Motif 94 (n=965)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0G2JS52 | None | S41 | ochoa | Myelin transcription factor 1 domain-containing protein | None |
A0A0G2JS52 | None | S424 | ochoa | Myelin transcription factor 1 domain-containing protein | None |
A0A1W2PQ72 | MSANTD7 | S213 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 7 | None |
A1L390 | PLEKHG3 | S76 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A1L390 | PLEKHG3 | S1115 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A6H8Y1 | BDP1 | S1403 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6NI28 | ARHGAP42 | S714 | ochoa | Rho GTPase-activating protein 42 (Rho GTPase-activating protein 10-like) (Rho-type GTPase-activating protein 42) | May influence blood pressure by functioning as a GTPase-activating protein for RHOA in vascular smooth muscle. {ECO:0000269|PubMed:24335996}. |
A6NKT7 | RGPD3 | S789 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NMY6 | ANXA2P2 | S236 | ochoa | Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) | Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}. |
A7E2V4 | ZSWIM8 | S1040 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
A7KAX9 | ARHGAP32 | S856 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S892 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S952 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S1820 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
D6RIA3 | C4orf54 | S895 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
H7C1W4 | None | S28 | ochoa | Uncharacterized protein | None |
O00167 | EYA2 | S260 | ochoa | Protein phosphatase EYA2 (EC 3.1.3.48) (Eyes absent homolog 2) | Functions both as protein phosphatase and as transcriptional coactivator for SIX1, and probably also for SIX2, SIX4 and SIX5 (PubMed:12500905, PubMed:23435380). Tyrosine phosphatase that dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph) and promotes efficient DNA repair via the recruitment of DNA repair complexes containing MDC1. 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19351884). Its function as histone phosphatase may contribute to its function in transcription regulation during organogenesis. Plays an important role in hypaxial muscle development together with SIX1 and DACH2; in this it is functionally redundant with EYA1 (PubMed:12500905). {ECO:0000269|PubMed:12500905, ECO:0000269|PubMed:19351884, ECO:0000269|PubMed:21706047, ECO:0000269|PubMed:23435380}. |
O00268 | TAF4 | S543 | ochoa | Transcription initiation factor TFIID subunit 4 (RNA polymerase II TBP-associated factor subunit C) (TBP-associated factor 4) (Transcription initiation factor TFIID 130 kDa subunit) (TAF(II)130) (TAFII-130) (TAFII130) (Transcription initiation factor TFIID 135 kDa subunit) (TAF(II)135) (TAFII-135) (TAFII135) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10594036, PubMed:33795473, PubMed:8942982). TAF4 may maintain an association between the TFIID and TFIIA complexes, while bound to the promoter, together with TBP, during PIC assembly (PubMed:33795473). Potentiates transcriptional activation by the AF-2S of the retinoic acid, vitamin D3 and thyroid hormone (PubMed:9192867). {ECO:0000269|PubMed:10594036, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:8942982, ECO:0000269|PubMed:9192867}. |
O00418 | EEF2K | S627 | ochoa | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
O00429 | DNM1L | S548 | ochoa | Dynamin-1-like protein (EC 3.6.5.5) (Dnm1p/Vps1p-like protein) (DVLP) (Dynamin family member proline-rich carboxyl-terminal domain less) (Dymple) (Dynamin-like protein) (Dynamin-like protein 4) (Dynamin-like protein IV) (HdynIV) (Dynamin-related protein 1) | Functions in mitochondrial and peroxisomal division (PubMed:11514614, PubMed:12499366, PubMed:17301055, PubMed:17460227, PubMed:17553808, PubMed:18695047, PubMed:18838687, PubMed:19342591, PubMed:19411255, PubMed:19638400, PubMed:23283981, PubMed:23530241, PubMed:23921378, PubMed:26992161, PubMed:27145208, PubMed:27145933, PubMed:27301544, PubMed:27328748, PubMed:29478834, PubMed:32439975, PubMed:32484300, PubMed:9570752, PubMed:9786947). Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism (PubMed:23530241, PubMed:23584531, PubMed:33850055). The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes (PubMed:23283981, PubMed:23921378, PubMed:29899447). While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L filaments to curl into closed rings that are probably sufficient to sever a double membrane (PubMed:29899447). Acts downstream of PINK1 to promote mitochondrial fission in a PRKN-dependent manner (PubMed:32484300). Plays an important role in mitochondrial fission during mitosis (PubMed:19411255, PubMed:26992161, PubMed:27301544, PubMed:27328748). Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage (By similarity). Required for normal brain development, including that of cerebellum (PubMed:17460227, PubMed:26992161, PubMed:27145208, PubMed:27301544, PubMed:27328748). Facilitates developmentally regulated apoptosis during neural tube formation (By similarity). Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues (By similarity). Required for formation of endocytic vesicles (PubMed:20688057, PubMed:23792689, PubMed:9570752). Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles (PubMed:17015472, PubMed:23792689). Required for programmed necrosis execution (PubMed:22265414). Rhythmic control of its activity following phosphorylation at Ser-637 is essential for the circadian control of mitochondrial ATP production (PubMed:29478834). {ECO:0000250|UniProtKB:Q8K1M6, ECO:0000269|PubMed:11514614, ECO:0000269|PubMed:12499366, ECO:0000269|PubMed:17015472, ECO:0000269|PubMed:17301055, ECO:0000269|PubMed:17460227, ECO:0000269|PubMed:17553808, ECO:0000269|PubMed:18695047, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19342591, ECO:0000269|PubMed:19411255, ECO:0000269|PubMed:19638400, ECO:0000269|PubMed:20688057, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23584531, ECO:0000269|PubMed:23792689, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:26992161, ECO:0000269|PubMed:27145208, ECO:0000269|PubMed:27145933, ECO:0000269|PubMed:27301544, ECO:0000269|PubMed:27328748, ECO:0000269|PubMed:29478834, ECO:0000269|PubMed:29899447, ECO:0000269|PubMed:32439975, ECO:0000269|PubMed:32484300, ECO:0000269|PubMed:33850055, ECO:0000269|PubMed:9570752, ECO:0000269|PubMed:9786947}.; FUNCTION: [Isoform 1]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}.; FUNCTION: [Isoform 4]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}. |
O00444 | PLK4 | S421 | ochoa | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
O00512 | BCL9 | S19 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O00512 | BCL9 | S62 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O00562 | PITPNM1 | S600 | ochoa | Membrane-associated phosphatidylinositol transfer protein 1 (Drosophila retinal degeneration B homolog) (Phosphatidylinositol transfer protein, membrane-associated 1) (PITPnm 1) (Pyk2 N-terminal domain-interacting receptor 2) (NIR-2) | Catalyzes the transfer of phosphatidylinositol (PI) between membranes (PubMed:10531358, PubMed:22822086). Binds PI, phosphatidylcholine (PC) and phosphatidic acid (PA) with the binding affinity order of PI > PA > PC (PubMed:22822086). Regulates RHOA activity, and plays a role in cytoskeleton remodeling (PubMed:11909959). Necessary for normal completion of cytokinesis (PubMed:15125835). Plays a role in maintaining normal diacylglycerol levels in the Golgi apparatus (PubMed:15723057). Necessary for maintaining the normal structure of the endoplasmic reticulum and the Golgi apparatus (PubMed:15545272). Required for protein export from the endoplasmic reticulum and the Golgi (PubMed:15723057). Binds calcium ions (PubMed:10022914). {ECO:0000269|PubMed:10022914, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:11909959, ECO:0000269|PubMed:15545272, ECO:0000269|PubMed:15723057, ECO:0000269|PubMed:22822086}. |
O14490 | DLGAP1 | S169 | ochoa | Disks large-associated protein 1 (DAP-1) (Guanylate kinase-associated protein) (hGKAP) (PSD-95/SAP90-binding protein 1) (SAP90/PSD-95-associated protein 1) (SAPAP1) | Part of the postsynaptic scaffold in neuronal cells. |
O14579 | COPE | S45 | ochoa | Coatomer subunit epsilon (Epsilon-coat protein) (Epsilon-COP) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated with ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
O14686 | KMT2D | S2592 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3199 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14715 | RGPD8 | S788 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14795 | UNC13B | S222 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O14795 | UNC13B | S254 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O15018 | PDZD2 | S1988 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15033 | AREL1 | S337 | ochoa | Apoptosis-resistant E3 ubiquitin protein ligase 1 (EC 2.3.2.26) (Apoptosis-resistant HECT-type E3 ubiquitin transferase 1) | E3 ubiquitin-protein ligase that catalyzes 'Lys-11'- or 'Lys-33'-linked polyubiquitin chains, with some preference for 'Lys-33' linkages (PubMed:25752577). E3 ubiquitin-protein ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:23479728, PubMed:31578312). Ubiquitinates SEPTIN4, DIABLO/SMAC and HTRA2 in vitro (PubMed:23479728). Modulates pulmonary inflammation by targeting SOCS2 for ubiquitination and subsequent degradation by the proteasome (PubMed:31578312). {ECO:0000269|PubMed:23479728, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:31578312}. |
O15034 | RIMBP2 | S712 | ochoa | RIMS-binding protein 2 (RIM-BP2) | Plays a role in the synaptic transmission as bifunctional linker that interacts simultaneously with RIMS1, RIMS2, CACNA1D and CACNA1B. {ECO:0000250}. |
O15049 | N4BP3 | S206 | ochoa | NEDD4-binding protein 3 (N4BP3) | Plays a positive role in the antiviral innate immune signaling pathway. Mechanistically, interacts with MAVS and functions as a positive regulator to promote 'Lys-63'-linked polyubiquitination of MAVS and thus strengthens the interaction between MAVS and TRAF2 (PubMed:34880843). Also plays a role in axon and dendrite arborization during cranial nerve development. May also be important for neural crest migration and early development of other anterior structures including eye, brain and cranial cartilage (By similarity). {ECO:0000250|UniProtKB:A0A1L8GXY6, ECO:0000269|PubMed:34880843}. |
O15061 | SYNM | S429 | ochoa|psp | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15078 | CEP290 | S1610 | ochoa | Centrosomal protein of 290 kDa (Cep290) (Bardet-Biedl syndrome 14 protein) (Cancer/testis antigen 87) (CT87) (Nephrocystin-6) (Tumor antigen se2-2) | Involved in early and late steps in cilia formation. Its association with CCP110 is required for inhibition of primary cilia formation by CCP110 (PubMed:18694559). May play a role in early ciliogenesis in the disappearance of centriolar satellites and in the transition of primary ciliar vesicles (PCVs) to capped ciliary vesicles (CCVs). Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1 (PubMed:24421332). Required for the correct localization of ciliary and phototransduction proteins in retinal photoreceptor cells; may play a role in ciliary transport processes (By similarity). Required for efficient recruitment of RAB8A to primary cilium (PubMed:17705300). In the ciliary transition zone is part of the tectonic-like complex which is required for tissue-specific ciliogenesis and may regulate ciliary membrane composition (By similarity). Involved in regulation of the BBSome complex integrity, specifically for presence of BBS2, BBS5 and BBS8/TTC8 in the complex, and in ciliary targeting of selected BBSome cargos. May play a role in controlling entry of the BBSome complex to cilia possibly implicating IQCB1/NPHP5 (PubMed:25552655). Activates ATF4-mediated transcription (PubMed:16682973). {ECO:0000250|UniProtKB:Q6A078, ECO:0000269|PubMed:16682973, ECO:0000269|PubMed:17705300, ECO:0000269|PubMed:18694559, ECO:0000269|PubMed:24421332, ECO:0000269|PubMed:25552655}. |
O15119 | TBX3 | S354 | ochoa | T-box transcription factor TBX3 (T-box protein 3) | Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}. |
O15265 | ATXN7 | S840 | ochoa | Ataxin-7 (Spinocerebellar ataxia type 7 protein) | Acts as a component of the SAGA (aka STAGA) transcription coactivator-HAT complex (PubMed:15932940, PubMed:18206972). Mediates the interaction of SAGA complex with the CRX and is involved in CRX-dependent gene activation (PubMed:15932940, PubMed:18206972). Probably involved in tethering the deubiquitination module within the SAGA complex (PubMed:24493646). Necessary for microtubule cytoskeleton stabilization (PubMed:22100762). Involved in neurodegeneration (PubMed:9288099). {ECO:0000269|PubMed:15932940, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:22100762, ECO:0000269|PubMed:24493646, ECO:0000269|PubMed:9288099}. |
O15350 | TP73 | S333 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15525 | MAFG | S124 | ochoa|psp | Transcription factor MafG (V-maf musculoaponeurotic fibrosarcoma oncogene homolog G) (hMAF) | Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves (PubMed:11154691). However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2, NFE2L1 and NFE2L2, and recruiting them to specific DNA-binding sites (PubMed:11154691, PubMed:8932385, PubMed:9421508). Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NFE2L2 transcription factor (PubMed:11154691). Transcription factor, component of erythroid-specific transcription factor NFE2L2 (PubMed:11154691). Activates globin gene expression when associated with NFE2L2 (PubMed:11154691). May be involved in signal transduction of extracellular H(+) (By similarity). {ECO:0000250|UniProtKB:Q76MX4, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:8932385, ECO:0000269|PubMed:9421508}. |
O43175 | PHGDH | S326 | ochoa | D-3-phosphoglycerate dehydrogenase (3-PGDH) (EC 1.1.1.95) (2-oxoglutarate reductase) (EC 1.1.1.399) (Malate dehydrogenase) (EC 1.1.1.37) | Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L-serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate and the reversible oxidation of (S)-malate to oxaloacetate. {ECO:0000269|PubMed:11751922, ECO:0000269|PubMed:25406093}. |
O43182 | ARHGAP6 | S777 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43237 | DYNC1LI2 | S383 | ochoa | Cytoplasmic dynein 1 light intermediate chain 2 (Dynein light intermediate chain 2, cytosolic) (LIC-2) (LIC53/55) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. {ECO:0000305|PubMed:36071160}. |
O43242 | PSMD3 | S430 | ochoa | 26S proteasome non-ATPase regulatory subunit 3 (26S proteasome regulatory subunit RPN3) (26S proteasome regulatory subunit S3) (Proteasome subunit p58) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
O43303 | CCP110 | S45 | ochoa|psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43303 | CCP110 | S551 | ochoa | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43314 | PPIP5K2 | S223 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43426 | SYNJ1 | S1439 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43526 | KCNQ2 | S414 | psp | Potassium voltage-gated channel subfamily KQT member 2 (KQT-like 2) (Neuroblastoma-specific potassium channel subunit alpha KvLQT2) (Voltage-gated potassium channel subunit Kv7.2) | Pore-forming subunit of the voltage-gated potassium (Kv) M-channel which is responsible for the M-current, a key controller of neuronal excitability (PubMed:24277843, PubMed:28793216, PubMed:9836639). M-channel is composed of pore-forming subunits KCNQ2 and KCNQ3 assembled as heterotetramers (PubMed:10781098, PubMed:14534157, PubMed:32884139, PubMed:37857637, PubMed:9836639). The native M-current has a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs (PubMed:14534157, PubMed:28793216, PubMed:9836639). KCNQ2-KCNQ3 M-channel is selectively permeable in vitro to other cations besides potassium, in decreasing order of affinity K(+) > Rb(+) > Cs(+) > Na(+) (PubMed:28793216). M-channel association with SLC5A3/SMIT1 alters channel ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) (PubMed:28793216). Suppressed by activation of the muscarinic acetylcholine receptor CHRM1 (PubMed:10684873, PubMed:10713961). {ECO:0000269|PubMed:10684873, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:10781098, ECO:0000269|PubMed:14534157, ECO:0000269|PubMed:24277843, ECO:0000269|PubMed:28793216, ECO:0000269|PubMed:32884139, ECO:0000269|PubMed:37857637, ECO:0000269|PubMed:9836639}. |
O60287 | URB1 | S1097 | ochoa | Nucleolar pre-ribosomal-associated protein 1 (Nucleolar protein 254 kDa) (URB1 ribosome biogenesis 1 homolog) | None |
O60315 | ZEB2 | S741 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60333 | KIF1B | S1613 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60336 | MAPKBP1 | S1216 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60503 | ADCY9 | S1307 | ochoa | Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) | Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}. |
O60516 | EIF4EBP3 | S21 | ochoa | Eukaryotic translation initiation factor 4E-binding protein 3 (4E-BP3) (eIF4E-binding protein 3) | Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex: the hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repression of translation. In contrast, the hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation (By similarity). Inhibits EIF4E-mediated mRNA nuclear export (PubMed:22684010). {ECO:0000250|UniProtKB:Q13541, ECO:0000269|PubMed:22684010}. |
O60610 | DIAPH1 | S22 | ochoa | Protein diaphanous homolog 1 (Diaphanous-related formin-1) (DRF1) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers (By similarity). Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization (By similarity). Required for cytokinesis, and transcriptional activation of the serum response factor (By similarity). DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics (By similarity). Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration (By similarity). Has neurite outgrowth promoting activity. Acts in a Rho-dependent manner to recruit PFY1 to the membrane (By similarity). In hear cells, it may play a role in the regulation of actin polymerization in hair cells (PubMed:20937854, PubMed:21834987, PubMed:26912466). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854, PubMed:21834987). It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity (PubMed:20937854, PubMed:21834987). In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854, PubMed:21834987). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (PubMed:20937854, PubMed:21834987). Plays a role in brain development (PubMed:24781755). Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity (By similarity). {ECO:0000250|UniProtKB:O08808, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24781755, ECO:0000269|PubMed:26912466}. |
O60749 | SNX2 | S97 | ochoa | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
O60861 | GAS7 | S163 | ochoa | Growth arrest-specific protein 7 (GAS-7) | May play a role in promoting maturation and morphological differentiation of cerebellar neurons. |
O75037 | KIF21B | S520 | ochoa | Kinesin-like protein KIF21B | Plus-end directed microtubule-dependent motor protein which displays processive activity. Is involved in regulation of microtubule dynamics, synapse function and neuronal morphology, including dendritic tree branching and spine formation. Plays a role in lerning and memory. Involved in delivery of gamma-aminobutyric acid (GABA(A)) receptor to cell surface. {ECO:0000250|UniProtKB:Q9QXL1}. |
O75061 | DNAJC6 | S570 | ochoa|psp | Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) | May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}. |
O75061 | DNAJC6 | S618 | ochoa | Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) | May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}. |
O75132 | ZBED4 | S255 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75132 | ZBED4 | S297 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75132 | ZBED4 | S624 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75143 | ATG13 | S361 | ochoa | Autophagy-related protein 13 | Autophagy factor required for autophagosome formation and mitophagy. Target of the TOR kinase signaling pathway that regulates autophagy through the control of the phosphorylation status of ATG13 and ULK1, and the regulation of the ATG13-ULK1-RB1CC1 complex. Through its regulation of ULK1 activity, plays a role in the regulation of the kinase activity of mTORC1 and cell proliferation. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:19211835, ECO:0000269|PubMed:19225151, ECO:0000269|PubMed:19287211, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:21855797}. |
O75161 | NPHP4 | S142 | ochoa | Nephrocystin-4 (Nephroretinin) | Involved in the organization of apical junctions; the function is proposed to implicate a NPHP1-4-8 module (PubMed:19755384, PubMed:21565611). Does not seem to be strictly required for ciliogenesis (PubMed:21565611). Required for building functional cilia. Involved in the organization of the subapical actin network in multiciliated epithelial cells. Seems to recruit INT to basal bodies of motile cilia which subsequently interacts with actin-modifying proteins such as DAAM1 (By similarity). In cooperation with INVS may down-regulate the canonical Wnt pathway and promote the Wnt-PCP pathway by regulating expression and subcellular location of disheveled proteins. Stabilizes protein levels of JADE1 and promotes its translocation to the nucleus leading to cooperative inhibition of canonical Wnt signaling (PubMed:21498478, PubMed:22654112). Acts as a negative regulator of the hippo pathway by association with LATS1 and modifying LATS1-dependent phosphorylation and localization of WWTR1/TAZ (PubMed:21555462). {ECO:0000250|UniProtKB:B0DOB4, ECO:0000250|UniProtKB:P59240, ECO:0000269|PubMed:21498478, ECO:0000269|PubMed:21555462, ECO:0000269|PubMed:21565611, ECO:0000269|PubMed:22654112, ECO:0000305|PubMed:19755384}. |
O75362 | ZNF217 | S890 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75376 | NCOR1 | S918 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S1322 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S2184 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S2315 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75417 | POLQ | S1879 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75529 | TAF5L | S230 | ochoa | TAF5-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 5L (TAF5L) (PCAF-associated factor 65 beta) (PAF65-beta) | Functions as a component of the PCAF complex. The PCAF complex is capable of efficiently acetylating histones in a nucleosomal context. The PCAF complex could be considered as the human version of the yeast SAGA complex (Probable). With TAF6L, acts as an epigenetic regulator essential for somatic reprogramming. Regulates target genes through H3K9ac deposition and MYC recruitment which trigger MYC regulatory network to orchestrate gene expression programs to control embryonic stem cell state (By similarity). {ECO:0000250|UniProtKB:Q91WQ5, ECO:0000305|PubMed:9674419}. |
O75717 | WDHD1 | S958 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O75764 | TCEA3 | S164 | ochoa | Transcription elongation factor A protein 3 (Transcription elongation factor S-II protein 3) (Transcription elongation factor TFIIS.h) | Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus. |
O75794 | CDC123 | S299 | ochoa | Translation initiation factor eIF2 assembly protein (Cell division cycle protein 123 homolog) (Protein D123) (HT-1080) (PZ32) | ATP-dependent protein-folding chaperone for the eIF2 complex (PubMed:35031321, PubMed:37507029). Binds to the gamma subunit of the eIF2 complex which allows the subunit to assemble with the alpha and beta subunits (By similarity). {ECO:0000250|UniProtKB:Q05791, ECO:0000269|PubMed:35031321, ECO:0000269|PubMed:37507029}. |
O75962 | TRIO | S2417 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O76039 | CDKL5 | S407 | ochoa | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O76039 | CDKL5 | S529 | ochoa | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O94818 | NOL4 | S353 | ochoa | Nucleolar protein 4 (Nucleolar-localized protein) | None |
O94842 | TOX4 | S567 | ochoa | TOX high mobility group box family member 4 | Transcription factor that modulates cell fate reprogramming from the somatic state to the pluripotent and neuronal fate (By similarity). In liver, controls the expression of hormone-regulated gluconeogenic genes such as G6PC1 and PCK1 (By similarity). This regulation is independent of the insulin receptor activation (By similarity). Also acts as a regulatory component of protein phosphatase 1 (PP1) complexes (PubMed:39603239, PubMed:39603240). Component of the PNUTS-PP1 protein phosphatase complex, a PP1 complex that regulates RNA polymerase II transcription pause-release (PubMed:39603239, PubMed:39603240). PNUTS-PP1 also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (PubMed:20516061). {ECO:0000250|UniProtKB:Q8BU11, ECO:0000269|PubMed:20516061, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240}. |
O94875 | SORBS2 | Y72 | ochoa | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94885 | SASH1 | S486 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94888 | UBXN7 | S350 | ochoa | UBX domain-containing protein 7 | Ubiquitin-binding adapter that links a subset of NEDD8-associated cullin ring ligases (CRLs) to the segregase VCP/p97, to regulate turnover of their ubiquitination substrates. {ECO:0000269|PubMed:22537386}. |
O94901 | SUN1 | S138 | psp | SUN domain-containing protein 1 (Protein unc-84 homolog A) (Sad1/unc-84 protein-like 1) | As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton (PubMed:18039933, PubMed:18396275). The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (By similarity). Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration (By similarity). Involved in telomere attachment to nuclear envelope in the prophase of meiosis implicating a SUN1/2:KASH5 LINC complex in which SUN1 and SUN2 seem to act at least partial redundantly (By similarity). Required for gametogenesis and involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis (By similarity). Helps to define the distribution of nuclear pore complexes (NPCs) (By similarity). Required for efficient localization of SYNE4 in the nuclear envelope (By similarity). May be involved in nuclear remodeling during sperm head formation in spermatogenesis (By similarity). May play a role in DNA repair by suppressing non-homologous end joining repair to facilitate the repair of DNA cross-links (PubMed:24375709). {ECO:0000250|UniProtKB:Q9D666, ECO:0000269|PubMed:18039933, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:24375709}. |
O94988 | FAM13A | S597 | ochoa | Protein FAM13A | None |
O95159 | ZFPL1 | S189 | ochoa | Zinc finger protein-like 1 (Zinc finger protein MCG4) | Required for cis-Golgi integrity and efficient ER to Golgi transport. Involved in the maintenance of the integrity of the cis-Golgi, possibly via its interaction with GOLGA2/GM130. {ECO:0000269|PubMed:18323775}. |
O95171 | SCEL | S312 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
O95196 | CSPG5 | S543 | ochoa | Chondroitin sulfate proteoglycan 5 (Acidic leucine-rich EGF-like domain-containing brain protein) (Neuroglycan C) | May function as a growth and differentiation factor involved in neuritogenesis. May induce ERBB3 activation. {ECO:0000269|PubMed:15358134}. |
O95359 | TACC2 | S201 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95382 | MAP3K6 | S931 | ochoa | Mitogen-activated protein kinase kinase kinase 6 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 2) | Component of a protein kinase signal transduction cascade. Activates the JNK, but not ERK or p38 kinase pathways. {ECO:0000269|PubMed:17210579, ECO:0000269|PubMed:9875215}. |
O95398 | RAPGEF3 | S267 | ochoa | Rap guanine nucleotide exchange factor 3 (Exchange factor directly activated by cAMP 1) (Exchange protein directly activated by cAMP 1) (EPAC 1) (Rap1 guanine-nucleotide-exchange factor directly activated by cAMP) (cAMP-regulated guanine nucleotide exchange factor I) (cAMP-GEFI) | Guanine nucleotide exchange factor (GEF) for RAP1A and RAP2A small GTPases that is activated by binding cAMP. Through simultaneous binding of PDE3B to RAPGEF3 and PIK3R6 is assembled in a signaling complex in which it activates the PI3K gamma complex and which is involved in angiogenesis. Plays a role in the modulation of the cAMP-induced dynamic control of endothelial barrier function through a pathway that is independent on Rho-mediated signaling. Required for the actin rearrangement at cell-cell junctions, such as stress fibers and junctional actin. {ECO:0000269|PubMed:10777494, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:9853756}. |
O95402 | MED26 | S470 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95402 | MED26 | S535 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95425 | SVIL | S467 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95429 | BAG4 | S179 | ochoa | BAG family molecular chaperone regulator 4 (BAG-4) (Bcl-2-associated athanogene 4) (Silencer of death domains) | Inhibits the chaperone activity of HSP70/HSC70 by promoting substrate release (By similarity). Prevents constitutive TNFRSF1A signaling. Negative regulator of PRKN translocation to damaged mitochondria. {ECO:0000250, ECO:0000269|PubMed:24270810}. |
O95503 | CBX6 | S301 | ochoa | Chromobox protein homolog 6 | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Possibly contributes to the target selectivity of the PRC1 complex by binding specific regions of chromatin (PubMed:18927235). Recruitment to chromatin might occur in an H3K27me3-independent fashion (By similarity). May have a PRC1-independent function in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:Q9DBY5, ECO:0000269|PubMed:18927235, ECO:0000269|PubMed:21282530}. |
O95573 | ACSL3 | S62 | ochoa | Fatty acid CoA ligase Acsl3 (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 3) (LACS 3) (Long-chain-fatty-acid--CoA ligase 3) (EC 6.2.1.3) (Medium-chain acyl-CoA ligase Acsl3) (EC 6.2.1.2) | Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:22633490). Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (PubMed:18003621). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). {ECO:0000250|UniProtKB:Q63151, ECO:0000269|PubMed:18003621, ECO:0000269|PubMed:22633490}. |
O95573 | ACSL3 | S683 | ochoa | Fatty acid CoA ligase Acsl3 (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 3) (LACS 3) (Long-chain-fatty-acid--CoA ligase 3) (EC 6.2.1.3) (Medium-chain acyl-CoA ligase Acsl3) (EC 6.2.1.2) | Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:22633490). Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (PubMed:18003621). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). {ECO:0000250|UniProtKB:Q63151, ECO:0000269|PubMed:18003621, ECO:0000269|PubMed:22633490}. |
O95613 | PCNT | S1245 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95644 | NFATC1 | S670 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95677 | EYA4 | S37 | ochoa | Protein phosphatase EYA4 (EC 3.1.3.48) (Eyes absent homolog 4) | Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1. Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. May be involved in development of the eye (By similarity). {ECO:0000250|UniProtKB:Q99502}. |
O95677 | EYA4 | S361 | ochoa | Protein phosphatase EYA4 (EC 3.1.3.48) (Eyes absent homolog 4) | Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1. Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. May be involved in development of the eye (By similarity). {ECO:0000250|UniProtKB:Q99502}. |
O95759 | TBC1D8 | S1054 | ochoa | TBC1 domain family member 8 (AD 3) (Vascular Rab-GAP/TBC-containing protein) | May act as a GTPase-activating protein for Rab family protein(s). |
O95785 | WIZ | S1079 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95785 | WIZ | S1263 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95789 | ZMYM6 | S397 | ochoa | Zinc finger MYM-type protein 6 (Transposon-derived Buster2 transposase-like protein) (Zinc finger protein 258) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
O96008 | TOMM40 | S142 | ochoa | Mitochondrial import receptor subunit TOM40 homolog (Protein Haymaker) (Translocase of outer membrane 40 kDa subunit homolog) (p38.5) | Channel-forming protein essential for import of protein precursors into mitochondria (PubMed:15644312, PubMed:31206022). Plays a role in the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) by forming a complex with BCAP31 and mediating the translocation of Complex I components from the cytosol to the mitochondria (PubMed:31206022). {ECO:0000269|PubMed:15644312, ECO:0000269|PubMed:31206022}. |
O96020 | CCNE2 | S21 | ochoa | G1/S-specific cyclin-E2 | Essential for the control of the cell cycle at the late G1 and early S phase. {ECO:0000269|PubMed:9840927, ECO:0000269|PubMed:9840943, ECO:0000269|PubMed:9858585}. |
P01106 | MYC | S359 | psp | Myc proto-oncogene protein (Class E basic helix-loop-helix protein 39) (bHLHe39) (Proto-oncogene c-Myc) (Transcription factor p64) | Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3' (PubMed:24940000, PubMed:25956029). Activates the transcription of growth-related genes (PubMed:24940000, PubMed:25956029). Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis (PubMed:24940000, PubMed:25956029). Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells (By similarity). Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity). Positively regulates transcription of HNRNPA1, HNRNPA2 and PTBP1 which in turn regulate splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). {ECO:0000250|UniProtKB:P01108, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25956029}. |
P06400 | RB1 | S230 | psp | Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) | Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}. |
P06401 | PGR | S190 | psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P07101 | TH | S502 | ochoa | Tyrosine 3-monooxygenase (EC 1.14.16.2) (Tyrosine 3-hydroxylase) (TH) | Catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-Dopa), the rate-limiting step in the biosynthesis of catecholamines, dopamine, noradrenaline, and adrenaline. Uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to L-Dopa (PubMed:15287903, PubMed:1680128, PubMed:17391063, PubMed:24753243, PubMed:34922205, PubMed:8528210, Ref.18). In addition to tyrosine, is able to catalyze the hydroxylation of phenylalanine and tryptophan with lower specificity (By similarity). Positively regulates the regression of retinal hyaloid vessels during postnatal development (By similarity). {ECO:0000250|UniProtKB:P04177, ECO:0000250|UniProtKB:P24529, ECO:0000269|PubMed:15287903, ECO:0000269|PubMed:1680128, ECO:0000269|PubMed:17391063, ECO:0000269|PubMed:24753243, ECO:0000269|PubMed:34922205, ECO:0000269|PubMed:8528210, ECO:0000269|Ref.18}.; FUNCTION: [Isoform 5]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.; FUNCTION: [Isoform 6]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}. |
P07355 | ANXA2 | S236 | ochoa | Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) | Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}. |
P08235 | NR3C2 | S227 | psp | Mineralocorticoid receptor (MR) (Nuclear receptor subfamily 3 group C member 2) | Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels. {ECO:0000269|PubMed:3037703}. |
P08235 | NR3C2 | S361 | ochoa|psp | Mineralocorticoid receptor (MR) (Nuclear receptor subfamily 3 group C member 2) | Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels. {ECO:0000269|PubMed:3037703}. |
P08833 | IGFBP1 | S123 | psp | Insulin-like growth factor-binding protein 1 (IBP-1) (IGF-binding protein 1) (IGFBP-1) (Placental protein 12) (PP12) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including cell migration, proliferation, differentiation or apoptosis in a cell-type specific manner (PubMed:11397844, PubMed:15972819). Also plays a positive role in cell migration by interacting with integrin ITGA5:ITGB1 through its RGD motif (PubMed:7504269). Mechanistically, binding to integrins leads to activation of focal adhesion kinase/PTK2 and stimulation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:11397844). Regulates cardiomyocyte apoptosis by suppressing HIF-1alpha/HIF1A ubiquitination and subsequent degradation (By similarity). {ECO:0000250|UniProtKB:P21743, ECO:0000269|PubMed:11397844, ECO:0000269|PubMed:15972819, ECO:0000269|PubMed:3419931, ECO:0000269|PubMed:7504269}. |
P09543 | CNP | S318 | ochoa | 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) (CNPase) (EC 3.1.4.37) | Catalyzes the formation of 2'-nucleotide products from 2',3'-cyclic substrates (By similarity). May participate in RNA metabolism in the myelinating cell, CNP is the third most abundant protein in central nervous system myelin (By similarity). {ECO:0000250|UniProtKB:P06623, ECO:0000250|UniProtKB:P16330}. |
P0DJD0 | RGPD1 | S779 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S787 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DMU7 | CT45A6 | S115 | ochoa | Cancer/testis antigen family 45 member A6 (Cancer/testis antigen 45-6) (Cancer/testis antigen 45A6) | None |
P0DMU8 | CT45A5 | S115 | ochoa | Cancer/testis antigen family 45 member A5 (Cancer/testis antigen 45-5) (Cancer/testis antigen 45A5) | None |
P0DMV0 | CT45A7 | S115 | ochoa | Cancer/testis antigen family 45 member A7 (Cancer/testis antigen 45A7) | None |
P10071 | GLI3 | S45 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10827 | THRA | S21 | ochoa | Thyroid hormone receptor alpha (Nuclear receptor subfamily 1 group A member 1) (V-erbA-related protein 7) (EAR-7) (c-erbA-1) (c-erbA-alpha) | [Isoform Alpha-1]: Nuclear hormone receptor that can act as a repressor or activator of transcription. High affinity receptor for thyroid hormones, including triiodothyronine and thyroxine. {ECO:0000269|PubMed:12699376, ECO:0000269|PubMed:14673100, ECO:0000269|PubMed:18237438, ECO:0000269|PubMed:19926848}.; FUNCTION: [Isoform Alpha-2]: Does not bind thyroid hormone and functions as a weak dominant negative inhibitor of thyroid hormone action. {ECO:0000269|PubMed:8910441}. |
P10914 | IRF1 | S282 | ochoa | Interferon regulatory factor 1 (IRF-1) | Transcriptional regulator which displays a remarkable functional diversity in the regulation of cellular responses (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195, PubMed:32385160). Regulates transcription of IFN and IFN-inducible genes, host response to viral and bacterial infections, regulation of many genes expressed during hematopoiesis, inflammation, immune responses and cell proliferation and differentiation, regulation of the cell cycle and induction of growth arrest and programmed cell death following DNA damage (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Stimulates both innate and acquired immune responses through the activation of specific target genes and can act as a transcriptional activator and repressor regulating target genes by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:21389130, PubMed:22367195). Has an essentail role in IFNG-dependent immunity to mycobacteria (PubMed:36736301). Competes with the transcriptional repressor ZBED2 for binding to a common consensus sequence in gene promoters (PubMed:32385160). Its target genes for transcriptional activation activity include: genes involved in anti-viral response, such as IFN-alpha/beta, RIGI, TNFSF10/TRAIL, ZBP1, OAS1/2, PIAS1/GBP, EIF2AK2/PKR and RSAD2/viperin; antibacterial response, such as GBP2, GBP5 and NOS2/INOS; anti-proliferative response, such as p53/TP53, LOX and CDKN1A; apoptosis, such as BBC3/PUMA, CASP1, CASP7 and CASP8; immune response, such as IL7, IL12A/B and IL15, PTGS2/COX2 and CYBB; DNA damage responses and DNA repair, such as POLQ/POLH; MHC class I expression, such as TAP1, PSMB9/LMP2, PSME1/PA28A, PSME2/PA28B and B2M and MHC class II expression, such as CIITA; metabolic enzymes, such as ACOD1/IRG1 (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Represses genes involved in anti-proliferative response, such as BIRC5/survivin, CCNB1, CCNE1, CDK1, CDK2 and CDK4 and in immune response, such as FOXP3, IL4, ANXA2 and TLR4 (PubMed:18641303, PubMed:22200613). Stimulates p53/TP53-dependent transcription through enhanced recruitment of EP300 leading to increased acetylation of p53/TP53 (PubMed:15509808, PubMed:18084608). Plays an important role in immune response directly affecting NK maturation and activity, macrophage production of IL12, Th1 development and maturation of CD8+ T-cells (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Also implicated in the differentiation and maturation of dendritic cells and in the suppression of regulatory T (Treg) cells development (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Acts as a tumor suppressor and plays a role not only in antagonism of tumor cell growth but also in stimulating an immune response against tumor cells (PubMed:20049431). {ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:15509808, ECO:0000269|PubMed:17516545, ECO:0000269|PubMed:17942705, ECO:0000269|PubMed:18084608, ECO:0000269|PubMed:18497060, ECO:0000269|PubMed:18641303, ECO:0000269|PubMed:19404407, ECO:0000269|PubMed:19851330, ECO:0000269|PubMed:21389130, ECO:0000269|PubMed:22200613, ECO:0000269|PubMed:22367195, ECO:0000269|PubMed:32385160, ECO:0000269|PubMed:36736301, ECO:0000303|PubMed:11244049, ECO:0000303|PubMed:11846971, ECO:0000303|PubMed:11846974, ECO:0000303|PubMed:16932750, ECO:0000303|PubMed:20049431}. |
P11274 | BCR | S356 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P11387 | TOP1 | S112 | ochoa|psp | DNA topoisomerase 1 (EC 5.6.2.1) (DNA topoisomerase I) | Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the BMAL1 promoter. {ECO:0000250|UniProtKB:Q13472, ECO:0000269|PubMed:14594810, ECO:0000269|PubMed:16033260, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:22904072, ECO:0000269|PubMed:2833744}. |
P13378 | HOXD8 | S181 | ochoa | Homeobox protein Hox-D8 (Homeobox protein Hox-4E) (Homeobox protein Hox-5.4) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P13631 | RARG | S77 | psp | Retinoic acid receptor gamma (RAR-gamma) (Nuclear receptor subfamily 1 group B member 3) | Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, acts mainly as an activator of gene expression due to weak binding to corepressors. Required for limb bud development. In concert with RARA or RARB, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). {ECO:0000250}. |
P13994 | YJU2B | S362 | ochoa | Probable splicing factor YJU2B (Coiled-coil domain-containing protein 130) | May be involved in mRNA splicing. {ECO:0000250|UniProtKB:Q9BW85}. |
P15056 | BRAF | S151 | ochoa|psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15822 | HIVEP1 | S1735 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P16157 | ANK1 | S903 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16157 | ANK1 | S907 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16157 | ANK1 | S1686 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P17706 | PTPN2 | S298 | ochoa | Tyrosine-protein phosphatase non-receptor type 2 (EC 3.1.3.48) (T-cell protein-tyrosine phosphatase) (TCPTP) | Non-receptor type tyrosine-specific phosphatase that dephosphorylates receptor protein tyrosine kinases including INSR, EGFR, CSF1R, PDGFR. Also dephosphorylates non-receptor protein tyrosine kinases like JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3 and STAT6 either in the nucleus or the cytoplasm. Negatively regulates numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis. Plays a multifaceted and important role in the development of the immune system. Functions in T-cell receptor signaling through dephosphorylation of FYN and LCK to control T-cells differentiation and activation. Dephosphorylates CSF1R, negatively regulating its downstream signaling and macrophage differentiation. Negatively regulates cytokine (IL2/interleukin-2 and interferon)-mediated signaling through dephosphorylation of the cytoplasmic kinases JAK1, JAK3 and their substrate STAT1, that propagate signaling downstream of the cytokine receptors. Also regulates the IL6/interleukin-6 and IL4/interleukin-4 cytokine signaling through dephosphorylation of STAT3 and STAT6 respectively. In addition to the immune system, it is involved in anchorage-dependent, negative regulation of EGF-stimulated cell growth. Activated by the integrin ITGA1/ITGB1, it dephosphorylates EGFR and negatively regulates EGF signaling. Dephosphorylates PDGFRB and negatively regulates platelet-derived growth factor receptor-beta signaling pathway and therefore cell proliferation. Negatively regulates tumor necrosis factor-mediated signaling downstream via MAPK through SRC dephosphorylation. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of the hepatocyte growth factor receptor MET. Also plays an important role in glucose homeostasis. For instance, negatively regulates the insulin receptor signaling pathway through the dephosphorylation of INSR and control gluconeogenesis and liver glucose production through negative regulation of the IL6 signaling pathways. May also bind DNA. {ECO:0000269|PubMed:10734133, ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12138178, ECO:0000269|PubMed:12612081, ECO:0000269|PubMed:14966296, ECO:0000269|PubMed:15592458, ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:9488479}. |
P17947 | SPI1 | S140 | psp | Transcription factor PU.1 (31 kDa-transforming protein) | Pioneer transcription factor, which controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing other transcription factors to enter otherwise inaccessible genomic sites. Once in open chromatin, can directly control gene expression by binding genetic regulatory elements and can also more broadly influence transcription by recruiting transcription factors, such as interferon regulatory factors (IRFs), to otherwise inaccessible genomic regions (PubMed:23658224, PubMed:33951726). Transcriptionally activates genes important for myeloid and lymphoid lineages, such as CSF1R (By similarity). Transcriptional activation from certain promoters, possibly containing low affinity binding sites, is achieved cooperatively with other transcription factors. FCER1A transactivation is achieved in cooperation with GATA1 (By similarity). May be particularly important for the pro- to pre-B cell transition (PubMed:33951726). Binds (via the ETS domain) onto the purine-rich DNA core sequence 5'-GAGGAA-3', also known as the PU-box (PubMed:33951726). In vitro can bind RNA and interfere with pre-mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P17433, ECO:0000250|UniProtKB:Q6BDS1, ECO:0000269|PubMed:23658224, ECO:0000269|PubMed:33951726}. |
P18583 | SON | S1026 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P20393 | NR1D1 | S55 | psp | Nuclear receptor subfamily 1 group D member 1 (Rev-erbA-alpha) (V-erbA-related protein 1) (EAR-1) | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity). {ECO:0000250|UniProtKB:Q3UV55, ECO:0000269|PubMed:12021280, ECO:0000269|PubMed:15761026, ECO:0000269|PubMed:16968709, ECO:0000269|PubMed:18006707, ECO:0000269|PubMed:19710360, ECO:0000269|PubMed:1971514, ECO:0000269|PubMed:21479263, ECO:0000269|PubMed:22184247, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:2539258}. |
P20618 | PSMB1 | S68 | ochoa | Proteasome subunit beta type-1 (Macropain subunit C5) (Multicatalytic endopeptidase complex subunit C5) (Proteasome component C5) (Proteasome gamma chain) (Proteasome subunit beta-6) (beta-6) | Non-catalytic component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P21817 | RYR1 | S2000 | ochoa | Ryanodine receptor 1 (RYR-1) (RyR1) (Skeletal muscle calcium release channel) (Skeletal muscle ryanodine receptor) (Skeletal muscle-type ryanodine receptor) (Type 1 ryanodine receptor) | Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:11741831, PubMed:16163667, PubMed:18268335, PubMed:18650434, PubMed:26115329). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (PubMed:18268335). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity). {ECO:0000250|UniProtKB:E9PZQ0, ECO:0000269|PubMed:18268335, ECO:0000269|PubMed:18650434, ECO:0000269|PubMed:26115329, ECO:0000305|PubMed:11741831, ECO:0000305|PubMed:16163667}. |
P22674 | CCNO | S81 | ochoa|psp | Cyclin-O | Specifically required for generation of multiciliated cells, possibly by promoting a cell cycle state compatible with centriole amplification and maturation. Acts downstream of MCIDAS to promote mother centriole amplification and maturation in preparation for apical docking. {ECO:0000269|PubMed:24747639, ECO:0000269|PubMed:26777464}. |
P22736 | NR4A1 | S140 | psp | Nuclear receptor subfamily 4immunitygroup A member 1 (Early response protein NAK1) (Nuclear hormone receptor NUR/77) (Nur77) (Orphan nuclear receptor HMR) (Orphan nuclear receptor TR3) (ST-59) (Testicular receptor 3) | Orphan nuclear receptor. Binds the NGFI-B response element (NBRE) 5'-AAAGGTCA-3' (PubMed:18690216, PubMed:8121493, PubMed:9315652). Binds 9-cis-retinoic acid outside of its ligand-binding (NR LBD) domain (PubMed:18690216). Participates in energy homeostasis by sequestrating the kinase STK11 in the nucleus, thereby attenuating cytoplasmic AMPK activation (PubMed:22983157). Regulates the inflammatory response in macrophages by regulating metabolic adaptations during inflammation, including repressing the transcription of genes involved in the citric acid cycle (TCA) (By similarity). Inhibits NF-kappa-B signaling by binding to low-affinity NF-kappa-B binding sites, such as at the IL2 promoter (PubMed:15466594). May act concomitantly with NR4A2 in regulating the expression of delayed-early genes during liver regeneration (By similarity). Plays a role in the vascular response to injury (By similarity). {ECO:0000250|UniProtKB:P12813, ECO:0000250|UniProtKB:P22829, ECO:0000269|PubMed:15466594, ECO:0000269|PubMed:18690216, ECO:0000269|PubMed:22983157, ECO:0000269|PubMed:8121493, ECO:0000269|PubMed:9315652}.; FUNCTION: In the cytosol, upon its detection of both bacterial lipopolysaccharide (LPS) and NBRE-containing mitochondrial DNA released by GSDMD pores during pyroptosis, it promotes non-canonical NLRP3 inflammasome activation by stimulating association of NLRP3 and NEK7. {ECO:0000250|UniProtKB:P12813}. |
P23508 | MCC | S702 | ochoa | Colorectal mutant cancer protein (Protein MCC) | Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}. |
P25054 | APC | S2512 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2789 | ochoa|psp | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P26641 | EEF1G | S387 | ochoa | Elongation factor 1-gamma (EF-1-gamma) (eEF-1B gamma) | Probably plays a role in anchoring the complex to other cellular components. |
P27448 | MARK3 | S45 | ochoa | MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) | Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}. |
P27540 | ARNT | S348 | psp | Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Class E basic helix-loop-helix protein 2) (bHLHe2) (Dioxin receptor, nuclear translocator) (Hypoxia-inducible factor 1-beta) (HIF-1-beta) (HIF1-beta) | Required for activity of the AHR. Upon ligand binding, AHR translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE). Not required for the ligand-binding subunit to translocate from the cytosol to the nucleus after ligand binding (PubMed:34521881). The complex initiates transcription of genes involved in the regulation of a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (Probable). The heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters and functions as a transcriptional regulator of the adaptive response to hypoxia (By similarity). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28396409). {ECO:0000250|UniProtKB:P53762, ECO:0000269|PubMed:28396409, ECO:0000269|PubMed:34521881, ECO:0000305|PubMed:34521881}. |
P28324 | ELK4 | S387 | psp | ETS domain-containing protein Elk-4 (Serum response factor accessory protein 1) (SAP-1) (SRF accessory protein 1) | Involved in both transcriptional activation and repression. Interaction with SIRT7 leads to recruitment and stabilization of SIRT7 at promoters, followed by deacetylation of histone H3 at 'Lys-18' (H3K18Ac) and subsequent transcription repression. Forms a ternary complex with the serum response factor (SRF). Requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5'side of SRF, but does not bind DNA autonomously. {ECO:0000269|PubMed:22722849}. |
P28715 | ERCC5 | S526 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P28749 | RBL1 | S1009 | psp | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P30304 | CDC25A | S283 | ochoa|psp | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P32519 | ELF1 | S432 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P34932 | HSPA4 | S408 | ochoa | Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) | None |
P34932 | HSPA4 | S780 | ochoa | Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) | None |
P35125 | USP6 | S1196 | ochoa | Ubiquitin carboxyl-terminal hydrolase 6 (EC 3.4.19.12) (Deubiquitinating enzyme 6) (Proto-oncogene TRE-2) (RN-tre) (Ubiquitin thioesterase 6) (Ubiquitin-specific-processing protease 6) | Deubiquitinase with an ATP-independent isopeptidase activity, cleaving at the C-terminus of the ubiquitin moiety. Catalyzes its own deubiquitination. In vitro, isoform 2, but not isoform 3, shows deubiquitinating activity. Promotes plasma membrane localization of ARF6 and selectively regulates ARF6-dependent endocytic protein trafficking. Is able to initiate tumorigenesis by inducing the production of matrix metalloproteinases following NF-kappa-B activation. May act as a GTPase-activating protein for RAB3A (PubMed:19077034). {ECO:0000269|PubMed:15509780, ECO:0000269|PubMed:16127172, ECO:0000269|PubMed:19077034, ECO:0000269|PubMed:20418905}. |
P35270 | SPR | S145 | ochoa | Sepiapterin reductase (SPR) (EC 1.1.1.153) | Catalyzes the final one or two reductions in tetra-hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin. |
P35568 | IRS1 | S419 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35611 | ADD1 | S465 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35637 | FUS | S54 | psp | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P35658 | NUP214 | S1710 | psp | Nuclear pore complex protein Nup214 (214 kDa nucleoporin) (Nucleoporin Nup214) (Protein CAN) | Part of the nuclear pore complex (PubMed:9049309). Has a critical role in nucleocytoplasmic transport (PubMed:31178128). May serve as a docking site in the receptor-mediated import of substrates across the nuclear pore complex (PubMed:31178128, PubMed:8108440). {ECO:0000269|PubMed:31178128, ECO:0000269|PubMed:9049309, ECO:0000303|PubMed:8108440}.; FUNCTION: (Microbial infection) Required for capsid disassembly of the human adenovirus 5 (HadV-5) leading to release of the viral genome to the nucleus (in vitro). {ECO:0000269|PubMed:25410864}. |
P35680 | HNF1B | S334 | ochoa | Hepatocyte nuclear factor 1-beta (HNF-1-beta) (HNF-1B) (Homeoprotein LFB3) (Transcription factor 2) (TCF-2) (Variant hepatic nuclear factor 1) (vHNF1) | Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:17924661, PubMed:7900999). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 (PubMed:24204001). {ECO:0000250|UniProtKB:Q03365, ECO:0000269|PubMed:17924661, ECO:0000269|PubMed:24204001, ECO:0000269|PubMed:7900999}. |
P35869 | AHR | S727 | psp | Aryl hydrocarbon receptor (Ah receptor) (AhR) (Class E basic helix-loop-helix protein 76) (bHLHe76) | Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644, PubMed:33193710). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820). {ECO:0000269|PubMed:23275542, ECO:0000269|PubMed:28602820, ECO:0000269|PubMed:30373764, ECO:0000269|PubMed:32818467, ECO:0000269|PubMed:32866000, ECO:0000269|PubMed:33193710, ECO:0000269|PubMed:34521881, ECO:0000269|PubMed:7961644, ECO:0000303|PubMed:12213388, ECO:0000303|PubMed:18076143}. |
P40337 | VHL | S80 | ochoa|psp | von Hippel-Lindau disease tumor suppressor (Protein G7) (pVHL) | Involved in the ubiquitination and subsequent proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:10944113, PubMed:17981124, PubMed:19584355). Seems to act as a target recruitment subunit in the E3 ubiquitin ligase complex and recruits hydroxylated hypoxia-inducible factor (HIF) under normoxic conditions (PubMed:10944113, PubMed:17981124). Involved in transcriptional repression through interaction with HIF1A, HIF1AN and histone deacetylases (PubMed:10944113, PubMed:17981124). Ubiquitinates, in an oxygen-responsive manner, ADRB2 (PubMed:19584355). Acts as a negative regulator of mTORC1 by promoting ubiquitination and degradation of RPTOR (PubMed:34290272). {ECO:0000269|PubMed:10944113, ECO:0000269|PubMed:17981124, ECO:0000269|PubMed:19584355, ECO:0000269|PubMed:34290272}. |
P40818 | USP8 | S452 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P41212 | ETV6 | S271 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P42566 | EPS15 | S108 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P42684 | ABL2 | S203 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P42702 | LIFR | S1077 | ochoa|psp | Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) | Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells. |
P43364 | MAGEA11 | S208 | ochoa|psp | Melanoma-associated antigen 11 (Cancer/testis antigen 1.11) (CT1.11) (MAGE-11 antigen) | Acts as androgen receptor coregulator that increases androgen receptor activity by modulating the receptors interdomain interaction. May play a role in embryonal development and tumor transformation or aspects of tumor progression. {ECO:0000269|PubMed:15684378}. |
P46013 | MKI67 | S235 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S827 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46019 | PHKA2 | S1044 | ochoa | Phosphorylase b kinase regulatory subunit alpha, liver isoform (Phosphorylase kinase alpha L subunit) | Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin. |
P46821 | MAP1B | S1501 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48380 | RFX3 | S155 | ochoa | Transcription factor RFX3 (Regulatory factor X 3) | Transcription factor required for ciliogenesis and islet cell differentiation during endocrine pancreas development. Essential for the differentiation of nodal monocilia and left-right asymmetry specification during embryogenesis. Required for the biogenesis of motile cilia by governing growth and beating efficiency of motile cells. Also required for ciliated ependymal cell differentiation. Regulates the expression of genes involved in ciliary assembly (DYNC2LI1, FOXJ1 and BBS4) and genes involved in ciliary motility (DNAH11, DNAH9 and DNAH5) (By similarity). Together with RFX6, participates in the differentiation of 4 of the 5 islet cell types during endocrine pancreas development, with the exception of pancreatic PP (polypeptide-producing) cells. Regulates transcription by forming a heterodimer with another RFX protein and binding to the X-box in the promoter of target genes (PubMed:20148032). Represses transcription of MAP1A in non-neuronal cells but not in neuronal cells (PubMed:12411430). {ECO:0000250|UniProtKB:P48381, ECO:0000269|PubMed:12411430, ECO:0000269|PubMed:20148032}. |
P48552 | NRIP1 | S356 | ochoa | Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-interacting protein 140) | Modulates transcriptional activation by steroid receptors such as NR3C1, NR3C2 and ESR1. Also modulates transcriptional repression by nuclear hormone receptors. Positive regulator of the circadian clock gene expression: stimulates transcription of BMAL1, CLOCK and CRY1 by acting as a coactivator for RORA and RORC. Involved in the regulation of ovarian function (By similarity). Plays a role in renal development (PubMed:28381549). {ECO:0000250|UniProtKB:Q8CBD1, ECO:0000269|PubMed:10364267, ECO:0000269|PubMed:11509661, ECO:0000269|PubMed:11518808, ECO:0000269|PubMed:12554755, ECO:0000269|PubMed:15060175, ECO:0000269|PubMed:21628546, ECO:0000269|PubMed:28381549, ECO:0000269|PubMed:7641693}. |
P48634 | PRRC2A | S1671 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49589 | CARS1 | S19 | ochoa | Cysteine--tRNA ligase, cytoplasmic (EC 6.1.1.16) (Cysteinyl-tRNA synthetase) (CysRS) | Catalyzes the ATP-dependent ligation of cysteine to tRNA(Cys). {ECO:0000269|PubMed:11347887, ECO:0000269|PubMed:30824121}. |
P49643 | PRIM2 | S170 | ochoa | DNA primase large subunit (DNA primase 58 kDa subunit) (p58) | Regulatory subunit of the DNA primase complex and component of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which play an essential role in the initiation of DNA synthesis (PubMed:17893144, PubMed:25550159, PubMed:26975377, PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (PubMed:17893144). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). In the primase complex, both subunits are necessary for the initial di-nucleotide formation, but the extension of the primer depends only on the catalytic subunit (PubMed:17893144, PubMed:25550159). Binds RNA:DNA duplex and coordinates the catalytic activities of PRIM1 and POLA2 during primase-to-polymerase switch. {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P33610, ECO:0000269|PubMed:17893144, ECO:0000269|PubMed:25550159, ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:9705292}. |
P49643 | PRIM2 | S404 | ochoa | DNA primase large subunit (DNA primase 58 kDa subunit) (p58) | Regulatory subunit of the DNA primase complex and component of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which play an essential role in the initiation of DNA synthesis (PubMed:17893144, PubMed:25550159, PubMed:26975377, PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (PubMed:17893144). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). In the primase complex, both subunits are necessary for the initial di-nucleotide formation, but the extension of the primer depends only on the catalytic subunit (PubMed:17893144, PubMed:25550159). Binds RNA:DNA duplex and coordinates the catalytic activities of PRIM1 and POLA2 during primase-to-polymerase switch. {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P33610, ECO:0000269|PubMed:17893144, ECO:0000269|PubMed:25550159, ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:9705292}. |
P49756 | RBM25 | S642 | ochoa | RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) | RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5'-splice site (5'-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5'-ss usage through the 5'-CGGGCA-3' RNA sequence. Its association with LUC7L3 promotes U1 snRNP binding to a weak 5' ss in a 5'-CGGGCA-3'-dependent manner. Binds to the exonic splicing enhancer 5'-CGGGCA-3' RNA sequence located within exon 2 of the BCL2L1 pre-mRNA. Also involved in the generation of an abnormal and truncated splice form of SCN5A in heart failure. {ECO:0000269|PubMed:18663000, ECO:0000269|PubMed:21859973}. |
P49790 | NUP153 | S320 | ochoa|psp | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P50479 | PDLIM4 | S165 | ochoa | PDZ and LIM domain protein 4 (LIM protein RIL) (Reversion-induced LIM protein) | [Isoform 1]: Suppresses SRC activation by recognizing and binding to active SRC and facilitating PTPN13-mediated dephosphorylation of SRC 'Tyr-419' leading to its inactivation. Inactivated SRC dissociates from this protein allowing the initiation of a new SRC inactivation cycle (PubMed:19307596). Involved in reorganization of the actin cytoskeleton (PubMed:21636573). In nonmuscle cells, binds to ACTN1 (alpha-actinin-1), increases the affinity of ACTN1 to F-actin (filamentous actin), and promotes formation of actin stress fibers. Involved in regulation of the synaptic AMPA receptor transport in dendritic spines of hippocampal pyramidal neurons directing the receptors toward an insertion at the postsynaptic membrane. Links endosomal surface-internalized GRIA1-containing AMPA receptors to the alpha-actinin/actin cytoskeleton. Increases AMPA receptor-mediated excitatory postsynaptic currents in neurons (By similarity). {ECO:0000250|UniProtKB:P36202, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:21636573}.; FUNCTION: [Isoform 2]: Involved in reorganization of the actin cytoskeleton and in regulation of cell migration. In response to oxidative stress, binds to NQO1, which stabilizes it and protects it from ubiquitin-independent degradation by the core 20S proteasome. Stabilized protein is able to heterodimerize with isoform 1 changing the subcellular location of it from cytoskeleton and nuclei to cytosol, leading to loss of isoforms 1 ability to induce formation of actin stress fibers. Counteracts the effects produced by isoform 1 on organization of actin cytoskeleton and cell motility to fine-tune actin cytoskeleton rearrangement and to attenuate cell migration. {ECO:0000269|PubMed:21636573}. |
P51003 | PAPOLA | S537 | ochoa|psp | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P51610 | HCFC1 | S757 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51790 | CLCN3 | S745 | ochoa | H(+)/Cl(-) exchange transporter 3 (Chloride channel protein 3) (ClC-3) (Chloride transporter ClC-3) | [Isoform 1]: Strongly outwardly rectifying, electrogenic H(+)/Cl(-)exchanger which mediates the exchange of chloride ions against protons (By similarity). The CLC channel family contains both chloride channels and proton-coupled anion transporters that exchange chloride or another anion for protons (PubMed:29845874). The presence of conserved gating glutamate residues is typical for family members that function as antiporters (PubMed:29845874). {ECO:0000250|UniProtKB:P51791, ECO:0000303|PubMed:29845874}.; FUNCTION: [Isoform 2]: Strongly outwardly rectifying, electrogenic H(+)/Cl(-)exchanger which mediates the exchange of chloride ions against protons. {ECO:0000269|PubMed:11967229}. |
P52895 | AKR1C2 | S232 | ochoa | Aldo-keto reductase family 1 member C2 (EC 1.-.-.-) (EC 1.1.1.112) (EC 1.1.1.209) (EC 1.1.1.53) (EC 1.1.1.62) (EC 1.3.1.20) (3-alpha-HSD3) (Chlordecone reductase homolog HAKRD) (Dihydrodiol dehydrogenase 2) (DD-2) (DD2) (Dihydrodiol dehydrogenase/bile acid-binding protein) (DD/BABP) (Type III 3-alpha-hydroxysteroid dehydrogenase) (EC 1.1.1.357) | Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids (PubMed:19218247). Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH (PubMed:14672942). Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens (PubMed:10998348). Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5-beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha-DHT) to 5-alpha-androstane-3-alpha,17-beta-diol (3-alpha-diol) (PubMed:15929998, PubMed:17034817, PubMed:17442338, PubMed:8573067). Also specifically able to produce 17beta-hydroxy-5alpha-androstan-3-one/5alphaDHT (PubMed:10998348). May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate (PubMed:19218247). Displays affinity for bile acids (PubMed:8486699). {ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:15929998, ECO:0000269|PubMed:17034817, ECO:0000269|PubMed:17442338, ECO:0000269|PubMed:19218247, ECO:0000269|PubMed:8486699, ECO:0000269|PubMed:8573067}. |
P52948 | NUP98 | S1099 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P53804 | TTC3 | S2006 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P54253 | ATXN1 | S366 | ochoa | Ataxin-1 (Spinocerebellar ataxia type 1 protein) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression. Binds RNA in vitro. May be involved in RNA metabolism (PubMed:21475249). In concert with CIC and ATXN1L, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P54254, ECO:0000269|PubMed:21475249}. |
P55011 | SLC12A2 | S944 | ochoa | Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) | Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}. |
P55198 | MLLT6 | S429 | ochoa | Protein AF-17 (ALL1-fused gene from chromosome 17 protein) | None |
P55327 | TPD52 | S40 | psp | Tumor protein D52 (Protein N8) | None |
P56179 | DLX6 | S127 | ochoa | Homeobox protein DLX-6 | None |
P59923 | ZNF445 | S927 | ochoa | Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) | Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}. |
P61586 | RHOA | S88 | psp | Transforming protein RhoA (EC 3.6.5.2) (Rho cDNA clone 12) (h12) | Small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. Mainly associated with cytoskeleton organization, in active state binds to a variety of effector proteins to regulate cellular responses such as cytoskeletal dynamics, cell migration and cell cycle (PubMed:23871831). Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers (PubMed:31570889, PubMed:8910519, PubMed:9121475). Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis (PubMed:12900402, PubMed:16236794). Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion (PubMed:20974804, PubMed:23940119). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854). Regulates KCNA2 potassium channel activity by reducing its location at the cell surface in response to CHRM1 activation; promotes KCNA2 endocytosis (PubMed:19403695, PubMed:9635436). Acts as an allosteric activator of guanine nucleotide exchange factor ECT2 by binding in its activated GTP-bound form to the PH domain of ECT2 which stimulates the release of PH inhibition and promotes the binding of substrate RHOA to the ECT2 catalytic center (PubMed:31888991). May be an activator of PLCE1 (PubMed:16103226). In neurons, involved in the inhibition of the initial spine growth. Upon activation by CaMKII, modulates dendritic spine structural plasticity by relaying CaMKII transient activation to synapse-specific, long-term signaling (By similarity). Acts as a regulator of platelet alpha-granule release during activation and aggregation of platelets (By similarity). When activated by DAAM1 may signal centrosome maturation and chromosomal segregation during cell division. May also be involved in contractile ring formation during cytokinesis. {ECO:0000250|UniProtKB:P61589, ECO:0000250|UniProtKB:Q9QUI0, ECO:0000269|PubMed:12900402, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:19403695, ECO:0000269|PubMed:19934221, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:23871831, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:31570889, ECO:0000269|PubMed:31888991, ECO:0000269|PubMed:8910519, ECO:0000269|PubMed:9121475, ECO:0000269|PubMed:9635436}.; FUNCTION: (Microbial infection) Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague. {ECO:0000269|PubMed:12062101, ECO:0000269|PubMed:12538863}. |
P68400 | CSNK2A1 | S362 | psp | Casein kinase II subunit alpha (CK II alpha) (EC 2.7.11.1) | Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine (PubMed:11239457, PubMed:11704824, PubMed:16193064, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19188443, PubMed:20545769, PubMed:20625391, PubMed:22017874, PubMed:22406621, PubMed:24962073, PubMed:30898438, PubMed:31439799). Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection (PubMed:12631575, PubMed:19387551, PubMed:19387552). May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response (PubMed:12631575, PubMed:19387551, PubMed:19387552). During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage (PubMed:11704824, PubMed:19188443). Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation (PubMed:11239457). Phosphorylates a number of DNA repair proteins in response to DNA damage, such as MDC1, MRE11, RAD9A, RAD51 and HTATSF1, promoting their recruitment to DNA damage sites (PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:20545769, PubMed:21482717, PubMed:22325354, PubMed:26811421, PubMed:28512243, PubMed:30898438, PubMed:35597237). Can also negatively regulate apoptosis (PubMed:16193064, PubMed:22184066). Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3 (PubMed:16193064). Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8 (PubMed:16193064). Phosphorylates YY1, protecting YY1 from cleavage by CASP7 during apoptosis (PubMed:22184066). Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552, PubMed:23123191). Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, ATF4, SRF, MAX, JUN, FOS, MYC and MYB (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552, PubMed:23123191). Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function (PubMed:19387550). Mediates sequential phosphorylation of FNIP1, promoting its gradual interaction with Hsp90, leading to activate both kinase and non-kinase client proteins of Hsp90 (PubMed:30699359). Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1 (PubMed:19387549). Acts as an ectokinase that phosphorylates several extracellular proteins (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552). During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552). Phosphorylates PML at 'Ser-565' and primes it for ubiquitin-mediated degradation (PubMed:20625391, PubMed:22406621). Plays an important role in the circadian clock function by phosphorylating BMAL1 at 'Ser-90' which is pivotal for its interaction with CLOCK and which controls CLOCK nuclear entry (By similarity). Phosphorylates CCAR2 at 'Thr-454' in gastric carcinoma tissue (PubMed:24962073). Phosphorylates FMR1, promoting FMR1-dependent formation of a membraneless compartment (PubMed:30765518, PubMed:31439799). May phosphorylate histone H2A on 'Ser-1' (PubMed:38334665). {ECO:0000250|UniProtKB:P19139, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:11704824, ECO:0000269|PubMed:16193064, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19188443, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:20625391, ECO:0000269|PubMed:21482717, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22184066, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:22406621, ECO:0000269|PubMed:23123191, ECO:0000269|PubMed:24962073, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:28512243, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:30765518, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:38334665, ECO:0000303|PubMed:12631575, ECO:0000303|PubMed:19387549, ECO:0000303|PubMed:19387550, ECO:0000303|PubMed:19387551, ECO:0000303|PubMed:19387552}. |
P78413 | IRX4 | S430 | ochoa | Iroquois-class homeodomain protein IRX-4 (Homeodomain protein IRXA3) (Iroquois homeobox protein 4) | Likely to be an important mediator of ventricular differentiation during cardiac development. |
P78559 | MAP1A | S1311 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78563 | ADARB1 | S26 | ochoa | Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}. |
P86452 | ZBED6 | S381 | ochoa | Zinc finger BED domain-containing protein 6 | Transcriptional repressor which binds to the consensus sequence 5'-GCTCGC-3', transcription regulation may be tissue-specific (By similarity). Regulates the expression of target genes such as: IGF2, PGAP6/TMEM8, ENHO, and PIANP (By similarity). Acts as a transcriptional repressor of growth factor IGF2, thereby negatively regulating postnatal growth of muscles and internal organs, especially in females (By similarity). Negatively regulates myoblast differentiation and myoblast mitochondrial activity via its regulation of IGF2 transcription (By similarity). Negatively regulates the cell cycle of myoblasts, potentially via transcriptional regulation of the E2F family of transcription factors such as: E2F1 and E2F2 (By similarity). Positively regulates the cell cycle and survival of pancreatic beta cells (PubMed:24043816). Binds to the CDH2 gene and may directly repress CDH2 transcription (By similarity). Probably by controlling CDH2 expression, regulates pancreatic beta cell adhesion, and formation of cell-to-cell junctions between pancreatic beta cells and neural crest stem cells (By similarity). May also play a role in embryonic beta cell differentiation (By similarity). May play a role in insulin sensitivity and glucose clearance (By similarity). {ECO:0000250|UniProtKB:D2EAC2, ECO:0000269|PubMed:24043816}. |
P86790 | CCZ1B | S266 | ochoa | Vacuolar fusion protein CCZ1 homolog B (Vacuolar fusion protein CCZ1 homolog-like) | None |
P86791 | CCZ1 | S266 | ochoa | Vacuolar fusion protein CCZ1 homolog | Acts in concert with MON1A, as a guanine exchange factor (GEF) for RAB7, promotes the exchange of GDP to GTP, converting it from an inactive GDP-bound form into an active GTP-bound form (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
P98082 | DAB2 | S471 | ochoa | Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) | Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}. |
P98161 | PKD1 | Y3334 | ochoa | Polycystin-1 (PC1) (Autosomal dominant polycystic kidney disease 1 protein) | Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B (PubMed:27214281). Both PKD1 and PKD2 are required for channel activity (PubMed:27214281). Involved in renal tubulogenesis (PubMed:12482949). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). Acts as a regulator of cilium length, together with PKD2 (By similarity). The dynamic control of cilium length is essential in the regulation of mechanotransductive signaling (By similarity). The cilium length response creates a negative feedback loop whereby fluid shear-mediated deflection of the primary cilium, which decreases intracellular cAMP, leads to cilium shortening and thus decreases flow-induced signaling (By similarity). May be an ion-channel regulator. Involved in adhesive protein-protein and protein-carbohydrate interactions. Likely to be involved with polycystin-1-interacting protein 1 in the detection, sequestration and exocytosis of senescent mitochondria (PubMed:37681898). {ECO:0000250|UniProtKB:O08852, ECO:0000269|PubMed:12482949, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:37681898}. |
P98164 | LRP2 | S4569 | ochoa | Low-density lipoprotein receptor-related protein 2 (LRP-2) (Glycoprotein 330) (gp330) (Megalin) | Multiligand endocytic receptor (By similarity). Acts together with CUBN to mediate endocytosis of high-density lipoproteins (By similarity). Mediates receptor-mediated uptake of polybasic drugs such as aprotinin, aminoglycosides and polymyxin B (By similarity). In the kidney, mediates the tubular uptake and clearance of leptin (By similarity). Also mediates transport of leptin across the blood-brain barrier through endocytosis at the choroid plexus epithelium (By similarity). Endocytosis of leptin in neuronal cells is required for hypothalamic leptin signaling and leptin-mediated regulation of feeding and body weight (By similarity). Mediates endocytosis and subsequent lysosomal degradation of CST3 in kidney proximal tubule cells (By similarity). Mediates renal uptake of 25-hydroxyvitamin D3 in complex with the vitamin D3 transporter GC/DBP (By similarity). Mediates renal uptake of metallothionein-bound heavy metals (PubMed:15126248). Together with CUBN, mediates renal reabsorption of myoglobin (By similarity). Mediates renal uptake and subsequent lysosomal degradation of APOM (By similarity). Plays a role in kidney selenium homeostasis by mediating renal endocytosis of selenoprotein SEPP1 (By similarity). Mediates renal uptake of the antiapoptotic protein BIRC5/survivin which may be important for functional integrity of the kidney (PubMed:23825075). Mediates renal uptake of matrix metalloproteinase MMP2 in complex with metalloproteinase inhibitor TIMP1 (By similarity). Mediates endocytosis of Sonic hedgehog protein N-product (ShhN), the active product of SHH (By similarity). Also mediates ShhN transcytosis (By similarity). In the embryonic neuroepithelium, mediates endocytic uptake and degradation of BMP4, is required for correct SHH localization in the ventral neural tube and plays a role in patterning of the ventral telencephalon (By similarity). Required at the onset of neurulation to sequester SHH on the apical surface of neuroepithelial cells of the rostral diencephalon ventral midline and to control PTCH1-dependent uptake and intracellular trafficking of SHH (By similarity). During neurulation, required in neuroepithelial cells for uptake of folate bound to the folate receptor FOLR1 which is necessary for neural tube closure (By similarity). In the adult brain, negatively regulates BMP signaling in the subependymal zone which enables neurogenesis to proceed (By similarity). In astrocytes, mediates endocytosis of ALB which is required for the synthesis of the neurotrophic factor oleic acid (By similarity). Involved in neurite branching (By similarity). During optic nerve development, required for SHH-mediated migration and proliferation of oligodendrocyte precursor cells (By similarity). Mediates endocytic uptake and clearance of SHH in the retinal margin which protects retinal progenitor cells from mitogenic stimuli and keeps them quiescent (By similarity). Plays a role in reproductive organ development by mediating uptake in reproductive tissues of androgen and estrogen bound to the sex hormone binding protein SHBG (By similarity). Mediates endocytosis of angiotensin-2 (By similarity). Also mediates endocytosis of angiotensis 1-7 (By similarity). Binds to the complex composed of beta-amyloid protein 40 and CLU/APOJ and mediates its endocytosis and lysosomal degradation (By similarity). Required for embryonic heart development (By similarity). Required for normal hearing, possibly through interaction with estrogen in the inner ear (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000250|UniProtKB:C0HL13, ECO:0000250|UniProtKB:P98158, ECO:0000269|PubMed:15126248, ECO:0000269|PubMed:23825075}. |
P98175 | RBM10 | S531 | ochoa | RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) | Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}. |
Q00613 | HSF1 | S275 | ochoa|psp | Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) | Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}. |
Q01167 | FOXK2 | S599 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q01484 | ANK2 | S1846 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S1882 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2315 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01538 | MYT1 | S333 | ochoa | Myelin transcription factor 1 (MyT1) (Myelin transcription factor I) (MyTI) (PLPB1) (Proteolipid protein-binding protein) | Binds to the promoter region of genes encoding proteolipid proteins of the central nervous system. May play a role in the development of neurons and oligodendroglia in the CNS. May regulate a critical transition point in oligodendrocyte lineage development by modulating oligodendrocyte progenitor proliferation relative to terminal differentiation and up-regulation of myelin gene transcription. {ECO:0000269|PubMed:14962745}. |
Q01538 | MYT1 | S716 | ochoa | Myelin transcription factor 1 (MyT1) (Myelin transcription factor I) (MyTI) (PLPB1) (Proteolipid protein-binding protein) | Binds to the promoter region of genes encoding proteolipid proteins of the central nervous system. May play a role in the development of neurons and oligodendroglia in the CNS. May regulate a critical transition point in oligodendrocyte lineage development by modulating oligodendrocyte progenitor proliferation relative to terminal differentiation and up-regulation of myelin gene transcription. {ECO:0000269|PubMed:14962745}. |
Q01658 | DR1 | S67 | ochoa | Protein Dr1 (Down-regulator of transcription 1) (Negative cofactor 2-beta) (NC2-beta) (TATA-binding protein-associated phosphoprotein) | The association of the DR1/DRAP1 heterodimer with TBP results in a functional repression of both activated and basal transcription of class II genes. This interaction precludes the formation of a transcription-competent complex by inhibiting the association of TFIIA and/or TFIIB with TBP. Can bind to DNA on its own. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:8670811}. |
Q01954 | BNC1 | S338 | ochoa | Zinc finger protein basonuclin-1 | Transcriptional activator (By similarity). It is likely involved in the regulation of keratinocytes terminal differentiation in squamous epithelia and hair follicles (PubMed:8034748). Required for the maintenance of spermatogenesis (By similarity). It is involved in the positive regulation of oocyte maturation, probably acting through the control of BMP15 levels and regulation of AKT signaling cascade (PubMed:30010909). May also play a role in the early development of embryos (By similarity). {ECO:0000250|UniProtKB:O35914, ECO:0000269|PubMed:30010909, ECO:0000269|PubMed:8034748}. |
Q01974 | ROR2 | S569 | ochoa | Tyrosine-protein kinase transmembrane receptor ROR2 (EC 2.7.10.1) (Neurotrophic tyrosine kinase, receptor-related 2) | Tyrosine-protein kinase receptor which may be involved in the early formation of the chondrocytes. It seems to be required for cartilage and growth plate development (By similarity). Phosphorylates YWHAB, leading to induction of osteogenesis and bone formation (PubMed:17717073). In contrast, has also been shown to have very little tyrosine kinase activity in vitro. May act as a receptor for wnt ligand WNT5A which may result in the inhibition of WNT3A-mediated signaling (PubMed:25029443). {ECO:0000250|UniProtKB:Q9Z138, ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:25029443}. |
Q02078 | MEF2A | S192 | ochoa | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q02078 | MEF2A | S408 | ochoa|psp | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q02224 | CENPE | S2639 | ochoa|psp | Centromere-associated protein E (Centromere protein E) (CENP-E) (Kinesin-7) (Kinesin-related protein CENPE) | Microtubule plus-end-directed kinetochore motor which plays an important role in chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules towards the spindle equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules (PubMed:23891108, PubMed:25395579, PubMed:7889940). The transport of pole-proximal chromosomes towards the spindle equator is favored by microtubule tracks that are detyrosinated (PubMed:25908662). Acts as a processive bi-directional tracker of dynamic microtubule tips; after chromosomes have congressed, continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends (PubMed:23955301). Suppresses chromosome congression in NDC80-depleted cells and contributes positively to congression only when microtubules are stabilized (PubMed:25743205). Plays an important role in the formation of stable attachments between kinetochores and spindle microtubules (PubMed:17535814) The stabilization of kinetochore-microtubule attachment also requires CENPE-dependent localization of other proteins to the kinetochore including BUB1B, MAD1 and MAD2. Plays a role in spindle assembly checkpoint activation (SAC) via its interaction with BUB1B resulting in the activation of its kinase activity, which is important for activating SAC. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss (By similarity). {ECO:0000250|UniProtKB:Q6RT24, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:23955301, ECO:0000269|PubMed:25395579, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:25908662, ECO:0000269|PubMed:7889940}. |
Q02297 | NRG1 | S515 | ochoa | Pro-neuregulin-1, membrane-bound isoform (Pro-NRG1) [Cleaved into: Neuregulin-1 (Acetylcholine receptor-inducing activity) (ARIA) (Breast cancer cell differentiation factor p45) (Glial growth factor) (Heregulin) (HRG) (Neu differentiation factor) (Sensory and motor neuron-derived factor)] | Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; stimulating lobuloalveolar budding and milk production in the mammary gland and inducing differentiation of mammary tumor cells; stimulating Schwann cell proliferation; implication in the development of the myocardium such as trabeculation of the developing heart. Isoform 10 may play a role in motor and sensory neuron development. Binds to ERBB4 (PubMed:10867024, PubMed:7902537). Binds to ERBB3 (PubMed:20682778). Acts as a ligand for integrins and binds (via EGF domain) to integrins ITGAV:ITGB3 or ITGA6:ITGB4. Its binding to integrins and subsequent ternary complex formation with integrins and ERRB3 are essential for NRG1-ERBB signaling. Induces the phosphorylation and activation of MAPK3/ERK1, MAPK1/ERK2 and AKT1 (PubMed:20682778). Ligand-dependent ERBB4 endocytosis is essential for the NRG1-mediated activation of these kinases in neurons (By similarity). {ECO:0000250|UniProtKB:P43322, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:1348215, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:7902537}. |
Q03001 | DST | S2671 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03164 | KMT2A | S680 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S742 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S2121 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q04828 | AKR1C1 | S232 | ochoa | Aldo-keto reductase family 1 member C1 (EC 1.1.1.-) (EC 1.1.1.112) (EC 1.1.1.209) (EC 1.1.1.210) (EC 1.1.1.357) (EC 1.1.1.51) (EC 1.1.1.53) (EC 1.1.1.62) (EC 1.3.1.20) (20-alpha-hydroxysteroid dehydrogenase) (20-alpha-HSD) (EC 1.1.1.149) (Chlordecone reductase homolog HAKRC) (Dihydrodiol dehydrogenase 1) (DD1) (High-affinity hepatic bile acid-binding protein) (HBAB) | Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids (PubMed:19218247). Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH (PubMed:14672942). Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens (PubMed:10998348). May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate (PubMed:19218247). Displays affinity for bile acids (PubMed:8486699). {ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:19218247, ECO:0000269|PubMed:8486699}. |
Q06413 | MEF2C | S396 | ochoa|psp | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q07157 | TJP1 | S1570 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q10571 | MN1 | S919 | ochoa | Transcriptional activator MN1 (Probable tumor suppressor protein MN1) | Transcriptional activator which specifically regulates expression of TBX22 in the posterior region of the developing palate. Required during later stages of palate development for growth and medial fusion of the palatal shelves. Promotes maturation and normal function of calvarial osteoblasts, including expression of the osteoclastogenic cytokine TNFSF11/RANKL. Necessary for normal development of the membranous bones of the skull (By similarity). May play a role in tumor suppression (Probable). {ECO:0000250|UniProtKB:D3YWE6, ECO:0000305|PubMed:7731706}. |
Q12772 | SREBF2 | S455 | psp | Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] | [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}. |
Q12774 | ARHGEF5 | S474 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12796 | PNRC1 | S289 | ochoa | Proline-rich nuclear receptor coactivator 1 (Proline-rich protein 2) (Protein B4-2) | Nuclear receptor coactivator. May play a role in signal transduction. {ECO:0000269|PubMed:10894149}. |
Q12802 | AKAP13 | S650 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12830 | BPTF | S2098 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S2370 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12906 | ILF3 | S762 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12906 | ILF3 | S860 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12923 | PTPN13 | S1359 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12948 | FOXC1 | S521 | ochoa | Forkhead box protein C1 (Forkhead-related protein FKHL7) (Forkhead-related transcription factor 3) (FREAC-3) | DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development (PubMed:11782474, PubMed:14506133, PubMed:14578375, PubMed:15277473, PubMed:15299087, PubMed:15684392, PubMed:16449236, PubMed:16492674, PubMed:17210863, PubMed:19279310, PubMed:19793056, PubMed:25786029, PubMed:27804176, PubMed:27907090). Acts either as a transcriptional activator or repressor (PubMed:11782474). Binds to the consensus binding site 5'-[G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes (PubMed:11782474, PubMed:12533514, PubMed:14506133, PubMed:19793056, PubMed:27804176, PubMed:7957066). Upon DNA-binding, promotes DNA bending (PubMed:14506133, PubMed:7957066). Acts as a transcriptional coactivator (PubMed:26565916). Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By similarity). Also acts as a transcriptional coregulator by increasing DNA-binding capacity of GLI2 in breast cancer cells (PubMed:26565916). Regulates FOXO1 through binding to a conserved element, 5'-GTAAACAAA-3' in its promoter region, implicating FOXC1 as an important regulator of cell viability and resistance to oxidative stress in the eye (PubMed:17993506). Cooperates with transcription factor FOXC2 in regulating expression of genes that maintain podocyte integrity (By similarity). Promotes cell growth inhibition by stopping the cell cycle in the G1 phase through TGFB1-mediated signals (PubMed:12408963). Involved in epithelial-mesenchymal transition (EMT) induction by increasing cell proliferation, migration and invasion (PubMed:20406990, PubMed:22991501). Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). Plays a role in the gene regulatory network essential for epidermal keratinocyte terminal differentiation (PubMed:27907090). Essential developmental transcriptional factor required for mesoderm-derived tissues, such as the somites, skin, bone and cartilage. Positively regulates CXCL12 and stem cell factor expression in bone marrow mesenchymal progenitor cells, and hence plays a role in the development and maintenance of mesenchymal niches for haematopoietic stem and progenitor cells (HSPC). Plays a role in corneal transparency by preventing both blood vessel and lymphatic vessel growth during embryonic development in a VEGF-dependent manner. Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). May function as a tumor suppressor (PubMed:12408963). {ECO:0000250|UniProtKB:Q61572, ECO:0000269|PubMed:11782474, ECO:0000269|PubMed:12408963, ECO:0000269|PubMed:12533514, ECO:0000269|PubMed:14506133, ECO:0000269|PubMed:14578375, ECO:0000269|PubMed:15277473, ECO:0000269|PubMed:15299087, ECO:0000269|PubMed:15684392, ECO:0000269|PubMed:16449236, ECO:0000269|PubMed:16492674, ECO:0000269|PubMed:17210863, ECO:0000269|PubMed:17993506, ECO:0000269|PubMed:19279310, ECO:0000269|PubMed:19793056, ECO:0000269|PubMed:20406990, ECO:0000269|PubMed:22991501, ECO:0000269|PubMed:25786029, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:27804176, ECO:0000269|PubMed:27907090, ECO:0000269|PubMed:7957066}. |
Q12955 | ANK3 | S2009 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q13023 | AKAP6 | S1644 | ochoa | A-kinase anchor protein 6 (AKAP-6) (A-kinase anchor protein 100 kDa) (AKAP 100) (Protein kinase A-anchoring protein 6) (PRKA6) (mAKAP) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the nuclear membrane or sarcoplasmic reticulum. May act as an adapter for assembling multiprotein complexes. |
Q13233 | MAP3K1 | S1157 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13387 | MAPK8IP2 | S251 | ochoa | C-Jun-amino-terminal kinase-interacting protein 2 (JIP-2) (JNK-interacting protein 2) (Islet-brain-2) (IB-2) (JNK MAP kinase scaffold protein 2) (Mitogen-activated protein kinase 8-interacting protein 2) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module. JIP2 inhibits IL1 beta-induced apoptosis in insulin-secreting cells. May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). {ECO:0000250}. |
Q13490 | BIRC2 | S140 | ochoa | Baculoviral IAP repeat-containing protein 2 (EC 2.3.2.27) (Cellular inhibitor of apoptosis 1) (C-IAP1) (IAP homolog B) (Inhibitor of apoptosis protein 2) (hIAP-2) (hIAP2) (RING finger protein 48) (RING-type E3 ubiquitin transferase BIRC2) (TNFR2-TRAF-signaling complex protein 2) | Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, mitogenic kinase signaling, and cell proliferation, as well as cell invasion and metastasis. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and regulates both canonical and non-canonical NF-kappa-B signaling by acting in opposite directions: acts as a positive regulator of the canonical pathway and suppresses constitutive activation of non-canonical NF-kappa-B signaling. The target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, RIPK3, RIPK4, CASP3, CASP7, CASP8, TRAF2, DIABLO/SMAC, MAP3K14/NIK, MAP3K5/ASK1, IKBKG/NEMO, IKBKE and MXD1/MAD1. Can also function as an E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Acts as an important regulator of innate immune signaling via regulation of Toll-like receptors (TLRs), Nodlike receptors (NLRs) and RIG-I like receptors (RLRs), collectively referred to as pattern recognition receptors (PRRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Can stimulate the transcriptional activity of E2F1. Plays a role in the modulation of the cell cycle. {ECO:0000269|PubMed:15665297, ECO:0000269|PubMed:18082613, ECO:0000269|PubMed:21145488, ECO:0000269|PubMed:21653699, ECO:0000269|PubMed:21931591, ECO:0000269|PubMed:23453969}. |
Q13506 | NAB1 | S103 | ochoa | NGFI-A-binding protein 1 (EGR-1-binding protein 1) (Transcriptional regulatory protein p54) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. {ECO:0000250}. |
Q13614 | MTMR2 | S58 | ochoa|psp | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR2 (EC 3.1.3.95) (Myotubularin-related protein 2) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11733541, PubMed:12668758, PubMed:14690594, PubMed:21372139). Regulates the level of these phosphoinositides critical for various biological processes including autophagy initiation and autophagosome maturation (PubMed:35580604). {ECO:0000269|PubMed:11733541, ECO:0000269|PubMed:12668758, ECO:0000269|PubMed:14690594, ECO:0000269|PubMed:21372139, ECO:0000269|PubMed:35580604}. |
Q13625 | TP53BP2 | S414 | ochoa | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q13868 | EXOSC2 | S175 | ochoa | Exosome complex component RRP4 (Exosome component 2) (Ribosomal RNA-processing protein 4) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC2 as peripheral part of the Exo-9 complex stabilizes the hexameric ring of RNase PH-domain subunits through contacts with EXOSC4 and EXOSC7. {ECO:0000269|PubMed:17545563}. |
Q13905 | RAPGEF1 | S23 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q13950 | RUNX2 | S465 | psp | Runt-related transcription factor 2 (Acute myeloid leukemia 3 protein) (Core-binding factor subunit alpha-1) (CBF-alpha-1) (Oncogene AML-3) (Osteoblast-specific transcription factor 2) (OSF-2) (Polyomavirus enhancer-binding protein 2 alpha A subunit) (PEA2-alpha A) (PEBP2-alpha A) (SL3-3 enhancer factor 1 alpha A subunit) (SL3/AKV core-binding factor alpha A subunit) | Transcription factor involved in osteoblastic differentiation and skeletal morphogenesis (PubMed:28505335, PubMed:28703881, PubMed:28738062). Essential for the maturation of osteoblasts and both intramembranous and endochondral ossification. CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, osteocalcin, osteopontin, bone sialoprotein, alpha 1(I) collagen, LCK, IL-3 and GM-CSF promoters. In osteoblasts, supports transcription activation: synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Inhibits KAT6B-dependent transcriptional activation. {ECO:0000250, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:28505335, ECO:0000269|PubMed:28703881, ECO:0000269|PubMed:28738062}. |
Q13972 | RASGRF1 | S857 | ochoa | Ras-specific guanine nucleotide-releasing factor 1 (Ras-GRF1) (Guanine nucleotide-releasing protein) (GNRP) (Ras-specific nucleotide exchange factor CDC25) | Promotes the exchange of Ras-bound GDP by GTP. {ECO:0000269|PubMed:11389730}. |
Q14005 | IL16 | S1023 | ochoa | Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] | Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells. |
Q14106 | TOB2 | S163 | ochoa|psp | Protein Tob2 (Protein Tob4) (Transducer of erbB-2 2) | Anti-proliferative protein inhibits cell cycle progression from the G0/G1 to S phases. |
Q14106 | TOB2 | S254 | ochoa|psp | Protein Tob2 (Protein Tob4) (Transducer of erbB-2 2) | Anti-proliferative protein inhibits cell cycle progression from the G0/G1 to S phases. |
Q14134 | TRIM29 | S552 | ochoa|psp | Tripartite motif-containing protein 29 (Ataxia telangiectasia group D-associated protein) | Plays a crucial role in the regulation of macrophage activation in response to viral or bacterial infections within the respiratory tract. Mechanistically, TRIM29 interacts with IKBKG/NEMO in the lysosome where it induces its 'Lys-48' ubiquitination and subsequent degradation. In turn, the expression of type I interferons and the production of pro-inflammatory cytokines are inhibited. Additionally, induces the 'Lys-48' ubiquitination of STING1 in a similar way, leading to its degradation. {ECO:0000269|PubMed:27695001, ECO:0000269|PubMed:29038422}. |
Q14153 | FAM53B | S324 | ochoa | Protein FAM53B (Protein simplet) | Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}. |
Q14190 | SIM2 | S471 | ochoa | Single-minded homolog 2 (Class E basic helix-loop-helix protein 15) (bHLHe15) | Transcription factor that may be a master gene of CNS development in cooperation with Arnt. It may have pleiotropic effects in the tissues expressed during development. |
Q14207 | NPAT | S1100 | ochoa|psp | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14207 | NPAT | S1151 | ochoa | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14258 | TRIM25 | S187 | ochoa | E3 ubiquitin/ISG15 ligase TRIM25 (EC 6.3.2.n3) (Estrogen-responsive finger protein) (RING finger protein 147) (RING-type E3 ubiquitin transferase) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase TRIM25) (Tripartite motif-containing protein 25) (Ubiquitin/ISG15-conjugating enzyme TRIM25) (Zinc finger protein 147) | Functions as a ubiquitin E3 ligase and as an ISG15 E3 ligase (PubMed:16352599). Involved in innate immune defense against viruses by mediating ubiquitination of RIGI and IFIH1 (PubMed:17392790, PubMed:29357390, PubMed:30193849, PubMed:31710640, PubMed:33849980, PubMed:36045682). Mediates 'Lys-63'-linked polyubiquitination of the RIGI N-terminal CARD-like region and may play a role in signal transduction that leads to the production of interferons in response to viral infection (PubMed:17392790, PubMed:23950712). Mediates 'Lys-63'-linked polyubiquitination of IFIH1 (PubMed:30193849). Promotes ISGylation of 14-3-3 sigma (SFN), an adapter protein implicated in the regulation of a large spectrum signaling pathway (PubMed:16352599, PubMed:17069755). Mediates estrogen action in various target organs (PubMed:22452784). Mediates the ubiquitination and subsequent proteasomal degradation of ZFHX3 (PubMed:22452784). Plays a role in promoting the restart of stalled replication forks via interaction with the KHDC3L-OOEP scaffold and subsequent ubiquitination of BLM, resulting in the recruitment and retainment of BLM at DNA replication forks (By similarity). Plays an essential role in the antiviral activity of ZAP/ZC3HAV1; an antiviral protein which inhibits the replication of certain viruses. Mechanistically, mediates 'Lys-63'-linked polyubiquitination of ZAP/ZC3HAV1 that is required for its optimal binding to target mRNA (PubMed:28060952, PubMed:28202764). Also mediates the ubiquitination of various substrates implicated in stress granule formation, nonsense-mediated mRNA decay, nucleoside synthesis and mRNA translation and stability (PubMed:36067236). {ECO:0000250|UniProtKB:Q61510, ECO:0000269|PubMed:16352599, ECO:0000269|PubMed:17069755, ECO:0000269|PubMed:17392790, ECO:0000269|PubMed:22452784, ECO:0000269|PubMed:23950712, ECO:0000269|PubMed:29357390, ECO:0000269|PubMed:30193849, ECO:0000269|PubMed:31710640, ECO:0000269|PubMed:33849980, ECO:0000269|PubMed:36045682, ECO:0000269|PubMed:36067236}. |
Q14669 | TRIP12 | S267 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14669 | TRIP12 | S977 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14671 | PUM1 | S229 | ochoa | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q14765 | STAT4 | S721 | psp | Signal transducer and activator of transcription 4 | Transcriptional regulator mainly expressed in hematopoietic cells that plays a critical role in cellular growth, differentiation and immune response (PubMed:10961885, PubMed:37256972, PubMed:8943379). Plays a key role in the differentiation of T-helper 1 cells and the production of interferon-gamma (PubMed:12213961, PubMed:35614130). Also participates in multiple neutrophil functions including chemotaxis and production of the neutrophil extracellular traps (By similarity). After IL12 binding to its receptor IL12RB2, STAT4 interacts with the intracellular domain of IL12RB2 and becomes tyrosine phosphorylated (PubMed:10415122, PubMed:7638186). Phosphorylated STAT4 then homodimerizes and migrates to the nucleus where it can recognize STAT target sequences present in IL12 responsive genes. Although IL12 appears to be the predominant activating signal, STAT4 can also be phosphorylated and activated in response to IFN-gamma stimulation via JAK1 and TYK2 and in response to different interleukins including IL23, IL2 and IL35 (PubMed:11114383, PubMed:34508746). Transcription activation of IFN-gamma gene is mediated by interaction with JUN that forms a complex that efficiently interacts with the AP-1-related sequence of the IFN-gamma promoter (By similarity). In response to IFN-alpha/beta signaling, acts as a transcriptional repressor and suppresses IL5 and IL13 mRNA expression during response to T-cell receptor (TCR) activation (PubMed:26990433). {ECO:0000250|UniProtKB:P42228, ECO:0000269|PubMed:10415122, ECO:0000269|PubMed:10961885, ECO:0000269|PubMed:11114383, ECO:0000269|PubMed:12213961, ECO:0000269|PubMed:26990433, ECO:0000269|PubMed:34508746, ECO:0000269|PubMed:35614130, ECO:0000269|PubMed:37256972, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:8943379}. |
Q14789 | GOLGB1 | S3010 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q14938 | NFIX | S288 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q149N8 | SHPRH | S93 | ochoa | E3 ubiquitin-protein ligase SHPRH (EC 2.3.2.27) (EC 3.6.4.-) (RING-type E3 ubiquitin transferase SHPRH) (SNF2, histone-linker, PHD and RING finger domain-containing helicase) | E3 ubiquitin-protein ligase involved in DNA repair. Upon genotoxic stress, accepts ubiquitin from the UBE2N-UBE2V2 E2 complex and transfers it to 'Lys-164' of PCNA which had been monoubiquitinated by UBE2A/B-RAD18, promoting the formation of non-canonical poly-ubiquitin chains linked through 'Lys-63'. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:17130289, ECO:0000269|PubMed:18719106}. |
Q15007 | WTAP | S341 | ochoa|psp | Pre-mRNA-splicing regulator WTAP (Female-lethal(2)D homolog) (hFL(2)D) (WT1-associated protein) (Wilms tumor 1-associating protein) | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Required for accumulation of METTL3 and METTL14 to nuclear speckle (PubMed:24316715, PubMed:24407421, PubMed:24981863). Acts as a mRNA splicing regulator (PubMed:12444081). Regulates G2/M cell-cycle transition by binding to the 3' UTR of CCNA2, which enhances its stability (PubMed:17088532). Impairs WT1 DNA-binding ability and inhibits expression of WT1 target genes (PubMed:17095724). {ECO:0000269|PubMed:12444081, ECO:0000269|PubMed:17088532, ECO:0000269|PubMed:17095724, ECO:0000269|PubMed:24316715, ECO:0000269|PubMed:24407421, ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q15032 | R3HDM1 | S88 | ochoa | R3H domain-containing protein 1 | None |
Q15262 | PTPRK | S856 | ochoa | Receptor-type tyrosine-protein phosphatase kappa (Protein-tyrosine phosphatase kappa) (R-PTP-kappa) (EC 3.1.3.48) | Regulation of processes involving cell contact and adhesion such as growth control, tumor invasion, and metastasis. Negative regulator of EGFR signaling pathway. Forms complexes with beta-catenin and gamma-catenin/plakoglobin. Beta-catenin may be a substrate for the catalytic activity of PTPRK/PTP-kappa. {ECO:0000269|PubMed:19836242}. |
Q15269 | PWP2 | S711 | ochoa | Periodic tryptophan protein 2 homolog | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}. |
Q15459 | SF3A1 | S413 | ochoa | Splicing factor 3A subunit 1 (SF3a120) (Spliceosome-associated protein 114) (SAP 114) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006). Within the 17S U2 SnRNP complex, SF3A1 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006}. |
Q15596 | NCOA2 | S565 | ochoa|psp | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15596 | NCOA2 | S736 | ochoa|psp | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15648 | MED1 | S621 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15650 | TRIP4 | S387 | ochoa | Activating signal cointegrator 1 (ASC-1) (Thyroid receptor-interacting protein 4) (TR-interacting protein 4) (TRIP-4) | Transcription coactivator which associates with nuclear receptors, transcriptional coactivators including EP300, CREBBP and NCOA1, and basal transcription factors like TBP and TFIIA to facilitate nuclear receptors-mediated transcription (PubMed:10454579, PubMed:25219498). May thereby play an important role in establishing distinct coactivator complexes under different cellular conditions (PubMed:10454579, PubMed:25219498). Plays a role in thyroid hormone receptor and estrogen receptor transactivation (PubMed:10454579, PubMed:25219498). Also involved in androgen receptor transactivation (By similarity). Plays a pivotal role in the transactivation of NF-kappa-B, SRF and AP1 (PubMed:12077347). Acts as a mediator of transrepression between nuclear receptor and either AP1 or NF-kappa-B (PubMed:12077347). May play a role in the development of neuromuscular junction (PubMed:26924529). May play a role in late myogenic differentiation (By similarity). Also functions as part of the RQC trigger (RQT) complex that activates the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:32099016, PubMed:32579943, PubMed:36302773). {ECO:0000250|UniProtKB:Q9QXN3, ECO:0000269|PubMed:10454579, ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26924529, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}. |
Q15652 | JMJD1C | S943 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15700 | DLG2 | S65 | ochoa | Disks large homolog 2 (Channel-associated protein of synapse-110) (Chapsyn-110) (Postsynaptic density protein PSD-93) | Required for perception of chronic pain through NMDA receptor signaling. Regulates surface expression of NMDA receptors in dorsal horn neurons of the spinal cord. Interacts with the cytoplasmic tail of NMDA receptor subunits as well as inward rectifying potassium channels. Involved in regulation of synaptic stability at cholinergic synapses. Part of the postsynaptic protein scaffold of excitatory synapses (By similarity). {ECO:0000250}. |
Q15723 | ELF2 | S344 | ochoa | ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) | Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation. |
Q15750 | TAB1 | S423 | psp | TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 1) (TGF-beta-activated kinase 1-binding protein 1) (TAK1-binding protein 1) | Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (PubMed:22307082, PubMed:24403530). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (PubMed:10838074, PubMed:25260751, PubMed:37832545). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (PubMed:11847341, PubMed:29229647). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism (PubMed:14592977). Also plays a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits (PubMed:18021073). {ECO:0000269|PubMed:10838074, ECO:0000269|PubMed:11847341, ECO:0000269|PubMed:14592977, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:22307082, ECO:0000269|PubMed:24403530, ECO:0000269|PubMed:25260751, ECO:0000269|PubMed:29229647, ECO:0000269|PubMed:37832545}. |
Q15751 | HERC1 | S133 | ochoa | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q15911 | ZFHX3 | S1204 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q15911 | ZFHX3 | S2786 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16649 | NFIL3 | S210 | ochoa | Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) | Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}. |
Q16665 | HIF1A | S668 | psp | Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) | Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}. |
Q16828 | DUSP6 | S159 | psp | Dual specificity protein phosphatase 6 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST1) (Mitogen-activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) (MKP-3) | Dual specificity protein phosphatase, which mediates dephosphorylation and inactivation of MAP kinases (PubMed:8670865). Has a specificity for the ERK family (PubMed:8670865). Plays an important role in alleviating chronic postoperative pain (By similarity). Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity). Promotes cell differentiation by regulating MAPK1/MAPK3 activity and regulating the expression of AP1 transcription factors (PubMed:29043977). {ECO:0000250|UniProtKB:Q9DBB1, ECO:0000269|PubMed:29043977, ECO:0000269|PubMed:8670865}. |
Q16832 | DDR2 | S461 | ochoa | Discoidin domain-containing receptor 2 (Discoidin domain receptor 2) (EC 2.7.10.1) (CD167 antigen-like family member B) (Discoidin domain-containing receptor tyrosine kinase 2) (Neurotrophic tyrosine kinase, receptor-related 3) (Receptor protein-tyrosine kinase TKT) (Tyrosine-protein kinase TYRO10) (CD antigen CD167b) | Tyrosine kinase involved in the regulation of tissues remodeling (PubMed:30449416). It functions as a cell surface receptor for fibrillar collagen and regulates cell differentiation, remodeling of the extracellular matrix, cell migration and cell proliferation. Required for normal bone development. Regulates osteoblast differentiation and chondrocyte maturation via a signaling pathway that involves MAP kinases and leads to the activation of the transcription factor RUNX2. Regulates remodeling of the extracellular matrix by up-regulation of the collagenases MMP1, MMP2 and MMP13, and thereby facilitates cell migration and tumor cell invasion. Promotes fibroblast migration and proliferation, and thereby contributes to cutaneous wound healing. {ECO:0000269|PubMed:16186104, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:17665456, ECO:0000269|PubMed:18201965, ECO:0000269|PubMed:20004161, ECO:0000269|PubMed:20564243, ECO:0000269|PubMed:20734453, ECO:0000269|PubMed:30449416, ECO:0000269|PubMed:9659899}. |
Q16890 | TPD52L1 | S144 | ochoa | Tumor protein D53 (hD53) (Tumor protein D52-like 1) | None |
Q1AE95 | TMEM183BP | S336 | ochoa | Putative transmembrane protein 183BP (Transmembrane protein 183B pseudogene) | None |
Q2KHT3 | CLEC16A | S980 | ochoa | Protein CLEC16A (C-type lectin domain family 16 member A) | Regulator of mitophagy through the upstream regulation of the RNF41/NRDP1-PRKN pathway. Mitophagy is a selective form of autophagy necessary for mitochondrial quality control. The RNF41/NRDP1-PRKN pathway regulates autophagosome-lysosome fusion during late mitophagy. May protect RNF41/NRDP1 from proteasomal degradation, RNF41/NRDP1 which regulates proteasomal degradation of PRKN. Plays a key role in beta cells functions by regulating mitophagy/autophagy and mitochondrial health. {ECO:0000269|PubMed:24949970}. |
Q2LD37 | BLTP1 | S704 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2VPB7 | AP5B1 | S216 | ochoa | AP-5 complex subunit beta-1 (Adaptor-related protein complex 5 beta subunit) (Beta5) | As part of AP-5, a probable fifth adaptor protein complex it may be involved in endosomal transport. {ECO:0000269|PubMed:22022230}. |
Q3B820 | FAM161A | S462 | ochoa | Protein FAM161A | Involved in ciliogenesis. {ECO:0000269|PubMed:22940612}. |
Q3T8J9 | GON4L | S1426 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q49AN0 | CRY2 | S558 | ochoa | Cryptochrome-2 | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. Less potent transcriptional repressor in cerebellum and liver than CRY1, though less effective in lengthening the period of the SCN oscillator. Seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY1, dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. May mediate circadian regulation of cAMP signaling and gluconeogenesis by blocking glucagon-mediated increases in intracellular cAMP concentrations and in CREB1 phosphorylation. Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. Represses the CLOCK-BMAL1 induced transcription of NAMPT (By similarity). Represses PPARD and its target genes in the skeletal muscle and limits exercise capacity (By similarity). Represses the transcriptional activity of NR1I2 (By similarity). {ECO:0000250|UniProtKB:Q9R194, ECO:0000269|PubMed:10531061, ECO:0000269|PubMed:14672706, ECO:0000269|PubMed:16790549}. |
Q4AC94 | C2CD3 | S1595 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4G0A6 | MINDY4 | S233 | ochoa | Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 (EC 3.4.19.12) (Probable deubiquitinating enzyme MINDY-4) | Probable hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000250|UniProtKB:Q8NBR6}. |
Q4KMQ1 | TPRN | S241 | ochoa | Taperin | Essential for hearing (By similarity). Required for maintenance of stereocilia on both inner and outer hair cells (By similarity). Necessary for the integrity of the stereociliary rootlet (By similarity). May act as an actin cytoskeleton regulator involved in the regulation of actin dynamics at the pointed end in hair cells (By similarity). Forms rings at the base of stereocilia and binds actin filaments in the stereocilia which may stabilize the stereocilia (By similarity). Acts as a strong inhibitor of PPP1CA phosphatase activity (PubMed:23213405). Recruited to sites of DNA damage and may play a role in DNA damage repair (PubMed:23213405). {ECO:0000250|UniProtKB:A2AI08, ECO:0000269|PubMed:23213405}. |
Q4LE39 | ARID4B | S1029 | ochoa | AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) | Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}. |
Q52LD8 | RFTN2 | S453 | ochoa | Raftlin-2 (Raft-linking protein 2) | Upon bacterial lipopolysaccharide stimulation, mediates clathrin-dependent internalization of TLR4 in dendritic cells, resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production. May regulate B-cell antigen receptor-mediated signaling. {ECO:0000250|UniProtKB:Q8CHX7}. |
Q53ET0 | CRTC2 | S624 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q53F19 | NCBP3 | S25 | ochoa | Nuclear cap-binding protein subunit 3 (Protein ELG) | Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}. |
Q53F19 | NCBP3 | S500 | ochoa|psp | Nuclear cap-binding protein subunit 3 (Protein ELG) | Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}. |
Q58EX2 | SDK2 | S2101 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q5D1E8 | ZC3H12A | S386 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5FWF5 | ESCO1 | S523 | ochoa | N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}. |
Q5HYN5 | CT45A1 | S115 | ochoa | Cancer/testis antigen family 45 member A1 (Cancer/testis antigen 45-1) (Cancer/testis antigen 45A1) | None |
Q5I0X7 | TTC32 | S47 | ochoa | Tetratricopeptide repeat protein 32 (TPR repeat protein 32) | None |
Q5JVF3 | PCID2 | S45 | ochoa | PCI domain-containing protein 2 (CSN12-like protein) | Required for B-cell survival through the regulation of the expression of cell-cycle checkpoint MAD2L1 protein during B cell differentiation (By similarity). As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:22307388). Binds and stabilizes BRCA2 and is thus involved in the control of R-loop-associated DNA damage and transcription-associated genomic instability (PubMed:24896180). Blocks the activity of the SRCAP chromatin remodeling complex by interacting with SRCAP complex member ZNHIT1 and inhibiting its interaction with the complex (By similarity). This prevents the deposition of histone variant H2AZ1/H2A.Z at the nucleosomes of key lymphoid fate regulator genes which suppresses their expression and restricts lymphoid lineage commitment (By similarity). {ECO:0000250|UniProtKB:Q8BFV2, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:24896180, ECO:0000305|PubMed:23591820}. |
Q5R372 | RABGAP1L | S292 | ochoa | Rab GTPase-activating protein 1-like | GTP-hydrolysis activating protein (GAP) for small GTPase RAB22A, converting active RAB22A-GTP to the inactive form RAB22A-GDP (PubMed:16923123). Plays a role in endocytosis and intracellular protein transport. Recruited by ANK2 to phosphatidylinositol 3-phosphate (PI3P)-positive early endosomes, where it inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:A6H6A9, ECO:0000269|PubMed:16923123}. |
Q5SVZ6 | ZMYM1 | S387 | ochoa | Zinc finger MYM-type protein 1 | None |
Q5SW79 | CEP170 | S845 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T0B9 | ZNF362 | S169 | ochoa | Zinc finger protein 362 | May be involved in transcriptional regulation. |
Q5T0Z8 | C6orf132 | S906 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T1R4 | HIVEP3 | S682 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T200 | ZC3H13 | S242 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T3J3 | LRIF1 | S176 | ochoa | Ligand-dependent nuclear receptor-interacting factor 1 (HP1-binding protein enriched in inactive X chromosome protein 1) (HBiX1) (Receptor-interacting factor 1) | Together with SMCHD1, involved in chromosome X inactivation in females by promoting the compaction of heterochromatin (PubMed:23542155). Also able to repress the ligand-induced transcriptional activity of retinoic acid receptor alpha (RARA), possibly through direct recruitment of histone deacetylases (PubMed:17455211). Also required for silencing of the DUX4 locus in somatic cells (PubMed:32467133). {ECO:0000269|PubMed:17455211, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:32467133}. |
Q5T3J3 | LRIF1 | S451 | ochoa | Ligand-dependent nuclear receptor-interacting factor 1 (HP1-binding protein enriched in inactive X chromosome protein 1) (HBiX1) (Receptor-interacting factor 1) | Together with SMCHD1, involved in chromosome X inactivation in females by promoting the compaction of heterochromatin (PubMed:23542155). Also able to repress the ligand-induced transcriptional activity of retinoic acid receptor alpha (RARA), possibly through direct recruitment of histone deacetylases (PubMed:17455211). Also required for silencing of the DUX4 locus in somatic cells (PubMed:32467133). {ECO:0000269|PubMed:17455211, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:32467133}. |
Q5T5P2 | KIAA1217 | S1245 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T5X7 | BEND3 | S710 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5T5Y3 | CAMSAP1 | S862 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T6F2 | UBAP2 | S432 | ochoa | Ubiquitin-associated protein 2 (UBAP-2) (RNA polymerase II degradation factor UBAP2) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). May promote the degradation of ANXA2 (PubMed:27121050). {ECO:0000269|PubMed:27121050, ECO:0000269|PubMed:35633597}. |
Q5T6F2 | UBAP2 | S473 | ochoa | Ubiquitin-associated protein 2 (UBAP-2) (RNA polymerase II degradation factor UBAP2) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). May promote the degradation of ANXA2 (PubMed:27121050). {ECO:0000269|PubMed:27121050, ECO:0000269|PubMed:35633597}. |
Q5T6F2 | UBAP2 | S630 | ochoa | Ubiquitin-associated protein 2 (UBAP-2) (RNA polymerase II degradation factor UBAP2) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). May promote the degradation of ANXA2 (PubMed:27121050). {ECO:0000269|PubMed:27121050, ECO:0000269|PubMed:35633597}. |
Q5T7B8 | KIF24 | S102 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5T7B8 | KIF24 | S1275 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5T7N3 | KANK4 | S554 | ochoa | KN motif and ankyrin repeat domain-containing protein 4 (Ankyrin repeat domain-containing protein 38) | May be involved in the control of cytoskeleton formation by regulating actin polymerization. {ECO:0000269|PubMed:17996375}. |
Q5T9C9 | PIP5KL1 | S313 | ochoa | Phosphatidylinositol 4-phosphate 5-kinase-like protein 1 (PI(4)P 5-kinase-like protein 1) (PtdIns(4)P-5-kinase-like protein 1) (EC 2.7.1.68) | May act as a scaffold to localize and regulate type I PI(4)P 5-kinases to specific compartments within the cell, where they generate PI(4,5)P2 for actin nucleation, signaling and scaffold protein recruitment and conversion to PI(3,4,5)P3. {ECO:0000250}. |
Q5TCZ1 | SH3PXD2A | S662 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TH69 | ARFGEF3 | S1991 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5THK1 | PRR14L | S600 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5UIP0 | RIF1 | S1616 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S2144 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S2243 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VT06 | CEP350 | S2460 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT97 | SYDE2 | S626 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5VUA4 | ZNF318 | S214 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VZ89 | DENND4C | Y1447 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5XKL5 | BTBD8 | S866 | ochoa | BTB/POZ domain-containing protein 8 (AP2-interacting clathrin-endocytosis) (APache) | Involved in clathrin-mediated endocytosis at the synapse. Plays a role in neuronal development and in synaptic vesicle recycling in mature neurons, a process required for normal synaptic transmission. {ECO:0000250|UniProtKB:Q80TK0}. |
Q63HK3 | ZKSCAN2 | S600 | ochoa | Zinc finger protein with KRAB and SCAN domains 2 (Zinc finger protein 694) | May be involved in transcriptional regulation. |
Q674X7 | KAZN | S339 | ochoa | Kazrin | Component of the cornified envelope of keratinocytes. May be involved in the interplay between adherens junctions and desmosomes. The function in the nucleus is not known. {ECO:0000269|PubMed:15337775}. |
Q684P5 | RAP1GAP2 | S700 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q68CP9 | ARID2 | S1470 | ochoa | AT-rich interactive domain-containing protein 2 (ARID domain-containing protein 2) (BRG1-associated factor 200) (BAF200) (Zinc finger protein with activation potential) (Zipzap/p200) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). May be involved in targeting the complex to different genes. May be involved in regulating transcriptional activation of cardiac genes. {ECO:0000269|PubMed:16782067, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q68DA7 | FMN1 | S398 | ochoa | Formin-1 (Limb deformity protein homolog) | Plays a role in the formation of adherens junction and the polymerization of linear actin cables. {ECO:0000250}. |
Q68DQ2 | CRYBG3 | S636 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S931 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68E01 | INTS3 | S995 | ochoa | Integrator complex subunit 3 (Int3) (SOSS complex subunit A) (Sensor of single-strand DNA complex subunit A) (SOSS-A) (Sensor of ssDNA subunit A) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Within the integrator complex, INTS3 is involved in the post-termination step: INTS3 binds INTS7 in the open conformation of integrator complex and prevents the rebinding of Pol II to the integrator after termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}.; FUNCTION: Component of the SOSS complex, a multiprotein complex that functions downstream of the MRN complex to promote DNA repair and G2/M checkpoint. The SOSS complex associates with single-stranded DNA at DNA lesions and influences diverse endpoints in the cellular DNA damage response including cell-cycle checkpoint activation, recombinational repair and maintenance of genomic stability. The SOSS complex is required for efficient homologous recombination-dependent repair of double-strand breaks (DSBs) and ATM-dependent signaling pathways. In the SOSS complex, it is required for the assembly of the complex and for stabilization of the complex at DNA damage sites. {ECO:0000269|PubMed:19605351, ECO:0000269|PubMed:19683501}. |
Q68EM7 | ARHGAP17 | S840 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q69YH5 | CDCA2 | S591 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6AI39 | BICRAL | S675 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein-like (Glioma tumor suppressor candidate region gene 1 protein-like) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. {ECO:0000269|PubMed:29374058}. |
Q6BDS2 | BLTP3A | S1337 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6DCA0 | AMMECR1L | S74 | ochoa | AMMECR1-like protein | None |
Q6EKJ0 | GTF2IRD2B | S516 | ochoa | General transcription factor II-I repeat domain-containing protein 2B (GTF2I repeat domain-containing protein 2B) (Transcription factor GTF2IRD2-beta) | None |
Q6MZP7 | LIN54 | S310 | ochoa|psp | Protein lin-54 homolog (CXC domain-containing protein 1) | Component of the DREAM complex, a multiprotein complex that can both act as a transcription activator or repressor depending on the context (PubMed:17531812, PubMed:17671431). In G0 phase, the complex binds to more than 800 promoters and is required for repression of E2F target genes (PubMed:17531812, PubMed:17671431). In S phase, the complex selectively binds to the promoters of G2/M genes whose products are required for mitosis and participates in their cell cycle dependent activation (PubMed:17531812, PubMed:17671431). In the complex, acts as a DNA-binding protein that binds the promoter of CDK1 in a sequence-specific manner (PubMed:19725879). Specifically recognizes the consensus motif 5'-TTYRAA-3' in target DNA (PubMed:27465258). {ECO:0000269|PubMed:17531812, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:19725879, ECO:0000269|PubMed:27465258}. |
Q6N043 | ZNF280D | S211 | ochoa | Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) | May function as a transcription factor. |
Q6NVY1 | HIBCH | S234 | ochoa | 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial (EC 3.1.2.4) (3-hydroxyisobutyryl-coenzyme A hydrolase) (HIB-CoA hydrolase) (HIBYL-CoA-H) | Hydrolyzes 3-hydroxyisobutyryl-CoA (HIBYL-CoA), a saline catabolite. Has high activity toward isobutyryl-CoA. Could be an isobutyryl-CoA dehydrogenase that functions in valine catabolism. Also hydrolyzes 3-hydroxypropanoyl-CoA. {ECO:0000269|PubMed:8824301}. |
Q6P0Q8 | MAST2 | S1669 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P2H3 | CEP85 | S141 | ochoa | Centrosomal protein of 85 kDa (Cep85) (Coiled-coil domain-containing protein 21) | Acts as a regulator of centriole duplication through a direct interaction with STIL, a key factor involved in the early steps of centriole formation. The CEP85-STIL protein complex acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). Acts as a negative regulator of NEK2 to maintain the centrosome integrity in interphase. Suppresses centrosome disjunction by inhibiting NEK2 kinase activity (PubMed:26220856). {ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292}. |
Q6P4Q7 | CNNM4 | S652 | ochoa | Metal transporter CNNM4 (Ancient conserved domain-containing protein 4) (Cyclin-M4) | Probable metal transporter. The interaction with the metal ion chaperone COX11 suggests that it may play a role in sensory neuron functions (By similarity). May play a role in biomineralization and retinal function. {ECO:0000250, ECO:0000269|PubMed:19200525, ECO:0000269|PubMed:19200527}. |
Q6P9H4 | CNKSR3 | S244 | ochoa | Connector enhancer of kinase suppressor of ras 3 (Connector enhancer of KSR 3) (CNK homolog protein 3) (CNK3) (CNKSR family member 3) (Maguin-like protein) | Involved in transepithelial sodium transport. Regulates aldosterone-induced and epithelial sodium channel (ENaC)-mediated sodium transport through regulation of ENaC cell surface expression. Acts as a scaffold protein coordinating the assembly of an ENaC-regulatory complex (ERC). {ECO:0000269|PubMed:22851176}. |
Q6P9H4 | CNKSR3 | S383 | ochoa | Connector enhancer of kinase suppressor of ras 3 (Connector enhancer of KSR 3) (CNK homolog protein 3) (CNK3) (CNKSR family member 3) (Maguin-like protein) | Involved in transepithelial sodium transport. Regulates aldosterone-induced and epithelial sodium channel (ENaC)-mediated sodium transport through regulation of ENaC cell surface expression. Acts as a scaffold protein coordinating the assembly of an ENaC-regulatory complex (ERC). {ECO:0000269|PubMed:22851176}. |
Q6PJ61 | FBXO46 | S240 | ochoa | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6RI45 | BRWD3 | S693 | ochoa | Bromodomain and WD repeat-containing protein 3 | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000269|PubMed:21834987}. |
Q6T4R5 | NHS | S418 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UB98 | ANKRD12 | S1255 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB98 | ANKRD12 | S1345 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UXM1 | LRIG3 | S1001 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 3 (LIG-3) | May play a role in craniofacial and inner ear morphogenesis during embryonic development. May act within the otic vesicle epithelium to control formation of the lateral semicircular canal in the inner ear, possibly by restricting the expression of NTN1 (By similarity). {ECO:0000250}. |
Q6ZMT1 | STAC2 | S228 | ochoa | SH3 and cysteine-rich domain-containing protein 2 (24b2/STAC2) (Src homology 3 and cysteine-rich domain-containing protein 2) | Plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. Slows down the inactivation rate of the calcium channel CACNA1C. {ECO:0000250|UniProtKB:Q8R1B0}. |
Q6ZMT4 | KDM7A | S877 | ochoa | Lysine-specific demethylase 7A (JmjC domain-containing histone demethylation protein 1D) (Lysine-specific demethylase 7) ([histone H3]-dimethyl-L-lysine9 demethylase 7A) (EC 1.14.11.65) | Histone demethylase required for brain development. Specifically demethylates dimethylated 'Lys-9', 'Lys-27' and 'Lys-36' (H3K9me2, H3K27me2, H3K36me2, respectively) of histone H3 and monomethylated histone H4 'Lys-20' residue (H4K20Me1), thereby playing a central role in histone code (PubMed:20023638, PubMed:20622853). Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: in presence of H3K4me3, it has no demethylase activity toward H3K9me2, while it has high activity toward H3K27me2. Demethylates H3K9me2 in absence of H3K4me3 (PubMed:20023638). Has activity toward H4K20Me1 only when nucleosome is used as a substrate and when not histone octamer is used as substrate (PubMed:20622853). {ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20622853}. |
Q6ZN17 | LIN28B | S105 | ochoa | Protein lin-28 homolog B (Lin-28B) | Suppressor of microRNA (miRNA) biogenesis, including that of let-7 and possibly of miR107, miR-143 and miR-200c. Binds primary let-7 transcripts (pri-let-7), including pri-let-7g and pri-let-7a-1, and sequester them in the nucleolus, away from the microprocessor complex, hence preventing their processing into mature miRNA (PubMed:22118463). Does not act on pri-miR21 (PubMed:22118463). The repression of let-7 expression is required for normal development and contributes to maintain the pluripotent state of embryonic stem cells by preventing let-7-mediated differentiation. When overexpressed, recruits ZCCHC11/TUT4 uridylyltransferase to pre-let-7 transcripts, leading to their terminal uridylation and degradation (PubMed:19703396). This activity might not be relevant in vivo, as LIN28B-mediated inhibition of let-7 miRNA maturation appears to be ZCCHC11-independent (PubMed:22118463). Interaction with target pre-miRNAs occurs via an 5'-GGAG-3' motif in the pre-miRNA terminal loop. Mediates MYC-induced let-7 repression (By similarity). When overexpressed, isoform 1 stimulates growth of the breast adenocarcinoma cell line MCF-7. Isoform 2 has no effect on cell growth. {ECO:0000250|UniProtKB:Q45KJ6, ECO:0000269|PubMed:16971064, ECO:0000269|PubMed:18951094, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22118463}. |
Q6ZNJ1 | NBEAL2 | S1350 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZQX7 | LIAT1 | S123 | ochoa | Protein LIAT1 (Ligand of ATE1 protein) | Participates in nucleolar liquid-liquid phase separation (LLPS) through its N-terminal intrinsically disordered region (IDR). May be involved in ATE1-mediated N-terminal arginylation. {ECO:0000250|UniProtKB:Q810M6}. |
Q6ZSS7 | MFSD6 | S733 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q6ZSZ6 | TSHZ1 | S880 | ochoa | Teashirt homolog 1 (Antigen NY-CO-33) (Serologically defined colon cancer antigen 33) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q6ZVF9 | GPRIN3 | S583 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q6ZVL6 | KIAA1549L | S1310 | ochoa | UPF0606 protein KIAA1549L | None |
Q70EL4 | USP43 | S766 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q76FK4 | NOL8 | S617 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q7L2K0 | TEDC2 | S125 | ochoa | Tubulin epsilon and delta complex protein 2 | Acts as a positive regulator of ciliary hedgehog signaling. Required for centriole stability. {ECO:0000250|UniProtKB:Q6GQV0}. |
Q7RTN6 | STRADA | S339 | ochoa | STE20-related kinase adapter protein alpha (STRAD alpha) (STE20-related adapter protein) (Serologically defined breast cancer antigen NY-BR-96) | Pseudokinase which, in complex with CAB39/MO25 (CAB39/MO25alpha or CAB39L/MO25beta), binds to and activates STK11/LKB1. Adopts a closed conformation typical of active protein kinases and binds STK11/LKB1 as a pseudosubstrate, promoting conformational change of STK11/LKB1 in an active conformation. {ECO:0000269|PubMed:12805220, ECO:0000269|PubMed:14517248, ECO:0000269|PubMed:19892943}. |
Q7RTP6 | MICAL3 | S1704 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z2K8 | GPRIN1 | S737 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2K8 | GPRIN1 | S776 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2Y5 | NRK | S855 | ochoa | Nik-related protein kinase (EC 2.7.11.1) | May phosphorylate cofilin-1 and induce actin polymerization through this process, during the late stages of embryogenesis. Involved in the TNF-alpha-induced signaling pathway (By similarity). {ECO:0000250}. |
Q7Z2Z1 | TICRR | S292 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z333 | SETX | S947 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z353 | HDX | S398 | ochoa | Highly divergent homeobox | None |
Q7Z3E2 | CCDC186 | S139 | ochoa | Coiled-coil domain-containing protein 186 (CTCL tumor antigen HD-CL-01/L14-2) | None |
Q7Z3J3 | RGPD4 | S789 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z3U7 | MON2 | S646 | ochoa | Protein MON2 homolog (Protein SF21) | Plays a role in regulating membrane trafficking of cargo proteins. Together with ATP9A and DOP1B, regulates SNX3 retromer-mediated endosomal sorting of WLS away from lysosomal degradation. {ECO:0000269|PubMed:30213940}. |
Q7Z401 | DENND4A | S1282 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z589 | EMSY | S818 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z591 | AKNA | S1123 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z6B7 | SRGAP1 | S906 | ochoa | SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) | GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}. |
Q7Z6E9 | RBBP6 | S1179 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q86SQ0 | PHLDB2 | S334 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86T82 | USP37 | S628 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 37 (EC 3.4.19.12) (Deubiquitinating enzyme 37) (Ubiquitin thioesterase 37) (Ubiquitin-specific-processing protease 37) | Deubiquitinase that plays a role in different processes including cell cycle regulation, DNA replication or DNA damage response (PubMed:26299517, PubMed:27296872, PubMed:31911859, PubMed:34509474). Antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), thereby promoting S phase entry. Specifically mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2) (PubMed:21596315). Plays an important role in the regulation of DNA replication by stabilizing the licensing factor CDT1 (PubMed:27296872). Also plays an essential role beyond S-phase entry to promote the efficiency and fidelity of replication by deubiquitinating checkpoint kinase 1/CHK1, promoting its stability (PubMed:34509474). Sustains the DNA damage response (DDR) by deubiquitinating and stabilizing the ATP-dependent DNA helicase BLM (PubMed:34606619). Mechanistically, DNA double-strand breaks (DSB) promotes ATM-mediated phosphorylation of USP37 and enhances the binding between USP37 and BLM (PubMed:34606619). Promotes cell migration by deubiquitinating and stabilizing the epithelial-mesenchymal transition (EMT)-inducing transcription factor SNAI (PubMed:31911859). Plays a role in the regulation of mitotic spindle assembly and mitotic progression by associating with chromatin-associated WAPL and stabilizing it through deubiquitination (PubMed:26299517). {ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:26299517, ECO:0000269|PubMed:27296872, ECO:0000269|PubMed:31911859, ECO:0000269|PubMed:34509474, ECO:0000269|PubMed:34606619}. |
Q86TC9 | MYPN | S561 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TI0 | TBC1D1 | S69 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86TI0 | TBC1D1 | S695 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86TI2 | DPP9 | S173 | ochoa | Dipeptidyl peptidase 9 (DP9) (EC 3.4.14.5) (Dipeptidyl peptidase IV-related protein 2) (DPRP-2) (Dipeptidyl peptidase IX) (DPP IX) (Dipeptidyl peptidase-like protein 9) (DPLP9) | Dipeptidyl peptidase that cleaves off N-terminal dipeptides from proteins having a Pro or Ala residue at position 2 (PubMed:12662155, PubMed:16475979, PubMed:19667070, PubMed:29382749, PubMed:30291141, PubMed:33731929, PubMed:36112693). Acts as a key inhibitor of caspase-1-dependent monocyte and macrophage pyroptosis in resting cells by preventing activation of NLRP1 and CARD8 (PubMed:27820798, PubMed:29967349, PubMed:30291141, PubMed:31525884, PubMed:32796818, PubMed:36112693, PubMed:36357533). Sequesters the cleaved C-terminal part of NLRP1 and CARD8, which respectively constitute the active part of the NLRP1 and CARD8 inflammasomes, in a ternary complex, thereby preventing their oligomerization and activation (PubMed:33731929, PubMed:33731932, PubMed:34019797). The dipeptidyl peptidase activity is required to suppress NLRP1 and CARD8; however, neither NLRP1 nor CARD8 are bona fide substrates of DPP9, suggesting the existence of substrate(s) required for NLRP1 and CARD8 inhibition (PubMed:33731929). {ECO:0000269|PubMed:12662155, ECO:0000269|PubMed:16475979, ECO:0000269|PubMed:19667070, ECO:0000269|PubMed:27820798, ECO:0000269|PubMed:29382749, ECO:0000269|PubMed:29967349, ECO:0000269|PubMed:30291141, ECO:0000269|PubMed:31525884, ECO:0000269|PubMed:32796818, ECO:0000269|PubMed:33731929, ECO:0000269|PubMed:33731932, ECO:0000269|PubMed:34019797, ECO:0000269|PubMed:36112693, ECO:0000269|PubMed:36357533}. |
Q86UR5 | RIMS1 | S731 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86XJ1 | GAS2L3 | S418 | ochoa | GAS2-like protein 3 (Growth arrest-specific protein 2-like 3) | Cytoskeletal linker protein. May promote and stabilize the formation of the actin and microtubule network. {ECO:0000269|PubMed:21561867}. |
Q86XL3 | ANKLE2 | S875 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86XP3 | DDX42 | S751 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q86XP3 | DDX42 | S754 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q86XP3 | DDX42 | S831 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q86XZ4 | SPATS2 | S408 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q86YC2 | PALB2 | S285 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YC2 | PALB2 | S489 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YP4 | GATAD2A | S546 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q86YS7 | C2CD5 | S852 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q86YV5 | PRAG1 | S285 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IU60 | DCP2 | S284 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IUR5 | TMTC1 | S253 | ochoa | Protein O-mannosyl-transferase TMTC1 (EC 2.4.1.109) (Transmembrane O-mannosyltransferase targeting cadherins 1) (Transmembrane and tetratricopeptide repeat-containing 1) | Transfers mannosyl residues to the hydroxyl group of serine or threonine residues. The 4 members of the TMTC family are O-mannosyl-transferases dedicated primarily to the cadherin superfamily, each member seems to have a distinct role in decorating the cadherin domains with O-linked mannose glycans at specific regions. Also acts as O-mannosyl-transferase on other proteins such as PDIA3. {ECO:0000269|PubMed:28973932}. |
Q8IUW3 | SPATA2L | S252 | ochoa | Spermatogenesis-associated protein 2-like protein (SPATA2-like protein) | None |
Q8IV48 | ERI1 | S21 | ochoa | 3'-5' exoribonuclease 1 (EC 3.1.13.1) (3'-5' exonuclease ERI1) (Eri-1 homolog) (Histone mRNA 3'-end-specific exoribonuclease) (Histone mRNA 3'-exonuclease 1) (Protein 3'hExo) (HEXO) | RNA exonuclease that binds to the 3'-end of histone mRNAs and degrades them, suggesting that it plays an essential role in histone mRNA decay after replication (PubMed:14536070, PubMed:16912046, PubMed:17135487, PubMed:37352860). A 2' and 3'-hydroxyl groups at the last nucleotide of the histone 3'-end is required for efficient 3'-end histone mRNA exonuclease activity and degradation of RNA substrates (PubMed:14536070, PubMed:16912046, PubMed:17135487). Also able to degrade the 3'-overhangs of short interfering RNAs (siRNAs) in vitro, suggesting a possible role as regulator of RNA interference (RNAi) (PubMed:14961122). Required for binding the 5'-ACCCA-3' sequence present in stem-loop structure (PubMed:14536070, PubMed:16912046). Able to bind other mRNAs (PubMed:14536070, PubMed:16912046). Required for 5.8S rRNA 3'-end processing (PubMed:37352860). Also binds to 5.8s ribosomal RNA (By similarity). Binds with high affinity to the stem-loop structure of replication-dependent histone pre-mRNAs (PubMed:14536070, PubMed:16912046, PubMed:17135487). In vitro, does not have sequence specificity (PubMed:17135487). In vitro, has weak DNA exonuclease activity (PubMed:17135487). In vitro, shows biphasic kinetics such that there is rapid hydrolysis of the last three unpaired RNA nucleotides in the 39 flanking sequence followed by a much slower cleavage through the stem that occurs over a longer incubation period in the order of hours (PubMed:17135487). ERI1-mediated RNA metabolism plays a key role in chondrogenesis (PubMed:37352860). {ECO:0000250|UniProtKB:Q7TMF2, ECO:0000269|PubMed:14536070, ECO:0000269|PubMed:14961122, ECO:0000269|PubMed:16912046, ECO:0000269|PubMed:17135487, ECO:0000269|PubMed:37352860}. |
Q8IV63 | VRK3 | S59 | ochoa | Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) | Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}. |
Q8IV63 | VRK3 | S115 | psp | Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) | Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}. |
Q8IVF2 | AHNAK2 | S4785 | ochoa | Protein AHNAK2 | None |
Q8IVF5 | TIAM2 | S1545 | ochoa | Rho guanine nucleotide exchange factor TIAM2 (SIF and TIAM1-like exchange factor) (T-lymphoma invasion and metastasis-inducing protein 2) (TIAM-2) | Modulates the activity of RHO-like proteins and connects extracellular signals to cytoskeletal activities. Acts as a GDP-dissociation stimulator protein that stimulates the GDP-GTP exchange activity of RHO-like GTPases and activates them. Mediates extracellular laminin signals to activate Rac1, contributing to neurite growth. Involved in lamellipodial formation and advancement of the growth cone of embryonic hippocampal neurons. Promotes migration of neurons in the cerebral cortex. When overexpressed, induces membrane ruffling accompanied by the accumulation of actin filaments along the altered plasma membrane (By similarity). Activates specifically RAC1, but not CDC42 and RHOA. {ECO:0000250, ECO:0000269|PubMed:10512681}. |
Q8IVL0 | NAV3 | S560 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVL0 | NAV3 | S654 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVL0 | NAV3 | S1037 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVL1 | NAV2 | S1302 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVT2 | MISP | S284 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IW35 | CEP97 | S371 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IW35 | CEP97 | S416 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IWB9 | TEX2 | S166 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IWC1 | MAP7D3 | S770 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWJ2 | GCC2 | S1542 | ochoa | GRIP and coiled-coil domain-containing protein 2 (185 kDa Golgi coiled-coil protein) (GCC185) (CLL-associated antigen KW-11) (CTCL tumor antigen se1-1) (Ran-binding protein 2-like 4) (RanBP2L4) (Renal carcinoma antigen NY-REN-53) | Golgin which probably tethers transport vesicles to the trans-Golgi network (TGN) and regulates vesicular transport between the endosomes and the Golgi. As a RAB9A effector it is involved in recycling of the mannose 6-phosphate receptor from the late endosomes to the TGN. May also play a role in transport between the recycling endosomes and the Golgi. Required for maintenance of the Golgi structure, it is involved in the biogenesis of noncentrosomal, Golgi-associated microtubules through recruitment of CLASP1 and CLASP2. {ECO:0000269|PubMed:16885419, ECO:0000269|PubMed:17488291, ECO:0000269|PubMed:17543864}. |
Q8IWU2 | LMTK2 | S886 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IWZ8 | SUGP1 | S338 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IX21 | SLF2 | S109 | ochoa | SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q8IXJ9 | ASXL1 | S503 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IXJ9 | ASXL1 | S1166 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IXS8 | HYCC2 | S398 | ochoa | Hyccin 2 | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}. |
Q8IXX5 | TMEM183A | S336 | ochoa | Transmembrane protein 183A | None |
Q8IXZ2 | ZC3H3 | S414 | ochoa | Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) | Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}. |
Q8IY92 | SLX4 | S199 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IY92 | SLX4 | S1070 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IYA7 | MKX | S36 | ochoa | Homeobox protein Mohawk | May act as a morphogenetic regulator of cell adhesion. {ECO:0000250}. |
Q8IYB7 | DIS3L2 | S503 | ochoa | DIS3-like exonuclease 2 (hDIS3L2) (EC 3.1.13.-) | 3'-5'-exoribonuclease that specifically recognizes RNAs polyuridylated at their 3' end and mediates their degradation. Component of an exosome-independent RNA degradation pathway that mediates degradation of both mRNAs and miRNAs that have been polyuridylated by a terminal uridylyltransferase, such as ZCCHC11/TUT4. Mediates degradation of cytoplasmic mRNAs that have been deadenylated and subsequently uridylated at their 3'. Mediates degradation of uridylated pre-let-7 miRNAs, contributing to the maintenance of embryonic stem (ES) cells. Essential for correct mitosis, and negatively regulates cell proliferation. {ECO:0000255|HAMAP-Rule:MF_03045, ECO:0000269|PubMed:23756462, ECO:0000269|PubMed:24141620}. |
Q8IYH5 | ZZZ3 | S426 | ochoa | ZZ-type zinc finger-containing protein 3 | Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}. |
Q8IYJ3 | SYTL1 | S470 | ochoa | Synaptotagmin-like protein 1 (Exophilin-7) (Protein JFC1) | May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:11278853, ECO:0000269|PubMed:18266782}. |
Q8IYT8 | ULK2 | S516 | ochoa | Serine/threonine-protein kinase ULK2 (EC 2.7.11.1) (Unc-51-like kinase 2) | Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and a negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK, also acts as a negative regulator of AMPK through phosphorylation of the AMPK subunits PRKAA1, PRKAB2 and PRKAG1. May phosphorylate ATG13/KIAA0652, FRS2, FRS3 and RPTOR; however such data need additional evidences. Not involved in ammonia-induced autophagy or in autophagic response of cerebellar granule neurons (CGN) to low potassium concentration. Plays a role early in neuronal differentiation and is required for granule cell axon formation: may govern axon formation via Ras-like GTPase signaling and through regulation of the Rab5-mediated endocytic pathways within developing axons. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21460635, ECO:0000269|PubMed:21690395, ECO:0000269|PubMed:21795849}. |
Q8IYT8 | ULK2 | S600 | ochoa | Serine/threonine-protein kinase ULK2 (EC 2.7.11.1) (Unc-51-like kinase 2) | Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and a negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK, also acts as a negative regulator of AMPK through phosphorylation of the AMPK subunits PRKAA1, PRKAB2 and PRKAG1. May phosphorylate ATG13/KIAA0652, FRS2, FRS3 and RPTOR; however such data need additional evidences. Not involved in ammonia-induced autophagy or in autophagic response of cerebellar granule neurons (CGN) to low potassium concentration. Plays a role early in neuronal differentiation and is required for granule cell axon formation: may govern axon formation via Ras-like GTPase signaling and through regulation of the Rab5-mediated endocytic pathways within developing axons. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21460635, ECO:0000269|PubMed:21690395, ECO:0000269|PubMed:21795849}. |
Q8IYW5 | RNF168 | S278 | ochoa | E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) | E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}. |
Q8IZD0 | SAMD14 | S288 | ochoa | Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) | None |
Q8IZD2 | KMT2E | S1070 | ochoa|psp | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZD2 | KMT2E | S1359 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZD2 | KMT2E | S1444 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZP0 | ABI1 | S267 | psp | Abl interactor 1 (Abelson interactor 1) (Abi-1) (Abl-binding protein 4) (AblBP4) (Eps8 SH3 domain-binding protein) (Eps8-binding protein) (Nap1-binding protein) (Nap1BP) (Spectrin SH3 domain-binding protein 1) (e3B1) | May act in negative regulation of cell growth and transformation by interacting with nonreceptor tyrosine kinases ABL1 and/or ABL2. May play a role in regulation of EGF-induced Erk pathway activation. Involved in cytoskeletal reorganization and EGFR signaling. Together with EPS8 participates in transduction of signals from Ras to Rac. In vitro, a trimeric complex of ABI1, EPS8 and SOS1 exhibits Rac specific guanine nucleotide exchange factor (GEF) activity and ABI1 seems to act as an adapter in the complex. Regulates ABL1/c-Abl-mediated phosphorylation of ENAH. Recruits WASF1 to lamellipodia and there seems to regulate WASF1 protein level. In brain, seems to regulate the dendritic outgrowth and branching as well as to determine the shape and number of synaptic contacts of developing neurons. {ECO:0000269|PubMed:11003655, ECO:0000269|PubMed:18328268}. |
Q8N0Z3 | SPICE1 | S640 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N1B4 | VPS52 | S355 | ochoa | Vacuolar protein sorting-associated protein 52 homolog (SAC2 suppressor of actin mutations 2-like protein) | Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of the cycling of mannose 6-phosphate receptors between the TGN and endosomes, this cycling is necessary for proper lysosomal sorting of acid hydrolases such as CTSD (PubMed:15878329, PubMed:18367545). Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane (PubMed:25799061). {ECO:0000269|PubMed:15878329, ECO:0000269|PubMed:18367545, ECO:0000269|PubMed:25799061}. |
Q8N1F8 | STK11IP | S404 | psp | Serine/threonine-protein kinase 11-interacting protein (LKB1-interacting protein 1) | May regulate STK11/LKB1 function by controlling its subcellular localization. {ECO:0000269|PubMed:11741830}. |
Q8N1G0 | ZNF687 | S433 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1I0 | DOCK4 | S1787 | ochoa | Dedicator of cytokinesis protein 4 | Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form (PubMed:12628187, PubMed:16464467). Involved in regulation of adherens junction between cells (PubMed:12628187). Plays a role in cell migration (PubMed:20679435). {ECO:0000269|PubMed:12628187, ECO:0000269|PubMed:16464467, ECO:0000269|PubMed:20679435}.; FUNCTION: [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms. {ECO:0000269|PubMed:16464467}. |
Q8N2Y8 | RUSC2 | S236 | ochoa | AP-4 complex accessory subunit RUSC2 (Interacting protein of Rab1) (Iporin) (RUN and SH3 domain-containing protein 2) | Associates with the adapter-like complex 4 (AP-4) and may therefore play a role in vesicular trafficking of proteins at the trans-Golgi network. {ECO:0000269|PubMed:30262884}. |
Q8N3D4 | EHBP1L1 | S964 | ochoa | EH domain-binding protein 1-like protein 1 | May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}. |
Q8N3K9 | CMYA5 | S1717 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3L3 | TXLNB | S38 | ochoa | Beta-taxilin (Muscle-derived protein 77) (hMDP77) | Promotes motor nerve regeneration (By similarity). May be involved in intracellular vesicle traffic. {ECO:0000250}. |
Q8N8E3 | CEP112 | S115 | ochoa | Centrosomal protein of 112 kDa (Cep112) (Coiled-coil domain-containing protein 46) | None |
Q8N9B5 | JMY | S713 | ochoa | Junction-mediating and -regulatory protein | Acts both as a nuclear p53/TP53-cofactor and a cytoplasmic regulator of actin dynamics depending on conditions (PubMed:30420355). In nucleus, acts as a cofactor that increases p53/TP53 response via its interaction with p300/EP300. Increases p53/TP53-dependent transcription and apoptosis, suggesting an important role in p53/TP53 stress response such as DNA damage. In cytoplasm, acts as a nucleation-promoting factor for both branched and unbranched actin filaments (PubMed:30420355). Activates the Arp2/3 complex to induce branched actin filament networks. Also catalyzes actin polymerization in the absence of Arp2/3, creating unbranched filaments (PubMed:30420355). Contributes to cell motility by controlling actin dynamics. May promote the rapid formation of a branched actin network by first nucleating new mother filaments and then activating Arp2/3 to branch off these filaments. Upon nutrient stress, directly recruited by MAP1LC3B to the phagophore membrane surfaces to promote actin assembly during autophagy (PubMed:30420355). The p53/TP53-cofactor and actin activator activities are regulated via its subcellular location (By similarity). {ECO:0000250|UniProtKB:Q9QXM1, ECO:0000269|PubMed:30420355}. |
Q8NCE2 | MTMR14 | S453 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR14 (EC 3.1.3.95) (HCV NS5A-transactivated protein 4 splice variant A-binding protein 1) (NS5ATP4ABP1) (Myotubularin-related protein 14) (Phosphatidylinositol-3-phosphate phosphatase) (hJumpy) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate. {ECO:0000269|PubMed:17008356}. |
Q8NCE2 | MTMR14 | S530 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR14 (EC 3.1.3.95) (HCV NS5A-transactivated protein 4 splice variant A-binding protein 1) (NS5ATP4ABP1) (Myotubularin-related protein 14) (Phosphatidylinositol-3-phosphate phosphatase) (hJumpy) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate. {ECO:0000269|PubMed:17008356}. |
Q8NDL9 | AGBL5 | S539 | ochoa | Cytosolic carboxypeptidase-like protein 5 (EC 3.4.17.-) (EC 3.4.17.24) (ATP/GTP-binding protein-like 5) (Protein deglutamylase CCP5) | Metallocarboxypeptidase that mediates deglutamylation of tubulin and non-tubulin target proteins. Catalyzes the removal of polyglutamate side chains present on the gamma-carboxyl group of glutamate residues within the C-terminal tail of alpha- and beta-tubulin. Cleaves alpha- and gamma-linked polyglutamate tubulin side-chain, as well as the branching point glutamate. Also catalyzes the removal of alpha-linked glutamate residues from the carboxy-terminus of alpha-tubulin. Mediates deglutamylation of nucleotidyltransferase CGAS, leading to CGAS antiviral defense response activation. {ECO:0000250|UniProtKB:Q09M02}. |
Q8NDT2 | RBM15B | S147 | ochoa | Putative RNA-binding protein 15B (One-twenty two protein 3) (HsOTT3) (HuOTT3) (RNA-binding motif protein 15B) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:16129689, PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:27602518). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Functions in the regulation of alternative or illicit splicing, possibly by regulating m6A methylation (PubMed:16129689). Inhibits pre-mRNA splicing (PubMed:21044963). Also functions as a mRNA export factor by acting as a cofactor for the nuclear export receptor NXF1 (PubMed:19586903). {ECO:0000269|PubMed:19586903, ECO:0000269|PubMed:21044963, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:16129689}. |
Q8NDV7 | TNRC6A | S771 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NDV7 | TNRC6A | S943 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NDV7 | TNRC6A | S1942 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NDX6 | ZNF740 | S44 | ochoa | Zinc finger protein 740 (OriLyt TD-element-binding protein 7) | May be involved in transcriptional regulation. |
Q8NEB9 | PIK3C3 | S448 | ochoa | Phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3-kinase type 3) (PI3K type 3) (PtdIns-3-kinase type 3) (EC 2.7.1.137) (Phosphatidylinositol 3-kinase p100 subunit) (Phosphoinositide-3-kinase class 3) (hVps34) | Catalytic subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis (PubMed:14617358, PubMed:33637724, PubMed:7628435). As part of PI3KC3-C1, promotes endoplasmic reticulum membrane curvature formation prior to vesicle budding (PubMed:32690950). Involved in regulation of degradative endocytic trafficking and required for the abscission step in cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20208530, PubMed:20643123). Involved in the transport of lysosomal enzyme precursors to lysosomes (By similarity). Required for transport from early to late endosomes (By similarity). {ECO:0000250|UniProtKB:O88763, ECO:0000269|PubMed:14617358, ECO:0000269|PubMed:20208530, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:32690950, ECO:0000269|PubMed:33637724, ECO:0000269|PubMed:7628435}.; FUNCTION: (Microbial infection) Kinase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
Q8NEN0 | ARMC2 | S93 | ochoa | Armadillo repeat-containing protein 2 | Required for sperm flagellum axoneme organization and function (By similarity). Involved in axonemal central pair complex assembly and/or stability (By similarity). {ECO:0000250|UniProtKB:Q3URY6}. |
Q8NEV8 | EXPH5 | S393 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEY1 | NAV1 | S1253 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEY1 | NAV1 | S1382 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NF50 | DOCK8 | S948 | ochoa | Dedicator of cytokinesis protein 8 | Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP (PubMed:22461490, PubMed:28028151). During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC (By similarity). Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane (PubMed:28028151). Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing (PubMed:25762780). {ECO:0000250|UniProtKB:Q8C147, ECO:0000269|PubMed:22461490, ECO:0000269|PubMed:25762780, ECO:0000269|PubMed:28028151}. |
Q8NF91 | SYNE1 | S5989 | ochoa | Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}. |
Q8NFM4 | ADCY4 | S499 | ochoa | Adenylate cyclase type 4 (EC 4.6.1.1) (ATP pyrophosphate-lyase 4) (Adenylate cyclase type IV) (Adenylyl cyclase 4) | Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. {ECO:0000250|UniProtKB:P26770}. |
Q8NFT8 | DNER | S688 | ochoa | Delta and Notch-like epidermal growth factor-related receptor | Activator of the NOTCH1 pathway. May mediate neuron-glia interaction during astrocytogenesis (By similarity). {ECO:0000250}. |
Q8NG27 | PJA1 | S265 | ochoa | E3 ubiquitin-protein ligase Praja-1 (Praja1) (EC 2.3.2.27) (RING finger protein 70) (RING-type E3 ubiquitin transferase Praja-1) | Has E2-dependent E3 ubiquitin-protein ligase activity. Ubiquitinates MAGED1 antigen leading to its subsequent degradation by proteasome (By similarity). May be involved in protein sorting. {ECO:0000250, ECO:0000269|PubMed:12036302}. |
Q8NG31 | KNL1 | S1732 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NHU0 | CT45A3 | S115 | ochoa | Cancer/testis antigen family 45 member A3 (Cancer/testis antigen 45-3) (Cancer/testis antigen 45-4) (Cancer/testis antigen 45A3) (Cancer/testis antigen 45A4) (Cancer/testis antigen family 45 member A4) | None |
Q8NHV4 | NEDD1 | S282 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8NHY2 | COP1 | S319 | ochoa | E3 ubiquitin-protein ligase COP1 (EC 2.3.2.27) (Constitutive photomorphogenesis protein 1 homolog) (hCOP1) (RING finger and WD repeat domain protein 2) (RING finger protein 200) (RING-type E3 ubiquitin transferase RFWD2) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Involved in JUN ubiquitination and degradation. Directly involved in p53 (TP53) ubiquitination and degradation, thereby abolishing p53-dependent transcription and apoptosis. Ubiquitinates p53 independently of MDM2 or RCHY1. Probably mediates E3 ubiquitin ligase activity by functioning as the essential RING domain subunit of larger E3 complexes. In contrast, it does not constitute the catalytic RING subunit in the DCX DET1-COP1 complex that negatively regulates JUN, the ubiquitin ligase activity being mediated by RBX1. Involved in 14-3-3 protein sigma/SFN ubiquitination and proteasomal degradation, leading to AKT activation and promotion of cell survival. Ubiquitinates MTA1 leading to its proteasomal degradation. Upon binding to TRIB1, ubiquitinates CEBPA, which lacks a canonical COP1-binding motif (Probable). {ECO:0000269|PubMed:12466024, ECO:0000269|PubMed:12615916, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15103385, ECO:0000269|PubMed:19805145, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21625211, ECO:0000303|PubMed:27041596}. |
Q8TAD4 | SLC30A5 | S378 | ochoa | Proton-coupled zinc antiporter SLC30A5 (Solute carrier family 30 member 5) (Zinc transporter 5) (ZnT-5) (ZnT-like transporter 1) (hZTL1) | Together with SLC30A6 forms a functional proton-coupled zinc ion antiporter mediating zinc entry into the lumen of organelles along the secretory pathway (PubMed:11904301, PubMed:15525635, PubMed:15994300, PubMed:19366695, PubMed:22529353). By contributing to zinc ion homeostasis within the early secretory pathway, regulates the activation and folding of enzymes like alkaline phosphatases and enzymes involved in phosphatidylinositol glycan anchor biosynthesis (PubMed:15525635, PubMed:15994300, PubMed:16636052, PubMed:35525268). Through the transport of zinc into secretory granules of pancreatic beta-cells, plays an important role in the storage and secretion of insulin (PubMed:11904301). {ECO:0000269|PubMed:11904301, ECO:0000269|PubMed:15525635, ECO:0000269|PubMed:15994300, ECO:0000269|PubMed:16636052, ECO:0000269|PubMed:19366695, ECO:0000269|PubMed:22529353, ECO:0000269|PubMed:35525268}.; FUNCTION: [Isoform 2]: Zinc ion:proton antiporter mediating influx and efflux of zinc at the plasma membrane. {ECO:0000269|PubMed:11937503, ECO:0000269|PubMed:17355957}. |
Q8TBE0 | BAHD1 | S679 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TC05 | MDM1 | S242 | ochoa | Nuclear protein MDM1 | Microtubule-binding protein that negatively regulates centriole duplication. Binds to and stabilizes microtubules (PubMed:26337392). {ECO:0000269|PubMed:26337392}. |
Q8TC76 | FAM110B | S173 | ochoa | Protein FAM110B | May be involved in tumor progression. |
Q8TEK3 | DOT1L | S902 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEW8 | PARD3B | S635 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF72 | SHROOM3 | S1656 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WTV1 | THAP3 | S122 | ochoa | THAP domain-containing protein 3 | Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. {ECO:0000269|PubMed:20200153}. |
Q8WWI1 | LMO7 | S407 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWI1 | LMO7 | S1177 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWL2 | SPIRE2 | S622 | ochoa | Protein spire homolog 2 (Spir-2) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). {ECO:0000250|UniProtKB:Q8K1S6, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480}. |
Q8WXG6 | MADD | S930 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q8WXH0 | SYNE2 | S6459 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXI2 | CNKSR2 | S248 | ochoa | Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) | May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}. |
Q8WY91 | THAP4 | S283 | ochoa | Peroxynitrite isomerase THAP4 (EC 5.99.-.-) (Ferric Homo sapiens nitrobindin) (Hs-Nb(III)) (THAP domain-containing protein 4) | Heme-binding protein able to scavenge peroxynitrite and to protect free L-tyrosine against peroxynitrite-mediated nitration, by acting as a peroxynitrite isomerase that converts peroxynitrite to nitrate. Therefore, this protein likely plays a role in peroxynitrite sensing and in the detoxification of reactive nitrogen and oxygen species (RNS and ROS, respectively). Is able to bind nitric oxide (NO) in vitro, but may act as a sensor of peroxynitrite levels in vivo, possibly modulating the transcriptional activity residing in the N-terminal region. {ECO:0000269|PubMed:30524950, ECO:0000269|PubMed:32295384}. |
Q92540 | SMG7 | S897 | ochoa | Nonsense-mediated mRNA decay factor SMG7 (SMG-7 homolog) (hSMG-7) | Plays a role in nonsense-mediated mRNA decay. Recruits UPF1 to cytoplasmic mRNA decay bodies. Together with SMG5 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. {ECO:0000269|PubMed:15546618, ECO:0000269|PubMed:15721257}. |
Q92545 | TMEM131 | S1559 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92585 | MAML1 | S451 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92608 | DOCK2 | S218 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92615 | LARP4B | S451 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92615 | LARP4B | S664 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92783 | STAM | Y198 | ochoa | Signal transducing adapter molecule 1 (STAM-1) | Involved in intracellular signal transduction mediated by cytokines and growth factors. Upon IL-2 and GM-CSL stimulation, it plays a role in signaling leading to DNA synthesis and MYC induction. May also play a role in T-cell development. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with HGS (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.; FUNCTION: (Microbial infection) Plays an important role in Dengue virus entry. {ECO:0000269|PubMed:29742433}. |
Q92786 | PROX1 | S136 | ochoa | Prospero homeobox protein 1 (Homeobox prospero-like protein PROX1) (PROX-1) | Transcription factor involved in developmental processes such as cell fate determination, gene transcriptional regulation and progenitor cell regulation in a number of organs. Plays a critical role in embryonic development and functions as a key regulatory protein in neurogenesis and the development of the heart, eye lens, liver, pancreas and the lymphatic system. Involved in the regulation of the circadian rhythm. Represses: transcription of the retinoid-related orphan receptor RORG, transcriptional activator activity of RORA and RORG and the expression of RORA/G-target genes including core clock components: BMAL1, NPAS2 and CRY1 and metabolic genes: AVPR1A and ELOVL3. {ECO:0000269|PubMed:23723244, ECO:0000303|PubMed:22733308}. |
Q92817 | EVPL | S361 | ochoa | Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. |
Q92817 | EVPL | S1698 | ochoa | Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. |
Q92835 | INPP5D | S289 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q92890 | UFD1 | S129 | ochoa | Ubiquitin recognition factor in ER-associated degradation protein 1 (Ubiquitin fusion degradation protein 1) (UB fusion protein 1) | Essential component of the ubiquitin-dependent proteolytic pathway which degrades ubiquitin fusion proteins. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. It may be involved in the development of some ectoderm-derived structures (By similarity). Acts as a negative regulator of type I interferon production via the complex formed with VCP and NPLOC4, which binds to RIGI and recruits RNF125 to promote ubiquitination and degradation of RIGI (PubMed:26471729). {ECO:0000250|UniProtKB:Q9ES53, ECO:0000269|PubMed:26471729}. |
Q92922 | SMARCC1 | S310 | ochoa | SWI/SNF complex subunit SMARCC1 (BRG1-associated factor 155) (BAF155) (SWI/SNF complex 155 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:P97496, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q92934 | BAD | S25 | ochoa | Bcl2-associated agonist of cell death (BAD) (Bcl-2-binding component 6) (Bcl-2-like protein 8) (Bcl2-L-8) (Bcl-xL/Bcl-2-associated death promoter) (Bcl2 antagonist of cell death) | Promotes cell death. Successfully competes for the binding to Bcl-X(L), Bcl-2 and Bcl-W, thereby affecting the level of heterodimerization of these proteins with BAX. Can reverse the death repressor activity of Bcl-X(L), but not that of Bcl-2 (By similarity). Appears to act as a link between growth factor receptor signaling and the apoptotic pathways. {ECO:0000250}. |
Q92953 | KCNB2 | S531 | ochoa | Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells. {ECO:0000250|UniProtKB:A6H8H5, ECO:0000250|UniProtKB:Q63099}. |
Q93052 | LPP | S231 | ochoa | Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) | May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}. |
Q93074 | MED12 | S635 | ochoa | Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}. |
Q93075 | TATDN2 | S85 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q96A26 | FAM162A | S47 | ochoa | Protein FAM162A (E2-induced gene 5 protein) (Growth and transformation-dependent protein) (HGTD-P) | Proposed to be involved in regulation of apoptosis; the exact mechanism may differ between cell types/tissues (PubMed:15082785). May be involved in hypoxia-induced cell death of transformed cells implicating cytochrome C release and caspase activation (such as CASP9) and inducing mitochondrial permeability transition (PubMed:15082785). May be involved in hypoxia-induced cell death of neuronal cells probably by promoting release of AIFM1 from mitochondria to cytoplasm and its translocation to the nucleus; however, the involvement of caspases has been reported conflictingly (By similarity). {ECO:0000250|UniProtKB:Q9D6U8, ECO:0000269|PubMed:15082785}. |
Q96AQ6 | PBXIP1 | S43 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96AV8 | E2F7 | S638 | ochoa | Transcription factor E2F7 (E2F-7) | Atypical E2F transcription factor that participates in various processes such as angiogenesis, polyploidization of specialized cells and DNA damage response. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5'-TTTC[CG]CGC-3'. Directly represses transcription of classical E2F transcription factors such as E2F1. Acts as a regulator of S-phase by recognizing and binding the E2-related site 5'-TTCCCGCC-3' and mediating repression of G1/S-regulated genes. Plays a key role in polyploidization of cells in placenta and liver by regulating the endocycle, probably by repressing genes promoting cytokinesis and antagonizing action of classical E2F proteins (E2F1, E2F2 and/or E2F3). Required for placental development by promoting polyploidization of trophoblast giant cells. Also involved in DNA damage response: up-regulated by p53/TP53 following genotoxic stress and acts as a downstream effector of p53/TP53-dependent repression by mediating repression of indirect p53/TP53 target genes involved in DNA replication. Acts as a promoter of sprouting angiogenesis, possibly by acting as a transcription activator: associates with HIF1A, recognizes and binds the VEGFA promoter, which is different from canonical E2 recognition site, and activates expression of the VEGFA gene. Acts as a negative regulator of keratinocyte differentiation. {ECO:0000269|PubMed:14633988, ECO:0000269|PubMed:15133492, ECO:0000269|PubMed:18202719, ECO:0000269|PubMed:19223542, ECO:0000269|PubMed:21248772, ECO:0000269|PubMed:22802528, ECO:0000269|PubMed:22802529, ECO:0000269|PubMed:22903062}. |
Q96AY4 | TTC28 | S2227 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96B01 | RAD51AP1 | S139 | ochoa | RAD51-associated protein 1 (HsRAD51AP1) (RAD51-interacting protein) | Structure-specific DNA-binding protein involved in DNA repair by promoting RAD51-mediated homologous recombination (PubMed:17996710, PubMed:17996711, PubMed:20871616, PubMed:25288561, PubMed:26323318). Acts by stimulating D-Loop formation by RAD51: specifically enhances joint molecule formation through its structure-specific DNA interaction and its interaction with RAD51 (PubMed:17996710, PubMed:17996711). Binds single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures: has a strong preference for branched-DNA structures that are obligatory intermediates during joint molecule formation (PubMed:17996710, PubMed:17996711, PubMed:22375013, PubMed:9396801). Cooperates with WDR48/UAF1 to stimulate RAD51-mediated homologous recombination: both WDR48/UAF1 and RAD51AP1 have coordinated role in DNA-binding during homologous recombination and DNA repair (PubMed:27239033, PubMed:27463890, PubMed:32350107). WDR48/UAF1 and RAD51AP1 also have a coordinated role in DNA-binding to promote USP1-mediated deubiquitination of FANCD2 (PubMed:31253762). Also involved in meiosis by promoting DMC1-mediated homologous meiotic recombination (PubMed:21307306). Key mediator of alternative lengthening of telomeres (ALT) pathway, a homology-directed repair mechanism of telomere elongation that controls proliferation in aggressive cancers, by stimulating homologous recombination (PubMed:31400850). May also bind RNA; additional evidences are however required to confirm RNA-binding in vivo (PubMed:9396801). {ECO:0000269|PubMed:17996710, ECO:0000269|PubMed:17996711, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:21307306, ECO:0000269|PubMed:22375013, ECO:0000269|PubMed:25288561, ECO:0000269|PubMed:26323318, ECO:0000269|PubMed:27239033, ECO:0000269|PubMed:27463890, ECO:0000269|PubMed:31253762, ECO:0000269|PubMed:31400850, ECO:0000269|PubMed:32350107, ECO:0000269|PubMed:9396801}. |
Q96BY7 | ATG2B | S735 | ochoa | Autophagy-related protein 2 homolog B | Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}. |
Q96C24 | SYTL4 | S74 | ochoa | Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) | Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}. |
Q96D46 | NMD3 | S258 | ochoa | 60S ribosomal export protein NMD3 (hNMD3) | Acts as an adapter for the XPO1/CRM1-mediated export of the 60S ribosomal subunit. {ECO:0000269|PubMed:12724356, ECO:0000269|PubMed:12773398}. |
Q96DR7 | ARHGEF26 | S329 | ochoa | Rho guanine nucleotide exchange factor 26 (SH3 domain-containing guanine exchange factor) | Activates RhoG GTPase by promoting the exchange of GDP by GTP. Required for the formation of membrane ruffles during macropinocytosis. Required for the formation of cup-like structures during trans-endothelial migration of leukocytes. In case of Salmonella enterica infection, activated by SopB, which induces cytoskeleton rearrangements and promotes bacterial entry. {ECO:0000269|PubMed:15133129, ECO:0000269|PubMed:17074883, ECO:0000269|PubMed:17875742}. |
Q96EB6 | SIRT1 | S682 | psp | NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)] | NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21947282, PubMed:22274616, PubMed:22918831, PubMed:24415752, PubMed:24824780, PubMed:29681526, PubMed:29765047, PubMed:30409912). Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (PubMed:15469825). Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively (PubMed:14976264, PubMed:14980222, PubMed:15152190). Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction (PubMed:15205477). Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT) (By similarity). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus (PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1, leading to its activation (PubMed:21504832). Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449). Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression (PubMed:20375098). Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting (By similarity). Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1 (PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response (PubMed:18004385, PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence (PubMed:11672523, PubMed:12006491, PubMed:22542455). Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I (By similarity). Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability (PubMed:19364925, PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation (PubMed:14976264, PubMed:14980222, PubMed:21841822). Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis (PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1 (PubMed:17283066, PubMed:17620057, PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver (PubMed:15692560). Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional repression (PubMed:12535671). In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62' (PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3 (PubMed:17505061). Represses HNF1A-mediated transcription (By similarity). Required for the repression of ESRRG by CREBZF (PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteasomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed (PubMed:17936707). Involved in lipid metabolism: deacetylates LPIN1, thereby inhibiting diacylglycerol synthesis (PubMed:20817729, PubMed:29765047). Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2 (By similarity). Deacetylates p300/EP300 and PRMT1 (By similarity). Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation (PubMed:21701047). Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis (PubMed:23142079). Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2 (PubMed:15205477, PubMed:16998810, PubMed:17334224, PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625). Promotes DNA double-strand breaks by mediating deacetylation of SIRT6 (PubMed:32538779). Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1 (PubMed:19934257). Catalyzes deacetylation of ERCC4/XPF, thereby impairing interaction with ERCC1 and nucleotide excision repair (NER) (PubMed:32034146). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641). Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation (PubMed:21775285). Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability (PubMed:21890893). Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization (PubMed:22274616). During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling (PubMed:18662546). Deacetylates BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator (By similarity). Deacetylates PER2, facilitating its ubiquitination and degradation by the proteasome (By similarity). Protects cardiomyocytes against palmitate-induced apoptosis (By similarity). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis (PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). Deacetylates SOX9; promoting SOX9 nuclear localization and transactivation activity (By similarity). Involved in the regulation of centrosome duplication: deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (PubMed:31722219). Deacetylates NDC80/HEC1 (PubMed:30409912). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating protein delactylation, depropionylation and decrotonylation (PubMed:28497810, PubMed:38512451). Mediates depropionylation of Osterix (SP7) (By similarity). Catalyzes decrotonylation of histones; it however does not represent a major histone decrotonylase (PubMed:28497810). Mediates protein delactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:14976264, ECO:0000269|PubMed:14980222, ECO:0000269|PubMed:15126506, ECO:0000269|PubMed:15152190, ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:16166628, ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:16998810, ECO:0000269|PubMed:17283066, ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:17334224, ECO:0000269|PubMed:17505061, ECO:0000269|PubMed:17612497, ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18203716, ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18485871, ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18687677, ECO:0000269|PubMed:19188449, ECO:0000269|PubMed:19220062, ECO:0000269|PubMed:19364925, ECO:0000269|PubMed:19690166, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20097625, ECO:0000269|PubMed:20100829, ECO:0000269|PubMed:20203304, ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20620956, ECO:0000269|PubMed:20670893, ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:20955178, ECO:0000269|PubMed:21149730, ECO:0000269|PubMed:21245319, ECO:0000269|PubMed:21471201, ECO:0000269|PubMed:21504832, ECO:0000269|PubMed:21555002, ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21701047, ECO:0000269|PubMed:21775285, ECO:0000269|PubMed:21807113, ECO:0000269|PubMed:21841822, ECO:0000269|PubMed:21890893, ECO:0000269|PubMed:21947282, ECO:0000269|PubMed:22274616, ECO:0000269|PubMed:22542455, ECO:0000269|PubMed:22918831, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:29765047, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:38512451}.; FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. {ECO:0000269|PubMed:20975832}.; FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly. {ECO:0000269|PubMed:21987377}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. {ECO:0000269|PubMed:18329615}. |
Q96EE3 | SEH1L | S179 | ochoa | Nucleoporin SEH1 (GATOR2 complex protein SEH1) (Nup107-160 subcomplex subunit SEH1) (SEC13-like protein) | Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC (PubMed:15146057, PubMed:17363900). The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation. This subunit plays a role in recruitment of the Nup107-160 subcomplex to the kinetochore (PubMed:15146057, PubMed:17363900). {ECO:0000269|PubMed:15146057, ECO:0000269|PubMed:17363900}.; FUNCTION: As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:26972053, PubMed:27487210). Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex (PubMed:35831510). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26972053, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}. |
Q96EE3 | SEH1L | S190 | ochoa | Nucleoporin SEH1 (GATOR2 complex protein SEH1) (Nup107-160 subcomplex subunit SEH1) (SEC13-like protein) | Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC (PubMed:15146057, PubMed:17363900). The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation. This subunit plays a role in recruitment of the Nup107-160 subcomplex to the kinetochore (PubMed:15146057, PubMed:17363900). {ECO:0000269|PubMed:15146057, ECO:0000269|PubMed:17363900}.; FUNCTION: As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:26972053, PubMed:27487210). Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex (PubMed:35831510). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26972053, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}. |
Q96EN8 | MOCOS | S530 | ochoa | Molybdenum cofactor sulfurase (MCS) (MOS) (MoCo sulfurase) (hMCS) (EC 2.8.1.9) (Molybdenum cofactor sulfurtransferase) | Sulfurates the molybdenum cofactor (PubMed:34356852). Sulfation of molybdenum is essential for xanthine dehydrogenase (XDH) and aldehyde oxidase (ADO) enzymes in which molybdenum cofactor is liganded by 1 oxygen and 1 sulfur atom in active form (PubMed:34356852). In vitro, the C-terminal domain is able to reduce N-hydroxylated prodrugs, such as benzamidoxime (PubMed:16973608). {ECO:0000255|HAMAP-Rule:MF_03050, ECO:0000269|PubMed:16973608, ECO:0000269|PubMed:34356852}. |
Q96EU6 | RRP36 | S73 | ochoa | Ribosomal RNA processing protein 36 homolog | Involved in the early processing steps of the pre-rRNA in the maturation pathway leading to the 18S rRNA. {ECO:0000269|PubMed:20038530}. |
Q96EV2 | RBM33 | S765 | ochoa | RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) | RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}. |
Q96G74 | OTUD5 | S527 | ochoa | OTU domain-containing protein 5 (EC 3.4.19.12) (Deubiquitinating enzyme A) (DUBA) | Deubiquitinating enzyme that functions as a negative regulator of the innate immune system (PubMed:17991829, PubMed:22245969, PubMed:23827681, PubMed:33523931). Has peptidase activity towards 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:22245969). Can also cleave 'Lys-11'-linked ubiquitin chains (in vitro) (PubMed:22245969). Acts via TRAF3 deubiquitination and subsequent suppression of type I interferon (IFN) production (PubMed:17991829). Controls neuroectodermal differentiation through cleaving 'Lys-48'-linked ubiquitin chains to counteract degradation of select chromatin regulators such as ARID1A, HDAC2 and HCF1 (PubMed:33523931). Acts as a positive regulator of mTORC1 and mTORC2 signaling following phosphorylation by MTOR: acts by mediating deubiquitination of BTRC, leading to its stability (PubMed:33110214). {ECO:0000269|PubMed:17991829, ECO:0000269|PubMed:22245969, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:33523931}. |
Q96GS4 | BORCS6 | S199 | ochoa | BLOC-1-related complex subunit 6 (Lysosome-dispersing protein) (Lyspersin) | As part of the BORC complex may play a role in lysosomes movement and localization at the cell periphery. Associated with the cytosolic face of lysosomes, the BORC complex may recruit ARL8B and couple lysosomes to microtubule plus-end-directed kinesin motor. {ECO:0000269|PubMed:25898167}. |
Q96GY0 | ZC2HC1A | S179 | ochoa | Zinc finger C2HC domain-containing protein 1A | None |
Q96HA1 | POM121 | S108 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HE9 | PRR11 | S40 | ochoa | Proline-rich protein 11 | Plays a critical role in cell cycle progression. {ECO:0000269|PubMed:23246489}. |
Q96IZ5 | RBM41 | S232 | ochoa | RNA-binding protein 41 (RNA-binding motif protein 41) | May bind RNA. {ECO:0000305}. |
Q96JA1 | LRIG1 | S975 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 1 (LIG-1) | Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation. {ECO:0000269|PubMed:15282549}. |
Q96L73 | NSD1 | S224 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L91 | EP400 | S717 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96NM4 | TOX2 | S351 | ochoa | TOX high mobility group box family member 2 (Granulosa cell HMG box protein 1) (GCX-1) | Putative transcriptional activator involved in the hypothalamo-pituitary-gonadal system. |
Q96Q15 | SMG1 | S3527 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96QZ7 | MAGI1 | S612 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96QZ7 | MAGI1 | S759 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96RI0 | F2RL3 | S359 | ochoa | Proteinase-activated receptor 4 (PAR-4) (Coagulation factor II receptor-like 3) (Thrombin receptor-like 3) | Receptor for activated thrombin or trypsin coupled to G proteins that stimulate phosphoinositide hydrolysis (PubMed:10079109). May play a role in platelets activation (PubMed:10079109). {ECO:0000269|PubMed:10079109}. |
Q96RL1 | UIMC1 | S677 | ochoa|psp | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RT7 | TUBGCP6 | S1381 | ochoa | Gamma-tubulin complex component 6 (GCP-6) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:11694571, PubMed:38305685, PubMed:38609661, PubMed:39321809). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:11694571, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
Q96RU3 | FNBP1 | S517 | ochoa | Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) | May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}. |
Q96SD1 | DCLRE1C | S538 | psp | Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) | Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}. |
Q96T58 | SPEN | S847 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99081 | TCF12 | S305 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99594 | TEAD3 | S145 | ochoa | Transcriptional enhancer factor TEF-5 (DTEF-1) (TEA domain family member 3) (TEAD-3) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q99612 | KLF6 | S192 | ochoa | Krueppel-like factor 6 (B-cell-derived protein 1) (Core promoter element-binding protein) (GC-rich sites-binding factor GBF) (Proto-oncogene BCD1) (Suppressor of tumorigenicity 12 protein) (Transcription factor Zf9) | Transcriptional activator (By similarity). Binds a GC box motif. Could play a role in B-cell growth and development. {ECO:0000250}. |
Q99666 | RGPD5 | S788 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99708 | RBBP8 | S549 | ochoa | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99829 | CPNE1 | S55 | ochoa | Copine-1 (Chromobindin 17) (Copine I) | Calcium-dependent phospholipid-binding protein that plays a role in calcium-mediated intracellular processes (PubMed:14674885). Involved in the TNF-alpha receptor signaling pathway in a calcium-dependent manner (PubMed:14674885). Exhibits calcium-dependent phospholipid binding properties (PubMed:19539605, PubMed:9430674). Plays a role in neuronal progenitor cell differentiation; induces neurite outgrowth via a AKT-dependent signaling cascade and calcium-independent manner (PubMed:23263657, PubMed:25450385). May recruit target proteins to the cell membrane in a calcium-dependent manner (PubMed:12522145). May function in membrane trafficking (PubMed:9430674). Involved in TNF-alpha-induced NF-kappa-B transcriptional repression by inducing endoprotease processing of the transcription factor NF-kappa-B p65/RELA subunit (PubMed:18212740). Also induces endoprotease processing of NF-kappa-B p50/NFKB1, p52/NFKB2, RELB and REL (PubMed:18212740). {ECO:0000269|PubMed:12522145, ECO:0000269|PubMed:14674885, ECO:0000269|PubMed:18212740, ECO:0000269|PubMed:19539605, ECO:0000269|PubMed:23263657, ECO:0000269|PubMed:25450385, ECO:0000269|PubMed:9430674}. |
Q9BQ52 | ELAC2 | S618 | ochoa | Zinc phosphodiesterase ELAC protein 2 (EC 3.1.26.11) (ElaC homolog protein 2) (Heredity prostate cancer protein 2) (Ribonuclease Z 2) (RNase Z 2) (tRNA 3 endonuclease 2) (tRNase Z 2) | Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA (PubMed:21593607). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly (PubMed:24703694). {ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:24703694}. |
Q9BQA1 | WDR77 | S176 | ochoa | Methylosome protein WDR77 (Androgen receptor cofactor p44) (Methylosome protein 50) (MEP-50) (WD repeat-containing protein 77) (p44/Mep50) | Non-catalytic component of the methylosome complex, composed of PRMT5, WDR77 and CLNS1A, which modifies specific arginines to dimethylarginines in several spliceosomal Sm proteins and histones (PubMed:11756452). This modification targets Sm proteins to the survival of motor neurons (SMN) complex for assembly into small nuclear ribonucleoprotein core particles. Might play a role in transcription regulation. The methylosome complex also methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (PubMed:23071334). {ECO:0000269|PubMed:11756452, ECO:0000269|PubMed:23071334}. |
Q9BSW7 | SYT17 | S119 | ochoa | Synaptotagmin-17 (Protein B/K) (Synaptotagmin XVII) (SytXVII) | Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9BTC0 | DIDO1 | S1827 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BUA3 | SPINDOC | S148 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BVA0 | KATNB1 | S360 | ochoa | Katanin p80 WD40 repeat-containing subunit B1 (Katanin p80 subunit B1) (p80 katanin) | Participates in a complex which severs microtubules in an ATP-dependent manner. May act to target the enzymatic subunit of this complex to sites of action such as the centrosome. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth. {ECO:0000255|HAMAP-Rule:MF_03022, ECO:0000269|PubMed:10751153}. |
Q9BVV6 | KIAA0586 | S818 | ochoa | Protein TALPID3 | Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}. |
Q9BVV6 | KIAA0586 | S1067 | ochoa | Protein TALPID3 | Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}. |
Q9BW04 | SARG | S580 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BWF2 | TRAIP | S347 | ochoa | E3 ubiquitin-protein ligase TRAIP (EC 2.3.2.27) (RING finger protein 206) (TRAF-interacting protein) | E3 ubiquitin ligase required to protect genome stability in response to replication stress (PubMed:25335891, PubMed:26595769, PubMed:26711499, PubMed:26781088, PubMed:27462463, PubMed:31545170). Acts as a key regulator of interstrand cross-link repair, which takes place when both strands of duplex DNA are covalently tethered together, thereby blocking replication and transcription (By similarity). Controls the choice between the two pathways of replication-coupled interstrand-cross-link repair by mediating ubiquitination of MCM7 subunit of the CMG helicase complex (By similarity). Short ubiquitin chains on MCM7 promote recruitment of DNA glycosylase NEIL3 (By similarity). If the interstrand cross-link cannot be cleaved by NEIL3, the ubiquitin chains continue to grow on MCM7, promoting the unloading of the CMG helicase complex by the VCP/p97 ATPase, enabling the Fanconi anemia DNA repair pathway (By similarity). Only catalyzes ubiquitination of MCM7 when forks converge (By similarity). Also involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis: promotes ubiquitination of DPCs, leading to their degradation by the proteasome (By similarity). Has also been proposed to play a role in promoting translesion synthesis by mediating the assembly of 'Lys-63'-linked poly-ubiquitin chains on the Y-family polymerase POLN in order to facilitate bypass of DNA lesions and preserve genomic integrity (PubMed:24553286). The function in translesion synthesis is however controversial (PubMed:26595769). Acts as a regulator of the spindle assembly checkpoint (PubMed:25335891). Also acts as a negative regulator of innate immune signaling by inhibiting activation of NF-kappa-B mediated by TNF (PubMed:22945920). Negatively regulates TLR3/4- and RIG-I-mediated IRF3 activation and subsequent IFNB1 production and cellular antiviral response by promoting 'Lys-48'-linked polyubiquitination of TNK1 leading to its proteasomal degradation (PubMed:22945920). {ECO:0000250|UniProtKB:Q6NRV0, ECO:0000269|PubMed:22945920, ECO:0000269|PubMed:24553286, ECO:0000269|PubMed:25335891, ECO:0000269|PubMed:26595769, ECO:0000269|PubMed:26711499, ECO:0000269|PubMed:26781088, ECO:0000269|PubMed:27462463, ECO:0000269|PubMed:31545170}. |
Q9BWL3 | C1orf43 | S211 | ochoa | Protein C1orf43 (Hepatitis C virus NS5A-transactivated protein 4) (HCV NS5A-transactivated protein 4) (Protein NICE-3) (S863-3) | General regulator of phagocytosis. Required to uptake Gram negative bacterium by macrophages. {ECO:0000269|PubMed:31540829}. |
Q9BWN1 | PRR14 | S304 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BX69 | CARD6 | S985 | ochoa | Caspase recruitment domain-containing protein 6 | May be involved in apoptosis. |
Q9BXL6 | CARD14 | S475 | ochoa | Caspase recruitment domain-containing protein 14 (CARD-containing MAGUK protein 2) (Carma 2) | Acts as a scaffolding protein that can activate the inflammatory transcription factor NF-kappa-B and p38/JNK MAP kinase signaling pathways. Forms a signaling complex with BCL10 and MALT1, and activates MALT1 proteolytic activity and inflammatory gene expression. MALT1 is indispensable for CARD14-induced activation of NF-kappa-B and p38/JNK MAP kinases (PubMed:11278692, PubMed:21302310, PubMed:27071417, PubMed:27113748). May play a role in signaling mediated by TRAF2, TRAF3 and TRAF6 and protects cells against apoptosis. {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:27071417, ECO:0000269|PubMed:27113748}.; FUNCTION: [Isoform 3]: Not able to activate the inflammatory transcription factor NF-kappa-B and may function as a dominant negative regulator (PubMed:21302310, PubMed:26358359). {ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:26358359}. |
Q9BXL7 | CARD11 | S535 | ochoa | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BY84 | DUSP16 | S501 | ochoa | Dual specificity protein phosphatase 16 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 7) (MAP kinase phosphatase 7) (MKP-7) | Dual specificity protein phosphatase involved in the inactivation of MAP kinases. Dephosphorylates MAPK10 bound to ARRB2. {ECO:0000269|PubMed:11489891, ECO:0000269|PubMed:15888437}. |
Q9BY89 | KIAA1671 | S1363 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYB0 | SHANK3 | S1577 | ochoa | SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) | Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}. |
Q9BYT8 | NLN | S53 | ochoa | Neurolysin, mitochondrial (EC 3.4.24.16) (Angiotensin-binding protein) (Microsomal endopeptidase) (MEP) (Mitochondrial oligopeptidase M) (Neurotensin endopeptidase) | Hydrolyzes oligopeptides such as neurotensin, bradykinin and dynorphin A (By similarity). Acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (By similarity). {ECO:0000250|UniProtKB:P42676}. |
Q9BYV8 | CEP41 | S288 | ochoa | Centrosomal protein of 41 kDa (Cep41) (Testis-specific gene A14 protein) | Required during ciliogenesis for tubulin glutamylation in cilium. Probably acts by participating in the transport of TTLL6, a tubulin polyglutamylase, between the basal body and the cilium. {ECO:0000269|PubMed:22246503}. |
Q9BZ95 | NSD3 | S561 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9BZF3 | OSBPL6 | S229 | ochoa | Oxysterol-binding protein-related protein 6 (ORP-6) (OSBP-related protein 6) | Regulates cellular transport and efflux of cholesterol (PubMed:26941018). Plays a role in phosphatidylinositol-4-phophate (PI4P) turnover at the neuronal membrane (By similarity). Binds via its PH domain PI4P, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, and phosphatidic acid (By similarity). Weakly binds 25-hydroxycholesterol (PubMed:17428193). {ECO:0000250|UniProtKB:Q8BXR9, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:26941018}. |
Q9BZH6 | WDR11 | S402 | ochoa | WD repeat-containing protein 11 (Bromodomain and WD repeat-containing protein 2) (WD repeat-containing protein 15) | Involved in the Hedgehog (Hh) signaling pathway, is essential for normal ciliogenesis (PubMed:29263200). Regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotropin-releasing hormone production (PubMed:29263200). WDR11 complex facilitates the tethering of Adaptor protein-1 complex (AP-1)-derived vesicles. WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). {ECO:0000269|PubMed:29263200, ECO:0000269|PubMed:29426865}. |
Q9BZV2 | SLC19A3 | S472 | ochoa | Thiamine transporter 2 (ThTr-2) (ThTr2) (Solute carrier family 19 member 3) | Mediates high affinity thiamine uptake, probably via a proton anti-port mechanism (PubMed:11731220, PubMed:33008889, PubMed:35512554, PubMed:35724964). Has no folate transport activity (PubMed:11731220). Mediates H(+)-dependent pyridoxine transport (PubMed:33008889, PubMed:35512554, PubMed:35724964, PubMed:36456177). {ECO:0000269|PubMed:11731220, ECO:0000269|PubMed:33008889, ECO:0000269|PubMed:35512554, ECO:0000269|PubMed:35724964, ECO:0000269|PubMed:36456177}. |
Q9C0D6 | FHDC1 | S736 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9C0D7 | ZC3H12C | S651 | ochoa | Probable ribonuclease ZC3H12C (EC 3.1.-.-) (MCP-induced protein 3) (Zinc finger CCCH domain-containing protein 12C) | May function as RNase and regulate the levels of target RNA species. {ECO:0000305}. |
Q9C0E4 | GRIP2 | S417 | ochoa | Glutamate receptor-interacting protein 2 (GRIP-2) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons. {ECO:0000250}. |
Q9GZU3 | TMEM39B | S53 | ochoa | Transmembrane protein 39B | May protect the cells against DNA damage caused by exposure to the cold-warming stress and facilitates tissue damage repair during the recovery phase. {ECO:0000250|UniProtKB:Q7ZW11}. |
Q9GZY8 | MFF | S21 | ochoa | Mitochondrial fission factor | Plays a role in mitochondrial and peroxisomal fission (PubMed:18353969, PubMed:23530241, PubMed:24196833). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface (PubMed:23530241). May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles (By similarity). {ECO:0000250|UniProtKB:Q4KM98, ECO:0000269|PubMed:18353969, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:24196833}. |
Q9H0W8 | SMG9 | S451 | ochoa | Nonsense-mediated mRNA decay factor SMG9 | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:19417104). Is recruited by release factors to stalled ribosomes together with SMG1 and SMG8 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required for the efficient association between SMG1 and SMG8 (PubMed:19417104). Plays a role in brain, heart, and eye development (By similarity). {ECO:0000250|UniProtKB:Q9DB90, ECO:0000269|PubMed:19417104}. |
Q9H1B7 | IRF2BPL | S659 | ochoa | Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) | Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}. |
Q9H223 | EHD4 | S157 | ochoa | EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) | ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}. |
Q9H2D6 | TRIOBP | S882 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2S9 | IKZF4 | S148 | ochoa | Zinc finger protein Eos (Ikaros family zinc finger protein 4) | DNA-binding protein that binds to the 5'GGGAATRCC-3' Ikaros-binding sequence. Transcriptional repressor. Interacts with SPI1 and MITF to repress transcription of the CTSK and ACP5 promoters via recruitment of corepressors SIN3A and CTBP2. May be involved in the development of central and peripheral nervous systems. Essential for the inhibitory function of regulatory T-cells (Treg). Mediates FOXP3-mediated gene silencing in regulatory T-cells (Treg) via recruitment of corepressor CTBP1 (By similarity). {ECO:0000250|UniProtKB:Q8C208, ECO:0000269|PubMed:10978333, ECO:0000269|PubMed:12015313, ECO:0000269|PubMed:12444977}. |
Q9H2T7 | RANBP17 | S296 | ochoa | Ran-binding protein 17 | May function as a nuclear transport receptor. {ECO:0000250}. |
Q9H2X6 | HIPK2 | S364 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H2X6 | HIPK2 | S441 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H2X6 | HIPK2 | S924 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H3Q1 | CDC42EP4 | S322 | ochoa | Cdc42 effector protein 4 (Binder of Rho GTPases 4) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation, when overexpressed in fibroblasts. |
Q9H4A3 | WNK1 | S1261 | ochoa|psp | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4B6 | SAV1 | S27 | ochoa|psp | Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) | Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}. |
Q9H583 | HEATR1 | S929 | ochoa | HEAT repeat-containing protein 1 (Protein BAP28) (U3 small nucleolar RNA-associated protein 10 homolog) [Cleaved into: HEAT repeat-containing protein 1, N-terminally processed] | Ribosome biogenesis factor; required for recruitment of Myc to nucleoli (PubMed:38225354). Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Involved in neuronal-lineage cell proliferation (PubMed:38225354). {ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:38225354}. |
Q9H6R7 | WDCP | S501 | ochoa | WD repeat and coiled-coil-containing protein | None |
Q9H6Z4 | RANBP3 | S333 | ochoa | Ran-binding protein 3 (RanBP3) | Acts as a cofactor for XPO1/CRM1-mediated nuclear export, perhaps as export complex scaffolding protein. Bound to XPO1/CRM1, stabilizes the XPO1/CRM1-cargo interaction. In the absence of Ran-bound GTP prevents binding of XPO1/CRM1 to the nuclear pore complex. Binds to CHC1/RCC1 and increases the guanine nucleotide exchange activity of CHC1/RCC1. Recruits XPO1/CRM1 to CHC1/RCC1 in a Ran-dependent manner. Negative regulator of TGF-beta signaling through interaction with the R-SMAD proteins, SMAD2 and SMAD3, and mediating their nuclear export. {ECO:0000269|PubMed:11425870, ECO:0000269|PubMed:11571268, ECO:0000269|PubMed:11932251, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:9637251}. |
Q9H7P9 | PLEKHG2 | S90 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H8M2 | BRD9 | S566 | ochoa | Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) | Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}. |
Q9H8M5 | CNNM2 | S743 | ochoa | Metal transporter CNNM2 (Ancient conserved domain-containing protein 2) (Cyclin-M2) | Divalent metal cation transporter. Mediates transport of divalent metal cations in an order of Mg(2+) > Co(2+) > Mn(2+) > Sr(2+) > Ba(2+) > Cu(2+) > Fe(2+) (By similarity). {ECO:0000250|UniProtKB:Q3TWN3}. |
Q9H9B1 | EHMT1 | S435 | ochoa | Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-methyltransferase 1D) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. During G0 phase, it probably contributes to silencing of MYC- and E2F-responsive genes, suggesting a role in G0/G1 transition in cell cycle. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with probable chromatin reader BAZ2B (By similarity). {ECO:0000250|UniProtKB:Q5DW34, ECO:0000269|PubMed:12004135, ECO:0000269|PubMed:20118233}. |
Q9H9J4 | USP42 | S494 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9H9P5 | UNKL | S344 | ochoa | Putative E3 ubiquitin-protein ligase UNKL (EC 2.3.2.-) (RING finger protein unkempt-like) (Zinc finger CCCH domain-containing protein 5-like) | May participate in a protein complex showing an E3 ligase activity regulated by RAC1. Ubiquitination is directed towards itself and possibly other substrates, such as SMARCD2/BAF60b. Intrinsic E3 ligase activity has not been proven. {ECO:0000269|PubMed:20148946}. |
Q9H9R9 | DBNDD1 | S119 | ochoa | Dysbindin domain-containing protein 1 | None |
Q9HAV4 | XPO5 | S416 | ochoa | Exportin-5 (Exp5) (Ran-binding protein 21) | Mediates the nuclear export of proteins bearing a double-stranded RNA binding domain (dsRBD) and double-stranded RNAs (cargos). XPO5 in the nucleus binds cooperatively to the RNA and to the GTPase Ran in its active GTP-bound form. Proteins containing dsRBDs can associate with this trimeric complex through the RNA. Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause disassembly of the complex and release of the cargo from the export receptor. XPO5 then returns to the nuclear compartment by diffusion through the nuclear pore complex, to mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Overexpression may in some circumstances enhance RNA-mediated gene silencing (RNAi). Mediates nuclear export of isoform 5 of ADAR/ADAR1 in a RanGTP-dependent manner.; FUNCTION: Mediates the nuclear export of micro-RNA precursors, which form short hairpins (PubMed:14631048, PubMed:14681208, PubMed:15613540). Also mediates the nuclear export of synthetic short hairpin RNAs used for RNA interference. In some circumstances can also mediate the nuclear export of deacylated and aminoacylated tRNAs. Specifically recognizes dsRNAs that lack a 5'-overhang in a sequence-independent manner, have only a short 3'-overhang, and that have a double-stranded length of at least 15 base-pairs (PubMed:19965479). Binding is dependent on Ran-GTP (PubMed:19965479). {ECO:0000269|PubMed:14631048, ECO:0000269|PubMed:14681208, ECO:0000269|PubMed:15613540, ECO:0000269|PubMed:19965479}.; FUNCTION: (Microbial infection) Mediates the nuclear export of adenovirus VA1 dsRNA. {ECO:0000269|PubMed:12509441}. |
Q9HAV4 | XPO5 | S826 | ochoa | Exportin-5 (Exp5) (Ran-binding protein 21) | Mediates the nuclear export of proteins bearing a double-stranded RNA binding domain (dsRBD) and double-stranded RNAs (cargos). XPO5 in the nucleus binds cooperatively to the RNA and to the GTPase Ran in its active GTP-bound form. Proteins containing dsRBDs can associate with this trimeric complex through the RNA. Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause disassembly of the complex and release of the cargo from the export receptor. XPO5 then returns to the nuclear compartment by diffusion through the nuclear pore complex, to mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Overexpression may in some circumstances enhance RNA-mediated gene silencing (RNAi). Mediates nuclear export of isoform 5 of ADAR/ADAR1 in a RanGTP-dependent manner.; FUNCTION: Mediates the nuclear export of micro-RNA precursors, which form short hairpins (PubMed:14631048, PubMed:14681208, PubMed:15613540). Also mediates the nuclear export of synthetic short hairpin RNAs used for RNA interference. In some circumstances can also mediate the nuclear export of deacylated and aminoacylated tRNAs. Specifically recognizes dsRNAs that lack a 5'-overhang in a sequence-independent manner, have only a short 3'-overhang, and that have a double-stranded length of at least 15 base-pairs (PubMed:19965479). Binding is dependent on Ran-GTP (PubMed:19965479). {ECO:0000269|PubMed:14631048, ECO:0000269|PubMed:14681208, ECO:0000269|PubMed:15613540, ECO:0000269|PubMed:19965479}.; FUNCTION: (Microbial infection) Mediates the nuclear export of adenovirus VA1 dsRNA. {ECO:0000269|PubMed:12509441}. |
Q9HB21 | PLEKHA1 | S362 | ochoa | Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}. |
Q9HBD1 | RC3H2 | S556 | ochoa | Roquin-2 (EC 2.3.2.27) (Membrane-associated nucleic acid-binding protein) (RING finger and CCCH-type zinc finger domain-containing protein 2) (RING finger protein 164) (RING-type E3 ubiquitin transferase Roquin-2) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF and in many more mRNAs. Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs. In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity. In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression. Also recognizes CDE in its own mRNA and in that of paralogous RC3H1, possibly leading to feedback loop regulation (By similarity). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2B, UBE2D2, UBE2E2, UBE2E3, UBE2G2, UBE2K and UBE2Q2 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). Involved in the ubiquitination of MAP3K5 (PubMed:24448648, PubMed:26489670, PubMed:29186683). Able to interact with double-stranded RNA (dsRNA) (PubMed:26489670). {ECO:0000250|UniProtKB:P0C090, ECO:0000269|PubMed:24448648, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:29186683}. |
Q9HBD1 | RC3H2 | S837 | ochoa | Roquin-2 (EC 2.3.2.27) (Membrane-associated nucleic acid-binding protein) (RING finger and CCCH-type zinc finger domain-containing protein 2) (RING finger protein 164) (RING-type E3 ubiquitin transferase Roquin-2) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF and in many more mRNAs. Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs. In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity. In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression. Also recognizes CDE in its own mRNA and in that of paralogous RC3H1, possibly leading to feedback loop regulation (By similarity). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2B, UBE2D2, UBE2E2, UBE2E3, UBE2G2, UBE2K and UBE2Q2 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). Involved in the ubiquitination of MAP3K5 (PubMed:24448648, PubMed:26489670, PubMed:29186683). Able to interact with double-stranded RNA (dsRNA) (PubMed:26489670). {ECO:0000250|UniProtKB:P0C090, ECO:0000269|PubMed:24448648, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:29186683}. |
Q9HC77 | CPAP | S469 | ochoa|psp | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HCD6 | TANC2 | S169 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCD6 | TANC2 | S1486 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCE7 | SMURF1 | S200 | ochoa | E3 ubiquitin-protein ligase SMURF1 (hSMURF1) (EC 2.3.2.26) (HECT-type E3 ubiquitin transferase SMURF1) (SMAD ubiquitination regulatory factor 1) (SMAD-specific E3 ubiquitin-protein ligase 1) | E3 ubiquitin-protein ligase that acts as a negative regulator of BMP signaling pathway. Mediates ubiquitination and degradation of SMAD1 and SMAD5, 2 receptor-regulated SMADs specific for the BMP pathway. Promotes ubiquitination and subsequent proteasomal degradation of TRAF family members and RHOA. Promotes ubiquitination and subsequent proteasomal degradation of MAVS (PubMed:23087404). Acts as an antagonist of TGF-beta signaling by ubiquitinating TGFBR1 and targeting it for degradation (PubMed:21791611). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:10458166, ECO:0000269|PubMed:19937093, ECO:0000269|PubMed:21402695, ECO:0000269|PubMed:21791611, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23999003}. |
Q9HCH5 | SYTL2 | S154 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCH5 | SYTL2 | S437 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCK8 | CHD8 | S432 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NP73 | ALG13 | S830 | ochoa | UDP-N-acetylglucosamine transferase subunit ALG13 (EC 2.4.1.141) (Asparagine-linked glycosylation 13 homolog) (Glycosyltransferase 28 domain-containing protein 1) | Catalytic subunit of the UDP-N-acetylglucosamine transferase complex that operates in the biosynthetic pathway of dolichol-linked oligosaccharides, the glycan precursors employed in protein asparagine (N)-glycosylation. The assembly of dolichol-linked oligosaccharides begins on the cytosolic side of the endoplasmic reticulum membrane and finishes in its lumen. The sequential addition of sugars to dolichol pyrophosphate produces dolichol-linked oligosaccharides containing fourteen sugars, including two GlcNAcs, nine mannoses and three glucoses. Once assembled, the oligosaccharide is transferred from the lipid to nascent proteins by oligosaccharyltransferases. On the cytoplasmic face of the endoplasmic reticulum, the dimeric ALG13/ALG14 complex catalyzes the second step of dolichol pyrophosphate biosynthesis, transferring a beta1,4-linked N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to GlcNAc-pyrophosphatedolichol (Gn-PDol) to produce N,N'-diacetylchitobiosyl diphosphodolichol. N,N'-diacetylchitobiosyl diphosphodolichol is a substrate for ALG1, the following enzyme in the biosynthetic pathway. {ECO:0000269|PubMed:22492991}.; FUNCTION: [Isoform 2]: Catalytic subunit of the UDP-N-acetylglucosamine transferase complex that operates in the biosynthetic pathway of dolichol-linked oligosaccharides, the glycan precursors employed in protein asparagine (N)-glycosylation. The assembly of dolichol-linked oligosaccharides begins on the cytosolic side of the endoplasmic reticulum membrane and finishes in its lumen. The sequential addition of sugars to dolichol pyrophosphate produces dolichol-linked oligosaccharides containing fourteen sugars, including two GlcNAcs, nine mannoses and three glucoses. Once assembled, the oligosaccharide is transferred from the lipid to nascent proteins by oligosaccharyltransferases. On the cytoplasmic face of the endoplasmic reticulum, the dimeric ALG13/ALG14 complex catalyzes the second step of dolichol pyrophosphate biosynthesis, transferring a beta1,4-linked N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to GlcNAc-pyrophosphatedolichol (Gn-PDol) to produce N,N'-diacetylchitobiosyl diphosphodolichol. N,N'-diacetylchitobiosyl diphosphodolichol is a substrate for ALG1, the following enzyme in the biosynthetic pathway. {ECO:0000269|PubMed:16100110, ECO:0000269|PubMed:36200043}.; FUNCTION: [Isoform 1]: No glycosyltransferase or deubiquitinase activity is detected for this potential multifunctional enzyme. {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:36200043}. |
Q9NPC7 | MYNN | S547 | ochoa | Myoneurin (Zinc finger and BTB domain-containing protein 31) | None |
Q9NQC3 | RTN4 | S863 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NQG7 | HPS4 | S272 | ochoa | BLOC-3 complex member HPS4 (Hermansky-Pudlak syndrome 4 protein) (Light-ear protein homolog) | Component of the BLOC-3 complex, a complex that acts as a guanine exchange factor (GEF) for RAB32 and RAB38, promotes the exchange of GDP to GTP, converting them from an inactive GDP-bound form into an active GTP-bound form. The BLOC-3 complex plays an important role in the control of melanin production and melanosome biogenesis and promotes the membrane localization of RAB32 and RAB38 (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
Q9NQQ7 | SLC35C2 | S336 | ochoa | Solute carrier family 35 member C2 (Ovarian cancer-overexpressed gene 1 protein) | May play an important role in the cellular response to tissue hypoxia. May be either a GDP-fucose transporter that competes with SLC35C1 for GDP-fucose, or a factor that otherwise enhances the fucosylation of Notch and is required for optimal Notch signaling in mammalian cells. {ECO:0000269|PubMed:20837470}. |
Q9NQS1 | AVEN | S261 | ochoa | Cell death regulator Aven | Protects against apoptosis mediated by Apaf-1. |
Q9NQS7 | INCENP | S899 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQV8 | PRDM8 | S375 | ochoa | PR domain zinc finger protein 8 (EC 2.1.1.-) (PR domain-containing protein 8) | Probable histone methyltransferase, preferentially acting on 'Lys-9' of histone H3 (By similarity). Involved in the control of steroidogenesis through transcriptional repression of steroidogenesis marker genes such as CYP17A1 and LHCGR (By similarity). Forms with BHLHE22 a transcriptional repressor complex controlling genes involved in neural development and neuronal differentiation (By similarity). In the retina, it is required for rod bipolar and type 2 OFF-cone bipolar cell survival (By similarity). {ECO:0000250|UniProtKB:Q8BZ97}. |
Q9NQX0 | PRDM6 | S456 | ochoa | Putative histone-lysine N-methyltransferase PRDM6 (EC 2.1.1.361) (PR domain zinc finger protein 6) (PR domain-containing protein 6) | Putative histone methyltransferase that acts as a transcriptional repressor of smooth muscle gene expression. Promotes the transition from differentiated to proliferative smooth muscle by suppressing differentiation and maintaining the proliferative potential of vascular smooth muscle cells. Also plays a role in endothelial cells by inhibiting endothelial cell proliferation, survival and differentiation. It is unclear whether it has histone methyltransferase activity in vivo. According to some authors, it does not act as a histone methyltransferase by itself and represses transcription by recruiting EHMT2/G9a. According to others, it possesses histone methyltransferase activity when associated with other proteins and specifically methylates 'Lys-20' of histone H4 in vitro. 'Lys-20' methylation represents a specific tag for epigenetic transcriptional repression. {ECO:0000250|UniProtKB:Q3UZD5}. |
Q9NRE2 | TSHZ2 | S715 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NRE2 | TSHZ2 | S980 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NS25 | SPANXB1 | S69 | ochoa | Sperm protein associated with the nucleus on the X chromosome B1 (Cancer/testis antigen 11.2) (CT11.2) (Nuclear-associated protein SPAN-Xb) (SPANX-B) (SPANX family member B1) (SPANX family member F1) | None |
Q9NS26 | SPANXA1 | S63 | ochoa | Sperm protein associated with the nucleus on the X chromosome A (Cancer/testis antigen 11.1) (CT11.1) (Nuclear-associated protein SPAN-Xa) (SPAN-X) (SPANX-A) (SPANX family member A) | None |
Q9NS62 | THSD1 | S791 | ochoa | Thrombospondin type-1 domain-containing protein 1 (Transmembrane molecule with thrombospondin module) | Is a positive regulator of nascent focal adhesion assembly, involved in the modulation of endothelial cell attachment to the extracellular matrix. {ECO:0000269|PubMed:27895300, ECO:0000269|PubMed:29069646}. |
Q9NTI5 | PDS5B | S1358 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NUY8 | TBC1D23 | S474 | ochoa | TBC1 domain family member 23 (HCV non-structural protein 4A-transactivated protein 1) | Putative Rab GTPase-activating protein which plays a role in vesicular trafficking (PubMed:28823707). Involved in endosome-to-Golgi trafficking. Acts as a bridging protein by binding simultaneously to golgins, including GOLGA1 and GOLGA4, located at the trans-Golgi, and to the WASH complex, located on endosome-derived vesicles (PubMed:29084197, PubMed:29426865). Together with WDR11 complex facilitates the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). Plays a role in brain development, including in cortical neuron positioning (By similarity). May also be important for neurite outgrowth, possibly through its involvement in membrane trafficking and cargo delivery, 2 processes that are essential for axonal and dendritic growth (By similarity). May act as a general inhibitor of innate immunity signaling, strongly inhibiting multiple TLR and dectin/CLEC7A-signaling pathways. Does not alter initial activation events, but instead affects maintenance of inflammatory gene expression several hours after bacterial lipopolysaccharide (LPS) challenge (By similarity). {ECO:0000250|UniProtKB:Q8K0F1, ECO:0000269|PubMed:28823707, ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:29426865}. |
Q9NVG8 | TBC1D13 | S184 | ochoa | TBC1 domain family member 13 | Acts as a GTPase-activating protein for RAB35. Together with RAB35 may be involved in regulation of insulin-induced glucose transporter SLC2A4/GLUT4 translocation to the plasma membrane in adipocytes. {ECO:0000250|UniProtKB:Q8R3D1}. |
Q9NVI1 | FANCI | S407 | ochoa | Fanconi anemia group I protein (Protein FACI) | Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}. |
Q9NVP2 | ASF1B | S20 | ochoa | Histone chaperone ASF1B (Anti-silencing function protein 1 homolog B) (hAsf1) (hAsf1b) (CCG1-interacting factor A-II) (CIA-II) (hCIA-II) | Histone chaperone that facilitates histone deposition and histone exchange and removal during nucleosome assembly and disassembly (PubMed:11897662, PubMed:14718166, PubMed:15664198, PubMed:16151251, PubMed:21454524, PubMed:26527279). Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly (PubMed:11897662, PubMed:14718166, PubMed:15664198, PubMed:16151251). Also involved in the nuclear import of the histone H3-H4 dimer together with importin-4 (IPO4): specifically recognizes and binds newly synthesized histones with the monomethylation of H3 'Lys-9' (H3K9me1) and diacetylation at 'Lys-5' and 'Lys-12' of H4 (H4K5K12ac) marks in the cytosol (PubMed:20953179, PubMed:21454524, PubMed:26527279). Does not participate in replication-independent nucleosome deposition which is mediated by ASF1A and HIRA (PubMed:11897662, PubMed:14718166, PubMed:15664198, PubMed:16151251). Required for gonad development (PubMed:12842904). {ECO:0000269|PubMed:11897662, ECO:0000269|PubMed:12842904, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15664198, ECO:0000269|PubMed:16151251, ECO:0000269|PubMed:20953179, ECO:0000269|PubMed:21454524, ECO:0000269|PubMed:26527279}. |
Q9NWH9 | SLTM | S289 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NX31 | OSER1 | S125 | ochoa | Oxidative stress-responsive serine-rich protein 1 (Oxidative stress-responsive protein 1) (Peroxide-inducible transcript 1 protein) | None |
Q9NX40 | OCIAD1 | S108 | ochoa | OCIA domain-containing protein 1 (Ovarian cancer immunoreactive antigen domain containing 1) (Ovarian carcinoma immunoreactive antigen) | Maintains stem cell potency (By similarity). Increases STAT3 phosphorylation and controls ERK phosphorylation (By similarity). May act as a scaffold, increasing STAT3 recruitment onto endosomes (By similarity). Involved in integrin-mediated cancer cell adhesion and colony formation in ovarian cancer (PubMed:20515946). {ECO:0000250|UniProtKB:Q9CRD0, ECO:0000269|PubMed:20515946}. |
Q9NX40 | OCIAD1 | S147 | ochoa | OCIA domain-containing protein 1 (Ovarian cancer immunoreactive antigen domain containing 1) (Ovarian carcinoma immunoreactive antigen) | Maintains stem cell potency (By similarity). Increases STAT3 phosphorylation and controls ERK phosphorylation (By similarity). May act as a scaffold, increasing STAT3 recruitment onto endosomes (By similarity). Involved in integrin-mediated cancer cell adhesion and colony formation in ovarian cancer (PubMed:20515946). {ECO:0000250|UniProtKB:Q9CRD0, ECO:0000269|PubMed:20515946}. |
Q9NX95 | SYBU | S99 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NX95 | SYBU | S396 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NX95 | SYBU | S496 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NXL9 | MCM9 | S1088 | ochoa | DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) | Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}. |
Q9NXP7 | GIN1 | S494 | ochoa | Gypsy retrotransposon integrase-like protein 1 (GIN-1) (Ty3/Gypsy integrase 1) (Zinc finger H2C2 domain-containing protein) | None |
Q9NY27 | PPP4R2 | S159 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NY74 | ETAA1 | S464 | ochoa | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NYJ8 | TAB2 | S372 | ochoa|psp | TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 2) (TAK1-binding protein 2) (TAB-2) (TGF-beta-activated kinase 1-binding protein 2) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:10882101, PubMed:11460167, PubMed:15327770, PubMed:22158122, PubMed:27746020, PubMed:33184450, PubMed:36681779). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:10882101, PubMed:11460167, PubMed:15327770, PubMed:22158122, PubMed:27746020). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). Also recognizes and binds Lys-63'-linked polyubiquitin chains of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains (PubMed:27746020). Regulates the IL1-mediated translocation of NCOR1 out of the nucleus (By similarity). Involved in heart development (PubMed:20493459). {ECO:0000250|UniProtKB:Q99K90, ECO:0000269|PubMed:10882101, ECO:0000269|PubMed:11460167, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:20493459, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:33184450, ECO:0000269|PubMed:36681779}. |
Q9NYQ6 | CELSR1 | S2982 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 1 (Cadherin family member 9) (Flamingo homolog 2) (hFmi2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NYZ3 | GTSE1 | S345 | ochoa | G2 and S phase-expressed protein 1 (GTSE-1) (Protein B99 homolog) | May be involved in p53-induced cell cycle arrest in G2/M phase by interfering with microtubule rearrangements that are required to enter mitosis. Overexpression delays G2/M phase progression. |
Q9NZJ0 | DTL | S623 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZJ0 | DTL | S697 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZJ5 | EIF2AK3 | S879 | psp | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9NZN5 | ARHGEF12 | S190 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZN8 | CNOT2 | S406 | ochoa | CCR4-NOT transcription complex subunit 2 (CCR4-associated factor 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may specifically involve the N-Cor repressor complex containing HDAC3, NCOR1 and NCOR2. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:16712523, ECO:0000269|PubMed:21299754, ECO:0000269|PubMed:22367759}. |
Q9P0V3 | SH3BP4 | S42 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P0W8 | SPATA7 | S179 | ochoa | Spermatogenesis-associated protein 7 (HSD-3.1) (Spermatogenesis-associated protein HSD3) | Involved in the maintenance of both rod and cone photoreceptor cells (By similarity). It is required for recruitment and proper localization of RPGRIP1 to the photoreceptor connecting cilium (CC), as well as photoreceptor-specific localization of proximal CC proteins at the distal CC (By similarity). Maintenance of protein localization at the photoreceptor-specific distal CC is essential for normal microtubule stability and to prevent photoreceptor degeneration (By similarity). {ECO:0000250|UniProtKB:Q80VP2}. |
Q9P206 | NHSL3 | S404 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P227 | ARHGAP23 | S586 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P246 | STIM2 | S665 | ochoa | Stromal interaction molecule 2 | Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}. |
Q9P266 | JCAD | S255 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P266 | JCAD | S1156 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P267 | MBD5 | S238 | ochoa | Methyl-CpG-binding domain protein 5 (Methyl-CpG-binding protein MBD5) | Non-catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:24634419). Important for stability of PR-DUB components and stimulating its ubiquitinase activity (PubMed:36180891). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in cell growth and survivability (PubMed:36180891). MBD5 and MBD6 containing complexes associate with distinct chromatin regions enriched in genes involved in different pathways (PubMed:36180891). Heterochromatin recruitment is not mediated by DNA methylation (PubMed:20700456). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:36180891). {ECO:0000269|PubMed:20700456, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:36180891}. |
Q9P267 | MBD5 | S507 | ochoa | Methyl-CpG-binding domain protein 5 (Methyl-CpG-binding protein MBD5) | Non-catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:24634419). Important for stability of PR-DUB components and stimulating its ubiquitinase activity (PubMed:36180891). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in cell growth and survivability (PubMed:36180891). MBD5 and MBD6 containing complexes associate with distinct chromatin regions enriched in genes involved in different pathways (PubMed:36180891). Heterochromatin recruitment is not mediated by DNA methylation (PubMed:20700456). The PR-DUB complex is an epigenetic regulator of gene expression, including genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:36180891). {ECO:0000269|PubMed:20700456, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:36180891}. |
Q9P2B4 | CTTNBP2NL | S444 | ochoa | CTTNBP2 N-terminal-like protein | Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}. |
Q9P2B7 | CFAP97 | S218 | ochoa | Cilia- and flagella-associated protein 97 | None |
Q9P2D0 | IBTK | S1045 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2F8 | SIPA1L2 | S1029 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2J2 | IGSF9 | S797 | ochoa | Protein turtle homolog A (Immunoglobulin superfamily member 9A) (IgSF9A) | Functions in dendrite outgrowth and synapse maturation. {ECO:0000250}. |
Q9UBF9 | MYOT | S225 | ochoa | Myotilin (57 kDa cytoskeletal protein) (Myofibrillar titin-like Ig domains protein) (Titin immunoglobulin domain protein) | Component of a complex of multiple actin cross-linking proteins. Involved in the control of myofibril assembly and stability at the Z lines in muscle cells. {ECO:0000269|PubMed:12499399}. |
Q9UBU7 | DBF4 | S103 | ochoa | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UDT6 | CLIP2 | S923 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UDY8 | MALT1 | S795 | ochoa | Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (EC 3.4.22.-) (MALT lymphoma-associated translocation) (Paracaspase) | Protease that enhances BCL10-induced activation: acts via formation of CBM complexes that channel adaptive and innate immune signaling downstream of CARD domain-containing proteins (CARD9, CARD11 and CARD14) to activate NF-kappa-B and MAP kinase p38 pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:11262391, PubMed:18264101, PubMed:24074955). Mediates BCL10 cleavage: MALT1-dependent BCL10 cleavage plays an important role in T-cell antigen receptor-induced integrin adhesion (PubMed:11262391, PubMed:18264101). Involved in the induction of T helper 17 cells (Th17) differentiation (PubMed:11262391, PubMed:18264101). Cleaves RC3H1 and ZC3H12A in response to T-cell receptor (TCR) stimulation which releases their cooperatively repressed targets to promote Th17 cell differentiation (By similarity). Also mediates cleavage of N4BP1 in T-cells following TCR-mediated activation, leading to N4BP1 inactivation (PubMed:31133753). May also have ubiquitin ligase activity: binds to TRAF6, inducing TRAF6 oligomerization and activation of its ligase activity (PubMed:14695475). {ECO:0000250|UniProtKB:Q2TBA3, ECO:0000269|PubMed:11262391, ECO:0000269|PubMed:14695475, ECO:0000269|PubMed:18264101, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:31133753}. |
Q9UF83 | None | S359 | ochoa | Uncharacterized protein DKFZp434B061 | None |
Q9UGU0 | TCF20 | S1262 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU5 | HMGXB4 | S497 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UHV7 | MED13 | S749 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UHV7 | MED13 | S890 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UIF9 | BAZ2A | S613 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UIU6 | SIX4 | S249 | ochoa | Homeobox protein SIX4 (Sine oculis homeobox homolog 4) | Transcriptional regulator which can act as both a transcriptional repressor and activator by binding a DNA sequence on these target genes and is involved in processes like cell differentiation, cell migration and cell survival. Transactivates gene expression by binding a 5'-[CAT]A[CT][CT][CTG]GA[GAT]-3' motif present in the Trex site and a 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 site of the muscle-specific genes enhancer. Acts cooperatively with EYA proteins to transactivate their target genes through interaction and nuclear translocation of EYA protein. Acts synergistically with SIX1 to regulate target genes involved in formation of various organs, including muscle, kidney, gonad, ganglia, olfactory epithelium and cranial skeleton. Plays a role in several important steps of muscle development. Controls the genesis of hypaxial myogenic progenitors in the dermomyotome by transactivating PAX3 and the delamination and migration of the hypaxial precursors from the ventral lip to the limb buds through the transactivation of PAX3, MET and LBX1. Controls myoblast determination by transactivating MYF5, MYOD1 and MYF6. Controls somitic differentiation in myocyte through MYOG transactivation. Plays a role in synaptogenesis and sarcomere organization by participating in myofiber specialization during embryogenesis by activating fast muscle program in the primary myotome resulting in an up-regulation of fast muscle genes, including ATP2A1, MYL1 and TNNT3. Simultaneously, is also able to activate inhibitors of slow muscle genes, such as SOX6, HRASLS, and HDAC4, thereby restricting the activation of the slow muscle genes. During muscle regeneration, negatively regulates differentiation of muscle satellite cells through down-regulation of MYOG expression. During kidney development regulates the early stages of metanephros development and ureteric bud formation through regulation of GDNF, SALL1, PAX8 and PAX2 expression. Plays a role in gonad development by regulating both testis determination and size determination. In gonadal sex determination, transactivates ZFPM2 by binding a MEF3 consensus sequence, resulting in SRY up-regulation. In gonadal size determination, transactivates NR5A1 by binding a MEF3 consensus sequence resulting in gonadal precursor cell formation regulation. During olfactory development mediates the specification and patterning of olfactory placode through fibroblast growth factor and BMP4 signaling pathways and also regulates epithelial cell proliferation during placode formation. Promotes survival of sensory neurons during early trigeminal gangliogenesis. In the developing dorsal root ganglia, up-regulates SLC12A2 transcription. Regulates early thymus/parathyroid organogenesis through regulation of GCM2 and FOXN1 expression. Forms gustatory papillae during development of the tongue. Also plays a role during embryonic cranial skeleton morphogenesis. {ECO:0000250|UniProtKB:Q61321}. |
Q9UJ78 | ZMYM5 | S49 | ochoa | Zinc finger MYM-type protein 5 (Zinc finger protein 198-like 1) (Zinc finger protein 237) | Functions as a transcriptional regulator. {ECO:0000269|PubMed:17126306}. |
Q9UJM3 | ERRFI1 | S326 | ochoa | ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein) (MIG-6) | Negative regulator of EGFR signaling in skin morphogenesis. Acts as a negative regulator for several EGFR family members, including ERBB2, ERBB3 and ERBB4. Inhibits EGFR catalytic activity by interfering with its dimerization. Inhibits autophosphorylation of EGFR, ERBB2 and ERBB4. Important for normal keratinocyte proliferation and differentiation. Plays a role in modulating the response to steroid hormones in the uterus. Required for normal response to progesterone in the uterus and for fertility. Mediates epithelial estrogen responses in the uterus by regulating ESR1 levels and activation. Important for regulation of endometrium cell proliferation. Important for normal prenatal and perinatal lung development (By similarity). {ECO:0000250}. |
Q9UJY1 | HSPB8 | S24 | ochoa|psp | Heat shock protein beta-8 (HspB8) (Alpha-crystallin C chain) (E2-induced gene 1 protein) (Heat shock protein family B member 8) (Protein kinase H11) (Small stress protein-like protein HSP22) | Involved in the chaperone-assisted selective autophagy (CASA), a crucial process for protein quality control, particularly in mechanical strained cells and tissues such as muscle. Displays temperature-dependent chaperone activity. {ECO:0000250|UniProtKB:Q9JK92}. |
Q9UKF6 | CPSF3 | S328 | ochoa | Cleavage and polyadenylation specificity factor subunit 3 (EC 3.1.27.-) (Cleavage and polyadenylation specificity factor 73 kDa subunit) (CPSF 73 kDa subunit) (mRNA 3'-end-processing endonuclease CPSF-73) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as an mRNA 3'-end-processing endonuclease (PubMed:30507380). Also involved in the histone 3'-end pre-mRNA processing (PubMed:30507380). U7 snRNP-dependent protein that induces both the 3'-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5' to 3' exonuclease for degrading the subsequent downstream cleavage product (DCP) of mature histone mRNAs. Cleavage occurs after the 5'-ACCCA-3' sequence in the histone pre-mRNA leaving a 3'hydroxyl group on the upstream fragment containing the stem loop (SL) and 5' phosphate on the downstream cleavage product (DCP) starting with CU nucleotides. The U7-dependent 5' to 3' exonuclease activity is processive and degrades the DCP RNA substrate even after complete removal of the U7-binding site. Binds to the downstream cleavage product (DCP) of histone pre-mRNAs and the cleaved DCP RNA substrate in a U7 snRNP dependent manner. Required for entering/progressing through S-phase of the cell cycle (PubMed:30507380). Required for the selective processing of microRNAs (miRNAs) during embryonic stem cell differentiation via its interaction with ISY1 (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). {ECO:0000250|UniProtKB:Q9QXK7, ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:15037765, ECO:0000269|PubMed:17128255, ECO:0000269|PubMed:18688255, ECO:0000269|PubMed:30507380}. |
Q9UKL3 | CASP8AP2 | S1368 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKT9 | IKZF3 | S378 | ochoa|psp | Zinc finger protein Aiolos (Ikaros family zinc finger protein 3) | Transcription factor that plays an important role in the regulation of lymphocyte differentiation. Plays an essential role in regulation of B-cell differentiation, proliferation and maturation to an effector state. Involved in regulating BCL2 expression and controlling apoptosis in T-cells in an IL2-dependent manner. {ECO:0000269|PubMed:10369681, ECO:0000269|PubMed:34155405}. |
Q9UKV0 | HDAC9 | S22 | ochoa | Histone deacetylase 9 (HD9) (EC 3.5.1.98) (Histone deacetylase 7B) (HD7) (HD7b) (Histone deacetylase-related protein) (MEF2-interacting transcription repressor MITR) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription. {ECO:0000269|PubMed:11535832}.; FUNCTION: Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter. |
Q9UKX7 | NUP50 | S315 | ochoa|psp | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9UL17 | TBX21 | S503 | ochoa|psp | T-box transcription factor TBX21 (T-box protein 21) (T-cell-specific T-box transcription factor T-bet) (Transcription factor TBLYM) | Lineage-defining transcription factor which initiates Th1 lineage development from naive Th precursor cells both by activating Th1 genetic programs and by repressing the opposing Th2 and Th17 genetic programs (PubMed:10761931). Activates transcription of a set of genes important for Th1 cell function, including those encoding IFN-gamma and the chemokine receptor CXCR3. Induces permissive chromatin accessibilty and CpG methylation in IFNG (PubMed:33296702). Activates IFNG and CXCR3 genes in part by recruiting chromatin remodeling complexes including KDM6B, a SMARCA4-containing SWI/SNF-complex, and an H3K4me2-methyltransferase complex to their promoters and all of these complexes serve to establish a more permissive chromatin state conducive with transcriptional activation (By similarity). Can activate Th1 genes also via recruitment of Mediator complex and P-TEFb (composed of CDK9 and CCNT1/cyclin-T1) in the form of the super elongation complex (SEC) to super-enhancers and associated genes in activated Th1 cells (PubMed:27292648). Inhibits the Th17 cell lineage commitment by blocking RUNX1-mediated transactivation of Th17 cell-specific transcriptinal regulator RORC. Inhibits the Th2 cell lineage commitment by suppressing the production of Th2 cytokines, such as IL-4, IL-5, and IL- 13, via repression of transcriptional regulators GATA3 and NFATC2. Protects Th1 cells from amplifying aberrant type-I IFN response in an IFN-gamma abundant microenvironment by acting as a repressor of type-I IFN transcription factors and type-I IFN-stimulated genes. Acts as a regulator of antiviral B-cell responses; controls chronic viral infection by promoting the antiviral antibody IgG2a isotype switching and via regulation of a broad antiviral gene expression program (By similarity). Required for the correct development of natural killer (NK) and mucosal-associated invariant T (MAIT) cells (PubMed:33296702). {ECO:0000250|UniProtKB:Q9JKD8, ECO:0000269|PubMed:10761931, ECO:0000269|PubMed:27292648, ECO:0000269|PubMed:33296702}. |
Q9UL17 | TBX21 | Y505 | ochoa | T-box transcription factor TBX21 (T-box protein 21) (T-cell-specific T-box transcription factor T-bet) (Transcription factor TBLYM) | Lineage-defining transcription factor which initiates Th1 lineage development from naive Th precursor cells both by activating Th1 genetic programs and by repressing the opposing Th2 and Th17 genetic programs (PubMed:10761931). Activates transcription of a set of genes important for Th1 cell function, including those encoding IFN-gamma and the chemokine receptor CXCR3. Induces permissive chromatin accessibilty and CpG methylation in IFNG (PubMed:33296702). Activates IFNG and CXCR3 genes in part by recruiting chromatin remodeling complexes including KDM6B, a SMARCA4-containing SWI/SNF-complex, and an H3K4me2-methyltransferase complex to their promoters and all of these complexes serve to establish a more permissive chromatin state conducive with transcriptional activation (By similarity). Can activate Th1 genes also via recruitment of Mediator complex and P-TEFb (composed of CDK9 and CCNT1/cyclin-T1) in the form of the super elongation complex (SEC) to super-enhancers and associated genes in activated Th1 cells (PubMed:27292648). Inhibits the Th17 cell lineage commitment by blocking RUNX1-mediated transactivation of Th17 cell-specific transcriptinal regulator RORC. Inhibits the Th2 cell lineage commitment by suppressing the production of Th2 cytokines, such as IL-4, IL-5, and IL- 13, via repression of transcriptional regulators GATA3 and NFATC2. Protects Th1 cells from amplifying aberrant type-I IFN response in an IFN-gamma abundant microenvironment by acting as a repressor of type-I IFN transcription factors and type-I IFN-stimulated genes. Acts as a regulator of antiviral B-cell responses; controls chronic viral infection by promoting the antiviral antibody IgG2a isotype switching and via regulation of a broad antiviral gene expression program (By similarity). Required for the correct development of natural killer (NK) and mucosal-associated invariant T (MAIT) cells (PubMed:33296702). {ECO:0000250|UniProtKB:Q9JKD8, ECO:0000269|PubMed:10761931, ECO:0000269|PubMed:27292648, ECO:0000269|PubMed:33296702}. |
Q9ULD2 | MTUS1 | S716 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULD4 | BRPF3 | S943 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULI4 | KIF26A | S1687 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULL1 | PLEKHG1 | S497 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULM0 | PLEKHH1 | S219 | ochoa | Pleckstrin homology domain-containing family H member 1 (PH domain-containing family H member 1) | None |
Q9ULM3 | YEATS2 | S447 | ochoa | YEATS domain-containing protein 2 | Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}. |
Q9ULM3 | YEATS2 | S575 | ochoa | YEATS domain-containing protein 2 | Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}. |
Q9ULU4 | ZMYND8 | S432 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULU4 | ZMYND8 | S797 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9UMD9 | COL17A1 | S93 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UMS6 | SYNPO2 | S930 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UPN3 | MACF1 | S862 | psp | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S3331 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPP1 | PHF8 | S120 | ochoa|psp | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPR3 | SMG5 | S536 | ochoa | Nonsense-mediated mRNA decay factor SMG5 (EST1-like protein B) (LPTS-RP1) (LPTS-interacting protein) (SMG-5 homolog) (hSMG-5) | Plays a role in nonsense-mediated mRNA decay. Does not have RNase activity by itself. Promotes dephosphorylation of UPF1. Together with SMG7 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. Necessary for TERT activity. {ECO:0000269|PubMed:17053788}. |
Q9UQB3 | CTNND2 | S415 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9UQK1 | PPP1R3C | S33 | ochoa|psp | Protein phosphatase 1 regulatory subunit 3C (Protein phosphatase 1 regulatory subunit 5) (PP1 subunit R5) (Protein targeting to glycogen) (PTG) | Acts as a glycogen-targeting subunit for PP1 and regulates its activity. Activates glycogen synthase, reduces glycogen phosphorylase activity and limits glycogen breakdown. Dramatically increases basal and insulin-stimulated glycogen synthesis upon overexpression in a variety of cell types. {ECO:0000250|UniProtKB:Q7TMB3, ECO:0000269|PubMed:8985175}. |
Q9Y242 | TCF19 | S193 | ochoa | Transcription factor 19 (TCF-19) (Transcription factor SC1) | Potential transcription factor that may play a role in the regulation of genes involved in cell cycle G1/S transition (PubMed:1868030, PubMed:31141247). May bind to regulatory elements of genes, including the promoter of the transcription factor FOXO1 (PubMed:31141247). {ECO:0000269|PubMed:1868030, ECO:0000269|PubMed:31141247}. |
Q9Y253 | POLH | S551 | ochoa | DNA polymerase eta (EC 2.7.7.7) (RAD30 homolog A) (Xeroderma pigmentosum variant type protein) | DNA polymerase specifically involved in the DNA repair by translesion synthesis (TLS) (PubMed:10385124, PubMed:11743006, PubMed:16357261, PubMed:24449906, PubMed:24553286, PubMed:38212351). Due to low processivity on both damaged and normal DNA, cooperates with the heterotetrameric (REV3L, REV7, POLD2 and POLD3) POLZ complex for complete bypass of DNA lesions. Inserts one or 2 nucleotide(s) opposite the lesion, the primer is further extended by the tetrameric POLZ complex. In the case of 1,2-intrastrand d(GpG)-cisplatin cross-link, inserts dCTP opposite the 3' guanine (PubMed:24449906). Particularly important for the repair of UV-induced pyrimidine dimers (PubMed:10385124, PubMed:11743006). Although inserts the correct base, may cause base transitions and transversions depending upon the context. May play a role in hypermutation at immunoglobulin genes (PubMed:11376341, PubMed:14734526). Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have any lyase activity, preventing the release of the 5'-deoxyribose phosphate (5'-dRP) residue. This covalent trapping of the enzyme by the 5'-dRP residue inhibits its DNA synthetic activity during base excision repair, thereby avoiding high incidence of mutagenesis (PubMed:14630940). Targets POLI to replication foci (PubMed:12606586). {ECO:0000269|PubMed:10385124, ECO:0000269|PubMed:11376341, ECO:0000269|PubMed:11743006, ECO:0000269|PubMed:12606586, ECO:0000269|PubMed:14630940, ECO:0000269|PubMed:14734526, ECO:0000269|PubMed:16357261, ECO:0000269|PubMed:24449906, ECO:0000269|PubMed:24553286, ECO:0000269|PubMed:38212351}. |
Q9Y2D8 | SSX2IP | S29 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y2F5 | ICE1 | S255 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2H9 | MAST1 | S1184 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2L6 | FRMD4B | S992 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y2X9 | ZNF281 | S255 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y314 | NOSIP | S138 | ochoa | Nitric oxide synthase-interacting protein (E3 ubiquitin-protein ligase NOSIP) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase NOSIP) (eNOS-interacting protein) | E3 ubiquitin-protein ligase that is essential for proper development of the forebrain, the eye, and the face. Catalyzes monoubiquitination of serine/threonine-protein phosphatase 2A (PP2A) catalytic subunit PPP2CA/PPP2CB (By similarity). Negatively regulates nitric oxide production by inducing NOS1 and NOS3 translocation to actin cytoskeleton and inhibiting their enzymatic activity (PubMed:11149895, PubMed:15548660, PubMed:16135813). {ECO:0000250|UniProtKB:Q9D6T0, ECO:0000269|PubMed:11149895, ECO:0000269|PubMed:15548660, ECO:0000269|PubMed:16135813}. |
Q9Y3P9 | RABGAP1 | S389 | ochoa | Rab GTPase-activating protein 1 (GAP and centrosome-associated protein) (Rab6 GTPase-activating protein GAPCenA) | May act as a GTPase-activating protein of RAB6A. May play a role in microtubule nucleation by centrosome. May participate in a RAB6A-mediated pathway involved in the metaphase-anaphase transition. {ECO:0000269|PubMed:10202141, ECO:0000269|PubMed:16395330}. |
Q9Y3Q4 | HCN4 | S1026 | ochoa | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 | Hyperpolarization-activated ion channel that are permeable to Na(+) and K(+) ions with very slow activation and inactivation (PubMed:10228147, PubMed:10430953, PubMed:20829353). Exhibits higher selectivity for K(+) over Na(+) ions (PubMed:10228147). Contributes to the native pacemaker currents in heart (If) that regulate the rhythm of heart beat (Probable) (PubMed:10228147, PubMed:16407510, PubMed:19165230). Contributes to the native pacemaker currents in neurons (Ih) (Probable). May mediate responses to sour stimuli (By similarity). {ECO:0000250|UniProtKB:Q9JKA7, ECO:0000269|PubMed:10228147, ECO:0000269|PubMed:10430953, ECO:0000269|PubMed:16407510, ECO:0000269|PubMed:19165230, ECO:0000269|PubMed:20829353, ECO:0000305|PubMed:10430953}. |
Q9Y3R0 | GRIP1 | S433 | ochoa | Glutamate receptor-interacting protein 1 (GRIP-1) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons (PubMed:10197531). Through complex formation with NSG1, GRIA2 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P97879, ECO:0000269|PubMed:10197531}. |
Q9Y3R0 | GRIP1 | S996 | ochoa | Glutamate receptor-interacting protein 1 (GRIP-1) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons (PubMed:10197531). Through complex formation with NSG1, GRIA2 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P97879, ECO:0000269|PubMed:10197531}. |
Q9Y467 | SALL2 | S684 | ochoa | Sal-like protein 2 (Zinc finger protein 795) (Zinc finger protein SALL2) (Zinc finger protein Spalt-2) (Sal-2) (hSal2) | Probable transcription factor that plays a role in eye development before, during, and after optic fissure closure. {ECO:0000269|PubMed:24412933}. |
Q9Y490 | TLN1 | S729 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4C1 | KDM3A | S819 | ochoa | Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}. |
Q9Y4D2 | DAGLA | S806 | ochoa | Diacylglycerol lipase-alpha (DAGL-alpha) (DGL-alpha) (EC 3.1.1.116) (Neural stem cell-derived dendrite regulator) (Sn1-specific diacylglycerol lipase alpha) | Serine hydrolase that hydrolyzes arachidonic acid-esterified diacylglycerols (DAGs) to produce the principal endocannabinoid, 2-arachidonoylglycerol (2-AG) (PubMed:14610053, PubMed:23502535, PubMed:26668358). Preferentially hydrolyzes sn-1 fatty acids from diacylglycerols (DAG) that contain arachidonic acid (AA) esterified at the sn-2 position to biosynthesize 2-AG (PubMed:14610053, PubMed:23502535, PubMed:26668358). Has negligible activity against other lipids including monoacylglycerols and phospholipids (PubMed:14610053). Plays a key role in regulating 2-AG signaling in the central nervous system (CNS). Regulates 2-AG involved in retrograde suppression at central synapses. Supports axonal growth during development and adult neurogenesis. Plays a role for eCB signaling in the physiological regulation of anxiety and depressive behaviors. Also regulates neuroinflammatory responses in the brain, in particular, LPS-induced microglial activation (By similarity). {ECO:0000250|UniProtKB:Q6WQJ1, ECO:0000269|PubMed:14610053, ECO:0000269|PubMed:23502535, ECO:0000269|PubMed:26668358}. |
Q9Y4F4 | TOGARAM1 | S836 | ochoa | TOG array regulator of axonemal microtubules protein 1 (Crescerin-1) (Protein FAM179B) | Involved in ciliogenesis (PubMed:32453716). It is required for appropriate acetylation and polyglutamylation of ciliary microtubules, and regulation of cilium length (PubMed:32453716). Interacts with microtubules and promotes microtubule polymerization via its HEAT repeat domains, especially those in TOG region 2 and 4 (By similarity). {ECO:0000250|UniProtKB:Q17423, ECO:0000250|UniProtKB:Q6A070, ECO:0000269|PubMed:32453716}. |
Q9Y4F4 | TOGARAM1 | S863 | ochoa | TOG array regulator of axonemal microtubules protein 1 (Crescerin-1) (Protein FAM179B) | Involved in ciliogenesis (PubMed:32453716). It is required for appropriate acetylation and polyglutamylation of ciliary microtubules, and regulation of cilium length (PubMed:32453716). Interacts with microtubules and promotes microtubule polymerization via its HEAT repeat domains, especially those in TOG region 2 and 4 (By similarity). {ECO:0000250|UniProtKB:Q17423, ECO:0000250|UniProtKB:Q6A070, ECO:0000269|PubMed:32453716}. |
Q9Y4F5 | CEP170B | S1545 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4X4 | KLF12 | S273 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y520 | PRRC2C | S2260 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y534 | CSDC2 | S47 | ochoa | Cold shock domain-containing protein C2 (RNA-binding protein PIPPin) | RNA-binding factor which binds specifically to the very 3'-UTR ends of both histone H1 and H3.3 mRNAs, encompassing the polyadenylation signal. Might play a central role in the negative regulation of histone variant synthesis in the developing brain (By similarity). {ECO:0000250}. |
Q9Y597 | KCTD3 | S791 | ochoa | BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) | Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}. |
Q9Y597 | KCTD3 | S793 | ochoa | BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) | Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}. |
Q9Y5K6 | CD2AP | S449 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y5K6 | CD2AP | S542 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y608 | LRRFIP2 | S190 | ochoa|psp | Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) | May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}. |
Q9Y6I4 | USP3 | S23 | ochoa | Ubiquitin carboxyl-terminal hydrolase 3 (EC 3.4.19.12) (Deubiquitinating enzyme 3) (Ubiquitin thioesterase 3) (Ubiquitin-specific-processing protease 3) | Deubiquitinase that plays a role in several cellular processes including transcriptional regulation, cell cycle progression or innate immunity. In response to DNA damage, deubiquitinates monoubiquitinated target proteins such as histone H2A and H2AX and thereby counteracts RNF168- and RNF8-mediated ubiquitination. In turn, participates in the recruitment of DNA damage repair factors to DNA break sites (PubMed:24196443). Required for proper progression through S phase and subsequent mitotic entry (PubMed:17980597). Acts as a positive regulator of TP53 by deubiquitinating and stabilizing it to promote normal cell proliferation and transformation (PubMed:28807825). Participates in establishing tolerance innate immune memory through non-transcriptional feedback. Mechanistically, negatively regulates TLR-induced NF-kappa-B signaling by targeting and removing the 'Lys-63'-linked polyubiquitin chains on MYD88 (PubMed:37971847). Negatively regulates the activation of type I interferon signaling by mediating 'Lys-63'-linked polyubiquitin chains on RIGI and IFIH1 (PubMed:24366338). Also deubiquinates ASC/PYCARD, the central adapter mediating the assembly and activation of most inflammasomes, and thereby promotes inflammasome activation (PubMed:36050480). {ECO:0000269|PubMed:17980597, ECO:0000269|PubMed:24196443, ECO:0000269|PubMed:24366338, ECO:0000269|PubMed:28807825, ECO:0000269|PubMed:36050480, ECO:0000269|PubMed:37971847}. |
Q9Y6Q9 | NCOA3 | S551 | ochoa | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
R4GMW8 | BIVM-ERCC5 | S980 | ochoa | DNA excision repair protein ERCC-5 | None |
Q9ULL1 | PLEKHG1 | S615 | Sugiyama | Pleckstrin homology domain-containing family G member 1 | None |
Q8NBJ7 | SUMF2 | S44 | Sugiyama | Inactive C-alpha-formylglycine-generating enzyme 2 (Paralog of formylglycine-generating enzyme) (pFGE) (Sulfatase-modifying factor 2) | Lacks formylglycine generating activity and is unable to convert newly synthesized inactive sulfatases to their active form. Inhibits the activation of sulfatases by SUMF1. {ECO:0000269|PubMed:12757706, ECO:0000269|PubMed:15708861, ECO:0000269|PubMed:15962010}. |
Q9UHL4 | DPP7 | S213 | Sugiyama | Dipeptidyl peptidase 2 (EC 3.4.14.2) (Dipeptidyl aminopeptidase II) (Dipeptidyl peptidase 7) (Dipeptidyl peptidase II) (DPP II) (Quiescent cell proline dipeptidase) | Plays an important role in the degradation of some oligopeptides. {ECO:0000269|PubMed:15487984}. |
Q9H9S0 | NANOG | S71 | PSP | Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog) | Transcription regulator involved in inner cell mass and embryonic stem (ES) cells proliferation and self-renewal. Imposes pluripotency on ES cells and prevents their differentiation towards extraembryonic endoderm and trophectoderm lineages. Blocks bone morphogenetic protein-induced mesoderm differentiation of ES cells by physically interacting with SMAD1 and interfering with the recruitment of coactivators to the active SMAD transcriptional complexes. Acts as a transcriptional activator or repressor. Binds optimally to the DNA consensus sequence 5'-TAAT[GT][GT]-3' or 5'-[CG][GA][CG]C[GC]ATTAN[GC]-3'. Binds to the POU5F1/OCT4 promoter (PubMed:25825768). Able to autorepress its expression in differentiating (ES) cells: binds to its own promoter following interaction with ZNF281/ZFP281, leading to recruitment of the NuRD complex and subsequent repression of expression. When overexpressed, promotes cells to enter into S phase and proliferation. {ECO:0000269|PubMed:15983365, ECO:0000269|PubMed:16000880, ECO:0000269|PubMed:16391521, ECO:0000269|PubMed:25825768}. |
O60318 | MCM3AP | S508 | SIGNOR | Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) | [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}. |
Q02548 | PAX5 | S189 | SIGNOR | Paired box protein Pax-5 (B-cell-specific transcription factor) (BSAP) | Transcription factor that plays an essential role in commitment of lymphoid progenitors to the B-lymphocyte lineage (PubMed:10811620, PubMed:27181361). Fulfills a dual role by repressing B-lineage inappropriate genes and simultaneously activating B-lineage-specific genes (PubMed:10811620, PubMed:27181361). In turn, regulates cell adhesion and migration, induces V(H)-to-D(H)J(H) recombination, facilitates pre-B-cell receptor signaling and promotes development to the mature B-cell stage (PubMed:32612238). Repression of the cohesin-release factor WAPL causes global changes of the chromosomal architecture in pro-B cells to facilitate the generation of a diverse antibody repertoire (PubMed:32612238). {ECO:0000269|PubMed:10811620, ECO:0000269|PubMed:27181361, ECO:0000269|PubMed:32612238}.; FUNCTION: (Microbial infection) Plays an essential role in the maintenance of Epstein-Barr virus genome copy number within the host cell by promoting EBNA1/oriP-dependent binding and transcription (PubMed:31941781). Also participates in the inhibition of lytic EBV reactivation by modulating viral BZLF1 activity (PubMed:23678172). {ECO:0000269|PubMed:23678172, ECO:0000269|PubMed:31941781}. |
Q02641 | CACNB1 | S348 | SIGNOR | Voltage-dependent L-type calcium channel subunit beta-1 (CAB1) (Calcium channel voltage-dependent subunit beta 1) | Regulatory subunit of L-type calcium channels (PubMed:1309651, PubMed:15615847, PubMed:8107964). Regulates the activity of L-type calcium channels that contain CACNA1A as pore-forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (PubMed:15615847). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit (PubMed:1309651). Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit (PubMed:8107964). {ECO:0000250|UniProtKB:P19517, ECO:0000269|PubMed:1309651, ECO:0000269|PubMed:15615847, ECO:0000269|PubMed:8107964}. |
Q9H9S0 | NANOG | S52 | PSP | Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog) | Transcription regulator involved in inner cell mass and embryonic stem (ES) cells proliferation and self-renewal. Imposes pluripotency on ES cells and prevents their differentiation towards extraembryonic endoderm and trophectoderm lineages. Blocks bone morphogenetic protein-induced mesoderm differentiation of ES cells by physically interacting with SMAD1 and interfering with the recruitment of coactivators to the active SMAD transcriptional complexes. Acts as a transcriptional activator or repressor. Binds optimally to the DNA consensus sequence 5'-TAAT[GT][GT]-3' or 5'-[CG][GA][CG]C[GC]ATTAN[GC]-3'. Binds to the POU5F1/OCT4 promoter (PubMed:25825768). Able to autorepress its expression in differentiating (ES) cells: binds to its own promoter following interaction with ZNF281/ZFP281, leading to recruitment of the NuRD complex and subsequent repression of expression. When overexpressed, promotes cells to enter into S phase and proliferation. {ECO:0000269|PubMed:15983365, ECO:0000269|PubMed:16000880, ECO:0000269|PubMed:16391521, ECO:0000269|PubMed:25825768}. |
Q6EMK4 | VASN | S322 | Sugiyama | Vasorin (Protein slit-like 2) | May act as an inhibitor of TGF-beta signaling. {ECO:0000269|PubMed:15247411}. |
P12830 | CDH1 | S146 | SIGNOR | Cadherin-1 (CAM 120/80) (Epithelial cadherin) (E-cadherin) (Uvomorulin) (CD antigen CD324) [Cleaved into: E-Cad/CTF1; E-Cad/CTF2; E-Cad/CTF3] | Cadherins are calcium-dependent cell adhesion proteins (PubMed:11976333). They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. CDH1 is involved in mechanisms regulating cell-cell adhesions, mobility and proliferation of epithelial cells (PubMed:11976333). Promotes organization of radial actin fiber structure and cellular response to contractile forces, via its interaction with AMOTL2 which facilitates anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane (By similarity). Plays a role in the early stages of desmosome cell-cell junction formation via facilitating the recruitment of DSG2 and DSP to desmosome plaques (PubMed:29999492). Has a potent invasive suppressor role. It is a ligand for integrin alpha-E/beta-7. {ECO:0000250|UniProtKB:F1PAA9, ECO:0000269|PubMed:11976333, ECO:0000269|PubMed:16417575, ECO:0000269|PubMed:29999492}.; FUNCTION: E-Cad/CTF2 promotes non-amyloidogenic degradation of Abeta precursors. Has a strong inhibitory effect on APP C99 and C83 production. {ECO:0000269|PubMed:16417575}.; FUNCTION: (Microbial infection) Serves as a receptor for Listeria monocytogenes; internalin A (InlA) binds to this protein and promotes uptake of the bacteria. {ECO:0000269|PubMed:10406800, ECO:0000269|PubMed:17540170, ECO:0000269|PubMed:8601315}. |
P41970 | ELK3 | S363 | SIGNOR|iPTMNet | ETS domain-containing protein Elk-3 (ETS-related protein ERP) (ETS-related protein NET) (Serum response factor accessory protein 2) (SAP-2) (SRF accessory protein 2) | May be a negative regulator of transcription, but can activate transcription when coexpressed with Ras, Src or Mos. Forms a ternary complex with the serum response factor and the ETS and SRF motifs of the Fos serum response element. |
Q86Z02 | HIPK1 | S355 | Sugiyama | Homeodomain-interacting protein kinase 1 (EC 2.7.11.1) (Nuclear body-associated kinase 2) | Serine/threonine-protein kinase involved in transcription regulation and TNF-mediated cellular apoptosis. Plays a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX and MYB. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. Inactivates MYB transcription factor activity by phosphorylation. Prevents MAP3K5-JNK activation in the absence of TNF. TNF triggers its translocation to the cytoplasm in response to stress stimuli, thus activating nuclear MAP3K5-JNK by derepression and promoting apoptosis. May be involved in anti-oxidative stress responses. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. Promotes angiogenesis and to be involved in erythroid differentiation. May be involved in malignant squamous cell tumor formation. Phosphorylates PAGE4 at 'Thr-51' which is critical for the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:24559171). {ECO:0000269|PubMed:12702766, ECO:0000269|PubMed:12968034, ECO:0000269|PubMed:15701637, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:19646965, ECO:0000269|PubMed:24559171}. |
Q9H422 | HIPK3 | S362 | Sugiyama | Homeodomain-interacting protein kinase 3 (EC 2.7.11.1) (Androgen receptor-interacting nuclear protein kinase) (ANPK) (Fas-interacting serine/threonine-protein kinase) (FIST) (Homolog of protein kinase YAK1) | Serine/threonine-protein kinase involved in transcription regulation, apoptosis and steroidogenic gene expression. Phosphorylates JUN and RUNX2. Seems to negatively regulate apoptosis by promoting FADD phosphorylation. Enhances androgen receptor-mediated transcription. May act as a transcriptional corepressor for NK homeodomain transcription factors. The phosphorylation of NR5A1 activates SF1 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation. In osteoblasts, supports transcription activation: phosphorylates RUNX2 that synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE). {ECO:0000269|PubMed:14766760, ECO:0000269|PubMed:17210646}. |
O00562 | PITPNM1 | S326 | Sugiyama | Membrane-associated phosphatidylinositol transfer protein 1 (Drosophila retinal degeneration B homolog) (Phosphatidylinositol transfer protein, membrane-associated 1) (PITPnm 1) (Pyk2 N-terminal domain-interacting receptor 2) (NIR-2) | Catalyzes the transfer of phosphatidylinositol (PI) between membranes (PubMed:10531358, PubMed:22822086). Binds PI, phosphatidylcholine (PC) and phosphatidic acid (PA) with the binding affinity order of PI > PA > PC (PubMed:22822086). Regulates RHOA activity, and plays a role in cytoskeleton remodeling (PubMed:11909959). Necessary for normal completion of cytokinesis (PubMed:15125835). Plays a role in maintaining normal diacylglycerol levels in the Golgi apparatus (PubMed:15723057). Necessary for maintaining the normal structure of the endoplasmic reticulum and the Golgi apparatus (PubMed:15545272). Required for protein export from the endoplasmic reticulum and the Golgi (PubMed:15723057). Binds calcium ions (PubMed:10022914). {ECO:0000269|PubMed:10022914, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:11909959, ECO:0000269|PubMed:15545272, ECO:0000269|PubMed:15723057, ECO:0000269|PubMed:22822086}. |
A0A0U1RQJ8 | ATRIP | S37 | ochoa | ATR interacting protein | None |
A7MBM2 | DISP2 | S1173 | ochoa | Protein dispatched homolog 2 | None |
B2RTY4 | MYO9A | S1230 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
B7ZBB8 | PPP1R3G | S60 | ochoa | Protein phosphatase 1 regulatory subunit 3G | Glycogen-targeting subunit for protein phosphatase 1 (PP1). Involved in the regulation of hepatic glycogenesis in a manner coupled to the fasting-feeding cycle and distinct from other glycogen-targeting subunits (By similarity). {ECO:0000250}. |
E9PAV3 | NACA | S585 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
O00506 | STK25 | S231 | ochoa | Serine/threonine-protein kinase 25 (EC 2.7.11.1) (Ste20-like kinase) (Sterile 20/oxidant stress-response kinase 1) (SOK-1) (Ste20/oxidant stress response kinase 1) | Oxidant stress-activated serine/threonine kinase that may play a role in the response to environmental stress. Targets to the Golgi apparatus where it appears to regulate protein transport events, cell adhesion, and polarity complexes important for cell migration. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:15037601, ECO:0000269|PubMed:18782753}. |
O00515 | LAD1 | S272 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O15018 | PDZD2 | S850 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15151 | MDM4 | S20 | ochoa | Protein Mdm4 (Double minute 4 protein) (Mdm2-like p53-binding protein) (Protein Mdmx) (p53-binding protein Mdm4) | Along with MDM2, contributes to TP53 regulation (PubMed:32300648). Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions. {ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:32300648}. |
O43189 | PHF1 | S446 | ochoa | PHD finger protein 1 (Protein PHF1) (hPHF1) (Polycomb-like protein 1) (hPCl1) | Polycomb group (PcG) that specifically binds histone H3 trimethylated at 'Lys-36' (H3K36me3) and recruits the PRC2 complex. Involved in DNA damage response and is recruited at double-strand breaks (DSBs). Acts by binding to H3K36me3, a mark for transcriptional activation, and recruiting the PRC2 complex: it is however unclear whether recruitment of the PRC2 complex to H3K36me3 leads to enhance or inhibit H3K27me3 methylation mediated by the PRC2 complex. According to some reports, PRC2 recruitment by PHF1 promotes H3K27me3 and subsequent gene silencing by inducing spreading of PRC2 and H3K27me3 into H3K36me3 loci (PubMed:18285464, PubMed:23273982). According to another report, PHF1 recruits the PRC2 complex at double-strand breaks (DSBs) and inhibits the activity of PRC2 (PubMed:23142980). Regulates p53/TP53 stability and prolonges its turnover: may act by specifically binding to a methylated from of p53/TP53. {ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:18385154, ECO:0000269|PubMed:23142980, ECO:0000269|PubMed:23150668, ECO:0000269|PubMed:23273982}. |
O43294 | TGFB1I1 | S68 | ochoa | Transforming growth factor beta-1-induced transcript 1 protein (Androgen receptor coactivator 55 kDa protein) (Androgen receptor-associated protein of 55 kDa) (Hydrogen peroxide-inducible clone 5 protein) (Hic-5) | Functions as a molecular adapter coordinating multiple protein-protein interactions at the focal adhesion complex and in the nucleus. Links various intracellular signaling modules to plasma membrane receptors and regulates the Wnt and TGFB signaling pathways. May also regulate SLC6A3 and SLC6A4 targeting to the plasma membrane hence regulating their activity. In the nucleus, functions as a nuclear receptor coactivator regulating glucocorticoid, androgen, mineralocorticoid and progesterone receptor transcriptional activity. May play a role in the processes of cell growth, proliferation, migration, differentiation and senescence. May have a zinc-dependent DNA-binding activity. {ECO:0000269|PubMed:10075738, ECO:0000269|PubMed:11463817, ECO:0000269|PubMed:11856738, ECO:0000269|PubMed:12177201, ECO:0000269|PubMed:12445807, ECO:0000269|PubMed:12700349, ECO:0000269|PubMed:15211577, ECO:0000269|PubMed:15561701, ECO:0000269|PubMed:16141357, ECO:0000269|PubMed:16624805, ECO:0000269|PubMed:16803896, ECO:0000269|PubMed:16849583, ECO:0000269|PubMed:17166536, ECO:0000269|PubMed:17233630, ECO:0000269|PubMed:9032249}. |
O43379 | WDR62 | S1388 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43426 | SYNJ1 | S1049 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43426 | SYNJ1 | S1178 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O60229 | KALRN | S487 | psp | Kalirin (EC 2.7.11.1) (Huntingtin-associated protein-interacting protein) (Protein Duo) (Serine/threonine-protein kinase with Dbl- and pleckstrin homology domain) | Promotes the exchange of GDP by GTP. Activates specific Rho GTPase family members, thereby inducing various signaling mechanisms that regulate neuronal shape, growth, and plasticity, through their effects on the actin cytoskeleton. Induces lamellipodia independent of its GEF activity. {ECO:0000269|PubMed:10023074}. |
O60381 | HBP1 | S135 | ochoa | HMG box-containing protein 1 (HMG box transcription factor 1) (High mobility group box transcription factor 1) | Transcriptional repressor that binds to the promoter region of target genes. Plays a role in the regulation of the cell cycle and of the Wnt pathway. Binds preferentially to the sequence 5'-TTCATTCATTCA-3'. Binding to the histone H1.0 promoter is enhanced by interaction with RB1. Disrupts the interaction between DNA and TCF4. {ECO:0000269|PubMed:10562551, ECO:0000269|PubMed:10958660, ECO:0000269|PubMed:11500377}. |
O75376 | NCOR1 | S1472 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S2084 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75815 | BCAR3 | S83 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O95180 | CACNA1H | S1905 | ochoa | Voltage-dependent T-type calcium channel subunit alpha-1H (Low-voltage-activated calcium channel alpha1 3.2 subunit) (Voltage-gated calcium channel subunit alpha Cav3.2) | Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation (PubMed:27149520, PubMed:9670923, PubMed:9930755). T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons (PubMed:15048902). In the adrenal zona glomerulosa, participates in the signaling pathway leading to aldosterone production in response to either AGT/angiotensin II, or hyperkalemia (PubMed:25907736, PubMed:27729216). {ECO:0000269|PubMed:24277868, ECO:0000269|PubMed:25907736, ECO:0000269|PubMed:27149520, ECO:0000269|PubMed:27729216, ECO:0000269|PubMed:9670923, ECO:0000269|PubMed:9930755, ECO:0000305, ECO:0000305|PubMed:15048902}. |
O95359 | TACC2 | S124 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
P11362 | FGFR1 | S777 | psp | Fibroblast growth factor receptor 1 (FGFR-1) (EC 2.7.10.1) (Basic fibroblast growth factor receptor 1) (BFGFR) (bFGF-R-1) (Fms-like tyrosine kinase 2) (FLT-2) (N-sam) (Proto-oncogene c-Fgr) (CD antigen CD331) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation. {ECO:0000250|UniProtKB:P16092, ECO:0000269|PubMed:10830168, ECO:0000269|PubMed:11353842, ECO:0000269|PubMed:12181353, ECO:0000269|PubMed:1379697, ECO:0000269|PubMed:1379698, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18480409, ECO:0000269|PubMed:19224897, ECO:0000269|PubMed:19261810, ECO:0000269|PubMed:19665973, ECO:0000269|PubMed:20133753, ECO:0000269|PubMed:20139426, ECO:0000269|PubMed:21765395, ECO:0000269|PubMed:8622701, ECO:0000269|PubMed:8663044}. |
P12755 | SKI | S515 | psp | Ski oncogene (Proto-oncogene c-Ski) | May play a role in terminal differentiation of skeletal muscle cells but not in the determination of cells to the myogenic lineage. Functions as a repressor of TGF-beta signaling. {ECO:0000269|PubMed:19049980}. |
P15172 | MYOD1 | S278 | psp | Myoblast determination protein 1 (Class C basic helix-loop-helix protein 1) (bHLHc1) (Myogenic factor 3) (Myf-3) | Acts as a transcriptional activator that promotes transcription of muscle-specific target genes and plays a role in muscle differentiation. Together with MYF5 and MYOG, co-occupies muscle-specific gene promoter core region during myogenesis. Induces fibroblasts to differentiate into myoblasts. Interacts with and is inhibited by the twist protein. This interaction probably involves the basic domains of both proteins (By similarity). {ECO:0000250}. |
P15884 | TCF4 | S198 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P22607 | FGFR3 | S771 | psp | Fibroblast growth factor receptor 3 (FGFR-3) (EC 2.7.10.1) (CD antigen CD333) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation and apoptosis. Plays an essential role in the regulation of chondrocyte differentiation, proliferation and apoptosis, and is required for normal skeleton development. Regulates both osteogenesis and postnatal bone mineralization by osteoblasts. Promotes apoptosis in chondrocytes, but can also promote cancer cell proliferation. Required for normal development of the inner ear. Phosphorylates PLCG1, CBL and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Plays a role in the regulation of vitamin D metabolism. Mutations that lead to constitutive kinase activation or impair normal FGFR3 maturation, internalization and degradation lead to aberrant signaling. Over-expressed or constitutively activated FGFR3 promotes activation of PTPN11/SHP2, STAT1, STAT5A and STAT5B. Secreted isoform 3 retains its capacity to bind FGF1 and FGF2 and hence may interfere with FGF signaling. {ECO:0000269|PubMed:10611230, ECO:0000269|PubMed:11294897, ECO:0000269|PubMed:11703096, ECO:0000269|PubMed:14534538, ECO:0000269|PubMed:16410555, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17145761, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17561467, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:19286672, ECO:0000269|PubMed:8663044}. |
P23771 | GATA3 | S162 | ochoa|psp | Trans-acting T-cell-specific transcription factor GATA-3 (GATA-binding factor 3) | Transcriptional activator which binds to the enhancer of the T-cell receptor alpha and delta genes. Binds to the consensus sequence 5'-AGATAG-3'. Required for the T-helper 2 (Th2) differentiation process following immune and inflammatory responses. Positively regulates ASB2 expression (By similarity). Coordinates macrophage transcriptional activation and UCP2-dependent metabolic reprogramming in response to IL33. Upon tissue injury, acts downstream of IL33 signaling to drive differentiation of inflammation-resolving alternatively activated macrophages. {ECO:0000250|UniProtKB:P23772, ECO:0000269|PubMed:23824597}. |
P35548 | MSX2 | S63 | ochoa | Homeobox protein MSX-2 (Homeobox protein Hox-8) | Acts as a transcriptional regulator in bone development. Represses the ALPL promoter activity and antagonizes the stimulatory effect of DLX5 on ALPL expression during osteoblast differentiation. Probable morphogenetic role. May play a role in limb-pattern formation. In osteoblasts, suppresses transcription driven by the osteocalcin FGF response element (OCFRE). Binds to the homeodomain-response element of the ALPL promoter. {ECO:0000269|PubMed:12145306}. |
P35637 | FUS | S142 | psp | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P35711 | SOX5 | S439 | ochoa | Transcription factor SOX-5 | Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}. |
P35712 | SOX6 | S466 | ochoa | Transcription factor SOX-6 | Transcription factor that plays a key role in several developmental processes, including neurogenesis, chondrocytes differentiation and cartilage formation (Probable). Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX5, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene, and is thereby involved in the differentiation of oligodendroglia in the developing spinal tube. Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). {ECO:0000250|UniProtKB:P40645, ECO:0000305|PubMed:32442410}. |
P39880 | CUX1 | S749 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P42331 | ARHGAP25 | S511 | ochoa | Rho GTPase-activating protein 25 (Rho-type GTPase-activating protein 25) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
P43354 | NR4A2 | S256 | ochoa | Nuclear receptor subfamily 4 group A member 2 (Immediate-early response protein NOT) (Orphan nuclear receptor NURR1) (Transcriptionally-inducible nuclear receptor) | Transcriptional regulator which is important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development (PubMed:15716272, PubMed:17184956). It is crucial for expression of a set of genes such as SLC6A3, SLC18A2, TH and DRD2 which are essential for development of mdDA neurons (By similarity). {ECO:0000250|UniProtKB:Q06219, ECO:0000269|PubMed:15716272, ECO:0000269|PubMed:17184956}. |
P46939 | UTRN | S2821 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P48634 | PRRC2A | S2113 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49146 | NPY2R | S251 | ochoa | Neuropeptide Y receptor type 2 (NPY2-R) (NPY-Y2 receptor) (Y2 receptor) | Receptor for neuropeptide Y and peptide YY. The rank order of affinity of this receptor for pancreatic polypeptides is PYY > NPY > PYY (3-36) > NPY (2-36) > [Ile-31, Gln-34] PP > [Leu-31, Pro-34] NPY > PP, [Pro-34] PYY and NPY free acid. |
P51532 | SMARCA4 | S132 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) | ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q00613 | HSF1 | S419 | psp | Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) | Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}. |
Q03188 | CENPC | S73 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q12774 | ARHGEF5 | S1126 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q14315 | FLNC | S2042 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14686 | NCOA6 | S1751 | ochoa | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q14CZ0 | HAPSTR1 | S212 | ochoa | HUWE1-associated protein modifying stress responses 1 (Telomere attrition and p53 response 1 protein) | Acts as a central player within a network of stress response pathways promoting cellular adaptability. The E3 ligase HUWE1 assists HAPSTR1 in controlling stress signaling and in turn, HUWE1 feeds back to promote the degradation of HAPSTR1. HAPSTR1 represents a central coordination mechanism for stress response programs (PubMed:35776542). Functions as a negative regulator of TP53/P53 in the cellular response to telomere erosion and probably also DNA damage (PubMed:33660365). May attenuate p53/TP53 activation through the E3 ubiquitin ligase HUWE1 (PubMed:33660365). {ECO:0000269|PubMed:33660365, ECO:0000269|PubMed:35776542}. |
Q15475 | SIX1 | S150 | ochoa | Homeobox protein SIX1 (Sine oculis homeobox homolog 1) | Transcription factor that is involved in the regulation of cell proliferation, apoptosis and embryonic development (By similarity). Plays an important role in the development of several organs, including kidney, muscle and inner ear (By similarity). Depending on context, functions as a transcriptional repressor or activator (By similarity). Lacks an activation domain, and requires interaction with EYA family members for transcription activation (PubMed:15141091). Mediates nuclear translocation of EYA1 and EYA2 (PubMed:19497856). Binds the 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 element in the MYOG promoter and CIDEA enhancer (PubMed:15141091, PubMed:19497856, PubMed:23435380, PubMed:27923061). Regulates the expression of numerous genes, including MYC, CCND1 and EZR (By similarity). Acts as an activator of the IGFBP5 promoter, probably coactivated by EYA2 (By similarity). Repression of precursor cell proliferation in myoblasts is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex (By similarity). During myogenesis, seems to act together with EYA2 and DACH2 (By similarity). Regulates the expression of CCNA1 (PubMed:15123840). Promotes brown adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q62231, ECO:0000269|PubMed:15123840, ECO:0000269|PubMed:15141091, ECO:0000269|PubMed:19497856, ECO:0000269|PubMed:23435380, ECO:0000269|PubMed:27923061}. |
Q15648 | MED1 | S1401 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15797 | SMAD1 | S214 | psp | Mothers against decapentaplegic homolog 1 (MAD homolog 1) (Mothers against DPP homolog 1) (JV4-1) (Mad-related protein 1) (SMAD family member 1) (SMAD 1) (Smad1) (hSMAD1) (Transforming growth factor-beta-signaling protein 1) (BSP-1) | Transcriptional modulator that plays a role in various cellular processes, including embryonic development, cell differentiation, and tissue homeostasis (PubMed:9335504). Upon BMP ligand binding to their receptors at the cell surface, is phosphorylated by activated type I BMP receptors (BMPRIs) and associates with SMAD4 to form a heteromeric complex which translocates into the nucleus acting as transcription factor (PubMed:33667543). In turn, the hetero-trimeric complex recognizes cis-regulatory elements containing Smad Binding Elements (SBEs) to modulate the outcome of the signaling network (PubMed:33667543). SMAD1/OAZ1/PSMB4 complex mediates the degradation of the CREBBP/EP300 repressor SNIP1. Positively regulates BMP4-induced expression of odontogenic development regulator MSX1 following IPO7-mediated nuclear import (By similarity). {ECO:0000250|UniProtKB:P70340, ECO:0000269|PubMed:12097147, ECO:0000269|PubMed:33667543, ECO:0000269|PubMed:9335504}. |
Q17R98 | ZNF827 | S242 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q2M1Z3 | ARHGAP31 | S1054 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2M1Z3 | ARHGAP31 | S1384 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2NKX8 | ERCC6L | S1069 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q3MIN7 | RGL3 | S601 | ochoa | Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) | Guanine nucleotide exchange factor (GEF) for Ral-A. Potential effector of GTPase HRas and Ras-related protein M-Ras. Negatively regulates Elk-1-dependent gene induction downstream of HRas and MEKK1 (By similarity). {ECO:0000250}. |
Q504Q3 | PAN2 | S791 | ochoa | PAN2-PAN3 deadenylation complex catalytic subunit PAN2 (EC 3.1.13.4) (Inactive ubiquitin carboxyl-terminal hydrolase 52) (PAB1P-dependent poly(A)-specific ribonuclease) (Poly(A)-nuclease deadenylation complex subunit 2) (PAN deadenylation complex subunit 2) | Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenylation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1. Also acts as an important regulator of the HIF1A-mediated hypoxic response. Required for HIF1A mRNA stability independent of poly(A) tail length regulation. {ECO:0000255|HAMAP-Rule:MF_03182, ECO:0000269|PubMed:14583602, ECO:0000269|PubMed:16284618, ECO:0000269|PubMed:23398456}. |
Q52LW3 | ARHGAP29 | S913 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q53ET0 | CRTC2 | S490 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q5CZC0 | FSIP2 | Y347 | ochoa | Fibrous sheath-interacting protein 2 | Plays a role in spermatogenesis. {ECO:0000305|PubMed:30137358}. |
Q5JSZ5 | PRRC2B | S1808 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTV8 | TOR1AIP1 | S281 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5SWA1 | PPP1R15B | S203 | ochoa | Protein phosphatase 1 regulatory subunit 15B | Maintains low levels of EIF2S1 phosphorylation in unstressed cells by promoting its dephosphorylation by PP1. {ECO:0000269|PubMed:26159176, ECO:0000269|PubMed:26307080}. |
Q5SYE7 | NHSL1 | S568 | ochoa | NHS-like protein 1 | None |
Q5T011 | SZT2 | S2899 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T0F9 | CC2D1B | S528 | ochoa | Coiled-coil and C2 domain-containing protein 1B (Five prime repressor element under dual repression-binding protein 2) (FRE under dual repression-binding protein 2) (Freud-2) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. {ECO:0000269|PubMed:19423080}. |
Q5T1R4 | HIVEP3 | S1964 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1R4 | HIVEP3 | S2245 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5TGY3 | AHDC1 | S1064 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5TKA1 | LIN9 | S76 | ochoa | Protein lin-9 homolog (HuLin-9) (hLin-9) (Beta subunit-associated regulator of apoptosis) (TUDOR gene similar protein) (Type I interferon receptor beta chain-associated protein) (pRB-associated protein) | Acts as a tumor suppressor. Inhibits DNA synthesis. Its ability to inhibit oncogenic transformation is mediated through its association with RB1. Plays a role in the expression of genes required for the G1/S transition. {ECO:0000269|PubMed:15538385, ECO:0000269|PubMed:16730350}. |
Q6IE81 | JADE1 | S392 | ochoa | Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}. |
Q6IMN6 | CAPRIN2 | S660 | ochoa | Caprin-2 (C1q domain-containing protein 1) (Cytoplasmic activation/proliferation-associated protein 2) (Gastric cancer multidrug resistance-associated protein) (Protein EEG-1) (RNA granule protein 140) | Promotes phosphorylation of the Wnt coreceptor LRP6, leading to increased activity of the canonical Wnt signaling pathway (PubMed:18762581). Facilitates constitutive LRP6 phosphorylation by CDK14/CCNY during G2/M stage of the cell cycle, which may potentiate cells for Wnt signaling (PubMed:27821587). May regulate the transport and translation of mRNAs, modulating for instance the expression of proteins involved in synaptic plasticity in neurons (By similarity). Involved in regulation of growth as erythroblasts shift from a highly proliferative state towards their terminal phase of differentiation (PubMed:14593112). May be involved in apoptosis (PubMed:14593112). {ECO:0000250|UniProtKB:Q05A80, ECO:0000269|PubMed:14593112, ECO:0000269|PubMed:18762581, ECO:0000269|PubMed:27821587}. |
Q6MZP7 | LIN54 | S314 | ochoa|psp | Protein lin-54 homolog (CXC domain-containing protein 1) | Component of the DREAM complex, a multiprotein complex that can both act as a transcription activator or repressor depending on the context (PubMed:17531812, PubMed:17671431). In G0 phase, the complex binds to more than 800 promoters and is required for repression of E2F target genes (PubMed:17531812, PubMed:17671431). In S phase, the complex selectively binds to the promoters of G2/M genes whose products are required for mitosis and participates in their cell cycle dependent activation (PubMed:17531812, PubMed:17671431). In the complex, acts as a DNA-binding protein that binds the promoter of CDK1 in a sequence-specific manner (PubMed:19725879). Specifically recognizes the consensus motif 5'-TTYRAA-3' in target DNA (PubMed:27465258). {ECO:0000269|PubMed:17531812, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:19725879, ECO:0000269|PubMed:27465258}. |
Q6PFW1 | PPIP5K1 | S1152 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 1) (Histidine acid phosphatase domain-containing protein 2A) (IP6 kinase) (Inositol pyrophosphate synthase 1) (InsP6 and PP-IP5 kinase 1) (VIP1 homolog) (hsVIP1) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4. Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4. Activated when cells are exposed to hyperosmotic stress. {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752}. |
Q6PJP8 | DCLRE1A | S238 | ochoa | DNA cross-link repair 1A protein (Beta-lactamase DCLRE1A) (EC 3.5.2.6) (SNM1 homolog A) (hSNM1) (hSNM1A) | May be required for DNA interstrand cross-link repair. Also required for checkpoint mediated cell cycle arrest in early prophase in response to mitotic spindle poisons. Possesses beta-lactamase activity, catalyzing the hydrolysis of penicillin G and nitrocefin (PubMed:31434986). Exhibits no activity towards other beta-lactam antibiotic classes including cephalosporins (cefotaxime) and carbapenems (imipenem) (PubMed:31434986). {ECO:0000269|PubMed:15542852}. |
Q6ZNG1 | ZNF600 | S143 | ochoa | Zinc finger protein 600 | May be involved in transcriptional regulation. |
Q6ZSZ6 | TSHZ1 | S830 | ochoa | Teashirt homolog 1 (Antigen NY-CO-33) (Serologically defined colon cancer antigen 33) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q6ZV89 | SH2D5 | S231 | ochoa | SH2 domain-containing protein 5 | May be involved in synaptic plasticity regulation through the control of Rac-GTP levels. {ECO:0000250|UniProtKB:Q8JZW5}. |
Q70E73 | RAPH1 | S1154 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70EK9 | USP51 | S26 | ochoa | Ubiquitin carboxyl-terminal hydrolase 51 (EC 3.4.19.12) (Deubiquitinating enzyme 51) (Ubiquitin thioesterase 51) (Ubiquitin-specific-processing protease 51) | Specifically deubiquitinates 'Lys-14' (H2AK13Ub) and 'Lys-16'(H2AK15Ub) of histone H2A regulating the DNA damage response at double-strand breaks (DSBs) (PubMed:27083998, PubMed:33022275). USP51 is recruited to chromatin after DNA damage and regulates the dynamic assembly/disassembly of TP53BP1 and BRCA1. Functions in DNA double-strand break repair also by mediating the deubiquitination and subsequent stabilization of DGCR8, leading to the recruitment of DGCR8 binding partners to double strand breaks such as RNF168 or MDC1 (PubMed:34188037). In addition, promotes the deubiquitination and stabilization of the transcriptional repressor ZEB1 (PubMed:29119051). {ECO:0000269|PubMed:27083998, ECO:0000269|PubMed:29119051, ECO:0000269|PubMed:33022275, ECO:0000269|PubMed:34188037}. |
Q70SY1 | CREB3L2 | S234 | ochoa | Cyclic AMP-responsive element-binding protein 3-like protein 2 (cAMP-responsive element-binding protein 3-like protein 2) (BBF2 human homolog on chromosome 7) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 2] | Transcription factor involved in unfolded protein response (UPR). In the absence of endoplasmic reticulum (ER) stress, inserted into ER membranes, with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane. In response to ER stress, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus to effect transcription of specific target genes. Plays a critical role in chondrogenesis by activating the transcription of SEC23A, which promotes the transport and secretion of cartilage matrix proteins, and possibly that of ER biogenesis-related genes (By similarity). In a neuroblastoma cell line, protects cells from ER stress-induced death (PubMed:17178827). In vitro activates transcription of target genes via direct binding to the CRE site (PubMed:17178827). {ECO:0000250|UniProtKB:Q8BH52, ECO:0000269|PubMed:17178827}. |
Q71RC2 | LARP4 | S647 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q7Z2D5 | PLPPR4 | S472 | ochoa | Phospholipid phosphatase-related protein type 4 (Brain-specific phosphatidic acid phosphatase-like protein 1) (Inactive 2-lysophosphatidate phosphatase PLPPR4) (Lipid phosphate phosphatase-related protein type 4) (Plasticity-related gene 1 protein) (PRG-1) | Postsynaptic density membrane protein that indirectly regulates glutamatergic synaptic transmission through lysophosphatidic acid (LPA)-mediated signaling pathways. Binds lysophosphatidic acid (LPA) and mediates its internalization into cells. Could act as receptor or a transporter of this lipid at the post-synaptic membrane (By similarity). Modulates lysophosphatidic acid (LPA) activity in neuron axonal outgrowth during development by attenuating phospholipid-induced axon collapse (By similarity). {ECO:0000250|UniProtKB:Q7TMB7, ECO:0000250|UniProtKB:Q7TME0}. |
Q7Z3B3 | KANSL1 | S991 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z6Z7 | HUWE1 | Y2744 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86XJ1 | GAS2L3 | S495 | ochoa | GAS2-like protein 3 (Growth arrest-specific protein 2-like 3) | Cytoskeletal linker protein. May promote and stabilize the formation of the actin and microtubule network. {ECO:0000269|PubMed:21561867}. |
Q86XZ4 | SPATS2 | S394 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q86YC2 | PALB2 | S781 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YS3 | RAB11FIP4 | S320 | ochoa | Rab11 family-interacting protein 4 (FIP4-Rab11) (Rab11-FIP4) (Arfophilin-2) | Acts as a regulator of endocytic traffic by participating in membrane delivery. Required for the abscission step in cytokinesis, possibly by acting as an 'address tag' delivering recycling endosome membranes to the cleavage furrow during late cytokinesis. In case of infection by HCMV (human cytomegalovirus), may participate in egress of the virus out of nucleus; this function is independent of ARF6. {ECO:0000269|PubMed:12470645}. |
Q86YV5 | PRAG1 | S263 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q86Z02 | HIPK1 | S872 | ochoa | Homeodomain-interacting protein kinase 1 (EC 2.7.11.1) (Nuclear body-associated kinase 2) | Serine/threonine-protein kinase involved in transcription regulation and TNF-mediated cellular apoptosis. Plays a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX and MYB. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. Inactivates MYB transcription factor activity by phosphorylation. Prevents MAP3K5-JNK activation in the absence of TNF. TNF triggers its translocation to the cytoplasm in response to stress stimuli, thus activating nuclear MAP3K5-JNK by derepression and promoting apoptosis. May be involved in anti-oxidative stress responses. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. Promotes angiogenesis and to be involved in erythroid differentiation. May be involved in malignant squamous cell tumor formation. Phosphorylates PAGE4 at 'Thr-51' which is critical for the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:24559171). {ECO:0000269|PubMed:12702766, ECO:0000269|PubMed:12968034, ECO:0000269|PubMed:15701637, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:19646965, ECO:0000269|PubMed:24559171}. |
Q8IVB4 | SLC9A9 | S612 | ochoa | Sodium/hydrogen exchanger 9 (Na(+)/H(+) exchanger 9) (NHE-9) (Solute carrier family 9 member 9) | Endosomal Na(+), K(+)/H(+) antiporter. Mediates the electroneutral exchange of endosomal luminal H(+) for a cytosolic Na(+) or K(+) (Probable). By facilitating proton efflux, SLC9A9 counteracts the acidity generated by vacuolar (V)-ATPase, thereby limiting luminal acidification. Regulates organellar pH and consequently, e.g., endosome maturation and endocytic trafficking of plasma membrane receptors and neurotransporters (PubMed:15522866, PubMed:24065030, PubMed:28130443). Promotes the recycling of transferrin receptors back to the cell surface to facilitate additional iron uptake in the brain (PubMed:28130443). Regulates synaptic transmission by regulating the luminal pH of axonal endosomes (By similarity). Regulates phagosome lumenal pH, thus affecting phagosome maturation, and consequently, microbicidal activity in macrophages (By similarity). Can also be active at the cell surface of specialized cells, e.g., in the inner ear hair bundles uses the high K(+) of the endolymph to regulate intracelular pH (By similarity). {ECO:0000250|UniProtKB:Q8BZ00, ECO:0000269|PubMed:15522866, ECO:0000269|PubMed:24065030, ECO:0000269|PubMed:28130443, ECO:0000305|PubMed:15522866}. |
Q8IVF2 | AHNAK2 | S4966 | ochoa | Protein AHNAK2 | None |
Q8IXI1 | RHOT2 | S538 | ochoa | Mitochondrial Rho GTPase 2 (MIRO-2) (hMiro-2) (EC 3.6.5.-) (Ras homolog gene family member T2) | Atypical mitochondrial nucleoside-triphosphatase (NTPase) involved in mitochondrial trafficking (PubMed:16630562, PubMed:22396657, PubMed:30513825). Probably involved in control of anterograde transport of mitochondria and their subcellular distribution (PubMed:22396657). Can hydrolyze GTP (By similarity). Can hydrolyze ATP and UTP (PubMed:30513825). {ECO:0000250|UniProtKB:Q8IXI2, ECO:0000269|PubMed:16630562, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:30513825}. |
Q8IY47 | KBTBD2 | S300 | ochoa | Kelch repeat and BTB domain-containing protein 2 (BTB and kelch domain-containing protein 1) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of the insulin signaling pathway, modulating insulin sensitivity by limiting PIK3R1/p85alpha abundance in adipocytes. Targets PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), for 'Lys-48'-linked polyubiquitination and proteasome-mediated degradation. {ECO:0000269|PubMed:27708159}. |
Q8IYT8 | ULK2 | S771 | ochoa | Serine/threonine-protein kinase ULK2 (EC 2.7.11.1) (Unc-51-like kinase 2) | Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and a negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK, also acts as a negative regulator of AMPK through phosphorylation of the AMPK subunits PRKAA1, PRKAB2 and PRKAG1. May phosphorylate ATG13/KIAA0652, FRS2, FRS3 and RPTOR; however such data need additional evidences. Not involved in ammonia-induced autophagy or in autophagic response of cerebellar granule neurons (CGN) to low potassium concentration. Plays a role early in neuronal differentiation and is required for granule cell axon formation: may govern axon formation via Ras-like GTPase signaling and through regulation of the Rab5-mediated endocytic pathways within developing axons. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21460635, ECO:0000269|PubMed:21690395, ECO:0000269|PubMed:21795849}. |
Q8N543 | OGFOD1 | S256 | psp | Prolyl 3-hydroxylase OGFOD1 (EC 1.14.11.-) (2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1) (Termination and polyadenylation 1 homolog) (uS12 prolyl 3-hydroxylase) | Prolyl 3-hydroxylase that catalyzes 3-hydroxylation of 'Pro-62' of small ribosomal subunit uS12 (RPS23), thereby regulating protein translation termination efficiency. Involved in stress granule formation. {ECO:0000269|PubMed:20154146, ECO:0000269|PubMed:24550447, ECO:0000269|PubMed:24550462}. |
Q8N568 | DCLK2 | S341 | ochoa | Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) | Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}. |
Q8NAG6 | ANKLE1 | S305 | ochoa | Ankyrin repeat and LEM domain-containing protein 1 (EC 3.1.-.-) (Ankyrin repeat domain-containing protein 41) (LEM-domain containing protein 3) | Endonuclease that probably plays a role in the DNA damage response and DNA repair. {ECO:0000269|PubMed:22399800, ECO:0000269|PubMed:27245214}. |
Q8NEV8 | EXPH5 | S604 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NFA0 | USP32 | S1398 | ochoa | Ubiquitin carboxyl-terminal hydrolase 32 (EC 3.4.19.12) (Deubiquitinating enzyme 32) (Renal carcinoma antigen NY-REN-60) (Ubiquitin thioesterase 32) (Ubiquitin-specific-processing protease 32) | Deubiquitinase that can remove conjugated ubiquitin from target proteins, such as RAB7A and LAMTOR1 (PubMed:36476874). Acts as a positive regulator of the mTORC1 signaling by mediating deubiquitination of LAMTOR1, thereby promoting the association between LAMTOR1 and the lysosomal V-ATPase complex and subsequent activation of the mTORC1 complex (PubMed:36476874). {ECO:0000269|PubMed:36476874}. |
Q8NFY4 | SEMA6D | S983 | ochoa | Semaphorin-6D | Shows growth cone collapsing activity on dorsal root ganglion (DRG) neurons in vitro. May be a stop signal for the DRG neurons in their target areas, and possibly also for other neurons. May also be involved in the maintenance and remodeling of neuronal connections. Ligand of TREM2 with PLXNA1 as coreceptor in dendritic cells, plays a role in the generation of immune responses and skeletal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q76KF0}. |
Q8TDM6 | DLG5 | S1064 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TF72 | SHROOM3 | S910 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WVJ9 | TWIST2 | S55 | ochoa | Twist-related protein 2 (Class A basic helix-loop-helix protein 39) (bHLHa39) (Dermis-expressed protein 1) (Dermo-1) | Binds to the E-box consensus sequence 5'-CANNTG-3' as a heterodimer and inhibits transcriptional activation by MYOD1, MYOG, MEF2A and MEF2C. Also represses expression of pro-inflammatory cytokines such as TNFA and IL1B. Involved in postnatal glycogen storage and energy metabolism (By similarity). Inhibits the premature or ectopic differentiation of preosteoblast cells during osteogenesis, possibly by changing the internal signal transduction response of osteoblasts to external growth factors. {ECO:0000250, ECO:0000269|PubMed:11062344}. |
Q8WXE1 | ATRIP | S224 | ochoa|psp | ATR-interacting protein (ATM and Rad3-related-interacting protein) | Required for checkpoint signaling after DNA damage. Required for ATR expression, possibly by stabilizing the protein. {ECO:0000269|PubMed:12791985}. |
Q8WXG6 | MADD | S156 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q92888 | ARHGEF1 | S776 | ochoa | Rho guanine nucleotide exchange factor 1 (115 kDa guanine nucleotide exchange factor) (p115-RhoGEF) (p115RhoGEF) (Sub1.5) | Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits (PubMed:9641915, PubMed:9641916). Acts as a GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase (PubMed:30521495, PubMed:8810315, PubMed:9641915, PubMed:9641916). Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain (PubMed:9641916). This GEF activity is inhibited by binding to activated GNA12 (PubMed:9641916). Mediates angiotensin-2-induced RhoA activation (PubMed:20098430). In lymphoid follicles, may trigger activation of GNA13 as part of S1PR2-dependent signaling pathway that leads to inhibition of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:Q61210, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:30521495, ECO:0000269|PubMed:8810315, ECO:0000269|PubMed:9641915, ECO:0000269|PubMed:9641916}. |
Q93074 | MED12 | S688 | ochoa | Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}. |
Q96BA8 | CREB3L1 | S244 | ochoa | Cyclic AMP-responsive element-binding protein 3-like protein 1 (cAMP-responsive element-binding protein 3-like protein 1) (Old astrocyte specifically-induced substance) (OASIS) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 1] | [Cyclic AMP-responsive element-binding protein 3-like protein 1]: Precursor of the transcription factor form (Processed cyclic AMP-responsive element-binding protein 3-like protein 1), which is embedded in the endoplasmic reticulum membrane with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane (PubMed:12054625, PubMed:16417584, PubMed:25310401). In response to ER stress or DNA damage, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus where it activates transcription of specific target genes involved in the cell-cycle progression inhibition (PubMed:12054625, PubMed:21767813, PubMed:25310401). {ECO:0000269|PubMed:12054625, ECO:0000269|PubMed:16417584, ECO:0000269|PubMed:21767813, ECO:0000269|PubMed:25310401}.; FUNCTION: [Processed cyclic AMP-responsive element-binding protein 3-like protein 1]: Transcription factor involved in cell type specific DNA damage and unfolded protein response (UPR). Binds the DNA consensus sequence 5'-GTGXGCXGC-3' (PubMed:21767813). Plays a critical role in bone formation through the transcription of COL1A1, and possibly COL1A2, and the secretion of bone matrix proteins. Directly binds to the UPR element (UPRE)-like sequence in an osteoblast-specific COL1A1 promoter region and induces its transcription. Does not regulate COL1A1 in other tissues, such as skin (By similarity). Required to protect astrocytes from ER stress-induced cell death. In astrocytes, binds to the cAMP response element (CRE) of the BiP/HSPA5 promoter and participate in its transcriptional activation (By similarity). In astrocytes and osteoblasts, upon DNA damage, inhibits cell-cycle progression after G2/M phase by binding to promoters and activating transcription of genes encoding cell-cycle inhibitors, such as p21/CDKN1A (By similarity). Required for TGFB1 to activate genes involved in the assembly of collagen extracellular matrix (PubMed:25310401). {ECO:0000250|UniProtKB:Q9Z125, ECO:0000269|PubMed:12054625, ECO:0000269|PubMed:21767813, ECO:0000269|PubMed:25310401}.; FUNCTION: (Microbial infection) May play a role in limiting virus spread by inhibiting proliferation of virus-infected cells. Upon infection with diverse DNA and RNA viruses, inhibits cell-cycle progression by binding to promoters and activating transcription of genes encoding cell-cycle inhibitors, such as p21/CDKN1A (PubMed:21767813). {ECO:0000269|PubMed:21767813}. |
Q96JN0 | LCOR | S42 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96JQ0 | DCHS1 | S3255 | ochoa | Protocadherin-16 (Cadherin-19) (Cadherin-25) (Fibroblast cadherin-1) (Protein dachsous homolog 1) | Calcium-dependent cell-adhesion protein. Mediates functions in neuroprogenitor cell proliferation and differentiation. In the heart, has a critical role for proper morphogenesis of the mitral valve, acting in the regulation of cell migration involved in valve formation (PubMed:26258302). {ECO:0000269|PubMed:26258302}. |
Q96JQ0 | DCHS1 | S3259 | ochoa | Protocadherin-16 (Cadherin-19) (Cadherin-25) (Fibroblast cadherin-1) (Protein dachsous homolog 1) | Calcium-dependent cell-adhesion protein. Mediates functions in neuroprogenitor cell proliferation and differentiation. In the heart, has a critical role for proper morphogenesis of the mitral valve, acting in the regulation of cell migration involved in valve formation (PubMed:26258302). {ECO:0000269|PubMed:26258302}. |
Q96M11 | HYLS1 | S179 | ochoa | Centriolar and ciliogenesis-associated protein HYLS1 (Hydrolethalus syndrome protein 1) | Plays a role in ciliogenesis. {ECO:0000250|UniProtKB:A0A1L8ER70, ECO:0000250|UniProtKB:Q95X94}. |
Q96PY6 | NEK1 | S1008 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96QB1 | DLC1 | S642 | ochoa|psp | Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) | Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}. |
Q99590 | SCAF11 | S338 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99700 | ATXN2 | S624 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BUH8 | BEGAIN | S563 | ochoa | Brain-enriched guanylate kinase-associated protein | May sustain the structure of the postsynaptic density (PSD). |
Q9BVN2 | RUSC1 | S831 | ochoa | AP-4 complex accessory subunit RUSC1 (New molecule containing SH3 at the carboxy-terminus) (Nesca) (RUN and SH3 domain-containing protein 1) | Associates with the adapter-like complex 4 (AP-4) and may therefore play a role in vesicular trafficking of proteins at the trans-Golgi network (PubMed:30262884). Signaling adapter which plays a role in neuronal differentiation (PubMed:15024033). Involved in regulation of NGF-dependent neurite outgrowth (PubMed:15024033). May play a role in neuronal vesicular trafficking, specifically involving pre-synaptic membrane proteins (By similarity). Seems to be involved in signaling pathways that are regulated by the prolonged activation of MAPK (PubMed:15024033). Can regulate the polyubiquitination of IKBKG and thus may be involved in regulation of the NF-kappa-B pathway (PubMed:19365808). {ECO:0000250|UniProtKB:Q8BG26, ECO:0000269|PubMed:15024033, ECO:0000269|PubMed:19365808, ECO:0000269|PubMed:30262884}. |
Q9BXA9 | SALL3 | S633 | ochoa | Sal-like protein 3 (Zinc finger protein 796) (Zinc finger protein SALL3) (hSALL3) | Probable transcription factor. |
Q9BXF6 | RAB11FIP5 | S523 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BZB8 | CPEB1 | S208 | ochoa | Cytoplasmic polyadenylation element-binding protein 1 (CPE-BP1) (CPE-binding protein 1) (h-CPEB) (hCPEB-1) | Sequence-specific RNA-binding protein that regulates mRNA cytoplasmic polyadenylation and translation initiation during oocyte maturation, early development and at postsynapse sites of neurons. Binds to the cytoplasmic polyadenylation element (CPE), an uridine-rich sequence element (consensus sequence 5'-UUUUUAU-3') within the mRNA 3'-UTR. RNA binding results in a clear conformational change analogous to the Venus fly trap mechanism (PubMed:24990967). In absence of phosphorylation and in association with TACC3 is also involved as a repressor of translation of CPE-containing mRNA; a repression that is relieved by phosphorylation or degradation (By similarity). Involved in the transport of CPE-containing mRNA to dendrites; those mRNAs may be transported to dendrites in a translationally dormant form and translationally activated at synapses (By similarity). Its interaction with APLP1 promotes local CPE-containing mRNA polyadenylation and translation activation (By similarity). Induces the assembly of stress granules in the absence of stress. Required for cell cycle progression, specifically for prophase entry (PubMed:26398195). {ECO:0000250|UniProtKB:P70166, ECO:0000269|PubMed:15731006, ECO:0000269|PubMed:15966895, ECO:0000269|PubMed:24990967, ECO:0000269|PubMed:26398195}. |
Q9C0C6 | CIPC | S211 | ochoa | CLOCK-interacting pacemaker (CLOCK-interacting circadian protein) | Transcriptional repressor which may act as a negative-feedback regulator of CLOCK-BMAL1 transcriptional activity in the circadian-clock mechanism. May stimulate BMAL1-dependent phosphorylation of CLOCK. However, the physiological relevance of these observations is unsure, since experiments in an animal model showed that CIPC is not critially required for basic circadian clock. {ECO:0000250|UniProtKB:Q8R0W1}. |
Q9C0K0 | BCL11B | S358 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9H3M7 | TXNIP | S361 | ochoa|psp | Thioredoxin-interacting protein (Thioredoxin-binding protein 2) (Vitamin D3 up-regulated protein 1) | May act as an oxidative stress mediator by inhibiting thioredoxin activity or by limiting its bioavailability (PubMed:17603038). Interacts with COPS5 and restores COPS5-induced suppression of CDKN1B stability, blocking the COPS5-mediated translocation of CDKN1B from the nucleus to the cytoplasm (By similarity). Functions as a transcriptional repressor, possibly by acting as a bridge molecule between transcription factors and corepressor complexes, and over-expression will induce G0/G1 cell cycle arrest (PubMed:12821938). Required for the maturation of natural killer cells (By similarity). Acts as a suppressor of tumor cell growth (PubMed:18541147). Inhibits the proteasomal degradation of DDIT4, and thereby contributes to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1) (PubMed:21460850). {ECO:0000250|UniProtKB:Q8BG60, ECO:0000269|PubMed:12821938, ECO:0000269|PubMed:17603038, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:21460850}. |
Q9H694 | BICC1 | S688 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H6S1 | AZI2 | S353 | ochoa | 5-azacytidine-induced protein 2 (NF-kappa-B-activating kinase-associated protein 1) (Nak-associated protein 1) (Nap1) (TILP) | Adapter protein which binds TBK1 and IKBKE playing a role in antiviral innate immunity (PubMed:14560022, PubMed:21931631). Activates serine/threonine-protein kinase TBK1 and facilitates its oligomerization (PubMed:14560022, PubMed:21931631). Enhances the phosphorylation of NF-kappa-B p65 subunit RELA by TBK1 (PubMed:14560022, PubMed:21931631). Promotes TBK1-induced as well as TNF-alpha or PMA-induced activation of NF-kappa-B (PubMed:14560022, PubMed:21931631). Participates in IFNB promoter activation via TICAM1 (PubMed:15611223). {ECO:0000269|PubMed:14560022, ECO:0000269|PubMed:15611223, ECO:0000269|PubMed:21931631}. |
Q9H8M5 | CNNM2 | S749 | ochoa | Metal transporter CNNM2 (Ancient conserved domain-containing protein 2) (Cyclin-M2) | Divalent metal cation transporter. Mediates transport of divalent metal cations in an order of Mg(2+) > Co(2+) > Mn(2+) > Sr(2+) > Ba(2+) > Cu(2+) > Fe(2+) (By similarity). {ECO:0000250|UniProtKB:Q3TWN3}. |
Q9NPC8 | SIX2 | S150 | ochoa | Homeobox protein SIX2 (Sine oculis homeobox homolog 2) | Transcription factor that plays an important role in the development of several organs, including kidney, skull and stomach. During kidney development, maintains cap mesenchyme multipotent nephron progenitor cells in an undifferentiated state by opposing the inductive signals emanating from the ureteric bud and cooperates with WNT9B to promote renewing progenitor cells proliferation. Acts through its interaction with TCF7L2 and OSR1 in a canonical Wnt signaling independent manner preventing transcription of differentiation genes in cap mesenchyme such as WNT4. Also acts independently of OSR1 to activate expression of many cap mesenchyme genes, including itself, GDNF and OSR1. During craniofacial development plays a role in growth and elongation of the cranial base through regulation of chondrocyte differentiation. During stomach organogenesis, controls pyloric sphincter formation and mucosal growth through regulation of a gene network including NKX2-5, BMPR1B, BMP4, SOX9 and GREM1. During branchial arch development, acts to mediate HOXA2 control over the insulin-like growth factor pathway. May also be involved in limb tendon and ligament development (By similarity). Plays a role in cell proliferation and migration. {ECO:0000250|UniProtKB:Q62232, ECO:0000269|PubMed:22995329}. |
Q9NUQ6 | SPATS2L | S195 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9P0K8 | FOXJ2 | S46 | ochoa | Forkhead box protein J2 (Fork head homologous X) | [Isoform FOXJ2.L]: Transcriptional activator. Able to bind to two different type of DNA binding sites. More effective than isoform FOXJ2.S in transcriptional activation (PubMed:10777590, PubMed:10966786). Plays an important role in spermatogenesis, especially in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q9ES18, ECO:0000269|PubMed:10777590, ECO:0000269|PubMed:10966786}.; FUNCTION: [Isoform FOXJ2.S]: Transcriptional activator. {ECO:0000269|PubMed:10966786}. |
Q9P0L2 | MARK1 | S588 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P275 | USP36 | S515 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9UF56 | FBXL17 | S303 | ochoa | F-box/LRR-repeat protein 17 (F-box and leucine-rich repeat protein 17) (F-box only protein 13) | Substrate-recognition component of the SCF(FBXL17) E3 ubiquitin ligase complex, a key component of a quality control pathway required to ensure functional dimerization of BTB domain-containing proteins (dimerization quality control, DQC) (PubMed:30190310). FBXL17 specifically recognizes and binds a conserved degron of non-consecutive residues present at the interface of BTB dimers of aberrant composition: aberrant BTB dimer are then ubiquitinated by the SCF(FBXL17) complex and degraded by the proteasome (PubMed:30190310). The ability of the SCF(FBXL17) complex to eliminate compromised BTB dimers is required for the differentiation and survival of neural crest and neuronal cells (By similarity). The SCF(FBXL17) complex mediates ubiquitination and degradation of BACH1 (PubMed:24035498, PubMed:30190310). The SCF(FBXL17) complex is also involved in the regulation of the hedgehog/smoothened (Hh) signaling pathway by mediating the ubiquitination and degradation of SUFU, allowing the release of GLI1 from SUFU for proper Hh signal transduction (PubMed:27234298). The SCF(FBXL17) complex mediates ubiquitination and degradation of PRMT1 (By similarity). {ECO:0000250|UniProtKB:B1H1X1, ECO:0000250|UniProtKB:Q9QZN1, ECO:0000269|PubMed:24035498, ECO:0000269|PubMed:27234298, ECO:0000269|PubMed:30190310}. |
Q9UGU0 | TCF20 | S1196 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHI6 | DDX20 | S187 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UJV8 | PURG | S156 | ochoa | Purine-rich element-binding protein gamma (Purine-rich element-binding protein G) | None |
Q9UKE5 | TNIK | S769 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9ULH0 | KIDINS220 | S1662 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULK2 | ATXN7L1 | S131 | ochoa | Ataxin-7-like protein 1 (Ataxin-7-like protein 4) | None |
Q9UPN3 | MACF1 | S5808 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPW6 | SATB2 | S294 | ochoa | DNA-binding protein SATB2 (Special AT-rich sequence-binding protein 2) | Binds to DNA, at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcription factor controlling nuclear gene expression, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Required for the initiation of the upper-layer neurons (UL1) specific genetic program and for the inactivation of deep-layer neurons (DL) and UL2 specific genes, probably by modulating BCL11B expression. Repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex. May play an important role in palate formation. Acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation. {ECO:0000269|PubMed:14701874}. |
Q9UQL6 | HDAC5 | S662 | ochoa | Histone deacetylase 5 (HD5) (EC 3.5.1.98) (Antigen NY-CO-9) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Serves as a corepressor of RARA and causes its deacetylation (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). {ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:28167758}. |
Q9Y2F5 | ICE1 | S1331 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2H9 | MAST1 | S43 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2J0 | RPH3A | S263 | ochoa | Rabphilin-3A (Exophilin-1) | Plays an essential role in docking and fusion steps of regulated exocytosis (By similarity). At the presynaptic level, RPH3A is recruited by RAB3A to the synaptic vesicle membrane in a GTP-dependent manner where it modulates synaptic vesicle trafficking and calcium-triggered neurotransmitter release (By similarity). In the post-synaptic compartment, forms a ternary complex with GRIN2A and DLG4 and regulates NMDA receptor stability. Also plays a role in the exocytosis of arginine vasopressin hormone (By similarity). {ECO:0000250|UniProtKB:P47709}. |
Q9Y4J8 | DTNA | S366 | ochoa | Dystrobrevin alpha (DTN-A) (Alpha-dystrobrevin) (Dystrophin-related protein 3) | May be involved in the formation and stability of synapses as well as being involved in the clustering of nicotinic acetylcholine receptors. |
Q9Y5S1 | TRPV2 | S741 | ochoa | Transient receptor potential cation channel subfamily V member 2 (TrpV2) (Osm-9-like TRP channel 2) (OTRPC2) (Vanilloid receptor-like protein 1) (VRL-1) | Calcium-permeable, non-selective cation channel with an outward rectification. Seems to be regulated, at least in part, by IGF1, PDGF and neuropeptide head activator. May transduce physical stimuli in mast cells. Activated by temperatures higher than 52 degrees Celsius; is not activated by vanilloids and acidic pH. {ECO:0000269|PubMed:10201375}. |
P26599 | PTBP1 | S131 | Sugiyama | Polypyrimidine tract-binding protein 1 (PTB) (57 kDa RNA-binding protein PPTB-1) (Heterogeneous nuclear ribonucleoprotein I) (hnRNP I) | Plays a role in pre-mRNA splicing and in the regulation of alternative splicing events. Activates exon skipping of its own pre-mRNA during muscle cell differentiation. Binds to the polypyrimidine tract of introns. May promote RNA looping when bound to two separate polypyrimidine tracts in the same pre-mRNA. May promote the binding of U2 snRNP to pre-mRNA. Cooperates with RAVER1 to modulate switching between mutually exclusive exons during maturation of the TPM1 pre-mRNA. Represses the splicing of MAPT/Tau exon 10 (PubMed:15009664). Binds to polypyrimidine-rich controlling element (PCE) of CFTR and promotes exon skipping of CFTR exon 9, thereby antagonizing TIA1 and its role in exon inclusion of CFTR exon 9 (PubMed:14966131). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to a polypyrimidine tract flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). In case of infection by picornaviruses, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:21518806). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:14966131, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:16179478, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:21518806}. |
A1L020 | MEX3A | S428 | ochoa | RNA-binding protein MEX3A (RING finger and KH domain-containing protein 4) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. |
A2AJT9 | BCLAF3 | S402 | ochoa | BCLAF1 and THRAP3 family member 3 | None |
A5PL33 | KRBA1 | S355 | ochoa | Protein KRBA1 | None |
C9J069 | AJM1 | S499 | ochoa | Apical junction component 1 homolog | May be involved in the control of adherens junction integrity. {ECO:0000250|UniProtKB:A0A1C3NSL9}. |
O14497 | ARID1A | S1944 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O75069 | TMCC2 | S194 | ochoa | Transmembrane and coiled-coil domains protein 2 (Cerebral protein 11) | May be involved in the regulation of the proteolytic processing of the amyloid precursor protein (APP) possibly also implicating APOE. {ECO:0000269|PubMed:21593558}. |
O75197 | LRP5 | S1503 | psp | Low-density lipoprotein receptor-related protein 5 (LRP-5) (Low-density lipoprotein receptor-related protein 7) (LRP-7) | Acts as a coreceptor with members of the frizzled family of seven-transmembrane spanning receptors to transduce signal by Wnt proteins (PubMed:11336703, PubMed:11448771, PubMed:11719191, PubMed:15778503, PubMed:15908424, PubMed:16252235). Activates the canonical Wnt signaling pathway that controls cell fate determination and self-renewal during embryonic development and adult tissue regeneration (PubMed:11336703, PubMed:11719191). In particular, may play an important role in the development of the posterior patterning of the epiblast during gastrulation (By similarity). During bone development, regulates osteoblast proliferation and differentiation thus determining bone mass (PubMed:11719191). Mechanistically, the formation of the signaling complex between Wnt ligand, frizzled receptor and LRP5 coreceptor promotes the recruitment of AXIN1 to LRP5, stabilizing beta-catenin/CTNNB1 and activating TCF/LEF-mediated transcriptional programs (PubMed:11336703, PubMed:14731402, PubMed:24706814, PubMed:25920554). Acts as a coreceptor for non-Wnt proteins, such as norrin/NDP. Binding of norrin/NDP to frizzled 4/FZD4-LRP5 receptor complex triggers beta-catenin/CTNNB1-dependent signaling known to be required for retinal vascular development (PubMed:16252235, PubMed:27228167). Plays a role in controlling postnatal vascular regression in retina via macrophage-induced endothelial cell apoptosis (By similarity). {ECO:0000250|UniProtKB:Q91VN0, ECO:0000269|PubMed:11336703, ECO:0000269|PubMed:11448771, ECO:0000269|PubMed:11719191, ECO:0000269|PubMed:14731402, ECO:0000269|PubMed:15778503, ECO:0000269|PubMed:15908424, ECO:0000269|PubMed:16252235, ECO:0000269|PubMed:24706814, ECO:0000269|PubMed:25920554, ECO:0000269|PubMed:27228167}. |
O94850 | DDN | S508 | ochoa | Dendrin | Promotes apoptosis of kidney glomerular podocytes. Podocytes are highly specialized cells essential to the ultrafiltration of blood, resulting in the extraction of urine and the retention of protein (By similarity). {ECO:0000250}. |
O95067 | CCNB2 | S92 | ochoa | G2/mitotic-specific cyclin-B2 | Essential for the control of the cell cycle at the G2/M (mitosis) transition. |
O95155 | UBE4B | S383 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95382 | MAP3K6 | S957 | ochoa | Mitogen-activated protein kinase kinase kinase 6 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 2) | Component of a protein kinase signal transduction cascade. Activates the JNK, but not ERK or p38 kinase pathways. {ECO:0000269|PubMed:17210579, ECO:0000269|PubMed:9875215}. |
P25054 | APC | T1220 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P29474 | NOS3 | S600 | psp | Nitric oxide synthase 3 (EC 1.14.13.39) (Constitutive NOS) (cNOS) (EC-NOS) (NOS type III) (NOSIII) (Nitric oxide synthase, endothelial) (Endothelial NOS) (eNOS) | Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway (PubMed:1378832). NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. {ECO:0000269|PubMed:1378832}.; FUNCTION: [Isoform eNOS13C]: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1. |
P49815 | TSC2 | S1452 | ochoa|psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P78524 | DENND2B | S76 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P98174 | FGD1 | S82 | ochoa | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q06413 | MEF2C | S445 | ochoa | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q13495 | MAMLD1 | S530 | ochoa | Mastermind-like domain-containing protein 1 (F18) (Protein CG1) | Transactivates the HES3 promoter independently of NOTCH proteins. HES3 is a non-canonical NOTCH target gene which lacks binding sites for RBPJ. {ECO:0000269|PubMed:18162467}. |
Q13671 | RIN1 | S337 | ochoa | Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) | Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}. |
Q13873 | BMPR2 | S586 | ochoa | Bone morphogenetic protein receptor type-2 (BMP type-2 receptor) (BMPR-2) (EC 2.7.11.30) (Bone morphogenetic protein receptor type II) (BMP type II receptor) (BMPR-II) | On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Can also mediate signaling through the activation of the p38MAPK cascade (PubMed:12045205). Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. Promotes signaling also by binding to activin A/INHBA (PubMed:24018044). {ECO:0000250|UniProtKB:O35607, ECO:0000269|PubMed:12045205, ECO:0000269|PubMed:24018044}. |
Q15067 | ACOX1 | S26 | ochoa|psp | Peroxisomal acyl-coenzyme A oxidase 1 (AOX) (EC 1.3.3.6) (Palmitoyl-CoA oxidase) (Peroxisomal fatty acyl-CoA oxidase) (Straight-chain acyl-CoA oxidase) (SCOX) [Cleaved into: Peroxisomal acyl-CoA oxidase 1, A chain; Peroxisomal acyl-CoA oxidase 1, B chain; Peroxisomal acyl-CoA oxidase 1, C chain] | Involved in the initial and rate-limiting step of peroxisomal beta-oxidation of straight-chain saturated and unsaturated very-long-chain fatty acids (PubMed:15060085, PubMed:17458872, PubMed:17603022, PubMed:32169171, PubMed:33234382, PubMed:7876265). Catalyzes the desaturation of fatty acyl-CoAs such as palmitoyl-CoA (hexadecanoyl-CoA) to 2-trans-enoyl-CoAs ((2E)-enoyl-CoAs) such as (2E)-hexadecenoyl-CoA, and donates electrons directly to molecular oxygen (O(2)), thereby producing hydrogen peroxide (H(2)O(2)) (PubMed:17458872, PubMed:17603022, PubMed:7876265). {ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:17458872, ECO:0000269|PubMed:17603022, ECO:0000269|PubMed:32169171, ECO:0000269|PubMed:33234382, ECO:0000269|PubMed:7876265}.; FUNCTION: [Isoform 1]: Shows highest activity against medium-chain fatty acyl-CoAs. Shows optimum activity with a chain length of 10 carbons (decanoyl-CoA) in vitro. {ECO:0000269|PubMed:17603022}.; FUNCTION: [Isoform 2]: Is active against a much broader range of substrates and shows activity towards long-chain fatty acyl-CoAs. {ECO:0000269|PubMed:17603022}. |
Q15562 | TEAD2 | S260 | ochoa | Transcriptional enhancer factor TEF-4 (TEA domain family member 2) (TEAD-2) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q2KJY2 | KIF26B | S1958 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q53GS7 | GLE1 | S88 | ochoa|psp | mRNA export factor GLE1 (hGLE1) (GLE1 RNA export mediator) (GLE1-like protein) (Nucleoporin GLE1) | Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. May be involved in the terminal step of the mRNA transport through the nuclear pore complex (NPC). {ECO:0000269|PubMed:12668658, ECO:0000269|PubMed:16000379, ECO:0000269|PubMed:9618489}. |
Q5T011 | SZT2 | S2458 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T7N3 | KANK4 | S630 | ochoa | KN motif and ankyrin repeat domain-containing protein 4 (Ankyrin repeat domain-containing protein 38) | May be involved in the control of cytoskeleton formation by regulating actin polymerization. {ECO:0000269|PubMed:17996375}. |
Q5TAQ9 | DCAF8 | S22 | ochoa | DDB1- and CUL4-associated factor 8 (WD repeat-containing protein 42A) | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240}. |
Q5TGY3 | AHDC1 | S1324 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5VU97 | CACHD1 | S1178 | ochoa | VWFA and cache domain-containing protein 1 (Cache domain-containing protein 1) | May regulate voltage-dependent calcium channels. {ECO:0000250}. |
Q5VUA4 | ZNF318 | S1037 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VY43 | PEAR1 | S1009 | ochoa | Platelet endothelial aggregation receptor 1 (hPEAR1) (Multiple epidermal growth factor-like domains protein 12) (Multiple EGF-like domains protein 12) | Required for SVEP1-mediated platelet activation, via its interaction with SVEP1 and subsequent activation of AKT/mTOR signaling (PubMed:36792666). May be involved in the early stages of hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8VIK5, ECO:0000269|PubMed:36792666}. |
Q68DK7 | MSL1 | S442 | ochoa | Male-specific lethal 1 homolog (MSL-1) (Male-specific lethal 1-like 1) (MSL1-like 1) (Male-specific lethal-1 homolog 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Within the MSL complex, acts as a scaffold to tether MSL3 and KAT8 together for enzymatic activity regulation (PubMed:22547026). Greatly enhances MSL2 E3 ubiquitin ligase activity, promoting monoubiquitination of histone H2B at 'Lys-34' (H2BK34Ub) (PubMed:21726816, PubMed:30930284). This modification in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). {ECO:0000250|UniProtKB:Q6PDM1, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q6K0P9 | PYHIN1 | S464 | ochoa | Pyrin and HIN domain-containing protein 1 (Interferon-inducible protein X) | Major mediator of the tumor suppressor activity of IFN in breast cancer cells. Promotes ubiquitination and subsequent degradation of MDM2, which leads to p53/TP53 stabilization. Promotes ubiquitination and subsequent degradation of HDAC1, which in turn enhances maspin expression, and impairs invasive activity of cancer cells. {ECO:0000269|PubMed:16479015, ECO:0000269|PubMed:18247378}. |
Q6KC79 | NIPBL | S892 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6P4R8 | NFRKB | S1022 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6ZS17 | RIPOR1 | S401 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q7LBC6 | KDM3B | S677 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q86UZ6 | ZBTB46 | S168 | ochoa | Zinc finger and BTB domain-containing protein 46 (BTB-ZF protein expressed in effector lymphocytes) (BZEL) (BTB/POZ domain-containing protein 4) (Zinc finger protein 340) | Functions as a transcriptional repressor for PRDM1. {ECO:0000250}. |
Q8IX03 | WWC1 | S548 | psp | Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}. |
Q8IZ83 | ALDH16A1 | S488 | ochoa | Aldehyde dehydrogenase family 16 member A1 | None |
Q8N103 | TAGAP | S479 | ochoa | T-cell activation Rho GTPase-activating protein (T-cell activation GTPase-activating protein) | May function as a GTPase-activating protein and may play important roles during T-cell activation. {ECO:0000269|PubMed:15177553}. |
Q8N3K9 | CMYA5 | S362 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8TF72 | SHROOM3 | S213 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q92610 | ZNF592 | S334 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q96GE4 | CEP95 | S229 | ochoa | Centrosomal protein of 95 kDa (Cep95) (Coiled-coil domain-containing protein 45) | None |
Q96JB3 | HIC2 | S348 | ochoa | Hypermethylated in cancer 2 protein (Hic-2) (HIC1-related gene on chromosome 22 protein) (Hic-3) (Zinc finger and BTB domain-containing protein 30) | Transcriptional repressor. |
Q96KQ7 | EHMT2 | S140 | ochoa | Histone-lysine N-methyltransferase EHMT2 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 2) (HLA-B-associated transcript 8) (Histone H3-K9 methyltransferase 3) (H3-K9-HMTase 3) (Lysine N-methyltransferase 1C) (Protein G9a) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also mediates monomethylation of 'Lys-56' of histone H3 (H3K56me1) in G1 phase, leading to promote interaction between histone H3 and PCNA and regulating DNA replication. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. May also methylate histone H1. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Also methylates CDYL, WIZ, ACIN1, DNMT1, HDAC1, ERCC6, KLF12 and itself. {ECO:0000250|UniProtKB:Q9Z148, ECO:0000269|PubMed:11316813, ECO:0000269|PubMed:18438403, ECO:0000269|PubMed:20084102, ECO:0000269|PubMed:20118233, ECO:0000269|PubMed:22387026, ECO:0000269|PubMed:8457211}. |
Q96KV7 | WDR90 | S241 | ochoa | WD repeat-containing protein 90 | Microtubule-binding protein that plays a crucial role in ensuring inner core protein localization within the centriole core, as well as in maintaining the microtubule wall integrity and the overall centriole roundness and stability (PubMed:32946374). Required for efficient primary cilium formation (PubMed:28781053). {ECO:0000269|PubMed:28781053}. |
Q96PY6 | NEK1 | S664 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q9H714 | RUBCNL | S157 | psp | Protein associated with UVRAG as autophagy enhancer (Pacer) (Protein Rubicon-like) | Regulator of autophagy that promotes autophagosome maturation by facilitating the biogenesis of phosphatidylinositol 3-phosphate (PtdIns(3)P) in late steps of autophagy (PubMed:28306502, PubMed:30704899). Acts by antagonizing RUBCN, thereby stimulating phosphatidylinositol 3-kinase activity of the PI3K/PI3KC3 complex (PubMed:28306502). Following anchorage to the autophagosomal SNARE STX17, promotes the recruitment of PI3K/PI3KC3 and HOPS complexes to the autophagosome to regulate the fusion specificity of autophagosomes with late endosomes/lysosomes (PubMed:28306502). Binds phosphoinositides phosphatidylinositol 3-phosphate (PtdIns(3)P), 4-phosphate (PtdIns(4)P) and 5-phosphate (PtdIns(5)P) (PubMed:28306502). In addition to its role in autophagy, acts as a regulator of lipid and glycogen homeostasis (By similarity). May act as a tumor suppressor (Probable). {ECO:0000250|UniProtKB:Q3TD16, ECO:0000269|PubMed:28306502, ECO:0000269|PubMed:30704899, ECO:0000305|PubMed:23522960}. |
Q9NQW6 | ANLN | S642 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NZC9 | SMARCAL1 | S934 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1 (EC 3.6.4.-) (HepA-related protein) (hHARP) (Sucrose nonfermenting protein 2-like 1) | ATP-dependent annealing helicase that binds selectively to fork DNA relative to ssDNA or dsDNA and catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. May play an important role in DNA damage response by acting at stalled replication forks. {ECO:0000269|PubMed:18805831, ECO:0000269|PubMed:18974355, ECO:0000269|PubMed:19793861, ECO:0000269|PubMed:19793862}. |
Q9P0K8 | FOXJ2 | S164 | ochoa | Forkhead box protein J2 (Fork head homologous X) | [Isoform FOXJ2.L]: Transcriptional activator. Able to bind to two different type of DNA binding sites. More effective than isoform FOXJ2.S in transcriptional activation (PubMed:10777590, PubMed:10966786). Plays an important role in spermatogenesis, especially in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q9ES18, ECO:0000269|PubMed:10777590, ECO:0000269|PubMed:10966786}.; FUNCTION: [Isoform FOXJ2.S]: Transcriptional activator. {ECO:0000269|PubMed:10966786}. |
Q9P2K1 | CC2D2A | S1085 | ochoa | Coiled-coil and C2 domain-containing protein 2A | Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Required for ciliogenesis and sonic hedgehog/SHH signaling (By similarity). {ECO:0000250, ECO:0000269|PubMed:18513680}. |
Q9UGU0 | TCF20 | S701 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UPZ3 | HPS5 | S563 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9Y2L9 | LRCH1 | S536 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 1 (Calponin homology domain-containing protein 1) (Neuronal protein 81) (NP81) | Acts as a negative regulator of GTPase CDC42 by sequestering CDC42-guanine exchange factor DOCK8. Probably by preventing CDC42 activation, negatively regulates CD4(+) T-cell migration. {ECO:0000269|PubMed:28028151}. |
Q9Y6H5 | SNCAIP | S215 | psp | Synphilin-1 (Sph1) (Alpha-synuclein-interacting protein) | Isoform 2 inhibits the ubiquitin ligase activity of SIAH1 and inhibits proteasomal degradation of target proteins. Isoform 2 inhibits autoubiquitination and proteasomal degradation of SIAH1, and thereby increases cellular levels of SIAH. Isoform 2 modulates SNCA monoubiquitination by SIAH1. {ECO:0000269|PubMed:16595633, ECO:0000269|PubMed:19224863}. |
Q9Y6M4 | CSNK1G3 | S413 | ochoa | Casein kinase I isoform gamma-3 (CKI-gamma 3) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). {ECO:0000250}. |
Q96L34 | MARK4 | S429 | Sugiyama | MAP/microtubule affinity-regulating kinase 4 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase-like 1) | Serine/threonine-protein kinase (PubMed:14594945, PubMed:15009667, PubMed:23184942, PubMed:23666762). Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:14594945, PubMed:23666762). Also phosphorylates the microtubule-associated proteins MAP2 and MAP4 (PubMed:14594945). Involved in regulation of the microtubule network, causing reorganization of microtubules into bundles (PubMed:14594945, PubMed:25123532). Required for the initiation of axoneme extension during cilium assembly (PubMed:23400999). Regulates the centrosomal location of ODF2 and phosphorylates ODF2 in vitro (PubMed:23400999). Plays a role in cell cycle progression, specifically in the G1/S checkpoint (PubMed:25123532). Reduces neuronal cell survival (PubMed:15009667). Plays a role in energy homeostasis by regulating satiety and metabolic rate (By similarity). Promotes adipogenesis by activating JNK1 and inhibiting the p38MAPK pathway, and triggers apoptosis by activating the JNK1 pathway (By similarity). Phosphorylates mTORC1 complex member RPTOR and acts as a negative regulator of the mTORC1 complex, probably due to disruption of the interaction between phosphorylated RPTOR and the RRAGA/RRAGC heterodimer which is required for mTORC1 activation (PubMed:23184942). Involved in NLRP3 positioning along microtubules by mediating NLRP3 recruitment to microtubule organizing center (MTOC) upon inflammasome activation (PubMed:28656979). {ECO:0000250|UniProtKB:Q8CIP4, ECO:0000269|PubMed:14594945, ECO:0000269|PubMed:15009667, ECO:0000269|PubMed:23184942, ECO:0000269|PubMed:23400999, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:25123532, ECO:0000269|PubMed:28656979}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-4839726 | Chromatin organization | 0.000013 | 4.886 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.000055 | 4.262 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.000132 | 3.880 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.000219 | 3.660 |
R-HSA-5688426 | Deubiquitination | 0.000224 | 3.650 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.000314 | 3.503 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.000382 | 3.418 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.000382 | 3.418 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.000555 | 3.256 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.000555 | 3.256 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.000662 | 3.179 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.000443 | 3.354 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.000521 | 3.283 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.000687 | 3.163 |
R-HSA-191859 | snRNP Assembly | 0.000687 | 3.163 |
R-HSA-156711 | Polo-like kinase mediated events | 0.000460 | 3.337 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.000662 | 3.179 |
R-HSA-73887 | Death Receptor Signaling | 0.000620 | 3.207 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.000747 | 3.127 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.000729 | 3.137 |
R-HSA-180746 | Nuclear import of Rev protein | 0.000786 | 3.104 |
R-HSA-1640170 | Cell Cycle | 0.000823 | 3.084 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.000868 | 3.062 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.001251 | 2.903 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.001276 | 2.894 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.001486 | 2.828 |
R-HSA-193648 | NRAGE signals death through JNK | 0.001558 | 2.808 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.001722 | 2.764 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.001722 | 2.764 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.001898 | 2.722 |
R-HSA-1538133 | G0 and Early G1 | 0.001956 | 2.709 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.001987 | 2.702 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.001987 | 2.702 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.002199 | 2.658 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.002284 | 2.641 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.002508 | 2.601 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.002508 | 2.601 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.003046 | 2.516 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.003263 | 2.486 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.003572 | 2.447 |
R-HSA-6807004 | Negative regulation of MET activity | 0.003737 | 2.427 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.004338 | 2.363 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.004694 | 2.328 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.005008 | 2.300 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.005008 | 2.300 |
R-HSA-69275 | G2/M Transition | 0.005129 | 2.290 |
R-HSA-68886 | M Phase | 0.004934 | 2.307 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.004882 | 2.311 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.005359 | 2.271 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.005596 | 2.252 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.005714 | 2.243 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.005863 | 2.232 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.006731 | 2.172 |
R-HSA-9909396 | Circadian clock | 0.006912 | 2.160 |
R-HSA-418990 | Adherens junctions interactions | 0.007442 | 2.128 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.008210 | 2.086 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.008210 | 2.086 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.007962 | 2.099 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.008469 | 2.072 |
R-HSA-9707616 | Heme signaling | 0.008744 | 2.058 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.008744 | 2.058 |
R-HSA-5689880 | Ub-specific processing proteases | 0.009954 | 2.002 |
R-HSA-446728 | Cell junction organization | 0.009998 | 2.000 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.011765 | 1.929 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.012456 | 1.905 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.013148 | 1.881 |
R-HSA-68877 | Mitotic Prometaphase | 0.014022 | 1.853 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.014938 | 1.826 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.016531 | 1.782 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.018017 | 1.744 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.017723 | 1.751 |
R-HSA-421270 | Cell-cell junction organization | 0.017481 | 1.757 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.021087 | 1.676 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.021087 | 1.676 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.021660 | 1.664 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.021711 | 1.663 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.021711 | 1.663 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.019652 | 1.707 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.020154 | 1.696 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.020154 | 1.696 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.021044 | 1.677 |
R-HSA-9008059 | Interleukin-37 signaling | 0.019731 | 1.705 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.024815 | 1.605 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.024660 | 1.608 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.024660 | 1.608 |
R-HSA-1500931 | Cell-Cell communication | 0.024371 | 1.613 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.023458 | 1.630 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.024833 | 1.605 |
R-HSA-380287 | Centrosome maturation | 0.025084 | 1.601 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.025084 | 1.601 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.025722 | 1.590 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.025722 | 1.590 |
R-HSA-3371556 | Cellular response to heat stress | 0.028619 | 1.543 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.027686 | 1.558 |
R-HSA-9830674 | Formation of the ureteric bud | 0.028246 | 1.549 |
R-HSA-68875 | Mitotic Prophase | 0.027138 | 1.566 |
R-HSA-3214847 | HATs acetylate histones | 0.029409 | 1.532 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.030211 | 1.520 |
R-HSA-9945266 | Differentiation of T cells | 0.030211 | 1.520 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.030211 | 1.520 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.030878 | 1.510 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.031634 | 1.500 |
R-HSA-1839120 | Signaling by FGFR1 amplification mutants | 0.034650 | 1.460 |
R-HSA-8853336 | Signaling by plasma membrane FGFR1 fusions | 0.034650 | 1.460 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 0.034650 | 1.460 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.033510 | 1.475 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.035135 | 1.454 |
R-HSA-75893 | TNF signaling | 0.035314 | 1.452 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.041001 | 1.387 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.041227 | 1.385 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.040760 | 1.390 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.037705 | 1.424 |
R-HSA-2028269 | Signaling by Hippo | 0.040496 | 1.393 |
R-HSA-525793 | Myogenesis | 0.040281 | 1.395 |
R-HSA-9827857 | Specification of primordial germ cells | 0.040496 | 1.393 |
R-HSA-75153 | Apoptotic execution phase | 0.040146 | 1.396 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.048060 | 1.318 |
R-HSA-69200 | Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... | 0.048060 | 1.318 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 0.048060 | 1.318 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.044887 | 1.348 |
R-HSA-1989781 | PPARA activates gene expression | 0.048621 | 1.313 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.047267 | 1.325 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.049794 | 1.303 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.046637 | 1.331 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.046295 | 1.334 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.044966 | 1.347 |
R-HSA-74160 | Gene expression (Transcription) | 0.045625 | 1.341 |
R-HSA-211000 | Gene Silencing by RNA | 0.048094 | 1.318 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.050520 | 1.297 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.050520 | 1.297 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.052586 | 1.279 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.052766 | 1.278 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.053575 | 1.271 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.056295 | 1.250 |
R-HSA-9661070 | Defective translocation of RB1 mutants to the nucleus | 0.056295 | 1.250 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.057781 | 1.238 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.063018 | 1.201 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 0.063018 | 1.201 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.059201 | 1.228 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.059678 | 1.224 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.059260 | 1.227 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 0.063018 | 1.201 |
R-HSA-198753 | ERK/MAPK targets | 0.066299 | 1.178 |
R-HSA-4641265 | Repression of WNT target genes | 0.067290 | 1.172 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 0.067290 | 1.172 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.068271 | 1.166 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.109423 | 0.961 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.109423 | 0.961 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.109423 | 0.961 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.109423 | 0.961 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.109423 | 0.961 |
R-HSA-8853334 | Signaling by FGFR3 fusions in cancer | 0.159564 | 0.797 |
R-HSA-2033515 | t(4;14) translocations of FGFR3 | 0.159564 | 0.797 |
R-HSA-5619052 | Defective SLC9A9 causes autism 16 (AUTS16) | 0.159564 | 0.797 |
R-HSA-9916722 | 3-hydroxyisobutyryl-CoA hydrolase deficiency | 0.159564 | 0.797 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.159564 | 0.797 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.079310 | 1.101 |
R-HSA-9652817 | Signaling by MAPK mutants | 0.079310 | 1.101 |
R-HSA-5658034 | HHAT G278V doesn't palmitoylate Hh-Np | 0.206885 | 0.684 |
R-HSA-5633231 | Defective ALG14 causes ALG14-CMS | 0.206885 | 0.684 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.096738 | 1.014 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.115122 | 0.939 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.115122 | 0.939 |
R-HSA-209563 | Axonal growth stimulation | 0.251544 | 0.599 |
R-HSA-8941237 | Invadopodia formation | 0.251544 | 0.599 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.251544 | 0.599 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.251544 | 0.599 |
R-HSA-2033514 | FGFR3 mutant receptor activation | 0.077461 | 1.111 |
R-HSA-1839130 | Signaling by activated point mutants of FGFR3 | 0.077461 | 1.111 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.088259 | 1.054 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.088259 | 1.054 |
R-HSA-170984 | ARMS-mediated activation | 0.154124 | 0.812 |
R-HSA-1296061 | HCN channels | 0.293691 | 0.532 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.293691 | 0.532 |
R-HSA-5339717 | Signaling by LRP5 mutants | 0.293691 | 0.532 |
R-HSA-198203 | PI3K/AKT activation | 0.174462 | 0.758 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.174462 | 0.758 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.111591 | 0.952 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.081749 | 1.088 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 0.195193 | 0.710 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 0.333466 | 0.477 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 0.333466 | 0.477 |
R-HSA-74713 | IRS activation | 0.333466 | 0.477 |
R-HSA-190374 | FGFR1c and Klotho ligand binding and activation | 0.333466 | 0.477 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.333466 | 0.477 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.216208 | 0.665 |
R-HSA-1839122 | Signaling by activated point mutants of FGFR1 | 0.216208 | 0.665 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 0.216208 | 0.665 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.085571 | 1.068 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.164113 | 0.785 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.237409 | 0.625 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 0.371005 | 0.431 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.371005 | 0.431 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 0.371005 | 0.431 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.371005 | 0.431 |
R-HSA-5340588 | Signaling by RNF43 mutants | 0.371005 | 0.431 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.127165 | 0.896 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.178232 | 0.749 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.178232 | 0.749 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.178232 | 0.749 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.178232 | 0.749 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.258710 | 0.587 |
R-HSA-170660 | Adenylate cyclase activating pathway | 0.258710 | 0.587 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.258710 | 0.587 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.258710 | 0.587 |
R-HSA-5654227 | Phospholipase C-mediated cascade; FGFR3 | 0.280031 | 0.553 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.280031 | 0.553 |
R-HSA-3595174 | Defective CHST14 causes EDS, musculocontractural type | 0.406431 | 0.391 |
R-HSA-3595172 | Defective CHST3 causes SEDCJD | 0.406431 | 0.391 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.180797 | 0.743 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.301304 | 0.521 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 0.301304 | 0.521 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.322466 | 0.492 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.439864 | 0.357 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.439864 | 0.357 |
R-HSA-9632974 | NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis | 0.439864 | 0.357 |
R-HSA-190371 | FGFR3b ligand binding and activation | 0.439864 | 0.357 |
R-HSA-3595177 | Defective CHSY1 causes TPBS | 0.439864 | 0.357 |
R-HSA-111367 | SLBP independent Processing of Histone Pre-mRNAs | 0.439864 | 0.357 |
R-HSA-112412 | SOS-mediated signalling | 0.439864 | 0.357 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.439864 | 0.357 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.268289 | 0.571 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.343462 | 0.464 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.252888 | 0.597 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.299497 | 0.524 |
R-HSA-5654219 | Phospholipase C-mediated cascade: FGFR1 | 0.364244 | 0.439 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.471415 | 0.327 |
R-HSA-3785653 | Myoclonic epilepsy of Lafora | 0.471415 | 0.327 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.471415 | 0.327 |
R-HSA-190370 | FGFR1b ligand binding and activation | 0.471415 | 0.327 |
R-HSA-196025 | Formation of annular gap junctions | 0.471415 | 0.327 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.471415 | 0.327 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.384769 | 0.415 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.346565 | 0.460 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.405001 | 0.393 |
R-HSA-190873 | Gap junction degradation | 0.501192 | 0.300 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.501192 | 0.300 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.329664 | 0.482 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 0.444460 | 0.352 |
R-HSA-68952 | DNA replication initiation | 0.529292 | 0.276 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.529292 | 0.276 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.381632 | 0.418 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.381632 | 0.418 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.381632 | 0.418 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 0.463637 | 0.334 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.463637 | 0.334 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.424008 | 0.373 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.439155 | 0.357 |
R-HSA-9766229 | Degradation of CDH1 | 0.420344 | 0.376 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.416022 | 0.381 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 0.518730 | 0.285 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.470970 | 0.327 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 0.536238 | 0.271 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.519868 | 0.284 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.540101 | 0.268 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.215708 | 0.666 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.384769 | 0.415 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.158493 | 0.800 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.252824 | 0.597 |
R-HSA-1234174 | Cellular response to hypoxia | 0.416022 | 0.381 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.296246 | 0.528 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.444460 | 0.352 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.483609 | 0.316 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.296818 | 0.528 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.296818 | 0.528 |
R-HSA-9646399 | Aggrephagy | 0.290930 | 0.536 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.146581 | 0.834 |
R-HSA-190242 | FGFR1 ligand binding and activation | 0.384769 | 0.415 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 0.405001 | 0.393 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.316704 | 0.499 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 0.482418 | 0.317 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.296818 | 0.528 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.407491 | 0.390 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.134300 | 0.872 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.316704 | 0.499 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.445835 | 0.351 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.300167 | 0.523 |
R-HSA-201451 | Signaling by BMP | 0.127165 | 0.896 |
R-HSA-5693538 | Homology Directed Repair | 0.240118 | 0.620 |
R-HSA-6802949 | Signaling by RAS mutants | 0.381632 | 0.418 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.540101 | 0.268 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.154124 | 0.812 |
R-HSA-191650 | Regulation of gap junction activity | 0.293691 | 0.532 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 0.293691 | 0.532 |
R-HSA-9839394 | TGFBR3 expression | 0.107901 | 0.967 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 0.237409 | 0.625 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.371005 | 0.431 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 0.371005 | 0.431 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.405001 | 0.393 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.377806 | 0.423 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.320158 | 0.495 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.483379 | 0.316 |
R-HSA-9609690 | HCMV Early Events | 0.476500 | 0.322 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.310454 | 0.508 |
R-HSA-169893 | Prolonged ERK activation events | 0.111591 | 0.952 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.173374 | 0.761 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.169519 | 0.771 |
R-HSA-69541 | Stabilization of p53 | 0.278149 | 0.556 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.237409 | 0.625 |
R-HSA-392517 | Rap1 signalling | 0.405001 | 0.393 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.424907 | 0.372 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.463637 | 0.334 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.204063 | 0.690 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.134300 | 0.872 |
R-HSA-9832991 | Formation of the posterior neural plate | 0.195193 | 0.710 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.333466 | 0.477 |
R-HSA-190239 | FGFR3 ligand binding and activation | 0.301304 | 0.521 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.192319 | 0.716 |
R-HSA-8849473 | PTK6 Expression | 0.439864 | 0.357 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 0.471415 | 0.327 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.330878 | 0.480 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.232569 | 0.633 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.501192 | 0.300 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.368651 | 0.433 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.401395 | 0.396 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.158493 | 0.800 |
R-HSA-5689603 | UCH proteinases | 0.119295 | 0.923 |
R-HSA-9843745 | Adipogenesis | 0.237774 | 0.624 |
R-HSA-1227986 | Signaling by ERBB2 | 0.205201 | 0.688 |
R-HSA-68882 | Mitotic Anaphase | 0.215111 | 0.667 |
R-HSA-170968 | Frs2-mediated activation | 0.258710 | 0.587 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.098593 | 1.006 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.219916 | 0.658 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.283857 | 0.547 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.127725 | 0.894 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.270666 | 0.568 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.264260 | 0.578 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.283537 | 0.547 |
R-HSA-202424 | Downstream TCR signaling | 0.511422 | 0.291 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.183109 | 0.737 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.104064 | 0.983 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.104064 | 0.983 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.104064 | 0.983 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.104064 | 0.983 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.364244 | 0.439 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.116055 | 0.935 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.303787 | 0.517 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.216011 | 0.666 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.393315 | 0.405 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.084675 | 1.072 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.237649 | 0.624 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.237649 | 0.624 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.405001 | 0.393 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.425817 | 0.371 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.495671 | 0.305 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.384769 | 0.415 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.162664 | 0.789 |
R-HSA-6794361 | Neurexins and neuroligins | 0.269917 | 0.569 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.147380 | 0.832 |
R-HSA-9830369 | Kidney development | 0.073940 | 1.131 |
R-HSA-69242 | S Phase | 0.172608 | 0.763 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 0.109423 | 0.961 |
R-HSA-373756 | SDK interactions | 0.109423 | 0.961 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 0.206885 | 0.684 |
R-HSA-75102 | C6 deamination of adenosine | 0.206885 | 0.684 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.096738 | 1.014 |
R-HSA-111446 | Activation of BIM and translocation to mitochondria | 0.251544 | 0.599 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.293691 | 0.532 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.174462 | 0.758 |
R-HSA-9636569 | Suppression of autophagy | 0.333466 | 0.477 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.216208 | 0.665 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.216208 | 0.665 |
R-HSA-202670 | ERKs are inactivated | 0.216208 | 0.665 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.371005 | 0.431 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.258710 | 0.587 |
R-HSA-434313 | Intracellular metabolism of fatty acids regulates insulin secretion | 0.406431 | 0.391 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.301304 | 0.521 |
R-HSA-429947 | Deadenylation of mRNA | 0.252824 | 0.597 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.216011 | 0.666 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 0.364244 | 0.439 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.214193 | 0.669 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.384769 | 0.415 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.384769 | 0.415 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.303787 | 0.517 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.501192 | 0.300 |
R-HSA-5617833 | Cilium Assembly | 0.105906 | 0.975 |
R-HSA-69481 | G2/M Checkpoints | 0.206487 | 0.685 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.381632 | 0.418 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.424008 | 0.373 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.261833 | 0.582 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.445835 | 0.351 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.397840 | 0.400 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.518730 | 0.285 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.204063 | 0.690 |
R-HSA-73893 | DNA Damage Bypass | 0.237649 | 0.624 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.316704 | 0.499 |
R-HSA-187687 | Signalling to ERKs | 0.439155 | 0.357 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.471791 | 0.326 |
R-HSA-195721 | Signaling by WNT | 0.167603 | 0.776 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.073818 | 1.132 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.518730 | 0.285 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.536238 | 0.271 |
R-HSA-381042 | PERK regulates gene expression | 0.099849 | 1.001 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.548775 | 0.261 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.142259 | 0.847 |
R-HSA-112399 | IRS-mediated signalling | 0.179094 | 0.747 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.487554 | 0.312 |
R-HSA-69206 | G1/S Transition | 0.119194 | 0.924 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.523103 | 0.281 |
R-HSA-447043 | Neurofascin interactions | 0.406431 | 0.391 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.364244 | 0.439 |
R-HSA-74749 | Signal attenuation | 0.529292 | 0.276 |
R-HSA-9620244 | Long-term potentiation | 0.536238 | 0.271 |
R-HSA-114452 | Activation of BH3-only proteins | 0.158493 | 0.800 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 0.216208 | 0.665 |
R-HSA-5676594 | TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway | 0.258710 | 0.587 |
R-HSA-9020933 | Interleukin-23 signaling | 0.471415 | 0.327 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.111591 | 0.952 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.186632 | 0.729 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.382080 | 0.418 |
R-HSA-9612973 | Autophagy | 0.552951 | 0.257 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.079310 | 1.101 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.115122 | 0.939 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.154124 | 0.812 |
R-HSA-5362798 | Release of Hh-Np from the secreting cell | 0.371005 | 0.431 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.371005 | 0.431 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.280031 | 0.553 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.439864 | 0.357 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 0.471415 | 0.327 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.265463 | 0.576 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.241937 | 0.616 |
R-HSA-9020958 | Interleukin-21 signaling | 0.501192 | 0.300 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.393315 | 0.405 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.529292 | 0.276 |
R-HSA-9761174 | Formation of intermediate mesoderm | 0.529292 | 0.276 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.348065 | 0.458 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.482418 | 0.317 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.170706 | 0.768 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.078864 | 1.103 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.147749 | 0.830 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.149111 | 0.826 |
R-HSA-1236394 | Signaling by ERBB4 | 0.340336 | 0.468 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.536238 | 0.271 |
R-HSA-8874211 | CREB3 factors activate genes | 0.096738 | 1.014 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.183382 | 0.737 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.425817 | 0.371 |
R-HSA-1632852 | Macroautophagy | 0.433031 | 0.363 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.320158 | 0.495 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.439155 | 0.357 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.206556 | 0.685 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.138123 | 0.860 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.543503 | 0.265 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.315180 | 0.501 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.393315 | 0.405 |
R-HSA-2428924 | IGF1R signaling cascade | 0.241937 | 0.616 |
R-HSA-5683057 | MAPK family signaling cascades | 0.380786 | 0.419 |
R-HSA-199991 | Membrane Trafficking | 0.264675 | 0.577 |
R-HSA-9007101 | Rab regulation of trafficking | 0.083774 | 1.077 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.165913 | 0.780 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.079310 | 1.101 |
R-HSA-205025 | NADE modulates death signalling | 0.293691 | 0.532 |
R-HSA-9627069 | Regulation of the apoptosome activity | 0.174462 | 0.758 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.237409 | 0.625 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.371005 | 0.431 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.371005 | 0.431 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 0.371005 | 0.431 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.092568 | 1.034 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.192668 | 0.715 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.406431 | 0.391 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.301304 | 0.521 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.343462 | 0.464 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.364244 | 0.439 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.223319 | 0.651 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.405001 | 0.393 |
R-HSA-75072 | mRNA Editing | 0.501192 | 0.300 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.444460 | 0.352 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.444460 | 0.352 |
R-HSA-426048 | Arachidonate production from DAG | 0.529292 | 0.276 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 0.529292 | 0.276 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.518730 | 0.285 |
R-HSA-1221632 | Meiotic synapsis | 0.470970 | 0.327 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.483379 | 0.316 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.526308 | 0.279 |
R-HSA-212436 | Generic Transcription Pathway | 0.088263 | 1.054 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.099595 | 1.002 |
R-HSA-73894 | DNA Repair | 0.362994 | 0.440 |
R-HSA-182971 | EGFR downregulation | 0.169515 | 0.771 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.251414 | 0.600 |
R-HSA-9830364 | Formation of the nephric duct | 0.536238 | 0.271 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.104064 | 0.983 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.190492 | 0.720 |
R-HSA-111458 | Formation of apoptosome | 0.174462 | 0.758 |
R-HSA-9733709 | Cardiogenesis | 0.393315 | 0.405 |
R-HSA-3214842 | HDMs demethylate histones | 0.107901 | 0.967 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.394691 | 0.404 |
R-HSA-74752 | Signaling by Insulin receptor | 0.540202 | 0.267 |
R-HSA-162582 | Signal Transduction | 0.435500 | 0.361 |
R-HSA-435368 | Zinc efflux and compartmentalization by the SLC30 family | 0.333466 | 0.477 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.137300 | 0.862 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.280031 | 0.553 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.406431 | 0.391 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.501192 | 0.300 |
R-HSA-8854214 | TBC/RABGAPs | 0.342652 | 0.465 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.419920 | 0.377 |
R-HSA-2262752 | Cellular responses to stress | 0.135089 | 0.869 |
R-HSA-9663891 | Selective autophagy | 0.491869 | 0.308 |
R-HSA-9823739 | Formation of the anterior neural plate | 0.099648 | 1.002 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.445835 | 0.351 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.140276 | 0.853 |
R-HSA-8953897 | Cellular responses to stimuli | 0.189046 | 0.723 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.087335 | 1.059 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.381632 | 0.418 |
R-HSA-4086398 | Ca2+ pathway | 0.504438 | 0.297 |
R-HSA-1483255 | PI Metabolism | 0.481192 | 0.318 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.078864 | 1.103 |
R-HSA-9006936 | Signaling by TGFB family members | 0.238078 | 0.623 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.449563 | 0.347 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.212599 | 0.672 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.505349 | 0.296 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.538353 | 0.269 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 0.206885 | 0.684 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.115122 | 0.939 |
R-HSA-9931529 | Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK | 0.333466 | 0.477 |
R-HSA-447038 | NrCAM interactions | 0.333466 | 0.477 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.406431 | 0.391 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.301304 | 0.521 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 0.439864 | 0.357 |
R-HSA-8948747 | Regulation of PTEN localization | 0.439864 | 0.357 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 0.299497 | 0.524 |
R-HSA-425986 | Sodium/Proton exchangers | 0.471415 | 0.327 |
R-HSA-163615 | PKA activation | 0.384769 | 0.415 |
R-HSA-201688 | WNT mediated activation of DVL | 0.501192 | 0.300 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.501192 | 0.300 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.296246 | 0.528 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.498052 | 0.303 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.482755 | 0.316 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.322466 | 0.492 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.143692 | 0.843 |
R-HSA-109581 | Apoptosis | 0.106505 | 0.973 |
R-HSA-9823730 | Formation of definitive endoderm | 0.178232 | 0.749 |
R-HSA-9758941 | Gastrulation | 0.111930 | 0.951 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.470970 | 0.327 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.493640 | 0.307 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.198545 | 0.702 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.237409 | 0.625 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.512288 | 0.290 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.368651 | 0.433 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.252888 | 0.597 |
R-HSA-983189 | Kinesins | 0.359396 | 0.444 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.298685 | 0.525 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.134300 | 0.872 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.154124 | 0.812 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.195193 | 0.710 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.258710 | 0.587 |
R-HSA-164944 | Nef and signal transduction | 0.406431 | 0.391 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.322466 | 0.492 |
R-HSA-447041 | CHL1 interactions | 0.439864 | 0.357 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.169824 | 0.770 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.463637 | 0.334 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.241937 | 0.616 |
R-HSA-1266695 | Interleukin-7 signaling | 0.268289 | 0.571 |
R-HSA-5357801 | Programmed Cell Death | 0.165619 | 0.781 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.240118 | 0.620 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.149667 | 0.825 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.301304 | 0.521 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.278149 | 0.556 |
R-HSA-445144 | Signal transduction by L1 | 0.424907 | 0.372 |
R-HSA-1474165 | Reproduction | 0.471562 | 0.326 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.435116 | 0.361 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.326059 | 0.487 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.516297 | 0.287 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.482139 | 0.317 |
R-HSA-166520 | Signaling by NTRKs | 0.369034 | 0.433 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 0.333466 | 0.477 |
R-HSA-5578768 | Physiological factors | 0.280031 | 0.553 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.301304 | 0.521 |
R-HSA-109704 | PI3K Cascade | 0.124145 | 0.906 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.237496 | 0.624 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.482418 | 0.317 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.488865 | 0.311 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.125987 | 0.900 |
R-HSA-177929 | Signaling by EGFR | 0.314238 | 0.503 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.360537 | 0.443 |
R-HSA-186712 | Regulation of beta-cell development | 0.543503 | 0.265 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.272655 | 0.564 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.543759 | 0.265 |
R-HSA-162909 | Host Interactions of HIV factors | 0.110678 | 0.956 |
R-HSA-9675135 | Diseases of DNA repair | 0.381632 | 0.418 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.134300 | 0.872 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 0.371005 | 0.431 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.222336 | 0.653 |
R-HSA-69205 | G1/S-Specific Transcription | 0.240442 | 0.619 |
R-HSA-201556 | Signaling by ALK | 0.278149 | 0.556 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.444460 | 0.352 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 0.529292 | 0.276 |
R-HSA-6806834 | Signaling by MET | 0.252014 | 0.599 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.314238 | 0.503 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 0.500787 | 0.300 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.411548 | 0.386 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.444393 | 0.352 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.411548 | 0.386 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.444393 | 0.352 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.444393 | 0.352 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.368263 | 0.434 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.099648 | 1.002 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.147749 | 0.830 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.439864 | 0.357 |
R-HSA-450294 | MAP kinase activation | 0.214193 | 0.669 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.320158 | 0.495 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.468970 | 0.329 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.552447 | 0.258 |
R-HSA-162587 | HIV Life Cycle | 0.434491 | 0.362 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.463306 | 0.334 |
R-HSA-448424 | Interleukin-17 signaling | 0.300167 | 0.523 |
R-HSA-2586552 | Signaling by Leptin | 0.529292 | 0.276 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.482418 | 0.317 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.370737 | 0.431 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 0.258710 | 0.587 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 0.364244 | 0.439 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.384769 | 0.415 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.405001 | 0.393 |
R-HSA-70171 | Glycolysis | 0.199693 | 0.700 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.385557 | 0.414 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.385557 | 0.414 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 0.280031 | 0.553 |
R-HSA-446652 | Interleukin-1 family signaling | 0.523705 | 0.281 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 0.405001 | 0.393 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.483609 | 0.316 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.472066 | 0.326 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.530688 | 0.275 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.424008 | 0.373 |
R-HSA-70326 | Glucose metabolism | 0.350205 | 0.456 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.393315 | 0.405 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.553302 | 0.257 |
R-HSA-5689901 | Metalloprotease DUBs | 0.553302 | 0.257 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.553302 | 0.257 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.553302 | 0.257 |
R-HSA-165159 | MTOR signalling | 0.553660 | 0.257 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.555093 | 0.256 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.555806 | 0.255 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.555811 | 0.255 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.555811 | 0.255 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.555811 | 0.255 |
R-HSA-4839744 | Signaling by APC mutants | 0.555811 | 0.255 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.555811 | 0.255 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.555811 | 0.255 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 0.555811 | 0.255 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.555811 | 0.255 |
R-HSA-1483248 | Synthesis of PIPs at the ER membrane | 0.555811 | 0.255 |
R-HSA-210747 | Regulation of gene expression in early pancreatic precursor cells | 0.555811 | 0.255 |
R-HSA-1483226 | Synthesis of PI | 0.555811 | 0.255 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.555811 | 0.255 |
R-HSA-9758890 | Transport of RCbl within the body | 0.555811 | 0.255 |
R-HSA-196819 | Vitamin B1 (thiamin) metabolism | 0.555811 | 0.255 |
R-HSA-210990 | PECAM1 interactions | 0.555811 | 0.255 |
R-HSA-75205 | Dissolution of Fibrin Clot | 0.555811 | 0.255 |
R-HSA-4086400 | PCP/CE pathway | 0.556947 | 0.254 |
R-HSA-9610379 | HCMV Late Events | 0.560155 | 0.252 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.561186 | 0.251 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.566978 | 0.246 |
R-HSA-162906 | HIV Infection | 0.569172 | 0.245 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.569917 | 0.244 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.569917 | 0.244 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.569917 | 0.244 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.577791 | 0.238 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.580049 | 0.237 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.580049 | 0.237 |
R-HSA-69236 | G1 Phase | 0.580049 | 0.237 |
R-HSA-2022923 | DS-GAG biosynthesis | 0.580838 | 0.236 |
R-HSA-1250342 | PI3K events in ERBB4 signaling | 0.580838 | 0.236 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.580838 | 0.236 |
R-HSA-3772470 | Negative regulation of TCF-dependent signaling by WNT ligand antagonists | 0.580838 | 0.236 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.580838 | 0.236 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.580838 | 0.236 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.580838 | 0.236 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.580838 | 0.236 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 0.580838 | 0.236 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.586448 | 0.232 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.587089 | 0.231 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.588890 | 0.230 |
R-HSA-373755 | Semaphorin interactions | 0.588890 | 0.230 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.588890 | 0.230 |
R-HSA-8848021 | Signaling by PTK6 | 0.588890 | 0.230 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.588890 | 0.230 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.592868 | 0.227 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.592868 | 0.227 |
R-HSA-5654741 | Signaling by FGFR3 | 0.592868 | 0.227 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.592868 | 0.227 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.594747 | 0.226 |
R-HSA-168255 | Influenza Infection | 0.596138 | 0.225 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.601787 | 0.221 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.601787 | 0.221 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.601787 | 0.221 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.601787 | 0.221 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.601787 | 0.221 |
R-HSA-2559583 | Cellular Senescence | 0.602719 | 0.220 |
R-HSA-190236 | Signaling by FGFR | 0.604241 | 0.219 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.604456 | 0.219 |
R-HSA-69109 | Leading Strand Synthesis | 0.604456 | 0.219 |
R-HSA-69091 | Polymerase switching | 0.604456 | 0.219 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.604456 | 0.219 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.604456 | 0.219 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.604456 | 0.219 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.604456 | 0.219 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.604456 | 0.219 |
R-HSA-8984722 | Interleukin-35 Signalling | 0.604456 | 0.219 |
R-HSA-9842663 | Signaling by LTK | 0.604456 | 0.219 |
R-HSA-877312 | Regulation of IFNG signaling | 0.604456 | 0.219 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.604456 | 0.219 |
R-HSA-9005895 | Pervasive developmental disorders | 0.604456 | 0.219 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.604456 | 0.219 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.605431 | 0.218 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.606549 | 0.217 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.615459 | 0.211 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.615744 | 0.211 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.617040 | 0.210 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.617040 | 0.210 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.617040 | 0.210 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 0.617040 | 0.210 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.617040 | 0.210 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.623581 | 0.205 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.625472 | 0.204 |
R-HSA-1500620 | Meiosis | 0.625472 | 0.204 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.626744 | 0.203 |
R-HSA-9796292 | Formation of axial mesoderm | 0.626744 | 0.203 |
R-HSA-190373 | FGFR1c ligand binding and activation | 0.626744 | 0.203 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 0.626744 | 0.203 |
R-HSA-8963901 | Chylomicron remodeling | 0.626744 | 0.203 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.626744 | 0.203 |
R-HSA-5619102 | SLC transporter disorders | 0.629343 | 0.201 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.631521 | 0.200 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.631841 | 0.199 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.631841 | 0.199 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.631841 | 0.199 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.631841 | 0.199 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.638562 | 0.195 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.641723 | 0.193 |
R-HSA-5218859 | Regulated Necrosis | 0.641723 | 0.193 |
R-HSA-157118 | Signaling by NOTCH | 0.644496 | 0.191 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.646190 | 0.190 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.646190 | 0.190 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.646190 | 0.190 |
R-HSA-69166 | Removal of the Flap Intermediate | 0.647778 | 0.189 |
R-HSA-1663150 | The activation of arylsulfatases | 0.647778 | 0.189 |
R-HSA-190372 | FGFR3c ligand binding and activation | 0.647778 | 0.189 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.647778 | 0.189 |
R-HSA-435354 | Zinc transporters | 0.647778 | 0.189 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.648697 | 0.188 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.650337 | 0.187 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.650337 | 0.187 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.651738 | 0.186 |
R-HSA-72306 | tRNA processing | 0.655363 | 0.184 |
R-HSA-354192 | Integrin signaling | 0.660093 | 0.180 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.660093 | 0.180 |
R-HSA-9930044 | Nuclear RNA decay | 0.660093 | 0.180 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.660093 | 0.180 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.660093 | 0.180 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.660093 | 0.180 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.660093 | 0.180 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.663106 | 0.178 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.663106 | 0.178 |
R-HSA-9833110 | RSV-host interactions | 0.663106 | 0.178 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.667628 | 0.175 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.667628 | 0.175 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.667628 | 0.175 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.667628 | 0.175 |
R-HSA-69183 | Processive synthesis on the lagging strand | 0.667628 | 0.175 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.667628 | 0.175 |
R-HSA-418885 | DCC mediated attractive signaling | 0.667628 | 0.175 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 0.667628 | 0.175 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.667628 | 0.175 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.667628 | 0.175 |
R-HSA-416700 | Other semaphorin interactions | 0.667628 | 0.175 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.667628 | 0.175 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.671202 | 0.173 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.671202 | 0.173 |
R-HSA-5632684 | Hedgehog 'on' state | 0.671202 | 0.173 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.672725 | 0.172 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.672725 | 0.172 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.673554 | 0.172 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.673554 | 0.172 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.673554 | 0.172 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.674277 | 0.171 |
R-HSA-5358351 | Signaling by Hedgehog | 0.674956 | 0.171 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.679986 | 0.167 |
R-HSA-6807070 | PTEN Regulation | 0.681753 | 0.166 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.685983 | 0.164 |
R-HSA-445355 | Smooth Muscle Contraction | 0.685983 | 0.164 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.686360 | 0.163 |
R-HSA-9708530 | Regulation of BACH1 activity | 0.686360 | 0.163 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.686360 | 0.163 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.686360 | 0.163 |
R-HSA-5673000 | RAF activation | 0.686578 | 0.163 |
R-HSA-203615 | eNOS activation | 0.686578 | 0.163 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.686578 | 0.163 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.686578 | 0.163 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.686578 | 0.163 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.686578 | 0.163 |
R-HSA-5205647 | Mitophagy | 0.686578 | 0.163 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.689903 | 0.161 |
R-HSA-9711123 | Cellular response to chemical stress | 0.695468 | 0.158 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.698966 | 0.156 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.698966 | 0.156 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.699173 | 0.155 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.699173 | 0.155 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.699173 | 0.155 |
R-HSA-169911 | Regulation of Apoptosis | 0.699173 | 0.155 |
R-HSA-193775 | Synthesis of bile acids and bile salts via 24-hydroxycholesterol | 0.699173 | 0.155 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 0.704038 | 0.152 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 0.704038 | 0.152 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 0.704038 | 0.152 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 0.704038 | 0.152 |
R-HSA-5576893 | Phase 2 - plateau phase | 0.704038 | 0.152 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.704038 | 0.152 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.704038 | 0.152 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.704038 | 0.152 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.704038 | 0.152 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.704038 | 0.152 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.704038 | 0.152 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.704038 | 0.152 |
R-HSA-3214815 | HDACs deacetylate histones | 0.706600 | 0.151 |
R-HSA-202403 | TCR signaling | 0.708955 | 0.149 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.711344 | 0.148 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.711344 | 0.148 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.711344 | 0.148 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.711344 | 0.148 |
R-HSA-9682385 | FLT3 signaling in disease | 0.711344 | 0.148 |
R-HSA-111933 | Calmodulin induced events | 0.711344 | 0.148 |
R-HSA-111997 | CaM pathway | 0.711344 | 0.148 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.714392 | 0.146 |
R-HSA-5654736 | Signaling by FGFR1 | 0.716513 | 0.145 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.716513 | 0.145 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.720720 | 0.142 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 0.720720 | 0.142 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.720720 | 0.142 |
R-HSA-3229121 | Glycogen storage diseases | 0.720720 | 0.142 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.720720 | 0.142 |
R-HSA-209905 | Catecholamine biosynthesis | 0.720720 | 0.142 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.722330 | 0.141 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.723100 | 0.141 |
R-HSA-4641258 | Degradation of DVL | 0.723100 | 0.141 |
R-HSA-4641257 | Degradation of AXIN | 0.723100 | 0.141 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.723100 | 0.141 |
R-HSA-419037 | NCAM1 interactions | 0.723100 | 0.141 |
R-HSA-8948216 | Collagen chain trimerization | 0.723100 | 0.141 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.723253 | 0.141 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.723253 | 0.141 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.725004 | 0.140 |
R-HSA-8939211 | ESR-mediated signaling | 0.725183 | 0.140 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.734333 | 0.134 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.734450 | 0.134 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.735557 | 0.133 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.735557 | 0.133 |
R-HSA-9831926 | Nephron development | 0.736463 | 0.133 |
R-HSA-3928664 | Ephrin signaling | 0.736463 | 0.133 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.736463 | 0.133 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.736463 | 0.133 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.736463 | 0.133 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 0.736463 | 0.133 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.736463 | 0.133 |
R-HSA-8951664 | Neddylation | 0.738763 | 0.131 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.738858 | 0.131 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.741409 | 0.130 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.744693 | 0.128 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.745400 | 0.128 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.745400 | 0.128 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.749329 | 0.125 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 0.751319 | 0.124 |
R-HSA-449836 | Other interleukin signaling | 0.751319 | 0.124 |
R-HSA-844456 | The NLRP3 inflammasome | 0.751319 | 0.124 |
R-HSA-912631 | Regulation of signaling by CBL | 0.751319 | 0.124 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.751319 | 0.124 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.753575 | 0.123 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.755961 | 0.122 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.755961 | 0.122 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.755961 | 0.122 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.755961 | 0.122 |
R-HSA-8982491 | Glycogen metabolism | 0.755961 | 0.122 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.755961 | 0.122 |
R-HSA-451927 | Interleukin-2 family signaling | 0.755961 | 0.122 |
R-HSA-9734767 | Developmental Cell Lineages | 0.758845 | 0.120 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.762207 | 0.118 |
R-HSA-211976 | Endogenous sterols | 0.762207 | 0.118 |
R-HSA-373760 | L1CAM interactions | 0.763170 | 0.117 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.765339 | 0.116 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.765339 | 0.116 |
R-HSA-3322077 | Glycogen synthesis | 0.765339 | 0.116 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.765339 | 0.116 |
R-HSA-373753 | Nephrin family interactions | 0.765339 | 0.116 |
R-HSA-9629569 | Protein hydroxylation | 0.765339 | 0.116 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.766142 | 0.116 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.766142 | 0.116 |
R-HSA-5610787 | Hedgehog 'off' state | 0.769507 | 0.114 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.770592 | 0.113 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.770592 | 0.113 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.770592 | 0.113 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.771970 | 0.112 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.773658 | 0.111 |
R-HSA-167161 | HIV Transcription Initiation | 0.775951 | 0.110 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.775951 | 0.110 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.775951 | 0.110 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.775951 | 0.110 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.775951 | 0.110 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.775951 | 0.110 |
R-HSA-69186 | Lagging Strand Synthesis | 0.778569 | 0.109 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.778569 | 0.109 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.782539 | 0.106 |
R-HSA-9609646 | HCMV Infection | 0.784478 | 0.105 |
R-HSA-991365 | Activation of GABAB receptors | 0.785398 | 0.105 |
R-HSA-977444 | GABA B receptor activation | 0.785398 | 0.105 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.785398 | 0.105 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.785398 | 0.105 |
R-HSA-111996 | Ca-dependent events | 0.785398 | 0.105 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.787397 | 0.104 |
R-HSA-2022870 | CS-GAG biosynthesis | 0.791054 | 0.102 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.791054 | 0.102 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.791054 | 0.102 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.791054 | 0.102 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 0.791054 | 0.102 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.791054 | 0.102 |
R-HSA-977347 | Serine metabolism | 0.791054 | 0.102 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.791054 | 0.102 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.791054 | 0.102 |
R-HSA-5653656 | Vesicle-mediated transport | 0.791748 | 0.101 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.794304 | 0.100 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.794493 | 0.100 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.794993 | 0.100 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.794993 | 0.100 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.802836 | 0.095 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.802836 | 0.095 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.802836 | 0.095 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.802836 | 0.095 |
R-HSA-166208 | mTORC1-mediated signalling | 0.802836 | 0.095 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.802836 | 0.095 |
R-HSA-9907900 | Proteasome assembly | 0.803245 | 0.095 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.803245 | 0.095 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.803245 | 0.095 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 0.808949 | 0.092 |
R-HSA-774815 | Nucleosome assembly | 0.811665 | 0.091 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.811665 | 0.091 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.811665 | 0.091 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.811665 | 0.091 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.811665 | 0.091 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.811665 | 0.091 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.811665 | 0.091 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.811665 | 0.091 |
R-HSA-9824272 | Somitogenesis | 0.811665 | 0.091 |
R-HSA-1489509 | DAG and IP3 signaling | 0.811665 | 0.091 |
R-HSA-8953854 | Metabolism of RNA | 0.812041 | 0.090 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.813954 | 0.089 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.813954 | 0.089 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.813954 | 0.089 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.813954 | 0.089 |
R-HSA-8854691 | Interleukin-20 family signaling | 0.813954 | 0.089 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.813954 | 0.089 |
R-HSA-982772 | Growth hormone receptor signaling | 0.813954 | 0.089 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.815936 | 0.088 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.815936 | 0.088 |
R-HSA-69239 | Synthesis of DNA | 0.818217 | 0.087 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.819761 | 0.086 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.819761 | 0.086 |
R-HSA-2672351 | Stimuli-sensing channels | 0.823680 | 0.084 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.824446 | 0.084 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 0.824446 | 0.084 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.824446 | 0.084 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.824446 | 0.084 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.824446 | 0.084 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.827545 | 0.082 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.827545 | 0.082 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.827545 | 0.082 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.829011 | 0.081 |
R-HSA-1266738 | Developmental Biology | 0.829216 | 0.081 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.834346 | 0.079 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.834346 | 0.079 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 0.834346 | 0.079 |
R-HSA-9634597 | GPER1 signaling | 0.835024 | 0.078 |
R-HSA-9031628 | NGF-stimulated transcription | 0.835024 | 0.078 |
R-HSA-425410 | Metal ion SLC transporters | 0.835024 | 0.078 |
R-HSA-975634 | Retinoid metabolism and transport | 0.835605 | 0.078 |
R-HSA-449147 | Signaling by Interleukins | 0.838800 | 0.076 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.841428 | 0.075 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.842208 | 0.075 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.843689 | 0.074 |
R-HSA-3295583 | TRP channels | 0.843689 | 0.074 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.843689 | 0.074 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 0.843689 | 0.074 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.843689 | 0.074 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.843689 | 0.074 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.846640 | 0.072 |
R-HSA-913531 | Interferon Signaling | 0.848745 | 0.071 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.849108 | 0.071 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.852506 | 0.069 |
R-HSA-264876 | Insulin processing | 0.852506 | 0.069 |
R-HSA-9828806 | Maturation of hRSV A proteins | 0.852506 | 0.069 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.852506 | 0.069 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.855732 | 0.068 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.858994 | 0.066 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.858994 | 0.066 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.860825 | 0.065 |
R-HSA-622312 | Inflammasomes | 0.860825 | 0.065 |
R-HSA-5620971 | Pyroptosis | 0.860825 | 0.065 |
R-HSA-9757110 | Prednisone ADME | 0.860825 | 0.065 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.860825 | 0.065 |
R-HSA-72187 | mRNA 3'-end processing | 0.862090 | 0.064 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.862090 | 0.064 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.862090 | 0.064 |
R-HSA-68949 | Orc1 removal from chromatin | 0.862090 | 0.064 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.862090 | 0.064 |
R-HSA-9020591 | Interleukin-12 signaling | 0.864365 | 0.063 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.868189 | 0.061 |
R-HSA-9675108 | Nervous system development | 0.868222 | 0.061 |
R-HSA-9615710 | Late endosomal microautophagy | 0.868676 | 0.061 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.868676 | 0.061 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.868676 | 0.061 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.868676 | 0.061 |
R-HSA-72649 | Translation initiation complex formation | 0.874040 | 0.058 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.874570 | 0.058 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.876085 | 0.057 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 0.876085 | 0.057 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.876085 | 0.057 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.879413 | 0.056 |
R-HSA-9659379 | Sensory processing of sound | 0.879413 | 0.056 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.879651 | 0.056 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.879651 | 0.056 |
R-HSA-418597 | G alpha (z) signalling events | 0.879651 | 0.056 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.879982 | 0.056 |
R-HSA-9614085 | FOXO-mediated transcription | 0.879982 | 0.056 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.883076 | 0.054 |
R-HSA-186763 | Downstream signal transduction | 0.883076 | 0.054 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.884089 | 0.054 |
R-HSA-9833482 | PKR-mediated signaling | 0.884089 | 0.054 |
R-HSA-9948299 | Ribosome-associated quality control | 0.884304 | 0.053 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.885031 | 0.053 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.885031 | 0.053 |
R-HSA-877300 | Interferon gamma signaling | 0.886485 | 0.052 |
R-HSA-9020702 | Interleukin-1 signaling | 0.888248 | 0.051 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 0.888603 | 0.051 |
R-HSA-69190 | DNA strand elongation | 0.889673 | 0.051 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.892959 | 0.049 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.893247 | 0.049 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.895127 | 0.048 |
R-HSA-376176 | Signaling by ROBO receptors | 0.895410 | 0.048 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 0.895898 | 0.048 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.895898 | 0.048 |
R-HSA-159418 | Recycling of bile acids and salts | 0.895898 | 0.048 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.895898 | 0.048 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.897736 | 0.047 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.901215 | 0.045 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.901772 | 0.045 |
R-HSA-2024101 | CS/DS degradation | 0.901772 | 0.045 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.901772 | 0.045 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.901772 | 0.045 |
R-HSA-977443 | GABA receptor activation | 0.904393 | 0.044 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.904393 | 0.044 |
R-HSA-351202 | Metabolism of polyamines | 0.904393 | 0.044 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.906954 | 0.042 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.907315 | 0.042 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 0.907315 | 0.042 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.907315 | 0.042 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.907315 | 0.042 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.907315 | 0.042 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.907315 | 0.042 |
R-HSA-5365859 | RA biosynthesis pathway | 0.907315 | 0.042 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.907315 | 0.042 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.907315 | 0.042 |
R-HSA-445717 | Aquaporin-mediated transport | 0.908734 | 0.042 |
R-HSA-1442490 | Collagen degradation | 0.908734 | 0.042 |
R-HSA-112043 | PLC beta mediated events | 0.908734 | 0.042 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.908892 | 0.041 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.912546 | 0.040 |
R-HSA-447115 | Interleukin-12 family signaling | 0.916024 | 0.038 |
R-HSA-438064 | Post NMDA receptor activation events | 0.916024 | 0.038 |
R-HSA-3371511 | HSF1 activation | 0.917481 | 0.037 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.917481 | 0.037 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.917481 | 0.037 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.917481 | 0.037 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.917481 | 0.037 |
R-HSA-8853659 | RET signaling | 0.917481 | 0.037 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.920554 | 0.036 |
R-HSA-211981 | Xenobiotics | 0.920674 | 0.036 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.921245 | 0.036 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 0.922139 | 0.035 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 0.922139 | 0.035 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.922139 | 0.035 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 0.922139 | 0.035 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.922515 | 0.035 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.922946 | 0.035 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.924068 | 0.034 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.925710 | 0.034 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.925737 | 0.034 |
R-HSA-6785470 | tRNA processing in the mitochondrion | 0.926534 | 0.033 |
R-HSA-8875878 | MET promotes cell motility | 0.926534 | 0.033 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 0.926534 | 0.033 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.926534 | 0.033 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.928783 | 0.032 |
R-HSA-69306 | DNA Replication | 0.930372 | 0.031 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.930681 | 0.031 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.930681 | 0.031 |
R-HSA-3781860 | Diseases associated with N-glycosylation of proteins | 0.930681 | 0.031 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 0.930681 | 0.031 |
R-HSA-112040 | G-protein mediated events | 0.931132 | 0.031 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.931913 | 0.031 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.934319 | 0.030 |
R-HSA-167172 | Transcription of the HIV genome | 0.934319 | 0.030 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.934472 | 0.029 |
R-HSA-3371568 | Attenuation phase | 0.934594 | 0.029 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.934594 | 0.029 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.934594 | 0.029 |
R-HSA-8868766 | rRNA processing in the mitochondrion | 0.934594 | 0.029 |
R-HSA-422475 | Axon guidance | 0.934816 | 0.029 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.937156 | 0.028 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.938286 | 0.028 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.938286 | 0.028 |
R-HSA-9607240 | FLT3 Signaling | 0.938286 | 0.028 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.938286 | 0.028 |
R-HSA-1474290 | Collagen formation | 0.939739 | 0.027 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.941446 | 0.026 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.941771 | 0.026 |
R-HSA-6811438 | Intra-Golgi traffic | 0.941771 | 0.026 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.941771 | 0.026 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.942223 | 0.026 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.942223 | 0.026 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.943060 | 0.025 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.943060 | 0.025 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.943060 | 0.025 |
R-HSA-8978934 | Metabolism of cofactors | 0.943060 | 0.025 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.943191 | 0.025 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.944611 | 0.025 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.945058 | 0.025 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.945058 | 0.025 |
R-HSA-73928 | Depyrimidination | 0.945058 | 0.025 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.945058 | 0.025 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.945058 | 0.025 |
R-HSA-72172 | mRNA Splicing | 0.946544 | 0.024 |
R-HSA-1296071 | Potassium Channels | 0.946908 | 0.024 |
R-HSA-9710421 | Defective pyroptosis | 0.948161 | 0.023 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 0.948161 | 0.023 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.948161 | 0.023 |
R-HSA-5654743 | Signaling by FGFR4 | 0.948161 | 0.023 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.948161 | 0.023 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.948260 | 0.023 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.950688 | 0.022 |
R-HSA-190828 | Gap junction trafficking | 0.951088 | 0.022 |
R-HSA-373752 | Netrin-1 signaling | 0.951088 | 0.022 |
R-HSA-196741 | Cobalamin (Cbl, vitamin B12) transport and metabolism | 0.951088 | 0.022 |
R-HSA-73886 | Chromosome Maintenance | 0.952872 | 0.021 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.952872 | 0.021 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 0.953850 | 0.021 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.954995 | 0.020 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.955220 | 0.020 |
R-HSA-2132295 | MHC class II antigen presentation | 0.956426 | 0.019 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.956456 | 0.019 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.956456 | 0.019 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.956456 | 0.019 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.958916 | 0.018 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 0.958916 | 0.018 |
R-HSA-1483191 | Synthesis of PC | 0.958916 | 0.018 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 0.958916 | 0.018 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.958928 | 0.018 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.959352 | 0.018 |
R-HSA-5619084 | ABC transporter disorders | 0.959352 | 0.018 |
R-HSA-5620924 | Intraflagellar transport | 0.961236 | 0.017 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.961236 | 0.017 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.961236 | 0.017 |
R-HSA-5654738 | Signaling by FGFR2 | 0.963117 | 0.016 |
R-HSA-977225 | Amyloid fiber formation | 0.964872 | 0.016 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.965468 | 0.015 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.966943 | 0.015 |
R-HSA-912446 | Meiotic recombination | 0.967441 | 0.014 |
R-HSA-70895 | Branched-chain amino acid catabolism | 0.967441 | 0.014 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.968263 | 0.014 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.968411 | 0.014 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.968411 | 0.014 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.969281 | 0.014 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.969281 | 0.014 |
R-HSA-5576891 | Cardiac conduction | 0.970763 | 0.013 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.972654 | 0.012 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.973829 | 0.012 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.973829 | 0.012 |
R-HSA-1793185 | Chondroitin sulfate/dermatan sulfate metabolism | 0.974199 | 0.011 |
R-HSA-1483257 | Phospholipid metabolism | 0.974267 | 0.011 |
R-HSA-9711097 | Cellular response to starvation | 0.974834 | 0.011 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.974834 | 0.011 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.975089 | 0.011 |
R-HSA-5578775 | Ion homeostasis | 0.975657 | 0.011 |
R-HSA-209776 | Metabolism of amine-derived hormones | 0.975657 | 0.011 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.975716 | 0.011 |
R-HSA-156902 | Peptide chain elongation | 0.976291 | 0.010 |
R-HSA-9645723 | Diseases of programmed cell death | 0.976291 | 0.010 |
R-HSA-1483166 | Synthesis of PA | 0.977033 | 0.010 |
R-HSA-163685 | Integration of energy metabolism | 0.977107 | 0.010 |
R-HSA-1236974 | ER-Phagosome pathway | 0.977436 | 0.010 |
R-HSA-72312 | rRNA processing | 0.978145 | 0.010 |
R-HSA-6782135 | Dual incision in TC-NER | 0.978331 | 0.010 |
R-HSA-112310 | Neurotransmitter release cycle | 0.978528 | 0.009 |
R-HSA-9033241 | Peroxisomal protein import | 0.979556 | 0.009 |
R-HSA-180786 | Extension of Telomeres | 0.979556 | 0.009 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.979568 | 0.009 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.979685 | 0.009 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.980560 | 0.009 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.980702 | 0.008 |
R-HSA-397014 | Muscle contraction | 0.980702 | 0.008 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.980711 | 0.008 |
R-HSA-379724 | tRNA Aminoacylation | 0.980711 | 0.008 |
R-HSA-391251 | Protein folding | 0.981505 | 0.008 |
R-HSA-1268020 | Mitochondrial protein import | 0.982830 | 0.008 |
R-HSA-186797 | Signaling by PDGF | 0.982830 | 0.008 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.984858 | 0.007 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.984858 | 0.007 |
R-HSA-9679506 | SARS-CoV Infections | 0.986290 | 0.006 |
R-HSA-157579 | Telomere Maintenance | 0.986305 | 0.006 |
R-HSA-422356 | Regulation of insulin secretion | 0.986977 | 0.006 |
R-HSA-194138 | Signaling by VEGF | 0.987656 | 0.005 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.988226 | 0.005 |
R-HSA-114608 | Platelet degranulation | 0.988737 | 0.005 |
R-HSA-2408557 | Selenocysteine synthesis | 0.988806 | 0.005 |
R-HSA-597592 | Post-translational protein modification | 0.989125 | 0.005 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.989222 | 0.005 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.989222 | 0.005 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.989222 | 0.005 |
R-HSA-9840310 | Glycosphingolipid catabolism | 0.989222 | 0.005 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.989832 | 0.004 |
R-HSA-192823 | Viral mRNA Translation | 0.989884 | 0.004 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.990384 | 0.004 |
R-HSA-111885 | Opioid Signalling | 0.990384 | 0.004 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 0.990950 | 0.004 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.991461 | 0.004 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.991462 | 0.004 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.991849 | 0.004 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.991945 | 0.004 |
R-HSA-8852135 | Protein ubiquitination | 0.991945 | 0.004 |
R-HSA-112316 | Neuronal System | 0.992068 | 0.003 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.992154 | 0.003 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.992544 | 0.003 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.992544 | 0.003 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.992544 | 0.003 |
R-HSA-983712 | Ion channel transport | 0.992932 | 0.003 |
R-HSA-191273 | Cholesterol biosynthesis | 0.993236 | 0.003 |
R-HSA-216083 | Integrin cell surface interactions | 0.993236 | 0.003 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.994978 | 0.002 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.995052 | 0.002 |
R-HSA-390918 | Peroxisomal lipid metabolism | 0.995231 | 0.002 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.995300 | 0.002 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.995536 | 0.002 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.995536 | 0.002 |
R-HSA-2980736 | Peptide hormone metabolism | 0.995760 | 0.002 |
R-HSA-2187338 | Visual phototransduction | 0.996158 | 0.002 |
R-HSA-70268 | Pyruvate metabolism | 0.996223 | 0.002 |
R-HSA-73884 | Base Excision Repair | 0.996829 | 0.001 |
R-HSA-6809371 | Formation of the cornified envelope | 0.997049 | 0.001 |
R-HSA-6798695 | Neutrophil degranulation | 0.997126 | 0.001 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.997338 | 0.001 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.997476 | 0.001 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.998119 | 0.001 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.998230 | 0.001 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.998514 | 0.001 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.998533 | 0.001 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 0.998824 | 0.001 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.998891 | 0.000 |
R-HSA-418346 | Platelet homeostasis | 0.998953 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 0.999258 | 0.000 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.999263 | 0.000 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.999381 | 0.000 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.999390 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 0.999394 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 0.999439 | 0.000 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.999449 | 0.000 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.999451 | 0.000 |
R-HSA-1280218 | Adaptive Immune System | 0.999452 | 0.000 |
R-HSA-9609507 | Protein localization | 0.999480 | 0.000 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.999612 | 0.000 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.999655 | 0.000 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.999711 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999745 | 0.000 |
R-HSA-418555 | G alpha (s) signalling events | 0.999812 | 0.000 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.999831 | 0.000 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.999831 | 0.000 |
R-HSA-5173105 | O-linked glycosylation | 0.999872 | 0.000 |
R-HSA-9664417 | Leishmania phagocytosis | 0.999893 | 0.000 |
R-HSA-9664407 | Parasite infection | 0.999893 | 0.000 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.999893 | 0.000 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.999899 | 0.000 |
R-HSA-416476 | G alpha (q) signalling events | 0.999942 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.999943 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999958 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.999960 | 0.000 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 0.999963 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 0.999963 | 0.000 |
R-HSA-6805567 | Keratinization | 0.999973 | 0.000 |
R-HSA-9658195 | Leishmania infection | 0.999975 | 0.000 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.999975 | 0.000 |
R-HSA-9824446 | Viral Infection Pathways | 0.999982 | 0.000 |
R-HSA-109582 | Hemostasis | 0.999985 | 0.000 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.999987 | 0.000 |
R-HSA-72766 | Translation | 0.999992 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.999992 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999995 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.999996 | 0.000 |
R-HSA-9748784 | Drug ADME | 0.999999 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999999 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 1.000000 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 1.000000 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 1.000000 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 1.000000 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 1.000000 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 1.000000 | 0.000 |
R-HSA-168256 | Immune System | 1.000000 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 1.000000 | 0.000 |
R-HSA-168249 | Innate Immune System | 1.000000 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 1.000000 | 0.000 |
R-HSA-1643685 | Disease | 1.000000 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 1.000000 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-5663205 | Infectious disease | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDK18 |
0.899 | 0.893 | 1 | 0.857 |
CDK19 |
0.898 | 0.878 | 1 | 0.842 |
CDK17 |
0.898 | 0.908 | 1 | 0.885 |
P38G |
0.898 | 0.927 | 1 | 0.892 |
CDK8 |
0.894 | 0.878 | 1 | 0.808 |
JNK2 |
0.893 | 0.929 | 1 | 0.851 |
CDK3 |
0.893 | 0.806 | 1 | 0.878 |
KIS |
0.893 | 0.790 | 1 | 0.786 |
HIPK2 |
0.892 | 0.815 | 1 | 0.842 |
CDK7 |
0.891 | 0.871 | 1 | 0.812 |
P38D |
0.890 | 0.904 | 1 | 0.893 |
CDK16 |
0.890 | 0.873 | 1 | 0.873 |
CDK1 |
0.890 | 0.870 | 1 | 0.835 |
ERK1 |
0.888 | 0.887 | 1 | 0.834 |
P38B |
0.887 | 0.895 | 1 | 0.818 |
CDK13 |
0.886 | 0.870 | 1 | 0.832 |
CDK5 |
0.885 | 0.847 | 1 | 0.785 |
CDK12 |
0.884 | 0.872 | 1 | 0.852 |
JNK3 |
0.882 | 0.912 | 1 | 0.825 |
DYRK2 |
0.882 | 0.802 | 1 | 0.754 |
CDK14 |
0.880 | 0.863 | 1 | 0.816 |
DYRK4 |
0.878 | 0.812 | 1 | 0.850 |
CDK10 |
0.878 | 0.814 | 1 | 0.832 |
CDK9 |
0.877 | 0.855 | 1 | 0.824 |
P38A |
0.877 | 0.866 | 1 | 0.752 |
ERK2 |
0.873 | 0.877 | 1 | 0.787 |
HIPK1 |
0.872 | 0.742 | 1 | 0.736 |
DYRK1B |
0.872 | 0.778 | 1 | 0.805 |
CLK3 |
0.870 | 0.528 | 1 | 0.509 |
CDK4 |
0.869 | 0.856 | 1 | 0.861 |
HIPK4 |
0.869 | 0.527 | 1 | 0.545 |
NLK |
0.868 | 0.792 | 1 | 0.543 |
CDK6 |
0.867 | 0.829 | 1 | 0.835 |
HIPK3 |
0.863 | 0.724 | 1 | 0.706 |
DYRK1A |
0.863 | 0.661 | 1 | 0.718 |
JNK1 |
0.862 | 0.817 | 1 | 0.851 |
CDK2 |
0.860 | 0.678 | 1 | 0.710 |
ERK5 |
0.857 | 0.447 | 1 | 0.454 |
SRPK1 |
0.857 | 0.365 | -3 | 0.783 |
DYRK3 |
0.853 | 0.592 | 1 | 0.699 |
CLK1 |
0.848 | 0.444 | -3 | 0.774 |
MAK |
0.847 | 0.562 | -2 | 0.858 |
ICK |
0.847 | 0.417 | -3 | 0.878 |
MTOR |
0.845 | 0.243 | 1 | 0.336 |
CLK4 |
0.844 | 0.408 | -3 | 0.796 |
CLK2 |
0.844 | 0.433 | -3 | 0.777 |
SRPK2 |
0.843 | 0.290 | -3 | 0.702 |
CDKL5 |
0.843 | 0.209 | -3 | 0.831 |
COT |
0.839 | -0.066 | 2 | 0.910 |
CDKL1 |
0.838 | 0.176 | -3 | 0.837 |
MOK |
0.837 | 0.519 | 1 | 0.623 |
PRP4 |
0.834 | 0.497 | -3 | 0.823 |
SRPK3 |
0.831 | 0.252 | -3 | 0.751 |
MOS |
0.830 | -0.012 | 1 | 0.207 |
CDC7 |
0.830 | -0.100 | 1 | 0.161 |
PRPK |
0.828 | -0.081 | -1 | 0.889 |
TBK1 |
0.828 | -0.148 | 1 | 0.127 |
NDR2 |
0.826 | -0.014 | -3 | 0.886 |
PRKD1 |
0.826 | 0.008 | -3 | 0.874 |
PIM3 |
0.826 | -0.028 | -3 | 0.874 |
ATR |
0.825 | -0.045 | 1 | 0.205 |
CAMK1B |
0.824 | -0.019 | -3 | 0.896 |
MST4 |
0.824 | -0.023 | 2 | 0.890 |
PKN3 |
0.823 | -0.034 | -3 | 0.867 |
WNK1 |
0.823 | -0.058 | -2 | 0.919 |
NUAK2 |
0.823 | 0.022 | -3 | 0.875 |
IKKE |
0.823 | -0.165 | 1 | 0.127 |
ERK7 |
0.823 | 0.283 | 2 | 0.563 |
GCN2 |
0.822 | -0.202 | 2 | 0.841 |
PRKD2 |
0.822 | 0.014 | -3 | 0.809 |
PDHK4 |
0.821 | -0.159 | 1 | 0.216 |
RAF1 |
0.821 | -0.194 | 1 | 0.150 |
RSK2 |
0.821 | 0.005 | -3 | 0.807 |
ULK2 |
0.820 | -0.190 | 2 | 0.840 |
NDR1 |
0.820 | -0.041 | -3 | 0.874 |
IKKB |
0.820 | -0.172 | -2 | 0.778 |
NIK |
0.819 | -0.044 | -3 | 0.917 |
P90RSK |
0.819 | 0.005 | -3 | 0.811 |
BMPR2 |
0.819 | -0.179 | -2 | 0.903 |
PKCD |
0.819 | -0.011 | 2 | 0.839 |
NEK6 |
0.819 | -0.085 | -2 | 0.865 |
PKN2 |
0.818 | -0.050 | -3 | 0.874 |
CHAK2 |
0.818 | -0.052 | -1 | 0.865 |
CAMLCK |
0.818 | -0.002 | -2 | 0.891 |
SKMLCK |
0.817 | -0.043 | -2 | 0.898 |
PIM1 |
0.817 | 0.024 | -3 | 0.814 |
RIPK3 |
0.817 | -0.125 | 3 | 0.805 |
DSTYK |
0.817 | -0.163 | 2 | 0.913 |
PDHK1 |
0.817 | -0.178 | 1 | 0.195 |
AMPKA1 |
0.816 | -0.052 | -3 | 0.892 |
MAPKAPK3 |
0.816 | -0.045 | -3 | 0.815 |
RSK3 |
0.815 | -0.019 | -3 | 0.799 |
TGFBR2 |
0.814 | -0.102 | -2 | 0.790 |
IRE1 |
0.814 | -0.078 | 1 | 0.157 |
MLK1 |
0.814 | -0.138 | 2 | 0.862 |
DAPK2 |
0.813 | -0.039 | -3 | 0.906 |
CAMK2G |
0.813 | -0.112 | 2 | 0.825 |
NEK7 |
0.813 | -0.185 | -3 | 0.886 |
AMPKA2 |
0.812 | -0.033 | -3 | 0.858 |
AURC |
0.812 | 0.019 | -2 | 0.698 |
MLK2 |
0.812 | -0.099 | 2 | 0.870 |
MARK4 |
0.812 | -0.075 | 4 | 0.859 |
P70S6KB |
0.811 | -0.015 | -3 | 0.828 |
WNK3 |
0.811 | -0.189 | 1 | 0.154 |
MLK3 |
0.811 | -0.044 | 2 | 0.795 |
TSSK1 |
0.811 | -0.038 | -3 | 0.913 |
MAPKAPK2 |
0.811 | -0.026 | -3 | 0.765 |
PKACG |
0.810 | -0.032 | -2 | 0.778 |
LATS2 |
0.810 | -0.052 | -5 | 0.776 |
ULK1 |
0.810 | -0.179 | -3 | 0.856 |
MNK2 |
0.810 | -0.023 | -2 | 0.835 |
PRKD3 |
0.810 | -0.000 | -3 | 0.776 |
HUNK |
0.810 | -0.162 | 2 | 0.858 |
IRE2 |
0.810 | -0.064 | 2 | 0.804 |
TSSK2 |
0.809 | -0.068 | -5 | 0.870 |
NEK9 |
0.809 | -0.175 | 2 | 0.886 |
GRK5 |
0.809 | -0.159 | -3 | 0.894 |
CAMK2D |
0.809 | -0.097 | -3 | 0.883 |
PKCA |
0.809 | -0.011 | 2 | 0.781 |
PHKG1 |
0.809 | -0.058 | -3 | 0.865 |
GRK1 |
0.809 | -0.044 | -2 | 0.803 |
PKCB |
0.809 | -0.022 | 2 | 0.793 |
BCKDK |
0.808 | -0.158 | -1 | 0.822 |
MPSK1 |
0.808 | 0.079 | 1 | 0.229 |
DNAPK |
0.808 | -0.040 | 1 | 0.194 |
MASTL |
0.808 | -0.169 | -2 | 0.847 |
NIM1 |
0.807 | -0.089 | 3 | 0.827 |
PAK3 |
0.807 | -0.063 | -2 | 0.834 |
PAK6 |
0.807 | 0.003 | -2 | 0.758 |
PKCG |
0.807 | -0.031 | 2 | 0.790 |
IKKA |
0.807 | -0.115 | -2 | 0.766 |
MNK1 |
0.806 | -0.009 | -2 | 0.842 |
NUAK1 |
0.806 | -0.035 | -3 | 0.822 |
PAK1 |
0.806 | -0.044 | -2 | 0.837 |
RIPK1 |
0.806 | -0.191 | 1 | 0.143 |
LATS1 |
0.806 | 0.004 | -3 | 0.901 |
ATM |
0.805 | -0.086 | 1 | 0.173 |
MELK |
0.805 | -0.070 | -3 | 0.843 |
PKCZ |
0.805 | -0.043 | 2 | 0.831 |
VRK2 |
0.805 | 0.052 | 1 | 0.256 |
CAMK4 |
0.804 | -0.106 | -3 | 0.856 |
PKR |
0.804 | -0.087 | 1 | 0.174 |
DLK |
0.804 | -0.204 | 1 | 0.163 |
PINK1 |
0.804 | 0.164 | 1 | 0.373 |
GSK3A |
0.803 | 0.213 | 4 | 0.476 |
RSK4 |
0.803 | 0.001 | -3 | 0.778 |
SMG1 |
0.803 | -0.068 | 1 | 0.193 |
PKG2 |
0.802 | -0.005 | -2 | 0.715 |
AKT2 |
0.802 | 0.028 | -3 | 0.715 |
ALK4 |
0.802 | -0.078 | -2 | 0.834 |
GRK7 |
0.802 | -0.017 | 1 | 0.178 |
BMPR1B |
0.802 | -0.068 | 1 | 0.131 |
ANKRD3 |
0.802 | -0.194 | 1 | 0.166 |
PKCH |
0.801 | -0.054 | 2 | 0.780 |
GRK6 |
0.801 | -0.151 | 1 | 0.145 |
MSK2 |
0.801 | -0.047 | -3 | 0.776 |
SGK3 |
0.801 | -0.012 | -3 | 0.797 |
AURB |
0.801 | -0.011 | -2 | 0.695 |
PKACB |
0.800 | 0.012 | -2 | 0.711 |
TGFBR1 |
0.800 | -0.072 | -2 | 0.802 |
YSK4 |
0.800 | -0.160 | 1 | 0.137 |
QIK |
0.800 | -0.102 | -3 | 0.874 |
NEK2 |
0.800 | -0.138 | 2 | 0.861 |
CHAK1 |
0.800 | -0.134 | 2 | 0.831 |
TTBK2 |
0.800 | -0.197 | 2 | 0.756 |
QSK |
0.800 | -0.050 | 4 | 0.840 |
PIM2 |
0.799 | 0.018 | -3 | 0.777 |
CAMK2A |
0.797 | -0.038 | 2 | 0.804 |
PAK2 |
0.797 | -0.073 | -2 | 0.820 |
MEK1 |
0.797 | -0.149 | 2 | 0.885 |
CAMK2B |
0.797 | -0.072 | 2 | 0.785 |
SIK |
0.796 | -0.059 | -3 | 0.794 |
MLK4 |
0.796 | -0.116 | 2 | 0.773 |
MYLK4 |
0.796 | -0.039 | -2 | 0.810 |
MST3 |
0.795 | -0.043 | 2 | 0.880 |
MSK1 |
0.795 | -0.028 | -3 | 0.779 |
IRAK4 |
0.795 | -0.109 | 1 | 0.137 |
PLK1 |
0.794 | -0.162 | -2 | 0.814 |
CHK1 |
0.794 | -0.062 | -3 | 0.863 |
BRSK2 |
0.794 | -0.098 | -3 | 0.853 |
WNK4 |
0.794 | -0.111 | -2 | 0.910 |
PHKG2 |
0.794 | -0.070 | -3 | 0.830 |
DCAMKL1 |
0.794 | -0.051 | -3 | 0.821 |
PKCT |
0.794 | -0.050 | 2 | 0.788 |
GRK4 |
0.793 | -0.193 | -2 | 0.829 |
CAMK1G |
0.793 | -0.057 | -3 | 0.792 |
PRKX |
0.793 | 0.025 | -3 | 0.709 |
AKT1 |
0.793 | 0.006 | -3 | 0.737 |
FAM20C |
0.793 | -0.034 | 2 | 0.617 |
BRSK1 |
0.792 | -0.081 | -3 | 0.826 |
MEKK1 |
0.791 | -0.151 | 1 | 0.163 |
PLK4 |
0.791 | -0.140 | 2 | 0.674 |
MEK5 |
0.791 | -0.150 | 2 | 0.873 |
ZAK |
0.791 | -0.155 | 1 | 0.147 |
MARK3 |
0.791 | -0.062 | 4 | 0.798 |
ACVR2A |
0.791 | -0.121 | -2 | 0.783 |
MAPKAPK5 |
0.791 | -0.097 | -3 | 0.753 |
PKCI |
0.791 | -0.028 | 2 | 0.798 |
ACVR2B |
0.790 | -0.123 | -2 | 0.795 |
HRI |
0.790 | -0.166 | -2 | 0.858 |
TAO3 |
0.790 | -0.052 | 1 | 0.184 |
DRAK1 |
0.790 | -0.154 | 1 | 0.119 |
AURA |
0.789 | -0.031 | -2 | 0.664 |
TLK2 |
0.789 | -0.160 | 1 | 0.148 |
ALK2 |
0.789 | -0.107 | -2 | 0.808 |
MEKK2 |
0.789 | -0.127 | 2 | 0.857 |
SSTK |
0.789 | -0.052 | 4 | 0.826 |
MARK2 |
0.789 | -0.075 | 4 | 0.759 |
NEK5 |
0.788 | -0.150 | 1 | 0.150 |
GSK3B |
0.788 | 0.055 | 4 | 0.469 |
SNRK |
0.788 | -0.166 | 2 | 0.715 |
PERK |
0.788 | -0.172 | -2 | 0.837 |
PKCE |
0.787 | 0.003 | 2 | 0.777 |
PAK5 |
0.787 | -0.033 | -2 | 0.690 |
DCAMKL2 |
0.787 | -0.063 | -3 | 0.842 |
MEKK3 |
0.786 | -0.178 | 1 | 0.156 |
SMMLCK |
0.786 | -0.039 | -3 | 0.852 |
PKN1 |
0.786 | -0.031 | -3 | 0.756 |
BUB1 |
0.785 | 0.042 | -5 | 0.828 |
P70S6K |
0.785 | -0.041 | -3 | 0.737 |
PLK3 |
0.785 | -0.153 | 2 | 0.791 |
PAK4 |
0.784 | -0.021 | -2 | 0.697 |
BRAF |
0.784 | -0.161 | -4 | 0.839 |
TAO2 |
0.784 | -0.057 | 2 | 0.892 |
PKACA |
0.784 | -0.004 | -2 | 0.660 |
LKB1 |
0.784 | -0.050 | -3 | 0.889 |
GRK2 |
0.784 | -0.107 | -2 | 0.721 |
GAK |
0.783 | -0.044 | 1 | 0.207 |
NEK11 |
0.783 | -0.137 | 1 | 0.175 |
PASK |
0.783 | -0.054 | -3 | 0.896 |
BMPR1A |
0.783 | -0.089 | 1 | 0.122 |
MARK1 |
0.783 | -0.102 | 4 | 0.818 |
PDK1 |
0.782 | -0.073 | 1 | 0.188 |
MAP3K15 |
0.782 | -0.091 | 1 | 0.160 |
CK1E |
0.781 | -0.034 | -3 | 0.573 |
MEKK6 |
0.781 | -0.097 | 1 | 0.163 |
AKT3 |
0.781 | 0.016 | -3 | 0.652 |
HGK |
0.781 | -0.071 | 3 | 0.921 |
SBK |
0.781 | 0.114 | -3 | 0.590 |
TLK1 |
0.780 | -0.176 | -2 | 0.823 |
TNIK |
0.780 | -0.044 | 3 | 0.924 |
GCK |
0.780 | -0.083 | 1 | 0.160 |
NEK4 |
0.779 | -0.149 | 1 | 0.138 |
CAMK1D |
0.779 | -0.043 | -3 | 0.713 |
PBK |
0.779 | -0.029 | 1 | 0.190 |
NEK8 |
0.778 | -0.175 | 2 | 0.863 |
KHS1 |
0.777 | -0.045 | 1 | 0.155 |
MINK |
0.777 | -0.118 | 1 | 0.138 |
HASPIN |
0.777 | 0.026 | -1 | 0.720 |
SGK1 |
0.777 | 0.027 | -3 | 0.632 |
HPK1 |
0.777 | -0.079 | 1 | 0.159 |
LOK |
0.776 | -0.075 | -2 | 0.806 |
TTBK1 |
0.776 | -0.172 | 2 | 0.673 |
MRCKB |
0.776 | -0.003 | -3 | 0.767 |
LRRK2 |
0.776 | -0.036 | 2 | 0.885 |
EEF2K |
0.775 | -0.074 | 3 | 0.884 |
NEK1 |
0.775 | -0.135 | 1 | 0.134 |
CAMKK1 |
0.775 | -0.200 | -2 | 0.795 |
CAMKK2 |
0.774 | -0.150 | -2 | 0.795 |
KHS2 |
0.774 | -0.026 | 1 | 0.166 |
CK1D |
0.774 | -0.012 | -3 | 0.522 |
CHK2 |
0.774 | -0.025 | -3 | 0.659 |
IRAK1 |
0.773 | -0.219 | -1 | 0.780 |
DAPK3 |
0.773 | -0.049 | -3 | 0.833 |
ROCK2 |
0.773 | -0.012 | -3 | 0.823 |
MRCKA |
0.773 | -0.016 | -3 | 0.785 |
MST2 |
0.773 | -0.148 | 1 | 0.143 |
CAMK1A |
0.772 | -0.024 | -3 | 0.678 |
YSK1 |
0.771 | -0.107 | 2 | 0.858 |
CK1G1 |
0.770 | -0.079 | -3 | 0.561 |
CK2A2 |
0.770 | -0.078 | 1 | 0.116 |
VRK1 |
0.770 | -0.162 | 2 | 0.885 |
TAK1 |
0.769 | -0.186 | 1 | 0.142 |
BIKE |
0.769 | -0.020 | 1 | 0.200 |
DMPK1 |
0.769 | 0.027 | -3 | 0.787 |
PDHK3_TYR |
0.768 | 0.158 | 4 | 0.912 |
CK1A2 |
0.768 | -0.038 | -3 | 0.519 |
MST1 |
0.768 | -0.145 | 1 | 0.136 |
SLK |
0.768 | -0.088 | -2 | 0.743 |
DAPK1 |
0.767 | -0.054 | -3 | 0.813 |
AAK1 |
0.766 | 0.018 | 1 | 0.209 |
NEK3 |
0.766 | -0.117 | 1 | 0.163 |
RIPK2 |
0.766 | -0.206 | 1 | 0.130 |
GRK3 |
0.766 | -0.112 | -2 | 0.667 |
LIMK2_TYR |
0.765 | 0.147 | -3 | 0.937 |
STK33 |
0.764 | -0.142 | 2 | 0.657 |
CRIK |
0.763 | 0.008 | -3 | 0.737 |
PKG1 |
0.762 | -0.036 | -2 | 0.630 |
TESK1_TYR |
0.762 | 0.053 | 3 | 0.925 |
CK2A1 |
0.761 | -0.084 | 1 | 0.107 |
MEK2 |
0.761 | -0.205 | 2 | 0.861 |
ROCK1 |
0.760 | -0.022 | -3 | 0.783 |
PKMYT1_TYR |
0.760 | 0.122 | 3 | 0.899 |
TAO1 |
0.759 | -0.081 | 1 | 0.155 |
ASK1 |
0.758 | -0.119 | 1 | 0.160 |
MYO3B |
0.758 | -0.071 | 2 | 0.870 |
PDHK4_TYR |
0.758 | 0.050 | 2 | 0.901 |
OSR1 |
0.757 | -0.093 | 2 | 0.850 |
MAP2K4_TYR |
0.755 | -0.005 | -1 | 0.905 |
MYO3A |
0.754 | -0.088 | 1 | 0.160 |
MAP2K7_TYR |
0.754 | -0.081 | 2 | 0.892 |
PLK2 |
0.754 | -0.112 | -3 | 0.801 |
TTK |
0.753 | -0.105 | -2 | 0.820 |
MAP2K6_TYR |
0.753 | 0.000 | -1 | 0.909 |
LIMK1_TYR |
0.751 | 0.011 | 2 | 0.896 |
PINK1_TYR |
0.751 | -0.123 | 1 | 0.210 |
BMPR2_TYR |
0.750 | -0.008 | -1 | 0.895 |
RET |
0.749 | -0.128 | 1 | 0.177 |
PDHK1_TYR |
0.749 | -0.066 | -1 | 0.916 |
JAK2 |
0.747 | -0.107 | 1 | 0.186 |
MST1R |
0.747 | -0.095 | 3 | 0.865 |
TYK2 |
0.746 | -0.186 | 1 | 0.164 |
NEK10_TYR |
0.746 | -0.090 | 1 | 0.161 |
TNNI3K_TYR |
0.745 | -0.019 | 1 | 0.194 |
CSF1R |
0.745 | -0.087 | 3 | 0.851 |
ALPHAK3 |
0.745 | -0.107 | -1 | 0.794 |
ROS1 |
0.745 | -0.115 | 3 | 0.839 |
JAK1 |
0.743 | -0.070 | 1 | 0.155 |
EPHA6 |
0.742 | -0.104 | -1 | 0.881 |
JAK3 |
0.742 | -0.113 | 1 | 0.170 |
TYRO3 |
0.741 | -0.153 | 3 | 0.862 |
EPHB4 |
0.740 | -0.126 | -1 | 0.863 |
TNK1 |
0.740 | -0.058 | 3 | 0.840 |
ABL2 |
0.738 | -0.117 | -1 | 0.832 |
DDR1 |
0.738 | -0.134 | 4 | 0.819 |
STLK3 |
0.738 | -0.188 | 1 | 0.132 |
YES1 |
0.738 | -0.102 | -1 | 0.876 |
TXK |
0.738 | -0.090 | 1 | 0.125 |
FGFR2 |
0.737 | -0.054 | 3 | 0.833 |
YANK3 |
0.737 | -0.075 | 2 | 0.421 |
FGFR1 |
0.736 | -0.044 | 3 | 0.813 |
TNK2 |
0.736 | -0.109 | 3 | 0.805 |
ABL1 |
0.735 | -0.123 | -1 | 0.824 |
TEK |
0.735 | -0.017 | 3 | 0.792 |
KDR |
0.734 | -0.084 | 3 | 0.811 |
FGR |
0.734 | -0.171 | 1 | 0.138 |
LCK |
0.734 | -0.096 | -1 | 0.858 |
INSRR |
0.732 | -0.148 | 3 | 0.800 |
HCK |
0.732 | -0.146 | -1 | 0.857 |
KIT |
0.731 | -0.136 | 3 | 0.846 |
PDGFRB |
0.731 | -0.201 | 3 | 0.860 |
BLK |
0.731 | -0.087 | -1 | 0.862 |
ITK |
0.730 | -0.146 | -1 | 0.826 |
FLT3 |
0.730 | -0.182 | 3 | 0.855 |
DDR2 |
0.730 | -0.028 | 3 | 0.781 |
WEE1_TYR |
0.728 | -0.083 | -1 | 0.771 |
EPHA4 |
0.728 | -0.114 | 2 | 0.783 |
FER |
0.728 | -0.218 | 1 | 0.147 |
PDGFRA |
0.728 | -0.198 | 3 | 0.861 |
EPHB1 |
0.727 | -0.183 | 1 | 0.126 |
CK1A |
0.727 | -0.065 | -3 | 0.425 |
AXL |
0.726 | -0.173 | 3 | 0.827 |
MET |
0.726 | -0.124 | 3 | 0.836 |
EPHB3 |
0.726 | -0.175 | -1 | 0.847 |
SRMS |
0.726 | -0.198 | 1 | 0.121 |
EPHB2 |
0.724 | -0.168 | -1 | 0.840 |
MERTK |
0.723 | -0.169 | 3 | 0.824 |
FGFR3 |
0.723 | -0.079 | 3 | 0.805 |
BMX |
0.723 | -0.126 | -1 | 0.746 |
FYN |
0.721 | -0.097 | -1 | 0.839 |
FLT1 |
0.721 | -0.140 | -1 | 0.851 |
ALK |
0.721 | -0.173 | 3 | 0.771 |
TEC |
0.721 | -0.160 | -1 | 0.762 |
BTK |
0.720 | -0.216 | -1 | 0.792 |
ERBB2 |
0.719 | -0.174 | 1 | 0.146 |
FRK |
0.719 | -0.156 | -1 | 0.862 |
FLT4 |
0.719 | -0.156 | 3 | 0.798 |
EPHA7 |
0.718 | -0.148 | 2 | 0.793 |
INSR |
0.717 | -0.170 | 3 | 0.784 |
LTK |
0.717 | -0.186 | 3 | 0.789 |
EPHA1 |
0.717 | -0.171 | 3 | 0.816 |
EGFR |
0.716 | -0.120 | 1 | 0.121 |
NTRK1 |
0.716 | -0.231 | -1 | 0.843 |
NTRK2 |
0.715 | -0.221 | 3 | 0.804 |
PTK2B |
0.714 | -0.128 | -1 | 0.799 |
NTRK3 |
0.714 | -0.167 | -1 | 0.796 |
LYN |
0.714 | -0.151 | 3 | 0.773 |
MUSK |
0.713 | -0.137 | 1 | 0.108 |
EPHA3 |
0.713 | -0.168 | 2 | 0.760 |
PTK6 |
0.713 | -0.232 | -1 | 0.753 |
SRC |
0.711 | -0.134 | -1 | 0.834 |
MATK |
0.710 | -0.125 | -1 | 0.752 |
EPHA8 |
0.708 | -0.142 | -1 | 0.827 |
FGFR4 |
0.708 | -0.125 | -1 | 0.789 |
CSK |
0.706 | -0.168 | 2 | 0.799 |
EPHA5 |
0.706 | -0.173 | 2 | 0.766 |
PTK2 |
0.705 | -0.080 | -1 | 0.811 |
CK1G3 |
0.702 | -0.076 | -3 | 0.374 |
SYK |
0.702 | -0.108 | -1 | 0.798 |
ERBB4 |
0.702 | -0.107 | 1 | 0.116 |
YANK2 |
0.702 | -0.096 | 2 | 0.439 |
EPHA2 |
0.698 | -0.150 | -1 | 0.792 |
IGF1R |
0.698 | -0.168 | 3 | 0.718 |
ZAP70 |
0.691 | -0.080 | -1 | 0.719 |
FES |
0.682 | -0.172 | -1 | 0.721 |
CK1G2 |
0.681 | -0.082 | -3 | 0.474 |