Motif 936 (n=328)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A1B0GU03 | None | S37 | ochoa | Cathepsin D (EC 3.4.23.5) | None |
A4D1P6 | WDR91 | S326 | ochoa | WD repeat-containing protein 91 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May play a role in meiosis (By similarity). {ECO:0000250|UniProtKB:Q7TMQ7, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989}. |
A6NKT7 | RGPD3 | S381 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NMZ7 | COL6A6 | S819 | ochoa | Collagen alpha-6(VI) chain | Collagen VI acts as a cell-binding protein. {ECO:0000250}. |
A6NNC1 | None | S202 | ochoa | Putative POM121-like protein 1-like | None |
O00160 | MYO1F | S767 | ochoa | Unconventional myosin-If (Myosin-Ie) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments (By similarity). {ECO:0000250}. |
O00401 | WASL | S430 | ochoa | Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) | Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}. |
O00418 | EEF2K | S500 | ochoa|psp | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
O00482 | NR5A2 | S510 | psp | Nuclear receptor subfamily 5 group A member 2 (Alpha-1-fetoprotein transcription factor) (B1-binding factor) (hB1F) (CYP7A promoter-binding factor) (Hepatocytic transcription factor) (Liver receptor homolog 1) (LRH-1) | Orphan nuclear receptor that binds DNA as a monomer to the 5'-TCAAGGCCA-3' sequence and controls expression of target genes: regulates key biological processes, such as early embryonic development, cholesterol and bile acid synthesis pathways, as well as liver and pancreas morphogenesis (PubMed:16289203, PubMed:18410128, PubMed:21614002, PubMed:32433991, PubMed:38409506, PubMed:9786908). Ligand-binding causes conformational change which causes recruitment of coactivators, promoting target gene activation (PubMed:21614002). The specific ligand is unknown, but specific phospholipids, such as phosphatidylethanolamine, phosphatidylserine, dilauroyl phosphatidylcholine and diundecanoyl phosphatidylcholine can act as ligand in vitro (PubMed:15707893, PubMed:15723037, PubMed:15897460, PubMed:21614002, PubMed:22504882, PubMed:23737522, PubMed:26416531, PubMed:26553876). Acts as a pioneer transcription factor, which unwraps target DNA from histones and elicits local opening of closed chromatin (PubMed:38409506). Plays a central role during preimplantation stages of embryonic development (By similarity). Plays a minor role in zygotic genome activation (ZGA) by regulating a small set of two-cell stage genes (By similarity). Plays a major role in morula development (2-16 cells embryos) by acting as a master regulator at the 8-cell stage, controlling expression of lineage-specifying transcription factors and genes involved in mitosis, telomere maintenance and DNA repair (By similarity). Zygotic NR5A2 binds to both closed and open chromatin with other transcription factors, often at SINE B1/Alu repeats DNA elements, promoting chromatin accessibility at nearby regulatory regions (By similarity). Also involved in the epiblast stage of development and embryonic stem cell pluripotency, by promoting expression of POU5F1/OCT4 (PubMed:27984042). Regulates other processes later in development, such as formation of connective tissue in lower jaw and middle ear, neural stem cell differentiation, ovarian follicle development and Sertoli cell differentiation (By similarity). Involved in exocrine pancreas development and acinar cell differentiation (By similarity). Acts as an essential transcriptional regulator of lipid metabolism (PubMed:20159957). Key regulator of cholesterol 7-alpha-hydroxylase gene (CYP7A) expression in liver (PubMed:10359768). Also acts as a negative regulator of inflammation in different organs, such as, liver and pancreas (PubMed:20159957). Protects against intestinal inflammation via its ability to regulate glucocorticoid production (By similarity). Plays an anti-inflammatory role during the hepatic acute phase response by acting as a corepressor: inhibits the hepatic acute phase response by preventing dissociation of the N-Cor corepressor complex (PubMed:20159957). Acts as a regulator of immunity by promoting lymphocyte T-cell development, proliferation and effector functions (By similarity). Also involved in resolution of endoplasmic reticulum stress in the liver (By similarity). {ECO:0000250|UniProtKB:P45448, ECO:0000269|PubMed:10359768, ECO:0000269|PubMed:15707893, ECO:0000269|PubMed:15723037, ECO:0000269|PubMed:15897460, ECO:0000269|PubMed:16289203, ECO:0000269|PubMed:18410128, ECO:0000269|PubMed:20159957, ECO:0000269|PubMed:21614002, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23737522, ECO:0000269|PubMed:26416531, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:27984042, ECO:0000269|PubMed:32433991, ECO:0000269|PubMed:38409506, ECO:0000269|PubMed:9786908}.; FUNCTION: [Isoform 3]: In constrast to isoform 1 and isoform 2, does not induce cholesterol 7-alpha-hydroxylase gene (CYP7A) promoter activity. {ECO:0000269|PubMed:10359768}.; FUNCTION: (Microbial infection) Plays a crucial role for hepatitis B virus gene transcription and DNA replication. Mechanistically, synergistically cooperates with HNF1A to up-regulate the activity of one of the critical cis-elements in the hepatitis B virus genome enhancer II (ENII). {ECO:0000269|PubMed:14728801, ECO:0000269|PubMed:9786908}. |
O14519 | CDK2AP1 | S84 | ochoa | Cyclin-dependent kinase 2-associated protein 1 (CDK2-associated protein 1) (Deleted in oral cancer 1) (DOC-1) (Putative oral cancer suppressor) | Inhibitor of cyclin-dependent kinase CDK2 (By similarity). Also acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:20523938, PubMed:28977666). {ECO:0000250|UniProtKB:O35207, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:20523938, ECO:0000269|PubMed:28977666}. |
O15027 | SEC16A | S1810 | psp | Protein transport protein Sec16A (SEC16 homolog A) (p250) | Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}. |
O15111 | CHUK | S473 | psp | Inhibitor of nuclear factor kappa-B kinase subunit alpha (I-kappa-B kinase alpha) (IKK-A) (IKK-alpha) (IkBKA) (IkappaB kinase) (EC 2.7.11.10) (Conserved helix-loop-helix ubiquitous kinase) (I-kappa-B kinase 1) (IKK-1) (IKK1) (Nuclear factor NF-kappa-B inhibitor kinase alpha) (NFKBIKA) (Transcription factor 16) (TCF-16) | Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed:35952808, PubMed:9244310, PubMed:9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed:21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B-responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed:30217973). {ECO:0000250|UniProtKB:Q60680, ECO:0000269|PubMed:12789342, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17434128, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20501937, ECO:0000269|PubMed:21765415, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35952808, ECO:0000269|PubMed:9244310, ECO:0000269|PubMed:9252186, ECO:0000269|PubMed:9346484, ECO:0000303|PubMed:18626576}. |
O15265 | ATXN7 | S115 | ochoa | Ataxin-7 (Spinocerebellar ataxia type 7 protein) | Acts as a component of the SAGA (aka STAGA) transcription coactivator-HAT complex (PubMed:15932940, PubMed:18206972). Mediates the interaction of SAGA complex with the CRX and is involved in CRX-dependent gene activation (PubMed:15932940, PubMed:18206972). Probably involved in tethering the deubiquitination module within the SAGA complex (PubMed:24493646). Necessary for microtubule cytoskeleton stabilization (PubMed:22100762). Involved in neurodegeneration (PubMed:9288099). {ECO:0000269|PubMed:15932940, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:22100762, ECO:0000269|PubMed:24493646, ECO:0000269|PubMed:9288099}. |
O15503 | INSIG1 | S209 | psp | Insulin-induced gene 1 protein (INSIG-1) | Oxysterol-binding protein that mediates feedback control of cholesterol synthesis by controlling both endoplasmic reticulum to Golgi transport of SCAP and degradation of HMGCR (PubMed:12202038, PubMed:12535518, PubMed:16168377, PubMed:16399501, PubMed:16606821, PubMed:32322062). Acts as a negative regulator of cholesterol biosynthesis by mediating the retention of the SCAP-SREBP complex in the endoplasmic reticulum, thereby blocking the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:12202038, PubMed:16399501, PubMed:26311497, PubMed:32322062). Binds oxysterol, including 25-hydroxycholesterol, regulating interaction with SCAP and retention of the SCAP-SREBP complex in the endoplasmic reticulum (PubMed:32322062). In presence of oxysterol, interacts with SCAP, retaining the SCAP-SREBP complex in the endoplasmic reticulum, thereby preventing SCAP from escorting SREBF1/SREBP1 and SREBF2/SREBP2 to the Golgi (PubMed:15899885, PubMed:32322062). Sterol deprivation or phosphorylation by PCK1 reduce oxysterol-binding, disrupting the interaction between INSIG1 and SCAP, thereby promoting Golgi transport of the SCAP-SREBP complex, followed by processing and nuclear translocation of SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497, PubMed:32322062). Also regulates cholesterol synthesis by regulating degradation of HMGCR: initiates the sterol-mediated ubiquitin-mediated endoplasmic reticulum-associated degradation (ERAD) of HMGCR via recruitment of the reductase to the ubiquitin ligases AMFR/gp78 and/or RNF139 (PubMed:12535518, PubMed:16168377, PubMed:22143767). Also regulates degradation of SOAT2/ACAT2 when the lipid levels are low: initiates the ubiquitin-mediated degradation of SOAT2/ACAT2 via recruitment of the ubiquitin ligases AMFR/gp78 (PubMed:28604676). {ECO:0000269|PubMed:12202038, ECO:0000269|PubMed:12535518, ECO:0000269|PubMed:15899885, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16399501, ECO:0000269|PubMed:16606821, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:26311497, ECO:0000269|PubMed:28604676, ECO:0000269|PubMed:32322062}. |
O43426 | SYNJ1 | S1455 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43815 | STRN | S503 | ochoa | Striatin | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}. |
O60437 | PPL | S949 | ochoa | Periplakin (190 kDa paraneoplastic pemphigus antigen) (195 kDa cornified envelope precursor protein) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. May act as a localization signal in PKB/AKT-mediated signaling. {ECO:0000269|PubMed:9412476}. |
O60664 | PLIN3 | S93 | ochoa | Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) | Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}. |
O60832 | DKC1 | S170 | ochoa | H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) | [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}. |
O75223 | GGCT | S37 | ochoa | Gamma-glutamylcyclotransferase (EC 4.3.2.9) (Cytochrome c-releasing factor 21) | Catalyzes the formation of 5-oxoproline from gamma-glutamyl dipeptides and may play a significant role in glutathione homeostasis (PubMed:18515354). Induces release of cytochrome c from mitochondria with resultant induction of apoptosis (PubMed:16765912). {ECO:0000269|PubMed:16765912, ECO:0000269|PubMed:18515354}. |
O75369 | FLNB | S658 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75396 | SEC22B | S177 | ochoa | Vesicle-trafficking protein SEC22b (ER-Golgi SNARE of 24 kDa) (ERS-24) (ERS24) (SEC22 vesicle-trafficking protein homolog B) (SEC22 vesicle-trafficking protein-like 1) | SNARE involved in targeting and fusion of ER-derived transport vesicles with the Golgi complex as well as Golgi-derived retrograde transport vesicles with the ER. {ECO:0000269|PubMed:15272311}. |
O75494 | SRSF10 | S23 | ochoa | Serine/arginine-rich splicing factor 10 (40 kDa SR-repressor protein) (SRrp40) (FUS-interacting serine-arginine-rich protein 1) (Splicing factor SRp38) (Splicing factor, arginine/serine-rich 13A) (TLS-associated protein with Ser-Arg repeats) (TASR) (TLS-associated protein with SR repeats) (TLS-associated serine-arginine protein) (TLS-associated SR protein) | Splicing factor that in its dephosphorylated form acts as a general repressor of pre-mRNA splicing (PubMed:11684676, PubMed:12419250, PubMed:14765198). Seems to interfere with the U1 snRNP 5'-splice recognition of SNRNP70 (PubMed:14765198). Required for splicing repression in M-phase cells and after heat shock (PubMed:14765198). Also acts as a splicing factor that specifically promotes exon skipping during alternative splicing (PubMed:26876937). Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May be involved in regulation of alternative splicing in neurons, with isoform 1 acting as a positive and isoform 3 as a negative regulator (PubMed:12419250). {ECO:0000269|PubMed:11684676, ECO:0000269|PubMed:12419250, ECO:0000269|PubMed:14765198, ECO:0000269|PubMed:26876937}. |
O75683 | SURF6 | S22 | ochoa | Surfeit locus protein 6 | Binds to both DNA and RNA in vitro, with a stronger binding capacity for RNA. May represent a nucleolar constitutive protein involved in ribosomal biosynthesis or assembly (By similarity). {ECO:0000250}. |
O75716 | STK16 | S197 | psp | Serine/threonine-protein kinase 16 (EC 2.7.11.1) (Myristoylated and palmitoylated serine/threonine-protein kinase) (MPSK) (Protein kinase PKL12) (TGF-beta-stimulated factor 1) (TSF-1) (Tyrosine-protein kinase STK16) (EC 2.7.10.2) (hPSK) | Membrane-associated protein kinase that phosphorylates on serine and threonine residues. In vitro substrates include DRG1, ENO1 and EIF4EBP1. Also autophosphorylates. May be involved in secretory vesicle trafficking or intracellular signaling. May have a role in regulating stromal-epithelial interactions that occur during ductal morphogenesis in the mammary gland. May be involved in TGF-beta signaling. Able to autophosphorylate on Tyr residue; it is however unclear whether it has tyrosine-protein kinase toward other proteins. {ECO:0000269|PubMed:10364453}. |
O75762 | TRPA1 | S428 | psp | Transient receptor potential cation channel subfamily A member 1 (Ankyrin-like with transmembrane domains protein 1) (Transformation-sensitive protein p120) (p120) (Wasabi receptor) | Ligand-activated Ca(2+)-permeable, nonselective cation channel involved in pain detection and possibly also in cold perception, oxygen concentration perception, cough, itch, and inner ear function (PubMed:17259981, PubMed:21195050, PubMed:21873995, PubMed:23199233, PubMed:25389312, PubMed:33152265). Has a relatively high Ca(2+) selectivity, with a preference for divalent over monovalent cations (Ca(2+) > Ba(2+) > Mg(2+) > NH4(+) > Li(+) > K(+)), the influx of cation into the cytoplasm leads to membrane depolarization (PubMed:19202543, PubMed:21195050). Has a central role in the pain response to endogenous inflammatory mediators, such as bradykinin and to a diverse array of irritants. Activated by a large variety of structurally unrelated electrophilic and non-electrophilic chemical compounds, such as allylthiocyanate (AITC) from mustard oil or wasabi, cinnamaldehyde, diallyl disulfide (DADS) from garlic, and acrolein, an environmental irritant (PubMed:20547126, PubMed:25389312, PubMed:27241698, PubMed:30878828). Electrophilic ligands activate TRPA1 by interacting with critical N-terminal Cys residues in a covalent manner (PubMed:17164327, PubMed:27241698, PubMed:31866091, PubMed:32641835). Non-electrophile agonists bind at distinct sites in the transmembrane domain to promote channel activation (PubMed:33152265). Also acts as an ionotropic cannabinoid receptor by being activated by delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana (PubMed:25389312). May be a component for the mechanosensitive transduction channel of hair cells in inner ear, thereby participating in the perception of sounds (By similarity). {ECO:0000250|UniProtKB:Q8BLA8, ECO:0000269|PubMed:17164327, ECO:0000269|PubMed:17259981, ECO:0000269|PubMed:19202543, ECO:0000269|PubMed:20547126, ECO:0000269|PubMed:21195050, ECO:0000269|PubMed:21873995, ECO:0000269|PubMed:23199233, ECO:0000269|PubMed:25389312, ECO:0000269|PubMed:27241698, ECO:0000269|PubMed:30878828, ECO:0000269|PubMed:31866091, ECO:0000269|PubMed:32641835, ECO:0000269|PubMed:33152265}. |
O94916 | NFAT5 | S266 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O95183 | VAMP5 | S48 | ochoa | Vesicle-associated membrane protein 5 (VAMP-5) (Myobrevin) | May participate in trafficking events that are associated with myogenesis, such as myoblast fusion and/or GLUT4 trafficking. |
O95490 | ADGRL2 | S1430 | ochoa | Adhesion G protein-coupled receptor L2 (Calcium-independent alpha-latrotoxin receptor 2) (CIRL-2) (Latrophilin homolog 1) (Latrophilin-2) (Lectomedin-1) | Orphan adhesion G-protein coupled receptor (aGPCR), which mediates synapse specificity (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (By similarity). Following G-protein coupled receptor activation, associates with cell adhesion molecules that are expressed at the surface of adjacent cells to direct synapse specificity. Specifically mediates the establishment of perforant-path synapses on CA1-region pyramidal neurons in the hippocampus. Localizes to postsynaptic spines in excitatory synapses in the S.lacunosum-moleculare and interacts with presynaptic cell adhesion molecules, such as teneurins, promoting synapse formation (By similarity). {ECO:0000250|UniProtKB:Q80TS3, ECO:0000250|UniProtKB:Q8JZZ7}. |
O95757 | HSPA4L | S579 | ochoa | Heat shock 70 kDa protein 4L (Heat shock 70-related protein APG-1) (Heat shock protein family H member 3) (Heat-shock protein family A member 4-like protein) (HSPA4-like protein) (Osmotic stress protein 94) | Possesses chaperone activity in vitro where it inhibits aggregation of citrate synthase. {ECO:0000250}. |
O95801 | TTC4 | S234 | ochoa | Tetratricopeptide repeat protein 4 (TPR repeat protein 4) | May act as a co-chaperone for HSP90AB1 (PubMed:18320024). Promotes Sendai virus (SeV)-induced host cell innate immune responses (PubMed:29251827). {ECO:0000269|PubMed:18320024, ECO:0000269|PubMed:29251827}. |
O95810 | CAVIN2 | S51 | ochoa | Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) | Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}. |
O95977 | S1PR4 | S349 | ochoa | Sphingosine 1-phosphate receptor 4 (S1P receptor 4) (S1P4) (Endothelial differentiation G-protein coupled receptor 6) (Sphingosine 1-phosphate receptor Edg-6) (S1P receptor Edg-6) | Receptor for the lysosphingolipid sphingosine 1-phosphate (S1P). S1P is a bioactive lysophospholipid that elicits diverse physiological effect on most types of cells and tissues. May be involved in cell migration processes that are specific for lymphocytes. {ECO:0000269|PubMed:10679247, ECO:0000269|PubMed:10753843}. |
O96017 | CHEK2 | S140 | psp | Serine/threonine-protein kinase Chk2 (EC 2.7.11.1) (CHK2 checkpoint homolog) (Cds1 homolog) (Hucds1) (hCds1) (Checkpoint kinase 2) | Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T] (PubMed:37943659). Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978). Under oxidative stress, promotes ATG7 ubiquitination by phosphorylating the E3 ubiquitin ligase TRIM32 at 'Ser-55' leading to positive regulation of the autophagosme assembly (PubMed:37943659). {ECO:0000250|UniProtKB:Q9Z265, ECO:0000269|PubMed:10097108, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11298456, ECO:0000269|PubMed:12402044, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:17715138, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:18644861, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:20364141, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25619829, ECO:0000269|PubMed:37943659, ECO:0000269|PubMed:9836640, ECO:0000269|PubMed:9889122}.; FUNCTION: (Microbial infection) Phosphorylates herpes simplex virus 1/HHV-1 protein ICP0 and thus activates its SUMO-targeted ubiquitin ligase activity. {ECO:0000269|PubMed:32001251}. |
P00367 | GLUD1 | S370 | psp | Glutamate dehydrogenase 1, mitochondrial (GDH 1) (EC 1.4.1.3) | Mitochondrial glutamate dehydrogenase that catalyzes the conversion of L-glutamate into alpha-ketoglutarate. Plays a key role in glutamine anaplerosis by producing alpha-ketoglutarate, an important intermediate in the tricarboxylic acid cycle (PubMed:11032875, PubMed:11254391, PubMed:16023112, PubMed:16959573). Plays a role in insulin homeostasis (PubMed:11297618, PubMed:9571255). May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate (By similarity). {ECO:0000250|UniProtKB:P10860, ECO:0000269|PubMed:11032875, ECO:0000269|PubMed:11254391, ECO:0000269|PubMed:11297618, ECO:0000269|PubMed:16023112, ECO:0000269|PubMed:16959573, ECO:0000269|PubMed:9571255}. |
P00387 | CYB5R3 | S82 | ochoa | NADH-cytochrome b5 reductase 3 (B5R) (Cytochrome b5 reductase) (EC 1.6.2.2) (Diaphorase-1) | Catalyzes the reduction of two molecules of cytochrome b5 using NADH as the electron donor. {ECO:0000269|PubMed:10807796, ECO:0000269|PubMed:1400360, ECO:0000269|PubMed:15953014, ECO:0000269|PubMed:1898726, ECO:0000269|PubMed:2019583, ECO:0000269|PubMed:8119939, ECO:0000269|PubMed:9639531}. |
P00740 | F9 | S114 | ochoa | Coagulation factor IX (EC 3.4.21.22) (Christmas factor) (Plasma thromboplastin component) (PTC) [Cleaved into: Coagulation factor IXa light chain; Coagulation factor IXa heavy chain] | Factor IX is a vitamin K-dependent plasma protein that participates in the intrinsic pathway of blood coagulation by converting factor X to its active form in the presence of Ca(2+) ions, phospholipids, and factor VIIIa. {ECO:0000269|PubMed:1730085, ECO:0000269|PubMed:19846852, ECO:0000269|PubMed:20121197, ECO:0000269|PubMed:20121198, ECO:0000269|PubMed:2592373, ECO:0000269|PubMed:8295821}. |
P01130 | LDLR | S820 | ochoa | Low-density lipoprotein receptor (LDL receptor) | Binds low density lipoprotein /LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. Forms a ternary complex with PGRMC1 and TMEM97 receptors which increases LDLR-mediated LDL internalization (PubMed:30443021). {ECO:0000269|PubMed:3005267, ECO:0000269|PubMed:30443021, ECO:0000269|PubMed:6091915}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus in hepatocytes, but not through a direct interaction with viral proteins. {ECO:0000269|PubMed:10535997, ECO:0000269|PubMed:12615904}.; FUNCTION: (Microbial infection) Acts as a receptor for Vesicular stomatitis virus. {ECO:0000269|PubMed:23589850}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, may function as a receptor for extracellular Tat in neurons, mediating its internalization in uninfected cells. {ECO:0000269|PubMed:11100124}.; FUNCTION: (Microbial infection) Acts as a receptor for Crimean-Congo hemorrhagic fever virus (CCHFV). {ECO:0000269|PubMed:38182887}.; FUNCTION: (Microbial infection) Acts as a receptor for many Alphavirus, including Getah virus (GETV), Ross river virus (RRV) and Semliki Forest virus. {ECO:0000269|PubMed:38245515}. |
P01275 | GCG | S34 | ochoa | Pro-glucagon [Cleaved into: Glicentin; Glicentin-related polypeptide (GRPP); Oxyntomodulin (OXM) (OXY); Glucagon; Glucagon-like peptide 1 (GLP-1) (Incretin hormone); Glucagon-like peptide 1(7-37) (GLP-1(7-37)); Glucagon-like peptide 1(7-36) (GLP-1(7-36)); Glucagon-like peptide 2 (GLP-2)] | [Glucagon]: Plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12626323}.; FUNCTION: [Glucagon-like peptide 1]: Potent stimulator of glucose-dependent insulin release. Also stimulates insulin release in response to IL6 (PubMed:22037645). Plays important roles on gastric motility and the suppression of plasma glucagon levels. May be involved in the suppression of satiety and stimulation of glucose disposal in peripheral tissues, independent of the actions of insulin. Has growth-promoting activities on intestinal epithelium. May also regulate the hypothalamic pituitary axis (HPA) via effects on LH, TSH, CRH, oxytocin, and vasopressin secretion. Increases islet mass through stimulation of islet neogenesis and pancreatic beta cell proliferation. Inhibits beta cell apoptosis (Probable). {ECO:0000269|PubMed:22037645, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Glucagon-like peptide 2]: Stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, from the stomach to the colon is the principal target for GLP-2 action. Plays a key role in nutrient homeostasis, enhancing nutrient assimilation through enhanced gastrointestinal function, as well as increasing nutrient disposal. Stimulates intestinal glucose transport and decreases mucosal permeability. {ECO:0000305|PubMed:10322410, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Oxyntomodulin]: Significantly reduces food intake. Inhibits gastric emptying in humans. Suppression of gastric emptying may lead to increased gastric distension, which may contribute to satiety by causing a sensation of fullness. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}.; FUNCTION: [Glicentin]: May modulate gastric acid secretion and the gastro-pyloro-duodenal activity. May play an important role in intestinal mucosal growth in the early period of life. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}. |
P05093 | CYP17A1 | S258 | psp | Steroid 17-alpha-hydroxylase/17,20 lyase (EC 1.14.14.19) (17-alpha-hydroxyprogesterone aldolase) (EC 1.14.14.32) (CYPXVII) (Cytochrome P450 17A1) (Cytochrome P450-C17) (Cytochrome P450c17) (Steroid 17-alpha-monooxygenase) | A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis (PubMed:22266943, PubMed:25301938, PubMed:27339894, PubMed:9452426). Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways. A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol (Probable) (PubMed:25301938, PubMed:9452426). Hydroxylates steroid hormones, pregnenolone and progesterone to form 17-alpha hydroxy metabolites, followed by the cleavage of the C17-C20 bond to form C19 steroids, dehydroepiandrosterone (DHEA) and androstenedione (PubMed:22266943, PubMed:25301938, PubMed:27339894, PubMed:36640554, PubMed:9452426). Has 16-alpha hydroxylase activity. Catalyzes 16-alpha hydroxylation of 17-alpha hydroxy pregnenolone, followed by the cleavage of the C17-C20 bond to form 16-alpha-hydroxy DHEA (PubMed:36640554). Also 16-alpha hydroxylates androgens, relevant for estriol synthesis (PubMed:25301938, PubMed:27339894). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase) (PubMed:22266943, PubMed:25301938, PubMed:27339894, PubMed:9452426). {ECO:0000269|PubMed:22266943, ECO:0000269|PubMed:25301938, ECO:0000269|PubMed:27339894, ECO:0000269|PubMed:36640554, ECO:0000269|PubMed:9452426, ECO:0000305|PubMed:8027220}. |
P06239 | LCK | S213 | ochoa | Tyrosine-protein kinase Lck (EC 2.7.10.2) (Leukocyte C-terminal Src kinase) (LSK) (Lymphocyte cell-specific protein-tyrosine kinase) (Protein YT16) (Proto-oncogene Lck) (T cell-specific protein-tyrosine kinase) (p56-LCK) | Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Interacts with FYB2 (PubMed:27335501). {ECO:0000269|PubMed:16339550, ECO:0000269|PubMed:16709819, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20851766, ECO:0000269|PubMed:21269457, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:27335501, ECO:0000269|PubMed:38614099}. |
P06733 | ENO1 | S141 | ochoa | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
P06744 | GPI | S532 | ochoa | Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) (Autocrine motility factor) (AMF) (Neuroleukin) (NLK) (Phosphoglucose isomerase) (PGI) (Phosphohexose isomerase) (PHI) (Sperm antigen 36) (SA-36) | In the cytoplasm, catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate, the second step in glycolysis, and the reverse reaction during gluconeogenesis (PubMed:28803808). Besides it's role as a glycolytic enzyme, also acts as a secreted cytokine: acts as an angiogenic factor (AMF) that stimulates endothelial cell motility (PubMed:11437381). Acts as a neurotrophic factor, neuroleukin, for spinal and sensory neurons (PubMed:11004567, PubMed:3352745). It is secreted by lectin-stimulated T-cells and induces immunoglobulin secretion (PubMed:11004567, PubMed:3352745). {ECO:0000269|PubMed:11004567, ECO:0000269|PubMed:11437381, ECO:0000269|PubMed:28803808, ECO:0000269|PubMed:3352745}. |
P07195 | LDHB | S162 | ochoa|psp | L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:27618187}. |
P07339 | CTSD | S37 | ochoa | Cathepsin D (EC 3.4.23.5) [Cleaved into: Cathepsin D light chain; Cathepsin D heavy chain] | Acid protease active in intracellular protein breakdown. Plays a role in APP processing following cleavage and activation by ADAM30 which leads to APP degradation (PubMed:27333034). Involved in the pathogenesis of several diseases such as breast cancer and possibly Alzheimer disease. {ECO:0000269|PubMed:27333034}. |
P08514 | ITGA2B | S435 | ochoa | Integrin alpha-IIb (GPalpha IIb) (GPIIb) (Platelet membrane glycoprotein IIb) (CD antigen CD41) [Cleaved into: Integrin alpha-IIb heavy chain; Integrin alpha-IIb light chain, form 1; Integrin alpha-IIb light chain, form 2] | Integrin alpha-IIb/beta-3 is a receptor for fibronectin, fibrinogen, plasminogen, prothrombin, thrombospondin and vitronectin. It recognizes the sequence R-G-D in a wide array of ligands. It recognizes the sequence H-H-L-G-G-G-A-K-Q-A-G-D-V in fibrinogen gamma chain (By similarity). Following activation integrin alpha-IIb/beta-3 brings about platelet/platelet interaction through binding of soluble fibrinogen (PubMed:9111081). This step leads to rapid platelet aggregation which physically plugs ruptured endothelial cell surface (By similarity). {ECO:0000250|UniProtKB:O54890, ECO:0000269|PubMed:9111081}. |
P08559 | PDHA1 | S295 | ochoa|psp | Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial (EC 1.2.4.1) (PDHE1-A type I) | The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle. {ECO:0000269|PubMed:19081061, ECO:0000269|PubMed:7782287}. |
P09619 | PDGFRB | S712 | ochoa|psp | Platelet-derived growth factor receptor beta (PDGF-R-beta) (PDGFR-beta) (EC 2.7.10.1) (Beta platelet-derived growth factor receptor) (Beta-type platelet-derived growth factor receptor) (CD140 antigen-like family member B) (Platelet-derived growth factor receptor 1) (PDGFR-1) (CD antigen CD140b) | Tyrosine-protein kinase that acts as a cell-surface receptor for homodimeric PDGFB and PDGFD and for heterodimers formed by PDGFA and PDGFB, and plays an essential role in the regulation of embryonic development, cell proliferation, survival, differentiation, chemotaxis and migration. Plays an essential role in blood vessel development by promoting proliferation, migration and recruitment of pericytes and smooth muscle cells to endothelial cells. Plays a role in the migration of vascular smooth muscle cells and the formation of neointima at vascular injury sites. Required for normal development of the cardiovascular system. Required for normal recruitment of pericytes (mesangial cells) in the kidney glomerulus, and for normal formation of a branched network of capillaries in kidney glomeruli. Promotes rearrangement of the actin cytoskeleton and the formation of membrane ruffles. Binding of its cognate ligands - homodimeric PDGFB, heterodimers formed by PDGFA and PDGFB or homodimeric PDGFD -leads to the activation of several signaling cascades; the response depends on the nature of the bound ligand and is modulated by the formation of heterodimers between PDGFRA and PDGFRB. Phosphorylates PLCG1, PIK3R1, PTPN11, RASA1/GAP, CBL, SHC1 and NCK1. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, mobilization of cytosolic Ca(2+) and the activation of protein kinase C. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to the activation of the AKT1 signaling pathway. Phosphorylation of SHC1, or of the C-terminus of PTPN11, creates a binding site for GRB2, resulting in the activation of HRAS, RAF1 and down-stream MAP kinases, including MAPK1/ERK2 and/or MAPK3/ERK1. Promotes phosphorylation and activation of SRC family kinases. Promotes phosphorylation of PDCD6IP/ALIX and STAM. Receptor signaling is down-regulated by protein phosphatases that dephosphorylate the receptor and its down-stream effectors, and by rapid internalization of the activated receptor. {ECO:0000269|PubMed:11297552, ECO:0000269|PubMed:11331881, ECO:0000269|PubMed:1314164, ECO:0000269|PubMed:1396585, ECO:0000269|PubMed:1653029, ECO:0000269|PubMed:1709159, ECO:0000269|PubMed:1846866, ECO:0000269|PubMed:20494825, ECO:0000269|PubMed:20529858, ECO:0000269|PubMed:21098708, ECO:0000269|PubMed:21679854, ECO:0000269|PubMed:21733313, ECO:0000269|PubMed:2554309, ECO:0000269|PubMed:26599395, ECO:0000269|PubMed:2835772, ECO:0000269|PubMed:2850496, ECO:0000269|PubMed:7685273, ECO:0000269|PubMed:7691811, ECO:0000269|PubMed:7692233, ECO:0000269|PubMed:8195171}. |
P0C7T5 | ATXN1L | S346 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P10636 | MAPT | S214 | psp | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P11021 | HSPA5 | S86 | ochoa | Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) | Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (PubMed:2294010, PubMed:23769672, PubMed:23990668, PubMed:28332555). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the EIF2AK3/PERK and ERN1/IRE1-mediated unfolded protein response (UPR) (PubMed:11907036, PubMed:1550958, PubMed:19538957, PubMed:36739529). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1 (By similarity). Also binds and inactivates EIF2AK3/PERK in unstressed cells (PubMed:11907036). Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1 and EIF2AK3/PERK, allowing their homodimerization and subsequent activation (PubMed:11907036). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. May also play a role in apoptosis and cell proliferation (PubMed:26045166). {ECO:0000250|UniProtKB:G3I8R9, ECO:0000250|UniProtKB:P20029, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:1550958, ECO:0000269|PubMed:19538957, ECO:0000269|PubMed:2294010, ECO:0000269|PubMed:23769672, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:26045166, ECO:0000269|PubMed:28332555, ECO:0000269|PubMed:29719251, ECO:0000269|PubMed:36739529}.; FUNCTION: (Microbial infection) Plays an important role in viral binding to the host cell membrane and entry for several flaviruses such as Dengue virus, Zika virus and Japanese encephalitis virus (PubMed:15098107, PubMed:28053106, PubMed:33432092). Acts as a component of the cellular receptor for Dengue virus serotype 2/DENV-2 on human liver cells (PubMed:15098107). {ECO:0000269|PubMed:15098107, ECO:0000269|PubMed:28053106, ECO:0000269|PubMed:33432092}.; FUNCTION: (Microbial infection) Acts as a receptor for CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:20484814, PubMed:24355926, PubMed:32487760). Acts as a receptor for R.delemar CotH3 in nasal epithelial cells, which may be an early step in rhinoorbital/cerebral mucormycosis (RCM) disease progression (PubMed:32487760). {ECO:0000269|PubMed:20484814, ECO:0000269|PubMed:24355926, ECO:0000269|PubMed:32487760}. |
P11413 | G6PD | S132 | ochoa | Glucose-6-phosphate 1-dehydrogenase (G6PD) (EC 1.1.1.49) | Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis. {ECO:0000269|PubMed:15858258, ECO:0000269|PubMed:24769394, ECO:0000269|PubMed:26479991, ECO:0000269|PubMed:35122041, ECO:0000269|PubMed:38066190, ECO:0000269|PubMed:743300}. |
P12882 | MYH1 | S1288 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P13010 | XRCC5 | S102 | ochoa | X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}. |
P13569 | CFTR | S1045 | psp | Cystic fibrosis transmembrane conductance regulator (CFTR) (ATP-binding cassette sub-family C member 7) (Channel conductance-controlling ATPase) (EC 5.6.1.6) (cAMP-dependent chloride channel) | Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis (PubMed:26823428). Mediates the transport of chloride ions across the cell membrane (PubMed:10792060, PubMed:11524016, PubMed:11707463, PubMed:12519745, PubMed:12529365, PubMed:12588899, PubMed:12727866, PubMed:15010471, PubMed:17036051, PubMed:1712898, PubMed:17182731, PubMed:19398555, PubMed:19621064, PubMed:22178883, PubMed:25330774, PubMed:26846474, PubMed:28087700, PubMed:8910473, PubMed:9804160). Possesses an intrinsic ATPase activity and utilizes ATP to gate its channel; the passive flow of anions through the channel is gated by cycles of ATP binding and hydrolysis by the ATP-binding domains (PubMed:11524016, PubMed:15284228, PubMed:26627831, PubMed:8910473). The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration (PubMed:15010471, PubMed:19019741). In vitro, mediates ATP-dependent glutathione flux (PubMed:12727866). Exerts its function also by modulating the activity of other ion channels and transporters (PubMed:12403779, PubMed:22121115, PubMed:22178883, PubMed:27941075). Plays an important role in airway fluid homeostasis (PubMed:16645176, PubMed:19621064, PubMed:26823428). Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens (PubMed:14668433, PubMed:16645176, PubMed:26823428). Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex (PubMed:17182731, PubMed:17434346, PubMed:27941075). Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731). Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731, PubMed:27941075). May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7 (PubMed:12403779). Can inhibit the chloride channel activity of ANO1 (PubMed:22178883). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (PubMed:19923167, PubMed:27714810, PubMed:29393851). {ECO:0000269|PubMed:10792060, ECO:0000269|PubMed:11524016, ECO:0000269|PubMed:11707463, ECO:0000269|PubMed:12403779, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:12529365, ECO:0000269|PubMed:12588899, ECO:0000269|PubMed:12727866, ECO:0000269|PubMed:14668433, ECO:0000269|PubMed:15010471, ECO:0000269|PubMed:15284228, ECO:0000269|PubMed:16645176, ECO:0000269|PubMed:17036051, ECO:0000269|PubMed:1712898, ECO:0000269|PubMed:17182731, ECO:0000269|PubMed:19019741, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:19621064, ECO:0000269|PubMed:22178883, ECO:0000269|PubMed:25330774, ECO:0000269|PubMed:26627831, ECO:0000269|PubMed:26823428, ECO:0000269|PubMed:26846474, ECO:0000269|PubMed:27714810, ECO:0000269|PubMed:27941075, ECO:0000269|PubMed:28087700, ECO:0000269|PubMed:29393851, ECO:0000269|PubMed:8910473, ECO:0000269|PubMed:9804160, ECO:0000305|PubMed:19923167}. |
P14618 | PKM | S222 | ochoa|psp | Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) | Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}. |
P15923 | TCF3 | S328 | ochoa | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P15924 | DSP | S2209 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16109 | SELP | S689 | ochoa | P-selectin (CD62 antigen-like family member P) (Granule membrane protein 140) (GMP-140) (Leukocyte-endothelial cell adhesion molecule 3) (LECAM3) (Platelet activation dependent granule-external membrane protein) (PADGEM) (CD antigen CD62P) | Ca(2+)-dependent receptor for myeloid cells that binds to carbohydrates on neutrophils and monocytes. Mediates the interaction of activated endothelial cells or platelets with leukocytes. The ligand recognized is sialyl-Lewis X. Mediates rapid rolling of leukocyte rolling over vascular surfaces during the initial steps in inflammation through interaction with SELPLG. Mediates cell-cell interactions and cell adhesion via the interaction with integrin alpha-IIb/beta3 (ITGA2B:ITGB3) and integrin alpha-V/beta-3 (ITGAV:ITGB3) (PubMed:37184585). {ECO:0000269|PubMed:11081633, ECO:0000269|PubMed:28011641, ECO:0000269|PubMed:37184585, ECO:0000269|PubMed:7585950}. |
P16871 | IL7R | S297 | ochoa | Interleukin-7 receptor subunit alpha (IL-7 receptor subunit alpha) (IL-7R subunit alpha) (IL-7R-alpha) (IL-7RA) (CDw127) (CD antigen CD127) | Receptor for interleukin-7. Also acts as a receptor for thymic stromal lymphopoietin (TSLP). |
P18031 | PTPN1 | S243 | psp | Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) | Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}. |
P18887 | XRCC1 | S371 | psp | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19525 | EIF2AK2 | S97 | ochoa|psp | Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) | IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}. |
P19838 | NFKB1 | S80 | psp | Nuclear factor NF-kappa-B p105 subunit (DNA-binding factor KBF1) (EBP-1) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) [Cleaved into: Nuclear factor NF-kappa-B p50 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. {ECO:0000269|PubMed:15485931, ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:2203531, ECO:0000269|PubMed:2234062, ECO:0000269|PubMed:7830764}.; FUNCTION: [Nuclear factor NF-kappa-B p105 subunit]: P105 is the precursor of the active p50 subunit (Nuclear factor NF-kappa-B p50 subunit) of the nuclear factor NF-kappa-B (PubMed:1423592). Acts as a cytoplasmic retention of attached NF-kappa-B proteins by p105 (PubMed:1423592). {ECO:0000269|PubMed:1423592}.; FUNCTION: [Nuclear factor NF-kappa-B p50 subunit]: Constitutes the active form, which associates with RELA/p65 to form the NF-kappa-B p65-p50 complex to form a transcription factor (PubMed:1740106, PubMed:7830764). Together with RELA/p65, binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions (PubMed:1740106, PubMed:7830764). {ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:7830764}. |
P20273 | CD22 | S717 | ochoa | B-cell receptor CD22 (B-lymphocyte cell adhesion molecule) (BL-CAM) (Sialic acid-binding Ig-like lectin 2) (Siglec-2) (T-cell surface antigen Leu-14) (CD antigen CD22) | Most highly expressed siglec (sialic acid-binding immunoglobulin-like lectin) on B-cells that plays a role in various aspects of B-cell biology including differentiation, antigen presentation, and trafficking to bone marrow (PubMed:34330755, PubMed:8627166). Binds to alpha 2,6-linked sialic acid residues of surface molecules such as CD22 itself, CD45 and IgM in a cis configuration. Can also bind to ligands on other cells as an adhesion molecule in a trans configuration (PubMed:20172905). Acts as an inhibitory coreceptor on the surface of B-cells and inhibits B-cell receptor induced signaling, characterized by inhibition of the calcium mobilization and cellular activation. Mechanistically, the immunoreceptor tyrosine-based inhibitory motif domain is phosphorylated by the Src kinase LYN, which in turn leads to the recruitment of the protein tyrosine phosphatase 1/PTPN6, leading to the negative regulation of BCR signaling (PubMed:8627166). If this negative signaling from is of sufficient strength, apoptosis of the B-cell can be induced (PubMed:20516366). {ECO:0000269|PubMed:20172905, ECO:0000269|PubMed:20516366, ECO:0000269|PubMed:34330755, ECO:0000269|PubMed:8627166}. |
P23458 | JAK1 | S537 | ochoa | Tyrosine-protein kinase JAK1 (EC 2.7.10.2) (Janus kinase 1) (JAK-1) | Tyrosine kinase of the non-receptor type, involved in the IFN-alpha/beta/gamma signal pathway (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). Kinase partner for the interleukin (IL)-2 receptor (PubMed:11909529) as well as interleukin (IL)-10 receptor (PubMed:12133952). Kinase partner for the type I interferon receptor IFNAR2 (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). In response to interferon-binding to IFNAR1-IFNAR2 heterodimer, phosphorylates and activates its binding partner IFNAR2, creating docking sites for STAT proteins (PubMed:7759950). Directly phosphorylates STAT proteins but also activates STAT signaling through the transactivation of other JAK kinases associated with signaling receptors (PubMed:16239216, PubMed:32750333, PubMed:8232552). {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12133952, ECO:0000269|PubMed:16239216, ECO:0000269|PubMed:28111307, ECO:0000269|PubMed:32750333, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:8232552}. |
P25054 | APC | S245 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P26640 | VARS1 | S570 | ochoa | Valine--tRNA ligase (EC 6.1.1.9) (Protein G7a) (Valyl-tRNA synthetase) (ValRS) | Catalyzes the attachment of valine to tRNA(Val). {ECO:0000269|PubMed:8428657}. |
P27816 | MAP4 | S163 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28290 | ITPRID2 | S706 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P29274 | ADORA2A | S374 | psp | Adenosine receptor A2a | Receptor for adenosine (By similarity). The activity of this receptor is mediated by G proteins which activate adenylyl cyclase (By similarity). {ECO:0000250|UniProtKB:P11617}. |
P29803 | PDHA2 | S293 | ochoa | Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial (EC 1.2.4.1) (PDHE1-A type II) | The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle. {ECO:0000269|PubMed:16436377}. |
P30301 | MIP | S229 | psp | Lens fiber major intrinsic protein (Aquaporin-0) (MIP26) (MP26) | Aquaporins form homotetrameric transmembrane channels, with each monomer independently mediating water transport across the plasma membrane along its osmotic gradient (PubMed:11001937, PubMed:24120416). Specifically expressed in lens fiber cells, this aquaporin is crucial for maintaining lens water homeostasis and transparency. Beyond water permeability, it also acts as a cell-to-cell adhesion molecule, forming thin junctions between lens fiber cells that are essential for maintaining the ordered structure and transparency of the lens (PubMed:24120416). {ECO:0000269|PubMed:11001937, ECO:0000269|PubMed:24120416}. |
P31629 | HIVEP2 | S2400 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31930 | UQCRC1 | S107 | ochoa | Cytochrome b-c1 complex subunit 1, mitochondrial (Complex III subunit 1) (Core protein I) (Ubiquinol-cytochrome-c reductase complex core protein 1) | Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c (By similarity). The 2 core subunits UQCRC1/QCR1 and UQCRC2/QCR2 are homologous to the 2 mitochondrial-processing peptidase (MPP) subunits beta-MPP and alpha-MPP respectively, and they seem to have preserved their MPP processing properties (By similarity). May be involved in the in situ processing of UQCRFS1 into the mature Rieske protein and its mitochondrial targeting sequence (MTS)/subunit 9 when incorporated into complex III (Probable). Seems to play an important role in the maintenance of proper mitochondrial function in nigral dopaminergic neurons (PubMed:33141179). {ECO:0000250|UniProtKB:P07256, ECO:0000250|UniProtKB:P31800, ECO:0000269|PubMed:33141179, ECO:0000305|PubMed:29243944}. |
P31946 | YWHAB | S132 | ochoa | 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}. |
P32004 | L1CAM | S1190 | ochoa | Neural cell adhesion molecule L1 (N-CAM-L1) (NCAM-L1) (CD antigen CD171) | Neural cell adhesion molecule involved in the dynamics of cell adhesion and in the generation of transmembrane signals at tyrosine kinase receptors. During brain development, critical in multiple processes, including neuronal migration, axonal growth and fasciculation, and synaptogenesis. In the mature brain, plays a role in the dynamics of neuronal structure and function, including synaptic plasticity. {ECO:0000269|PubMed:20621658, ECO:0000305}. |
P32780 | GTF2H1 | S158 | ochoa | General transcription factor IIH subunit 1 (Basic transcription factor 2 62 kDa subunit) (BTF2 p62) (General transcription factor IIH polypeptide 1) (TFIIH basal transcription factor complex p62 subunit) | Component of the general transcription and DNA repair factor IIH (TFIIH) core complex, which is involved in general and transcription-coupled nucleotide excision repair (NER) of damaged DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. In NER, TFIIH acts by opening DNA around the lesion to allow the excision of the damaged oligonucleotide and its replacement by a new DNA fragment. In transcription, TFIIH has an essential role in transcription initiation. When the pre-initiation complex (PIC) has been established, TFIIH is required for promoter opening and promoter escape. Phosphorylation of the C-terminal tail (CTD) of the largest subunit of RNA polymerase II by the kinase module CAK controls the initiation of transcription. {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:9852112}. |
P34897 | SHMT2 | S226 | ochoa | Serine hydroxymethyltransferase, mitochondrial (SHMT) (EC 2.1.2.1) (Glycine hydroxymethyltransferase) (Serine methylase) | Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis (PubMed:24075985, PubMed:25619277, PubMed:29364879, PubMed:33015733). Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate (PubMed:25619277). Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA (PubMed:21876188). Also required for mitochondrial translation by producing 5,10-methylenetetrahydrofolate; 5,10-methylenetetrahydrofolate providing methyl donors to produce the taurinomethyluridine base at the wobble position of some mitochondrial tRNAs (PubMed:29364879, PubMed:29452640). Associates with mitochondrial DNA (PubMed:18063578). In addition to its role in mitochondria, also plays a role in the deubiquitination of target proteins as component of the BRISC complex: required for IFNAR1 deubiquitination by the BRISC complex (PubMed:24075985). {ECO:0000269|PubMed:18063578, ECO:0000269|PubMed:21876188, ECO:0000269|PubMed:24075985, ECO:0000269|PubMed:25619277, ECO:0000269|PubMed:29364879, ECO:0000269|PubMed:29452640, ECO:0000269|PubMed:33015733}. |
P35222 | CTNNB1 | S718 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35367 | HRH1 | S363 | ochoa | Histamine H1 receptor (H1-R) (H1R) (HH1R) | G-protein-coupled receptor for histamine, a biogenic amine that functions as an immune modulator and a neurotransmitter (PubMed:33828102, PubMed:8280179). Through the H1 receptor, histamine mediates the contraction of smooth muscles and increases capillary permeability due to contraction of terminal venules. Also mediates neurotransmission in the central nervous system and thereby regulates circadian rhythms, emotional and locomotor activities as well as cognitive functions (By similarity). {ECO:0000250|UniProtKB:P70174, ECO:0000269|PubMed:33828102, ECO:0000269|PubMed:8280179}. |
P35503 | UGT1A3 | S43 | psp | UDP-glucuronosyltransferase 1A3 (UGT1A3) (EC 2.4.1.17) (UDP-glucuronosyltransferase 1-3) (UDPGT 1-3) (UGT1*3) (UGT1-03) (UGT1.3) (UDP-glucuronosyltransferase 1-C) (UGT-1C) (UGT1C) (UDP-glucuronosyltransferase 1A isoform 3) | [Isoform 1]: UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:15472229, PubMed:18674515, PubMed:18719240, PubMed:23288867, PubMed:23756265, PubMed:24641623, PubMed:21422672). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:23756265). Catalyzes the glucuronidation of endogenous estrogen hormones such as estradiol and estrone (PubMed:15472229, PubMed:18719240, PubMed:23288867). Contributes to bile acid (BA) detoxification by catalyzing the glucuronidation of BA substrates, which are natural detergents for dietary lipids absorption (PubMed:23756265). Involved in the glucuronidation of calcidiol, which is the major circulating form of vitamin D3, essential for the regulation of calcium and phosphate homeostasis (PubMed:24641623). Involved in the glucuronidation of the phytochemical ferulic acid at the phenolic or the carboxylic acid group (PubMed:21422672). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonists losartan, candesartan and zolarsartan, which can inhibit the effect of angiotensin II (PubMed:18674515). {ECO:0000269|PubMed:15472229, ECO:0000269|PubMed:18674515, ECO:0000269|PubMed:18719240, ECO:0000269|PubMed:21422672, ECO:0000269|PubMed:23288867, ECO:0000269|PubMed:23756265, ECO:0000269|PubMed:24641623}.; FUNCTION: [Isoform 2]: Lacks UDP-glucuronosyltransferase (UGT) activity but acts as a negative regulator of isoform 1. {ECO:0000269|PubMed:18004212, ECO:0000269|PubMed:20610558}. |
P35579 | MYH9 | S1057 | ochoa | Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}. |
P35749 | MYH11 | S1935 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P38398 | BRCA1 | S403 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38398 | BRCA1 | S1328 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P39880 | CUX1 | S652 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P41235 | HNF4A | S313 | psp | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P42261 | GRIA1 | S836 | psp | Glutamate receptor 1 (GluR-1) (AMPA-selective glutamate receptor 1) (GluR-A) (GluR-K1) (Glutamate receptor ionotropic, AMPA 1) | Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:1311100, PubMed:20805473, PubMed:21172611, PubMed:28628100, PubMed:35675825). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium. The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG2 or CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (PubMed:21172611). Resensitization is blocked by CNIH2 through interaction with CACNG8 in the CACNG8-containing AMPA receptors complex (PubMed:21172611). Calcium (Ca(2+)) permeability depends on subunits composition and, heteromeric channels containing edited GRIA2 subunit are calcium-impermeable. Also permeable to other divalents cations such as strontium(2+) and magnesium(2+) and monovalent cations such as potassium(1+) and lithium(1+) (By similarity). {ECO:0000250|UniProtKB:P19490, ECO:0000269|PubMed:1311100, ECO:0000269|PubMed:20805473, ECO:0000269|PubMed:21172611, ECO:0000269|PubMed:28628100, ECO:0000269|PubMed:35675825}. |
P42695 | NCAPD3 | S1348 | ochoa | Condensin-2 complex subunit D3 (Non-SMC condensin II complex subunit D3) (hCAP-D3) | Regulatory subunit of the condensin-2 complex, a complex which establishes mitotic chromosome architecture and is involved in physical rigidity of the chromatid axis (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Specifically required for decatenation of centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:14532007, ECO:0000269|PubMed:27737959}. |
P42858 | HTT | S2114 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P43243 | MATR3 | S511 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P43490 | NAMPT | S398 | ochoa | Nicotinamide phosphoribosyltransferase (NAmPRTase) (Nampt) (EC 2.4.2.12) (Pre-B-cell colony-enhancing factor 1) (Pre-B cell-enhancing factor) (Visfatin) | Catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. It is the rate limiting component in the mammalian NAD biosynthesis pathway. The secreted form behaves both as a cytokine with immunomodulating properties and an adipokine with anti-diabetic properties, it has no enzymatic activity, partly because of lack of activation by ATP, which has a low level in extracellular space and plasma. Plays a role in the modulation of circadian clock function. NAMPT-dependent oscillatory production of NAD regulates oscillation of clock target gene expression by releasing the core clock component: CLOCK-BMAL1 heterodimer from NAD-dependent SIRT1-mediated suppression (By similarity). {ECO:0000250|UniProtKB:Q99KQ4, ECO:0000269|PubMed:24130902}. |
P46939 | UTRN | S2821 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P47974 | ZFP36L2 | S123 | ochoa | mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}. |
P48147 | PREP | S667 | ochoa | Prolyl endopeptidase (PE) (EC 3.4.21.26) (Post-proline cleaving enzyme) | Cleaves peptide bonds on the C-terminal side of prolyl residues within peptides that are up to approximately 30 amino acids long. |
P48637 | GSS | S181 | ochoa | Glutathione synthetase (GSH synthetase) (GSH-S) (EC 6.3.2.3) (Glutathione synthase) | Catalyzes the production of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner (PubMed:7646467, PubMed:9215686). Glutathione (gamma-glutamylcysteinylglycine, GSH) is the most abundant intracellular thiol in living aerobic cells and is required for numerous processes including the protection of cells against oxidative damage, amino acid transport, the detoxification of foreign compounds, the maintenance of protein sulfhydryl groups in a reduced state and acts as a cofactor for a number of enzymes (PubMed:10369661). Participates in ophthalmate biosynthesis in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51855, ECO:0000269|PubMed:7646467, ECO:0000269|PubMed:9215686, ECO:0000303|PubMed:10369661}. |
P48681 | NES | S51 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49792 | RANBP2 | S380 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49796 | RGS3 | S1007 | ochoa | Regulator of G-protein signaling 3 (RGP3) (RGS3) | Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}. |
P52565 | ARHGDIA | S101 | ochoa|psp | Rho GDP-dissociation inhibitor 1 (Rho GDI 1) (Rho-GDI alpha) | Controls Rho proteins homeostasis. Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them. Retains Rho proteins such as CDC42, RAC1 and RHOA in an inactive cytosolic pool, regulating their stability and protecting them from degradation. Actively involved in the recycling and distribution of activated Rho GTPases in the cell, mediates extraction from membranes of both inactive and activated molecules due its exceptionally high affinity for prenylated forms. Through the modulation of Rho proteins, may play a role in cell motility regulation. In glioma cells, inhibits cell migration and invasion by mediating the signals of SEMA5A and PLXNB3 that lead to inactivation of RAC1. {ECO:0000269|PubMed:20400958, ECO:0000269|PubMed:23434736}. |
P52799 | EFNB2 | S260 | ochoa | Ephrin-B2 (EPH-related receptor tyrosine kinase ligand 5) (LERK-5) (HTK ligand) (HTK-L) | Cell surface transmembrane ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Binds to receptor tyrosine kinase including EPHA4, EPHA3 and EPHB4. Together with EPHB4 plays a central role in heart morphogenesis and angiogenesis through regulation of cell adhesion and cell migration. EPHB4-mediated forward signaling controls cellular repulsion and segregation from EFNB2-expressing cells. May play a role in constraining the orientation of longitudinally projecting axons. {ECO:0000269|PubMed:12734395}.; FUNCTION: (Microbial infection) Acts as a receptor for Hendra virus and Nipah virus. {ECO:0000269|PubMed:15998730, ECO:0000269|PubMed:16007075, ECO:0000269|PubMed:16477309, ECO:0000269|PubMed:17376907}. |
P53814 | SMTN | S139 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P54296 | MYOM2 | S553 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P61073 | CXCR4 | S312 | ochoa | C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (FB22) (Fusin) (HM89) (LCR1) (Leukocyte-derived seven transmembrane domain receptor) (LESTR) (Lipopolysaccharide-associated protein 3) (LAP-3) (LPS-associated protein 3) (NPYRL) (Stromal cell-derived factor 1 receptor) (SDF-1 receptor) (CD antigen CD184) | Receptor for the C-X-C chemokine CXCL12/SDF-1 that transduces a signal by increasing intracellular calcium ion levels and enhancing MAPK1/MAPK3 activation (PubMed:10452968, PubMed:18799424, PubMed:24912431, PubMed:28978524). Involved in the AKT signaling cascade (PubMed:24912431). Plays a role in regulation of cell migration, e.g. during wound healing (PubMed:28978524). Acts as a receptor for extracellular ubiquitin; leading to enhanced intracellular calcium ions and reduced cellular cAMP levels (PubMed:20228059). Binds bacterial lipopolysaccharide (LPS) et mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Involved in hematopoiesis and in cardiac ventricular septum formation. Also plays an essential role in vascularization of the gastrointestinal tract, probably by regulating vascular branching and/or remodeling processes in endothelial cells. Involved in cerebellar development. In the CNS, could mediate hippocampal-neuron survival (By similarity). {ECO:0000250|UniProtKB:P70658, ECO:0000269|PubMed:10074102, ECO:0000269|PubMed:10452968, ECO:0000269|PubMed:10644702, ECO:0000269|PubMed:10825158, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:17197449, ECO:0000269|PubMed:18799424, ECO:0000269|PubMed:20048153, ECO:0000269|PubMed:20228059, ECO:0000269|PubMed:20505072, ECO:0000269|PubMed:24912431, ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:8752280, ECO:0000269|PubMed:8752281}.; FUNCTION: (Microbial infection) Acts as a coreceptor (CD4 being the primary receptor) for human immunodeficiency virus-1/HIV-1 X4 isolates and as a primary receptor for some HIV-2 isolates. Promotes Env-mediated fusion of the virus (PubMed:10074122, PubMed:10756055, PubMed:8849450, PubMed:8929542, PubMed:9427609). {ECO:0000269|PubMed:10074122, ECO:0000269|PubMed:10756055, ECO:0000269|PubMed:8849450, ECO:0000269|PubMed:8929542, ECO:0000269|PubMed:9427609}. |
P68871 | HBB | S90 | ochoa | Hemoglobin subunit beta (Beta-globin) (Hemoglobin beta chain) [Cleaved into: LVV-hemorphin-7; Spinorphin] | Involved in oxygen transport from the lung to the various peripheral tissues. {ECO:0000269|PubMed:28066926}.; FUNCTION: LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.; FUNCTION: [Spinorphin]: Functions as an endogenous inhibitor of enkephalin-degrading enzymes such as DPP3, and as a selective antagonist of the P2RX3 receptor which is involved in pain signaling, these properties implicate it as a regulator of pain and inflammation. |
P78352 | DLG4 | S418 | ochoa | Disks large homolog 4 (Postsynaptic density protein 95) (PSD-95) (Synapse-associated protein 90) (SAP-90) (SAP90) | Postsynaptic scaffolding protein that plays a critical role in synaptogenesis and synaptic plasticity by providing a platform for the postsynaptic clustering of crucial synaptic proteins. Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B. Also regulates AMPA-type glutamate receptor (AMPAR) immobilization at postsynaptic density keeping the channels in an activated state in the presence of glutamate and preventing synaptic depression (By similarity). Under basal conditions, cooperates with FYN to stabilize palmitoyltransferase ZDHHC5 at the synaptic membrane through FYN-mediated phosphorylation of ZDHHC5 and its subsequent inhibition of association with endocytic proteins (PubMed:26334723). {ECO:0000250|UniProtKB:Q62108, ECO:0000269|PubMed:26334723}. |
P78371 | CCT2 | S54 | psp | T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q00537 | CDK17 | S92 | ochoa | Cyclin-dependent kinase 17 (EC 2.7.11.22) (Cell division protein kinase 17) (PCTAIRE-motif protein kinase 2) (Serine/threonine-protein kinase PCTAIRE-2) | May play a role in terminally differentiated neurons. Has a Ser/Thr-phosphorylating activity for histone H1 (By similarity). {ECO:0000250}. |
Q00987 | MDM2 | S118 | psp | E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) | E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}. |
Q00G26 | PLIN5 | S273 | ochoa | Perilipin-5 (Lipid storage droplet protein 5) | Lipid droplet-associated protein that maintains the balance between lipogenesis and lipolysis and also regulates fatty acid oxidation in oxidative tissues. Recruits mitochondria to the surface of lipid droplets and is involved in lipid droplet homeostasis by regulating both the storage of fatty acids in the form of triglycerides and the release of fatty acids for mitochondrial fatty acid oxidation. In lipid droplet triacylglycerol hydrolysis, plays a role as a scaffolding protein for three major key lipolytic players: ABHD5, PNPLA2 and LIPE. Reduces the triacylglycerol hydrolase activity of PNPLA2 by recruiting and sequestering PNPLA2 to lipid droplets. Phosphorylation by PKA enables lipolysis probably by promoting release of ABHD5 from the perilipin scaffold and by facilitating interaction of ABHD5 with PNPLA2. Also increases lipolysis through interaction with LIPE and upon PKA-mediated phosphorylation of LIPE (By similarity). {ECO:0000250, ECO:0000269|PubMed:17234449}. |
Q02156 | PRKCE | S234 | psp | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
Q02410 | APBA1 | S568 | ochoa | Amyloid-beta A4 precursor protein-binding family A member 1 (Adapter protein X11alpha) (Neuron-specific X11 protein) (Neuronal Munc18-1-interacting protein 1) (Mint-1) | Putative function in synaptic vesicle exocytosis by binding to Munc18-1, an essential component of the synaptic vesicle exocytotic machinery. May modulate processing of the amyloid-beta precursor protein (APP) and hence formation of APP-beta. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:B2RUJ5}. |
Q03001 | DST | S1693 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q06187 | BTK | S604 | ochoa | Tyrosine-protein kinase BTK (EC 2.7.10.2) (Agammaglobulinemia tyrosine kinase) (ATK) (B-cell progenitor kinase) (BPK) (Bruton tyrosine kinase) | Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway (PubMed:16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831). ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1-mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810). {ECO:0000269|PubMed:11606584, ECO:0000269|PubMed:16415872, ECO:0000269|PubMed:16517732, ECO:0000269|PubMed:16738337, ECO:0000269|PubMed:17932028, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:9012831, ECO:0000303|PubMed:19290921, ECO:0000303|PubMed:9751072}. |
Q08211 | DHX9 | S506 | ochoa | ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) | Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}. |
Q09666 | AHNAK | S466 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S691 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0VF96 | CGNL1 | S349 | ochoa | Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) | May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}. |
Q12955 | ANK3 | S918 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12955 | ANK3 | S4181 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12983 | BNIP3 | S144 | psp | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 | Apoptosis-inducing protein that can overcome BCL2 suppression. May play a role in repartitioning calcium between the two major intracellular calcium stores in association with BCL2. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. Plays an important role in the calprotectin (S100A8/A9)-induced cell death pathway. {ECO:0000269|PubMed:19935772, ECO:0000269|PubMed:22292033}. |
Q13021 | MALL | S66 | ochoa | MAL-like protein (Protein BENE) | None |
Q13285 | NR5A1 | S430 | psp | Steroidogenic factor 1 (SF-1) (STF-1) (hSF-1) (Adrenal 4-binding protein) (Fushi tarazu factor homolog 1) (Nuclear receptor subfamily 5 group A member 1) (Steroid hormone receptor Ad4BP) | Transcriptional activator. Essential for sexual differentiation and formation of the primary steroidogenic tissues (PubMed:27378692). Binds to the Ad4 site found in the promoter region of steroidogenic P450 genes such as CYP11A, CYP11B and CYP21B. Also regulates the AMH/Muellerian inhibiting substance gene as well as the AHCH and STAR genes. 5'-YCAAGGYC-3' and 5'-RRAGGTCA-3' are the consensus sequences for the recognition by NR5A1 (PubMed:27378692). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity. Binds phosphatidylcholine (By similarity). Binds phospholipids with a phosphatidylinositol (PI) headgroup, in particular PI(3,4)P2 and PI(3,4,5)P3. Activated by the phosphorylation of NR5A1 by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation. {ECO:0000250|UniProtKB:P33242, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:27378692, ECO:0000269|PubMed:28459839}. |
Q13568 | IRF5 | S437 | psp | Interferon regulatory factor 5 (IRF-5) | Transcription factor that plays a critical role in innate immunity by activating expression of type I interferon (IFN) IFNA and INFB and inflammatory cytokines downstream of endolysosomal toll-like receptors TLR7, TLR8 and TLR9 (PubMed:11303025, PubMed:15695821, PubMed:22412986, PubMed:25326418, PubMed:32433612). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (By similarity). Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction downstream of the TLR-activated, MyD88-dependent pathway (By similarity). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000250|UniProtKB:P56477, ECO:0000269|PubMed:11303025, ECO:0000269|PubMed:15695821, ECO:0000269|PubMed:22412986, ECO:0000269|PubMed:25326418, ECO:0000269|PubMed:32433612, ECO:0000269|PubMed:33440148}. |
Q13761 | RUNX3 | S149 | psp | Runt-related transcription factor 3 (Acute myeloid leukemia 2 protein) (Core-binding factor subunit alpha-3) (CBF-alpha-3) (Oncogene AML-2) (Polyomavirus enhancer-binding protein 2 alpha C subunit) (PEA2-alpha C) (PEBP2-alpha C) (SL3-3 enhancer factor 1 alpha C subunit) (SL3/AKV core-binding factor alpha C subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (By similarity). May be involved in the control of cellular proliferation and/or differentiation. In association with ZFHX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Necessary for the development and survival of sensory neurons expressing parvalbumin (By similarity). {ECO:0000250|UniProtKB:Q64131, ECO:0000269|PubMed:20599712}. |
Q13835 | PKP1 | S119 | psp | Plakophilin-1 (Band 6 protein) (B6P) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}. |
Q13950 | RUNX2 | S196 | psp | Runt-related transcription factor 2 (Acute myeloid leukemia 3 protein) (Core-binding factor subunit alpha-1) (CBF-alpha-1) (Oncogene AML-3) (Osteoblast-specific transcription factor 2) (OSF-2) (Polyomavirus enhancer-binding protein 2 alpha A subunit) (PEA2-alpha A) (PEBP2-alpha A) (SL3-3 enhancer factor 1 alpha A subunit) (SL3/AKV core-binding factor alpha A subunit) | Transcription factor involved in osteoblastic differentiation and skeletal morphogenesis (PubMed:28505335, PubMed:28703881, PubMed:28738062). Essential for the maturation of osteoblasts and both intramembranous and endochondral ossification. CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, osteocalcin, osteopontin, bone sialoprotein, alpha 1(I) collagen, LCK, IL-3 and GM-CSF promoters. In osteoblasts, supports transcription activation: synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Inhibits KAT6B-dependent transcriptional activation. {ECO:0000250, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:28505335, ECO:0000269|PubMed:28703881, ECO:0000269|PubMed:28738062}. |
Q14126 | DSG2 | S1068 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14154 | DELE1 | S474 | ochoa | DAP3-binding cell death enhancer 1 (DAP3-binding cell death enhancer 1, long form) (DELE1(L)) (Death ligand signal enhancer) [Cleaved into: DAP3-binding cell death enhancer 1 short form (DELE1(S)) (S-DELE1) (cDELE1)] | Protein kinase activator that acts as a key activator of the integrated stress response (ISR) following various stresses, such as iron deficiency, mitochondrial stress or mitochondrial DNA breaks (PubMed:32132706, PubMed:32132707, PubMed:35388015, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). Detects impaired protein import and processing in mitochondria, activating the ISR (PubMed:35388015). May also required for the induction of death receptor-mediated apoptosis through the regulation of caspase activation (PubMed:20563667). {ECO:0000269|PubMed:20563667, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:35388015, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}.; FUNCTION: [DAP3-binding cell death enhancer 1]: Protein kinase activator that activates the ISR in response to iron deficiency: iron deficiency impairs mitochondrial import, promoting DELE1 localization at the mitochondrial surface, where it binds and activates EIF2AK1/HRI to trigger the ISR. {ECO:0000269|PubMed:37327776}.; FUNCTION: [DAP3-binding cell death enhancer 1 short form]: Protein kinase activator generated by protein cleavage in response to mitochondrial stress, which accumulates in the cytosol and specifically binds to and activates the protein kinase activity of EIF2AK1/HRI (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546, PubMed:38340717). It thereby activates the integrated stress response (ISR): EIF2AK1/HRI activation promotes eIF-2-alpha (EIF2S1) phosphorylation, leading to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, the master transcriptional regulator of the ISR (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:37832546). Also acts as an activator of PRKN-independent mitophagy: activates the protein kinase activity of EIF2AK1/HRI in response to mitochondrial damage, promoting eIF-2-alpha (EIF2S1) phosphorylation, leading to mitochondrial localization of EIF2S1 followed by induction of mitophagy (PubMed:38340717). {ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:38340717}. |
Q14318 | FKBP8 | S296 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP8 (PPIase FKBP8) (EC 5.2.1.8) (38 kDa FK506-binding protein) (38 kDa FKBP) (FKBP-38) (hFKBP38) (FK506-binding protein 8) (FKBP-8) (FKBPR38) (Rotamase) | Constitutively inactive PPiase, which becomes active when bound to calmodulin and calcium. Seems to act as a chaperone for BCL2, targets it to the mitochondria and modulates its phosphorylation state. The BCL2/FKBP8/calmodulin/calcium complex probably interferes with the binding of BCL2 to its targets. The active form of FKBP8 may therefore play a role in the regulation of apoptosis. Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). {ECO:0000269|PubMed:12510191, ECO:0000269|PubMed:15757646, ECO:0000269|PubMed:16176796, ECO:0000269|PubMed:28169297}. |
Q14653 | IRF3 | S398 | psp | Interferon regulatory factor 3 (IRF-3) | Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses (PubMed:22394562, PubMed:24049179, PubMed:25636800, PubMed:27302953, PubMed:31340999, PubMed:36603579, PubMed:8524823). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:11846977, PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:32972995, PubMed:36603579, PubMed:8524823). Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction (PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:36603579). Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases (PubMed:22394562, PubMed:25636800, PubMed:27302953, PubMed:36603579). This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes (PubMed:16154084, PubMed:27302953, PubMed:33440148, PubMed:36603579). Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages (PubMed:16846591). In response to Sendai virus infection, is recruited by TOMM70:HSP90AA1 to mitochondrion and forms an apoptosis complex TOMM70:HSP90AA1:IRF3:BAX inducing apoptosis (PubMed:25609812). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:16154084, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:24049179, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27302953, ECO:0000269|PubMed:31340999, ECO:0000269|PubMed:31413131, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:8524823, ECO:0000303|PubMed:11846977, ECO:0000303|PubMed:16846591, ECO:0000303|PubMed:16979567, ECO:0000303|PubMed:20049431}. |
Q14678 | KANK1 | S312 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14684 | RRP1B | S278 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14697 | GANAB | S916 | ochoa | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
Q15185 | PTGES3 | S100 | ochoa | Prostaglandin E synthase 3 (EC 5.3.99.3) (Cytosolic prostaglandin E2 synthase) (cPGES) (Hsp90 co-chaperone) (Progesterone receptor complex p23) (Telomerase-binding protein p23) | Cytosolic prostaglandin synthase that catalyzes the oxidoreduction of prostaglandin endoperoxide H2 (PGH2) to prostaglandin E2 (PGE2) (PubMed:10922363). Molecular chaperone that localizes to genomic response elements in a hormone-dependent manner and disrupts receptor-mediated transcriptional activation, by promoting disassembly of transcriptional regulatory complexes (PubMed:11274138, PubMed:12077419). Facilitates HIF alpha proteins hydroxylation via interaction with EGLN1/PHD2, leading to recruit EGLN1/PHD2 to the HSP90 pathway (PubMed:24711448). {ECO:0000269|PubMed:10922363, ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:12077419, ECO:0000269|PubMed:24711448}. |
Q15366 | PCBP2 | S90 | ochoa | Poly(rC)-binding protein 2 (Alpha-CP2) (Heterogeneous nuclear ribonucleoprotein E2) (hnRNP E2) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:12414943, PubMed:7607214). Major cellular poly(rC)-binding protein (PubMed:12414943). Also binds poly(rU) (PubMed:12414943). Acts as a negative regulator of antiviral signaling (PubMed:19881509, PubMed:35322803). Negatively regulates cellular antiviral responses mediated by MAVS signaling (PubMed:19881509). It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation (PubMed:19881509). Negativeley regulates the cGAS-STING pathway via interaction with CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:35322803). Together with PCBP1, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:Q61990, ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:7607214}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12414943, PubMed:24371074). Also plays a role in initiation of viral RNA replication in concert with the viral protein 3CD (PubMed:12414943). {ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:24371074}. |
Q15418 | RPS6KA1 | S307 | ochoa | Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}. |
Q15468 | STIL | S952 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15717 | ELAVL1 | S242 | psp | ELAV-like protein 1 (Hu-antigen R) (HuR) | RNA-binding protein that binds to the 3'-UTR region of mRNAs and increases their stability (PubMed:14517288, PubMed:18285462, PubMed:31358969). Involved in embryonic stem cell (ESC) differentiation: preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESC differentiation (By similarity). Has also been shown to be capable of binding to m6A-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398, PubMed:17632515, PubMed:18285462, PubMed:23519412, PubMed:8626503). Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUUA motifs. Binds preferentially to the 5'-UUUU[AG]UUU-3' motif in vitro (PubMed:8626503). With ZNF385A, binds the 3'-UTR of p53/TP53 mRNA to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind with ZNF385A the CCNB1 mRNA (By similarity). Increases the stability of the leptin mRNA harboring an AU-rich element (ARE) in its 3' UTR (PubMed:29180010). {ECO:0000250|UniProtKB:P70372, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:17632515, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23519412, ECO:0000269|PubMed:29180010, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8626503}. |
Q16665 | HIF1A | S761 | psp | Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) | Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}. |
Q16825 | PTPN21 | S658 | ochoa | Tyrosine-protein phosphatase non-receptor type 21 (EC 3.1.3.48) (Protein-tyrosine phosphatase D1) | None |
Q2LD37 | BLTP1 | S3619 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q4V328 | GRIPAP1 | S321 | ochoa | GRIP1-associated protein 1 (GRASP-1) [Cleaved into: GRASP-1 C-terminal chain (30kDa C-terminus form)] | Regulates the endosomal recycling back to the neuronal plasma membrane, possibly by connecting early and late recycling endosomal domains and promoting segregation of recycling endosomes from early endosomal membranes. Involved in the localization of recycling endosomes to dendritic spines, thereby playing a role in the maintenance of dendritic spine morphology. Required for the activity-induced AMPA receptor recycling to dendrite membranes and for long-term potentiation and synaptic plasticity (By similarity). {ECO:0000250|UniProtKB:Q9JHZ4}.; FUNCTION: [GRASP-1 C-terminal chain]: Functions as a scaffold protein to facilitate MAP3K1/MEKK1-mediated activation of the JNK1 kinase by phosphorylation, possibly by bringing MAP3K1/MEKK1 and JNK1 in close proximity. {ECO:0000269|PubMed:17761173}. |
Q53S58 | TMEM177 | S275 | ochoa | Transmembrane protein 177 | Plays a role in the early steps of cytochrome c oxidase subunit II (MT-CO2/COX2) maturation and is required for the stabilization of COX20 and the newly synthesized MT-CO2/COX2 protein. {ECO:0000269|PubMed:29154948}. |
Q5BKZ1 | ZNF326 | S130 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5J8M3 | EMC4 | S32 | ochoa | ER membrane protein complex subunit 4 (Cell proliferation-inducing gene 17 protein) (Transmembrane protein 85) | Part of the endoplasmic reticulum membrane protein complex (EMC) that enables the energy-independent insertion into endoplasmic reticulum membranes of newly synthesized membrane proteins (PubMed:29242231, PubMed:29809151, PubMed:30415835, PubMed:32439656, PubMed:32459176). Preferentially accommodates proteins with transmembrane domains that are weakly hydrophobic or contain destabilizing features such as charged and aromatic residues (PubMed:29242231, PubMed:29809151, PubMed:30415835). Involved in the cotranslational insertion of multi-pass membrane proteins in which stop-transfer membrane-anchor sequences become ER membrane spanning helices (PubMed:29809151, PubMed:30415835). It is also required for the post-translational insertion of tail-anchored/TA proteins in endoplasmic reticulum membranes (PubMed:29242231, PubMed:29809151). By mediating the proper cotranslational insertion of N-terminal transmembrane domains in an N-exo topology, with translocated N-terminus in the lumen of the ER, controls the topology of multi-pass membrane proteins like the G protein-coupled receptors (PubMed:30415835). By regulating the insertion of various proteins in membranes, it is indirectly involved in many cellular processes (Probable). {ECO:0000269|PubMed:29242231, ECO:0000269|PubMed:29809151, ECO:0000269|PubMed:30415835, ECO:0000269|PubMed:32439656, ECO:0000269|PubMed:32459176, ECO:0000305|PubMed:18586032}. |
Q5JSH3 | WDR44 | S397 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5JTH9 | RRP12 | S26 | ochoa | RRP12-like protein | None |
Q5S007 | LRRK2 | S1292 | psp | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5SW79 | CEP170 | S452 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5TGY3 | AHDC1 | S868 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5VST9 | OBSCN | S2964 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VU97 | CACHD1 | S1155 | ochoa | VWFA and cache domain-containing protein 1 (Cache domain-containing protein 1) | May regulate voltage-dependent calcium channels. {ECO:0000250}. |
Q5VZK9 | CARMIL1 | S294 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q6P4E1 | GOLM2 | S332 | ochoa | Protein GOLM2 (Cancer susceptibility candidate gene 4 protein) (CASC4) (Golgi membrane protein 2) | None |
Q6PJT7 | ZC3H14 | S240 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6R327 | RICTOR | S21 | ochoa|psp | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6R327 | RICTOR | S1344 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6ZMR3 | LDHAL6A | S161 | ochoa | L-lactate dehydrogenase A-like 6A (LDHA-like protein 6A) (EC 1.1.1.27) | Catalyzes the interconversion of L-lactate and pyruvate with nicotinamide adenine dinucleotide NAD(+) as a coenzyme (PubMed:18351441). Significantly increases the transcriptional activity of JUN, when overexpressed. {ECO:0000269|PubMed:18351441}. |
Q6ZSZ5 | ARHGEF18 | S85 | ochoa | Rho guanine nucleotide exchange factor 18 (114 kDa Rho-specific guanine nucleotide exchange factor) (p114-Rho-GEF) (p114RhoGEF) (Septin-associated RhoGEF) (SA-RhoGEF) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. Its activation induces formation of actin stress fibers. Also acts as a GEF for RAC1, inducing production of reactive oxygen species (ROS). Does not act as a GEF for CDC42. The G protein beta-gamma (Gbetagamma) subunits of heterotrimeric G proteins act as activators, explaining the integrated effects of LPA and other G-protein coupled receptor agonists on actin stress fiber formation, cell shape change and ROS production. Required for EPB41L4B-mediated regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). {ECO:0000269|PubMed:11085924, ECO:0000269|PubMed:14512443, ECO:0000269|PubMed:15558029, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:28132693}. |
Q6ZV73 | FGD6 | S552 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q76I76 | SSH2 | S1297 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q7L8S5 | OTUD6A | S74 | psp | OTU domain-containing protein 6A (EC 3.4.19.12) (DUBA-2) | Deubiquitinating enzyme that hydrolyzes 'Lys-27'-, 'Lys-29'- and 'Lys-33'-linked polyubiquitin chains. Also able to hydrolyze 'Lys-11'-linked ubiquitin chains. {ECO:0000269|PubMed:23827681}. |
Q7LDG7 | RASGRP2 | S117 | ochoa|psp | RAS guanyl-releasing protein 2 (Calcium and DAG-regulated guanine nucleotide exchange factor I) (CalDAG-GEFI) (Cdc25-like protein) (hCDC25L) (F25B3.3 kinase-like protein) | Functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. May also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. Functions in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation. May function in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. {ECO:0000269|PubMed:10918068, ECO:0000269|PubMed:14702343, ECO:0000269|PubMed:17576779, ECO:0000269|PubMed:17702895, ECO:0000269|PubMed:24958846, ECO:0000269|PubMed:27235135}. |
Q7Z333 | SETX | S1345 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z3B3 | KANSL1 | S33 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z3J3 | RGPD4 | S381 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z3U7 | MON2 | S207 | ochoa | Protein MON2 homolog (Protein SF21) | Plays a role in regulating membrane trafficking of cargo proteins. Together with ATP9A and DOP1B, regulates SNX3 retromer-mediated endosomal sorting of WLS away from lysosomal degradation. {ECO:0000269|PubMed:30213940}. |
Q7Z494 | NPHP3 | S1308 | ochoa | Nephrocystin-3 | Required for normal ciliary development and function. Inhibits disheveled-1-induced canonical Wnt-signaling activity and may also play a role in the control of non-canonical Wnt signaling which regulates planar cell polarity. Probably acts as a molecular switch between different Wnt signaling pathways. Required for proper convergent extension cell movements. {ECO:0000269|PubMed:18371931}. |
Q7Z4W1 | DCXR | S38 | ochoa | L-xylulose reductase (XR) (EC 1.1.1.10) (Carbonyl reductase II) (Dicarbonyl/L-xylulose reductase) (Kidney dicarbonyl reductase) (kiDCR) (Short chain dehydrogenase/reductase family 20C member 1) (Sperm surface protein P34H) | Catalyzes the NADPH-dependent reduction of several pentoses, tetroses, trioses, alpha-dicarbonyl compounds and L-xylulose. Participates in the uronate cycle of glucose metabolism. May play a role in the water absorption and cellular osmoregulation in the proximal renal tubules by producing xylitol, an osmolyte, thereby preventing osmolytic stress from occurring in the renal tubules. |
Q7Z5H3 | ARHGAP22 | S476 | psp | Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) | Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}. |
Q7Z5L9 | IRF2BP2 | S293 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q86SQ0 | PHLDB2 | S281 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86TV6 | TTC7B | S630 | ochoa | Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}. |
Q86VH2 | KIF27 | S911 | ochoa | Kinesin-like protein KIF27 | Plays an essential role in motile ciliogenesis. {ECO:0000250}. |
Q86YV0 | RASAL3 | S944 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q8IUR7 | ARMC8 | S339 | ochoa | Armadillo repeat-containing protein 8 | Component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1. {ECO:0000269|PubMed:29911972}. |
Q8IV61 | RASGRP3 | S597 | ochoa | Ras guanyl-releasing protein 3 (Calcium and DAG-regulated guanine nucleotide exchange factor III) (Guanine nucleotide exchange factor for Rap1) | Guanine nucleotide exchange factor (GEF) for Ras and Rap1. {ECO:0000269|PubMed:10934204}. |
Q8IVF5 | TIAM2 | S1565 | ochoa | Rho guanine nucleotide exchange factor TIAM2 (SIF and TIAM1-like exchange factor) (T-lymphoma invasion and metastasis-inducing protein 2) (TIAM-2) | Modulates the activity of RHO-like proteins and connects extracellular signals to cytoskeletal activities. Acts as a GDP-dissociation stimulator protein that stimulates the GDP-GTP exchange activity of RHO-like GTPases and activates them. Mediates extracellular laminin signals to activate Rac1, contributing to neurite growth. Involved in lamellipodial formation and advancement of the growth cone of embryonic hippocampal neurons. Promotes migration of neurons in the cerebral cortex. When overexpressed, induces membrane ruffling accompanied by the accumulation of actin filaments along the altered plasma membrane (By similarity). Activates specifically RAC1, but not CDC42 and RHOA. {ECO:0000250, ECO:0000269|PubMed:10512681}. |
Q8IWB9 | TEX2 | S538 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IX01 | SUGP2 | S315 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IYJ3 | SYTL1 | S69 | psp | Synaptotagmin-like protein 1 (Exophilin-7) (Protein JFC1) | May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:11278853, ECO:0000269|PubMed:18266782}. |
Q8N4C8 | MINK1 | S993 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N556 | AFAP1 | S495 | ochoa | Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) | Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}. |
Q8N568 | DCLK2 | S362 | ochoa | Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) | Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}. |
Q8N5C8 | TAB3 | S103 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N5D0 | WDTC1 | S656 | ochoa | WD and tetratricopeptide repeats protein 1 | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16964240}. |
Q8N960 | CEP120 | S441 | ochoa | Centrosomal protein of 120 kDa (Cep120) (Coiled-coil domain-containing protein 100) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors and for proper positioning of neurons during brain development. Also implicated in the migration and selfrenewal of neural progenitors. Required for centriole duplication and maturation during mitosis and subsequent ciliogenesis (By similarity). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000250|UniProtKB:Q7TSG1, ECO:0000269|PubMed:27185865}. |
Q8NC51 | SERBP1 | S221 | ochoa | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8NEV4 | MYO3A | S177 | psp | Myosin-IIIa (EC 2.7.11.1) | Actin-dependent motor protein with a protein kinase activity, playing an essential role in hearing (PubMed:12032315, PubMed:29880844, PubMed:34788109). Probably also plays a role in vision. Required for normal cochlear hair bundle development and hearing. Plays an important role in the early steps of cochlear hair bundle morphogenesis. Influences the number and lengths of stereocilia to be produced and limits the growth of microvilli within the forming auditory hair bundles thereby contributing to the architecture of the hair bundle, including its staircase pattern. Involved in the elongation of actin in stereocilia tips by transporting the actin regulatory factor ESPN to the plus ends of actin filaments (PubMed:29880844, PubMed:34788109). {ECO:0000250|UniProtKB:Q8K3H5, ECO:0000269|PubMed:12032315, ECO:0000269|PubMed:29880844, ECO:0000269|PubMed:34788109}. |
Q8TD43 | TRPM4 | S1145 | psp | Transient receptor potential cation channel subfamily M member 4 (hTRPM4) (Calcium-activated non-selective cation channel 1) (Long transient receptor potential channel 4) (LTrpC-4) (LTrpC4) (Melastatin-4) | Calcium-activated selective cation channel that mediates membrane depolarization (PubMed:12015988, PubMed:12842017, PubMed:29211723, PubMed:30528822). While it is activated by increase in intracellular Ca(2+), it is impermeable to it (PubMed:12015988). Mediates transport of monovalent cations (Na(+) > K(+) > Cs(+) > Li(+)), leading to depolarize the membrane (PubMed:12015988). It thereby plays a central role in cadiomyocytes, neurons from entorhinal cortex, dorsal root and vomeronasal neurons, endocrine pancreas cells, kidney epithelial cells, cochlea hair cells etc. Participates in T-cell activation by modulating Ca(2+) oscillations after T lymphocyte activation, which is required for NFAT-dependent IL2 production. Involved in myogenic constriction of cerebral arteries. Controls insulin secretion in pancreatic beta-cells. May also be involved in pacemaking or could cause irregular electrical activity under conditions of Ca(2+) overload. Affects T-helper 1 (Th1) and T-helper 2 (Th2) cell motility and cytokine production through differential regulation of calcium signaling and NFATC1 localization. Enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. Plays a role in keratinocyte differentiation (PubMed:30528822). {ECO:0000269|PubMed:11535825, ECO:0000269|PubMed:12015988, ECO:0000269|PubMed:12799367, ECO:0000269|PubMed:12842017, ECO:0000269|PubMed:14758478, ECO:0000269|PubMed:15121803, ECO:0000269|PubMed:15331675, ECO:0000269|PubMed:15472118, ECO:0000269|PubMed:15550671, ECO:0000269|PubMed:15590641, ECO:0000269|PubMed:15845551, ECO:0000269|PubMed:16186107, ECO:0000269|PubMed:16407466, ECO:0000269|PubMed:16424899, ECO:0000269|PubMed:16806463, ECO:0000269|PubMed:20625999, ECO:0000269|PubMed:20656926, ECO:0000269|PubMed:29211723, ECO:0000269|PubMed:30528822}.; FUNCTION: [Isoform 2]: Lacks channel activity. {ECO:0000269|PubMed:12842017}. |
Q8TDJ6 | DMXL2 | S925 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TDY2 | RB1CC1 | S629 | ochoa | RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) | Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}. |
Q8WUY3 | PRUNE2 | S1613 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WYQ5 | DGCR8 | S123 | ochoa | Microprocessor complex subunit DGCR8 (DiGeorge syndrome critical region 8) | Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity). Also plays a role in DNA repair by promoting the recruitment of RNF168 to RNF8 and MDC1 at DNA double-strand breaks and subsequently the clearance of DNA breaks (PubMed:34188037). {ECO:0000250|UniProtKB:Q9EQM6, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:16963499, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q92502 | STARD8 | S498 | ochoa | StAR-related lipid transfer protein 8 (Deleted in liver cancer 3 protein) (DLC-3) (START domain-containing protein 8) (StARD8) (START-GAP3) | Accelerates GTPase activity of RHOA and CDC42, but not RAC1. Stimulates the hydrolysis of phosphatidylinositol 4,5-bisphosphate by PLCD1. {ECO:0000269|PubMed:17976533}. |
Q92547 | TOPBP1 | S370 | ochoa | DNA topoisomerase 2-binding protein 1 (DNA topoisomerase II-beta-binding protein 1) (TopBP1) (DNA topoisomerase II-binding protein 1) | Scaffold protein that acts as a key protein-protein adapter in DNA replication and DNA repair (PubMed:10498869, PubMed:11395493, PubMed:11714696, PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:33592542, PubMed:35597237, PubMed:37674080). Composed of multiple BRCT domains, which specifically recognize and bind phosphorylated proteins, bringing proteins together into functional combinations (PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:35597237, PubMed:37674080). Required for DNA replication initiation but not for the formation of pre-replicative complexes or the elongation stages (By similarity). Necessary for the loading of replication factors onto chromatin, including GMNC, CDC45, DNA polymerases and components of the GINS complex (By similarity). Plays a central role in DNA repair by bridging proteins and promoting recruitment of proteins to DNA damage sites (PubMed:30898438, PubMed:35597237, PubMed:37674080). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the exchange between the DNA replication factor A (RPA) complex and RAD51 (PubMed:26811421, PubMed:35597237). Mechanistically, TOPBP1 is recruited to DNA damage sites in S-phase via interaction with phosphorylated HTATSF1, and promotes the loading of RAD51, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). Involved in microhomology-mediated end-joining (MMEJ) DNA repair by promoting recruitment of polymerase theta (POLQ) to DNA damage sites during mitosis (PubMed:37674080). MMEJ is an alternative non-homologous end-joining (NHEJ) machinery that takes place during mitosis to repair DSBs in DNA that originate in S-phase (PubMed:37674080). Recognizes and binds POLQ phosphorylated by PLK1, enabling its recruitment to DSBs for subsequent repair (PubMed:37674080). Involved in G1 DNA damage checkpoint by acting as a molecular adapter that couples TP53BP1 and the 9-1-1 complex (PubMed:31135337). In response to DNA damage, triggers the recruitment of checkpoint signaling proteins on chromatin, which activate the CHEK1 signaling pathway and block S-phase progression (PubMed:16530042, PubMed:21777809). Acts as an activator of the kinase activity of ATR (PubMed:16530042, PubMed:21777809). Also required for chromosomal stability when DSBs occur during mitosis by forming filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Together with CIP2A, plays an essential role in the response to genome instability generated by the presence of acentric chromosome fragments derived from shattered chromosomes within micronuclei (PubMed:35121901, PubMed:35842428, PubMed:37165191, PubMed:37316668). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, the CIP2A-TOPBP1 complex tethers chromosome fragments during mitosis to ensure clustered segregation of the fragments to a single daughter cell nucleus, facilitating re-ligation with limited chromosome scattering and loss (PubMed:37165191, PubMed:37316668). Recruits the SWI/SNF chromatin remodeling complex to E2F1-responsive promoters, thereby down-regulating E2F1 activity and inhibiting E2F1-dependent apoptosis during G1/S transition and after DNA damage (PubMed:12697828, PubMed:15075294). {ECO:0000250|UniProtKB:Q800K6, ECO:0000269|PubMed:10498869, ECO:0000269|PubMed:11395493, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:12697828, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:16530042, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:35121901, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:35842428, ECO:0000269|PubMed:37165191, ECO:0000269|PubMed:37316668, ECO:0000269|PubMed:37674080}. |
Q92556 | ELMO1 | S510 | ochoa | Engulfment and cell motility protein 1 (Protein ced-12 homolog) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:12134158}. |
Q92610 | ZNF592 | S1021 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92615 | LARP4B | S568 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92630 | DYRK2 | S449 | psp | Dual specificity tyrosine-phosphorylation-regulated kinase 2 (EC 2.7.12.1) | Serine/threonine-protein kinase involved in the regulation of the mitotic cell cycle, cell proliferation, apoptosis, organization of the cytoskeleton and neurite outgrowth. Functions in part via its role in ubiquitin-dependent proteasomal protein degradation. Functions downstream of ATM and phosphorylates p53/TP53 at 'Ser-46', and thereby contributes to the induction of apoptosis in response to DNA damage. Phosphorylates NFATC1, and thereby inhibits its accumulation in the nucleus and its transcription factor activity. Phosphorylates EIF2B5 at 'Ser-544', enabling its subsequent phosphorylation and inhibition by GSK3B. Likewise, phosphorylation of NFATC1, CRMP2/DPYSL2 and CRMP4/DPYSL3 promotes their subsequent phosphorylation by GSK3B. May play a general role in the priming of GSK3 substrates. Inactivates GYS1 by phosphorylation at 'Ser-641', and potentially also a second phosphorylation site, thus regulating glycogen synthesis. Mediates EDVP E3 ligase complex formation and is required for the phosphorylation and subsequent degradation of KATNA1. Phosphorylates TERT at 'Ser-457', promoting TERT ubiquitination by the EDVP complex. Phosphorylates SIAH2, and thereby increases its ubiquitin ligase activity. Promotes the proteasomal degradation of MYC and JUN, and thereby regulates progress through the mitotic cell cycle and cell proliferation. Promotes proteasomal degradation of GLI2 and GLI3, and thereby plays a role in smoothened and sonic hedgehog signaling. Plays a role in cytoskeleton organization and neurite outgrowth via its phosphorylation of DCX and DPYSL2. Phosphorylates CRMP2/DPYSL2, CRMP4/DPYSL3, DCX, EIF2B5, EIF4EBP1, GLI2, GLI3, GYS1, JUN, MDM2, MYC, NFATC1, p53/TP53, TAU/MAPT and KATNA1. Can phosphorylate histone H1, histone H3 and histone H2B (in vitro). Can phosphorylate CARHSP1 (in vitro). {ECO:0000269|PubMed:11311121, ECO:0000269|PubMed:12588975, ECO:0000269|PubMed:14593110, ECO:0000269|PubMed:15910284, ECO:0000269|PubMed:16511445, ECO:0000269|PubMed:16611631, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:18599021, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:22307329, ECO:0000269|PubMed:22878263, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:9748265}. |
Q92888 | ARHGEF1 | S240 | psp | Rho guanine nucleotide exchange factor 1 (115 kDa guanine nucleotide exchange factor) (p115-RhoGEF) (p115RhoGEF) (Sub1.5) | Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits (PubMed:9641915, PubMed:9641916). Acts as a GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase (PubMed:30521495, PubMed:8810315, PubMed:9641915, PubMed:9641916). Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain (PubMed:9641916). This GEF activity is inhibited by binding to activated GNA12 (PubMed:9641916). Mediates angiotensin-2-induced RhoA activation (PubMed:20098430). In lymphoid follicles, may trigger activation of GNA13 as part of S1PR2-dependent signaling pathway that leads to inhibition of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:Q61210, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:30521495, ECO:0000269|PubMed:8810315, ECO:0000269|PubMed:9641915, ECO:0000269|PubMed:9641916}. |
Q92997 | DVL3 | S140 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q93073 | SECISBP2L | S934 | ochoa | Selenocysteine insertion sequence-binding protein 2-like (SECIS-binding protein 2-like) | Binds SECIS (Sec insertion sequence) elements present on selenocysteine (Sec) protein mRNAs, but does not promote Sec incorporation into selenoproteins in vitro. |
Q96A65 | EXOC4 | S468 | ochoa | Exocyst complex component 4 (Exocyst complex component Sec8) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. {ECO:0000250|UniProtKB:Q62824}. |
Q96CC6 | RHBDF1 | S390 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96I25 | RBM17 | S48 | psp | Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) | Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}. |
Q96I25 | RBM17 | S62 | ochoa|psp | Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) | Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}. |
Q96IT1 | ZNF496 | S188 | ochoa | Zinc finger protein 496 (Zinc finger protein with KRAB and SCAN domains 17) | DNA-binding transcription factor that can both act as an activator and a repressor. {ECO:0000250}. |
Q96JJ3 | ELMO2 | S503 | ochoa | Engulfment and cell motility protein 2 (Protein ced-12 homolog A) (hCed-12A) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:11703939, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:27476657}. |
Q96P20 | NLRP3 | S975 | psp | NACHT, LRR and PYD domains-containing protein 3 (EC 3.6.4.-) (Angiotensin/vasopressin receptor AII/AVP-like) (Caterpiller protein 1.1) (CLR1.1) (Cold-induced autoinflammatory syndrome 1 protein) (Cryopyrin) (PYRIN-containing APAF1-like protein 1) | Sensor component of the NLRP3 inflammasome, which mediates inflammasome activation in response to defects in membrane integrity, leading to secretion of inflammatory cytokines IL1B and IL18 and pyroptosis (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:23582325, PubMed:25686105, PubMed:27929086, PubMed:28656979, PubMed:28847925, PubMed:30487600, PubMed:30612879, PubMed:31086327, PubMed:31086329, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:34512673, PubMed:36442502). In response to pathogens and other damage-associated signals that affect the integrity of membranes, initiates the formation of the inflammasome polymeric complex composed of NLRP3, CASP1 and PYCARD/ASC (PubMed:16407889, PubMed:18403674, PubMed:27432880, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:36142182, PubMed:36442502). Recruitment of pro-caspase-1 (proCASP1) to the NLRP3 inflammasome promotes caspase-1 (CASP1) activation, which subsequently cleaves and activates inflammatory cytokines IL1B and IL18 and gasdermin-D (GSDMD), promoting cytokine secretion and pyroptosis (PubMed:23582325, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353). Activation of NLRP3 inflammasome is also required for HMGB1 secretion; stimulating inflammatory responses (PubMed:22801494). Under resting conditions, ADP-bound NLRP3 is autoinhibited (PubMed:35114687). NLRP3 activation stimuli include extracellular ATP, nigericin, reactive oxygen species, crystals of monosodium urate or cholesterol, amyloid-beta fibers, environmental or industrial particles and nanoparticles, such as asbestos, silica, aluminum salts, cytosolic dsRNA, etc (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:19414800, PubMed:23871209). Almost all stimuli trigger intracellular K(+) efflux (By similarity). These stimuli lead to membrane perturbation and activation of NLRP3 (By similarity). Upon activation, NLRP3 is transported to microtubule organizing center (MTOC), where it is unlocked by NEK7, leading to its relocalization to dispersed trans-Golgi network (dTGN) vesicle membranes and formation of an active inflammasome complex (PubMed:36442502, PubMed:39173637). Associates with dTGN vesicle membranes by binding to phosphatidylinositol 4-phosphate (PtdIns4P) (PubMed:30487600, PubMed:34554188). Shows ATPase activity (PubMed:17483456). {ECO:0000250|UniProtKB:Q8R4B8, ECO:0000269|PubMed:16407889, ECO:0000269|PubMed:17483456, ECO:0000269|PubMed:18403674, ECO:0000269|PubMed:18604214, ECO:0000269|PubMed:19414800, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:23871209, ECO:0000269|PubMed:25686105, ECO:0000269|PubMed:27432880, ECO:0000269|PubMed:27929086, ECO:0000269|PubMed:28656979, ECO:0000269|PubMed:28847925, ECO:0000269|PubMed:30487600, ECO:0000269|PubMed:30612879, ECO:0000269|PubMed:31086327, ECO:0000269|PubMed:31086329, ECO:0000269|PubMed:31189953, ECO:0000269|PubMed:33231615, ECO:0000269|PubMed:34133077, ECO:0000269|PubMed:34341353, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:35114687, ECO:0000269|PubMed:36142182, ECO:0000269|PubMed:36442502, ECO:0000269|PubMed:39173637}.; FUNCTION: Independently of inflammasome activation, regulates the differentiation of T helper 2 (Th2) cells and has a role in Th2 cell-dependent asthma and tumor growth (By similarity). During Th2 differentiation, required for optimal IRF4 binding to IL4 promoter and for IRF4-dependent IL4 transcription (By similarity). Binds to the consensus DNA sequence 5'-GRRGGNRGAG-3' (By similarity). May also participate in the transcription of IL5, IL13, GATA3, CCR3, CCR4 and MAF (By similarity). {ECO:0000250|UniProtKB:Q8R4B8}. |
Q96PK6 | RBM14 | S649 | ochoa | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
Q96PM5 | RCHY1 | S211 | psp | RING finger and CHY zinc finger domain-containing protein 1 (EC 2.3.2.27) (Androgen receptor N-terminal-interacting protein) (CH-rich-interacting match with PLAG1) (E3 ubiquitin-protein ligase Pirh2) (RING finger protein 199) (RING-type E3 ubiquitin transferase RCHY1) (Zinc finger protein 363) (p53-induced RING-H2 protein) (hPirh2) | E3 ubiquitin-protein ligase that mediates ubiquitination of target proteins, including p53/TP53, TP73, HDAC1 and CDKN1B (PubMed:16914734, PubMed:17721809, PubMed:18006823, PubMed:19043414, PubMed:19483087, PubMed:21994467). Mediates ubiquitination and degradation of p53/TP53; preferentially acts on tetrameric p53/TP53 (PubMed:19043414, PubMed:19483087). Catalyzes monoubiquitinates the translesion DNA polymerase POLH (PubMed:21791603). Involved in the ribosome-associated quality control (RQC) pathway, which mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes: RCHY1 acts downstream of NEMF and recognizes CAT tails associated with stalled nascent chains, leading to their ubiquitination and degradation (PubMed:33909987). {ECO:0000269|PubMed:16914734, ECO:0000269|PubMed:17721809, ECO:0000269|PubMed:18006823, ECO:0000269|PubMed:19043414, ECO:0000269|PubMed:19483087, ECO:0000269|PubMed:21791603, ECO:0000269|PubMed:21994467, ECO:0000269|PubMed:33909987}.; FUNCTION: [Isoform 4]: Has no E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20452352}. |
Q96QT6 | PHF12 | S772 | ochoa | PHD finger protein 12 (PHD factor 1) (Pf1) | Transcriptional repressor acting as key scaffolding subunit of SIN3 complexes which contributes to complex assembly by contacting each core subunit domain, stabilizes the complex and constitutes the substrate receptor by recruiting the H3 histone tail (PubMed:37137925). SIN3 complexes are composed of a SIN3 scaffold subunit, one catalytic core (HDAC1 or HDAC2) and 2 chromatin targeting modules (PubMed:11390640, PubMed:37137925). SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). May also repress transcription in a SIN3A-independent manner through recruitment of functional TLE5 complexes to DNA (PubMed:11390640). May also play a role in ribosomal biogenesis (By similarity). {ECO:0000250|UniProtKB:Q5SPL2, ECO:0000269|PubMed:11390640, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q96S53 | TESK2 | S346 | ochoa | Dual specificity testis-specific protein kinase 2 (EC 2.7.12.1) (Testicular protein kinase 2) | Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues. Phosphorylates cofilin at 'Ser-3'. May play an important role in spermatogenesis. |
Q99469 | STAC | S56 | ochoa | SH3 and cysteine-rich domain-containing protein (Src homology 3 and cysteine-rich domain-containing protein) | Promotes expression of the ion channel CACNA1H at the cell membrane, and thereby contributes to the regulation of channel activity. Plays a minor and redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. Slows down the inactivation rate of the calcium channel CACNA1C. {ECO:0000250|UniProtKB:P97306}. |
Q99640 | PKMYT1 | S479 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99698 | LYST | S2241 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99767 | APBA2 | S480 | ochoa | Amyloid-beta A4 precursor protein-binding family A member 2 (Adapter protein X11beta) (Neuron-specific X11L protein) (Neuronal Munc18-1-interacting protein 2) (Mint-2) | Putative function in synaptic vesicle exocytosis by binding to STXBP1, an essential component of the synaptic vesicle exocytotic machinery. May modulate processing of the amyloid-beta precursor protein (APP) and hence formation of APP-beta. |
Q99832 | CCT7 | S59 | psp | T-complex protein 1 subunit eta (TCP-1-eta) (EC 3.6.1.-) (CCT-eta) (Chaperonin containing T-complex polypeptide 1 subunit 7) (HIV-1 Nef-interacting protein) [Cleaved into: T-complex protein 1 subunit eta, N-terminally processed] | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q9BQI9 | NRIP2 | S96 | ochoa | Nuclear receptor-interacting protein 2 | Down-regulates transcriptional activation by nuclear receptors such as NR1F2. {ECO:0000250}. |
Q9BQI9 | NRIP2 | S153 | ochoa | Nuclear receptor-interacting protein 2 | Down-regulates transcriptional activation by nuclear receptors such as NR1F2. {ECO:0000250}. |
Q9BR76 | CORO1B | S415 | ochoa | Coronin-1B (Coronin-2) | Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity). {ECO:0000250, ECO:0000269|PubMed:16027158}. |
Q9BSW2 | CRACR2A | S26 | ochoa | EF-hand calcium-binding domain-containing protein 4B (Calcium release-activated calcium channel regulator 2A) (CRAC channel regulator 2A) (Calcium release-activated channel regulator 2A) (Ras-related protein Rab-46) (EC 3.6.5.2) | [Isoform 1]: Ca(2+)-binding protein that plays a key role in store-operated Ca(2+) entry (SOCE) in T-cells by regulating CRAC channel activation. Acts as a cytoplasmic calcium-sensor that facilitates the clustering of ORAI1 and STIM1 at the junctional regions between the plasma membrane and the endoplasmic reticulum upon low Ca(2+) concentration. It thereby regulates CRAC channel activation, including translocation and clustering of ORAI1 and STIM1. Upon increase of cytoplasmic Ca(2+) resulting from opening of CRAC channels, dissociates from ORAI1 and STIM1, thereby destabilizing the ORAI1-STIM1 complex. {ECO:0000269|PubMed:20418871, ECO:0000269|PubMed:27016526}.; FUNCTION: [Isoform 2]: Rab GTPase that mediates the trafficking of Weibel-Palade bodies (WPBs) to microtubule organizing center (MTOC) in endothelial cells in response to acute inflammatory stimuli (PubMed:31092558). During histamine (but not thrombin) stimulation of endothelial cells, the dynein-bound form induces retrograde transport of a subset of WPBs along microtubules to the MTOC in a Ca(2+)-independent manner and its GTPase activity is essential for this function (PubMed:31092558). Ca(2+)-regulated dynein adapter protein that activates dynein-mediated transport and dynein-dynactin motility on microtubules and regulates endosomal trafficking of CD47 (PubMed:30814157). Acts as an intracellular signaling module bridging two important T-cell receptor (TCR) signaling pathways, Ca(2+)-NFAT and JNK, to affect T-cell activation (PubMed:27016526). In resting T-cells, is predominantly localized near TGN network in a GTP-bound form, upon TCR stimulation, localizes at the immunological synapse via interaction with VAV1 to activate downstream Ca(2+)-NFAT and JNK signaling pathways (PubMed:27016526). Plays a role in T-helper 1 (Th1) cell differentiation and T-helper 17 (Th17) cell effector function (PubMed:29987160). Plays a role in store-operated Ca(2+) entry (SOCE) in T-cells by regulating CRAC channel activation (PubMed:27016526). {ECO:0000269|PubMed:27016526, ECO:0000269|PubMed:29987160, ECO:0000269|PubMed:30814157, ECO:0000269|PubMed:31092558}. |
Q9BTE3 | MCMBP | S279 | ochoa | Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) | Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}. |
Q9BVW5 | TIPIN | S220 | ochoa | TIMELESS-interacting protein | Plays an important role in the control of DNA replication and the maintenance of replication fork stability (PubMed:17102137, PubMed:23359676, PubMed:35585232). Important for cell survival after DNA damage or replication stress (PubMed:17116885). May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light (PubMed:17296725). Forms a complex with TIMELESS and this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic stress (PubMed:17102137, PubMed:17116885, PubMed:17296725, PubMed:23359676, PubMed:35585232). {ECO:0000269|PubMed:17102137, ECO:0000269|PubMed:17116885, ECO:0000269|PubMed:17296725, ECO:0000269|PubMed:23359676, ECO:0000269|PubMed:35585232}. |
Q9BY89 | KIAA1671 | S518 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYB0 | SHANK3 | S1031 | ochoa | SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) | Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}. |
Q9BYW2 | SETD2 | S1144 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZQ8 | NIBAN1 | S579 | ochoa | Protein Niban 1 (Cell growth-inhibiting gene 39 protein) (Protein FAM129A) | Regulates phosphorylation of a number of proteins involved in translation regulation including EIF2A, EIF4EBP1 and RPS6KB1. May be involved in the endoplasmic reticulum stress response (By similarity). {ECO:0000250}. |
Q9C004 | SPRY4 | S46 | ochoa | Protein sprouty homolog 4 (Spry-4) | Suppresses the insulin receptor and EGFR-transduced MAPK signaling pathway, but does not inhibit MAPK activation by a constitutively active mutant Ras (PubMed:12027893). Probably impairs the formation of GTP-Ras (PubMed:12027893). Inhibits Ras-independent, but not Ras-dependent, activation of RAF1 (PubMed:12717443). Represses integrin-mediated cell spreading via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:15584898). {ECO:0000269|PubMed:12027893, ECO:0000269|PubMed:12717443, ECO:0000269|PubMed:15584898}. |
Q9C0C2 | TNKS1BP1 | S920 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S1331 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0H5 | ARHGAP39 | S190 | ochoa | Rho GTPase-activating protein 39 | None |
Q9H0H0 | INTS2 | S356 | ochoa | Integrator complex subunit 2 (Int2) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q9H0K1 | SIK2 | S343 | ochoa|psp | Serine/threonine-protein kinase SIK2 (EC 2.7.11.1) (Qin-induced kinase) (Salt-inducible kinase 2) (SIK-2) (Serine/threonine-protein kinase SNF1-like kinase 2) | Serine/threonine-protein kinase that plays a role in many biological processes such as fatty acid oxidation, autophagy, immune response or glucose metabolism (PubMed:23322770, PubMed:26983400). Phosphorylates 'Ser-794' of IRS1 in insulin-stimulated adipocytes, potentially modulating the efficiency of insulin signal transduction. Inhibits CREB activity by phosphorylating and repressing TORCs, the CREB-specific coactivators (PubMed:15454081). Phosphorylates EP300 and thus inhibits its histone acetyltransferase activity (PubMed:21084751, PubMed:26983400). In turn, regulates the DNA-binding ability of several transcription factors such as PPARA or MLXIPL (PubMed:21084751, PubMed:26983400). Also plays a role in thymic T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8CFH6, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:21084751, ECO:0000269|PubMed:23322770, ECO:0000269|PubMed:26983400}. |
Q9H0M4 | ZCWPW1 | S628 | ochoa | Zinc finger CW-type PWWP domain protein 1 | Dual histone methylation reader specific for PRDM9-catalyzed histone marks (H3K4me3 and H3K36me3) (PubMed:20826339, PubMed:32744506). Facilitates the repair of PRDM9-induced meiotic double-strand breaks (DSBs) (By similarity). Essential for male fertility and spermatogenesis (By similarity). Required for meiosis prophase I progression in male but not in female germ cells (By similarity). {ECO:0000250|UniProtKB:Q6IR42, ECO:0000269|PubMed:20826339, ECO:0000269|PubMed:32744506}. |
Q9H4A3 | WNK1 | S1220 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4A5 | GOLPH3L | S112 | ochoa | Golgi phosphoprotein 3-like (GPP34-related protein) | Phosphatidylinositol-4-phosphate-binding protein that may antagonize the action of GOLPH3 which is required for the process of vesicle budding at the Golgi and anterograde transport to the plasma membrane. {ECO:0000269|PubMed:23345592}. |
Q9HBE1 | PATZ1 | S585 | ochoa | POZ-, AT hook-, and zinc finger-containing protein 1 (BTB/POZ domain zinc finger transcription factor) (Protein kinase A RI subunit alpha-associated protein) (Zinc finger and BTB domain-containing protein 19) (Zinc finger protein 278) (Zinc finger sarcoma gene protein) | Transcriptional regulator that plays a role in many biological processes such as embryogenesis, senescence, T-cell development or neurogenesis (PubMed:10713105, PubMed:25755280, PubMed:31875552). Interacts with the TP53 protein to control genes that are important in proliferation and in the DNA-damage response. Mechanistically, the interaction inhibits the DNA binding and transcriptional activity of TP53/p53 (PubMed:25755280). Part of the transcriptional network modulating regulatory T-cell development and controls the generation of the regulatory T-cell pool under homeostatic conditions (PubMed:31875552). {ECO:0000269|PubMed:10713105, ECO:0000269|PubMed:25755280, ECO:0000269|PubMed:31875552}.; FUNCTION: (Microbial infection) Plays a positive role in viral cDNA synthesis. {ECO:0000269|PubMed:31060775}. |
Q9HC07 | TMEM165 | S221 | ochoa | Putative divalent cation/proton antiporter TMEM165 (Transmembrane protein 165) (Transmembrane protein PT27) (Transmembrane protein TPARL) | Putative divalent cation:proton antiporter that exchanges calcium or manganese ions for protons across the Golgi membrane. Mediates the reversible transport of calcium or manganese to the Golgi lumen driven by the proton gradient and possibly the membrane potential generated by V-ATPase. Provides calcium or manganese cofactors to resident Golgi enzymes and contributes to the maintenance of an acidic luminal Golgi pH required for proper functioning of the secretory pathway (By similarity) (PubMed:22683087, PubMed:23569283, PubMed:27008884, PubMed:32047108). Promotes Ca(2+) storage within the Golgi lumen of the mammary epithelial cells to be then secreted into milk (By similarity). The transport mechanism and stoichiometry remains to be elucidated. {ECO:0000250|UniProtKB:P38301, ECO:0000250|UniProtKB:P52875, ECO:0000269|PubMed:22683087, ECO:0000269|PubMed:23569283, ECO:0000269|PubMed:27008884, ECO:0000269|PubMed:32047108}. |
Q9HCE7 | SMURF1 | S148 | ochoa | E3 ubiquitin-protein ligase SMURF1 (hSMURF1) (EC 2.3.2.26) (HECT-type E3 ubiquitin transferase SMURF1) (SMAD ubiquitination regulatory factor 1) (SMAD-specific E3 ubiquitin-protein ligase 1) | E3 ubiquitin-protein ligase that acts as a negative regulator of BMP signaling pathway. Mediates ubiquitination and degradation of SMAD1 and SMAD5, 2 receptor-regulated SMADs specific for the BMP pathway. Promotes ubiquitination and subsequent proteasomal degradation of TRAF family members and RHOA. Promotes ubiquitination and subsequent proteasomal degradation of MAVS (PubMed:23087404). Acts as an antagonist of TGF-beta signaling by ubiquitinating TGFBR1 and targeting it for degradation (PubMed:21791611). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:10458166, ECO:0000269|PubMed:19937093, ECO:0000269|PubMed:21402695, ECO:0000269|PubMed:21791611, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23999003}. |
Q9NQW6 | ANLN | S449 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NS00 | C1GALT1 | S70 | ochoa | Glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 (EC 2.4.1.122) (B3Gal-T8) (Core 1 O-glycan T-synthase) (Core 1 UDP-galactose:N-acetylgalactosamine-alpha-R beta 1,3-galactosyltransferase 1) (Beta-1,3-galactosyltransferase) (Core 1 beta1,3-galactosyltransferase 1) (C1GalT1) (Core 1 beta3-Gal-T1) | Glycosyltransferase that generates the core 1 O-glycan Gal-beta1-3GalNAc-alpha1-Ser/Thr (T antigen), which is a precursor for many extended O-glycans in glycoproteins (PubMed:11677243). Plays a central role in many processes, such as angiogenesis, thrombopoiesis and kidney homeostasis development (By similarity). {ECO:0000250|UniProtKB:Q7K237, ECO:0000250|UniProtKB:Q9JJ06, ECO:0000269|PubMed:11677243}. |
Q9NSA2 | KCND1 | S555 | psp | A-type voltage-gated potassium channel KCND1 (Potassium voltage-gated channel subfamily D member 1) (Shal-type potassium channel KCND1) (Voltage-gated potassium channel subunit Kv4.1) | A-type voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes in the brain (PubMed:15454437). Mediates A-type current I(SA) in suprachiasmatic nucleus (SCN) neurons. Exhibits a low-threshold A-type current with a hyperpolarized steady-state inactivation midpoint and the recovery process was steeply voltage-dependent, with recovery being markedly faster at more negative potentials. May regulates repetitive firing rates in the suprachiasmatic nucleus (SCN) neurons and circadian rhythms in neuronal excitability and behavior. Contributes to the regulation of the circadian rhythm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity. The regulatory subunit KCNIP1 modulates the kinetics of channel inactivation, increases the current amplitudes and accelerates recovery from inactivation, shifts activation in a depolarizing direction (By similarity). The regulatory subunit DPP10 decreases the voltage sensitivity of the inactivation channel gating (PubMed:15454437). {ECO:0000250|UniProtKB:Q03719, ECO:0000269|PubMed:15454437}. |
Q9NUQ8 | ABCF3 | S83 | ochoa | ATP-binding cassette sub-family F member 3 | Displays an antiviral effect against flaviviruses such as west Nile virus (WNV) in the presence of OAS1B. {ECO:0000250}. |
Q9NVU0 | POLR3E | S36 | ochoa | DNA-directed RNA polymerase III subunit RPC5 (RNA polymerase III subunit C5) (DNA-directed RNA polymerase III 80 kDa polypeptide) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:12391170, PubMed:20413673, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. Assembles with POLR3D/RPC4 forming a subcomplex that binds the Pol III core. Enables recruitment of Pol III at transcription initiation site and drives transcription initiation from both type 2 and type 3 DNA promoters. Required for efficient transcription termination and reinitiation (By similarity) (PubMed:12391170, PubMed:20413673, PubMed:35637192). Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:P36121, ECO:0000269|PubMed:12391170, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:35637192}. |
Q9NWW5 | CLN6 | S31 | ochoa | Ceroid-lipofuscinosis neuronal protein 6 (Protein CLN6) | None |
Q9NYA4 | MTMR4 | S616 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR4 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 2) (FYVE-DSP2) (Myotubularin-related protein 4) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Zinc finger FYVE domain-containing protein 11) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11302699, PubMed:16787938, PubMed:20736309, PubMed:27625994, PubMed:29962048, PubMed:30944173). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic, in a subset of endosomal membranes to negatively regulate both endocytic recycling and trafficking and/or maturation of endosomes toward lysosomes (PubMed:16787938, PubMed:20736309, PubMed:29962048). Through phosphatidylinositol 3-phosphate turnover in phagosome membranes regulates phagocytosis and phagosome maturation (PubMed:31543504). By decreasing phosphatidylinositol 3-monophosphate (PI3P) levels in immune cells it can also regulate the innate immune response (PubMed:30944173). Beside its lipid phosphatase activity, can also function as a molecular adapter to regulate midbody abscission during mitotic cytokinesis (PubMed:25659891). Can also negatively regulate TGF-beta and BMP signaling through Smad proteins dephosphorylation and retention in endosomes (PubMed:20061380, PubMed:23150675). {ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:16787938, ECO:0000269|PubMed:20061380, ECO:0000269|PubMed:20736309, ECO:0000269|PubMed:23150675, ECO:0000269|PubMed:25659891, ECO:0000269|PubMed:27625994, ECO:0000269|PubMed:29962048, ECO:0000269|PubMed:30944173, ECO:0000269|PubMed:31543504}. |
Q9NZM1 | MYOF | S729 | ochoa | Myoferlin (Fer-1-like protein 3) | Calcium/phospholipid-binding protein that plays a role in the plasmalemma repair mechanism of endothelial cells that permits rapid resealing of membranes disrupted by mechanical stress. Involved in endocytic recycling. Implicated in VEGF signal transduction by regulating the levels of the receptor KDR (By similarity). {ECO:0000250}. |
Q9P0L0 | VAPA | S214 | ochoa | Vesicle-associated membrane protein-associated protein A (VAMP-A) (VAMP-associated protein A) (VAP-A) (33 kDa VAMP-associated protein) (VAP-33) | Endoplasmic reticulum (ER)-anchored protein that mediates the formation of contact sites between the ER and endosomes via interaction with FFAT motif-containing proteins such as STARD3 or WDR44 (PubMed:32344433, PubMed:33124732). STARD3-VAPA interaction enables cholesterol transfer from the ER to endosomes (PubMed:33124732). Via interaction with WDR44 participates in neosynthesized protein export (PubMed:32344433). In addition, recruited to the plasma membrane through OSBPL3 binding (PubMed:25447204). The OSBPL3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:25447204). With OSBPL3, may regulate ER morphology (PubMed:16143324). May play a role in vesicle trafficking (PubMed:11511104, PubMed:19289470). {ECO:0000269|PubMed:11511104, ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:19289470, ECO:0000269|PubMed:25447204, ECO:0000269|PubMed:32344433, ECO:0000269|PubMed:33124732}. |
Q9P266 | JCAD | S680 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P270 | SLAIN2 | S35 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9UBF9 | MYOT | S231 | ochoa | Myotilin (57 kDa cytoskeletal protein) (Myofibrillar titin-like Ig domains protein) (Titin immunoglobulin domain protein) | Component of a complex of multiple actin cross-linking proteins. Involved in the control of myofibril assembly and stability at the Z lines in muscle cells. {ECO:0000269|PubMed:12499399}. |
Q9UBY0 | SLC9A2 | S687 | ochoa | Sodium/hydrogen exchanger 2 (Na(+)/H(+) exchanger 2) (NHE-2) (Solute carrier family 9 member 2) | Plasma membrane Na(+)/H(+) antiporter. Mediates the electroneutral exchange of intracellular H(+) ions for extracellular Na(+) (PubMed:10444453). Major apical Na(+)/H(+) exchanger in the base of the colonic crypt. Controls in the colonic crypt intracellular pH (pHi) to direct colonic epithelial cell differentiation into the absorptive enterocyte lineage at the expense of the secretory lineage (By similarity). {ECO:0000250|UniProtKB:Q3ZAS0, ECO:0000269|PubMed:10444453}. |
Q9UGI8 | TES | S105 | ochoa | Testin (TESS) | Scaffold protein that may play a role in cell adhesion, cell spreading and in the reorganization of the actin cytoskeleton. Plays a role in the regulation of cell proliferation. May act as a tumor suppressor. Inhibits tumor cell growth. {ECO:0000269|PubMed:11420696, ECO:0000269|PubMed:12571287, ECO:0000269|PubMed:12695497}. |
Q9UHG3 | PCYOX1 | S171 | ochoa | Prenylcysteine oxidase 1 (EC 1.8.3.5) (Prenylcysteine lyase) | Prenylcysteine oxidase that cleaves the thioether bond of prenyl-L-cysteines, such as farnesylcysteine and geranylgeranylcysteine (PubMed:10585463, PubMed:11078725, PubMed:12186880). Only active against free prenylcysteines and not prenylcysteine residues within prenylated proteins or peptides (By similarity). Involved in the final step in the degradation of prenylated proteins, by degrading prenylcysteines after the protein has been degraded (PubMed:10585463). {ECO:0000250|UniProtKB:F1N2K1, ECO:0000269|PubMed:10585463, ECO:0000269|PubMed:11078725, ECO:0000269|PubMed:12186880}. |
Q9UHP3 | USP25 | S85 | ochoa | Ubiquitin carboxyl-terminal hydrolase 25 (EC 3.4.19.12) (Deubiquitinating enzyme 25) (USP on chromosome 21) (Ubiquitin thioesterase 25) (Ubiquitin-specific-processing protease 25) | Deubiquitinating enzyme that hydrolyzes ubiquitin moieties conjugated to substrates and thus, functions in various biological processes including inflammation and immune response (PubMed:29518389, PubMed:37683630). Modulates the Wnt/beta-catenin pathway by deubiquitinating and stabilizing tankyrases TNKS1 and TNKS2 (PubMed:28619731, PubMed:30926243, PubMed:38875478). Regulates KEAP1-NRF2 axis in the defense against oxidative assaults by deubiquitinating KEAP1 and protecting it from degradation leading to degradation of the NRF2 transcription factor that is responsible for mounting an anti-oxidation gene expression program (PubMed:37339955). Positively regulates RNA virus-induced innate signaling by interacting with and deubiquitinating ERLIN1 and ERLIN2 (PubMed:37683630). In turn, restricts virus production by regulating cholesterol biosynthetic flux (PubMed:37683630). Acts as a negative regulator of interleukin-17-mediated signaling and inflammation through the removal of 'Lys-63'-linked ubiquitination of TRAF5 and TRAF6 (PubMed:23042150). Prevents the ubiquitination and degradation of TRAF3 to reduce the phosphorylation levels of JNK and P38, the secretion of IL-1B and to induce endotoxin tolerance (PubMed:30579117). {ECO:0000269|PubMed:23042150, ECO:0000269|PubMed:28619731, ECO:0000269|PubMed:29518389, ECO:0000269|PubMed:30579117, ECO:0000269|PubMed:30926243, ECO:0000269|PubMed:37339955, ECO:0000269|PubMed:37683630, ECO:0000269|PubMed:38875478}.; FUNCTION: The muscle-specific isoform (USP25m) may have a role in the regulation of muscular differentiation and function. |
Q9UKE5 | TNIK | S896 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKL4 | GJD2 | S293 | psp | Gap junction delta-2 protein (Connexin-36) (Cx36) (Gap junction alpha-9 protein) | One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. |
Q9UKM9 | RALY | S177 | ochoa | RNA-binding protein Raly (Autoantigen p542) (Heterogeneous nuclear ribonucleoprotein C-like 2) (hnRNP core protein C-like 2) (hnRNP associated with lethal yellow protein homolog) | RNA-binding protein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the liver. Binds the lipid-responsive non-coding RNA LeXis and is required for LeXis-mediated effect on cholesterogenesis (By similarity). May be a heterogeneous nuclear ribonucleoprotein (hnRNP) (PubMed:9376072). {ECO:0000250|UniProtKB:Q64012, ECO:0000269|PubMed:9376072}. |
Q9UKX2 | MYH2 | S1290 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9ULI0 | ATAD2B | S372 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9UPT6 | MAPK8IP3 | S1194 | ochoa | C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}. |
Q9UPV9 | TRAK1 | S919 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q9Y263 | PLAA | S188 | ochoa | Phospholipase A-2-activating protein (PLA2P) (PLAP) | Plays a role in protein ubiquitination, sorting and degradation through its association with VCP (PubMed:27753622). Involved in ubiquitin-mediated membrane proteins trafficking to late endosomes in an ESCRT-dependent manner, and hence plays a role in synaptic vesicle recycling (By similarity). May play a role in macroautophagy, regulating for instance the clearance of damaged lysosomes (PubMed:27753622). Plays a role in cerebellar Purkinje cell development (By similarity). Positively regulates cytosolic and calcium-independent phospholipase A2 activities in a tumor necrosis factor alpha (TNF-alpha)- or lipopolysaccharide (LPS)-dependent manner, and hence prostaglandin E2 biosynthesis (PubMed:18291623, PubMed:28007986). {ECO:0000250|UniProtKB:P27612, ECO:0000269|PubMed:18291623, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:28007986}. |
Q9Y2I7 | PIKFYVE | S257 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2L5 | TRAPPC8 | S311 | ochoa | Trafficking protein particle complex subunit 8 (Protein TRS85 homolog) | Plays a role in endoplasmic reticulum to Golgi apparatus trafficking at a very early stage (PubMed:21525244). Maintains together with TBC1D14 the cycling pool of ATG9 required for initiation of autophagy (PubMed:26711178). Involved in collagen secretion (PubMed:32095531). {ECO:0000269|PubMed:21525244, ECO:0000269|PubMed:26711178, ECO:0000269|PubMed:32095531}. |
Q9Y2X7 | GIT1 | S670 | ochoa | ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}. |
Q9Y2X9 | ZNF281 | S683 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y490 | TLN1 | S1260 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4B5 | MTCL1 | S1284 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4P8 | WIPI2 | S390 | ochoa | WD repeat domain phosphoinositide-interacting protein 2 (WIPI-2) (WIPI49-like protein 2) | Component of the autophagy machinery that controls the major intracellular degradation process by which cytoplasmic materials are packaged into autophagosomes and delivered to lysosomes for degradation (PubMed:20505359, PubMed:28561066). Involved in an early step of the formation of preautophagosomal structures (PubMed:20505359, PubMed:28561066). Binds and is activated by phosphatidylinositol 3-phosphate (PtdIns3P) forming on membranes of the endoplasmic reticulum upon activation of the upstream ULK1 and PI3 kinases (PubMed:28561066). Mediates ER-isolation membranes contacts by interacting with the ULK1:RB1CC1 complex and PtdIns3P (PubMed:28890335). Once activated, WIPI2 recruits at phagophore assembly sites the ATG12-ATG5-ATG16L1 complex that directly controls the elongation of the nascent autophagosomal membrane (PubMed:20505359, PubMed:28561066). {ECO:0000269|PubMed:20505359, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:28890335, ECO:0000269|PubMed:30968111}.; FUNCTION: [Isoform 4]: Recruits the ATG12-ATG5-ATG16L1 complex to omegasomes and preautophagosomal structures, resulting in ATG8 family proteins lipidation and starvation-induced autophagy. Isoform 4 is also required for autophagic clearance of pathogenic bacteria. Isoform 4 binds the membrane surrounding Salmonella and recruits the ATG12-5-16L1 complex, initiating LC3 conjugation, autophagosomal membrane formation, and engulfment of Salmonella. {ECO:0000269|PubMed:24954904}. |
Q9Y5X5 | NPFFR2 | S478 | psp | Neuropeptide FF receptor 2 (G-protein coupled receptor 74) (G-protein coupled receptor HLWAR77) (Neuropeptide G-protein coupled receptor) | Receptor for NPAF (A-18-F-amide) and NPFF (F-8-F-amide) neuropeptides, also known as morphine-modulating peptides. Can also be activated by a variety of naturally occurring or synthetic FMRF-amide like ligands. This receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. {ECO:0000269|PubMed:11024015}. |
Q9Y6N7 | ROBO1 | S1094 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q9Y6W6 | DUSP10 | S224 | psp | Dual specificity protein phosphatase 10 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 5) (MAP kinase phosphatase 5) (MKP-5) | Protein phosphatase involved in the inactivation of MAP kinases. Has a specificity for the MAPK11/MAPK12/MAPK13/MAPK14 subfamily. It preferably dephosphorylates p38. {ECO:0000269|PubMed:10391943, ECO:0000269|PubMed:10597297, ECO:0000269|PubMed:22375048}. |
O75592 | MYCBP2 | S3478 | PSP | E3 ubiquitin-protein ligase MYCBP2 (EC 2.3.2.33) (Myc-binding protein 2) (Protein associated with Myc) | Atypical E3 ubiquitin-protein ligase which specifically mediates ubiquitination of threonine and serine residues on target proteins, instead of ubiquitinating lysine residues (PubMed:29643511). Shows esterification activity towards both threonine and serine, with a preference for threonine, and acts via two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates (PubMed:29643511). Interacts with the E2 enzymes UBE2D1, UBE2D3, UBE2E1 and UBE2L3 (PubMed:18308511, PubMed:29643511). Plays a key role in neural development, probably by mediating ubiquitination of threonine residues on target proteins (Probable). Involved in different processes such as regulation of neurite outgrowth, synaptic growth, synaptogenesis and axon degeneration (By similarity). Required for the formation of major central nervous system axon tracts (By similarity). Required for proper axon growth by regulating axon navigation and axon branching: acts by regulating the subcellular location and stability of MAP3K12/DLK (By similarity). Required for proper localization of retinogeniculate projections but not for eye-specific segregation (By similarity). Regulates axon guidance in the olfactory system (By similarity). Involved in Wallerian axon degeneration, an evolutionarily conserved process that drives the loss of damaged axons: acts by promoting destabilization of NMNAT2, probably via ubiquitination of NMNAT2 (By similarity). Catalyzes ubiquitination of threonine and/or serine residues on NMNAT2, consequences of threonine and/or serine ubiquitination are however unknown (PubMed:29643511). Regulates the internalization of TRPV1 in peripheral sensory neurons (By similarity). Mediates ubiquitination and subsequent proteasomal degradation of TSC2/tuberin (PubMed:18308511, PubMed:27278822). Independently of the E3 ubiquitin-protein ligase activity, also acts as a guanosine exchange factor (GEF) for RAN in neurons of dorsal root ganglia (PubMed:26304119). May function as a facilitator or regulator of transcriptional activation by MYC (PubMed:9689053). Acts in concert with HUWE1 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). {ECO:0000250|UniProtKB:Q7TPH6, ECO:0000269|PubMed:18308511, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26304119, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:29643511, ECO:0000269|PubMed:9689053}. |
Q86UE8 | TLK2 | S686 | EPSD|PSP | Serine/threonine-protein kinase tousled-like 2 (EC 2.7.11.1) (HsHPK) (PKU-alpha) (Tousled-like kinase 2) | Serine/threonine-protein kinase involved in the process of chromatin assembly and probably also DNA replication, transcription, repair, and chromosome segregation (PubMed:10523312, PubMed:11470414, PubMed:12660173, PubMed:12955071, PubMed:29955062, PubMed:33323470, PubMed:9427565). Phosphorylates the chromatin assembly factors ASF1A and ASF1B (PubMed:11470414, PubMed:20016786, PubMed:29955062, PubMed:35136069). Phosphorylation of ASF1A prevents its proteasome-mediated degradation, thereby enhancing chromatin assembly (PubMed:20016786). Negative regulator of amino acid starvation-induced autophagy (PubMed:22354037). {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:12955071, ECO:0000269|PubMed:20016786, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:29955062, ECO:0000269|PubMed:33323470, ECO:0000269|PubMed:35136069, ECO:0000269|PubMed:9427565}. |
Q9UKI8 | TLK1 | S679 | EPSD|PSP | Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) | Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}. |
O95861 | BPNT1 | S57 | Sugiyama | 3'(2'),5'-bisphosphate nucleotidase 1 (EC 3.1.3.7) (3'-phosphoadenosine 5'-phosphate phosphatase) (PAP phosphatase) (Bisphosphate 3'-nucleotidase 1) (BPntase 1) (HsPIP) (Inositol-polyphosphate 1-phosphatase) (EC 3.1.3.57) | Phosphatase that converts 3'(2')-phosphoadenosine 5'-phosphate (PAP) to AMP and inositol 1,4-bisphosphate (Ins(1,4)P2) to inositol 4-phosphate (PubMed:10675562). Is also able to hydrolyze adenosine 3'-phosphate 5'-phosphosulfate (PAPS) to adenosine 5'-phosphosulfate (APS) (By similarity). Probably prevents the toxic accumulation of PAP, a compound which inhibits a variety of proteins, including PAPS-utilizing enzymes such as sulfotransferases, and RNA processing enzymes. Could also play a role in inositol recycling and phosphoinositide metabolism. Is not active on 3'-AMP, inositol-1-phosphate and inositol-1,4,5-triphosphate (PubMed:10675562). {ECO:0000250|UniProtKB:Q9Z1N4, ECO:0000269|PubMed:10675562}. |
Q6IBS0 | TWF2 | S140 | Sugiyama | Twinfilin-2 (A6-related protein) (hA6RP) (Protein tyrosine kinase 9-like) (Twinfilin-1-like protein) | Actin-binding protein involved in motile and morphological processes. Inhibits actin polymerization, likely by sequestering G-actin. By capping the barbed ends of filaments, it also regulates motility. Seems to play an important role in clathrin-mediated endocytosis and distribution of endocytic organelles. May play a role in regulating the mature length of the middle and short rows of stereocilia (By similarity). {ECO:0000250}. |
O14965 | AURKA | S226 | GPS6|ELM|EPSD|PSP | Aurora kinase A (EC 2.7.11.1) (Aurora 2) (Aurora/IPL1-related kinase 1) (ARK-1) (Aurora-related kinase 1) (Breast tumor-amplified kinase) (Ipl1- and aurora-related kinase 1) (Serine/threonine-protein kinase 15) (Serine/threonine-protein kinase 6) (Serine/threonine-protein kinase Ayk1) (Serine/threonine-protein kinase aurora-A) | Mitotic serine/threonine kinase that contributes to the regulation of cell cycle progression (PubMed:11039908, PubMed:12390251, PubMed:17125279, PubMed:17360485, PubMed:18615013, PubMed:26246606). Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis (PubMed:14523000, PubMed:26246606). Required for normal spindle positioning during mitosis and for the localization of NUMA1 and DCTN1 to the cell cortex during metaphase (PubMed:27335426). Required for initial activation of CDK1 at centrosomes (PubMed:13678582, PubMed:15128871). Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDEL1, PARD3, PPP1R2, PLK1, RASSF1, TACC3, p53/TP53 and TPX2 (PubMed:11551964, PubMed:14702041, PubMed:15128871, PubMed:15147269, PubMed:15987997, PubMed:17604723, PubMed:18056443, PubMed:18615013). Phosphorylates MCRS1 which is required for MCRS1-mediated kinetochore fiber assembly and mitotic progression (PubMed:27192185). Regulates KIF2A tubulin depolymerase activity (PubMed:19351716). Important for microtubule formation and/or stabilization (PubMed:18056443). Required for normal axon formation (PubMed:19812038). Plays a role in microtubule remodeling during neurite extension (PubMed:19668197). Also acts as a key regulatory component of the p53/TP53 pathway, and particularly the checkpoint-response pathways critical for oncogenic transformation of cells, by phosphorylating and destabilizing p53/TP53 (PubMed:14702041). Phosphorylates its own inhibitors, the protein phosphatase type 1 (PP1) isoforms, to inhibit their activity (PubMed:11551964). Inhibits cilia outgrowth (By similarity). Required for cilia disassembly via phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723, PubMed:20643351). Regulates protein levels of the anti-apoptosis protein BIRC5 by suppressing the expression of the SCF(FBXL7) E3 ubiquitin-protein ligase substrate adapter FBXL7 through the phosphorylation of the transcription factor FOXP1 (PubMed:28218735). {ECO:0000250|UniProtKB:A0A8I3S724, ECO:0000269|PubMed:11039908, ECO:0000269|PubMed:11551964, ECO:0000269|PubMed:12390251, ECO:0000269|PubMed:13678582, ECO:0000269|PubMed:14523000, ECO:0000269|PubMed:14702041, ECO:0000269|PubMed:15128871, ECO:0000269|PubMed:15147269, ECO:0000269|PubMed:15987997, ECO:0000269|PubMed:17125279, ECO:0000269|PubMed:17360485, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19668197, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:20643351, ECO:0000269|PubMed:26246606, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27335426, ECO:0000269|PubMed:28218735}. |
Q9Y6A5 | TACC3 | S552 | SIGNOR | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
O75116 | ROCK2 | S134 | Sugiyama | Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) | Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}. |
Q13464 | ROCK1 | S118 | Sugiyama | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
P33316 | DUT | S130 | Sugiyama | Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase) | Catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate and through its action efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis (PubMed:17880943, PubMed:8631816, PubMed:8805593). Inhibits peroxisome proliferator-activated receptor (PPAR) activity by binding of its N-terminal to PPAR, preventing the latter's dimerization with retinoid X receptor (By similarity). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:P70583, ECO:0000250|UniProtKB:Q9CQ43, ECO:0000269|PubMed:17880943, ECO:0000269|PubMed:8631816, ECO:0000269|PubMed:8805593}. |
O75676 | RPS6KA4 | S421 | Sugiyama | Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}. |
P05783 | KRT18 | S127 | Sugiyama | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P06493 | CDK1 | S178 | Sugiyama | Cyclin-dependent kinase 1 (CDK1) (EC 2.7.11.22) (EC 2.7.11.23) (Cell division control protein 2 homolog) (Cell division protein kinase 1) (p34 protein kinase) | Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition via association with multiple interphase cyclins (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30139873, PubMed:30704899). Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, KAT5, LMNA, LMNB, LBR, MKI67, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MLST8, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RBBP8/CtIP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2, CGAS and RUNX2 (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19202191, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25012651, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30704899, PubMed:32351706, PubMed:34741373). CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs (PubMed:18480403, PubMed:20360007). Essential for early stages of embryonic development (PubMed:18480403, PubMed:20360007). During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation (PubMed:18480403, PubMed:20360007, PubMed:2188730, PubMed:2344612, PubMed:30139873). Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis (PubMed:18480403, PubMed:20360007). Phosphorylates KRT5 during prometaphase and metaphase (By similarity). Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair (PubMed:20360007). Reactivated after successful DNA repair through WIP1-dependent signaling leading to CDC25A/B/C-mediated dephosphorylation and restoring cell cycle progression (PubMed:20395957). Catalyzes lamin (LMNA, LMNB1 and LMNB2) phosphorylation at the onset of mitosis, promoting nuclear envelope breakdown (PubMed:2188730, PubMed:2344612, PubMed:37788673). In proliferating cells, CDK1-mediated FOXO1 phosphorylation at the G2-M phase represses FOXO1 interaction with 14-3-3 proteins and thereby promotes FOXO1 nuclear accumulation and transcription factor activity, leading to cell death of postmitotic neurons (PubMed:18356527). The phosphorylation of beta-tubulins regulates microtubule dynamics during mitosis (PubMed:16371510). NEDD1 phosphorylation promotes PLK1-mediated NEDD1 phosphorylation and subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). In addition, CC2D1A phosphorylation regulates CC2D1A spindle pole localization and association with SCC1/RAD21 and centriole cohesion during mitosis (PubMed:20171170). The phosphorylation of Bcl-xL/BCL2L1 after prolongated G2 arrest upon DNA damage triggers apoptosis (PubMed:19917720). In contrast, CASP8 phosphorylation during mitosis prevents its activation by proteolysis and subsequent apoptosis (PubMed:20937773). This phosphorylation occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes (PubMed:20937773). EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing (PubMed:20935635). CALD1 phosphorylation promotes Schwann cell migration during peripheral nerve regeneration (By similarity). CDK1-cyclin-B complex phosphorylates NCKAP5L and mediates its dissociation from centrosomes during mitosis (PubMed:26549230). Regulates the amplitude of the cyclic expression of the core clock gene BMAL1 by phosphorylating its transcriptional repressor NR1D1, and this phosphorylation is necessary for SCF(FBXW7)-mediated ubiquitination and proteasomal degradation of NR1D1 (PubMed:27238018). Phosphorylates EML3 at 'Thr-881' which is essential for its interaction with HAUS augmin-like complex and TUBG1 (PubMed:30723163). Phosphorylates CGAS during mitosis, leading to its inhibition, thereby preventing CGAS activation by self DNA during mitosis (PubMed:32351706). Phosphorylates SKA3 on multiple sites during mitosis which promotes SKA3 binding to the NDC80 complex and anchoring of the SKA complex to kinetochores, to enable stable attachment of mitotic spindle microtubules to kinetochores (PubMed:28479321, PubMed:31804178, PubMed:32491969). {ECO:0000250|UniProtKB:P11440, ECO:0000250|UniProtKB:P39951, ECO:0000269|PubMed:16371510, ECO:0000269|PubMed:16407259, ECO:0000269|PubMed:16933150, ECO:0000269|PubMed:17459720, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:18480403, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19917720, ECO:0000269|PubMed:20171170, ECO:0000269|PubMed:20360007, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:20937773, ECO:0000269|PubMed:21063390, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23601106, ECO:0000269|PubMed:23602554, ECO:0000269|PubMed:25012651, ECO:0000269|PubMed:25556658, ECO:0000269|PubMed:26549230, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:27238018, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:28479321, ECO:0000269|PubMed:30139873, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:30723163, ECO:0000269|PubMed:31804178, ECO:0000269|PubMed:32351706, ECO:0000269|PubMed:32491969, ECO:0000269|PubMed:34741373, ECO:0000269|PubMed:37788673}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. {ECO:0000269|PubMed:21516087}. |
P54709 | ATP1B3 | S102 | Sugiyama | Sodium/potassium-transporting ATPase subunit beta-3 (Sodium/potassium-dependent ATPase subunit beta-3) (ATPB-3) (CD antigen CD298) | This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known. |
Q7L5Y9 | MAEA | S226 | Sugiyama | E3 ubiquitin-protein transferase MAEA (EC 2.3.2.27) (Cell proliferation-inducing gene 5 protein) (Erythroblast macrophage protein) (Human lung cancer oncogene 10 protein) (HLC-10) (Macrophage erythroblast attacher) (P44EMLP) | Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1. MAEA and RMND5A are both required for catalytic activity of the CTLH E3 ubiquitin-protein ligase complex (PubMed:29911972). MAEA is required for normal cell proliferation (PubMed:29911972). The CTLH E3 ubiquitin-protein ligase complex is not required for the degradation of enzymes involved in gluconeogenesis, such as FBP1 (PubMed:29911972). Plays a role in erythroblast enucleation during erythrocyte maturation and in the development of mature macrophages (By similarity). Mediates the attachment of erythroid cell to mature macrophages; this MAEA-mediated contact inhibits erythroid cell apoptosis (PubMed:9763581). Participates in erythroblastic island formation, which is the functional unit of definitive erythropoiesis. Associates with F-actin to regulate actin distribution in erythroblasts and macrophages (By similarity). May contribute to nuclear architecture and cells division events (Probable). {ECO:0000250|UniProtKB:Q4VC33, ECO:0000269|PubMed:29911972, ECO:0000269|PubMed:9763581, ECO:0000305|PubMed:16510120}. |
P15735 | PHKG2 | S297 | Sugiyama | Phosphorylase b kinase gamma catalytic chain, liver/testis isoform (PHK-gamma-LT) (PHK-gamma-T) (EC 2.7.11.19) (PSK-C3) (Phosphorylase kinase subunit gamma-2) | Catalytic subunit of the phosphorylase b kinase (PHK), which mediates the neural and hormonal regulation of glycogen breakdown (glycogenolysis) by phosphorylating and thereby activating glycogen phosphorylase. May regulate glycogeneolysis in the testis. In vitro, phosphorylates PYGM (PubMed:35549678). {ECO:0000250|UniProtKB:P31325, ECO:0000269|PubMed:10487978, ECO:0000269|PubMed:35549678}. |
P16591 | FER | S485 | Sugiyama | Tyrosine-protein kinase Fer (EC 2.7.10.2) (Feline encephalitis virus-related kinase FER) (Fujinami poultry sarcoma/Feline sarcoma-related protein Fer) (Proto-oncogene c-Fer) (Tyrosine kinase 3) (p94-Fer) | Tyrosine-protein kinase that acts downstream of cell surface receptors for growth factors and plays a role in the regulation of the actin cytoskeleton, microtubule assembly, lamellipodia formation, cell adhesion, cell migration and chemotaxis. Acts downstream of EGFR, KIT, PDGFRA and PDGFRB. Acts downstream of EGFR to promote activation of NF-kappa-B and cell proliferation. May play a role in the regulation of the mitotic cell cycle. Plays a role in the insulin receptor signaling pathway and in activation of phosphatidylinositol 3-kinase. Acts downstream of the activated FCER1 receptor and plays a role in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Plays a role in the regulation of mast cell degranulation. Plays a role in leukocyte recruitment and diapedesis in response to bacterial lipopolysaccharide (LPS). Plays a role in synapse organization, trafficking of synaptic vesicles, the generation of excitatory postsynaptic currents and neuron-neuron synaptic transmission. Plays a role in neuronal cell death after brain damage. Phosphorylates CTTN, CTNND1, PTK2/FAK1, GAB1, PECAM1 and PTPN11. May phosphorylate JUP and PTPN1. Can phosphorylate STAT3, but the biological relevance of this depends on cell type and stimulus. {ECO:0000269|PubMed:12972546, ECO:0000269|PubMed:14517306, ECO:0000269|PubMed:19147545, ECO:0000269|PubMed:19339212, ECO:0000269|PubMed:19738202, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:21518868, ECO:0000269|PubMed:22223638, ECO:0000269|PubMed:7623846, ECO:0000269|PubMed:9722593}. |
Q8N983 | MRPL43 | S30 | Sugiyama | Large ribosomal subunit protein mL43 (39S ribosomal protein L43, mitochondrial) (L43mt) (MRP-L43) (Mitochondrial ribosomal protein bMRP36a) | None |
P29322 | EPHA8 | S752 | Sugiyama | Ephrin type-A receptor 8 (EC 2.7.10.1) (EPH- and ELK-related kinase) (EPH-like kinase 3) (EK3) (hEK3) (Tyrosine-protein kinase receptor EEK) | Receptor tyrosine kinase which binds promiscuously GPI-anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. The GPI-anchored ephrin-A EFNA2, EFNA3, and EFNA5 are able to activate EPHA8 through phosphorylation. With EFNA5 may regulate integrin-mediated cell adhesion and migration on fibronectin substrate but also neurite outgrowth. During development of the nervous system also plays a role in axon guidance. Downstream effectors of the EPHA8 signaling pathway include FYN which promotes cell adhesion upon activation by EPHA8 and the MAP kinases in the stimulation of neurite outgrowth (By similarity). {ECO:0000250}. |
P37173 | TGFBR2 | S441 | iPTMNet|EPSD | TGF-beta receptor type-2 (TGFR-2) (EC 2.7.11.30) (TGF-beta type II receptor) (Transforming growth factor-beta receptor type II) (TGF-beta receptor type II) (TbetaR-II) | Transmembrane serine/threonine kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and thus regulates a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. {ECO:0000269|PubMed:7774578}.; FUNCTION: [Isoform 1]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 2]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 3]: Binds TGFB1, TGFB2 and TGFB3 in the picomolar affinity range without the participation of additional receptors. Blocks activation of SMAD2 and SMAD3 by TGFB1. {ECO:0000269|PubMed:34568316}. |
Q00610 | CLTC | S1127 | Sugiyama | Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9BQK8 | LPIN3 | S262 | Sugiyama | Phosphatidate phosphatase LPIN3 (EC 3.1.3.4) (Lipin-3) (Lipin-3-like) | Magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis therefore regulates fatty acid metabolism. {ECO:0000250|UniProtKB:Q99PI4}. |
Q14697 | GANAB | S169 | Sugiyama | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
P51813 | BMX | S619 | Sugiyama | Cytoplasmic tyrosine-protein kinase BMX (EC 2.7.10.2) (Bone marrow tyrosine kinase gene in chromosome X protein) (Epithelial and endothelial tyrosine kinase) (ETK) (NTK38) | Non-receptor tyrosine kinase that plays central but diverse modulatory roles in various signaling processes involved in the regulation of actin reorganization, cell migration, cell proliferation and survival, cell adhesion, and apoptosis. Participates in signal transduction stimulated by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen receptors and integrins. Induces tyrosine phosphorylation of BCAR1 in response to integrin regulation. Activation of BMX by integrins is mediated by PTK2/FAK1, a key mediator of integrin signaling events leading to the regulation of actin cytoskeleton and cell motility. Plays a critical role in TNF-induced angiogenesis, and implicated in the signaling of TEK and FLT1 receptors, 2 important receptor families essential for angiogenesis. Required for the phosphorylation and activation of STAT3, a transcription factor involved in cell differentiation. Also involved in interleukin-6 (IL6) induced differentiation. Also plays a role in programming adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts. May be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1. May also play a role in the growth and differentiation of hematopoietic cells; as well as in signal transduction in endocardial and arterial endothelial cells. {ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:12370298, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:15788485, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:9520419}. |
P24752 | ACAT1 | S195 | Sugiyama | Acetyl-CoA acetyltransferase, mitochondrial (EC 2.3.1.9) (Acetoacetyl-CoA thiolase) (T2) | This is one of the enzymes that catalyzes the last step of the mitochondrial beta-oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA (PubMed:1715688, PubMed:7728148, PubMed:9744475). Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms (PubMed:1715688, PubMed:7728148, PubMed:9744475). The activity of the enzyme is reversible and it can also catalyze the condensation of two acetyl-CoA molecules into acetoacetyl-CoA (PubMed:17371050). Thereby, it plays a major role in ketone body metabolism (PubMed:1715688, PubMed:17371050, PubMed:7728148, PubMed:9744475). {ECO:0000269|PubMed:1715688, ECO:0000269|PubMed:17371050, ECO:0000269|PubMed:7728148, ECO:0000269|PubMed:9744475}. |
O95786 | RIGI | S654 | EPSD|PSP | Antiviral innate immune response receptor RIG-I (ATP-dependent RNA helicase DDX58) (EC 3.6.4.13) (DEAD box protein 58) (RIG-I-like receptor 1) (RLR-1) (RNA sensor RIG-I) (Retinoic acid-inducible gene 1 protein) (RIG-1) (Retinoic acid-inducible gene I protein) (RIG-I) | Innate immune receptor that senses cytoplasmic viral nucleic acids and activates a downstream signaling cascade leading to the production of type I interferons and pro-inflammatory cytokines (PubMed:15208624, PubMed:15708988, PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:17190814, PubMed:18636086, PubMed:19122199, PubMed:19211564, PubMed:24366338, PubMed:28469175, PubMed:29117565, PubMed:31006531, PubMed:34935440, PubMed:35263596, PubMed:36793726). Forms a ribonucleoprotein complex with viral RNAs on which it homooligomerizes to form filaments (PubMed:15208624, PubMed:15708988). The homooligomerization allows the recruitment of RNF135 an E3 ubiquitin-protein ligase that activates and amplifies the RIG-I-mediated antiviral signaling in an RNA length-dependent manner through ubiquitination-dependent and -independent mechanisms (PubMed:28469175, PubMed:31006531). Upon activation, associates with mitochondria antiviral signaling protein (MAVS/IPS1) that activates the IKK-related kinases TBK1 and IKBKE which in turn phosphorylate the interferon regulatory factors IRF3 and IRF7, activating transcription of antiviral immunological genes including the IFN-alpha and IFN-beta interferons (PubMed:28469175, PubMed:31006531). Ligands include 5'-triphosphorylated ssRNAs and dsRNAs but also short dsRNAs (<1 kb in length) (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). In addition to the 5'-triphosphate moiety, blunt-end base pairing at the 5'-end of the RNA is very essential (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). Overhangs at the non-triphosphorylated end of the dsRNA RNA have no major impact on its activity (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). A 3'overhang at the 5'triphosphate end decreases and any 5'overhang at the 5' triphosphate end abolishes its activity (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). Detects both positive and negative strand RNA viruses including members of the families Paramyxoviridae: Human respiratory syncytial virus and measles virus (MeV), Rhabdoviridae: vesicular stomatitis virus (VSV), Orthomyxoviridae: influenza A and B virus, Flaviviridae: Japanese encephalitis virus (JEV), hepatitis C virus (HCV), dengue virus (DENV) and west Nile virus (WNV) (PubMed:21616437, PubMed:21884169). It also detects rotaviruses and reoviruses (PubMed:21616437, PubMed:21884169). Detects and binds to SARS-CoV-2 RNAs which is inhibited by m6A RNA modifications (Ref.74). Also involved in antiviral signaling in response to viruses containing a dsDNA genome such as Epstein-Barr virus (EBV) (PubMed:19631370). Detects dsRNA produced from non-self dsDNA by RNA polymerase III, such as Epstein-Barr virus-encoded RNAs (EBERs). May play important roles in granulocyte production and differentiation, bacterial phagocytosis and in the regulation of cell migration. {ECO:0000269|PubMed:15208624, ECO:0000269|PubMed:15708988, ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:17190814, ECO:0000269|PubMed:18636086, ECO:0000269|PubMed:19122199, ECO:0000269|PubMed:19211564, ECO:0000269|PubMed:19576794, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:21742966, ECO:0000269|PubMed:24366338, ECO:0000269|PubMed:28469175, ECO:0000269|PubMed:29117565, ECO:0000269|PubMed:31006531, ECO:0000269|PubMed:34935440, ECO:0000269|PubMed:35263596, ECO:0000269|PubMed:36793726, ECO:0000269|Ref.74, ECO:0000303|PubMed:21616437, ECO:0000303|PubMed:21884169}. |
P08195 | SLC3A2 | S252 | Sugiyama | Amino acid transporter heavy chain SLC3A2 (4F2 cell-surface antigen heavy chain) (4F2hc) (4F2 heavy chain antigen) (Lymphocyte activation antigen 4F2 large subunit) (Solute carrier family 3 member 2) (CD antigen CD98) | Acts as a chaperone that facilitates biogenesis and trafficking of functional transporters heterodimers to the plasma membrane. Forms heterodimer with SLC7 family transporters (SLC7A5, SLC7A6, SLC7A7, SLC7A8, SLC7A10 and SLC7A11), a group of amino-acid antiporters (PubMed:10574970, PubMed:10903140, PubMed:11557028, PubMed:30867591, PubMed:33298890, PubMed:33758168, PubMed:34880232, PubMed:9751058, PubMed:9829974, PubMed:9878049). Heterodimers function as amino acids exchangers, the specificity of the substrate depending on the SLC7A subunit. Heterodimers SLC3A2/SLC7A6 or SLC3A2/SLC7A7 mediate the uptake of dibasic amino acids (PubMed:10903140, PubMed:9829974). Heterodimer SLC3A2/SLC7A11 functions as an antiporter by mediating the exchange of extracellular anionic L-cystine and intracellular L-glutamate across the cellular plasma membrane (PubMed:34880232). SLC3A2/SLC7A10 translocates small neutral L- and D-amino acids across the plasma membrane (By similarity). SLC3A2/SLC75 or SLC3A2/SLC7A8 translocates neutral amino acids with broad specificity, thyroid hormones and L-DOPA (PubMed:10574970, PubMed:11389679, PubMed:11557028, PubMed:11564694, PubMed:11742812, PubMed:12117417, PubMed:12225859, PubMed:12716892, PubMed:15980244, PubMed:30867591, PubMed:33298890, PubMed:33758168). SLC3A2 is essential for plasma membrane localization, stability, and the transport activity of SLC7A5 and SLC7A8 (PubMed:10391915, PubMed:10574970, PubMed:11311135, PubMed:15769744, PubMed:33066406). When associated with LAPTM4B, the heterodimer SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Modulates integrin-related signaling and is essential for integrin-dependent cell spreading, migration and tumor progression (PubMed:11121428, PubMed:15625115). {ECO:0000250|UniProtKB:P63115, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:10903140, ECO:0000269|PubMed:11121428, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11389679, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:11742812, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15625115, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15980244, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:33066406, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:33758168, ECO:0000269|PubMed:34880232, ECO:0000269|PubMed:9751058, ECO:0000269|PubMed:9829974, ECO:0000269|PubMed:9878049}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.; FUNCTION: (Microbial infection) Acts as a receptor for malaria parasite Plasmodium vivax (Thai isolate) in immature red blood cells. {ECO:0000269|PubMed:34294905}. |
Q96ES7 | SGF29 | S31 | Sugiyama | SAGA-associated factor 29 (Coiled-coil domain-containing protein 101) (SAGA complex-associated factor 29) | Chromatin reader component of some histone acetyltransferase (HAT) SAGA-type complexes like the TFTC-HAT, ATAC or STAGA complexes (PubMed:19103755, PubMed:20850016, PubMed:21685874, PubMed:26421618, PubMed:26578293). SGF29 specifically recognizes and binds methylated 'Lys-4' of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3) (PubMed:20850016, PubMed:21685874, PubMed:26421618, PubMed:26578293). In the SAGA-type complexes, SGF29 is required to recruit complexes to H3K4me (PubMed:20850016). Involved in the response to endoplasmic reticulum (ER) stress by recruiting the SAGA complex to H3K4me, thereby promoting histone H3 acetylation and cell survival (PubMed:23894581). Also binds non-histone proteins that are methylated on Lys residues: specifically recognizes and binds CGAS monomethylated on 'Lys-506' (By similarity). {ECO:0000250|UniProtKB:Q9DA08, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:21685874, ECO:0000269|PubMed:23894581, ECO:0000269|PubMed:26421618, ECO:0000269|PubMed:26578293}. |
Q96FC9 | DDX11 | S277 | Sugiyama | ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) | DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}. |
P52952 | NKX2-5 | S164 | SIGNOR|iPTMNet | Homeobox protein Nkx-2.5 (Cardiac-specific homeobox) (Homeobox protein CSX) (Homeobox protein NK-2 homolog E) | Transcription factor required for the development of the heart and the spleen (PubMed:22560297). During heart development, acts as a transcriptional activator of NPPA/ANF in cooperation with GATA4 (By similarity). May cooperate with TBX2 to negatively modulate expression of NPPA/ANF in the atrioventricular canal (By similarity). Binds to the core DNA motif of NPPA promoter (PubMed:22849347, PubMed:26926761). Together with PBX1, required for spleen development through a mechanism that involves CDKN2B repression (PubMed:22560297). Positively regulates transcription of genes such as COL3A1 and MMP2, resulting in increased pulmonary endothelial fibrosis in response to hypoxia (PubMed:29899023). {ECO:0000250|UniProtKB:P42582, ECO:0000269|PubMed:22560297, ECO:0000269|PubMed:22849347, ECO:0000269|PubMed:26926761, ECO:0000269|PubMed:29899023}. |
Q00536 | CDK16 | S336 | SIGNOR | Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) | Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}. |
Q05513 | PRKCZ | S482 | Sugiyama | Protein kinase C zeta type (EC 2.7.11.13) (nPKC-zeta) | Calcium- and diacylglycerol-independent serine/threonine-protein kinase that functions in phosphatidylinositol 3-kinase (PI3K) pathway and mitogen-activated protein (MAP) kinase cascade, and is involved in NF-kappa-B activation, mitogenic signaling, cell proliferation, cell polarity, inflammatory response and maintenance of long-term potentiation (LTP). Upon lipopolysaccharide (LPS) treatment in macrophages, or following mitogenic stimuli, functions downstream of PI3K to activate MAP2K1/MEK1-MAPK1/ERK2 signaling cascade independently of RAF1 activation. Required for insulin-dependent activation of AKT3, but may function as an adapter rather than a direct activator. Upon insulin treatment may act as a downstream effector of PI3K and contribute to the activation of translocation of the glucose transporter SLC2A4/GLUT4 and subsequent glucose transport in adipocytes. In EGF-induced cells, binds and activates MAP2K5/MEK5-MAPK7/ERK5 independently of its kinase activity and can activate JUN promoter through MEF2C. Through binding with SQSTM1/p62, functions in interleukin-1 signaling and activation of NF-kappa-B with the specific adapters RIPK1 and TRAF6. Participates in TNF-dependent transactivation of NF-kappa-B by phosphorylating and activating IKBKB kinase, which in turn leads to the degradation of NF-kappa-B inhibitors. In migrating astrocytes, forms a cytoplasmic complex with PARD6A and is recruited by CDC42 to function in the establishment of cell polarity along with the microtubule motor and dynein. In association with FEZ1, stimulates neuronal differentiation in PC12 cells. In the inflammatory response, is required for the T-helper 2 (Th2) differentiation process, including interleukin production, efficient activation of JAK1 and the subsequent phosphorylation and nuclear translocation of STAT6. May be involved in development of allergic airway inflammation (asthma), a process dependent on Th2 immune response. In the NF-kappa-B-mediated inflammatory response, can relieve SETD6-dependent repression of NF-kappa-B target genes by phosphorylating the RELA subunit at 'Ser-311'. Phosphorylates VAMP2 in vitro (PubMed:17313651). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11035106, ECO:0000269|PubMed:12162751, ECO:0000269|PubMed:15084291, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:17313651, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9447975}.; FUNCTION: [Isoform 2]: Involved in late synaptic long term potention phase in CA1 hippocampal cells and long term memory maintenance. {ECO:0000250|UniProtKB:Q02956}. |
P35813 | PPM1A | S181 | Sugiyama | Protein phosphatase 1A (EC 3.1.3.16) (Protein phosphatase 2C isoform alpha) (PP2C-alpha) (Protein phosphatase IA) | Enzyme with a broad specificity. Negatively regulates TGF-beta signaling through dephosphorylating SMAD2 and SMAD3, resulting in their dissociation from SMAD4, nuclear export of the SMADs and termination of the TGF-beta-mediated signaling. Dephosphorylates PRKAA1 and PRKAA2. Plays an important role in the termination of TNF-alpha-mediated NF-kappa-B activation through dephosphorylating and inactivating IKBKB/IKKB. {ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:18930133}. |
Q96JX3 | SERAC1 | S450 | Sugiyama | Protein SERAC1 (Serine active site-containing protein 1) | Facilitates the transport of serine from the cytosol to the mitochondria by interacting with and stabilizing Sideroflexin-1 (SFXN1), a mitochondrial serine transporter, playing a fundamental role in the one-carbon cycle responsible for the synthesis of nucleotides needed for mitochondrial DNA replication (PubMed:35235340). Plays an important role in the phosphatidylglycerol (PG) remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking (PubMed:22683713). Specifically involved in the exchange of the sn-1 acyl chain from PG 16:0/18:1(9Z) (also known as 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-sn-glycerol)) to PG 18:0/18:1(9Z) (also known as 1-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-sn-glycerol)), a step needed in the bis(monoacylglycerol)phosphate biosynthetic pathway (PubMed:22683713). May have acyltransferase activity although the mechanism for PG remodeling has not been determined (PubMed:22683713). {ECO:0000269|PubMed:22683713, ECO:0000269|PubMed:35235340}. |
Q92844 | TANK | S100 | SIGNOR | TRAF family member-associated NF-kappa-B activator (TRAF-interacting protein) (I-TRAF) | Adapter protein involved in I-kappa-B-kinase (IKK) regulation which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. Acts as a regulator of TRAF function by maintaining them in a latent state. Blocks TRAF2 binding to LMP1 and inhibits LMP1-mediated NF-kappa-B activation. Negatively regulates NF-kappaB signaling and cell survival upon DNA damage (PubMed:25861989). Plays a role as an adapter to assemble ZC3H12A, USP10 in a deubiquitination complex which plays a negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Promotes UBP10-induced deubiquitination of TRAF6 in response to DNA damage (PubMed:25861989). May control negatively TRAF2-mediated NF-kappa-B activation signaled by CD40, TNFR1 and TNFR2. {ECO:0000269|PubMed:12133833, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:25861989}. |
P35613 | BSG | S228 | Sugiyama | Basigin (5F7) (Collagenase stimulatory factor) (Extracellular matrix metalloproteinase inducer) (EMMPRIN) (Hepatoma-associated antigen) (HAb18G) (Leukocyte activation antigen M6) (OK blood group antigen) (Tumor cell-derived collagenase stimulatory factor) (TCSF) (CD antigen CD147) | [Isoform 1]: Essential for normal retinal maturation and development (By similarity). Acts as a retinal cell surface receptor for NXNL1 and plays an important role in NXNL1-mediated survival of retinal cone photoreceptors (PubMed:25957687). In association with glucose transporter SLC16A1/GLUT1 and NXNL1, promotes retinal cone survival by enhancing aerobic glycolysis and accelerating the entry of glucose into photoreceptors (PubMed:25957687). May act as a potent stimulator of IL6 secretion in multiple cell lines that include monocytes (PubMed:21620857). {ECO:0000250|UniProtKB:P18572, ECO:0000269|PubMed:21620857, ECO:0000269|PubMed:25957687}.; FUNCTION: [Isoform 1]: (Microbial infection) Erythrocyte receptor for P.falciparum RH5 which is essential for erythrocyte invasion by the merozoite stage of P.falciparum isolates 3D7 and Dd2. {ECO:0000269|PubMed:22080952}.; FUNCTION: [Isoform 2]: Signaling receptor for cyclophilins, essential for PPIA/CYPA and PPIB/CYPB-dependent signaling related to chemotaxis and adhesion of immune cells (PubMed:11688976, PubMed:11943775). Plays an important role in targeting monocarboxylate transporters SLC16A1/GLUT1, SLC16A11 and SLC16A12 to the plasma membrane (PubMed:17127621, PubMed:21778275, PubMed:28666119). Acts as a coreceptor for vascular endothelial growth factor receptor 2 (KDR/VEGFR2) in endothelial cells enhancing its VEGFA-mediated activation and downstream signaling (PubMed:25825981). Promotes angiogenesis through EPAS1/HIF2A-mediated up-regulation of VEGFA (isoform VEGF-165 and VEGF-121) and KDR/VEGFR2 in endothelial cells (PubMed:19837976). Plays a key role in regulating tumor growth, invasion, metastasis and neoangiogenesis by stimulating the production and release of extracellular matrix metalloproteinases and KDR/VEGFR2 by both tumor cells and stromal cells (fibroblasts and endothelial cells) (PubMed:11992541, PubMed:12553375, PubMed:15833850). {ECO:0000269|PubMed:11688976, ECO:0000269|PubMed:11943775, ECO:0000269|PubMed:11992541, ECO:0000269|PubMed:12553375, ECO:0000269|PubMed:15833850, ECO:0000269|PubMed:17127621, ECO:0000269|PubMed:19837976, ECO:0000269|PubMed:21778275, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:28666119}.; FUNCTION: [Isoform 2]: (Microbial infection) Erythrocyte receptor for P.falciparum RH5 which is essential for erythrocyte invasion by the merozoite stage of P.falciparum isolates 3D7, Dd2, 7G8 and HB3 (PubMed:22080952, PubMed:26195724). Binding of P.falciparum RH5 results in BSG dimerization which triggers an increase in intracellular Ca(2+) in the erythrocyte (PubMed:28409866). This essential step leads to a rearrangement of the erythrocyte cytoskeleton required for the merozoite invasion (PubMed:28409866). {ECO:0000269|PubMed:22080952, ECO:0000269|PubMed:26195724, ECO:0000269|PubMed:28409866}.; FUNCTION: [Isoform 2]: (Microbial infection) Can facilitate human SARS coronavirus (SARS-CoV-1) infection via its interaction with virus-associated PPIA/CYPA. {ECO:0000269|PubMed:15688292}.; FUNCTION: [Isoform 2]: (Microbial infection) Can facilitate HIV-1 infection via its interaction with virus-associated PPIA/CYPA. {ECO:0000269|PubMed:11353871}.; FUNCTION: [Isoform 2]: (Microbial infection) First described as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is not required for SARS-CoV-2 infection. {ECO:0000269|PubMed:33432067, ECO:0000303|PubMed:32307653}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a receptor for measles virus. {ECO:0000269|PubMed:20147391}.; FUNCTION: [Isoform 2]: (Microbial infection) Promotes entry of pentamer-expressing human cytomegalovirus (HCMV) into epithelial and endothelial cells. {ECO:0000269|PubMed:29739904}. |
Q16513 | PKN2 | S183 | Sugiyama | Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) | PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}. |
Q12906 | ILF3 | S317 | Sugiyama | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
P27144 | AK4 | S195 | Sugiyama | Adenylate kinase 4, mitochondrial (EC 2.7.4.4) (EC 2.7.4.6) (Adenylate kinase 3-like) (GTP:AMP phosphotransferase AK4) | Broad-specificity mitochondrial nucleoside phosphate kinase involved in cellular nucleotide homeostasis by catalyzing nucleoside-phosphate interconversions (PubMed:19073142, PubMed:19766732, PubMed:23416111, PubMed:24767988). Similar to other adenylate kinases, preferentially catalyzes the phosphorylation of the nucleoside monophosphate AMP with ATP as phosphate donor to produce ADP (PubMed:19766732). Phosphorylates only AMP when using GTP as phosphate donor (PubMed:19766732). In vitro, can also catalyze the phosphorylation of CMP, dAMP and dCMP and use GTP as an alternate phosphate donor (PubMed:19766732, PubMed:23416111). Moreover, exhibits a diphosphate kinase activity, producing ATP, CTP, GTP, UTP, TTP, dATP, dCTP and dGTP from the corresponding diphosphate substrates with either ATP or GTP as phosphate donors (PubMed:23416111). Plays a role in controlling cellular ATP levels by regulating phosphorylation and activation of the energy sensor protein kinase AMPK (PubMed:24767988, PubMed:26980435). Plays a protective role in the cellular response to oxidative stress (PubMed:19130895, PubMed:23474458, PubMed:26980435). {ECO:0000269|PubMed:19073142, ECO:0000269|PubMed:19130895, ECO:0000269|PubMed:19766732, ECO:0000269|PubMed:23416111, ECO:0000269|PubMed:23474458, ECO:0000269|PubMed:24767988, ECO:0000269|PubMed:26980435}. |
O75506 | HSBP1 | S31 | Sugiyama | Heat shock factor-binding protein 1 (Nasopharyngeal carcinoma-associated antigen 13) (NPC-A-13) | Negative regulator of the heat shock response. Negatively affects HSF1 DNA-binding activity. May have a role in the suppression of the activation of the stress response during the aging process. |
O60749 | SNX2 | S264 | Sugiyama | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
P30086 | PEBP1 | S142 | Sugiyama | Phosphatidylethanolamine-binding protein 1 (PEBP-1) (HCNPpp) (Neuropolypeptide h3) (Prostatic-binding protein) (Raf kinase inhibitor protein) (RKIP) [Cleaved into: Hippocampal cholinergic neurostimulating peptide (HCNP)] | Binds ATP, opioids and phosphatidylethanolamine. Has lower affinity for phosphatidylinositol and phosphatidylcholine. Serine protease inhibitor which inhibits thrombin, neuropsin and chymotrypsin but not trypsin, tissue type plasminogen activator and elastase (By similarity). Inhibits the kinase activity of RAF1 by inhibiting its activation and by dissociating the RAF1/MEK complex and acting as a competitive inhibitor of MEK phosphorylation. {ECO:0000250, ECO:0000269|PubMed:18294816}.; FUNCTION: HCNP may be involved in the function of the presynaptic cholinergic neurons of the central nervous system. HCNP increases the production of choline acetyltransferase but not acetylcholinesterase. Seems to be mediated by a specific receptor (By similarity). {ECO:0000250}. |
Q04864 | REL | S274 | Sugiyama | Proto-oncogene c-Rel | Proto-oncogene that may play a role in differentiation and lymphopoiesis. NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The NF-kappa-B heterodimer RELA/p65-c-Rel is a transcriptional activator. |
Q96PF2 | TSSK2 | S153 | Sugiyama | Testis-specific serine/threonine-protein kinase 2 (TSK-2) (TSK2) (TSSK-2) (Testis-specific kinase 2) (EC 2.7.11.1) (DiGeorge syndrome protein G) (DGS-G) (Serine/threonine-protein kinase 22B) | Testis-specific serine/threonine-protein kinase required during spermatid development. Phosphorylates TSKS at 'Ser-288' and SPAG16. Involved in the late stages of spermatogenesis, during the reconstruction of the cytoplasm. During spermatogenesis, required for the transformation of a ring-shaped structure around the base of the flagellum originating from the chromatoid body. {ECO:0000269|PubMed:15044604, ECO:0000269|PubMed:18533145, ECO:0000269|PubMed:20729278}. |
Q96RG2 | PASK | S996 | Sugiyama | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
P01130 | LDLR | S286 | Sugiyama | Low-density lipoprotein receptor (LDL receptor) | Binds low density lipoprotein /LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. Forms a ternary complex with PGRMC1 and TMEM97 receptors which increases LDLR-mediated LDL internalization (PubMed:30443021). {ECO:0000269|PubMed:3005267, ECO:0000269|PubMed:30443021, ECO:0000269|PubMed:6091915}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus in hepatocytes, but not through a direct interaction with viral proteins. {ECO:0000269|PubMed:10535997, ECO:0000269|PubMed:12615904}.; FUNCTION: (Microbial infection) Acts as a receptor for Vesicular stomatitis virus. {ECO:0000269|PubMed:23589850}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, may function as a receptor for extracellular Tat in neurons, mediating its internalization in uninfected cells. {ECO:0000269|PubMed:11100124}.; FUNCTION: (Microbial infection) Acts as a receptor for Crimean-Congo hemorrhagic fever virus (CCHFV). {ECO:0000269|PubMed:38182887}.; FUNCTION: (Microbial infection) Acts as a receptor for many Alphavirus, including Getah virus (GETV), Ross river virus (RRV) and Semliki Forest virus. {ECO:0000269|PubMed:38245515}. |
O15397 | IPO8 | S29 | Sugiyama | Importin-8 (Imp8) (Ran-binding protein 8) (RanBP8) | Involved in nuclear protein import, either by acting as autonomous nuclear transport receptor or as an adapter-like protein in association with the importin-beta subunit KPNB1. Acting autonomously, may serve as receptor for nuclear localization signals (NLS) and promote translocation of import substrates through the nuclear pore complex (NPC) by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:9214382). In vitro mediates the nuclear import of the signal recognition particle protein SRP19 (PubMed:11682607). May also be involved in cytoplasm-to-nucleus shuttling of a broad spectrum of other cargos, including Argonaute-microRNAs complexes, the JUN protein, RELA/NF-kappa-B p65 subunit, the translation initiation factor EIF4E and a set of receptor-activated mothers against decapentaplegic homolog (SMAD) transcription factors that play a critical role downstream of the large family of transforming growth factor beta and bone morphogenetic protein (BMP) cytokines (Probable). {ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:9214382, ECO:0000305|PubMed:34010604}. |
Q9UBE8 | NLK | S237 | Sugiyama | Serine/threonine-protein kinase NLK (EC 2.7.11.24) (Nemo-like kinase) (Protein LAK1) | Serine/threonine-protein kinase that regulates a number of transcription factors with key roles in cell fate determination (PubMed:12482967, PubMed:14960582, PubMed:15004007, PubMed:15764709, PubMed:20061393, PubMed:20874444, PubMed:21454679). Positive effector of the non-canonical Wnt signaling pathway, acting downstream of WNT5A, MAP3K7/TAK1 and HIPK2 (PubMed:15004007, PubMed:15764709). Negative regulator of the canonical Wnt/beta-catenin signaling pathway (PubMed:12482967). Binds to and phosphorylates TCF7L2/TCF4 and LEF1, promoting the dissociation of the TCF7L2/LEF1/beta-catenin complex from DNA, as well as the ubiquitination and subsequent proteolysis of LEF1 (PubMed:21454679). Together these effects inhibit the transcriptional activation of canonical Wnt/beta-catenin target genes (PubMed:12482967, PubMed:21454679). Negative regulator of the Notch signaling pathway (PubMed:20118921). Binds to and phosphorylates NOTCH1, thereby preventing the formation of a transcriptionally active ternary complex of NOTCH1, RBPJ/RBPSUH and MAML1 (PubMed:20118921). Negative regulator of the MYB family of transcription factors (PubMed:15082531). Phosphorylation of MYB leads to its subsequent proteolysis while phosphorylation of MYBL1 and MYBL2 inhibits their interaction with the coactivator CREBBP (PubMed:15082531). Other transcription factors may also be inhibited by direct phosphorylation of CREBBP itself (PubMed:15082531). Acts downstream of IL6 and MAP3K7/TAK1 to phosphorylate STAT3, which is in turn required for activation of NLK by MAP3K7/TAK1 (PubMed:15004007, PubMed:15764709). Upon IL1B stimulus, cooperates with ATF5 to activate the transactivation activity of C/EBP subfamily members (PubMed:25512613). Phosphorylates ATF5 but also stabilizes ATF5 protein levels in a kinase-independent manner (PubMed:25512613). Acts as an inhibitor of the mTORC1 complex in response to osmotic stress by mediating phosphorylation of RPTOR, thereby preventing recruitment of the mTORC1 complex to lysosomes (PubMed:26588989). {ECO:0000269|PubMed:12482967, ECO:0000269|PubMed:14960582, ECO:0000269|PubMed:15004007, ECO:0000269|PubMed:15082531, ECO:0000269|PubMed:15764709, ECO:0000269|PubMed:20061393, ECO:0000269|PubMed:20118921, ECO:0000269|PubMed:20874444, ECO:0000269|PubMed:21454679, ECO:0000269|PubMed:25512613, ECO:0000269|PubMed:26588989}. |
Q9UK32 | RPS6KA6 | S555 | Sugiyama | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Q8IZ83 | ALDH16A1 | S427 | Sugiyama | Aldehyde dehydrogenase family 16 member A1 | None |
P35579 | MYH9 | S304 | Sugiyama | Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.000004 | 5.354 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 0.000027 | 4.572 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.000022 | 4.665 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.000022 | 4.666 |
R-HSA-75153 | Apoptotic execution phase | 0.000053 | 4.274 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.000102 | 3.992 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.000152 | 3.819 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.000967 | 3.014 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.000836 | 3.078 |
R-HSA-5260271 | Diseases of Immune System | 0.000983 | 3.007 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.000983 | 3.007 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.001165 | 2.934 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.001232 | 2.909 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.001825 | 2.739 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.001825 | 2.739 |
R-HSA-70268 | Pyruvate metabolism | 0.002275 | 2.643 |
R-HSA-844456 | The NLRP3 inflammasome | 0.002706 | 2.568 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.002985 | 2.525 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.003128 | 2.505 |
R-HSA-210991 | Basigin interactions | 0.003593 | 2.445 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.003827 | 2.417 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.004764 | 2.322 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.005066 | 2.295 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.005648 | 2.248 |
R-HSA-186712 | Regulation of beta-cell development | 0.005593 | 2.252 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.005920 | 2.228 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.006783 | 2.169 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.006627 | 2.179 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.006598 | 2.181 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.007279 | 2.138 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.009106 | 2.041 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.009210 | 2.036 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.009210 | 2.036 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 0.007944 | 2.100 |
R-HSA-422475 | Axon guidance | 0.009007 | 2.045 |
R-HSA-9675108 | Nervous system development | 0.009780 | 2.010 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.009711 | 2.013 |
R-HSA-622312 | Inflammasomes | 0.009080 | 2.042 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.007820 | 2.107 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.009269 | 2.033 |
R-HSA-162582 | Signal Transduction | 0.008892 | 2.051 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.010013 | 1.999 |
R-HSA-437239 | Recycling pathway of L1 | 0.010446 | 1.981 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.011012 | 1.958 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.012205 | 1.913 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.012205 | 1.913 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.012059 | 1.919 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.012340 | 1.909 |
R-HSA-109581 | Apoptosis | 0.011481 | 1.940 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.012525 | 1.902 |
R-HSA-373760 | L1CAM interactions | 0.013062 | 1.884 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.013980 | 1.854 |
R-HSA-354192 | Integrin signaling | 0.014356 | 1.843 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.013270 | 1.877 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.014694 | 1.833 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.014852 | 1.828 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 0.015697 | 1.804 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.015801 | 1.801 |
R-HSA-913531 | Interferon Signaling | 0.016965 | 1.770 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.017749 | 1.751 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.016913 | 1.772 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.018291 | 1.738 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.019563 | 1.709 |
R-HSA-9833482 | PKR-mediated signaling | 0.019169 | 1.717 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.019563 | 1.709 |
R-HSA-164944 | Nef and signal transduction | 0.019563 | 1.709 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.018980 | 1.722 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.021251 | 1.673 |
R-HSA-9673218 | Defective F9 secretion | 0.023323 | 1.632 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.023323 | 1.632 |
R-HSA-9823730 | Formation of definitive endoderm | 0.022029 | 1.657 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.024272 | 1.615 |
R-HSA-444257 | RSK activation | 0.028340 | 1.548 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 0.028340 | 1.548 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.024982 | 1.602 |
R-HSA-438064 | Post NMDA receptor activation events | 0.027732 | 1.557 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.027192 | 1.566 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.026545 | 1.576 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.028340 | 1.548 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.027765 | 1.556 |
R-HSA-8848021 | Signaling by PTK6 | 0.027765 | 1.556 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.028340 | 1.548 |
R-HSA-373755 | Semaphorin interactions | 0.027765 | 1.556 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.033215 | 1.479 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.033215 | 1.479 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.038391 | 1.416 |
R-HSA-390450 | Folding of actin by CCT/TriC | 0.038391 | 1.416 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.040294 | 1.395 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.030739 | 1.512 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.040302 | 1.395 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.040294 | 1.395 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.040294 | 1.395 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.035909 | 1.445 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.038065 | 1.419 |
R-HSA-6802949 | Signaling by RAS mutants | 0.040294 | 1.395 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.042596 | 1.371 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.029875 | 1.525 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.029409 | 1.532 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.040302 | 1.395 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.040302 | 1.395 |
R-HSA-110056 | MAPK3 (ERK1) activation | 0.038391 | 1.416 |
R-HSA-8964038 | LDL clearance | 0.029409 | 1.532 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.029409 | 1.532 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.030472 | 1.516 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.033945 | 1.469 |
R-HSA-168249 | Innate Immune System | 0.041236 | 1.385 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.040294 | 1.395 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.040294 | 1.395 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.032298 | 1.491 |
R-HSA-5688426 | Deubiquitination | 0.032272 | 1.491 |
R-HSA-448706 | Interleukin-1 processing | 0.033215 | 1.479 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.031450 | 1.502 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.032125 | 1.493 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.035159 | 1.454 |
R-HSA-5357801 | Programmed Cell Death | 0.043310 | 1.363 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 0.046103 | 1.336 |
R-HSA-3642279 | TGFBR2 MSI Frameshift Mutants in Cancer | 0.046103 | 1.336 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 0.046103 | 1.336 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 0.046103 | 1.336 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 0.043851 | 1.358 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.043851 | 1.358 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 0.049579 | 1.305 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.049579 | 1.305 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.044240 | 1.354 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.049579 | 1.305 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.046538 | 1.332 |
R-HSA-9020558 | Interleukin-2 signaling | 0.043851 | 1.358 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.044465 | 1.352 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.044465 | 1.352 |
R-HSA-169131 | Inhibition of PKR | 0.046103 | 1.336 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.044769 | 1.349 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.049579 | 1.305 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 0.049579 | 1.305 |
R-HSA-210747 | Regulation of gene expression in early pancreatic precursor cells | 0.043851 | 1.358 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.048125 | 1.318 |
R-HSA-194138 | Signaling by VEGF | 0.050433 | 1.297 |
R-HSA-9615710 | Late endosomal microautophagy | 0.051033 | 1.292 |
R-HSA-5603027 | IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... | 0.068353 | 1.165 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 0.068353 | 1.165 |
R-HSA-9915355 | Beta-ketothiolase deficiency | 0.068353 | 1.165 |
R-HSA-5602636 | IKBKB deficiency causes SCID | 0.068353 | 1.165 |
R-HSA-3642278 | Loss of Function of TGFBR2 in Cancer | 0.090085 | 1.045 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 0.090085 | 1.045 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 0.090085 | 1.045 |
R-HSA-8854521 | Interaction between PHLDA1 and AURKA | 0.090085 | 1.045 |
R-HSA-5579016 | Defective UGT1A4 causes hyperbilirubinemia | 0.090085 | 1.045 |
R-HSA-5662853 | Essential pentosuria | 0.090085 | 1.045 |
R-HSA-3645790 | TGFBR2 Kinase Domain Mutants in Cancer | 0.090085 | 1.045 |
R-HSA-9673202 | Defective F9 variant does not activate FX | 0.090085 | 1.045 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 0.090085 | 1.045 |
R-HSA-9672396 | Defective cofactor function of FVIIIa variant | 0.090085 | 1.045 |
R-HSA-9672383 | Defective factor IX causes thrombophilia | 0.090085 | 1.045 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.055561 | 1.255 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.055561 | 1.255 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.055561 | 1.255 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.055561 | 1.255 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.055561 | 1.255 |
R-HSA-9861559 | PDH complex synthesizes acetyl-CoA from PYR | 0.061780 | 1.209 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.074877 | 1.126 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.074877 | 1.126 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.074877 | 1.126 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.074877 | 1.126 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.081727 | 1.088 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.088761 | 1.052 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.058299 | 1.234 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.066024 | 1.180 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.066024 | 1.180 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.054858 | 1.261 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.082782 | 1.082 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.068223 | 1.166 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.058299 | 1.234 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.087231 | 1.059 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.087231 | 1.059 |
R-HSA-6794361 | Neurexins and neuroligins | 0.055193 | 1.258 |
R-HSA-9733709 | Cardiogenesis | 0.066024 | 1.180 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.068223 | 1.166 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.070053 | 1.155 |
R-HSA-9636667 | Manipulation of host energy metabolism | 0.068353 | 1.165 |
R-HSA-877312 | Regulation of IFNG signaling | 0.055561 | 1.255 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.071353 | 1.147 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.067191 | 1.173 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.062105 | 1.207 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.069308 | 1.159 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.073195 | 1.136 |
R-HSA-450294 | MAP kinase activation | 0.082341 | 1.084 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.087609 | 1.057 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.081727 | 1.088 |
R-HSA-1266738 | Developmental Biology | 0.080581 | 1.094 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.055561 | 1.255 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.087231 | 1.059 |
R-HSA-8874177 | ATF6B (ATF6-beta) activates chaperones | 0.090085 | 1.045 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 0.061780 | 1.209 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.063071 | 1.200 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.074877 | 1.126 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.088761 | 1.052 |
R-HSA-193648 | NRAGE signals death through JNK | 0.066563 | 1.177 |
R-HSA-73887 | Death Receptor Signaling | 0.053736 | 1.270 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.077200 | 1.112 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.055193 | 1.258 |
R-HSA-209563 | Axonal growth stimulation | 0.111312 | 0.953 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 0.111312 | 0.953 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.111312 | 0.953 |
R-HSA-5579006 | Defective GSS causes GSS deficiency | 0.111312 | 0.953 |
R-HSA-9673240 | Defective gamma-carboxylation of F9 | 0.111312 | 0.953 |
R-HSA-5660862 | Defective SLC7A7 causes lysinuric protein intolerance (LPI) | 0.111312 | 0.953 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 0.132045 | 0.879 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.132045 | 0.879 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 0.132045 | 0.879 |
R-HSA-399710 | Activation of AMPA receptors | 0.152295 | 0.817 |
R-HSA-5579028 | Defective CYP17A1 causes AH5 | 0.152295 | 0.817 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 0.152295 | 0.817 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.152295 | 0.817 |
R-HSA-9673221 | Defective F9 activation | 0.152295 | 0.817 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 0.152295 | 0.817 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.172074 | 0.764 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.172074 | 0.764 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.172074 | 0.764 |
R-HSA-9652817 | Signaling by MAPK mutants | 0.172074 | 0.764 |
R-HSA-5576894 | Phase 1 - inactivation of fast Na+ channels | 0.172074 | 0.764 |
R-HSA-8964026 | Chylomicron clearance | 0.191393 | 0.718 |
R-HSA-5619070 | Defective SLC16A1 causes symptomatic deficiency in lactate transport (SDLT) | 0.191393 | 0.718 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 0.191393 | 0.718 |
R-HSA-8949275 | RUNX3 Regulates Immune Response and Cell Migration | 0.210262 | 0.677 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.210262 | 0.677 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 0.210262 | 0.677 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 0.210262 | 0.677 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.210262 | 0.677 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.095967 | 1.018 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.228692 | 0.641 |
R-HSA-1169092 | Activation of RAS in B cells | 0.228692 | 0.641 |
R-HSA-196025 | Formation of annular gap junctions | 0.228692 | 0.641 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.228692 | 0.641 |
R-HSA-3928664 | Ephrin signaling | 0.103333 | 0.986 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.110847 | 0.955 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.246693 | 0.608 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 0.246693 | 0.608 |
R-HSA-9613354 | Lipophagy | 0.246693 | 0.608 |
R-HSA-9020958 | Interleukin-21 signaling | 0.246693 | 0.608 |
R-HSA-201688 | WNT mediated activation of DVL | 0.246693 | 0.608 |
R-HSA-190873 | Gap junction degradation | 0.246693 | 0.608 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 0.126279 | 0.899 |
R-HSA-9668250 | Defective factor IX causes hemophilia B | 0.264275 | 0.578 |
R-HSA-164843 | 2-LTR circle formation | 0.264275 | 0.578 |
R-HSA-451308 | Activation of Ca-permeable Kainate Receptor | 0.264275 | 0.578 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.134176 | 0.872 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 0.134176 | 0.872 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.281448 | 0.551 |
R-HSA-4839744 | Signaling by APC mutants | 0.281448 | 0.551 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.281448 | 0.551 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.281448 | 0.551 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.281448 | 0.551 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 0.158475 | 0.800 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.298221 | 0.525 |
R-HSA-428540 | Activation of RAC1 | 0.298221 | 0.525 |
R-HSA-433692 | Proton-coupled monocarboxylate transport | 0.298221 | 0.525 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.101161 | 0.995 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.314603 | 0.502 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.183504 | 0.736 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.200490 | 0.698 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.346232 | 0.461 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 0.361497 | 0.442 |
R-HSA-73780 | RNA Polymerase III Chain Elongation | 0.361497 | 0.442 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.243597 | 0.613 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.252280 | 0.598 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.260970 | 0.583 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.205479 | 0.687 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.330199 | 0.481 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.114736 | 0.940 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.142126 | 0.847 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.355762 | 0.449 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.096423 | 1.016 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.191972 | 0.717 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.110908 | 0.955 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.330604 | 0.481 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 0.217648 | 0.662 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.234927 | 0.629 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.280183 | 0.553 |
R-HSA-8983432 | Interleukin-15 signaling | 0.314603 | 0.502 |
R-HSA-9762292 | Regulation of CDH11 function | 0.264275 | 0.578 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 0.142181 | 0.847 |
R-HSA-6798695 | Neutrophil degranulation | 0.163862 | 0.786 |
R-HSA-525793 | Myogenesis | 0.175094 | 0.757 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.252280 | 0.598 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.313000 | 0.504 |
R-HSA-2424491 | DAP12 signaling | 0.209051 | 0.680 |
R-HSA-173107 | Binding and entry of HIV virion | 0.264275 | 0.578 |
R-HSA-9857492 | Protein lipoylation | 0.361497 | 0.442 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.280183 | 0.553 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.292924 | 0.533 |
R-HSA-451927 | Interleukin-2 family signaling | 0.304363 | 0.517 |
R-HSA-877300 | Interferon gamma signaling | 0.242343 | 0.616 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.252280 | 0.598 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 0.191393 | 0.718 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.095967 | 1.018 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.314603 | 0.502 |
R-HSA-4641265 | Repression of WNT target genes | 0.314603 | 0.502 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 0.330604 | 0.481 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.350505 | 0.455 |
R-HSA-1059683 | Interleukin-6 signaling | 0.330604 | 0.481 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.164372 | 0.784 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 0.152295 | 0.817 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.152295 | 0.817 |
R-HSA-8849472 | PTK6 Down-Regulation | 0.152295 | 0.817 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.191393 | 0.718 |
R-HSA-8849473 | PTK6 Expression | 0.210262 | 0.677 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.103333 | 0.986 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.246693 | 0.608 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.234927 | 0.629 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.183445 | 0.736 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.172074 | 0.764 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.114862 | 0.940 |
R-HSA-8984722 | Interleukin-35 Signalling | 0.314603 | 0.502 |
R-HSA-3295583 | TRP channels | 0.175094 | 0.757 |
R-HSA-3371511 | HSF1 activation | 0.269662 | 0.569 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.313000 | 0.504 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.226276 | 0.645 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.246693 | 0.608 |
R-HSA-445144 | Signal transduction by L1 | 0.118500 | 0.926 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.120998 | 0.917 |
R-HSA-8985947 | Interleukin-9 signaling | 0.228692 | 0.641 |
R-HSA-1266695 | Interleukin-7 signaling | 0.166748 | 0.778 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.199464 | 0.700 |
R-HSA-69541 | Stabilization of p53 | 0.295707 | 0.529 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.338755 | 0.470 |
R-HSA-417973 | Adenosine P1 receptors | 0.111312 | 0.953 |
R-HSA-112303 | Electric Transmission Across Gap Junctions | 0.132045 | 0.879 |
R-HSA-112307 | Transmission across Electrical Synapses | 0.132045 | 0.879 |
R-HSA-5624138 | Trafficking of myristoylated proteins to the cilium | 0.152295 | 0.817 |
R-HSA-187024 | NGF-independant TRKA activation | 0.172074 | 0.764 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.172074 | 0.764 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 0.172074 | 0.764 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 0.210262 | 0.677 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.210262 | 0.677 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.228692 | 0.641 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.103333 | 0.986 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.246693 | 0.608 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.264275 | 0.578 |
R-HSA-451306 | Ionotropic activity of kainate receptors | 0.281448 | 0.551 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 0.150283 | 0.823 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.298221 | 0.525 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.298221 | 0.525 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.298221 | 0.525 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.314603 | 0.502 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.314603 | 0.502 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.252280 | 0.598 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.269662 | 0.569 |
R-HSA-195721 | Signaling by WNT | 0.337921 | 0.471 |
R-HSA-6809371 | Formation of the cornified envelope | 0.228946 | 0.640 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.115911 | 0.936 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.238502 | 0.623 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.219591 | 0.658 |
R-HSA-170968 | Frs2-mediated activation | 0.330604 | 0.481 |
R-HSA-4086400 | PCP/CE pathway | 0.331311 | 0.480 |
R-HSA-9020702 | Interleukin-1 signaling | 0.273106 | 0.564 |
R-HSA-114608 | Platelet degranulation | 0.246208 | 0.609 |
R-HSA-9734767 | Developmental Cell Lineages | 0.228571 | 0.641 |
R-HSA-9020956 | Interleukin-27 signaling | 0.264275 | 0.578 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.096423 | 1.016 |
R-HSA-392517 | Rap1 signalling | 0.110847 | 0.955 |
R-HSA-9620244 | Long-term potentiation | 0.166748 | 0.778 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.200490 | 0.698 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.292924 | 0.533 |
R-HSA-3371556 | Cellular response to heat stress | 0.216242 | 0.665 |
R-HSA-9664417 | Leishmania phagocytosis | 0.169701 | 0.770 |
R-HSA-9664407 | Parasite infection | 0.169701 | 0.770 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.169701 | 0.770 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.246693 | 0.608 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.246693 | 0.608 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.183504 | 0.736 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.361497 | 0.442 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.287035 | 0.542 |
R-HSA-3371568 | Attenuation phase | 0.304363 | 0.517 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.247438 | 0.607 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.215871 | 0.666 |
R-HSA-416476 | G alpha (q) signalling events | 0.356559 | 0.448 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.234927 | 0.629 |
R-HSA-2172127 | DAP12 interactions | 0.347277 | 0.459 |
R-HSA-166208 | mTORC1-mediated signalling | 0.142181 | 0.847 |
R-HSA-1433559 | Regulation of KIT signaling | 0.346232 | 0.461 |
R-HSA-69481 | G2/M Checkpoints | 0.122426 | 0.912 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.173096 | 0.762 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.117997 | 0.928 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.117997 | 0.928 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.117997 | 0.928 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.131959 | 0.880 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.361497 | 0.442 |
R-HSA-1236974 | ER-Phagosome pathway | 0.202792 | 0.693 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.198463 | 0.702 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.277173 | 0.557 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.335506 | 0.474 |
R-HSA-168256 | Immune System | 0.357996 | 0.446 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.186046 | 0.730 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.228692 | 0.641 |
R-HSA-9834899 | Specification of the neural plate border | 0.110847 | 0.955 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.246693 | 0.608 |
R-HSA-170984 | ARMS-mediated activation | 0.246693 | 0.608 |
R-HSA-112411 | MAPK1 (ERK2) activation | 0.246693 | 0.608 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.281448 | 0.551 |
R-HSA-77108 | Utilization of Ketone Bodies | 0.281448 | 0.551 |
R-HSA-5689901 | Metalloprotease DUBs | 0.175094 | 0.757 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.183504 | 0.736 |
R-HSA-77387 | Insulin receptor recycling | 0.191972 | 0.717 |
R-HSA-204174 | Regulation of pyruvate dehydrogenase (PDH) complex | 0.200490 | 0.698 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.361497 | 0.442 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.295707 | 0.529 |
R-HSA-199991 | Membrane Trafficking | 0.115508 | 0.937 |
R-HSA-448424 | Interleukin-17 signaling | 0.114862 | 0.940 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.166748 | 0.778 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.313000 | 0.504 |
R-HSA-5653656 | Vesicle-mediated transport | 0.316590 | 0.500 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.232304 | 0.634 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.110908 | 0.955 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.156488 | 0.806 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.247725 | 0.606 |
R-HSA-390650 | Histamine receptors | 0.111312 | 0.953 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.191393 | 0.718 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.246693 | 0.608 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.260970 | 0.583 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.158475 | 0.800 |
R-HSA-9006936 | Signaling by TGFB family members | 0.131442 | 0.881 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.161357 | 0.792 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.288720 | 0.540 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.110847 | 0.955 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.103967 | 0.983 |
R-HSA-9658195 | Leishmania infection | 0.103967 | 0.983 |
R-HSA-418990 | Adherens junctions interactions | 0.331875 | 0.479 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.321613 | 0.493 |
R-HSA-4086398 | Ca2+ pathway | 0.126788 | 0.897 |
R-HSA-9833110 | RSV-host interactions | 0.293953 | 0.532 |
R-HSA-5683057 | MAPK family signaling cascades | 0.252833 | 0.597 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.234750 | 0.629 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 0.132045 | 0.879 |
R-HSA-447038 | NrCAM interactions | 0.152295 | 0.817 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 0.172074 | 0.764 |
R-HSA-389397 | Orexin and neuropeptides FF and QRFP bind to their respective receptors | 0.172074 | 0.764 |
R-HSA-199920 | CREB phosphorylation | 0.191393 | 0.718 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.191393 | 0.718 |
R-HSA-187015 | Activation of TRKA receptors | 0.210262 | 0.677 |
R-HSA-425986 | Sodium/Proton exchangers | 0.228692 | 0.641 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 0.246693 | 0.608 |
R-HSA-9683686 | Maturation of spike protein | 0.264275 | 0.578 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.298221 | 0.525 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.314603 | 0.502 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.314603 | 0.502 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.330604 | 0.481 |
R-HSA-9796292 | Formation of axial mesoderm | 0.330604 | 0.481 |
R-HSA-5694530 | Cargo concentration in the ER | 0.217648 | 0.662 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.361497 | 0.442 |
R-HSA-190828 | Gap junction trafficking | 0.347277 | 0.459 |
R-HSA-5689880 | Ub-specific processing proteases | 0.171775 | 0.765 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.301859 | 0.520 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.301859 | 0.520 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.286547 | 0.543 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.174845 | 0.757 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.301556 | 0.521 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.126279 | 0.899 |
R-HSA-174403 | Glutathione synthesis and recycling | 0.134176 | 0.872 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.243597 | 0.613 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.252280 | 0.598 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.328532 | 0.483 |
R-HSA-212436 | Generic Transcription Pathway | 0.175318 | 0.756 |
R-HSA-70171 | Glycolysis | 0.124649 | 0.904 |
R-HSA-162592 | Integration of provirus | 0.298221 | 0.525 |
R-HSA-165159 | MTOR signalling | 0.115911 | 0.936 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.172074 | 0.764 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 0.210262 | 0.677 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 0.246693 | 0.608 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.281448 | 0.551 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.281448 | 0.551 |
R-HSA-5682910 | LGI-ADAM interactions | 0.281448 | 0.551 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 0.361497 | 0.442 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.361497 | 0.442 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.299309 | 0.524 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.263922 | 0.579 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.208498 | 0.681 |
R-HSA-1483255 | PI Metabolism | 0.278296 | 0.555 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.095105 | 1.022 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.147750 | 0.830 |
R-HSA-70326 | Glucose metabolism | 0.199669 | 0.700 |
R-HSA-5683826 | Surfactant metabolism | 0.126166 | 0.899 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.103333 | 0.986 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.134176 | 0.872 |
R-HSA-1247673 | Erythrocytes take up oxygen and release carbon dioxide | 0.314603 | 0.502 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.330604 | 0.481 |
R-HSA-5578768 | Physiological factors | 0.346232 | 0.461 |
R-HSA-2980736 | Peptide hormone metabolism | 0.199669 | 0.700 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.297142 | 0.527 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.116355 | 0.934 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.236855 | 0.626 |
R-HSA-109582 | Hemostasis | 0.350244 | 0.456 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.314997 | 0.502 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.152906 | 0.816 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 0.337713 | 0.471 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.152906 | 0.816 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.361497 | 0.442 |
R-HSA-9659379 | Sensory processing of sound | 0.337713 | 0.471 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.134176 | 0.872 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.150283 | 0.823 |
R-HSA-8953897 | Cellular responses to stimuli | 0.338502 | 0.470 |
R-HSA-210990 | PECAM1 interactions | 0.281448 | 0.551 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.361497 | 0.442 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.267495 | 0.573 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.313000 | 0.504 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.261905 | 0.582 |
R-HSA-216083 | Integrin cell surface interactions | 0.331311 | 0.480 |
R-HSA-140834 | Extrinsic Pathway of Fibrin Clot Formation | 0.132045 | 0.879 |
R-HSA-9662001 | Defective factor VIII causes hemophilia A | 0.191393 | 0.718 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 0.246693 | 0.608 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.193491 | 0.713 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.131471 | 0.881 |
R-HSA-2559583 | Cellular Senescence | 0.193746 | 0.713 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.269662 | 0.569 |
R-HSA-9831926 | Nephron development | 0.103333 | 0.986 |
R-HSA-159763 | Transport of gamma-carboxylated protein precursors from the endoplasmic reticulu... | 0.191393 | 0.718 |
R-HSA-159782 | Removal of aminoterminal propeptides from gamma-carboxylated proteins | 0.210262 | 0.677 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 0.281448 | 0.551 |
R-HSA-159740 | Gamma-carboxylation of protein precursors | 0.298221 | 0.525 |
R-HSA-159854 | Gamma-carboxylation, transport, and amino-terminal cleavage of proteins | 0.314603 | 0.502 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.252280 | 0.598 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.286547 | 0.543 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.295214 | 0.530 |
R-HSA-9827857 | Specification of primordial germ cells | 0.095967 | 1.018 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.246693 | 0.608 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.260970 | 0.583 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.105990 | 0.975 |
R-HSA-9679506 | SARS-CoV Infections | 0.288516 | 0.540 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.297800 | 0.526 |
R-HSA-418885 | DCC mediated attractive signaling | 0.361497 | 0.442 |
R-HSA-9830369 | Kidney development | 0.261177 | 0.583 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.175094 | 0.757 |
R-HSA-9749641 | Aspirin ADME | 0.299309 | 0.524 |
R-HSA-1538133 | G0 and Early G1 | 0.226276 | 0.645 |
R-HSA-69205 | G1/S-Specific Transcription | 0.269662 | 0.569 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.199464 | 0.700 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.166335 | 0.779 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.177938 | 0.750 |
R-HSA-8983711 | OAS antiviral response | 0.314603 | 0.502 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.295707 | 0.529 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.126788 | 0.897 |
R-HSA-373752 | Netrin-1 signaling | 0.347277 | 0.459 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.093168 | 1.031 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.212506 | 0.673 |
R-HSA-201556 | Signaling by ALK | 0.295707 | 0.529 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.188483 | 0.725 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.364208 | 0.439 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.364208 | 0.439 |
R-HSA-9675135 | Diseases of DNA repair | 0.364208 | 0.439 |
R-HSA-112316 | Neuronal System | 0.370702 | 0.431 |
R-HSA-168275 | Entry of Influenza Virion into Host Cell via Endocytosis | 0.376406 | 0.424 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.376406 | 0.424 |
R-HSA-9664420 | Killing mechanisms | 0.376406 | 0.424 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.376406 | 0.424 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.376406 | 0.424 |
R-HSA-169893 | Prolonged ERK activation events | 0.376406 | 0.424 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.376406 | 0.424 |
R-HSA-9754706 | Atorvastatin ADME | 0.376406 | 0.424 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.376406 | 0.424 |
R-HSA-9945266 | Differentiation of T cells | 0.376406 | 0.424 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.376406 | 0.424 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 0.376406 | 0.424 |
R-HSA-5693538 | Homology Directed Repair | 0.378607 | 0.422 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.380970 | 0.419 |
R-HSA-389356 | Co-stimulation by CD28 | 0.380970 | 0.419 |
R-HSA-70263 | Gluconeogenesis | 0.380970 | 0.419 |
R-HSA-68875 | Mitotic Prophase | 0.389194 | 0.410 |
R-HSA-9766229 | Degradation of CDH1 | 0.389281 | 0.410 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.389281 | 0.410 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.389281 | 0.410 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.389281 | 0.410 |
R-HSA-6783984 | Glycine degradation | 0.390967 | 0.408 |
R-HSA-9927020 | Heme assimilation | 0.390967 | 0.408 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.390967 | 0.408 |
R-HSA-9651496 | Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) | 0.390967 | 0.408 |
R-HSA-432047 | Passive transport by Aquaporins | 0.390967 | 0.408 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.390967 | 0.408 |
R-HSA-5661270 | Formation of xylulose-5-phosphate | 0.390967 | 0.408 |
R-HSA-9612973 | Autophagy | 0.391986 | 0.407 |
R-HSA-1500931 | Cell-Cell communication | 0.397427 | 0.401 |
R-HSA-74160 | Gene expression (Transcription) | 0.398058 | 0.400 |
R-HSA-8939211 | ESR-mediated signaling | 0.404170 | 0.393 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 0.405190 | 0.392 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.405190 | 0.392 |
R-HSA-2028269 | Signaling by Hippo | 0.405190 | 0.392 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.405751 | 0.392 |
R-HSA-446728 | Cell junction organization | 0.406129 | 0.391 |
R-HSA-202424 | Downstream TCR signaling | 0.413813 | 0.383 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.419081 | 0.378 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.419081 | 0.378 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.419081 | 0.378 |
R-HSA-156711 | Polo-like kinase mediated events | 0.419081 | 0.378 |
R-HSA-418038 | Nucleotide-like (purinergic) receptors | 0.419081 | 0.378 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.420728 | 0.376 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.422004 | 0.375 |
R-HSA-445355 | Smooth Muscle Contraction | 0.422004 | 0.375 |
R-HSA-156588 | Glucuronidation | 0.430046 | 0.366 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.432458 | 0.364 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.432649 | 0.364 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.432649 | 0.364 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.432649 | 0.364 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.432649 | 0.364 |
R-HSA-9671793 | Diseases of hemostasis | 0.432649 | 0.364 |
R-HSA-1237044 | Erythrocytes take up carbon dioxide and release oxygen | 0.432649 | 0.364 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.432649 | 0.364 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.432649 | 0.364 |
R-HSA-1480926 | O2/CO2 exchange in erythrocytes | 0.432649 | 0.364 |
R-HSA-449836 | Other interleukin signaling | 0.432649 | 0.364 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.436432 | 0.360 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.444767 | 0.352 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.445900 | 0.351 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.445900 | 0.351 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.445900 | 0.351 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.445900 | 0.351 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.445900 | 0.351 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.445900 | 0.351 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.445900 | 0.351 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.445900 | 0.351 |
R-HSA-77111 | Synthesis of Ketone Bodies | 0.445900 | 0.351 |
R-HSA-9629569 | Protein hydroxylation | 0.445900 | 0.351 |
R-HSA-6807004 | Negative regulation of MET activity | 0.445900 | 0.351 |
R-HSA-373753 | Nephrin family interactions | 0.445900 | 0.351 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.445947 | 0.351 |
R-HSA-75893 | TNF signaling | 0.445947 | 0.351 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.453805 | 0.343 |
R-HSA-421270 | Cell-cell junction organization | 0.457421 | 0.340 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.458843 | 0.338 |
R-HSA-140837 | Intrinsic Pathway of Fibrin Clot Formation | 0.458843 | 0.338 |
R-HSA-198753 | ERK/MAPK targets | 0.458843 | 0.338 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 0.458843 | 0.338 |
R-HSA-422085 | Synthesis, secretion, and deacylation of Ghrelin | 0.458843 | 0.338 |
R-HSA-196836 | Vitamin C (ascorbate) metabolism | 0.458843 | 0.338 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.465333 | 0.332 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.469327 | 0.329 |
R-HSA-8979227 | Triglyceride metabolism | 0.469327 | 0.329 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.469327 | 0.329 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.471421 | 0.327 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.471484 | 0.327 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.471484 | 0.327 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.471484 | 0.327 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.471484 | 0.327 |
R-HSA-193048 | Androgen biosynthesis | 0.471484 | 0.327 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.471484 | 0.327 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.471484 | 0.327 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.471484 | 0.327 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.471484 | 0.327 |
R-HSA-194002 | Glucocorticoid biosynthesis | 0.471484 | 0.327 |
R-HSA-2022377 | Metabolism of Angiotensinogen to Angiotensins | 0.471484 | 0.327 |
R-HSA-156590 | Glutathione conjugation | 0.476989 | 0.321 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.476989 | 0.321 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.476989 | 0.321 |
R-HSA-3214847 | HATs acetylate histones | 0.481026 | 0.318 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.483831 | 0.315 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.483831 | 0.315 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.483831 | 0.315 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.483831 | 0.315 |
R-HSA-9669938 | Signaling by KIT in disease | 0.483831 | 0.315 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.483831 | 0.315 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.483831 | 0.315 |
R-HSA-1442490 | Collagen degradation | 0.484583 | 0.315 |
R-HSA-186797 | Signaling by PDGF | 0.492108 | 0.308 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.492108 | 0.308 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.492653 | 0.307 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.495890 | 0.305 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 0.495890 | 0.305 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.495890 | 0.305 |
R-HSA-8854691 | Interleukin-20 family signaling | 0.495890 | 0.305 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.495890 | 0.305 |
R-HSA-74182 | Ketone body metabolism | 0.495890 | 0.305 |
R-HSA-982772 | Growth hormone receptor signaling | 0.495890 | 0.305 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.498734 | 0.302 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.499564 | 0.301 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.506371 | 0.296 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 0.507668 | 0.294 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.507668 | 0.294 |
R-HSA-9865881 | Complex III assembly | 0.507668 | 0.294 |
R-HSA-429947 | Deadenylation of mRNA | 0.507668 | 0.294 |
R-HSA-1632852 | Macroautophagy | 0.512524 | 0.290 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.518570 | 0.285 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.519172 | 0.285 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.519172 | 0.285 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.519172 | 0.285 |
R-HSA-9839394 | TGFBR3 expression | 0.519172 | 0.285 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.519172 | 0.285 |
R-HSA-9830364 | Formation of the nephric duct | 0.519172 | 0.285 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 0.519172 | 0.285 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.521506 | 0.283 |
R-HSA-162906 | HIV Infection | 0.527490 | 0.278 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.528676 | 0.277 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.528676 | 0.277 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.530408 | 0.275 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 0.530408 | 0.275 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 0.530408 | 0.275 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.530408 | 0.275 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.532034 | 0.274 |
R-HSA-211000 | Gene Silencing by RNA | 0.533205 | 0.273 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.535773 | 0.271 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.538820 | 0.269 |
R-HSA-2672351 | Stimuli-sensing channels | 0.538820 | 0.269 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.541381 | 0.266 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.541381 | 0.266 |
R-HSA-75109 | Triglyceride biosynthesis | 0.541381 | 0.266 |
R-HSA-201451 | Signaling by BMP | 0.541381 | 0.266 |
R-HSA-1483213 | Synthesis of PE | 0.541381 | 0.266 |
R-HSA-264876 | Insulin processing | 0.541381 | 0.266 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.542796 | 0.265 |
R-HSA-1280218 | Adaptive Immune System | 0.544006 | 0.264 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.546411 | 0.262 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.549745 | 0.260 |
R-HSA-202403 | TCR signaling | 0.549933 | 0.260 |
R-HSA-166520 | Signaling by NTRKs | 0.551153 | 0.259 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.552099 | 0.258 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.552099 | 0.258 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.552099 | 0.258 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.552099 | 0.258 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.552099 | 0.258 |
R-HSA-9757110 | Prednisone ADME | 0.552099 | 0.258 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.554614 | 0.256 |
R-HSA-9758941 | Gastrulation | 0.555868 | 0.255 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.556620 | 0.254 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.556620 | 0.254 |
R-HSA-3000178 | ECM proteoglycans | 0.556620 | 0.254 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.560557 | 0.251 |
R-HSA-72086 | mRNA Capping | 0.562567 | 0.250 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.562567 | 0.250 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.562567 | 0.250 |
R-HSA-420092 | Glucagon-type ligand receptors | 0.562567 | 0.250 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.562567 | 0.250 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.563419 | 0.249 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.563419 | 0.249 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.563419 | 0.249 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.565219 | 0.248 |
R-HSA-446652 | Interleukin-1 family signaling | 0.569854 | 0.244 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.571679 | 0.243 |
R-HSA-2262752 | Cellular responses to stress | 0.572728 | 0.242 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.572791 | 0.242 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.572791 | 0.242 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.572791 | 0.242 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.572791 | 0.242 |
R-HSA-112311 | Neurotransmitter clearance | 0.572791 | 0.242 |
R-HSA-114452 | Activation of BH3-only proteins | 0.572791 | 0.242 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.582306 | 0.235 |
R-HSA-186763 | Downstream signal transduction | 0.582777 | 0.234 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.582777 | 0.234 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.582777 | 0.234 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.582777 | 0.234 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.583368 | 0.234 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.592530 | 0.227 |
R-HSA-162587 | HIV Life Cycle | 0.592609 | 0.227 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.596290 | 0.225 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.596956 | 0.224 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.601793 | 0.221 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.602055 | 0.220 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.602055 | 0.220 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.602055 | 0.220 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.602055 | 0.220 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.602055 | 0.220 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.602055 | 0.220 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.602055 | 0.220 |
R-HSA-4839726 | Chromatin organization | 0.610173 | 0.215 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.611358 | 0.214 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.611358 | 0.214 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.611358 | 0.214 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.611358 | 0.214 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.611358 | 0.214 |
R-HSA-8964539 | Glutamate and glutamine metabolism | 0.611358 | 0.214 |
R-HSA-189483 | Heme degradation | 0.611358 | 0.214 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.611358 | 0.214 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.614643 | 0.211 |
R-HSA-6805567 | Keratinization | 0.617437 | 0.209 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.618160 | 0.209 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.620445 | 0.207 |
R-HSA-5673000 | RAF activation | 0.620445 | 0.207 |
R-HSA-180746 | Nuclear import of Rev protein | 0.620445 | 0.207 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.620445 | 0.207 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.620445 | 0.207 |
R-HSA-190861 | Gap junction assembly | 0.620445 | 0.207 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.622140 | 0.206 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.627274 | 0.203 |
R-HSA-2132295 | MHC class II antigen presentation | 0.628014 | 0.202 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.628014 | 0.202 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.629319 | 0.201 |
R-HSA-187687 | Signalling to ERKs | 0.629319 | 0.201 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.629319 | 0.201 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.629319 | 0.201 |
R-HSA-381042 | PERK regulates gene expression | 0.629319 | 0.201 |
R-HSA-162909 | Host Interactions of HIV factors | 0.632875 | 0.199 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.633245 | 0.198 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.633245 | 0.198 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.637987 | 0.195 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.637987 | 0.195 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 0.637987 | 0.195 |
R-HSA-163560 | Triglyceride catabolism | 0.637987 | 0.195 |
R-HSA-8853659 | RET signaling | 0.637987 | 0.195 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.639141 | 0.194 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.639141 | 0.194 |
R-HSA-397014 | Muscle contraction | 0.640215 | 0.194 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.646452 | 0.189 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.646452 | 0.189 |
R-HSA-4641258 | Degradation of DVL | 0.646452 | 0.189 |
R-HSA-419037 | NCAM1 interactions | 0.646452 | 0.189 |
R-HSA-8948216 | Collagen chain trimerization | 0.646452 | 0.189 |
R-HSA-196757 | Metabolism of folate and pterines | 0.646452 | 0.189 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.654720 | 0.184 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.654720 | 0.184 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.654720 | 0.184 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.661982 | 0.179 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.662795 | 0.179 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.662795 | 0.179 |
R-HSA-71336 | Pentose phosphate pathway | 0.662795 | 0.179 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.665661 | 0.177 |
R-HSA-9663891 | Selective autophagy | 0.667508 | 0.176 |
R-HSA-1474165 | Reproduction | 0.670167 | 0.174 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.670682 | 0.173 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.670682 | 0.173 |
R-HSA-9646399 | Aggrephagy | 0.670682 | 0.173 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.670682 | 0.173 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.670682 | 0.173 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.670682 | 0.173 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.670682 | 0.173 |
R-HSA-167169 | HIV Transcription Elongation | 0.670682 | 0.173 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.670682 | 0.173 |
R-HSA-202433 | Generation of second messenger molecules | 0.670682 | 0.173 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.670682 | 0.173 |
R-HSA-9854311 | Maturation of TCA enzymes and regulation of TCA cycle | 0.670682 | 0.173 |
R-HSA-71240 | Tryptophan catabolism | 0.670682 | 0.173 |
R-HSA-8982491 | Glycogen metabolism | 0.670682 | 0.173 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.672269 | 0.172 |
R-HSA-5576891 | Cardiac conduction | 0.674628 | 0.171 |
R-HSA-9711123 | Cellular response to chemical stress | 0.674707 | 0.171 |
R-HSA-73894 | DNA Repair | 0.675031 | 0.171 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.678385 | 0.169 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.678385 | 0.169 |
R-HSA-9694548 | Maturation of spike protein | 0.678385 | 0.169 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.678385 | 0.169 |
R-HSA-9607240 | FLT3 Signaling | 0.678385 | 0.169 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.679045 | 0.168 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.685908 | 0.164 |
R-HSA-167161 | HIV Transcription Initiation | 0.685908 | 0.164 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.685908 | 0.164 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.685908 | 0.164 |
R-HSA-6811438 | Intra-Golgi traffic | 0.685908 | 0.164 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.685908 | 0.164 |
R-HSA-9683701 | Translation of Structural Proteins | 0.685908 | 0.164 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.689994 | 0.161 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.693255 | 0.159 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.693255 | 0.159 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.693255 | 0.159 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.693255 | 0.159 |
R-HSA-391251 | Protein folding | 0.694050 | 0.159 |
R-HSA-74752 | Signaling by Insulin receptor | 0.694050 | 0.159 |
R-HSA-388396 | GPCR downstream signalling | 0.694742 | 0.158 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.699144 | 0.155 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.700432 | 0.155 |
R-HSA-8854214 | TBC/RABGAPs | 0.700432 | 0.155 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.700432 | 0.155 |
R-HSA-1474290 | Collagen formation | 0.704167 | 0.152 |
R-HSA-375280 | Amine ligand-binding receptors | 0.707440 | 0.150 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.714285 | 0.146 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.714285 | 0.146 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.714285 | 0.146 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.714285 | 0.146 |
R-HSA-9824272 | Somitogenesis | 0.714285 | 0.146 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.714285 | 0.146 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.714285 | 0.146 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.714285 | 0.146 |
R-HSA-1489509 | DAG and IP3 signaling | 0.714285 | 0.146 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.718821 | 0.143 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.720971 | 0.142 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.720971 | 0.142 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.720971 | 0.142 |
R-HSA-983712 | Ion channel transport | 0.723685 | 0.140 |
R-HSA-5617833 | Cilium Assembly | 0.727118 | 0.138 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.727500 | 0.138 |
R-HSA-1483191 | Synthesis of PC | 0.727500 | 0.138 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.731849 | 0.136 |
R-HSA-425410 | Metal ion SLC transporters | 0.733877 | 0.134 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.740105 | 0.131 |
R-HSA-389661 | Glyoxylate metabolism and glycine degradation | 0.740105 | 0.131 |
R-HSA-73893 | DNA Damage Bypass | 0.740105 | 0.131 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.740105 | 0.131 |
R-HSA-380108 | Chemokine receptors bind chemokines | 0.740105 | 0.131 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.740532 | 0.130 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.741884 | 0.130 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.746188 | 0.127 |
R-HSA-2162123 | Synthesis of Prostaglandins (PG) and Thromboxanes (TX) | 0.746188 | 0.127 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.752128 | 0.124 |
R-HSA-9864848 | Complex IV assembly | 0.752128 | 0.124 |
R-HSA-912446 | Meiotic recombination | 0.752128 | 0.124 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 0.752128 | 0.124 |
R-HSA-70895 | Branched-chain amino acid catabolism | 0.752128 | 0.124 |
R-HSA-1483257 | Phospholipid metabolism | 0.753884 | 0.123 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.757930 | 0.120 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.757930 | 0.120 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.757930 | 0.120 |
R-HSA-9824446 | Viral Infection Pathways | 0.758630 | 0.120 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.759711 | 0.119 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.763313 | 0.117 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.763597 | 0.117 |
R-HSA-1221632 | Meiotic synapsis | 0.763597 | 0.117 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.763597 | 0.117 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.763597 | 0.117 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.765855 | 0.116 |
R-HSA-376176 | Signaling by ROBO receptors | 0.768881 | 0.114 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.774536 | 0.111 |
R-HSA-418597 | G alpha (z) signalling events | 0.774536 | 0.111 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.774536 | 0.111 |
R-HSA-72172 | mRNA Splicing | 0.774841 | 0.111 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.779815 | 0.108 |
R-HSA-5578775 | Ion homeostasis | 0.779815 | 0.108 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.779815 | 0.108 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.779815 | 0.108 |
R-HSA-6782135 | Dual incision in TC-NER | 0.790006 | 0.102 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.790715 | 0.102 |
R-HSA-191859 | snRNP Assembly | 0.794923 | 0.100 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.794923 | 0.100 |
R-HSA-180786 | Extension of Telomeres | 0.794923 | 0.100 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.794923 | 0.100 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.794923 | 0.100 |
R-HSA-983189 | Kinesins | 0.799726 | 0.097 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.799726 | 0.097 |
R-HSA-379724 | tRNA Aminoacylation | 0.799726 | 0.097 |
R-HSA-1227986 | Signaling by ERBB2 | 0.799726 | 0.097 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.804416 | 0.095 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.804416 | 0.095 |
R-HSA-445717 | Aquaporin-mediated transport | 0.804416 | 0.095 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.808997 | 0.092 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.808997 | 0.092 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.808997 | 0.092 |
R-HSA-9707616 | Heme signaling | 0.808997 | 0.092 |
R-HSA-1268020 | Mitochondrial protein import | 0.808997 | 0.092 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.808997 | 0.092 |
R-HSA-5619102 | SLC transporter disorders | 0.812389 | 0.090 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.813471 | 0.090 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.813471 | 0.090 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.813471 | 0.090 |
R-HSA-9007101 | Rab regulation of trafficking | 0.815285 | 0.089 |
R-HSA-5690714 | CD22 mediated BCR regulation | 0.817840 | 0.087 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.817840 | 0.087 |
R-HSA-1643685 | Disease | 0.820695 | 0.086 |
R-HSA-1234174 | Cellular response to hypoxia | 0.822108 | 0.085 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.828140 | 0.082 |
R-HSA-372790 | Signaling by GPCR | 0.829322 | 0.081 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.830345 | 0.081 |
R-HSA-196071 | Metabolism of steroid hormones | 0.830345 | 0.081 |
R-HSA-196807 | Nicotinate metabolism | 0.830345 | 0.081 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.834261 | 0.079 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.834321 | 0.079 |
R-HSA-167172 | Transcription of the HIV genome | 0.834321 | 0.079 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.834321 | 0.079 |
R-HSA-913709 | O-linked glycosylation of mucins | 0.834321 | 0.079 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.834584 | 0.079 |
R-HSA-1474244 | Extracellular matrix organization | 0.836291 | 0.078 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.840981 | 0.075 |
R-HSA-69206 | G1/S Transition | 0.843075 | 0.074 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.845697 | 0.073 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.845697 | 0.073 |
R-HSA-5632684 | Hedgehog 'on' state | 0.845697 | 0.073 |
R-HSA-9638482 | Metal ion assimilation from the host | 0.845697 | 0.073 |
R-HSA-189445 | Metabolism of porphyrins | 0.845697 | 0.073 |
R-HSA-975634 | Retinoid metabolism and transport | 0.845697 | 0.073 |
R-HSA-168255 | Influenza Infection | 0.846590 | 0.072 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.849313 | 0.071 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.852845 | 0.069 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.852845 | 0.069 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 0.852845 | 0.069 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.856294 | 0.067 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.856294 | 0.067 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.856294 | 0.067 |
R-HSA-1236394 | Signaling by ERBB4 | 0.856294 | 0.067 |
R-HSA-380287 | Centrosome maturation | 0.859663 | 0.066 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.859663 | 0.066 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 0.859663 | 0.066 |
R-HSA-69275 | G2/M Transition | 0.862668 | 0.064 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.862952 | 0.064 |
R-HSA-5689603 | UCH proteinases | 0.862952 | 0.064 |
R-HSA-9020591 | Interleukin-12 signaling | 0.862952 | 0.064 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.862952 | 0.064 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.864538 | 0.063 |
R-HSA-9909396 | Circadian clock | 0.864538 | 0.063 |
R-HSA-9694635 | Translation of Structural Proteins | 0.866165 | 0.062 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.866982 | 0.062 |
R-HSA-6783783 | Interleukin-10 signaling | 0.869303 | 0.061 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.869303 | 0.061 |
R-HSA-5619084 | ABC transporter disorders | 0.869303 | 0.061 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 0.869303 | 0.061 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.872367 | 0.059 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.872367 | 0.059 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.874948 | 0.058 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.875254 | 0.058 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.875360 | 0.058 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.875360 | 0.058 |
R-HSA-6806834 | Signaling by MET | 0.875360 | 0.058 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.875781 | 0.058 |
R-HSA-5663205 | Infectious disease | 0.876300 | 0.057 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.878283 | 0.056 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 0.878283 | 0.056 |
R-HSA-1640170 | Cell Cycle | 0.880557 | 0.055 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.881137 | 0.055 |
R-HSA-9609690 | HCMV Early Events | 0.883069 | 0.054 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.886647 | 0.052 |
R-HSA-1500620 | Meiosis | 0.889306 | 0.051 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.889306 | 0.051 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.891731 | 0.050 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.891902 | 0.050 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.891902 | 0.050 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.891902 | 0.050 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.891902 | 0.050 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.894438 | 0.048 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.894438 | 0.048 |
R-HSA-447115 | Interleukin-12 family signaling | 0.896914 | 0.047 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.899333 | 0.046 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.899608 | 0.046 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.904001 | 0.044 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.904001 | 0.044 |
R-HSA-73884 | Base Excision Repair | 0.904001 | 0.044 |
R-HSA-112310 | Neurotransmitter release cycle | 0.904001 | 0.044 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.904109 | 0.044 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.910429 | 0.041 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.910602 | 0.041 |
R-HSA-9609507 | Protein localization | 0.912123 | 0.040 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.913787 | 0.039 |
R-HSA-1989781 | PPARA activates gene expression | 0.915421 | 0.038 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.918603 | 0.037 |
R-HSA-2168880 | Scavenging of heme from plasma | 0.918705 | 0.037 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.918705 | 0.037 |
R-HSA-9748784 | Drug ADME | 0.920090 | 0.036 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.920613 | 0.036 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.920613 | 0.036 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.920613 | 0.036 |
R-HSA-1296071 | Potassium Channels | 0.920613 | 0.036 |
R-HSA-157579 | Telomere Maintenance | 0.922477 | 0.035 |
R-HSA-8951664 | Neddylation | 0.924039 | 0.034 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.924297 | 0.034 |
R-HSA-422356 | Regulation of insulin secretion | 0.924297 | 0.034 |
R-HSA-9614085 | FOXO-mediated transcription | 0.926074 | 0.033 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.927810 | 0.033 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.927810 | 0.033 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.932778 | 0.030 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.934839 | 0.029 |
R-HSA-418555 | G alpha (s) signalling events | 0.939118 | 0.027 |
R-HSA-449147 | Signaling by Interleukins | 0.941373 | 0.026 |
R-HSA-5419276 | Mitochondrial translation termination | 0.943082 | 0.025 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.943082 | 0.025 |
R-HSA-611105 | Respiratory electron transport | 0.946917 | 0.024 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.952944 | 0.021 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.952944 | 0.021 |
R-HSA-5668914 | Diseases of metabolism | 0.953870 | 0.021 |
R-HSA-9609646 | HCMV Infection | 0.953966 | 0.020 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.954667 | 0.020 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.955130 | 0.020 |
R-HSA-73886 | Chromosome Maintenance | 0.959204 | 0.018 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.959204 | 0.018 |
R-HSA-68877 | Mitotic Prometaphase | 0.960551 | 0.017 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 0.961100 | 0.017 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.967703 | 0.014 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.968174 | 0.014 |
R-HSA-9717189 | Sensory perception of taste | 0.969342 | 0.014 |
R-HSA-9843745 | Adipogenesis | 0.969342 | 0.014 |
R-HSA-163685 | Integration of energy metabolism | 0.973425 | 0.012 |
R-HSA-211859 | Biological oxidations | 0.973433 | 0.012 |
R-HSA-5173105 | O-linked glycosylation | 0.974050 | 0.011 |
R-HSA-5368287 | Mitochondrial translation | 0.974661 | 0.011 |
R-HSA-9948299 | Ribosome-associated quality control | 0.974661 | 0.011 |
R-HSA-5358351 | Signaling by Hedgehog | 0.974661 | 0.011 |
R-HSA-6807070 | PTEN Regulation | 0.975258 | 0.011 |
R-HSA-68882 | Mitotic Anaphase | 0.975655 | 0.011 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.976145 | 0.010 |
R-HSA-392499 | Metabolism of proteins | 0.979324 | 0.009 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.979518 | 0.009 |
R-HSA-2187338 | Visual phototransduction | 0.980035 | 0.009 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.980711 | 0.008 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.981323 | 0.008 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.981413 | 0.008 |
R-HSA-2142753 | Arachidonate metabolism | 0.982279 | 0.008 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.983503 | 0.007 |
R-HSA-15869 | Metabolism of nucleotides | 0.983822 | 0.007 |
R-HSA-9610379 | HCMV Late Events | 0.984271 | 0.007 |
R-HSA-157118 | Signaling by NOTCH | 0.985101 | 0.007 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.985763 | 0.006 |
R-HSA-68886 | M Phase | 0.986103 | 0.006 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.986691 | 0.006 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.987864 | 0.005 |
R-HSA-72306 | tRNA processing | 0.988739 | 0.005 |
R-HSA-382551 | Transport of small molecules | 0.989240 | 0.005 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.989316 | 0.005 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.989518 | 0.005 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.989518 | 0.005 |
R-HSA-597592 | Post-translational protein modification | 0.989518 | 0.005 |
R-HSA-3781865 | Diseases of glycosylation | 0.991940 | 0.004 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.992675 | 0.003 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.993250 | 0.003 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.993796 | 0.003 |
R-HSA-428157 | Sphingolipid metabolism | 0.994632 | 0.002 |
R-HSA-9640148 | Infection with Enterobacteria | 0.994883 | 0.002 |
R-HSA-500792 | GPCR ligand binding | 0.996264 | 0.002 |
R-HSA-8953854 | Metabolism of RNA | 0.996295 | 0.002 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.996735 | 0.001 |
R-HSA-8957322 | Metabolism of steroids | 0.997462 | 0.001 |
R-HSA-72312 | rRNA processing | 0.997506 | 0.001 |
R-HSA-418594 | G alpha (i) signalling events | 0.997669 | 0.001 |
R-HSA-72766 | Translation | 0.998499 | 0.001 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999838 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999964 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 0.999994 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
PIM3 |
0.900 | 0.453 | -3 | 0.930 |
NDR2 |
0.898 | 0.340 | -3 | 0.909 |
NDR1 |
0.897 | 0.398 | -3 | 0.926 |
CDKL1 |
0.897 | 0.513 | -3 | 0.945 |
RSK2 |
0.897 | 0.469 | -3 | 0.940 |
CDKL5 |
0.896 | 0.482 | -3 | 0.950 |
PIM1 |
0.896 | 0.524 | -3 | 0.927 |
COT |
0.895 | 0.136 | 2 | 0.918 |
RSK3 |
0.894 | 0.458 | -3 | 0.932 |
PKN3 |
0.894 | 0.410 | -3 | 0.923 |
NUAK2 |
0.894 | 0.424 | -3 | 0.931 |
P90RSK |
0.893 | 0.467 | -3 | 0.939 |
AMPKA1 |
0.893 | 0.406 | -3 | 0.921 |
CAMK1B |
0.892 | 0.418 | -3 | 0.936 |
AMPKA2 |
0.891 | 0.429 | -3 | 0.922 |
PRKD2 |
0.890 | 0.410 | -3 | 0.919 |
WNK1 |
0.889 | 0.283 | -2 | 0.902 |
PKACG |
0.889 | 0.346 | -2 | 0.793 |
P70S6KB |
0.889 | 0.423 | -3 | 0.935 |
MARK4 |
0.888 | 0.274 | 4 | 0.911 |
SRPK1 |
0.887 | 0.409 | -3 | 0.932 |
PKN2 |
0.887 | 0.338 | -3 | 0.916 |
NUAK1 |
0.886 | 0.399 | -3 | 0.923 |
NIM1 |
0.886 | 0.314 | 3 | 0.860 |
MAPKAPK3 |
0.886 | 0.380 | -3 | 0.924 |
PRKD1 |
0.886 | 0.314 | -3 | 0.931 |
PKCD |
0.885 | 0.324 | 2 | 0.837 |
LATS2 |
0.885 | 0.254 | -5 | 0.818 |
MELK |
0.885 | 0.408 | -3 | 0.923 |
SIK |
0.885 | 0.420 | -3 | 0.904 |
MST4 |
0.884 | 0.217 | 2 | 0.882 |
RAF1 |
0.884 | 0.086 | 1 | 0.860 |
SRPK2 |
0.883 | 0.431 | -3 | 0.897 |
CDC7 |
0.883 | 0.032 | 1 | 0.826 |
CLK3 |
0.883 | 0.245 | 1 | 0.797 |
CAMLCK |
0.882 | 0.323 | -2 | 0.872 |
MSK2 |
0.882 | 0.387 | -3 | 0.928 |
SKMLCK |
0.882 | 0.287 | -2 | 0.881 |
QSK |
0.882 | 0.348 | 4 | 0.895 |
PIM2 |
0.882 | 0.507 | -3 | 0.927 |
SGK3 |
0.882 | 0.462 | -3 | 0.923 |
RIPK3 |
0.882 | 0.125 | 3 | 0.825 |
TSSK1 |
0.882 | 0.314 | -3 | 0.921 |
GCN2 |
0.882 | -0.080 | 2 | 0.843 |
CAMK2D |
0.881 | 0.275 | -3 | 0.920 |
RSK4 |
0.881 | 0.434 | -3 | 0.916 |
ICK |
0.881 | 0.367 | -3 | 0.951 |
DSTYK |
0.881 | 0.004 | 2 | 0.924 |
PKACB |
0.880 | 0.375 | -2 | 0.710 |
PRPK |
0.880 | -0.074 | -1 | 0.869 |
NIK |
0.880 | 0.320 | -3 | 0.902 |
AKT2 |
0.880 | 0.477 | -3 | 0.900 |
MAPKAPK2 |
0.880 | 0.382 | -3 | 0.910 |
PRKD3 |
0.880 | 0.418 | -3 | 0.922 |
QIK |
0.880 | 0.301 | -3 | 0.906 |
WNK3 |
0.880 | 0.092 | 1 | 0.866 |
AURC |
0.880 | 0.227 | -2 | 0.685 |
CAMK4 |
0.879 | 0.285 | -3 | 0.909 |
IKKB |
0.879 | -0.033 | -2 | 0.785 |
ULK2 |
0.879 | -0.063 | 2 | 0.826 |
DAPK2 |
0.879 | 0.345 | -3 | 0.929 |
NLK |
0.879 | 0.091 | 1 | 0.797 |
TBK1 |
0.879 | -0.038 | 1 | 0.785 |
HUNK |
0.878 | 0.083 | 2 | 0.836 |
MTOR |
0.878 | -0.012 | 1 | 0.793 |
ATR |
0.878 | 0.102 | 1 | 0.873 |
HIPK4 |
0.877 | 0.244 | 1 | 0.752 |
MOS |
0.877 | 0.026 | 1 | 0.864 |
PDHK4 |
0.877 | -0.176 | 1 | 0.865 |
MSK1 |
0.877 | 0.368 | -3 | 0.927 |
CAMK2G |
0.876 | 0.017 | 2 | 0.864 |
PKG2 |
0.876 | 0.306 | -2 | 0.721 |
NEK7 |
0.876 | -0.050 | -3 | 0.801 |
ERK5 |
0.876 | 0.113 | 1 | 0.825 |
MYLK4 |
0.875 | 0.326 | -2 | 0.792 |
TGFBR2 |
0.875 | 0.037 | -2 | 0.798 |
TSSK2 |
0.875 | 0.214 | -5 | 0.839 |
AURB |
0.875 | 0.216 | -2 | 0.684 |
PRKX |
0.875 | 0.410 | -3 | 0.865 |
BRSK1 |
0.875 | 0.318 | -3 | 0.921 |
PHKG1 |
0.874 | 0.284 | -3 | 0.916 |
SRPK3 |
0.874 | 0.370 | -3 | 0.909 |
AKT1 |
0.874 | 0.444 | -3 | 0.905 |
BRSK2 |
0.874 | 0.262 | -3 | 0.916 |
PKCB |
0.874 | 0.269 | 2 | 0.782 |
PAK1 |
0.873 | 0.206 | -2 | 0.798 |
PAK3 |
0.873 | 0.183 | -2 | 0.795 |
NEK6 |
0.873 | -0.026 | -2 | 0.885 |
CAMK1G |
0.873 | 0.386 | -3 | 0.923 |
MNK2 |
0.873 | 0.190 | -2 | 0.817 |
IKKE |
0.873 | -0.094 | 1 | 0.772 |
BMPR2 |
0.873 | -0.155 | -2 | 0.903 |
P70S6K |
0.872 | 0.427 | -3 | 0.912 |
PKCG |
0.872 | 0.233 | 2 | 0.781 |
RIPK1 |
0.872 | 0.096 | 1 | 0.871 |
PDHK1 |
0.872 | -0.158 | 1 | 0.861 |
PKACA |
0.872 | 0.378 | -2 | 0.657 |
MARK3 |
0.871 | 0.240 | 4 | 0.860 |
MARK2 |
0.871 | 0.245 | 4 | 0.834 |
PKCA |
0.871 | 0.236 | 2 | 0.773 |
CAMK2B |
0.871 | 0.250 | 2 | 0.837 |
MLK1 |
0.870 | -0.047 | 2 | 0.853 |
CLK1 |
0.870 | 0.350 | -3 | 0.918 |
MAPKAPK5 |
0.870 | 0.334 | -3 | 0.911 |
PKCH |
0.869 | 0.246 | 2 | 0.765 |
CLK4 |
0.869 | 0.333 | -3 | 0.927 |
IRE1 |
0.869 | 0.070 | 1 | 0.844 |
DCAMKL1 |
0.869 | 0.395 | -3 | 0.907 |
NEK9 |
0.869 | -0.027 | 2 | 0.872 |
BCKDK |
0.869 | -0.080 | -1 | 0.839 |
CAMK1D |
0.868 | 0.444 | -3 | 0.890 |
MASTL |
0.868 | -0.052 | -2 | 0.848 |
MNK1 |
0.867 | 0.198 | -2 | 0.833 |
CAMK2A |
0.867 | 0.266 | 2 | 0.853 |
MARK1 |
0.867 | 0.231 | 4 | 0.878 |
CHAK2 |
0.867 | -0.011 | -1 | 0.848 |
PKCZ |
0.866 | 0.185 | 2 | 0.822 |
PAK2 |
0.866 | 0.164 | -2 | 0.784 |
ATM |
0.866 | 0.092 | 1 | 0.822 |
ANKRD3 |
0.866 | 0.042 | 1 | 0.907 |
PAK6 |
0.866 | 0.151 | -2 | 0.714 |
LATS1 |
0.866 | 0.240 | -3 | 0.909 |
IRE2 |
0.866 | 0.077 | 2 | 0.794 |
AKT3 |
0.866 | 0.469 | -3 | 0.870 |
ULK1 |
0.865 | -0.169 | -3 | 0.765 |
SNRK |
0.865 | 0.133 | 2 | 0.706 |
SGK1 |
0.865 | 0.505 | -3 | 0.861 |
PKCT |
0.864 | 0.288 | 2 | 0.776 |
MLK2 |
0.863 | -0.040 | 2 | 0.860 |
FAM20C |
0.863 | 0.080 | 2 | 0.643 |
PHKG2 |
0.863 | 0.272 | -3 | 0.903 |
CHK1 |
0.863 | 0.218 | -3 | 0.888 |
PKN1 |
0.862 | 0.410 | -3 | 0.917 |
GRK5 |
0.862 | -0.182 | -3 | 0.796 |
WNK4 |
0.862 | 0.193 | -2 | 0.894 |
NEK2 |
0.862 | 0.020 | 2 | 0.846 |
PKR |
0.861 | 0.109 | 1 | 0.874 |
SMMLCK |
0.861 | 0.340 | -3 | 0.938 |
IKKA |
0.860 | -0.089 | -2 | 0.776 |
DLK |
0.859 | -0.080 | 1 | 0.850 |
DYRK2 |
0.859 | 0.142 | 1 | 0.638 |
CAMK1A |
0.859 | 0.446 | -3 | 0.874 |
GRK6 |
0.859 | -0.066 | 1 | 0.836 |
DCAMKL2 |
0.859 | 0.287 | -3 | 0.919 |
CLK2 |
0.858 | 0.352 | -3 | 0.916 |
DNAPK |
0.858 | 0.124 | 1 | 0.756 |
AURA |
0.858 | 0.138 | -2 | 0.648 |
DYRK1A |
0.858 | 0.272 | 1 | 0.691 |
TTBK2 |
0.858 | -0.136 | 2 | 0.732 |
SSTK |
0.858 | 0.199 | 4 | 0.884 |
HIPK1 |
0.857 | 0.235 | 1 | 0.662 |
MRCKB |
0.857 | 0.413 | -3 | 0.910 |
MLK3 |
0.857 | -0.027 | 2 | 0.786 |
KIS |
0.856 | -0.034 | 1 | 0.646 |
GRK1 |
0.856 | -0.021 | -2 | 0.835 |
PKCI |
0.856 | 0.228 | 2 | 0.790 |
IRAK4 |
0.856 | 0.108 | 1 | 0.870 |
CHK2 |
0.856 | 0.448 | -3 | 0.869 |
PLK1 |
0.855 | -0.046 | -2 | 0.837 |
PKCE |
0.855 | 0.303 | 2 | 0.764 |
MRCKA |
0.855 | 0.398 | -3 | 0.916 |
CDK7 |
0.855 | -0.013 | 1 | 0.611 |
GRK4 |
0.855 | -0.151 | -2 | 0.867 |
CHAK1 |
0.854 | -0.045 | 2 | 0.804 |
SMG1 |
0.854 | 0.027 | 1 | 0.832 |
DAPK3 |
0.854 | 0.356 | -3 | 0.926 |
MEK1 |
0.853 | -0.081 | 2 | 0.872 |
VRK2 |
0.853 | -0.070 | 1 | 0.891 |
ROCK2 |
0.853 | 0.414 | -3 | 0.921 |
HIPK3 |
0.853 | 0.207 | 1 | 0.679 |
PLK4 |
0.852 | 0.012 | 2 | 0.652 |
ALK4 |
0.852 | -0.066 | -2 | 0.834 |
DRAK1 |
0.852 | 0.051 | 1 | 0.778 |
PAK5 |
0.851 | 0.151 | -2 | 0.647 |
CDK8 |
0.851 | -0.074 | 1 | 0.606 |
DYRK3 |
0.850 | 0.261 | 1 | 0.667 |
BRAF |
0.850 | 0.036 | -4 | 0.803 |
YSK4 |
0.850 | -0.116 | 1 | 0.805 |
MLK4 |
0.850 | -0.074 | 2 | 0.771 |
HIPK2 |
0.849 | 0.165 | 1 | 0.538 |
HRI |
0.849 | -0.078 | -2 | 0.857 |
CDK5 |
0.848 | 0.009 | 1 | 0.636 |
MST3 |
0.848 | 0.123 | 2 | 0.867 |
PKG1 |
0.848 | 0.314 | -2 | 0.632 |
TGFBR1 |
0.848 | -0.054 | -2 | 0.802 |
NEK5 |
0.848 | 0.033 | 1 | 0.899 |
MPSK1 |
0.848 | 0.168 | 1 | 0.848 |
DMPK1 |
0.847 | 0.434 | -3 | 0.912 |
MEKK1 |
0.847 | -0.049 | 1 | 0.861 |
PERK |
0.847 | -0.088 | -2 | 0.842 |
BMPR1B |
0.847 | -0.016 | 1 | 0.758 |
PAK4 |
0.847 | 0.137 | -2 | 0.652 |
MAK |
0.846 | 0.347 | -2 | 0.744 |
P38A |
0.846 | 0.002 | 1 | 0.670 |
PLK3 |
0.846 | -0.077 | 2 | 0.804 |
CDK19 |
0.846 | -0.066 | 1 | 0.561 |
SBK |
0.846 | 0.452 | -3 | 0.834 |
MOK |
0.845 | 0.359 | 1 | 0.709 |
CDK14 |
0.845 | 0.080 | 1 | 0.585 |
IRAK1 |
0.845 | -0.049 | -1 | 0.791 |
DAPK1 |
0.845 | 0.315 | -3 | 0.924 |
CDK18 |
0.845 | 0.005 | 1 | 0.538 |
ALK2 |
0.845 | -0.040 | -2 | 0.816 |
MEK5 |
0.845 | -0.093 | 2 | 0.859 |
ZAK |
0.845 | -0.058 | 1 | 0.821 |
CRIK |
0.845 | 0.454 | -3 | 0.913 |
DYRK1B |
0.845 | 0.143 | 1 | 0.588 |
PASK |
0.844 | 0.198 | -3 | 0.920 |
PDK1 |
0.844 | 0.235 | 1 | 0.869 |
GRK7 |
0.844 | 0.011 | 1 | 0.778 |
ROCK1 |
0.843 | 0.393 | -3 | 0.912 |
MEKK3 |
0.843 | -0.104 | 1 | 0.831 |
MEKK2 |
0.843 | -0.034 | 2 | 0.845 |
TLK2 |
0.842 | -0.128 | 1 | 0.836 |
CDK10 |
0.842 | 0.107 | 1 | 0.569 |
CDK13 |
0.842 | -0.069 | 1 | 0.583 |
JNK2 |
0.842 | -0.011 | 1 | 0.542 |
CDK9 |
0.841 | -0.048 | 1 | 0.594 |
NEK8 |
0.841 | 0.019 | 2 | 0.853 |
TAO3 |
0.841 | 0.042 | 1 | 0.820 |
DYRK4 |
0.840 | 0.110 | 1 | 0.549 |
GAK |
0.840 | 0.179 | 1 | 0.899 |
ACVR2A |
0.840 | -0.111 | -2 | 0.786 |
TLK1 |
0.839 | -0.103 | -2 | 0.842 |
NEK4 |
0.839 | 0.032 | 1 | 0.841 |
JNK3 |
0.839 | -0.052 | 1 | 0.591 |
ACVR2B |
0.839 | -0.115 | -2 | 0.802 |
ERK2 |
0.839 | -0.062 | 1 | 0.617 |
TAO2 |
0.838 | 0.044 | 2 | 0.885 |
PINK1 |
0.838 | -0.162 | 1 | 0.831 |
ERK1 |
0.837 | -0.045 | 1 | 0.574 |
LKB1 |
0.837 | -0.007 | -3 | 0.802 |
P38B |
0.837 | -0.025 | 1 | 0.585 |
CDK12 |
0.837 | -0.051 | 1 | 0.552 |
CDK2 |
0.836 | -0.067 | 1 | 0.644 |
MEKK6 |
0.836 | 0.088 | 1 | 0.842 |
NEK1 |
0.836 | 0.087 | 1 | 0.869 |
CDK17 |
0.835 | -0.040 | 1 | 0.469 |
CAMKK1 |
0.835 | -0.116 | -2 | 0.786 |
TTBK1 |
0.835 | -0.143 | 2 | 0.651 |
NEK11 |
0.835 | -0.068 | 1 | 0.827 |
PBK |
0.835 | 0.225 | 1 | 0.856 |
CDK1 |
0.834 | -0.063 | 1 | 0.546 |
GRK2 |
0.834 | -0.118 | -2 | 0.759 |
CK1E |
0.833 | -0.066 | -3 | 0.474 |
TNIK |
0.833 | 0.084 | 3 | 0.874 |
LOK |
0.833 | 0.080 | -2 | 0.803 |
ERK7 |
0.833 | 0.048 | 2 | 0.596 |
CDK16 |
0.833 | 0.015 | 1 | 0.495 |
HGK |
0.832 | 0.033 | 3 | 0.872 |
CAMKK2 |
0.832 | -0.086 | -2 | 0.776 |
P38G |
0.831 | -0.051 | 1 | 0.460 |
PRP4 |
0.831 | -0.098 | -3 | 0.683 |
MINK |
0.831 | 0.025 | 1 | 0.825 |
MAP3K15 |
0.831 | 0.017 | 1 | 0.816 |
EEF2K |
0.830 | 0.011 | 3 | 0.850 |
BMPR1A |
0.830 | -0.053 | 1 | 0.737 |
VRK1 |
0.830 | 0.019 | 2 | 0.880 |
BUB1 |
0.830 | 0.141 | -5 | 0.794 |
GCK |
0.830 | 0.018 | 1 | 0.803 |
HPK1 |
0.829 | 0.072 | 1 | 0.786 |
RIPK2 |
0.829 | -0.074 | 1 | 0.797 |
LRRK2 |
0.829 | 0.036 | 2 | 0.878 |
TAK1 |
0.829 | -0.009 | 1 | 0.860 |
YSK1 |
0.828 | 0.071 | 2 | 0.844 |
CK1G1 |
0.827 | -0.093 | -3 | 0.466 |
KHS1 |
0.827 | 0.090 | 1 | 0.801 |
CDK3 |
0.826 | -0.021 | 1 | 0.491 |
MST2 |
0.826 | -0.098 | 1 | 0.830 |
KHS2 |
0.826 | 0.118 | 1 | 0.799 |
NEK3 |
0.826 | 0.017 | 1 | 0.831 |
GSK3B |
0.825 | -0.033 | 4 | 0.455 |
CDK4 |
0.824 | 0.003 | 1 | 0.535 |
CK1D |
0.823 | -0.075 | -3 | 0.428 |
MST1 |
0.822 | -0.071 | 1 | 0.820 |
STK33 |
0.822 | -0.105 | 2 | 0.643 |
CDK6 |
0.822 | -0.021 | 1 | 0.572 |
CK1A2 |
0.822 | -0.076 | -3 | 0.435 |
MEK2 |
0.820 | -0.153 | 2 | 0.840 |
SLK |
0.820 | -0.045 | -2 | 0.750 |
P38D |
0.819 | -0.054 | 1 | 0.502 |
GRK3 |
0.818 | -0.116 | -2 | 0.717 |
GSK3A |
0.818 | -0.031 | 4 | 0.463 |
HASPIN |
0.818 | 0.082 | -1 | 0.717 |
BIKE |
0.816 | 0.172 | 1 | 0.805 |
TTK |
0.813 | 0.019 | -2 | 0.838 |
CK2A2 |
0.813 | -0.035 | 1 | 0.652 |
PLK2 |
0.812 | -0.110 | -3 | 0.680 |
PDHK3_TYR |
0.812 | 0.099 | 4 | 0.924 |
MYO3B |
0.811 | 0.027 | 2 | 0.855 |
JNK1 |
0.810 | -0.088 | 1 | 0.524 |
TAO1 |
0.810 | 0.014 | 1 | 0.770 |
PKMYT1_TYR |
0.808 | 0.110 | 3 | 0.888 |
TESK1_TYR |
0.807 | 0.045 | 3 | 0.904 |
LIMK2_TYR |
0.807 | 0.147 | -3 | 0.881 |
ASK1 |
0.806 | -0.076 | 1 | 0.801 |
OSR1 |
0.806 | -0.097 | 2 | 0.838 |
MAP2K4_TYR |
0.804 | 0.016 | -1 | 0.897 |
MYO3A |
0.804 | -0.029 | 1 | 0.800 |
PINK1_TYR |
0.804 | 0.044 | 1 | 0.866 |
MAP2K7_TYR |
0.804 | -0.066 | 2 | 0.892 |
CK2A1 |
0.801 | -0.059 | 1 | 0.623 |
RET |
0.801 | 0.012 | 1 | 0.854 |
AAK1 |
0.800 | 0.201 | 1 | 0.709 |
LIMK1_TYR |
0.800 | 0.008 | 2 | 0.887 |
PDHK4_TYR |
0.800 | -0.064 | 2 | 0.917 |
MAP2K6_TYR |
0.800 | -0.065 | -1 | 0.888 |
TYK2 |
0.800 | -0.027 | 1 | 0.863 |
MST1R |
0.799 | 0.008 | 3 | 0.867 |
EPHA6 |
0.799 | 0.046 | -1 | 0.850 |
ROS1 |
0.799 | 0.023 | 3 | 0.854 |
DDR1 |
0.799 | 0.040 | 4 | 0.849 |
TYRO3 |
0.799 | -0.004 | 3 | 0.862 |
TNK2 |
0.798 | 0.123 | 3 | 0.812 |
EPHB4 |
0.796 | 0.015 | -1 | 0.852 |
BMPR2_TYR |
0.796 | -0.092 | -1 | 0.867 |
YANK3 |
0.795 | -0.066 | 2 | 0.422 |
YES1 |
0.795 | 0.037 | -1 | 0.853 |
TNK1 |
0.795 | 0.099 | 3 | 0.851 |
JAK2 |
0.795 | -0.066 | 1 | 0.854 |
ALPHAK3 |
0.794 | -0.117 | -1 | 0.768 |
PDHK1_TYR |
0.794 | -0.153 | -1 | 0.887 |
ABL2 |
0.794 | 0.021 | -1 | 0.813 |
TNNI3K_TYR |
0.792 | 0.079 | 1 | 0.864 |
FGR |
0.792 | -0.015 | 1 | 0.909 |
CSF1R |
0.792 | -0.064 | 3 | 0.852 |
LCK |
0.791 | 0.061 | -1 | 0.819 |
JAK3 |
0.791 | -0.043 | 1 | 0.842 |
BLK |
0.791 | 0.098 | -1 | 0.830 |
NEK10_TYR |
0.790 | 0.029 | 1 | 0.735 |
PDGFRB |
0.790 | -0.040 | 3 | 0.868 |
HCK |
0.790 | -0.010 | -1 | 0.829 |
INSRR |
0.790 | -0.034 | 3 | 0.823 |
STLK3 |
0.789 | -0.195 | 1 | 0.787 |
ABL1 |
0.788 | -0.009 | -1 | 0.810 |
TXK |
0.788 | 0.005 | 1 | 0.826 |
ITK |
0.788 | -0.022 | -1 | 0.816 |
FLT3 |
0.788 | -0.042 | 3 | 0.855 |
EPHB3 |
0.788 | -0.018 | -1 | 0.838 |
EPHB1 |
0.788 | -0.041 | 1 | 0.869 |
JAK1 |
0.787 | 0.014 | 1 | 0.802 |
AXL |
0.787 | -0.012 | 3 | 0.842 |
KDR |
0.786 | -0.014 | 3 | 0.826 |
DDR2 |
0.786 | 0.123 | 3 | 0.801 |
FER |
0.785 | -0.136 | 1 | 0.893 |
EPHB2 |
0.785 | -0.033 | -1 | 0.831 |
FGFR2 |
0.784 | -0.097 | 3 | 0.844 |
TEK |
0.783 | -0.097 | 3 | 0.816 |
TEC |
0.783 | -0.029 | -1 | 0.766 |
SRMS |
0.783 | -0.102 | 1 | 0.864 |
FGFR1 |
0.783 | -0.091 | 3 | 0.835 |
PDGFRA |
0.783 | -0.107 | 3 | 0.865 |
LTK |
0.782 | -0.031 | 3 | 0.811 |
BTK |
0.782 | -0.099 | -1 | 0.794 |
EPHA4 |
0.781 | -0.086 | 2 | 0.801 |
MERTK |
0.781 | -0.052 | 3 | 0.837 |
KIT |
0.781 | -0.137 | 3 | 0.851 |
EPHA1 |
0.780 | -0.015 | 3 | 0.829 |
ALK |
0.780 | -0.082 | 3 | 0.796 |
BMX |
0.779 | -0.050 | -1 | 0.726 |
CK1A |
0.779 | -0.131 | -3 | 0.333 |
WEE1_TYR |
0.777 | -0.078 | -1 | 0.763 |
MET |
0.777 | -0.107 | 3 | 0.840 |
EPHA7 |
0.777 | -0.058 | 2 | 0.804 |
LYN |
0.776 | -0.047 | 3 | 0.800 |
INSR |
0.775 | -0.105 | 3 | 0.809 |
FYN |
0.775 | -0.019 | -1 | 0.784 |
EPHA3 |
0.774 | -0.102 | 2 | 0.776 |
NTRK2 |
0.774 | -0.141 | 3 | 0.815 |
NTRK1 |
0.774 | -0.175 | -1 | 0.819 |
FRK |
0.773 | -0.102 | -1 | 0.842 |
FLT4 |
0.772 | -0.130 | 3 | 0.815 |
FLT1 |
0.772 | -0.124 | -1 | 0.816 |
PTK6 |
0.772 | -0.209 | -1 | 0.740 |
ERBB2 |
0.770 | -0.176 | 1 | 0.796 |
FGFR3 |
0.770 | -0.145 | 3 | 0.823 |
EPHA5 |
0.769 | -0.069 | 2 | 0.789 |
PTK2B |
0.768 | -0.073 | -1 | 0.793 |
NTRK3 |
0.767 | -0.154 | -1 | 0.764 |
SRC |
0.766 | -0.071 | -1 | 0.794 |
MATK |
0.763 | -0.155 | -1 | 0.733 |
EPHA8 |
0.763 | -0.122 | -1 | 0.799 |
CK1G3 |
0.761 | -0.130 | -3 | 0.287 |
YANK2 |
0.760 | -0.116 | 2 | 0.442 |
MUSK |
0.758 | -0.134 | 1 | 0.724 |
CSK |
0.758 | -0.196 | 2 | 0.804 |
EGFR |
0.757 | -0.148 | 1 | 0.713 |
IGF1R |
0.755 | -0.152 | 3 | 0.758 |
FGFR4 |
0.753 | -0.172 | -1 | 0.769 |
PTK2 |
0.753 | -0.084 | -1 | 0.760 |
EPHA2 |
0.752 | -0.131 | -1 | 0.765 |
ERBB4 |
0.745 | -0.121 | 1 | 0.702 |
SYK |
0.745 | -0.139 | -1 | 0.740 |
FES |
0.736 | -0.202 | -1 | 0.702 |
CK1G2 |
0.734 | -0.145 | -3 | 0.381 |
ZAP70 |
0.723 | -0.141 | -1 | 0.664 |