G alpha (q) signalling events 9.856757e-01 0.006
R-HSA-8956319 Nucleotide catabolism 9.872192e-01 0.006
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.876055e-01 0.005
R-HSA-202733 Cell surface interactions at the vascular wall 9.881585e-01 0.005
R-HSA-9772573 Late SARS-CoV-2 Infection Events 9.888787e-01 0.005
R-HSA-2029481 FCGR activation 9.893601e-01 0.005
R-HSA-418555 G alpha (s) signalling events 9.898854e-01 0.004
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 9.902613e-01 0.004
R-HSA-418594 G alpha (i) signalling events 9.908961e-01 0.004
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 9.910863e-01 0.004
R-HSA-1296071 Potassium Channels 9.910863e-01 0.004
R-HSA-5173105 O-linked glycosylation 9.913026e-01 0.004
R-HSA-5368287 Mitochondrial translation 9.916327e-01 0.004
R-HSA-611105 Respiratory electron transport 9.920959e-01 0.003
R-HSA-192105 Synthesis of bile acids and bile salts 9.921948e-01 0.003
R-HSA-2871837 FCERI mediated NF-kB activation 9.936238e-01 0.003
R-HSA-166658 Complement cascade 9.938675e-01 0.003
R-HSA-9833110 RSV-host interactions 9.940158e-01 0.003
R-HSA-375276 Peptide ligand-binding receptors 9.940525e-01 0.003
R-HSA-9755511 KEAP1-NFE2L2 pathway 9.951488e-01 0.002
R-HSA-194068 Bile acid and bile salt metabolism 9.954124e-01 0.002
R-HSA-71291 Metabolism of amino acids and derivatives 9.954725e-01 0.002
R-HSA-388396 GPCR downstream signalling 9.963208e-01 0.002
R-HSA-9759194 Nuclear events mediated by NFE2L2 9.974215e-01 0.001
R-HSA-9717207 Sensory perception of sweet, bitter, and umami (glutamate) taste 9.976404e-01 0.001
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 9.977538e-01 0.001
R-HSA-9717189 Sensory perception of taste 9.984857e-01 0.001
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.986121e-01 0.001
R-HSA-3781865 Diseases of glycosylation 9.987386e-01 0.001
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.988505e-01 0.000
R-HSA-372790 Signaling by GPCR 9.988573e-01 0.000
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 9.988901e-01 0.000
R-HSA-2187338 Visual phototransduction 9.993190e-01 0.000
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.994040e-01 0.000
R-HSA-9856651 MITF-M-dependent gene expression 9.994040e-01 0.000
R-HSA-1483206 Glycerophospholipid biosynthesis 9.994128e-01 0.000
R-HSA-2142753 Arachidonate metabolism 9.994547e-01 0.000
R-HSA-9748784 Drug ADME 9.996932e-01 0.000
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.998042e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.998209e-01 0.000
R-HSA-1630316 Glycosaminoglycan metabolism 9.999158e-01 0.000
R-HSA-428157 Sphingolipid metabolism 9.999411e-01 0.000
R-HSA-500792 GPCR ligand binding 9.999484e-01 0.000
R-HSA-382551 Transport of small molecules 9.999889e-01 0.000
R-HSA-156580 Phase II - Conjugation of compounds 9.999897e-01 0.000
R-HSA-8978868 Fatty acid metabolism 9.999927e-01 0.000
R-HSA-5668914 Diseases of metabolism 9.999966e-01 0.000
R-HSA-9824439 Bacterial Infection Pathways 9.999979e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.999982e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999998e-01 0.000
R-HSA-211859 Biological oxidations 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-9752946 Expression and translocation of olfactory receptors 1.000000e+00 0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
R-HSA-381753 Olfactory Signaling Pathway 1.000000e+00 -0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
COTCOT 0.921 0.241 2 0.894
CLK3CLK3 0.908 0.300 1 0.856
CDC7CDC7 0.907 0.086 1 0.912
MOSMOS 0.906 0.190 1 0.945
PIM3PIM3 0.905 0.139 -3 0.878
GCN2GCN2 0.904 -0.052 2 0.846
PRPKPRPK 0.904 -0.068 -1 0.895
MTORMTOR 0.902 -0.029 1 0.842
DSTYKDSTYK 0.902 0.052 2 0.917
WNK1WNK1 0.901 0.197 -2 0.934
PKN3PKN3 0.901 0.156 -3 0.870
RAF1RAF1 0.901 -0.049 1 0.909
NLKNLK 0.900 0.093 1 0.866
CDKL1CDKL1 0.900 0.125 -3 0.837
NEK6NEK6 0.900 0.088 -2 0.894
IKKBIKKB 0.899 -0.092 -2 0.791
MLK1MLK1 0.899 0.101 2 0.856
CAMK1BCAMK1B 0.899 0.078 -3 0.900
ULK2ULK2 0.899 -0.067 2 0.828
MST4MST4 0.899 0.174 2 0.869
BMPR2BMPR2 0.899 -0.025 -2 0.911
TBK1TBK1 0.899 -0.068 1 0.809
NDR2NDR2 0.898 0.050 -3 0.890
PKCDPKCD 0.898 0.234 2 0.834
PKN2PKN2 0.898 0.192 -3 0.872
PDHK4PDHK4 0.897 -0.274 1 0.916
NDR1NDR1 0.897 0.096 -3 0.876
NIKNIK 0.896 0.139 -3 0.923
SRPK1SRPK1 0.896 0.198 -3 0.777
TGFBR2TGFBR2 0.896 0.028 -2 0.819
RSK2RSK2 0.896 0.150 -3 0.805
CDKL5CDKL5 0.896 0.141 -3 0.829
CAMLCKCAMLCK 0.896 0.173 -2 0.926
IKKEIKKE 0.895 -0.094 1 0.802
NEK7NEK7 0.895 -0.054 -3 0.876
CAMK2GCAMK2G 0.895 -0.067 2 0.835
ATRATR 0.894 -0.028 1 0.867
NUAK2NUAK2 0.894 0.092 -3 0.877
RIPK3RIPK3 0.894 0.014 3 0.793
SKMLCKSKMLCK 0.894 0.153 -2 0.934
PDHK1PDHK1 0.893 -0.213 1 0.905
RSK3RSK3 0.893 0.116 -3 0.800
AMPKA1AMPKA1 0.892 0.108 -3 0.894
PIM1PIM1 0.892 0.148 -3 0.817
ERK5ERK5 0.892 0.025 1 0.829
AURCAURC 0.892 0.256 -2 0.758
CHAK2CHAK2 0.891 0.029 -1 0.844
DAPK2DAPK2 0.891 0.121 -3 0.908
IRE1IRE1 0.891 0.133 1 0.869
WNK3WNK3 0.890 -0.090 1 0.888
PKACGPKACG 0.890 0.146 -2 0.826
PRKD1PRKD1 0.890 0.059 -3 0.865
MLK3MLK3 0.890 0.148 2 0.793
MARK4MARK4 0.890 0.022 4 0.861
P90RSKP90RSK 0.890 0.075 -3 0.807
GRK5GRK5 0.890 -0.132 -3 0.901
PRKD2PRKD2 0.890 0.107 -3 0.806
PKCAPKCA 0.889 0.228 2 0.783
TSSK2TSSK2 0.888 0.110 -5 0.884
NEK9NEK9 0.888 -0.029 2 0.880
ICKICK 0.888 0.099 -3 0.876
MAPKAPK3MAPKAPK3 0.888 0.049 -3 0.816
HIPK4HIPK4 0.888 0.085 1 0.837
GRK1GRK1 0.888 0.092 -2 0.819
IRE2IRE2 0.888 0.157 2 0.799
P70S6KBP70S6KB 0.888 0.093 -3 0.833
PKCGPKCG 0.887 0.179 2 0.786
TSSK1TSSK1 0.887 0.114 -3 0.915
PKCBPKCB 0.887 0.181 2 0.794
SRPK2SRPK2 0.887 0.158 -3 0.701
MLK2MLK2 0.887 0.000 2 0.860
BCKDKBCKDK 0.886 -0.163 -1 0.844
MNK2MNK2 0.886 0.182 -2 0.878
AMPKA2AMPKA2 0.886 0.089 -3 0.861
PAK6PAK6 0.885 0.244 -2 0.813
SRPK3SRPK3 0.885 0.165 -3 0.751
ULK1ULK1 0.885 -0.196 -3 0.855
PAK1PAK1 0.885 0.141 -2 0.875
PKRPKR 0.884 0.185 1 0.914
HUNKHUNK 0.884 -0.147 2 0.835
LATS2LATS2 0.884 -0.012 -5 0.789
PKCZPKCZ 0.884 0.161 2 0.834
ANKRD3ANKRD3 0.884 -0.044 1 0.924
NIM1NIM1 0.884 -0.017 3 0.820
IKKAIKKA 0.884 -0.066 -2 0.775
PKCHPKCH 0.884 0.168 2 0.780
CAMK2DCAMK2D 0.883 -0.043 -3 0.887
AURBAURB 0.883 0.224 -2 0.760
CAMK4CAMK4 0.883 0.030 -3 0.864
PAK3PAK3 0.883 0.102 -2 0.872
GRK6GRK6 0.883 -0.065 1 0.902
MASTLMASTL 0.883 -0.271 -2 0.864
MLK4MLK4 0.882 0.092 2 0.777
KISKIS 0.882 0.015 1 0.708
PHKG1PHKG1 0.882 0.072 -3 0.868
RIPK1RIPK1 0.882 -0.119 1 0.898
MSK2MSK2 0.881 0.073 -3 0.775
MELKMELK 0.881 0.059 -3 0.844
FAM20CFAM20C 0.881 0.101 2 0.638
CLK4CLK4 0.881 0.179 -3 0.795
DLKDLK 0.881 -0.165 1 0.894
BMPR1BBMPR1B 0.881 0.138 1 0.849
CLK1CLK1 0.880 0.194 -3 0.772
MNK1MNK1 0.880 0.174 -2 0.879
QIKQIK 0.880 -0.008 -3 0.879
LATS1LATS1 0.880 0.100 -3 0.904
PKG2PKG2 0.880 0.196 -2 0.763
NEK2NEK2 0.880 0.044 2 0.864
MAPKAPK2MAPKAPK2 0.879 0.037 -3 0.767
PKACBPKACB 0.879 0.210 -2 0.770
RSK4RSK4 0.879 0.136 -3 0.779
CHAK1CHAK1 0.879 0.020 2 0.815
PRKD3PRKD3 0.879 0.072 -3 0.772
GRK4GRK4 0.879 -0.158 -2 0.850
TTBK2TTBK2 0.878 -0.183 2 0.745
AURAAURA 0.878 0.207 -2 0.739
SGK3SGK3 0.878 0.171 -3 0.794
ALK4ALK4 0.878 -0.011 -2 0.847
ATMATM 0.878 -0.054 1 0.803
QSKQSK 0.878 0.038 4 0.844
AKT2AKT2 0.878 0.171 -3 0.714
CDK8CDK8 0.877 -0.013 1 0.668
MYLK4MYLK4 0.877 0.133 -2 0.860
CAMK2BCAMK2B 0.877 0.020 2 0.799
YSK4YSK4 0.877 -0.050 1 0.839
PAK2PAK2 0.877 0.090 -2 0.864
CDK5CDK5 0.876 0.106 1 0.697
TGFBR1TGFBR1 0.876 0.024 -2 0.812
DYRK2DYRK2 0.876 0.061 1 0.727
PLK1PLK1 0.876 -0.077 -2 0.832
CLK2CLK2 0.875 0.248 -3 0.779
MEK1MEK1 0.875 -0.138 2 0.863
PIM2PIM2 0.875 0.143 -3 0.778
NUAK1NUAK1 0.875 -0.020 -3 0.831
MSK1MSK1 0.875 0.124 -3 0.781
VRK2VRK2 0.875 -0.091 1 0.934
PKCTPKCT 0.874 0.174 2 0.786
SIKSIK 0.874 0.016 -3 0.801
PRKXPRKX 0.874 0.212 -3 0.710
WNK4WNK4 0.873 0.068 -2 0.930
CDK1CDK1 0.873 0.075 1 0.628
CAMK2ACAMK2A 0.873 0.010 2 0.818
ACVR2BACVR2B 0.873 0.036 -2 0.816
HRIHRI 0.872 -0.030 -2 0.879
PERKPERK 0.872 -0.018 -2 0.859
ACVR2AACVR2A 0.872 0.008 -2 0.806
CDK7CDK7 0.872 -0.016 1 0.679
CDK19CDK19 0.872 -0.003 1 0.623
ALK2ALK2 0.872 0.040 -2 0.822
AKT1AKT1 0.871 0.209 -3 0.734
MST3MST3 0.871 0.169 2 0.869
BRSK1BRSK1 0.871 -0.019 -3 0.830
IRAK4IRAK4 0.871 0.065 1 0.879
CDK13CDK13 0.871 0.013 1 0.652
MEKK1MEKK1 0.871 -0.005 1 0.881
BRSK2BRSK2 0.870 -0.051 -3 0.859
GRK7GRK7 0.870 0.025 1 0.825
MARK3MARK3 0.870 0.017 4 0.802
SNRKSNRK 0.870 -0.125 2 0.715
CHK1CHK1 0.870 -0.010 -3 0.880
PHKG2PHKG2 0.869 0.102 -3 0.833
PKCIPKCI 0.869 0.180 2 0.801
DNAPKDNAPK 0.869 -0.015 1 0.731
MARK2MARK2 0.869 -0.009 4 0.763
CDK18CDK18 0.869 0.046 1 0.600
DRAK1DRAK1 0.869 -0.035 1 0.813
ZAKZAK 0.869 -0.030 1 0.851
HIPK1HIPK1 0.868 0.105 1 0.745
SMG1SMG1 0.868 -0.095 1 0.810
TAO3TAO3 0.868 0.113 1 0.857
CAMK1GCAMK1G 0.868 0.035 -3 0.796
P38AP38A 0.868 0.029 1 0.714
MEK5MEK5 0.868 -0.128 2 0.857
MEKK2MEKK2 0.868 0.014 2 0.845
NEK5NEK5 0.867 0.014 1 0.896
DCAMKL1DCAMKL1 0.867 0.043 -3 0.820
PKCEPKCE 0.867 0.224 2 0.775
TLK2TLK2 0.866 -0.123 1 0.854
MEKK3MEKK3 0.866 -0.112 1 0.868
CDK2CDK2 0.866 0.015 1 0.722
MPSK1MPSK1 0.866 0.155 1 0.843
BRAFBRAF 0.866 -0.084 -4 0.858
SMMLCKSMMLCK 0.866 0.099 -3 0.854
PLK3PLK3 0.865 -0.121 2 0.788
PKACAPKACA 0.865 0.178 -2 0.720
HIPK2HIPK2 0.865 0.087 1 0.630
JNK3JNK3 0.864 0.000 1 0.661
HIPK3HIPK3 0.864 0.069 1 0.753
PAK5PAK5 0.864 0.163 -2 0.758
JNK2JNK2 0.864 0.026 1 0.619
CDK12CDK12 0.864 0.013 1 0.623
MARK1MARK1 0.864 -0.045 4 0.823
PLK4PLK4 0.864 -0.122 2 0.657
TAO2TAO2 0.864 0.116 2 0.887
BMPR1ABMPR1A 0.863 0.089 1 0.834
SSTKSSTK 0.863 0.059 4 0.832
ERK1ERK1 0.863 0.015 1 0.624
PINK1PINK1 0.863 -0.119 1 0.872
CDK3CDK3 0.862 0.103 1 0.562
MAPKAPK5MAPKAPK5 0.862 -0.137 -3 0.751
CDK14CDK14 0.862 0.061 1 0.651
PRP4PRP4 0.862 0.005 -3 0.783
EEF2KEEF2K 0.861 0.197 3 0.914
DYRK1ADYRK1A 0.861 0.030 1 0.763
CDK9CDK9 0.861 -0.037 1 0.661
P38BP38B 0.861 0.020 1 0.634
DYRK3DYRK3 0.861 0.128 1 0.758
PAK4PAK4 0.861 0.171 -2 0.764
NEK8NEK8 0.861 -0.014 2 0.861
CDK17CDK17 0.861 0.004 1 0.542
TNIKTNIK 0.861 0.226 3 0.932
ERK2ERK2 0.860 -0.039 1 0.680
P38GP38G 0.860 0.020 1 0.536
PKN1PKN1 0.860 0.123 -3 0.754
GRK2GRK2 0.859 -0.113 -2 0.741
P70S6KP70S6K 0.859 0.017 -3 0.738
ERK7ERK7 0.859 0.142 2 0.626
CDK10CDK10 0.859 0.118 1 0.635
DAPK3DAPK3 0.858 0.155 -3 0.836
HGKHGK 0.858 0.147 3 0.931
DCAMKL2DCAMKL2 0.858 -0.032 -3 0.845
CAMKK1CAMKK1 0.857 -0.111 -2 0.793
PDK1PDK1 0.857 0.005 1 0.877
IRAK1IRAK1 0.857 -0.198 -1 0.820
AKT3AKT3 0.857 0.174 -3 0.645
MINKMINK 0.857 0.122 1 0.854
TLK1TLK1 0.856 -0.164 -2 0.844
GCKGCK 0.856 0.088 1 0.853
CK1ECK1E 0.856 -0.042 -3 0.565
DYRK1BDYRK1B 0.855 0.036 1 0.669
GAKGAK 0.855 0.047 1 0.891
CAMK1DCAMK1D 0.855 0.045 -3 0.722
CDK16CDK16 0.855 0.058 1 0.563
NEK11NEK11 0.855 -0.141 1 0.858
PASKPASK 0.854 -0.048 -3 0.896
LOKLOK 0.853 0.078 -2 0.834
DYRK4DYRK4 0.853 0.029 1 0.634
NEK4NEK4 0.853 -0.053 1 0.860
HPK1HPK1 0.853 0.102 1 0.839
MST2MST2 0.853 -0.030 1 0.867
LRRK2LRRK2 0.852 0.018 2 0.887
MRCKBMRCKB 0.852 0.167 -3 0.771
KHS1KHS1 0.852 0.169 1 0.841
ROCK2ROCK2 0.852 0.187 -3 0.823
TTBK1TTBK1 0.852 -0.223 2 0.655
CAMKK2CAMKK2 0.852 -0.127 -2 0.797
MEKK6MEKK6 0.851 -0.012 1 0.855
NEK1NEK1 0.851 0.046 1 0.879
CDK6CDK6 0.851 0.088 1 0.630
SGK1SGK1 0.851 0.131 -3 0.630
KHS2KHS2 0.851 0.205 1 0.846
LKB1LKB1 0.851 -0.097 -3 0.881
DAPK1DAPK1 0.851 0.122 -3 0.815
TAK1TAK1 0.851 -0.013 1 0.884
GSK3BGSK3B 0.850 -0.047 4 0.440
MAP3K15MAP3K15 0.850 -0.034 1 0.835
YSK1YSK1 0.849 0.102 2 0.854
VRK1VRK1 0.849 -0.008 2 0.862
CDK4CDK4 0.849 0.065 1 0.608
CHK2CHK2 0.849 0.054 -3 0.654
MRCKAMRCKA 0.848 0.127 -3 0.790
BUB1BUB1 0.848 0.181 -5 0.824
GSK3AGSK3A 0.847 -0.011 4 0.448
MAKMAK 0.847 0.158 -2 0.802
CK1DCK1D 0.847 -0.047 -3 0.513
P38DP38D 0.847 0.005 1 0.551
MOKMOK 0.847 0.152 1 0.769
SLKSLK 0.845 -0.019 -2 0.775
CK2A2CK2A2 0.845 0.040 1 0.763
MST1MST1 0.845 -0.046 1 0.853
CK1A2CK1A2 0.844 -0.046 -3 0.510
CK1G1CK1G1 0.844 -0.108 -3 0.556
GRK3GRK3 0.844 -0.110 -2 0.696
CAMK1ACAMK1A 0.844 0.062 -3 0.676
DMPK1DMPK1 0.843 0.208 -3 0.787
MEK2MEK2 0.841 -0.214 2 0.841
STK33STK33 0.841 -0.151 2 0.637
ROCK1ROCK1 0.840 0.179 -3 0.785
MYO3BMYO3B 0.840 0.183 2 0.867
RIPK2RIPK2 0.840 -0.243 1 0.814
PBKPBK 0.840 0.024 1 0.810
PDHK3_TYRPDHK3_TYR 0.838 0.203 4 0.912
OSR1OSR1 0.838 0.057 2 0.832
PKG1PKG1 0.838 0.099 -2 0.682
TTKTTK 0.838 0.059 -2 0.845
NEK3NEK3 0.837 -0.085 1 0.835
PLK2PLK2 0.837 -0.071 -3 0.836
HASPINHASPIN 0.836 0.082 -1 0.712
MYO3AMYO3A 0.835 0.103 1 0.857
TAO1TAO1 0.834 0.062 1 0.797
JNK1JNK1 0.834 -0.061 1 0.605
CK2A1CK2A1 0.834 0.007 1 0.739
SBKSBK 0.833 0.024 -3 0.588
TESK1_TYRTESK1_TYR 0.831 0.032 3 0.919
MAP2K4_TYRMAP2K4_TYR 0.830 -0.038 -1 0.920
CRIKCRIK 0.829 0.080 -3 0.733
PKMYT1_TYRPKMYT1_TYR 0.829 -0.002 3 0.891
LIMK2_TYRLIMK2_TYR 0.828 0.119 -3 0.937
PINK1_TYRPINK1_TYR 0.828 0.002 1 0.906
ASK1ASK1 0.828 -0.097 1 0.824
BIKEBIKE 0.828 0.049 1 0.758
PDHK4_TYRPDHK4_TYR 0.827 0.008 2 0.891
MAP2K7_TYRMAP2K7_TYR 0.827 -0.162 2 0.883
MAP2K6_TYRMAP2K6_TYR 0.826 -0.058 -1 0.923
BMPR2_TYRBMPR2_TYR 0.826 0.025 -1 0.916
EPHA6EPHA6 0.825 0.124 -1 0.897
PDHK1_TYRPDHK1_TYR 0.823 -0.072 -1 0.928
RETRET 0.823 -0.015 1 0.875
ALPHAK3ALPHAK3 0.822 -0.064 -1 0.813
LIMK1_TYRLIMK1_TYR 0.822 -0.062 2 0.887
TYK2TYK2 0.821 -0.048 1 0.875
ROS1ROS1 0.821 0.004 3 0.822
EPHB4EPHB4 0.820 0.040 -1 0.885
TYRO3TYRO3 0.820 -0.030 3 0.848
ABL2ABL2 0.819 0.061 -1 0.846
MST1RMST1R 0.819 -0.080 3 0.848
TXKTXK 0.818 0.140 1 0.885
JAK2JAK2 0.817 -0.093 1 0.867
CSF1RCSF1R 0.817 -0.042 3 0.824
LCKLCK 0.817 0.145 -1 0.875
TNNI3K_TYRTNNI3K_TYR 0.816 0.146 1 0.883
JAK3JAK3 0.815 -0.035 1 0.855
YANK3YANK3 0.815 -0.123 2 0.404
YES1YES1 0.814 -0.012 -1 0.871
BLKBLK 0.814 0.152 -1 0.877
HCKHCK 0.814 0.024 -1 0.878
FGRFGR 0.814 -0.055 1 0.902
ITKITK 0.814 0.035 -1 0.865
ABL1ABL1 0.813 0.006 -1 0.838
DDR1DDR1 0.813 -0.153 4 0.832
STLK3STLK3 0.812 -0.217 1 0.817
FERFER 0.811 -0.119 1 0.923
TNK2TNK2 0.811 -0.037 3 0.781
WEE1_TYRWEE1_TYR 0.811 0.072 -1 0.799
INSRRINSRR 0.810 -0.088 3 0.782
PDGFRBPDGFRB 0.810 -0.104 3 0.844
TNK1TNK1 0.810 -0.014 3 0.825
FLT3FLT3 0.810 -0.066 3 0.847
JAK1JAK1 0.810 0.008 1 0.815
NEK10_TYRNEK10_TYR 0.809 -0.063 1 0.748
KDRKDR 0.808 -0.057 3 0.788
SRMSSRMS 0.808 -0.083 1 0.909
EPHB1EPHB1 0.807 -0.071 1 0.903
AAK1AAK1 0.807 0.077 1 0.641
EPHA4EPHA4 0.807 -0.057 2 0.778
EPHB3EPHB3 0.807 -0.052 -1 0.872
TECTEC 0.806 -0.009 -1 0.789
BTKBTK 0.806 -0.088 -1 0.827
KITKIT 0.806 -0.136 3 0.821
EPHB2EPHB2 0.805 -0.037 -1 0.867
FGFR2FGFR2 0.805 -0.170 3 0.814
MERTKMERTK 0.804 -0.071 3 0.797
BMXBMX 0.804 -0.020 -1 0.767
AXLAXL 0.803 -0.132 3 0.796
TEKTEK 0.803 -0.166 3 0.770
PDGFRAPDGFRA 0.802 -0.185 3 0.846
CK1ACK1A 0.802 -0.117 -3 0.415
ALKALK 0.801 -0.128 3 0.754
METMET 0.801 -0.119 3 0.809
FYNFYN 0.800 0.036 -1 0.850
FGFR1FGFR1 0.800 -0.214 3 0.793
FRKFRK 0.800 -0.039 -1 0.887
FLT1FLT1 0.800 -0.090 -1 0.884
PTK6PTK6 0.799 -0.186 -1 0.787
EPHA7EPHA7 0.799 -0.062 2 0.790
EPHA1EPHA1 0.799 -0.071 3 0.788
LTKLTK 0.799 -0.134 3 0.771
LYNLYN 0.798 -0.048 3 0.762
DDR2DDR2 0.795 -0.036 3 0.760
NTRK1NTRK1 0.794 -0.277 -1 0.857
ERBB2ERBB2 0.793 -0.216 1 0.824
INSRINSR 0.793 -0.193 3 0.768
FLT4FLT4 0.793 -0.212 3 0.782
EPHA3EPHA3 0.793 -0.191 2 0.757
NTRK2NTRK2 0.792 -0.258 3 0.788
FGFR3FGFR3 0.791 -0.222 3 0.786
MATKMATK 0.789 -0.149 -1 0.760
EPHA5EPHA5 0.789 -0.099 2 0.767
NTRK3NTRK3 0.788 -0.210 -1 0.806
EPHA8EPHA8 0.788 -0.096 -1 0.855
PTK2BPTK2B 0.788 -0.133 -1 0.813
SRCSRC 0.788 -0.099 -1 0.839
CSKCSK 0.785 -0.202 2 0.793
CK1G3CK1G3 0.784 -0.112 -3 0.365
EGFREGFR 0.783 -0.137 1 0.733
MUSKMUSK 0.783 -0.130 1 0.726
PTK2PTK2 0.782 -0.016 -1 0.835
YANK2YANK2 0.780 -0.167 2 0.423
SYKSYK 0.780 -0.020 -1 0.826
FGFR4FGFR4 0.778 -0.200 -1 0.811
EPHA2EPHA2 0.777 -0.118 -1 0.825
IGF1RIGF1R 0.776 -0.204 3 0.703
ERBB4ERBB4 0.769 -0.123 1 0.741
CK1G2CK1G2 0.762 -0.121 -3 0.468
FESFES 0.760 -0.237 -1 0.741
ZAP70ZAP70 0.756 -0.095 -1 0.738