Motif 886 (n=658)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A1X283 | SH3PXD2B | S811 | ochoa | SH3 and PX domain-containing protein 2B (Adapter protein HOFI) (Factor for adipocyte differentiation 49) (Tyrosine kinase substrate with four SH3 domains) | Adapter protein involved in invadopodia and podosome formation and extracellular matrix degradation. Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. Plays a role in mitotic clonal expansion during the immediate early stage of adipocyte differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497}. |
A4FU01 | MTMR11 | S180 | ochoa | Myotubularin-related protein 11 (Cisplatin resistance-associated protein) (hCRA) (Inactive phosphatidylinositol 3-phosphatase 11) | None |
A7E2V4 | ZSWIM8 | S559 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
A7KAX9 | ARHGAP32 | S1796 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
D6RIA3 | C4orf54 | S889 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
H7C1W4 | None | S54 | ochoa | Uncharacterized protein | None |
O00267 | SUPT5H | S763 | ochoa | Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) | Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}. |
O00478 | BTN3A3 | S213 | ochoa | Butyrophilin subfamily 3 member A3 | Plays a role in T-cell responses in the adaptive immune response. {ECO:0000269|PubMed:22767497}. |
O14545 | TRAFD1 | S272 | ochoa | TRAF-type zinc finger domain-containing protein 1 (Protein FLN29) | Negative feedback regulator that controls excessive innate immune responses. Regulates both Toll-like receptor 4 (TLR4) and DDX58/RIG1-like helicases (RLH) pathways. May inhibit the LTR pathway by direct interaction with TRAF6 and attenuation of NF-kappa-B activation. May negatively regulate the RLH pathway downstream from MAVS and upstream of NF-kappa-B and IRF3 (By similarity). {ECO:0000250, ECO:0000269|PubMed:16221674}. |
O14686 | KMT2D | S1722 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3202 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14745 | NHERF1 | S162 | ochoa|psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHERF-1) (Ezrin-radixin-moesin-binding phosphoprotein 50) (EBP50) (Regulatory cofactor of Na(+)/H(+) exchanger) (Sodium-hydrogen exchanger regulatory factor 1) (Solute carrier family 9 isoform A3 regulatory factor 1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for recycling of internalized ADRB2. Was first known to play a role in the regulation of the activity and subcellular location of SLC9A3. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3. May enhance Wnt signaling. May participate in HTR4 targeting to microvilli (By similarity). Involved in the regulation of phosphate reabsorption in the renal proximal tubules. Involved in sperm capacitation. May participate in the regulation of the chloride and bicarbonate homeostasis in spermatozoa. {ECO:0000250, ECO:0000269|PubMed:10499588, ECO:0000269|PubMed:18784102, ECO:0000269|PubMed:9096337, ECO:0000269|PubMed:9430655}. |
O15037 | KHNYN | S458 | ochoa | Protein KHNYN (KH and NYN domain-containing protein) | None |
O15061 | SYNM | S1141 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15061 | SYNM | S1485 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15085 | ARHGEF11 | S1452 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15085 | ARHGEF11 | S1457 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15226 | NKRF | S572 | ochoa | NF-kappa-B-repressing factor (NFkB-repressing factor) (NRF) (Protein ITBA4) | Enhances the ATPase activity of DHX15 by acting like a brace that tethers mobile sections of DHX15 together, stabilizing a functional conformation with high RNA affinity of DHX15 (PubMed:12381793). Involved in the constitutive silencing of the interferon beta promoter, independently of the virus-induced signals, and in the inhibition of the basal and cytokine-induced iNOS promoter activity (PubMed:12381793). Also involved in the regulation of IL-8 transcription (PubMed:12381793). May also act as a DNA-binding transcription regulator: interacts with a specific negative regulatory element (NRE) 5'-AATTCCTCTGA-3' to mediate transcriptional repression of certain NK-kappa-B responsive genes (PubMed:10562553). {ECO:0000269|PubMed:10562553, ECO:0000269|PubMed:12381793}. |
O15344 | MID1 | S66 | ochoa | E3 ubiquitin-protein ligase Midline-1 (EC 2.3.2.27) (Midin) (Putative transcription factor XPRF) (RING finger protein 59) (RING finger protein Midline-1) (RING-type E3 ubiquitin transferase Midline-1) (Tripartite motif-containing protein 18) | Has E3 ubiquitin ligase activity towards IGBP1, promoting its monoubiquitination, which results in deprotection of the catalytic subunit of protein phosphatase PP2A, and its subsequent degradation by polyubiquitination. {ECO:0000269|PubMed:10400985, ECO:0000269|PubMed:11685209, ECO:0000269|PubMed:22613722}. |
O43347 | MSI1 | S231 | ochoa | RNA-binding protein Musashi homolog 1 (Musashi-1) | RNA binding protein that regulates the expression of target mRNAs at the translation level. Regulates expression of the NOTCH1 antagonist NUMB. Binds RNA containing the sequence 5'-GUUAGUUAGUUAGUU-3' and other sequences containing the pattern 5'-[GA]U(1-3)AGU-3'. May play a role in the proliferation and maintenance of stem cells in the central nervous system (By similarity). {ECO:0000250}. |
O43464 | HTRA2 | S350 | ochoa | Serine protease HTRA2, mitochondrial (EC 3.4.21.108) (High temperature requirement protein A2) (HtrA2) (Omi stress-regulated endoprotease) (Serine protease 25) (Serine proteinase OMI) | [Isoform 1]: Serine protease that shows proteolytic activity against a non-specific substrate beta-casein (PubMed:10873535). Promotes apoptosis by either relieving the inhibition of BIRC proteins on caspases, leading to an increase in caspase activity; or by a BIRC inhibition-independent, caspase-independent and serine protease activity-dependent mechanism (PubMed:15200957). Cleaves BIRC6 and relieves its inhibition on CASP3, CASP7 and CASP9, but it is also prone to inhibition by BIRC6 (PubMed:36758104, PubMed:36758105). Cleaves THAP5 and promotes its degradation during apoptosis (PubMed:19502560). {ECO:0000269|PubMed:10873535, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:19502560, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105}.; FUNCTION: [Isoform 2]: Seems to be proteolytically inactive. {ECO:0000269|PubMed:10995577}. |
O43491 | EPB41L2 | S575 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43598 | DNPH1 | S28 | ochoa | 5-hydroxymethyl-dUMP N-hydrolase (EC 3.2.2.-) (2'-deoxynucleoside 5'-phosphate N-hydrolase 1) (c-Myc-responsive protein RCL) | Part of a nucleotide salvage pathway that eliminates epigenetically modified 5-hydroxymethyl-dCMP (hmdCMP) in a two-step process entailing deamination to cytotoxic 5-hydroxymethyl-dUMP (hmdUMP), followed by its hydrolysis into 5-hydroxymethyluracil (hmU) and 2-deoxy-D-ribose 5-phosphate (deoxyribosephosphate) (PubMed:33833118). Catalyzes the second step in that pathway, the hydrolysis of the N-glycosidic bond in hmdUMP, degrading this cytotoxic nucleotide to avoid its genomic integration (PubMed:33833118). {ECO:0000269|PubMed:33833118}. |
O43639 | NCK2 | S270 | ochoa | Cytoplasmic protein NCK2 (Growth factor receptor-bound protein 4) (NCK adaptor protein 2) (Nck-2) (SH2/SH3 adaptor protein NCK-beta) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16835242}. |
O60281 | ZNF292 | S1483 | ochoa | Zinc finger protein 292 | May be involved in transcriptional regulation. |
O60602 | TLR5 | S805 | psp | Toll-like receptor 5 (Toll/interleukin-1 receptor-like protein 3) | Pattern recognition receptor (PRR) located on the cell surface that participates in the activation of innate immunity and inflammatory response (PubMed:11323673, PubMed:18490781). Recognizes small molecular motifs named pathogen-associated molecular pattern (PAMPs) expressed by pathogens and microbe-associated molecular patterns (MAMPs) usually expressed by resident microbiota (PubMed:29934223). Upon ligand binding such as bacterial flagellins, recruits intracellular adapter proteins MYD88 and TRIF leading to NF-kappa-B activation, cytokine secretion and induction of the inflammatory response (PubMed:11489966, PubMed:20855887). Plays thereby an important role in the relationship between the intestinal epithelium and enteric microbes and contributes to the gut microbiota composition throughout life (By similarity). {ECO:0000250|UniProtKB:Q9JLF7, ECO:0000269|PubMed:11323673, ECO:0000269|PubMed:11489966, ECO:0000269|PubMed:18490781, ECO:0000269|PubMed:20855887, ECO:0000269|PubMed:29934223}. |
O60664 | PLIN3 | S175 | ochoa | Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) | Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}. |
O60749 | SNX2 | S277 | ochoa | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
O60941 | DTNB | S564 | ochoa | Dystrobrevin beta (DTN-B) (Beta-dystrobrevin) | Scaffolding protein that assembles DMD and SNTA1 molecules to the basal membrane of kidney cells and liver sinusoids (By similarity). May function as a repressor of the SYN1 promoter through the binding of repressor element-1 (RE-1), in turn regulates SYN1 expression and may be involved in cell proliferation regulation during the early phase of neural differentiation (PubMed:27223470). May be required for proper maturation and function of a subset of inhibitory synapses (By similarity). {ECO:0000250|UniProtKB:O70585, ECO:0000269|PubMed:27223470}. |
O75122 | CLASP2 | S360 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75153 | CLUH | S670 | ochoa | Clustered mitochondria protein homolog | mRNA-binding protein involved in proper cytoplasmic distribution of mitochondria. Specifically binds mRNAs of nuclear-encoded mitochondrial proteins in the cytoplasm and regulates transport or translation of these transcripts close to mitochondria, playing a role in mitochondrial biogenesis. {ECO:0000255|HAMAP-Rule:MF_03013, ECO:0000269|PubMed:25349259}. |
O75376 | NCOR1 | S2259 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O76039 | CDKL5 | S388 | ochoa | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O94880 | PHF14 | S603 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94885 | SASH1 | S407 | ochoa|psp | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94986 | CEP152 | S85 | ochoa | Centrosomal protein of 152 kDa (Cep152) | Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}. |
O95251 | KAT7 | S205 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95359 | TACC2 | S749 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S1608 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95427 | PIGN | S94 | ochoa | GPI ethanolamine phosphate transferase 1 (EC 2.-.-.-) (GPI-ethanolamine transferase I) (GPI-ETI) (MCD4 homolog) (Phosphatidylinositol-glycan biosynthesis class N protein) (PIG-N) | Ethanolamine phosphate transferase that catalyzes an ethanolamine phosphate (EtNP) transfer from phosphatidylethanolamine (PE) to the 2-OH position of the first alpha-1,4-linked mannose of the alpha-D-Man-(1->6)-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol (also termed H3) intermediate to generate an alpha-D-Man-(1->6)-2-PEtn-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol and participates in the eighth step of the glycosylphosphatidylinositol-anchor biosynthesis (By similarity). May act as suppressor of replication stress and chromosome missegregation (PubMed:23446422). {ECO:0000250|UniProtKB:Q9R1S3, ECO:0000269|PubMed:23446422}. |
O95721 | SNAP29 | S114 | ochoa | Synaptosomal-associated protein 29 (SNAP-29) (Soluble 29 kDa NSF attachment protein) (Vesicle-membrane fusion protein SNAP-29) | SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. SNAP29 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane. Also plays a role in ciliogenesis by regulating membrane fusions. {ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:25686604}. |
O95848 | NUDT14 | S144 | ochoa | Uridine diphosphate glucose pyrophosphatase NUDT14 (UDPG pyrophosphatase) (UGPPase) (EC 3.6.1.45) (Nucleoside diphosphate-linked moiety X motif 14) (Nudix motif 14) | Hydrolyzes UDP-glucose to glucose 1-phosphate and UMP and ADP-ribose to ribose 5-phosphate and AMP. The physiological substrate is probably UDP-glucose. Poor activity on other substrates such as ADP-glucose, CDP-glucose, GDP-glucose and GDP-mannose. |
P02671 | FGA | S22 | psp | Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] | Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}. |
P03372 | ESR1 | S212 | psp | Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) | Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}. |
P04004 | VTN | S381 | psp | Vitronectin (VN) (S-protein) (Serum-spreading factor) (V75) [Cleaved into: Vitronectin V65 subunit; Vitronectin V10 subunit; Somatomedin-B] | Vitronectin is a cell adhesion and spreading factor found in serum and tissues. Vitronectin interact with glycosaminoglycans and proteoglycans. Is recognized by certain members of the integrin family and serves as a cell-to-substrate adhesion molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic complement pathway.; FUNCTION: Somatomedin-B is a growth hormone-dependent serum factor with protease-inhibiting activity. |
P04637 | TP53 | S371 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P05023 | ATP1A1 | S207 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P06239 | LCK | S158 | ochoa|psp | Tyrosine-protein kinase Lck (EC 2.7.10.2) (Leukocyte C-terminal Src kinase) (LSK) (Lymphocyte cell-specific protein-tyrosine kinase) (Protein YT16) (Proto-oncogene Lck) (T cell-specific protein-tyrosine kinase) (p56-LCK) | Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Interacts with FYB2 (PubMed:27335501). {ECO:0000269|PubMed:16339550, ECO:0000269|PubMed:16709819, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20851766, ECO:0000269|PubMed:21269457, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:27335501, ECO:0000269|PubMed:38614099}. |
P06733 | ENO1 | S157 | ochoa | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
P06748 | NPM1 | S88 | ochoa|psp | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P07101 | TH | S40 | psp | Tyrosine 3-monooxygenase (EC 1.14.16.2) (Tyrosine 3-hydroxylase) (TH) | Catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-Dopa), the rate-limiting step in the biosynthesis of catecholamines, dopamine, noradrenaline, and adrenaline. Uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to L-Dopa (PubMed:15287903, PubMed:1680128, PubMed:17391063, PubMed:24753243, PubMed:34922205, PubMed:8528210, Ref.18). In addition to tyrosine, is able to catalyze the hydroxylation of phenylalanine and tryptophan with lower specificity (By similarity). Positively regulates the regression of retinal hyaloid vessels during postnatal development (By similarity). {ECO:0000250|UniProtKB:P04177, ECO:0000250|UniProtKB:P24529, ECO:0000269|PubMed:15287903, ECO:0000269|PubMed:1680128, ECO:0000269|PubMed:17391063, ECO:0000269|PubMed:24753243, ECO:0000269|PubMed:34922205, ECO:0000269|PubMed:8528210, ECO:0000269|Ref.18}.; FUNCTION: [Isoform 5]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.; FUNCTION: [Isoform 6]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}. |
P07814 | EPRS1 | S1000 | ochoa | Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] | Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}. |
P08034 | GJB1 | S229 | psp | Gap junction beta-1 protein (Connexin-32) (Cx32) (GAP junction 28 kDa liver protein) | One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. |
P09525 | ANXA4 | S156 | ochoa | Annexin A4 (35-beta calcimedin) (Annexin IV) (Annexin-4) (Carbohydrate-binding protein p33/p41) (Chromobindin-4) (Endonexin I) (Lipocortin IV) (P32.5) (PP4-X) (Placental anticoagulant protein II) (PAP-II) (Protein II) | Calcium/phospholipid-binding protein which promotes membrane fusion and is involved in exocytosis. {ECO:0000250}. |
P0C7T5 | ATXN1L | S62 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P11274 | BCR | S215 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P11413 | G6PD | S160 | ochoa | Glucose-6-phosphate 1-dehydrogenase (G6PD) (EC 1.1.1.49) | Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis. {ECO:0000269|PubMed:15858258, ECO:0000269|PubMed:24769394, ECO:0000269|PubMed:26479991, ECO:0000269|PubMed:35122041, ECO:0000269|PubMed:38066190, ECO:0000269|PubMed:743300}. |
P15884 | TCF4 | S318 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P16066 | NPR1 | S534 | psp | Atrial natriuretic peptide receptor 1 (EC 4.6.1.2) (Atrial natriuretic peptide receptor type A) (ANP-A) (ANPR-A) (NPR-A) (Guanylate cyclase A) (GC-A) | Receptor for the atrial natriuretic peptide NPPA/ANP and the brain natriuretic peptide NPPB/BNP which are potent vasoactive hormones playing a key role in cardiovascular homeostasis (PubMed:39543315). Plays an essential role in the regulation of endothelial cell senescence and vascular aging (PubMed:36016499). Upon activation by ANP or BNP, stimulates the production of cyclic guanosine monophosphate (cGMP) that promotes vascular tone and volume homeostasis by activation of protein kinase cGMP-dependent 1/PRKG1 and subsequently PRKAA1, thereby controlling blood pressure and maintaining cardiovascular homeostasis (PubMed:36016499). {ECO:0000269|PubMed:1672777, ECO:0000269|PubMed:36016499, ECO:0000269|PubMed:39543315}. |
P16150 | SPN | S291 | ochoa | Leukosialin (GPL115) (Galactoglycoprotein) (GALGP) (Leukocyte sialoglycoprotein) (Sialophorin) (CD antigen CD43) [Cleaved into: CD43 cytoplasmic tail (CD43-ct) (CD43ct)] | Predominant cell surface sialoprotein of leukocytes which regulates multiple T-cell functions, including T-cell activation, proliferation, differentiation, trafficking and migration. Positively regulates T-cell trafficking to lymph-nodes via its association with ERM proteins (EZR, RDX and MSN) (By similarity). Negatively regulates Th2 cell differentiation and predisposes the differentiation of T-cells towards a Th1 lineage commitment. Promotes the expression of IFN-gamma by T-cells during T-cell receptor (TCR) activation of naive cells and induces the expression of IFN-gamma by CD4(+) T-cells and to a lesser extent by CD8(+) T-cells (PubMed:18036228). Plays a role in preparing T-cells for cytokine sensing and differentiation into effector cells by inducing the expression of cytokine receptors IFNGR and IL4R, promoting IFNGR and IL4R signaling and by mediating the clustering of IFNGR with TCR (PubMed:24328034). Acts as a major E-selectin ligand responsible for Th17 cell rolling on activated vasculature and recruitment during inflammation. Mediates Th17 cells, but not Th1 cells, adhesion to E-selectin. Acts as a T-cell counter-receptor for SIGLEC1 (By similarity). {ECO:0000250|UniProtKB:P15702, ECO:0000269|PubMed:18036228, ECO:0000269|PubMed:24328034}.; FUNCTION: [CD43 cytoplasmic tail]: Protects cells from apoptotic signals, promoting cell survival. {ECO:0000250|UniProtKB:P15702}. |
P17174 | GOT1 | S149 | ochoa | Aspartate aminotransferase, cytoplasmic (cAspAT) (EC 2.6.1.1) (EC 2.6.1.3) (Cysteine aminotransferase, cytoplasmic) (Cysteine transaminase, cytoplasmic) (cCAT) (Glutamate oxaloacetate transaminase 1) (Transaminase A) | Biosynthesis of L-glutamate from L-aspartate or L-cysteine (PubMed:21900944). Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. In addition, catalyzes (2S)-2-aminobutanoate, a by-product in the cysteine biosynthesis pathway (PubMed:27827456). {ECO:0000269|PubMed:16039064, ECO:0000269|PubMed:21900944, ECO:0000269|PubMed:27827456}. |
P17661 | DES | S72 | ochoa | Desmin | Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}. |
P18583 | SON | S1594 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P19367 | HK1 | S447 | ochoa | Hexokinase-1 (EC 2.7.1.1) (Brain form hexokinase) (Hexokinase type I) (HK I) (Hexokinase-A) | Catalyzes the phosphorylation of various hexoses, such as D-glucose, D-glucosamine, D-fructose, D-mannose and 2-deoxy-D-glucose, to hexose 6-phosphate (D-glucose 6-phosphate, D-glucosamine 6-phosphate, D-fructose 6-phosphate, D-mannose 6-phosphate and 2-deoxy-D-glucose 6-phosphate, respectively) (PubMed:1637300, PubMed:25316723, PubMed:27374331). Does not phosphorylate N-acetyl-D-glucosamine (PubMed:27374331). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (By similarity). Involved in innate immunity and inflammation by acting as a pattern recognition receptor for bacterial peptidoglycan (PubMed:27374331). When released in the cytosol, N-acetyl-D-glucosamine component of bacterial peptidoglycan inhibits the hexokinase activity of HK1 and causes its dissociation from mitochondrial outer membrane, thereby activating the NLRP3 inflammasome (PubMed:27374331). {ECO:0000250|UniProtKB:P05708, ECO:0000269|PubMed:1637300, ECO:0000269|PubMed:25316723, ECO:0000269|PubMed:27374331}. |
P20290 | BTF3 | S173 | ochoa | Transcription factor BTF3 (Nascent polypeptide-associated complex subunit beta) (NAC-beta) (RNA polymerase B transcription factor 3) | When associated with NACA, prevents inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). Binds to nascent polypeptide chains as they emerge from the ribosome and blocks their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. BTF3 is also a general transcription factor that can form a stable complex with RNA polymerase II. Required for the initiation of transcription. {ECO:0000269|PubMed:10982809}. |
P21399 | ACO1 | S711 | psp | Cytoplasmic aconitate hydratase (Aconitase) (EC 4.2.1.3) (Citrate hydro-lyase) (Ferritin repressor protein) (Iron regulatory protein 1) (IRP1) (Iron-responsive element-binding protein 1) (IRE-BP 1) | Bifunctional iron sensor that switches between 2 activities depending on iron availability (PubMed:1281544, PubMed:1946430, PubMed:8041788). Iron deprivation, promotes its mRNA binding activity through which it regulates the expression of genes involved in iron uptake, sequestration and utilization (PubMed:1281544, PubMed:1946430, PubMed:23891004, PubMed:8041788). Binds to iron-responsive elements (IRES) in the untranslated region of target mRNAs preventing for instance the translation of ferritin and aminolevulinic acid synthase and stabilizing the transferrin receptor mRNA (PubMed:1281544, PubMed:1946430, PubMed:23891004, PubMed:8041788). {ECO:0000269|PubMed:1281544, ECO:0000269|PubMed:1946430, ECO:0000269|PubMed:23891004, ECO:0000269|PubMed:8041788}.; FUNCTION: Conversely, when cellular iron levels are high, binds a 4Fe-4S cluster which precludes RNA binding activity and promotes the aconitase activity, the isomerization of citrate to isocitrate via cis-aconitate. {ECO:0000269|PubMed:1281544, ECO:0000269|PubMed:1946430, ECO:0000269|PubMed:8041788}. |
P22087 | FBL | S116 | ochoa | rRNA 2'-O-methyltransferase fibrillarin (EC 2.1.1.-) (34 kDa nucleolar scleroderma antigen) (Histone-glutamine methyltransferase) (U6 snRNA 2'-O-methyltransferase fibrillarin) | S-adenosyl-L-methionine-dependent methyltransferase that has the ability to methylate both RNAs and proteins (PubMed:24352239, PubMed:30540930, PubMed:32017898). Involved in pre-rRNA processing by catalyzing the site-specific 2'-hydroxyl methylation of ribose moieties in pre-ribosomal RNA (PubMed:30540930). Site specificity is provided by a guide RNA that base pairs with the substrate (By similarity). Methylation occurs at a characteristic distance from the sequence involved in base pairing with the guide RNA (By similarity). Probably catalyzes 2'-O-methylation of U6 snRNAs in box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Also acts as a protein methyltransferase by mediating methylation of 'Gln-105' of histone H2A (H2AQ104me), a modification that impairs binding of the FACT complex and is specifically present at 35S ribosomal DNA locus (PubMed:24352239, PubMed:30540930). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P15646, ECO:0000269|PubMed:24352239, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:32017898, ECO:0000269|PubMed:34516797}. |
P22626 | HNRNPA2B1 | S85 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P23284 | PPIB | S117 | ochoa | Peptidyl-prolyl cis-trans isomerase B (PPIase B) (EC 5.2.1.8) (CYP-S1) (Cyclophilin B) (Rotamase B) (S-cyclophilin) (SCYLP) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding. {ECO:0000269|PubMed:20676357}. |
P23588 | EIF4B | S359 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P23588 | EIF4B | S518 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P23588 | EIF4B | S543 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P25054 | APC | S874 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25787 | PSMA2 | S77 | ochoa | Proteasome subunit alpha type-2 (Macropain subunit C3) (Multicatalytic endopeptidase complex subunit C3) (Proteasome component C3) (Proteasome subunit alpha-2) (alpha-2) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P28290 | ITPRID2 | S1161 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28482 | MAPK1 | S29 | psp | Mitogen-activated protein kinase 1 (MAP kinase 1) (MAPK 1) (EC 2.7.11.24) (ERT1) (Extracellular signal-regulated kinase 2) (ERK-2) (MAP kinase isoform p42) (p42-MAPK) (Mitogen-activated protein kinase 2) (MAP kinase 2) (MAPK 2) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1 and FXR1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in response to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Phosphorylates CDK2AP2 (By similarity). Phosphorylates phosphoglycerate kinase PGK1 under hypoxic conditions to promote its targeting to the mitochondrion and suppress the formation of acetyl-coenzyme A from pyruvate (PubMed:26942675). {ECO:0000250|UniProtKB:P63086, ECO:0000269|PubMed:10617468, ECO:0000269|PubMed:10637505, ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:12110590, ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:12792650, ECO:0000269|PubMed:12794087, ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:15184391, ECO:0000269|PubMed:15241487, ECO:0000269|PubMed:15616583, ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:15788397, ECO:0000269|PubMed:15952796, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:19879846, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:32721402, ECO:0000269|PubMed:7588608, ECO:0000269|PubMed:8622688, ECO:0000269|PubMed:9480836, ECO:0000269|PubMed:9596579, ECO:0000269|PubMed:9649500, ECO:0000269|PubMed:9687510, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:16393692, ECO:0000303|PubMed:19565474, ECO:0000303|PubMed:21779493}.; FUNCTION: Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity. {ECO:0000269|PubMed:19879846}. |
P29323 | EPHB2 | S782 | ochoa | Ephrin type-B receptor 2 (EC 2.7.10.1) (Developmentally-regulated Eph-related tyrosine kinase) (ELK-related tyrosine kinase) (EPH tyrosine kinase 3) (EPH-like kinase 5) (EK5) (hEK5) (Renal carcinoma antigen NY-REN-47) (Tyrosine-protein kinase TYRO5) (Tyrosine-protein kinase receptor EPH-3) [Cleaved into: EphB2/CTF1; EphB2/CTF2] | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Functions in axon guidance during development. Involved in the guidance of commissural axons, that form a major interhemispheric connection between the 2 temporal lobes of the cerebral cortex. Also involved in guidance of contralateral inner ear efferent growth cones at the midline and of retinal ganglion cell axons to the optic disk. In addition to axon guidance, also regulates dendritic spines development and maturation and stimulates the formation of excitatory synapses. Upon activation by EFNB1, abolishes the ARHGEF15-mediated negative regulation on excitatory synapse formation. Controls other aspects of development including angiogenesis, palate development and in inner ear development through regulation of endolymph production. Forward and reverse signaling through the EFNB2/EPHB2 complex regulate movement and adhesion of cells that tubularize the urethra and septate the cloaca. May function as a tumor suppressor. May be involved in the regulation of platelet activation and blood coagulation (PubMed:30213874). {ECO:0000269|PubMed:15300251, ECO:0000269|PubMed:30213874}. |
P29401 | TKT | S256 | ochoa | Transketolase (TK) (EC 2.2.1.1) | Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}. |
P29692 | EEF1D | S60 | ochoa | Elongation factor 1-delta (EF-1-delta) (Antigen NY-CO-4) | [Isoform 1]: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1-alpha for another round of transfer of aminoacyl-tRNAs to the ribosome.; FUNCTION: [Isoform 2]: Regulates induction of heat-shock-responsive genes through association with heat shock transcription factors and direct DNA-binding at heat shock promoter elements (HSE). |
P30414 | NKTR | S327 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P31270 | HOXA11 | S98 | psp | Homeobox protein Hox-A11 (Homeobox protein Hox-1I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P33991 | MCM4 | S326 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P35080 | PFN2 | S92 | ochoa | Profilin-2 (Profilin II) | Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG. |
P35269 | GTF2F1 | S391 | ochoa | General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}. |
P37023 | ACVRL1 | S155 | ochoa | Activin receptor type-1-like (EC 2.7.11.30) (Activin receptor-like kinase 1) (ALK-1) (Serine/threonine-protein kinase receptor R3) (SKR3) (TGF-B superfamily receptor type I) (TSR-I) | Type I receptor for TGF-beta family ligands BMP9/GDF2 and BMP10 and important regulator of normal blood vessel development. On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. May bind activin as well. {ECO:0000269|PubMed:22718755, ECO:0000269|PubMed:22799562, ECO:0000269|PubMed:26176610}. |
P37059 | HSD17B2 | S219 | ochoa | 17-beta-hydroxysteroid dehydrogenase type 2 (17-beta-HSD 2) (20 alpha-hydroxysteroid dehydrogenase) (20-alpha-HSD) (E2DH) (Estradiol 17-beta-dehydrogenase 2) (EC 1.1.1.62) (Microsomal 17-beta-hydroxysteroid dehydrogenase) (Short chain dehydrogenase/reductase family 9C member 2) (Testosterone 17-beta-dehydrogenase) (EC 1.1.1.239) | Catalyzes the NAD-dependent oxidation of the highly active 17beta-hydroxysteroids, such as estradiol (E2), testosterone (T), and dihydrotestosterone (DHT), to their less active forms and thus regulates the biological potency of these steroids. Oxidizes estradiol to estrone, testosterone to androstenedione, and dihydrotestosterone to 5alpha-androstan-3,17-dione. Also has 20-alpha-HSD activity. {ECO:0000269|PubMed:10385431, ECO:0000269|PubMed:11940569, ECO:0000269|PubMed:8099587}. |
P41236 | PPP1R2 | S77 | ochoa | Protein phosphatase inhibitor 2 (IPP-2) | Inhibitor of protein-phosphatase 1. |
P41250 | GARS1 | S54 | ochoa | Glycine--tRNA ligase (EC 6.1.1.14) (Diadenosine tetraphosphate synthetase) (Ap4A synthetase) (EC 2.7.7.-) (Glycyl-tRNA synthetase) (GlyRS) (Glycyl-tRNA synthetase 1) | Catalyzes the ATP-dependent ligation of glycine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (Gly-AMP) (PubMed:17544401, PubMed:24898252, PubMed:28675565). Also produces diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs. Thereby, may play a special role in Ap4A homeostasis (PubMed:19710017). {ECO:0000269|PubMed:17544401, ECO:0000269|PubMed:19710017, ECO:0000269|PubMed:24898252, ECO:0000269|PubMed:28675565}. |
P42345 | MTOR | S2481 | ochoa|psp | Serine/threonine-protein kinase mTOR (EC 2.7.11.1) (FK506-binding protein 12-rapamycin complex-associated protein 1) (FKBP12-rapamycin complex-associated protein) (Mammalian target of rapamycin) (mTOR) (Mechanistic target of rapamycin) (Rapamycin and FKBP12 target 1) (Rapamycin target protein 1) (Tyrosine-protein kinase mTOR) (EC 2.7.10.2) | Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:30171069, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex, MTOR transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15467718, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:15268862, PubMed:15467718, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). May also regulate insulin signaling by acting as a tyrosine protein kinase that catalyzes phosphorylation of IGF1R and INSR; additional evidence are however required to confirm this result in vivo (PubMed:26584640). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity). {ECO:0000250|UniProtKB:Q9JLN9, ECO:0000269|PubMed:12087098, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:17517883, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:18762023, ECO:0000269|PubMed:18925875, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20537536, ECO:0000269|PubMed:21376236, ECO:0000269|PubMed:21576368, ECO:0000269|PubMed:21659604, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23426360, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:24670654, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25799227, ECO:0000269|PubMed:26018084, ECO:0000269|PubMed:26584640, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29424687, ECO:0000269|PubMed:29567957, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:31601708, ECO:0000269|PubMed:31695197, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:34519269, ECO:0000269|PubMed:35926713, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:36691768, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:37751742}. |
P43243 | MATR3 | S22 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P45880 | VDAC2 | S252 | ochoa | Non-selective voltage-gated ion channel VDAC2 (VDAC-2) (hVDAC2) (Outer mitochondrial membrane protein porin 2) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:8420959). The channel adopts an open conformation at zero mV and a closed conformation at both positive and negative potentials (PubMed:8420959). There are two populations of channels; the main that functions in a lower open-state conductance with lower ion selectivity, that switch, in a voltage-dependent manner, from the open to a low-conducting 'closed' state and the other that has a normal ion selectivity in the typical high conductance, 'open' state (PubMed:8420959). Binds various lipids, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:31015432). Binding of ceramide promotes the mitochondrial outer membrane permeabilization (MOMP) apoptotic pathway (PubMed:31015432). {ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P46013 | MKI67 | S1447 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P47736 | RAP1GAP | S458 | ochoa | Rap1 GTPase-activating protein 1 (Rap1GAP) (Rap1GAP1) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15141215}. |
P48382 | RFX5 | S313 | ochoa | DNA-binding protein RFX5 (Regulatory factor X 5) | Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters. |
P48681 | NES | S1030 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49321 | NASP | S678 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49790 | NUP153 | S711 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49792 | RANBP2 | S1835 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49815 | TSC2 | S1418 | ochoa|psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P49841 | GSK3B | S21 | ochoa|psp | Glycogen synthase kinase-3 beta (GSK-3 beta) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3B) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1 (PubMed:11430833, PubMed:12554650, PubMed:14690523, PubMed:16484495, PubMed:1846781, PubMed:20937854, PubMed:9072970). Requires primed phosphorylation of the majority of its substrates (PubMed:11430833, PubMed:16484495). In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:8397507). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:8397507). Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase (PubMed:8397507). In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes (PubMed:12554650). Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA (PubMed:1846781). Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin (PubMed:9072970). Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules (PubMed:14690523). MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease (PubMed:14690523). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair (By similarity). Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA) (By similarity). Negatively regulates replication in pancreatic beta-cells, resulting in apoptosis, loss of beta-cells and diabetes (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Phosphorylates MUC1 in breast cancer cells, decreasing the interaction of MUC1 with CTNNB1/beta-catenin (PubMed:9819408). Is necessary for the establishment of neuronal polarity and axon outgrowth (PubMed:20067585). Phosphorylates MARK2, leading to inhibition of its activity (By similarity). Phosphorylates SIK1 at 'Thr-182', leading to sustainment of its activity (PubMed:18348280). Phosphorylates ZC3HAV1 which enhances its antiviral activity (PubMed:22514281). Phosphorylates SNAI1, leading to its ubiquitination and proteasomal degradation (PubMed:15448698, PubMed:15647282, PubMed:25827072, PubMed:29059170). Phosphorylates SFPQ at 'Thr-687' upon T-cell activation (PubMed:20932480). Phosphorylates NR1D1 st 'Ser-55' and 'Ser-59' and stabilizes it by protecting it from proteasomal degradation. Regulates the circadian clock via phosphorylation of the major clock components including BMAL1, CLOCK and PER2 (PubMed:19946213, PubMed:28903391). Phosphorylates FBXL2 at 'Thr-404' and primes it for ubiquitination by the SCF(FBXO3) complex and proteasomal degradation (By similarity). Phosphorylates CLOCK AT 'Ser-427' and targets it for proteasomal degradation (PubMed:19946213). Phosphorylates BMAL1 at 'Ser-17' and 'Ser-21' and primes it for ubiquitination and proteasomal degradation (PubMed:28903391). Phosphorylates OGT at 'Ser-3' or 'Ser-4' which positively regulates its activity. Phosphorylates MYCN in neuroblastoma cells which may promote its degradation (PubMed:24391509). Regulates the circadian rhythmicity of hippocampal long-term potentiation and BMAL1 and PER2 expression (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions, activating KAT5/TIP60 acetyltransferase activity and promoting acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (PubMed:18846110). Phosphorylates E2F1, promoting the interaction between E2F1 and USP11, stabilizing E2F1 and promoting its activity (PubMed:17050006, PubMed:28992046). Phosphorylates mTORC2 complex component RICTOR at 'Ser-1235' in response to endoplasmic stress, inhibiting mTORC2 (PubMed:21343617). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). Phosphorylates FXR1, promoting FXR1 ubiquitination by the SCF(FBXO4) complex and FXR1 degradation by the proteasome (By similarity). Phosphorylates interleukin-22 receptor subunit IL22RA1, preventing its proteasomal degradation (By similarity). {ECO:0000250|UniProtKB:P18266, ECO:0000250|UniProtKB:Q9WV60, ECO:0000269|PubMed:11430833, ECO:0000269|PubMed:12554650, ECO:0000269|PubMed:14690523, ECO:0000269|PubMed:15448698, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16484495, ECO:0000269|PubMed:17050006, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:1846781, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19946213, ECO:0000269|PubMed:20067585, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:22514281, ECO:0000269|PubMed:24391509, ECO:0000269|PubMed:25827072, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:28903391, ECO:0000269|PubMed:28992046, ECO:0000269|PubMed:29059170, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:8397507, ECO:0000269|PubMed:9072970, ECO:0000269|PubMed:9819408}. |
P49848 | TAF6 | S598 | ochoa | Transcription initiation factor TFIID subunit 6 (RNA polymerase II TBP-associated factor subunit E) (Transcription initiation factor TFIID 70 kDa subunit) (TAF(II)70) (TAFII-70) (TAFII70) (Transcription initiation factor TFIID 80 kDa subunit) (TAF(II)80) (TAFII-80) (TAFII80) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF6 homodimer connects TFIID modules, forming a rigid core (PubMed:33795473). {ECO:0000269|PubMed:33795473}.; FUNCTION: [Isoform 4]: Transcriptional regulator which acts primarily as a positive regulator of transcription (PubMed:20096117, PubMed:29358700). Recruited to the promoters of a number of genes including GADD45A and CDKN1A/p21, leading to transcriptional up-regulation and subsequent induction of apoptosis (PubMed:11583621). Also up-regulates expression of other genes including GCNA/ACRC, HES1 and IFFO1 (PubMed:18628956). In contrast, down-regulates transcription of MDM2 (PubMed:11583621). Acts as a transcriptional coactivator to enhance transcription of TP53/p53-responsive genes such as DUSP1 (PubMed:20096117). Can also activate transcription and apoptosis independently of TP53 (PubMed:18628956). Drives apoptosis via the intrinsic apoptotic pathway by up-regulating apoptosis effectors such as BCL2L11/BIM and PMAIP1/NOXA (PubMed:29358700). {ECO:0000269|PubMed:11583621, ECO:0000269|PubMed:18628956, ECO:0000269|PubMed:20096117, ECO:0000269|PubMed:29358700}. |
P50221 | MEOX1 | S119 | ochoa | Homeobox protein MOX-1 (Mesenchyme homeobox 1) | Mesodermal transcription factor that plays a key role in somitogenesis and is specifically required for sclerotome development. Required for maintenance of the sclerotome polarity and formation of the cranio-cervical joints (PubMed:23290072, PubMed:24073994). Binds specifically to the promoter of target genes and regulates their expression. Activates expression of NKX3-2 in the sclerotome. Activates expression of CDKN1A and CDKN2A in endothelial cells, acting as a regulator of vascular cell proliferation. While it activates CDKN1A in a DNA-dependent manner, it activates CDKN2A in a DNA-independent manner. Required for hematopoietic stem cell (HSCs) induction via its role in somitogenesis: specification of HSCs occurs via the deployment of a specific endothelial precursor population, which arises within a sub-compartment of the somite named endotome. {ECO:0000250|UniProtKB:F1Q4R9, ECO:0000250|UniProtKB:P32442, ECO:0000269|PubMed:23290072, ECO:0000269|PubMed:24073994}. |
P51911 | CNN1 | S215 | ochoa | Calponin-1 (Basic calponin) (Calponin H1, smooth muscle) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity (By similarity). {ECO:0000250}. |
P54760 | EPHB4 | S907 | ochoa | Ephrin type-B receptor 4 (EC 2.7.10.1) (Hepatoma transmembrane kinase) (Tyrosine-protein kinase TYRO11) | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Together with its cognate ligand/functional ligand EFNB2 it is involved in the regulation of cell adhesion and migration, and plays a central role in heart morphogenesis, angiogenesis and blood vessel remodeling and permeability. EPHB4-mediated forward signaling controls cellular repulsion and segregation from EFNB2-expressing cells. {ECO:0000269|PubMed:12734395, ECO:0000269|PubMed:16424904, ECO:0000269|PubMed:27400125, ECO:0000269|PubMed:30578106}. |
P55196 | AFDN | S512 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55211 | CASP9 | S144 | psp | Caspase-9 (CASP-9) (EC 3.4.22.62) (Apoptotic protease Mch-6) (Apoptotic protease-activating factor 3) (APAF-3) (ICE-like apoptotic protease 6) (ICE-LAP6) [Cleaved into: Caspase-9 subunit p35; Caspase-9 subunit p10] | Involved in the activation cascade of caspases responsible for apoptosis execution. Binding of caspase-9 to Apaf-1 leads to activation of the protease which then cleaves and activates effector caspases caspase-3 (CASP3) or caspase-7 (CASP7). Promotes DNA damage-induced apoptosis in a ABL1/c-Abl-dependent manner. Proteolytically cleaves poly(ADP-ribose) polymerase (PARP). Cleaves BIRC6 following inhibition of BIRC6-caspase binding by DIABLO/SMAC (PubMed:36758105, PubMed:36758106). {ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:16352606, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:23516580, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:35338844, ECO:0000269|PubMed:35446120}.; FUNCTION: [Isoform 2]: Lacks activity is an dominant-negative inhibitor of caspase-9. {ECO:0000269|PubMed:10070954}. |
P55786 | NPEPPS | S811 | ochoa | Puromycin-sensitive aminopeptidase (PSA) (EC 3.4.11.14) (Cytosol alanyl aminopeptidase) (AAP-S) | Aminopeptidase with broad substrate specificity for several peptides. Involved in proteolytic events essential for cell growth and viability. May act as regulator of neuropeptide activity. Plays a role in the antigen-processing pathway for MHC class I molecules. Involved in the N-terminal trimming of cytotoxic T-cell epitope precursors. Digests the poly-Q peptides found in many cellular proteins. Digests tau from normal brain more efficiently than tau from Alzheimer disease brain. {ECO:0000269|PubMed:10978616, ECO:0000269|PubMed:11062501, ECO:0000269|PubMed:17154549, ECO:0000269|PubMed:17318184, ECO:0000269|PubMed:19917696}. |
P61764 | STXBP1 | S269 | ochoa | Syntaxin-binding protein 1 (MUNC18-1) (N-Sec1) (Protein unc-18 homolog 1) (Unc18-1) (Protein unc-18 homolog A) (Unc-18A) (p67) | Participates in the regulation of synaptic vesicle docking and fusion through interaction with GTP-binding proteins (By similarity). Essential for neurotransmission and binds syntaxin, a component of the synaptic vesicle fusion machinery probably in a 1:1 ratio. Can interact with syntaxins 1, 2, and 3 but not syntaxin 4. Involved in the release of neurotransmitters from neurons through interacting with SNARE complex component STX1A and mediating the assembly of the SNARE complex at synaptic membranes (By similarity). May play a role in determining the specificity of intracellular fusion reactions. {ECO:0000250|UniProtKB:O08599, ECO:0000250|UniProtKB:P61765}. |
P78310 | CXADR | S346 | ochoa | Coxsackievirus and adenovirus receptor (CAR) (hCAR) (CVB3-binding protein) (Coxsackievirus B-adenovirus receptor) (HCVADR) | Component of the epithelial apical junction complex that may function as a homophilic cell adhesion molecule and is essential for tight junction integrity. Also involved in transepithelial migration of leukocytes through adhesive interactions with JAML a transmembrane protein of the plasma membrane of leukocytes. The interaction between both receptors also mediates the activation of gamma-delta T-cells, a subpopulation of T-cells residing in epithelia and involved in tissue homeostasis and repair. Upon epithelial CXADR-binding, JAML induces downstream cell signaling events in gamma-delta T-cells through PI3-kinase and MAP kinases. It results in proliferation and production of cytokines and growth factors by T-cells that in turn stimulate epithelial tissues repair. {ECO:0000269|PubMed:11734628, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:15800062, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:9096397}.; FUNCTION: (Microbial infection) Acts as a receptor for adenovirus type C. {ECO:0000269|PubMed:10567268, ECO:0000269|PubMed:10666333, ECO:0000269|PubMed:12297051, ECO:0000269|PubMed:9733828}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus B1 to B6. {ECO:0000269|PubMed:10814575, ECO:0000269|PubMed:14978041}. |
Q01813 | PFKP | S21 | ochoa | ATP-dependent 6-phosphofructokinase, platelet type (ATP-PFK) (PFK-P) (EC 2.7.1.11) (6-phosphofructokinase type C) (Phosphofructo-1-kinase isozyme C) (PFK-C) (Phosphohexokinase) | Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. |
Q02078 | MEF2A | S223 | ochoa | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q02241 | KIF23 | S902 | ochoa | Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}. |
Q03001 | DST | S7458 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03164 | KMT2A | S2650 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03252 | LMNB2 | S552 | ochoa | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q07352 | ZFP36L1 | S70 | ochoa | mRNA decay activator protein ZFP36L1 (Butyrate response factor 1) (EGF-response factor 1) (ERF-1) (TPA-induced sequence 11b) (Zinc finger protein 36, C3H1 type-like 1) (ZFP36-like 1) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258). Functions by recruiting the CCR4-NOT deadenylase complex and components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:15687258, PubMed:18326031, PubMed:25106868). Also induces the degradation of ARE-containing mRNAs even in absence of poly(A) tail (By similarity). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Promotes ARE-mediated mRNA decay of mineralocorticoid receptor NR3C2 mRNA in response to hypertonic stress (PubMed:24700863). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Positively regulates monocyte/macrophage cell differentiation by promoting ARE-mediated mRNA decay of the cyclin-dependent kinase CDK6 mRNA (PubMed:26542173). Promotes degradation of ARE-containing pluripotency-associated mRNAs in embryonic stem cells (ESCs), such as NANOG, through a fibroblast growth factor (FGF)-induced MAPK-dependent signaling pathway, and hence attenuates ESC self-renewal and positively regulates mesendoderm differentiation (By similarity). May play a role in mediating pro-apoptotic effects in malignant B-cells by promoting ARE-mediated mRNA decay of BCL2 mRNA (PubMed:25014217). In association with ZFP36L2 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination and functional immune cell formation (By similarity). Together with ZFP36L2 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA (By similarity). Participates in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, plays a role in the regulation of nuclear mRNA 3'-end processing; modulates mRNA 3'-end maturation efficiency of the DLL4 mRNA through binding with an ARE embedded in a weak noncanonical polyadenylation (poly(A)) signal in endothelial cells (PubMed:21832157). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (PubMed:15967811). Plays a role in vasculogenesis and endocardial development (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role in myoblast cell differentiation (By similarity). {ECO:0000250|UniProtKB:P17431, ECO:0000250|UniProtKB:P23950, ECO:0000269|PubMed:12198173, ECO:0000269|PubMed:15467755, ECO:0000269|PubMed:15538381, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15967811, ECO:0000269|PubMed:17030608, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18326031, ECO:0000269|PubMed:19179481, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21832157, ECO:0000269|PubMed:24700863, ECO:0000269|PubMed:25014217, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:26542173, ECO:0000269|PubMed:27182009}. |
Q07912 | TNK2 | S445 | psp | Activated CDC42 kinase 1 (ACK-1) (EC 2.7.10.2) (EC 2.7.11.1) (Tyrosine kinase non-receptor protein 2) | Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR. Phosphorylates WASP (PubMed:20110370). {ECO:0000269|PubMed:10652228, ECO:0000269|PubMed:11278436, ECO:0000269|PubMed:16247015, ECO:0000269|PubMed:16257963, ECO:0000269|PubMed:16472662, ECO:0000269|PubMed:17038317, ECO:0000269|PubMed:18262180, ECO:0000269|PubMed:18435854, ECO:0000269|PubMed:19815557, ECO:0000269|PubMed:20110370, ECO:0000269|PubMed:20333297, ECO:0000269|PubMed:20383201}. |
Q08499 | PDE4D | S146 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q09666 | AHNAK | S379 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S407 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5261 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5555 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5589 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12756 | KIF1A | S932 | ochoa | Kinesin-like protein KIF1A (EC 5.6.1.3) (Axonal transporter of synaptic vesicles) (Microtubule-based motor KIF1A) (Unc-104- and KIF1A-related protein) (hUnc-104) | Kinesin motor with a plus-end-directed microtubule motor activity (By similarity). It is required for anterograde axonal transport of synaptic vesicle precursors (PubMed:33880452). Also required for neuronal dense core vesicles (DCVs) transport to the dendritic spines and axons. The interaction calcium-dependent with CALM1 increases vesicle motility and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. {ECO:0000250|UniProtKB:F1M4A4, ECO:0000250|UniProtKB:P33173, ECO:0000269|PubMed:33880452}. |
Q12802 | AKAP13 | S1507 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12815 | TROAP | S271 | ochoa | Tastin (Trophinin-assisting protein) (Trophinin-associated protein) | Could be involved with bystin and trophinin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. |
Q12815 | TROAP | S404 | ochoa | Tastin (Trophinin-assisting protein) (Trophinin-associated protein) | Could be involved with bystin and trophinin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. |
Q12834 | CDC20 | S72 | ochoa|psp | Cell division cycle protein 20 homolog (p55CDC) | Substrate-specific adapter of the anaphase promoting complex/cyclosome (APC/C) complex that confers substrate specificity by binding to substrates and targeting them to the APC/C complex for ubiquitination and degradation (PubMed:9734353, PubMed:27030811, PubMed:29343641). Recognizes and binds the destruction box (D box) on protein substrates (PubMed:29343641). Involved in the metaphase/anaphase transition of cell cycle (PubMed:32666501). Is regulated by MAD2L1: in metaphase the MAD2L1-CDC20-APC/C ternary complex is inactive and in anaphase the CDC20-APC/C binary complex is active in degrading substrates (PubMed:9811605, PubMed:9637688). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 induces presynaptic differentiation (By similarity). The CDC20-APC/C complex promotes proper dilation formation and radial migration by degrading CCDC41 (By similarity). {ECO:0000250|UniProtKB:Q9JJ66, ECO:0000269|PubMed:27030811, ECO:0000269|PubMed:29343641, ECO:0000269|PubMed:32666501, ECO:0000269|PubMed:9637688, ECO:0000269|PubMed:9734353, ECO:0000269|PubMed:9811605}. |
Q12983 | BNIP3 | S24 | psp | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 | Apoptosis-inducing protein that can overcome BCL2 suppression. May play a role in repartitioning calcium between the two major intracellular calcium stores in association with BCL2. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. Plays an important role in the calprotectin (S100A8/A9)-induced cell death pathway. {ECO:0000269|PubMed:19935772, ECO:0000269|PubMed:22292033}. |
Q13009 | TIAM1 | S311 | ochoa | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13424 | SNTA1 | S101 | ochoa | Alpha-1-syntrophin (59 kDa dystrophin-associated protein A1 acidic component 1) (Pro-TGF-alpha cytoplasmic domain-interacting protein 1) (TACIP1) (Syntrophin-1) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the extracellular matrix via the dystrophin glycoprotein complex. Plays an important role in synapse formation and in the organization of UTRN and acetylcholine receptors at the neuromuscular synapse. Binds to phosphatidylinositol 4,5-bisphosphate (By similarity). {ECO:0000250}. |
Q13425 | SNTB2 | S129 | ochoa | Beta-2-syntrophin (59 kDa dystrophin-associated protein A1 basic component 2) (Syntrophin-3) (SNT3) (Syntrophin-like) (SNTL) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. May play a role in the regulation of secretory granules via its interaction with PTPRN. |
Q13488 | TCIRG1 | S685 | ochoa | V-type proton ATPase 116 kDa subunit a 3 (V-ATPase 116 kDa subunit a 3) (Osteoclastic proton pump 116 kDa subunit) (OC-116 kDa) (OC116) (T-cell immune regulator 1) (T-cell immune response cDNA7 protein) (TIRC7) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 3) | Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Seems to be directly involved in T-cell activation (PubMed:10329006). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:10329006}. |
Q13492 | PICALM | S565 | ochoa | Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) | Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}. |
Q13501 | SQSTM1 | S407 | psp | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13596 | SNX1 | S280 | ochoa | Sorting nexin-1 | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:12198132). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:19816406, PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptors (IGF2R, M6PR and SORT1) and Shiginella dysenteria toxin stxB. Plays a role in targeting ligand-activated EGFR to the lysosomes for degradation after endocytosis from the cell surface and release from the Golgi (PubMed:12198132, PubMed:15498486, PubMed:17101778, PubMed:17550970, PubMed:18088323, PubMed:21040701). Involvement in retromer-independent endocytic trafficking of P2RY1 and lysosomal degradation of protease-activated receptor-1/F2R (PubMed:16407403, PubMed:20070609). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). Required for endocytosis of DRD5 upon agonist stimulation but not for basal receptor trafficking (PubMed:23152498). {ECO:0000269|PubMed:12198132, ECO:0000269|PubMed:15498486, ECO:0000269|PubMed:16407403, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:17550970, ECO:0000269|PubMed:18088323, ECO:0000269|PubMed:19816406, ECO:0000269|PubMed:20070609, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:21040701, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:23152498, ECO:0000303|PubMed:15498486}. |
Q13884 | SNTB1 | S383 | ochoa | Beta-1-syntrophin (59 kDa dystrophin-associated protein A1 basic component 1) (DAPA1B) (BSYN2) (Syntrophin-2) (Tax interaction protein 43) (TIP-43) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. |
Q14008 | CKAP5 | S247 | ochoa | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
Q14012 | CAMK1 | S324 | ochoa | Calcium/calmodulin-dependent protein kinase type 1 (EC 2.7.11.17) (CaM kinase I) (CaM-KI) (CaM kinase I alpha) (CaMKI-alpha) | Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1 signaling cascade and, upon calcium influx, regulates transcription activators activity, cell cycle, hormone production, cell differentiation, actin filament organization and neurite outgrowth. Recognizes the substrate consensus sequence [MVLIF]-x-R-x(2)-[ST]-x(3)-[MVLIF]. Regulates axonal extension and growth cone motility in hippocampal and cerebellar nerve cells. Upon NMDA receptor-mediated Ca(2+) elevation, promotes dendritic growth in hippocampal neurons and is essential in synapses for full long-term potentiation (LTP) and ERK2-dependent translational activation. Downstream of NMDA receptors, promotes the formation of spines and synapses in hippocampal neurons by phosphorylating ARHGEF7/BETAPIX on 'Ser-694', which results in the enhancement of ARHGEF7 activity and activation of RAC1. Promotes neuronal differentiation and neurite outgrowth by activation and phosphorylation of MARK2 on 'Ser-91', 'Ser-92', 'Ser-93' and 'Ser-294'. Promotes nuclear export of HDAC5 and binding to 14-3-3 by phosphorylation of 'Ser-259' and 'Ser-498' in the regulation of muscle cell differentiation. Regulates NUMB-mediated endocytosis by phosphorylation of NUMB on 'Ser-276' and 'Ser-295'. Involved in the regulation of basal and estrogen-stimulated migration of medulloblastoma cells through ARHGEF7/BETAPIX phosphorylation (By similarity). Is required for proper activation of cyclin-D1/CDK4 complex during G1 progression in diploid fibroblasts. Plays a role in K(+) and ANG2-mediated regulation of the aldosterone synthase (CYP11B2) to produce aldosterone in the adrenal cortex. Phosphorylates EIF4G3/eIF4GII. In vitro phosphorylates CREB1, ATF1, CFTR, MYL9 and SYN1/synapsin I. {ECO:0000250, ECO:0000269|PubMed:11114197, ECO:0000269|PubMed:12193581, ECO:0000269|PubMed:14507913, ECO:0000269|PubMed:14754892, ECO:0000269|PubMed:17056143, ECO:0000269|PubMed:17442826, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:20181577}. |
Q14126 | DSG2 | S680 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14157 | UBAP2L | S356 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14160 | SCRIB | S875 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14160 | SCRIB | S1523 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14247 | CTTN | S117 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14315 | FLNC | S379 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14676 | MDC1 | S544 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14683 | SMC1A | S962 | ochoa | Structural maintenance of chromosomes protein 1A (SMC protein 1A) (SMC-1-alpha) (SMC-1A) (Sb1.8) | Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. Involved in DNA repair via its interaction with BRCA1 and its related phosphorylation by ATM, or via its phosphorylation by ATR. Works as a downstream effector both in the ATM/NBS1 branch and in the ATR/MSH2 branch of S-phase checkpoint. {ECO:0000269|PubMed:11877377}. |
Q14699 | RFTN1 | S555 | ochoa | Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) | Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}. |
Q14761 | PTPRCAP | S168 | ochoa | Protein tyrosine phosphatase receptor type C-associated protein (PTPRC-associated protein) (CD45-associated protein) (CD45-AP) (Lymphocyte phosphatase-associated phosphoprotein) | None |
Q14766 | LTBP1 | S602 | ochoa | Latent-transforming growth factor beta-binding protein 1 (LTBP-1) (Transforming growth factor beta-1-binding protein 1) (TGF-beta1-BP-1) | Key regulator of transforming growth factor beta (TGFB1, TGFB2 and TGFB3) that controls TGF-beta activation by maintaining it in a latent state during storage in extracellular space (PubMed:2022183, PubMed:8617200, PubMed:8939931). Associates specifically via disulfide bonds with the Latency-associated peptide (LAP), which is the regulatory chain of TGF-beta, and regulates integrin-dependent activation of TGF-beta (PubMed:15184403, PubMed:8617200, PubMed:8939931). Outcompeted by LRRC32/GARP for binding to LAP regulatory chain of TGF-beta (PubMed:22278742). {ECO:0000269|PubMed:15184403, ECO:0000269|PubMed:2022183, ECO:0000269|PubMed:22278742, ECO:0000269|PubMed:8617200, ECO:0000269|PubMed:8939931}. |
Q15036 | SNX17 | S440 | ochoa | Sorting nexin-17 | Critical regulator of endosomal recycling of numerous surface proteins, including integrins, signaling receptor and channels (PubMed:15121882, PubMed:15769472, PubMed:39587083). Binds to NPxY sequences in the cytoplasmic tails of target cargos (PubMed:21512128). Associates with retriever and CCC complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGB1, ITGB5 and their associated alpha subunits (PubMed:22492727, PubMed:28892079, PubMed:39587083). Also required for maintenance of normal cell surface levels of APP and LRP1 (PubMed:16712798, PubMed:19005208). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:16712798). {ECO:0000269|PubMed:15121882, ECO:0000269|PubMed:15769472, ECO:0000269|PubMed:16712798, ECO:0000269|PubMed:19005208, ECO:0000269|PubMed:21512128, ECO:0000269|PubMed:22492727, ECO:0000269|PubMed:28892079}. |
Q15047 | SETDB1 | S1027 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15075 | EEA1 | S70 | ochoa | Early endosome antigen 1 (Endosome-associated protein p162) (Zinc finger FYVE domain-containing protein 2) | Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in endosomal trafficking. |
Q15080 | NCF4 | S161 | ochoa | Neutrophil cytosol factor 4 (NCF-4) (Neutrophil NADPH oxidase factor 4) (SH3 and PX domain-containing protein 4) (p40-phox) (p40phox) | Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (Probable). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (By similarity). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (By similarity). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (By similarity). {ECO:0000250|UniProtKB:P04839, ECO:0000250|UniProtKB:P14598, ECO:0000305|PubMed:8280052}. |
Q15084 | PDIA6 | S230 | ochoa | Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) | May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}. |
Q15149 | PLEC | S2782 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15417 | CNN3 | S215 | ochoa | Calponin-3 (Calponin, acidic isoform) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q15417 | CNN3 | S254 | ochoa | Calponin-3 (Calponin, acidic isoform) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q15464 | SHB | S190 | ochoa | SH2 domain-containing adapter protein B | Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}. |
Q15464 | SHB | S258 | ochoa | SH2 domain-containing adapter protein B | Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}. |
Q15527 | SURF2 | S156 | ochoa | Surfeit locus protein 2 (Surf-2) | None |
Q15653 | NFKBIB | S19 | psp | NF-kappa-B inhibitor beta (NF-kappa-BIB) (I-kappa-B-beta) (IkB-B) (IkB-beta) (IkappaBbeta) (Thyroid receptor-interacting protein 9) (TR-interacting protein 9) (TRIP-9) | Inhibits NF-kappa-B by complexing with and trapping it in the cytoplasm. However, the unphosphorylated form resynthesized after cell stimulation is able to bind NF-kappa-B allowing its transport to the nucleus and protecting it to further NFKBIA-dependent inactivation. Association with inhibitor kappa B-interacting NKIRAS1 and NKIRAS2 prevent its phosphorylation rendering it more resistant to degradation, explaining its slower degradation. |
Q16143 | SNCB | S64 | ochoa | Beta-synuclein | Non-amyloid component of senile plaques found in Alzheimer disease. Could act as a regulator of SNCA aggregation process. Protects neurons from staurosporine and 6-hydroxy dopamine (6OHDA)-stimulated caspase activation in a p53/TP53-dependent manner. Contributes to restore the SNCA anti-apoptotic function abolished by 6OHDA. Not found in the Lewy bodies associated with Parkinson disease. |
Q16576 | RBBP7 | S99 | ochoa | Histone-binding protein RBBP7 (Histone acetyltransferase type B subunit 2) (Nucleosome-remodeling factor subunit RBAP46) (Retinoblastoma-binding protein 7) (RBBP-7) (Retinoblastoma-binding protein p46) | Core histone-binding subunit that may target chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the type B histone acetyltransferase (HAT) complex, which is required for chromatin assembly following DNA replication; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling; and the PRC2/EED-EZH2 complex, which promotes repression of homeotic genes during development; and the NURF (nucleosome remodeling factor) complex. {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q16821 | PPP1R3A | S551 | ochoa | Protein phosphatase 1 regulatory subunit 3A (Protein phosphatase 1 glycogen-associated regulatory subunit) (Protein phosphatase type-1 glycogen targeting subunit) (RG1) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity). {ECO:0000250}. |
Q27J81 | INF2 | S1136 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2NKX8 | ERCC6L | S980 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2TAL5 | SMTNL2 | S127 | ochoa | Smoothelin-like protein 2 | None |
Q2TAL5 | SMTNL2 | S129 | ochoa | Smoothelin-like protein 2 | None |
Q32MZ4 | LRRFIP1 | S116 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q53EL6 | PDCD4 | S313 | ochoa | Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) | Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}. |
Q567U6 | CCDC93 | S273 | ochoa | Coiled-coil domain-containing protein 93 | Component of the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). Component of the CCC complex, which is involved in the regulation of endosomal recycling of surface proteins, including integrins, signaling receptor and channels (PubMed:37172566, PubMed:38459129). The CCC complex associates with SNX17, retriever and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGA5:ITGB1 (PubMed:25355947, PubMed:28892079). Involved in copper-dependent ATP7A trafficking between the trans-Golgi network and vesicles in the cell periphery; the function is proposed to depend on its association within the CCC complex and cooperation with the WASH complex on early endosomes and is dependent on its interaction with WASHC2C (PubMed:25355947). {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129}.; FUNCTION: (Microbial infection) The CCC complex, in collaboration with the heterotrimeric retriever complex, mediates the exit of human papillomavirus to the cell surface. {ECO:0000269|PubMed:28892079}. |
Q5J8M3 | EMC4 | S36 | ochoa | ER membrane protein complex subunit 4 (Cell proliferation-inducing gene 17 protein) (Transmembrane protein 85) | Part of the endoplasmic reticulum membrane protein complex (EMC) that enables the energy-independent insertion into endoplasmic reticulum membranes of newly synthesized membrane proteins (PubMed:29242231, PubMed:29809151, PubMed:30415835, PubMed:32439656, PubMed:32459176). Preferentially accommodates proteins with transmembrane domains that are weakly hydrophobic or contain destabilizing features such as charged and aromatic residues (PubMed:29242231, PubMed:29809151, PubMed:30415835). Involved in the cotranslational insertion of multi-pass membrane proteins in which stop-transfer membrane-anchor sequences become ER membrane spanning helices (PubMed:29809151, PubMed:30415835). It is also required for the post-translational insertion of tail-anchored/TA proteins in endoplasmic reticulum membranes (PubMed:29242231, PubMed:29809151). By mediating the proper cotranslational insertion of N-terminal transmembrane domains in an N-exo topology, with translocated N-terminus in the lumen of the ER, controls the topology of multi-pass membrane proteins like the G protein-coupled receptors (PubMed:30415835). By regulating the insertion of various proteins in membranes, it is indirectly involved in many cellular processes (Probable). {ECO:0000269|PubMed:29242231, ECO:0000269|PubMed:29809151, ECO:0000269|PubMed:30415835, ECO:0000269|PubMed:32439656, ECO:0000269|PubMed:32459176, ECO:0000305|PubMed:18586032}. |
Q5JTH9 | RRP12 | S460 | ochoa | RRP12-like protein | None |
Q5JTH9 | RRP12 | S1149 | ochoa | RRP12-like protein | None |
Q5JWF2 | GNAS | S995 | ochoa | Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas (EC 3.6.5.-) (Adenylate cyclase-stimulating G alpha protein) (Extra large alphas protein) (XLalphas) | Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs). The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numerous regulatory proteins. Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. XLas isoforms interact with the same set of receptors as Gnas isoforms. {ECO:0000250|UniProtKB:Q6R0H7}. |
Q5SYE7 | NHSL1 | S322 | ochoa | NHS-like protein 1 | None |
Q5SYE7 | NHSL1 | S378 | ochoa | NHS-like protein 1 | None |
Q5T4S7 | UBR4 | S2910 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T6F2 | UBAP2 | S956 | ochoa | Ubiquitin-associated protein 2 (UBAP-2) (RNA polymerase II degradation factor UBAP2) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). May promote the degradation of ANXA2 (PubMed:27121050). {ECO:0000269|PubMed:27121050, ECO:0000269|PubMed:35633597}. |
Q5T7W0 | ZNF618 | S216 | ochoa | Zinc finger protein 618 | Regulates UHRF2 function as a specific 5-hydroxymethylcytosine (5hmC) reader by regulating its chromatin localization. {ECO:0000269|PubMed:27129234}. |
Q5TH69 | ARFGEF3 | S1635 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5U4P2 | ASPHD1 | S158 | ochoa | Aspartate beta-hydroxylase domain-containing protein 1 (EC 1.14.11.-) | None |
Q5VST9 | OBSCN | S790 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VUA4 | ZNF318 | S501 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VWN6 | TASOR2 | S1722 | ochoa | Protein TASOR 2 | None |
Q63HN8 | RNF213 | S217 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q641Q2 | WASHC2A | S352 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q641Q2 | WASHC2A | S1075 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q66K14 | TBC1D9B | S1132 | ochoa | TBC1 domain family member 9B | May act as a GTPase-activating protein for Rab family protein(s). |
Q6ICG6 | KIAA0930 | S358 | ochoa | Uncharacterized protein KIAA0930 | None |
Q6NSZ9 | ZSCAN25 | S300 | ochoa | Zinc finger and SCAN domain-containing protein 25 (Zinc finger protein 498) | May be involved in transcriptional regulation. {ECO:0000250}. |
Q6P2E9 | EDC4 | S890 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6R327 | RICTOR | S1162 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6UXT9 | ABHD15 | S152 | ochoa | Protein ABHD15 (Alpha/beta hydrolase domain-containing protein 15) (Abhydrolase domain-containing protein 15) | May regulate adipocyte lipolysis and liver lipid accumulation. {ECO:0000250|UniProtKB:Q5F2F2}. |
Q6ZMU5 | TRIM72 | S305 | ochoa | Tripartite motif-containing protein 72 (EC 2.3.2.27) (Mitsugumin-53) (Mg53) | Muscle-specific E3 ubiquitin-protein ligase that plays a central role in cell membrane repair by nucleating the assembly of the repair machinery at injury sites (PubMed:36944613). Its ubiquitination activity is mediated by E2 ubiquitin-conjugating enzymes UBE2D1, UBE2D2 and UBE2D3 (By similarity). Acts as a sensor of oxidation: upon membrane damage, entry of extracellular oxidative environment results in disulfide bond formation and homooligomerization at the injury site (By similarity). This oligomerization acts as a nucleation site for recruitment of TRIM72-containing vesicles to the injury site, leading to membrane patch formation (By similarity). Probably acts upstream of the Ca(2+)-dependent membrane resealing process (By similarity). Required for transport of DYSF to sites of cell injury during repair patch formation (By similarity). Regulates membrane budding and exocytosis (By similarity). May be involved in the regulation of the mobility of KCNB1-containing endocytic vesicles (By similarity). {ECO:0000250|UniProtKB:Q1XH17, ECO:0000269|PubMed:36944613}. |
Q6ZN04 | MEX3B | S462 | psp | RNA-binding protein MEX3B (RING finger and KH domain-containing protein 3) (RING finger protein 195) | RNA-binding protein. May be involved in post-transcriptional regulatory mechanisms. |
Q6ZN16 | MAP3K15 | S70 | ochoa | Mitogen-activated protein kinase kinase kinase 15 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 3) (MAPK/ERK kinase kinase 15) (MEK kinase 15) (MEKK 15) | Serine/threonine kinase which acts as a component of the MAP kinase signal transduction pathway (PubMed:20362554, PubMed:26732173). Once activated, acts as an upstream activator of the p38 MAPK signal transduction cascade through the phosphorylation and activation of several MAP kinase kinases (PubMed:20362554, PubMed:26732173). May function in a signal transduction pathway that is activated by various cell stresses and leads to apoptosis (PubMed:20362554). Involved in phosphorylation of WNK4 in response to osmotic stress or hypotonic low-chloride stimulation via the p38 MAPK signal transduction cascade (PubMed:26732173). {ECO:0000269|PubMed:20362554, ECO:0000269|PubMed:26732173}. |
Q6ZSZ5 | ARHGEF18 | S131 | ochoa | Rho guanine nucleotide exchange factor 18 (114 kDa Rho-specific guanine nucleotide exchange factor) (p114-Rho-GEF) (p114RhoGEF) (Septin-associated RhoGEF) (SA-RhoGEF) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. Its activation induces formation of actin stress fibers. Also acts as a GEF for RAC1, inducing production of reactive oxygen species (ROS). Does not act as a GEF for CDC42. The G protein beta-gamma (Gbetagamma) subunits of heterotrimeric G proteins act as activators, explaining the integrated effects of LPA and other G-protein coupled receptor agonists on actin stress fiber formation, cell shape change and ROS production. Required for EPB41L4B-mediated regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). {ECO:0000269|PubMed:11085924, ECO:0000269|PubMed:14512443, ECO:0000269|PubMed:15558029, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:28132693}. |
Q6ZU35 | CRACD | S1139 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZVL6 | KIAA1549L | S1593 | ochoa | UPF0606 protein KIAA1549L | None |
Q6ZVM7 | TOM1L2 | S423 | ochoa | TOM1-like protein 2 (Target of Myb-like protein 2) | Acts as a MYO6/Myosin VI adapter protein that targets myosin VI to endocytic structures (PubMed:23023224). May also play a role in recruiting clathrin to endosomes (PubMed:16412388). May regulate growth factor-induced mitogenic signaling (PubMed:16479011). {ECO:0000269|PubMed:16412388, ECO:0000269|PubMed:16479011, ECO:0000269|PubMed:23023224}. |
Q7L5N1 | COPS6 | S60 | psp | COP9 signalosome complex subunit 6 (SGN6) (Signalosome subunit 6) (JAB1-containing signalosome subunit 6) (MOV34 homolog) (Vpr-interacting protein) (hVIP) | Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Has some glucocorticoid receptor-responsive activity. Stabilizes COP1 through reducing COP1 auto-ubiquitination and decelerating COP1 turnover rate, hence regulates the ubiquitination of COP1 targets. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:21625211, ECO:0000269|PubMed:9535219}. |
Q7Z2K8 | GPRIN1 | S382 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z460 | CLASP1 | S590 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z591 | AKNA | S949 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5J4 | RAI1 | S805 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z6I6 | ARHGAP30 | S384 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z6I6 | ARHGAP30 | S840 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z6Z7 | HUWE1 | S3753 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86SK9 | SCD5 | S27 | ochoa | Stearoyl-CoA desaturase 5 (EC 1.14.19.1) (Acyl-CoA-desaturase 4) (HSCD5) (Stearoyl-CoA 9-desaturase) (Stearoyl-CoA desaturase 2) | Stearoyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates. Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA (PubMed:15610069, PubMed:15907797, PubMed:22745828). Gives rise to a mixture of 16:1 and 18:1 unsaturated fatty acids (PubMed:15610069, PubMed:15907797). Involved in neuronal cell proliferation and differentiation through down-regulation of EGFR/AKT/MAPK and Wnt signaling pathways (PubMed:22745828). {ECO:0000269|PubMed:15610069, ECO:0000269|PubMed:15907797, ECO:0000269|PubMed:22745828}. |
Q86T90 | KIAA1328 | S68 | ochoa | Protein hinderin | Competes with SMC1 for binding to SMC3. May affect the availability of SMC3 to engage in the formation of multimeric protein complexes. {ECO:0000269|PubMed:15656913}. |
Q86TV6 | TTC7B | S625 | ochoa | Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}. |
Q86UE4 | MTDH | S347 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86UR5 | RIMS1 | S1400 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86W56 | PARG | S375 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86XD5 | FAM131B | S59 | ochoa | Protein FAM131B | None |
Q8IV36 | HID1 | S589 | ochoa | Protein HID1 (Down-regulated in multiple cancers 1) (HID1 domain-containing protein) (Protein hid-1 homolog) | May play an important role in the development of cancers in a broad range of tissues. {ECO:0000269|PubMed:11281419}. |
Q8IVF2 | AHNAK2 | S447 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S5283 | ochoa | Protein AHNAK2 | None |
Q8IXT5 | RBM12B | S391 | ochoa | RNA-binding protein 12B (RNA-binding motif protein 12B) | None |
Q8IYI6 | EXOC8 | S147 | ochoa | Exocyst complex component 8 (Exocyst complex 84 kDa subunit) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. |
Q8IZQ1 | WDFY3 | S984 | ochoa | WD repeat and FYVE domain-containing protein 3 (Autophagy-linked FYVE protein) (Alfy) | Required for selective macroautophagy (aggrephagy). Acts as an adapter protein by linking specific proteins destined for degradation to the core autophagic machinery members, such as the ATG5-ATG12-ATG16L E3-like ligase, SQSTM1 and LC3 (PubMed:20417604). Along with p62/SQSTM1, involved in the formation and autophagic degradation of cytoplasmic ubiquitin-containing inclusions (p62 bodies, ALIS/aggresome-like induced structures). Along with SQSTM1, required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Important for normal brain development. Essential for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Involved in the ability of neural cells to respond to guidance cues. Required for cortical neurons to respond to the trophic effects of netrin-1/NTN1 (By similarity). Regulates Wnt signaling through the removal of DVL3 aggregates, likely in an autophagy-dependent manner. This process may be important for the determination of brain size during embryonic development (PubMed:27008544). May regulate osteoclastogenesis by acting on the TNFSF11/RANKL - TRAF6 pathway (By similarity). After cytokinetic abscission, involved in midbody remnant degradation (PubMed:24128730). In vitro strongly binds to phosphatidylinositol 3-phosphate (PtdIns3P) (PubMed:15292400). {ECO:0000250|UniProtKB:Q6VNB8, ECO:0000269|PubMed:15292400, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20417604, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:27008544}. |
Q8N163 | CCAR2 | S804 | ochoa | Cell cycle and apoptosis regulator protein 2 (Cell division cycle and apoptosis regulator protein 2) (DBIRD complex subunit KIAA1967) (Deleted in breast cancer gene 1 protein) (DBC-1) (DBC.1) (NET35) (p30 DBC) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions (PubMed:22446626). Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acetylation and p53-mediated apoptosis (PubMed:18235501, PubMed:18235502, PubMed:23352644). Inhibits SUV39H1 methyltransferase activity (PubMed:19218236). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). Plays a critical role in maintaining genomic stability and cellular integrity following UV-induced genotoxic stress (PubMed:23398316). Regulates the circadian expression of the core clock components NR1D1 and BMAL1 (PubMed:23398316). Enhances the transcriptional repressor activity of NR1D1 through stabilization of NR1D1 protein levels by preventing its ubiquitination and subsequent degradation (PubMed:23398316). Represses the ligand-dependent transcriptional activation function of ESR2 (PubMed:20074560). Acts as a regulator of PCK1 expression and gluconeogenesis by a mechanism that involves, at least in part, both NR1D1 and SIRT1 (PubMed:24415752). Negatively regulates the deacetylase activity of HDAC3 and can alter its subcellular localization (PubMed:21030595). Positively regulates the beta-catenin pathway (canonical Wnt signaling pathway) and is required for MCC-mediated repression of the beta-catenin pathway (PubMed:24824780). Represses ligand-dependent transcriptional activation function of NR1H2 and NR1H3 and inhibits the interaction of SIRT1 with NR1H3 (PubMed:25661920). Plays an important role in tumor suppression through p53/TP53 regulation; stabilizes p53/TP53 by affecting its interaction with ubiquitin ligase MDM2 (PubMed:25732823). Represses the transcriptional activator activity of BRCA1 (PubMed:20160719). Inhibits SIRT1 in a CHEK2 and PSEM3-dependent manner and inhibits the activity of CHEK2 in vitro (PubMed:25361978). {ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19218236, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:22446626, ECO:0000269|PubMed:23352644, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:25732823}. |
Q8N1W1 | ARHGEF28 | S758 | ochoa | Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) | Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}. |
Q8N2R8 | FAM43A | S392 | ochoa | Protein FAM43A | None |
Q8N350 | CBARP | S507 | ochoa | Voltage-dependent calcium channel beta subunit-associated regulatory protein | Negatively regulates voltage-gated calcium channels by preventing the interaction between their alpha and beta subunits. Thereby, negatively regulates calcium channels activity at the plasma membrane and indirectly inhibits calcium-regulated exocytosis. {ECO:0000250|UniProtKB:Q66L44}. |
Q8N3D4 | EHBP1L1 | S1218 | ochoa | EH domain-binding protein 1-like protein 1 | May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}. |
Q8N4C8 | MINK1 | S682 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N5U6 | RNF10 | S110 | ochoa | E3 ubiquitin-protein ligase RNF10 (EC 2.3.2.27) (RING finger protein 10) | E3 ubiquitin-protein ligase that catalyzes monoubiquitination of 40S ribosomal proteins RPS2/us5 and RPS3/us3 in response to ribosome stalling (PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): RNF10 acts by mediating monoubiquitination of RPS2/us5 and RPS3/us3, promoting their degradation by the proteasome (PubMed:34348161, PubMed:34469731). Also promotes ubiquitination of 40S ribosomal proteins in response to ribosome stalling during translation elongation (PubMed:34348161). The action of RNF10 in iRQC is counteracted by USP10 (PubMed:34469731). May also act as a transcriptional factor involved in the regulation of MAG (Myelin-associated glycoprotein) expression (By similarity). Acts as a regulator of Schwann cell differentiation and myelination (By similarity). {ECO:0000250|UniProtKB:Q5XI59, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731}. |
Q8N9M1 | C19orf47 | S397 | ochoa | Uncharacterized protein C19orf47 | None |
Q8NBR6 | MINDY2 | S26 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) | Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}. |
Q8ND25 | ZNRF1 | S53 | ochoa | E3 ubiquitin-protein ligase ZNRF1 (EC 2.3.2.27) (Nerve injury-induced gene 283 protein) (RING-type E3 ubiquitin transferase ZNRF1) (Zinc/RING finger protein 1) | E3 ubiquitin-protein ligase that plays a role in different processes including cell differentiation, receptor recycling or regulation of inflammation (PubMed:28593998, PubMed:33996800, PubMed:37158982). Mediates the ubiquitination of AKT1 and GLUL, thereby playing a role in neuron cells differentiation. Plays a role in the establishment and maintenance of neuronal transmission and plasticity. Regulates Schwann cells differentiation by mediating ubiquitination of GLUL. Promotes neurodegeneration by mediating 'Lys-48'-linked polyubiquitination and subsequent degradation of AKT1 in axons: degradation of AKT1 prevents AKT1-mediated phosphorylation of GSK3B, leading to GSK3B activation and phosphorylation of DPYSL2/CRMP2 followed by destabilization of microtubule assembly in axons. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Controls ligand-induced EGFR signaling via mediating receptor ubiquitination and recruitment of the ESCRT machinery (PubMed:33996800). Acts as a negative feedback mechanism controlling TLR3 trafficking by mediating TLR3 'Lys-63'-linked polyubiquitination to reduce type I IFN production (PubMed:37158982). Modulates inflammation by promoting caveolin-1/CAV1 ubiquitination and degradation to regulate TLR4-activated immune response (PubMed:28593998). {ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:28593998, ECO:0000269|PubMed:29626159, ECO:0000269|PubMed:33996800, ECO:0000269|PubMed:37158982, ECO:0000305|PubMed:14561866}. |
Q8NFC6 | BOD1L1 | S1520 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFT6 | DBF4B | S279 | ochoa | Protein DBF4 homolog B (Activator of S phase kinase-like protein 1) (ASK-like protein 1) (Chiffon homolog B) (Dbf4-related factor 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S and M phases. The complex CDC7-DBF4B selectively phosphorylates MCM2 subunit at 'Ser-40' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:15668232, ECO:0000269|PubMed:17062569}. |
Q8TAD8 | SNIP1 | S159 | ochoa | Smad nuclear-interacting protein 1 (FHA domain-containing protein SNIP1) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Down-regulates NF-kappa-B signaling by competing with RELA for CREBBP/EP300 binding. Involved in the microRNA (miRNA) biogenesis. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:11567019, ECO:0000269|PubMed:15378006, ECO:0000269|PubMed:18632581, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q8TBC5 | ZSCAN18 | S345 | ochoa | Zinc finger and SCAN domain-containing protein 18 (Zinc finger protein 447) | May be involved in transcriptional regulation. |
Q8TBX8 | PIP4K2C | S328 | psp | Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma (EC 2.7.1.149) (Phosphatidylinositol 5-phosphate 4-kinase type II gamma) (PI(5)P 4-kinase type II gamma) (PIP4KII-gamma) | Phosphatidylinositol 5-phosphate 4-kinase with low enzymatic activity. May be a GTP sensor, has higher GTP-dependent kinase activity than ATP-dependent kinase activity. PIP4Ks negatively regulate insulin signaling through a catalytic-independent mechanism. They interact with PIP5Ks and suppress PIP5K-mediated PtdIns(4,5)P2 synthesis and insulin-dependent conversion to PtdIns(3,4,5)P3 (PubMed:31091439). {ECO:0000269|PubMed:26774281, ECO:0000269|PubMed:31091439}. |
Q8TEW8 | PARD3B | S403 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q92613 | JADE3 | S650 | ochoa | Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}. |
Q92614 | MYO18A | S736 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92614 | MYO18A | S987 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92667 | AKAP1 | S553 | ochoa | A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) | Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}. |
Q92686 | NRGN | S36 | ochoa|psp | Neurogranin (Ng) (RC3) [Cleaved into: NEUG(55-78)] | Acts as a 'third messenger' substrate of protein kinase C-mediated molecular cascades during synaptic development and remodeling. Binds to calmodulin in the absence of calcium (By similarity). {ECO:0000250}. |
Q92731 | ESR2 | S176 | psp | Estrogen receptor beta (ER-beta) (Nuclear receptor subfamily 3 group A member 2) | Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1/ER-alpha, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). {ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:29261182, ECO:0000269|PubMed:30113650, ECO:0000269|PubMed:9325313}.; FUNCTION: [Isoform 2]: Lacks ligand binding ability and has no or only very low ERE binding activity resulting in the loss of ligand-dependent transactivation ability. {ECO:0000269|PubMed:9671811}. |
Q92766 | RREB1 | S1642 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92974 | ARHGEF2 | S133 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q92995 | USP13 | S238 | ochoa | Ubiquitin carboxyl-terminal hydrolase 13 (EC 3.4.19.12) (Deubiquitinating enzyme 13) (Isopeptidase T-3) (ISOT-3) (Ubiquitin thioesterase 13) (Ubiquitin-specific-processing protease 13) | Deubiquitinase that mediates deubiquitination of target proteins such as BECN1, MITF, SKP2 and USP10 and is involved in various processes such as autophagy, endoplasmic reticulum-associated degradation (ERAD), cell cycle progression or DNA damage response (PubMed:21571647, PubMed:32772043, PubMed:33592542). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes. Alternatively, forms with NEDD4 a deubiquitination complex, which subsequently stabilizes VPS34 to promote autophagy (PubMed:32101753). Also deubiquitinates USP10, an essential regulator of p53/TP53 stability. In turn, PIK3C3/VPS34-containing complexes regulate USP13 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13. Recruited by nuclear UFD1 and mediates deubiquitination of SKP2, thereby regulating endoplasmic reticulum-associated degradation (ERAD). Also regulates ERAD through the deubiquitination of UBL4A a component of the BAG6/BAT3 complex. Mediates stabilization of SIAH2 independently of deubiquitinase activity: binds ubiquitinated SIAH2 and acts by impairing SIAH2 autoubiquitination. Regulates the cell cycle progression by stabilizing cell cycle proteins such as SKP2 and AURKB (PubMed:32772043). In addition, plays an important role in maintaining genomic stability and in DNA replication checkpoint activation via regulation of RAP80 and TOPBP1 (PubMed:33592542). Deubiquitinates the multifunctional protein HMGB1 and subsequently drives its nucleocytoplasmic localization and its secretion (PubMed:36585612). Positively regulates type I and type II interferon signalings by deubiquitinating STAT1 but negatively regulates antiviral response by deubiquitinating STING1 (PubMed:23940278, PubMed:28534493). {ECO:0000269|PubMed:17653289, ECO:0000269|PubMed:21571647, ECO:0000269|PubMed:21659512, ECO:0000269|PubMed:21811243, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:22216260, ECO:0000269|PubMed:24424410, ECO:0000269|PubMed:28534493, ECO:0000269|PubMed:32101753, ECO:0000269|PubMed:32772043, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:36585612}. |
Q93052 | LPP | S508 | ochoa | Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) | May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}. |
Q93075 | TATDN2 | S111 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q96B97 | SH3KBP1 | S183 | ochoa | SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) | Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}. |
Q96BY6 | DOCK10 | S1241 | ochoa | Dedicator of cytokinesis protein 10 (Zizimin-3) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 and RAC1 by exchanging bound GDP for free GTP. Essential for dendritic spine morphogenesis in Purkinje cells and in hippocampal neurons, via a CDC42-mediated pathway. Sustains B-cell lymphopoiesis in secondary lymphoid tissues and regulates FCER2/CD23 expression. {ECO:0000250|UniProtKB:Q8BZN6}. |
Q96CC6 | RHBDF1 | S346 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96DT7 | ZBTB10 | S647 | ochoa | Zinc finger and BTB domain-containing protein 10 (Zinc finger protein RIN ZF) | May be involved in transcriptional regulation. |
Q96EV2 | RBM33 | S973 | ochoa | RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) | RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}. |
Q96EV2 | RBM33 | S991 | ochoa | RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) | RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}. |
Q96GS4 | BORCS6 | S89 | ochoa | BLOC-1-related complex subunit 6 (Lysosome-dispersing protein) (Lyspersin) | As part of the BORC complex may play a role in lysosomes movement and localization at the cell periphery. Associated with the cytosolic face of lysosomes, the BORC complex may recruit ARL8B and couple lysosomes to microtubule plus-end-directed kinesin motor. {ECO:0000269|PubMed:25898167}. |
Q96HH4 | TMEM169 | S35 | ochoa | Transmembrane protein 169 | None |
Q96I24 | FUBP3 | S49 | ochoa | Far upstream element-binding protein 3 (FUSE-binding protein 3) | May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. |
Q96IF1 | AJUBA | S263 | ochoa | LIM domain-containing protein ajuba | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, mitosis, cell-cell adhesion, cell differentiation, proliferation and migration. Contributes to the linking and/or strengthening of epithelia cell-cell junctions in part by linking adhesive receptors to the actin cytoskeleton. May be involved in signal transduction from cell adhesion sites to the nucleus. Plays an important role in regulation of the kinase activity of AURKA for mitotic commitment. Also a component of the IL-1 signaling pathway modulating IL-1-induced NFKB1 activation by influencing the assembly and activity of the PRKCZ-SQSTM1-TRAF6 multiprotein signaling complex. Functions as an HDAC-dependent corepressor for a subset of GFI1 target genes. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. {ECO:0000269|PubMed:12417594, ECO:0000269|PubMed:13678582, ECO:0000269|PubMed:15870274, ECO:0000269|PubMed:16413547, ECO:0000269|PubMed:17909014, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:22286099}. |
Q96KS0 | EGLN2 | S234 | psp | Prolyl hydroxylase EGLN2 (EC 1.14.11.-) (Egl nine homolog 2) (EC 1.14.11.29) (Estrogen-induced tag 6) (EIT-6) (HPH-3) (Hypoxia-inducible factor prolyl hydroxylase 1) (HIF-PH1) (HIF-prolyl hydroxylase 1) (HPH-1) (Prolyl hydroxylase domain-containing protein 1) (PHD1) | Prolyl hydroxylase that mediates hydroxylation of proline residues in target proteins, such as ATF4, IKBKB, CEP192 and HIF1A (PubMed:11595184, PubMed:12039559, PubMed:15925519, PubMed:16509823, PubMed:17114296, PubMed:23932902). Target proteins are preferentially recognized via a LXXLAP motif (PubMed:11595184, PubMed:12039559, PubMed:15925519). Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins (PubMed:11595184, PubMed:12039559, PubMed:12181324, PubMed:15925519, PubMed:19339211). Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A (PubMed:11595184, PubMed:12039559, PubMed:12181324, PubMed:15925519). Also hydroxylates HIF2A (PubMed:11595184, PubMed:12039559, PubMed:15925519). Has a preference for the CODD site for both HIF1A and HIF2A (PubMed:11595184, PubMed:12039559, PubMed:15925519). Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:11595184, PubMed:12039559, PubMed:15925519). Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes (PubMed:11595184, PubMed:12039559, PubMed:15925519). EGLN2 is involved in regulating hypoxia tolerance and apoptosis in cardiac and skeletal muscle (PubMed:11595184, PubMed:12039559, PubMed:15925519). Also regulates susceptibility to normoxic oxidative neuronal death (PubMed:11595184, PubMed:12039559, PubMed:15925519). Links oxygen sensing to cell cycle and primary cilia formation by hydroxylating the critical centrosome component CEP192 which promotes its ubiquitination and subsequent proteasomal degradation (PubMed:23932902). Hydroxylates IKBKB, mediating NF-kappa-B activation in hypoxic conditions (PubMed:17114296). Also mediates hydroxylation of ATF4, leading to decreased protein stability of ATF4 (By similarity). {ECO:0000250|UniProtKB:Q91YE2, ECO:0000269|PubMed:11595184, ECO:0000269|PubMed:12039559, ECO:0000269|PubMed:12181324, ECO:0000269|PubMed:15925519, ECO:0000269|PubMed:16509823, ECO:0000269|PubMed:17114296, ECO:0000269|PubMed:19339211, ECO:0000269|PubMed:23932902}. |
Q96L92 | SNX27 | S62 | ochoa | Sorting nexin-27 | Involved in the retrograde transport from endosome to plasma membrane, a trafficking pathway that promotes the recycling of internalized transmembrane proteins. Following internalization, endocytosed transmembrane proteins are delivered to early endosomes and recycled to the plasma membrane instead of being degraded in lysosomes. SNX27 specifically binds and directs sorting of a subset of transmembrane proteins containing a PDZ-binding motif at the C-terminus: following interaction with target transmembrane proteins, associates with the retromer complex, preventing entry into the lysosomal pathway, and promotes retromer-tubule based plasma membrane recycling. SNX27 also binds with the WASH complex. Interacts with membranes containing phosphatidylinositol-3-phosphate (PtdIns(3P)). May participate in establishment of natural killer cell polarity. Recruits CYTIP to early endosomes. {ECO:0000269|PubMed:17351151, ECO:0000269|PubMed:20733053, ECO:0000269|PubMed:21300787, ECO:0000269|PubMed:21303929, ECO:0000269|PubMed:21602791, ECO:0000269|PubMed:21926430, ECO:0000269|PubMed:22411990, ECO:0000269|PubMed:23563491}. |
Q96NY7 | CLIC6 | S299 | ochoa | Chloride intracellular channel protein 6 (Glutaredoxin-like oxidoreductase CLIC6) (EC 1.8.-.-) (Parchorin) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (By similarity). Can insert into membranes and form voltage-dependent chloride-selective channels. The channel opens upon membrane depolarization at positive voltages and closes at negative membrane voltages (PubMed:37838179). May play a critical role in water-secreting cells, possibly through the regulation of chloride ion transport (By similarity). {ECO:0000250|UniProtKB:Q9N2G5, ECO:0000250|UniProtKB:Q9Y696, ECO:0000269|PubMed:37838179}. |
Q96RV3 | PCNX1 | S121 | ochoa | Pecanex-like protein 1 (Pecanex homolog protein 1) | None |
Q96RY5 | CRAMP1 | S27 | ochoa | Protein cramped-like (Cramped chromatin regulator homolog 1) (Hematological and neurological expressed 1-like protein) | None |
Q96T17 | MAP7D2 | S233 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T37 | RBM15 | S159 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T37 | RBM15 | S208 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T88 | UHRF1 | S108 | ochoa | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q96TC7 | RMDN3 | S57 | ochoa | Regulator of microtubule dynamics protein 3 (RMD-3) (hRMD-3) (Cerebral protein 10) (Protein FAM82A2) (Protein FAM82C) (Protein tyrosine phosphatase-interacting protein 51) (TCPTP-interacting protein 51) | Involved in cellular calcium homeostasis regulation. May participate in differentiation and apoptosis of keratinocytes. Overexpression induces apoptosis. {ECO:0000269|PubMed:16820967, ECO:0000269|PubMed:22131369}. |
Q99081 | TCF12 | S333 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99439 | CNN2 | S217 | ochoa | Calponin-2 (Calponin H2, smooth muscle) (Neutral calponin) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q99460 | PSMD1 | S277 | ochoa | 26S proteasome non-ATPase regulatory subunit 1 (26S proteasome regulatory subunit RPN2) (26S proteasome regulatory subunit S1) (26S proteasome subunit p112) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
Q99698 | LYST | S2252 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99952 | PTPN18 | S419 | ochoa | Tyrosine-protein phosphatase non-receptor type 18 (EC 3.1.3.48) (Brain-derived phosphatase) | Differentially dephosphorylate autophosphorylated tyrosine kinases which are known to be overexpressed in tumor tissues. |
Q99959 | PKP2 | S44 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q99959 | PKP2 | S342 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q9BQ89 | FAM110A | S243 | ochoa | Protein FAM110A | None |
Q9BR76 | CORO1B | S424 | ochoa | Coronin-1B (Coronin-2) | Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity). {ECO:0000250, ECO:0000269|PubMed:16027158}. |
Q9BSM1 | PCGF1 | S146 | ochoa | Polycomb group RING finger protein 1 (Nervous system Polycomb-1) (NSPc1) (RING finger protein 68) | Component of the Polycomb group (PcG) multiprotein BCOR complex, a complex required to maintain the transcriptionally repressive state of some genes, such as BCL6 and the cyclin-dependent kinase inhibitor, CDKN1A. Transcriptional repressor that may be targeted to the DNA by BCL6; this transcription repressor activity may be related to PKC signaling pathway. Represses CDKN1A expression by binding to its promoter, and this repression is dependent on the retinoic acid response element (RARE element). Promotes cell cycle progression and enhances cell proliferation as well. May have a positive role in tumor cell growth by down-regulating CDKN1A. Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:26151332). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). Regulates the expression of DPPA4 and NANOG in the NT2 embryonic carcinoma cells (PubMed:26687479). {ECO:0000269|PubMed:15620699, ECO:0000269|PubMed:16943429, ECO:0000269|PubMed:17088287, ECO:0000269|PubMed:26151332, ECO:0000269|PubMed:26687479}. |
Q9BTK6 | PAGR1 | S19 | ochoa | PAXIP1-associated glutamate-rich protein 1 (Glutamate-rich coactivator interacting with SRC1) (GAS) (PAXIP1-associated protein 1) (PTIP-associated protein 1) | Its association with the histone methyltransferase MLL2/MLL3 complex is suggesting a role in epigenetic transcriptional activation. However, in association with PAXIP1/PTIP is proposed to function at least in part independently of the MLL2/MLL3 complex. Proposed to be recruited by PAXIP1 to sites of DNA damage where the PAGR1:PAXIP1 complex is required for cell survival in response to DNA damage independently of the MLL2/MLL3 complex (PubMed:19124460). However, its function in DNA damage has been questioned (By similarity). During immunoglobulin class switching in activated B-cells is involved in transcription regulation of downstream switch regions at the immunoglobulin heavy-chain (Igh) locus independently of the MLL2/MLL3 complex (By similarity). Involved in both estrogen receptor-regulated gene transcription and estrogen-stimulated G1/S cell-cycle transition (PubMed:19039327). Acts as a transcriptional cofactor for nuclear hormone receptors. Inhibits the induction properties of several steroid receptors such as NR3C1, AR and PPARG; the mechanism of inhibition appears to be gene-dependent (PubMed:23161582). {ECO:0000250|UniProtKB:Q99L02, ECO:0000269|PubMed:19039327, ECO:0000269|PubMed:19124460, ECO:0000269|PubMed:23161582, ECO:0000305}. |
Q9BVJ6 | UTP14A | S77 | ochoa | U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) | May be required for ribosome biogenesis. {ECO:0000250}. |
Q9BY44 | EIF2A | S249 | ochoa | Eukaryotic translation initiation factor 2A (eIF-2A) (65 kDa eukaryotic translation initiation factor 2A) [Cleaved into: Eukaryotic translation initiation factor 2A, N-terminally processed] | Functions in the early steps of protein synthesis of a small number of specific mRNAs. Acts by directing the binding of methionyl-tRNAi to 40S ribosomal subunits. In contrast to the eIF-2 complex, it binds methionyl-tRNAi to 40S subunits in a codon-dependent manner, whereas the eIF-2 complex binds methionyl-tRNAi to 40S subunits in a GTP-dependent manner. {ECO:0000269|PubMed:12133843}. |
Q9BYI3 | HYCC1 | S321 | ochoa | Hyccin (Down-regulated by CTNNB1 protein A) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (PubMed:26571211). HYCC1 plays a key role in oligodendrocytes formation, a cell type with expanded plasma membrane that requires generation of PtdIns(4)P (PubMed:26571211). Its role in oligodendrocytes formation probably explains its importance in myelination of the central and peripheral nervous system (PubMed:16951682, PubMed:26571211). May also have a role in the beta-catenin/Lef signaling pathway (Probable). {ECO:0000269|PubMed:16951682, ECO:0000269|PubMed:26571211, ECO:0000305|PubMed:10910037}. |
Q9BZC7 | ABCA2 | S1351 | ochoa | ATP-binding cassette sub-family A member 2 (EC 7.6.2.-) (ATP-binding cassette transporter 2) (ATP-binding cassette 2) | Probable lipid transporter that modulates cholesterol sequestration in the late endosome/lysosome by regulating the intracellular sphingolipid metabolism, in turn participates in cholesterol homeostasis (Probable) (PubMed:15238223, PubMed:21810484, PubMed:24201375). May alter the transbilayer distribution of ceramide in the intraluminal membrane lipid bilayer, favoring its retention in the outer leaflet that results in increased acid ceramidase activity in the late endosome/lysosome, facilitating ceramide deacylation to sphingosine leading to the sequestration of free cholesterol in lysosomes (PubMed:24201375). In addition regulates amyloid-beta production either by activating a signaling pathway that regulates amyloid precursor protein transcription through the modulation of sphingolipid metabolism or through its role in gamma-secretase processing of APP (PubMed:22086926, PubMed:26510981). May play a role in myelin formation (By similarity). {ECO:0000250|UniProtKB:P41234, ECO:0000269|PubMed:15238223, ECO:0000269|PubMed:21810484, ECO:0000269|PubMed:22086926, ECO:0000269|PubMed:24201375, ECO:0000269|PubMed:26510981, ECO:0000305|PubMed:15999530}. |
Q9BZZ2 | SIGLEC1 | S649 | ochoa | Sialoadhesin (Sialic acid-binding Ig-like lectin 1) (Siglec-1) (CD antigen CD169) | Macrophage-restricted adhesion molecule that mediates sialic-acid dependent binding to lymphocytes, including granulocytes, monocytes, natural killer cells, B-cells and CD8 T-cells. Plays a crucial role in limiting bacterial dissemination by engaging sialylated bacteria to promote effective phagocytosis and antigen presentation for the adaptive immune response (PubMed:12940982, PubMed:33489013). Mediates the uptake of various enveloped viruses via sialic acid recognition and subsequently induces the formation of intracellular compartments filled with virions (VCCs) (PubMed:28129379). In turn, enhances macrophage-to-T-cell transmission of several viruses including HIV-1 or SARS-CoV-2 (PubMed:28129379, PubMed:34782760). Acts as an endocytic receptor mediating clathrin dependent endocytosis. Preferentially binds to alpha-2,3-linked sialic acid (PubMed:12940982). Binds to SPN/CD43 on T-cells (By similarity). May play a role in hemopoiesis. Plays a role in the inhibition of antiviral innate immune by promoting TBK1 degradation via TYROBP and TRIM27-mediated ubiquitination (PubMed:26358190). {ECO:0000250|UniProtKB:Q62230, ECO:0000269|PubMed:12940982, ECO:0000269|PubMed:26358190, ECO:0000269|PubMed:28129379, ECO:0000269|PubMed:33489013, ECO:0000269|PubMed:34782760}.; FUNCTION: (Microbial infection) Facilitates viral cytoplasmic entry into activated dendritic cells via recognition of sialylated gangliosides pesent on viral membrane. {ECO:0000269|PubMed:31160823}. |
Q9BZZ2 | SIGLEC1 | S654 | ochoa | Sialoadhesin (Sialic acid-binding Ig-like lectin 1) (Siglec-1) (CD antigen CD169) | Macrophage-restricted adhesion molecule that mediates sialic-acid dependent binding to lymphocytes, including granulocytes, monocytes, natural killer cells, B-cells and CD8 T-cells. Plays a crucial role in limiting bacterial dissemination by engaging sialylated bacteria to promote effective phagocytosis and antigen presentation for the adaptive immune response (PubMed:12940982, PubMed:33489013). Mediates the uptake of various enveloped viruses via sialic acid recognition and subsequently induces the formation of intracellular compartments filled with virions (VCCs) (PubMed:28129379). In turn, enhances macrophage-to-T-cell transmission of several viruses including HIV-1 or SARS-CoV-2 (PubMed:28129379, PubMed:34782760). Acts as an endocytic receptor mediating clathrin dependent endocytosis. Preferentially binds to alpha-2,3-linked sialic acid (PubMed:12940982). Binds to SPN/CD43 on T-cells (By similarity). May play a role in hemopoiesis. Plays a role in the inhibition of antiviral innate immune by promoting TBK1 degradation via TYROBP and TRIM27-mediated ubiquitination (PubMed:26358190). {ECO:0000250|UniProtKB:Q62230, ECO:0000269|PubMed:12940982, ECO:0000269|PubMed:26358190, ECO:0000269|PubMed:28129379, ECO:0000269|PubMed:33489013, ECO:0000269|PubMed:34782760}.; FUNCTION: (Microbial infection) Facilitates viral cytoplasmic entry into activated dendritic cells via recognition of sialylated gangliosides pesent on viral membrane. {ECO:0000269|PubMed:31160823}. |
Q9C026 | TRIM9 | S76 | psp | E3 ubiquitin-protein ligase TRIM9 (EC 2.3.2.27) (RING finger protein 91) (RING-type E3 ubiquitin transferase TRIM9) (Tripartite motif-containing protein 9) | E3 ubiquitin-protein ligase which ubiquitinates itself in cooperation with an E2 enzyme UBE2D2/UBC4 and serves as a targeting signal for proteasomal degradation. May play a role in regulation of neuronal functions and may also participate in the formation or breakdown of abnormal inclusions in neurodegenerative disorders. May act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP25 for the SNARE complex formation. {ECO:0000269|PubMed:20085810}. |
Q9C0B1 | FTO | S184 | ochoa | Alpha-ketoglutarate-dependent dioxygenase FTO (Fat mass and obesity-associated protein) (U6 small nuclear RNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (EC 1.14.11.-) (U6 small nuclear RNA N(6)-methyladenosine-demethylase FTO) (EC 1.14.11.-) (mRNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (m6A(m)-demethylase FTO) (EC 1.14.11.-) (mRNA N(6)-methyladenosine demethylase FTO) (EC 1.14.11.53) (tRNA N1-methyl adenine demethylase FTO) (EC 1.14.11.-) | RNA demethylase that mediates oxidative demethylation of different RNA species, such as mRNAs, tRNAs and snRNAs, and acts as a regulator of fat mass, adipogenesis and energy homeostasis (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:28002401, PubMed:30197295). Specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:30197295). M6A demethylation by FTO affects mRNA expression and stability (PubMed:30197295). Also able to demethylate m6A in U6 small nuclear RNA (snRNA) (PubMed:30197295). Mediates demethylation of N(6),2'-O-dimethyladenosine cap (m6A(m)), by demethylating the N(6)-methyladenosine at the second transcribed position of mRNAs and U6 snRNA (PubMed:28002401, PubMed:30197295). Demethylation of m6A(m) in the 5'-cap by FTO affects mRNA stability by promoting susceptibility to decapping (PubMed:28002401). Also acts as a tRNA demethylase by removing N(1)-methyladenine from various tRNAs (PubMed:30197295). Has no activity towards 1-methylguanine (PubMed:20376003). Has no detectable activity towards double-stranded DNA (PubMed:20376003). Also able to repair alkylated DNA and RNA by oxidative demethylation: demethylates single-stranded RNA containing 3-methyluracil, single-stranded DNA containing 3-methylthymine and has low demethylase activity towards single-stranded DNA containing 1-methyladenine or 3-methylcytosine (PubMed:18775698, PubMed:20376003). Ability to repair alkylated DNA and RNA is however unsure in vivo (PubMed:18775698, PubMed:20376003). Involved in the regulation of fat mass, adipogenesis and body weight, thereby contributing to the regulation of body size and body fat accumulation (PubMed:18775698, PubMed:20376003). Involved in the regulation of thermogenesis and the control of adipocyte differentiation into brown or white fat cells (PubMed:26287746). Regulates activity of the dopaminergic midbrain circuitry via its ability to demethylate m6A in mRNAs (By similarity). Plays an oncogenic role in a number of acute myeloid leukemias by enhancing leukemic oncogene-mediated cell transformation: acts by mediating m6A demethylation of target transcripts such as MYC, CEBPA, ASB2 and RARA, leading to promote their expression (PubMed:28017614, PubMed:29249359). {ECO:0000250|UniProtKB:Q8BGW1, ECO:0000269|PubMed:18775698, ECO:0000269|PubMed:20376003, ECO:0000269|PubMed:22002720, ECO:0000269|PubMed:25452335, ECO:0000269|PubMed:26287746, ECO:0000269|PubMed:26457839, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:28002401, ECO:0000269|PubMed:28017614, ECO:0000269|PubMed:29249359, ECO:0000269|PubMed:30197295}. |
Q9C0C2 | TNKS1BP1 | S195 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S962 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0K0 | BCL11B | S483 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9GZY6 | LAT2 | S51 | ochoa | Linker for activation of T-cells family member 2 (Linker for activation of B-cells) (Membrane-associated adapter molecule) (Non-T-cell activation linker) (Williams-Beuren syndrome chromosomal region 15 protein) (Williams-Beuren syndrome chromosomal region 5 protein) | Involved in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. May also be involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and FCGR1 (high affinity immunoglobulin gamma Fc receptor I)-mediated signaling in myeloid cells. Couples activation of these receptors and their associated kinases with distal intracellular events through the recruitment of GRB2. {ECO:0000269|PubMed:12486104, ECO:0000269|PubMed:12514734, ECO:0000269|PubMed:15010370}. |
Q9GZY8 | MFF | S223 | ochoa | Mitochondrial fission factor | Plays a role in mitochondrial and peroxisomal fission (PubMed:18353969, PubMed:23530241, PubMed:24196833). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface (PubMed:23530241). May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles (By similarity). {ECO:0000250|UniProtKB:Q4KM98, ECO:0000269|PubMed:18353969, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:24196833}. |
Q9H063 | MAF1 | S205 | ochoa | Repressor of RNA polymerase III transcription MAF1 homolog | Plays a role in the repression of RNA polymerase III-mediated transcription in response to changing nutritional, environmental and cellular stress conditions to balance the production of highly abundant tRNAs, 5S rRNA, and other small non-coding RNAs with cell growth and maintenance (PubMed:18377933, PubMed:20233713, PubMed:20516213, PubMed:20543138). Also plays a key role in cell fate determination by promoting mesorderm induction and adipocyte differentiation (By similarity). Mechanistically, associates with the RNA polymerase III clamp and thereby impairs its recruitment to the complex made of the promoter DNA, TBP and the initiation factor TFIIIB (PubMed:17505538, PubMed:20887893). When nutrients are available and mTOR kinase is active, MAF1 is hyperphosphorylated and RNA polymerase III is engaged in transcription. Stress-induced MAF1 dephosphorylation results in nuclear localization, increased targeting of gene-bound RNA polymerase III and a decrease in the transcriptional readout (PubMed:26941251). Additionally, may also regulate RNA polymerase I and RNA polymerase II-dependent transcription through its ability to regulate expression of the central initiation factor TBP (PubMed:17499043). {ECO:0000250|UniProtKB:Q9D0U6, ECO:0000269|PubMed:17499043, ECO:0000269|PubMed:17505538, ECO:0000269|PubMed:18377933, ECO:0000269|PubMed:20233713, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20543138, ECO:0000269|PubMed:20887893, ECO:0000269|PubMed:26941251}. |
Q9H1Z4 | WDR13 | S70 | ochoa | WD repeat-containing protein 13 | None |
Q9H4A3 | WNK1 | S599 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4E7 | DEF6 | S606 | ochoa | Differentially expressed in FDCP 6 homolog (DEF-6) (IRF4-binding protein) | Phosphatidylinositol 3,4,5-trisphosphate-dependent guanine nucleotide exchange factor (GEF) which plays a role in the activation of Rho GTPases RAC1, RhoA and CDC42 (PubMed:12651066, PubMed:15023524). Can regulate cell morphology in cooperation with activated RAC1 (By similarity). Involved in immune homeostasis by ensuring proper trafficking and availability of T-cell regulator CTLA-4 at T-cell surface (PubMed:31308374). Plays a role in Th2 (T helper cells) development and/or activation, perhaps by interfering with ZAP70 signaling (By similarity). {ECO:0000250|UniProtKB:Q8C2K1, ECO:0000269|PubMed:12651066, ECO:0000269|PubMed:15023524, ECO:0000269|PubMed:31308374}. |
Q9H6A9 | PCNX3 | S505 | ochoa | Pecanex-like protein 3 (Pecanex homolog protein 3) | None |
Q9H6S3 | EPS8L2 | S578 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}. |
Q9H9G7 | AGO3 | S825 | ochoa | Protein argonaute-3 (Argonaute3) (hAgo3) (EC 3.1.26.n2) (Argonaute RISC catalytic component 3) (Eukaryotic translation initiation factor 2C 3) (eIF-2C 3) (eIF2C 3) | Required for RNA-mediated gene silencing (RNAi). Binds to short RNAs such as microRNAs (miRNAs) and represses the translation of mRNAs which are complementary to them. Proposed to be involved in stabilization of small RNA derivates (siRNA) derived from processed RNA polymerase III-transcribed Alu repeats containing a DR2 retinoic acid response element (RARE) in stem cells and in the subsequent siRNA-dependent degradation of a subset of RNA polymerase II-transcribed coding mRNAs by recruiting a mRNA decapping complex involving EDC4. Possesses RNA slicer activity but only on select RNAs bearing 5'- and 3'-flanking sequences to the region of guide-target complementarity (PubMed:29040713). {ECO:0000255|HAMAP-Rule:MF_03032, ECO:0000269|PubMed:18771919, ECO:0000269|PubMed:23064648, ECO:0000269|PubMed:29040713}. |
Q9H9Q4 | NHEJ1 | S245 | psp | Non-homologous end-joining factor 1 (Protein cernunnos) (XRCC4-like factor) | DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781, PubMed:17717001, PubMed:18158905, PubMed:18644470, PubMed:20558749, PubMed:26100018, PubMed:28369633). Plays a key role in NHEJ by promoting the ligation of various mismatched and non-cohesive ends (PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are non-complementary or partially complementary (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781). In some studies, has been shown to associate with XRCC4 to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22228831, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). Alternatively, it has also been shown that rather than forming filaments, a single NHEJ1 dimer interacts through both head domains with XRCC4 to promote the close alignment of DNA ends (By similarity). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Binds DNA in a length-dependent manner (PubMed:17317666, PubMed:18158905). {ECO:0000250|UniProtKB:A0A1L8ENT6, ECO:0000269|PubMed:16439204, ECO:0000269|PubMed:16439205, ECO:0000269|PubMed:17317666, ECO:0000269|PubMed:17470781, ECO:0000269|PubMed:17717001, ECO:0000269|PubMed:18158905, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:19056826, ECO:0000269|PubMed:20558749, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28369633, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:30250067}. |
Q9HB21 | PLEKHA1 | S129 | ochoa | Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}. |
Q9HCC9 | ZFYVE28 | S586 | ochoa | Lateral signaling target protein 2 homolog (hLst2) (Zinc finger FYVE domain-containing protein 28) | Negative regulator of epidermal growth factor receptor (EGFR) signaling. Acts by promoting EGFR degradation in endosomes when not monoubiquitinated. {ECO:0000269|PubMed:19460345}. |
Q9NQ84 | GPRC5C | S311 | ochoa | G-protein coupled receptor family C group 5 member C (Retinoic acid-induced gene 3 protein) (RAIG-3) | This retinoic acid-inducible G-protein coupled receptor provide evidence for a possible interaction between retinoid and G-protein signaling pathways. {ECO:0000250}. |
Q9NRX1 | PNO1 | S36 | ochoa | RNA-binding protein PNO1 (Partner of NOB1) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Positively regulates dimethylation of two adjacent adenosines in the loop of a conserved hairpin near the 3'-end of 18S rRNA (PubMed:25851604). {ECO:0000269|PubMed:25851604, ECO:0000269|PubMed:34516797}. |
Q9NSY1 | BMP2K | S728 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NV58 | RNF19A | S516 | ochoa | E3 ubiquitin-protein ligase RNF19A (EC 2.3.2.31) (Double ring-finger protein) (Dorfin) (RING finger protein 19A) (p38) | E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as SNCAIP or CASR. Specifically ubiquitinates pathogenic SOD1 variants, which leads to their proteasomal degradation and to neuronal protection. {ECO:0000269|PubMed:11237715, ECO:0000269|PubMed:12145308, ECO:0000269|PubMed:12750386, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16513638}. |
Q9NV70 | EXOC1 | S297 | ochoa | Exocyst complex component 1 (Exocyst complex component Sec3) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane.; FUNCTION: (Microbial infection) Has an antiviral effect against flaviviruses by affecting viral RNA transcription and translation through the sequestration of elongation factor 1-alpha (EEF1A1). This results in decreased viral RNA synthesis and decreased viral protein translation. {ECO:0000269|PubMed:19889084}. |
Q9NVH1 | DNAJC11 | S204 | ochoa | DnaJ homolog subfamily C member 11 | [Isoform 1]: Required for mitochondrial inner membrane organization. Seems to function through its association with the MICOS complex and the mitochondrial outer membrane sorting assembly machinery (SAM) complex. {ECO:0000269|PubMed:25111180, ECO:0000305}. |
Q9NXW2 | DNAJB12 | S81 | ochoa | DnaJ homolog subfamily B member 12 | Acts as a co-chaperone with HSPA8/Hsc70; required to promote protein folding and trafficking, prevent aggregation of client proteins, and promote unfolded proteins to endoplasmic reticulum-associated degradation (ERAD) pathway (PubMed:21148293, PubMed:21150129). Acts by determining HSPA8/Hsc70's ATPase and polypeptide-binding activities (PubMed:21148293). Can also act independently of HSPA8/Hsc70: together with DNAJB14, acts as a chaperone that promotes maturation of potassium channels KCND2 and KCNH2 by stabilizing nascent channel subunits and assembling them into tetramers (PubMed:27916661). While stabilization of nascent channel proteins is dependent on HSPA8/Hsc70, the process of oligomerization of channel subunits is independent of HSPA8/Hsc70 (PubMed:27916661). When overexpressed, forms membranous structures together with DNAJB14 and HSPA8/Hsc70 within the nucleus; the role of these structures, named DJANGOs, is still unclear (PubMed:24732912). {ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27916661}.; FUNCTION: (Microbial infection) In case of infection by polyomavirus, involved in the virus endoplasmic reticulum membrane penetration and infection (PubMed:21673190, PubMed:24675744). {ECO:0000269|PubMed:21673190, ECO:0000269|PubMed:24675744}. |
Q9NZ56 | FMN2 | S509 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9NZJ5 | EIF2AK3 | S567 | ochoa | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9NZN5 | ARHGEF12 | S1308 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9P0L2 | MARK1 | S556 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P0U3 | SENP1 | S80 | ochoa | Sentrin-specific protease 1 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP1) | Protease that catalyzes two essential functions in the SUMO pathway (PubMed:10652325, PubMed:15199155, PubMed:15487983, PubMed:16253240, PubMed:16553580, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins (PubMed:15487983). The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein (PubMed:15199155, PubMed:16253240, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). Deconjugates SUMO1 from HIPK2 (PubMed:16253240). Deconjugates SUMO1 from HDAC1 and BHLHE40/DEC1, which decreases its transcriptional repression activity (PubMed:15199155, PubMed:21829689). Deconjugates SUMO1 from CLOCK, which decreases its transcriptional activation activity (PubMed:23160374). Deconjugates SUMO2 from MTA1 (PubMed:21965678). Inhibits N(6)-methyladenosine (m6A) RNA methylation by mediating SUMO1 deconjugation from METTL3 and ALKBH5: METTL3 inhibits the m6A RNA methyltransferase activity, while ALKBH5 desumoylation promotes m6A demethylation (PubMed:29506078, PubMed:34048572, PubMed:37257451). Desumoylates CCAR2 which decreases its interaction with SIRT1 (PubMed:25406032). Deconjugates SUMO1 from GPS2 (PubMed:24943844). {ECO:0000269|PubMed:10652325, ECO:0000269|PubMed:15199155, ECO:0000269|PubMed:15487983, ECO:0000269|PubMed:16253240, ECO:0000269|PubMed:16553580, ECO:0000269|PubMed:21829689, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:23160374, ECO:0000269|PubMed:24943844, ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:37257451}. |
Q9P2G1 | ANKIB1 | S744 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9UBI9 | HECA | S325 | ochoa | Headcase protein homolog (hHDC) | May play an important role in some human cancers. May be part of the regulatory mechanism in the development of epithelial tube networks such as the circulatory system and lungs. {ECO:0000303|PubMed:11696983}. |
Q9UBL0 | ARPP21 | S383 | ochoa | cAMP-regulated phosphoprotein 21 (ARPP-21) (Thymocyte cAMP-regulated phosphoprotein) | Isoform 2 may act as a competitive inhibitor of calmodulin-dependent enzymes such as calcineurin in neurons. {ECO:0000250}. |
Q9UBL3 | ASH2L | S292 | ochoa | Set1/Ash2 histone methyltransferase complex subunit ASH2 (ASH2-like protein) | Transcriptional regulator (PubMed:12670868). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3, but not if the neighboring 'Lys-9' residue is already methylated (PubMed:19556245). As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 (PubMed:19556245). May play a role in hematopoiesis (PubMed:12670868). In association with RBBP5 and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q9UIQ6 | LNPEP | S91 | ochoa | Leucyl-cystinyl aminopeptidase (Cystinyl aminopeptidase) (EC 3.4.11.3) (Insulin-regulated membrane aminopeptidase) (Insulin-responsive aminopeptidase) (IRAP) (Oxytocinase) (OTase) (Placental leucine aminopeptidase) (P-LAP) [Cleaved into: Leucyl-cystinyl aminopeptidase, pregnancy serum form] | Release of an N-terminal amino acid, cleaves before cysteine, leucine as well as other amino acids. Degrades peptide hormones such as oxytocin, vasopressin and angiotensin III, and plays a role in maintaining homeostasis during pregnancy. May be involved in the inactivation of neuronal peptides in the brain. Cleaves Met-enkephalin and dynorphin. Binds angiotensin IV and may be the angiotensin IV receptor in the brain. {ECO:0000269|PubMed:11389728, ECO:0000269|PubMed:11707427, ECO:0000269|PubMed:1731608}. |
Q9UK97 | FBXO9 | S136 | ochoa | F-box only protein 9 (Cross-immune reaction antigen 1) (Renal carcinoma antigen NY-REN-57) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins and plays a role in several biological processes such as cell cycle, cell proliferation, or maintenance of chromosome stability (PubMed:23263282, PubMed:34480022). Ubiquitinates mTORC1-bound TTI1 and TELO2 when they are phosphorylated by CK2 following growth factor deprivation, leading to their degradation. In contrast, does not mediate ubiquitination of TTI1 and TELO2 when they are part of the mTORC2 complex. As a consequence, mTORC1 is inactivated to restrain cell growth and protein translation, while mTORC2 is the activated due to the relief of feedback inhibition by mTORC1 (PubMed:23263282). Plays a role in maintaining epithelial cell survival by regulating the turn-over of chromatin modulator PRMT4 through ubiquitination and degradation by the proteasomal pathway (PubMed:34480022). Regulates also PPARgamma stability by facilitating PPARgamma/PPARG ubiquitination and thereby plays a role in adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BK06, ECO:0000269|PubMed:23263282, ECO:0000269|PubMed:34480022}. |
Q9UKV8 | AGO2 | S824 | ochoa|psp | Protein argonaute-2 (Argonaute2) (hAgo2) (EC 3.1.26.n2) (Argonaute RISC catalytic component 2) (Eukaryotic translation initiation factor 2C 2) (eIF-2C 2) (eIF2C 2) (PAZ Piwi domain protein) (PPD) (Protein slicer) | Required for RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC). The 'minimal RISC' appears to include AGO2 bound to a short guide RNA such as a microRNA (miRNA) or short interfering RNA (siRNA). These guide RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. The precise mechanism of gene silencing depends on the degree of complementarity between the miRNA or siRNA and its target. Binding of RISC to a perfectly complementary mRNA generally results in silencing due to endonucleolytic cleavage of the mRNA specifically by AGO2. Binding of RISC to a partially complementary mRNA results in silencing through inhibition of translation, and this is independent of endonuclease activity. May inhibit translation initiation by binding to the 7-methylguanosine cap, thereby preventing the recruitment of the translation initiation factor eIF4-E. May also inhibit translation initiation via interaction with EIF6, which itself binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The inhibition of translational initiation leads to the accumulation of the affected mRNA in cytoplasmic processing bodies (P-bodies), where mRNA degradation may subsequently occur. In some cases RISC-mediated translational repression is also observed for miRNAs that perfectly match the 3' untranslated region (3'-UTR). Can also up-regulate the translation of specific mRNAs under certain growth conditions. Binds to the AU element of the 3'-UTR of the TNF (TNF-alpha) mRNA and up-regulates translation under conditions of serum starvation. Also required for transcriptional gene silencing (TGS), in which short RNAs known as antigene RNAs or agRNAs direct the transcriptional repression of complementary promoter regions. {ECO:0000250|UniProtKB:Q8CJG0, ECO:0000255|HAMAP-Rule:MF_03031, ECO:0000269|PubMed:15105377, ECO:0000269|PubMed:15260970, ECO:0000269|PubMed:15284456, ECO:0000269|PubMed:15337849, ECO:0000269|PubMed:15800637, ECO:0000269|PubMed:16081698, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16756390, ECO:0000269|PubMed:16936728, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:17524464, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:18048652, ECO:0000269|PubMed:18178619, ECO:0000269|PubMed:18690212, ECO:0000269|PubMed:18771919, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:23746446, ECO:0000269|PubMed:37328606}.; FUNCTION: (Microbial infection) Upon Sars-CoV-2 infection, associates with viral miRNA-like small RNA, CoV2-miR-O7a, and may repress mRNAs, such as BATF2, to evade the IFN response. {ECO:0000269|PubMed:34903581}. |
Q9UKX7 | NUP50 | S52 | ochoa | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9UL18 | AGO1 | S822 | ochoa | Protein argonaute-1 (Argonaute1) (hAgo1) (Argonaute RISC catalytic component 1) (Eukaryotic translation initiation factor 2C 1) (eIF-2C 1) (eIF2C 1) (Putative RNA-binding protein Q99) | Required for RNA-mediated gene silencing (RNAi). Binds to short RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), and represses the translation of mRNAs which are complementary to them. Lacks endonuclease activity and does not appear to cleave target mRNAs. Also required for transcriptional gene silencing (TGS) of promoter regions which are complementary to bound short antigene RNAs (agRNAs). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16936728, ECO:0000269|PubMed:18771919}. |
Q9UL51 | HCN2 | S80 | ochoa | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2 (Brain cyclic nucleotide-gated channel 2) (BCNG-2) | Hyperpolarization-activated ion channel that is permeable to sodium and potassium ions. Displays lower selectivity for K(+) over Na(+) ions (PubMed:10228147, PubMed:22006928). Contributes to the native pacemaker currents in heart (If) and in neurons (Ih) (PubMed:10228147, PubMed:10524219). Can also transport ammonium in the distal nephron (By similarity). Involved in the initiation of neuropathic pain in sensory neurons (By similarity). {ECO:0000250|UniProtKB:Q9JKA9, ECO:0000269|PubMed:10228147, ECO:0000269|PubMed:10524219, ECO:0000269|PubMed:22006928}. |
Q9ULL0 | KIAA1210 | S1441 | ochoa | Acrosomal protein KIAA1210 | None |
Q9ULX9 | MAFF | S142 | ochoa | Transcription factor MafF (U-Maf) (V-maf musculoaponeurotic fibrosarcoma oncogene homolog F) | Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves (PubMed:8932385). However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2L1/NRF1, and recruiting them to specific DNA-binding sites. Interacts with the upstream promoter region of the oxytocin receptor gene (PubMed:16549056, PubMed:8932385). May be a transcriptional enhancer in the up-regulation of the oxytocin receptor gene at parturition (PubMed:10527846). {ECO:0000269|PubMed:10527846, ECO:0000269|PubMed:16549056, ECO:0000269|PubMed:8932385}. |
Q9UPP1 | PHF8 | S722 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPT8 | ZC3H4 | S840 | ochoa | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UQC2 | GAB2 | S281 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y285 | FARSA | S301 | ochoa | Phenylalanine--tRNA ligase alpha subunit (EC 6.1.1.20) (CML33) (Phenylalanyl-tRNA synthetase alpha subunit) (PheRS) | None |
Q9Y2I1 | NISCH | S1022 | ochoa | Nischarin (Imidazoline receptor 1) (I-1) (IR1) (Imidazoline receptor antisera-selected protein) (hIRAS) (Imidazoline-1 receptor) (I1R) (Imidazoline-1 receptor candidate protein) (I-1 receptor candidate protein) (I1R candidate protein) | Acts either as the functional imidazoline-1 receptor (I1R) candidate or as a membrane-associated mediator of the I1R signaling. Binds numerous imidazoline ligands that induces initiation of cell-signaling cascades triggering to cell survival, growth and migration. Its activation by the agonist rilmenidine induces an increase in phosphorylation of mitogen-activated protein kinases MAPK1 and MAPK3 in rostral ventrolateral medulla (RVLM) neurons that exhibited rilmenidine-evoked hypotension (By similarity). Blocking its activation with efaroxan abolished rilmenidine-induced mitogen-activated protein kinase phosphorylation in RVLM neurons (By similarity). Acts as a modulator of Rac-regulated signal transduction pathways (By similarity). Suppresses Rac1-stimulated cell migration by interacting with PAK1 and inhibiting its kinase activity (By similarity). Also blocks Pak-independent Rac signaling by interacting with RAC1 and inhibiting Rac1-stimulated NF-kB response element and cyclin D1 promoter activation (By similarity). Also inhibits LIMK1 kinase activity by reducing LIMK1 'Tyr-508' phosphorylation (By similarity). Inhibits Rac-induced cell migration and invasion in breast and colon epithelial cells (By similarity). Inhibits lamellipodia formation, when overexpressed (By similarity). Plays a role in protection against apoptosis. Involved in association with IRS4 in the enhancement of insulin activation of MAPK1 and MAPK3. When overexpressed, induces a redistribution of cell surface ITGA5 integrin to intracellular endosomal structures. {ECO:0000250, ECO:0000269|PubMed:10882231, ECO:0000269|PubMed:12868002, ECO:0000269|PubMed:15028619, ECO:0000269|PubMed:15028621, ECO:0000269|PubMed:15475348}. |
Q9Y2K1 | ZBTB1 | S297 | ochoa | Zinc finger and BTB domain-containing protein 1 | Acts as a transcriptional repressor (PubMed:20797634). Represses cAMP-responsive element (CRE)-mediated transcriptional activation (PubMed:21706167). In addition, has a role in translesion DNA synthesis. Requires for UV-inducible RAD18 loading, PCNA monoubiquitination, POLH recruitment to replication factories and efficient translesion DNA synthesis (PubMed:24657165). Plays a key role in the transcriptional regulation of T lymphocyte development (By similarity). {ECO:0000250|UniProtKB:Q91VL9, ECO:0000269|PubMed:20797634, ECO:0000269|PubMed:21706167, ECO:0000269|PubMed:24657165}. |
Q9Y2U8 | LEMD3 | S117 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2U8 | LEMD3 | S309 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y314 | NOSIP | S26 | ochoa | Nitric oxide synthase-interacting protein (E3 ubiquitin-protein ligase NOSIP) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase NOSIP) (eNOS-interacting protein) | E3 ubiquitin-protein ligase that is essential for proper development of the forebrain, the eye, and the face. Catalyzes monoubiquitination of serine/threonine-protein phosphatase 2A (PP2A) catalytic subunit PPP2CA/PPP2CB (By similarity). Negatively regulates nitric oxide production by inducing NOS1 and NOS3 translocation to actin cytoskeleton and inhibiting their enzymatic activity (PubMed:11149895, PubMed:15548660, PubMed:16135813). {ECO:0000250|UniProtKB:Q9D6T0, ECO:0000269|PubMed:11149895, ECO:0000269|PubMed:15548660, ECO:0000269|PubMed:16135813}. |
Q9Y3Q8 | TSC22D4 | S104 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y3S1 | WNK2 | S1152 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y490 | TLN1 | S814 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4A5 | TRRAP | S2077 | ochoa | Transformation/transcription domain-associated protein (350/400 kDa PCAF-associated factor) (PAF350/400) (STAF40) (Tra1 homolog) | Adapter protein, which is found in various multiprotein chromatin complexes with histone acetyltransferase activity (HAT), which gives a specific tag for epigenetic transcription activation. Component of the NuA4 histone acetyltransferase complex which is responsible for acetylation of nucleosomal histones H4 and H2A. Plays a central role in MYC transcription activation, and also participates in cell transformation by MYC. Required for p53/TP53-, E2F1- and E2F4-mediated transcription activation. Also involved in transcription activation mediated by the adenovirus E1A, a viral oncoprotein that deregulates transcription of key genes. Probably acts by linking transcription factors such as E1A, MYC or E2F1 to HAT complexes such as STAGA thereby allowing transcription activation. Probably not required in the steps following histone acetylation in processes of transcription activation. May be required for the mitotic checkpoint and normal cell cycle progression. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. May play a role in the formation and maintenance of the auditory system (By similarity). {ECO:0000250|UniProtKB:A0A0R4ITC5, ECO:0000269|PubMed:11418595, ECO:0000269|PubMed:12138177, ECO:0000269|PubMed:12660246, ECO:0000269|PubMed:12743606, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:9708738}. |
Q9Y4D2 | DAGLA | S732 | ochoa | Diacylglycerol lipase-alpha (DAGL-alpha) (DGL-alpha) (EC 3.1.1.116) (Neural stem cell-derived dendrite regulator) (Sn1-specific diacylglycerol lipase alpha) | Serine hydrolase that hydrolyzes arachidonic acid-esterified diacylglycerols (DAGs) to produce the principal endocannabinoid, 2-arachidonoylglycerol (2-AG) (PubMed:14610053, PubMed:23502535, PubMed:26668358). Preferentially hydrolyzes sn-1 fatty acids from diacylglycerols (DAG) that contain arachidonic acid (AA) esterified at the sn-2 position to biosynthesize 2-AG (PubMed:14610053, PubMed:23502535, PubMed:26668358). Has negligible activity against other lipids including monoacylglycerols and phospholipids (PubMed:14610053). Plays a key role in regulating 2-AG signaling in the central nervous system (CNS). Regulates 2-AG involved in retrograde suppression at central synapses. Supports axonal growth during development and adult neurogenesis. Plays a role for eCB signaling in the physiological regulation of anxiety and depressive behaviors. Also regulates neuroinflammatory responses in the brain, in particular, LPS-induced microglial activation (By similarity). {ECO:0000250|UniProtKB:Q6WQJ1, ECO:0000269|PubMed:14610053, ECO:0000269|PubMed:23502535, ECO:0000269|PubMed:26668358}. |
Q9Y4F1 | FARP1 | S487 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 1 (Chondrocyte-derived ezrin-like protein) (FERM, RhoGEF and pleckstrin domain-containing protein 1) (Pleckstrin homology domain-containing family C member 2) (PH domain-containing family C member 2) | Functions as a guanine nucleotide exchange factor for RAC1. May play a role in semaphorin signaling. Plays a role in the assembly and disassembly of dendritic filopodia, the formation of dendritic spines, regulation of dendrite length and ultimately the formation of synapses (By similarity). {ECO:0000250}. |
Q9Y5U4 | INSIG2 | S151 | psp | Insulin-induced gene 2 protein (INSIG-2) | Oxysterol-binding protein that mediates feedback control of cholesterol synthesis by controlling both endoplasmic reticulum to Golgi transport of SCAP and degradation of HMGCR (PubMed:12242332, PubMed:16606821, PubMed:32322062). Acts as a negative regulator of cholesterol biosynthesis by mediating the retention of the SCAP-SREBP complex in the endoplasmic reticulum, thereby blocking the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:32322062). Binds oxysterol, including 22-hydroxycholesterol, 24-hydroxycholesterol, 25-hydroxycholesterol and 27-hydroxycholesterol, regulating interaction with SCAP and retention of the SCAP-SREBP complex in the endoplasmic reticulum (PubMed:17428920, PubMed:26160948, PubMed:32322062). In presence of oxysterol, interacts with SCAP, retaining the SCAP-SREBP complex in the endoplasmic reticulum, thereby preventing SCAP from escorting SREBF1/SREBP1 and SREBF2/SREBP2 to the Golgi (PubMed:32322062). Sterol deprivation or phosphorylation by PCK1 reduce oxysterol-binding, disrupting the interaction between INSIG2 and SCAP, thereby promoting Golgi transport of the SCAP-SREBP complex, followed by processing and nuclear translocation of SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:32322062). Also regulates cholesterol synthesis by regulating degradation of HMGCR: initiates the sterol-mediated ubiquitin-mediated endoplasmic reticulum-associated degradation (ERAD) of HMGCR via recruitment of the reductase to the ubiquitin ligase RNF139 (PubMed:16606821, PubMed:22143767). {ECO:0000269|PubMed:12242332, ECO:0000269|PubMed:16606821, ECO:0000269|PubMed:17428920, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:26160948, ECO:0000269|PubMed:32322062}. |
Q9Y6R0 | NUMBL | S228 | ochoa | Numb-like protein (Numb-related protein) (Numb-R) | Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}. |
O00468 | AGRN | S738 | Sugiyama | Agrin [Cleaved into: Agrin N-terminal 110 kDa subunit; Agrin C-terminal 110 kDa subunit; Agrin C-terminal 90 kDa fragment (C90); Agrin C-terminal 22 kDa fragment (C22)] | [Isoform 1]: Heparan sulfate basal lamina glycoprotein that plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ) and directs key events in postsynaptic differentiation. Component of the AGRN-LRP4 receptor complex that induces the phosphorylation and activation of MUSK. The activation of MUSK in myotubes induces the formation of NMJ by regulating different processes including the transcription of specific genes and the clustering of AChR in the postsynaptic membrane. Calcium ions are required for maximal AChR clustering. AGRN function in neurons is highly regulated by alternative splicing, glycan binding and proteolytic processing. Modulates calcium ion homeostasis in neurons, specifically by inducing an increase in cytoplasmic calcium ions. Functions differentially in the central nervous system (CNS) by inhibiting the alpha(3)-subtype of Na+/K+-ATPase and evoking depolarization at CNS synapses. This secreted isoform forms a bridge, after release from motor neurons, to basal lamina through binding laminin via the NtA domain.; FUNCTION: [Isoform 2]: Transmembrane form that is the predominate form in neurons of the brain, induces dendritic filopodia and synapse formation in mature hippocampal neurons in large part due to the attached glycosaminoglycan chains and the action of Rho-family GTPases.; FUNCTION: Isoform 1, isoform 4 and isoform 5: neuron-specific (z+) isoforms that contain C-terminal insertions of 8-19 AA are potent activators of AChR clustering. Isoform 5, agrin (z+8), containing the 8-AA insert, forms a receptor complex in myotubules containing the neuronal AGRN, the muscle-specific kinase MUSK and LRP4, a member of the LDL receptor family. The splicing factors, NOVA1 and NOVA2, regulate AGRN splicing and production of the 'z' isoforms.; FUNCTION: Isoform 3 and isoform 6: lack any 'z' insert, are muscle-specific and may be involved in endothelial cell differentiation.; FUNCTION: [Agrin N-terminal 110 kDa subunit]: Is involved in regulation of neurite outgrowth probably due to the presence of the glycosaminoglcan (GAG) side chains of heparan and chondroitin sulfate attached to the Ser/Thr- and Gly/Ser-rich regions. Also involved in modulation of growth factor signaling (By similarity). {ECO:0000250, ECO:0000269|PubMed:19631309, ECO:0000269|PubMed:21969364}.; FUNCTION: [Agrin C-terminal 22 kDa fragment]: This released fragment is important for agrin signaling and to exert a maximal dendritic filopodia-inducing effect. All 'z' splice variants (z+) of this fragment also show an increase in the number of filopodia. |
O00418 | EEF2K | S241 | Sugiyama | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
P14314 | PRKCSH | S451 | Sugiyama | Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) | Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}. |
P17174 | GOT1 | S106 | Sugiyama | Aspartate aminotransferase, cytoplasmic (cAspAT) (EC 2.6.1.1) (EC 2.6.1.3) (Cysteine aminotransferase, cytoplasmic) (Cysteine transaminase, cytoplasmic) (cCAT) (Glutamate oxaloacetate transaminase 1) (Transaminase A) | Biosynthesis of L-glutamate from L-aspartate or L-cysteine (PubMed:21900944). Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. In addition, catalyzes (2S)-2-aminobutanoate, a by-product in the cysteine biosynthesis pathway (PubMed:27827456). {ECO:0000269|PubMed:16039064, ECO:0000269|PubMed:21900944, ECO:0000269|PubMed:27827456}. |
O14744 | PRMT5 | S463 | Sugiyama | Protein arginine N-methyltransferase 5 (PRMT5) (EC 2.1.1.320) (72 kDa ICln-binding protein) (Histone-arginine N-methyltransferase PRMT5) (Jak-binding protein 1) (Shk1 kinase-binding protein 1 homolog) (SKB1 homolog) (SKB1Hs) [Cleaved into: Protein arginine N-methyltransferase 5, N-terminally processed] | Arginine methyltransferase that can both catalyze the formation of omega-N monomethylarginine (MMA) and symmetrical dimethylarginine (sDMA), with a preference for the formation of MMA (PubMed:10531356, PubMed:11152681, PubMed:11747828, PubMed:12411503, PubMed:15737618, PubMed:17709427, PubMed:20159986, PubMed:20810653, PubMed:21081503, PubMed:21258366, PubMed:21917714, PubMed:22269951). Specifically mediates the symmetrical dimethylation of arginine residues in the small nuclear ribonucleoproteins Sm D1 (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for the assembly and biogenesis of snRNP core particles (PubMed:11747828, PubMed:12411503, PubMed:17709427). Methylates SUPT5H and may regulate its transcriptional elongation properties (PubMed:12718890). May methylate the N-terminal region of MBD2 (PubMed:16428440). Mono- and dimethylates arginine residues of myelin basic protein (MBP) in vitro. May play a role in cytokine-activated transduction pathways. Negatively regulates cyclin E1 promoter activity and cellular proliferation. Methylates histone H2A and H4 'Arg-3' during germ cell development (By similarity). Methylates histone H3 'Arg-8', which may repress transcription (By similarity). Methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (By similarity). Methylates RPS10. Attenuates EGF signaling through the MAPK1/MAPK3 pathway acting at 2 levels. First, monomethylates EGFR; this enhances EGFR 'Tyr-1197' phosphorylation and PTPN6 recruitment, eventually leading to reduced SOS1 phosphorylation (PubMed:21258366, PubMed:21917714). Second, methylates RAF1 and probably BRAF, hence destabilizing these 2 signaling proteins and reducing their catalytic activity (PubMed:21917714). Required for induction of E-selectin and VCAM-1, on the endothelial cells surface at sites of inflammation. Methylates HOXA9 (PubMed:22269951). Methylates and regulates SRGAP2 which is involved in cell migration and differentiation (PubMed:20810653). Acts as a transcriptional corepressor in CRY1-mediated repression of the core circadian component PER1 by regulating the H4R3 dimethylation at the PER1 promoter (By similarity). Methylates GM130/GOLGA2, regulating Golgi ribbon formation (PubMed:20421892). Methylates H4R3 in genes involved in glioblastomagenesis in a CHTOP- and/or TET1-dependent manner (PubMed:25284789). Symmetrically methylates POLR2A, a modification that allows the recruitment to POLR2A of proteins including SMN1/SMN2 and SETX. This is required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). Along with LYAR, binds the promoter of gamma-globin HBG1/HBG2 and represses its expression (PubMed:25092918). Symmetrically methylates NCL (PubMed:21081503). Methylates p53/TP53; methylation might possibly affect p53/TP53 target gene specificity (PubMed:19011621). Involved in spliceosome maturation and mRNA splicing in prophase I spermatocytes through the catalysis of the symmetrical arginine dimethylation of SNRPB (small nuclear ribonucleoprotein-associated protein) and the interaction with tudor domain-containing protein TDRD6 (By similarity). {ECO:0000250|UniProtKB:Q8CIG8, ECO:0000269|PubMed:10531356, ECO:0000269|PubMed:11152681, ECO:0000269|PubMed:11747828, ECO:0000269|PubMed:12411503, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17709427, ECO:0000269|PubMed:19011621, ECO:0000269|PubMed:20159986, ECO:0000269|PubMed:20421892, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:21917714, ECO:0000269|PubMed:22269951, ECO:0000269|PubMed:25092918, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:26700805}. |
P31943 | HNRNPH1 | S285 | Sugiyama | Heterogeneous nuclear ribonucleoprotein H (hnRNP H) [Cleaved into: Heterogeneous nuclear ribonucleoprotein H, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:16946708}. |
P52597 | HNRNPF | S285 | Sugiyama | Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] | Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}. |
P52789 | HK2 | S893 | Sugiyama | Hexokinase-2 (EC 2.7.1.1) (Hexokinase type II) (HK II) (Hexokinase-B) (Muscle form hexokinase) | Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D-fructose 6-phosphate, respectively) (PubMed:23185017, PubMed:26985301, PubMed:29298880). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (PubMed:29298880). Plays a key role in maintaining the integrity of the outer mitochondrial membrane by preventing the release of apoptogenic molecules from the intermembrane space and subsequent apoptosis (PubMed:18350175). {ECO:0000269|PubMed:18350175, ECO:0000269|PubMed:23185017, ECO:0000269|PubMed:26985301, ECO:0000269|PubMed:29298880}. |
P55795 | HNRNPH2 | S285 | Sugiyama | Heterogeneous nuclear ribonucleoprotein H2 (hnRNP H2) (FTP-3) (Heterogeneous nuclear ribonucleoprotein H') (hnRNP H') [Cleaved into: Heterogeneous nuclear ribonucleoprotein H2, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Binds poly(RG). |
P32929 | CTH | S61 | Sugiyama | Cystathionine gamma-lyase (CGL) (CSE) (EC 4.4.1.1) (Cysteine desulfhydrase) (Cysteine-protein sulfhydrase) (Gamma-cystathionase) (Homocysteine desulfhydrase) (EC 4.4.1.2) | Catalyzes the last step in the trans-sulfuration pathway from L-methionine to L-cysteine in a pyridoxal-5'-phosphate (PLP)-dependent manner, which consists on cleaving the L,L-cystathionine molecule into L-cysteine, ammonia and 2-oxobutanoate (PubMed:10212249, PubMed:18476726, PubMed:19261609, PubMed:19961860). Part of the L-cysteine derived from the trans-sulfuration pathway is utilized for biosynthesis of the ubiquitous antioxidant glutathione (PubMed:18476726). Besides its role in the conversion of L-cystathionine into L-cysteine, it utilizes L-cysteine and L-homocysteine as substrates (at much lower rates than L,L-cystathionine) to produce the endogenous gaseous signaling molecule hydrogen sulfide (H2S) (PubMed:10212249, PubMed:19019829, PubMed:19261609, PubMed:19961860). In vitro, it converts two L-cysteine molecules into lanthionine and H2S, also two L-homocysteine molecules to homolanthionine and H2S, which can be particularly relevant under conditions of severe hyperhomocysteinemia (which is a risk factor for cardiovascular disease, diabetes, and Alzheimer's disease) (PubMed:19261609). Lanthionine and homolanthionine are structural homologs of L,L-cystathionine that differ by the absence or presence of an extra methylene group, respectively (PubMed:19261609). Acts as a cysteine-protein sulfhydrase by mediating sulfhydration of target proteins: sulfhydration consists of converting -SH groups into -SSH on specific cysteine residues of target proteins such as GAPDH, PTPN1 and NF-kappa-B subunit RELA, thereby regulating their function (PubMed:22169477). By generating the gasotransmitter H2S, it participates in a number of physiological processes such as vasodilation, bone protection, and inflammation (Probable) (PubMed:29254196). Plays an essential role in myogenesis by contributing to the biogenesis of H2S in skeletal muscle tissue (By similarity). Can also accept homoserine as substrate (By similarity). Catalyzes the elimination of selenocystathionine (which can be derived from the diet) to yield selenocysteine, ammonia and 2-oxobutanoate (By similarity). {ECO:0000250|UniProtKB:P18757, ECO:0000250|UniProtKB:Q8VCN5, ECO:0000269|PubMed:10212249, ECO:0000269|PubMed:18476726, ECO:0000269|PubMed:19019829, ECO:0000269|PubMed:19261609, ECO:0000269|PubMed:19961860, ECO:0000269|PubMed:22169477, ECO:0000269|PubMed:29254196, ECO:0000303|PubMed:18476726, ECO:0000305|PubMed:18476726, ECO:0000305|PubMed:19019829}. |
P49327 | FASN | S2032 | Sugiyama | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P26885 | FKBP2 | S108 | Sugiyama | Peptidyl-prolyl cis-trans isomerase FKBP2 (PPIase FKBP2) (EC 5.2.1.8) (13 kDa FK506-binding protein) (13 kDa FKBP) (FKBP-13) (FK506-binding protein 2) (FKBP-2) (Immunophilin FKBP13) (Rotamase) | PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. |
O60331 | PIP5K1C | S360 | Sugiyama | Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) (PtdIns(4)P-5-kinase 1 gamma) (EC 2.7.1.68) (Type I phosphatidylinositol 4-phosphate 5-kinase gamma) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:12422219, PubMed:22942276). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (PubMed:12847086). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) (PubMed:12847086). Required for clathrin-coated pits assembly at the synapse (PubMed:17261850). Participates in cell junction assembly (PubMed:17261850). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (PubMed:17261850). Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (PubMed:12422219). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (PubMed:12422219). Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor (PubMed:17635937). Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). {ECO:0000250|UniProtKB:O70161, ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:12422219, ECO:0000269|PubMed:12847086, ECO:0000269|PubMed:17261850, ECO:0000269|PubMed:17635937, ECO:0000269|PubMed:22942276, ECO:0000305|PubMed:19889969}. |
P00519 | ABL1 | S750 | Sugiyama | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P26639 | TARS1 | S577 | Sugiyama | Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) | Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}. |
P08253 | MMP2 | S365 | EPSD|PSP | 72 kDa type IV collagenase (EC 3.4.24.24) (72 kDa gelatinase) (Gelatinase A) (Matrix metalloproteinase-2) (MMP-2) (TBE-1) [Cleaved into: PEX] | Ubiquitinous metalloproteinase that is involved in diverse functions such as remodeling of the vasculature, angiogenesis, tissue repair, tumor invasion, inflammation, and atherosclerotic plaque rupture. As well as degrading extracellular matrix proteins, can also act on several nonmatrix proteins such as big endothelial 1 and beta-type CGRP promoting vasoconstriction. Also cleaves KISS at a Gly-|-Leu bond. Appears to have a role in myocardial cell death pathways. Contributes to myocardial oxidative stress by regulating the activity of GSK3beta. Cleaves GSK3beta in vitro. Involved in the formation of the fibrovascular tissues in association with MMP14.; FUNCTION: PEX, the C-terminal non-catalytic fragment of MMP2, possesses anti-angiogenic and anti-tumor properties and inhibits cell migration and cell adhesion to FGF2 and vitronectin. Ligand for integrinv/beta3 on the surface of blood vessels.; FUNCTION: [Isoform 2]: Mediates the proteolysis of CHUK/IKKA and initiates a primary innate immune response by inducing mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-kappaB, NFAT and IRF transcriptional pathways. |
P10415 | BCL2 | S24 | iPTMNet|EPSD | Apoptosis regulator Bcl-2 | Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells (PubMed:1508712, PubMed:8183370). Regulates cell death by controlling the mitochondrial membrane permeability (PubMed:11368354). Appears to function in a feedback loop system with caspases (PubMed:11368354). Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1) (PubMed:11368354). Also acts as an inhibitor of autophagy: interacts with BECN1 and AMBRA1 during non-starvation conditions and inhibits their autophagy function (PubMed:18570871, PubMed:20889974, PubMed:21358617). May attenuate inflammation by impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release (PubMed:17418785). {ECO:0000269|PubMed:1508712, ECO:0000269|PubMed:17418785, ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20889974, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:8183370, ECO:0000303|PubMed:11368354}. |
Q92478 | CLEC2B | S127 | Sugiyama | C-type lectin domain family 2 member B (Activation-induced C-type lectin) (C-type lectin superfamily member 2) (IFN-alpha-2b-inducing-related protein 1) | Membrane-bound protein expressed on myeloid cells which acts as a ligand to stimulate the activating receptor NKp80/KLRF1, expressed on the surface of natural killer (NK) cells. In turn, stimulates NK-cell cytotoxicity and cytokine production leading to the cytolysis of malignant CLEC2B-expressing myeloid cells. {ECO:0000269|PubMed:17057721, ECO:0000269|PubMed:18230726, ECO:0000269|PubMed:23929856}. |
Q96RR4 | CAMKK2 | S105 | Sugiyama | Calcium/calmodulin-dependent protein kinase kinase 2 (CaM-KK 2) (CaM-kinase kinase 2) (CaMKK 2) (EC 2.7.11.17) (Calcium/calmodulin-dependent protein kinase kinase beta) (CaM-KK beta) (CaM-kinase kinase beta) (CaMKK beta) | Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching. {ECO:0000250, ECO:0000269|PubMed:11395482, ECO:0000269|PubMed:12935886, ECO:0000269|PubMed:21957496, ECO:0000269|PubMed:9662074}. |
Q8IZU2 | WDR17 | S124 | Sugiyama | WD repeat-containing protein 17 | None |
Q8NBS9 | TXNDC5 | S129 | Sugiyama | Thioredoxin domain-containing protein 5 (EC 1.8.4.-) (EC 5.3.4.1) (Endoplasmic reticulum resident protein 46) (ER protein 46) (ERp46) (Thioredoxin-like protein p46) | Protein disulfide isomerase of the endoplasmic reticulum lumen involved in the formation of disulfide bonds in proteins. Can reduce insulin disulfide bonds. {ECO:0000250|UniProtKB:Q91W90}. |
P35916 | FLT4 | S863 | Sugiyama | Vascular endothelial growth factor receptor 3 (VEGFR-3) (EC 2.7.10.1) (Fms-like tyrosine kinase 4) (FLT-4) (Tyrosine-protein kinase receptor FLT4) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFC and VEGFD, and plays an essential role in adult lymphangiogenesis and in the development of the vascular network and the cardiovascular system during embryonic development. Promotes proliferation, survival and migration of endothelial cells, and regulates angiogenic sprouting. Signaling by activated FLT4 leads to enhanced production of VEGFC, and to a lesser degree VEGFA, thereby creating a positive feedback loop that enhances FLT4 signaling. Modulates KDR signaling by forming heterodimers. The secreted isoform 3 may function as a decoy receptor for VEGFC and/or VEGFD and play an important role as a negative regulator of VEGFC-mediated lymphangiogenesis and angiogenesis. Binding of vascular growth factors to isoform 1 or isoform 2 leads to the activation of several signaling cascades; isoform 2 seems to be less efficient in signal transduction, because it has a truncated C-terminus and therefore lacks several phosphorylation sites. Mediates activation of the MAPK1/ERK2, MAPK3/ERK1 signaling pathway, of MAPK8 and the JUN signaling pathway, and of the AKT1 signaling pathway. Phosphorylates SHC1. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Promotes phosphorylation of MAPK8 at 'Thr-183' and 'Tyr-185', and of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:11532940, ECO:0000269|PubMed:15102829, ECO:0000269|PubMed:15474514, ECO:0000269|PubMed:16076871, ECO:0000269|PubMed:16452200, ECO:0000269|PubMed:17210781, ECO:0000269|PubMed:19610651, ECO:0000269|PubMed:19779139, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20431062, ECO:0000269|PubMed:20445537, ECO:0000269|PubMed:21273538, ECO:0000269|PubMed:7675451, ECO:0000269|PubMed:8700872, ECO:0000269|PubMed:9435229}. |
P15880 | RPS2 | S225 | Sugiyama | Small ribosomal subunit protein uS5 (40S ribosomal protein S2) (40S ribosomal protein S4) (Protein LLRep3) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399). Plays a role in the assembly and function of the 40S ribosomal subunit (By similarity). Mutations in this protein affects the control of translational fidelity (By similarity). Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly (By similarity). {ECO:0000250|UniProtKB:P25443, ECO:0000269|PubMed:23636399}. |
Q9C0C2 | TNKS1BP1 | S1174 | Sugiyama | 182 kDa tankyrase-1-binding protein | None |
O15169 | AXIN1 | S46 | SIGNOR | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
O75821 | EIF3G | S223 | Sugiyama | Eukaryotic translation initiation factor 3 subunit G (eIF3g) (Eukaryotic translation initiation factor 3 RNA-binding subunit) (eIF-3 RNA-binding subunit) (Eukaryotic translation initiation factor 3 subunit 4) (eIF-3-delta) (eIF3 p42) (eIF3 p44) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). This subunit can bind 18S rRNA. {ECO:0000255|HAMAP-Rule:MF_03006, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q7Z460 | CLASP1 | S1216 | Sugiyama | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
P49760 | CLK2 | S167 | Sugiyama | Dual specificity protein kinase CLK2 (EC 2.7.12.1) (CDC-like kinase 2) | Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Acts as a suppressor of hepatic gluconeogenesis and glucose output by repressing PPARGC1A transcriptional activity on gluconeogenic genes via its phosphorylation. Phosphorylates PPP2R5B thereby stimulating the assembly of PP2A phosphatase with the PPP2R5B-AKT1 complex leading to dephosphorylation of AKT1. Phosphorylates: PTPN1, SRSF1 and SRSF3. Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Phosphorylates PAGE4 at several serine and threonine residues and this phosphorylation attenuates the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:28289210). {ECO:0000269|PubMed:10480872, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:28289210, ECO:0000269|PubMed:8910305, ECO:0000269|PubMed:9637771}. |
Q96EP5 | DAZAP1 | S204 | Sugiyama | DAZ-associated protein 1 (Deleted in azoospermia-associated protein 1) | RNA-binding protein, which may be required during spermatogenesis. |
P78368 | CSNK1G2 | S26 | Sugiyama | Casein kinase I isoform gamma-2 (CKI-gamma 2) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling (By similarity). Phosphorylates COL4A3BP/CERT, MTA1 and SMAD3. SMAD3 phosphorylation promotes its ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Hyperphosphorylation of the serine-repeat motif of COL4A3BP/CERT leads to its inactivation by dissociation from the Golgi complex, thus down-regulating ER-to-Golgi transport of ceramide and sphingomyelin synthesis. Triggers PER1 proteasomal degradation probably through phosphorylation (PubMed:15077195, PubMed:15917222, PubMed:18794808, PubMed:19005213). Involved in brain development and vesicular trafficking and neurotransmitter releasing from small synaptic vesicles. Regulates fast synaptic transmission mediated by glutamate (By similarity). Involved in regulation of reactive oxygen species (ROS) levels (PubMed:37099597). {ECO:0000250|UniProtKB:P48729, ECO:0000250|UniProtKB:Q8BVP5, ECO:0000269|PubMed:15077195, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:18794808, ECO:0000269|PubMed:19005213, ECO:0000269|PubMed:37099597}. |
Q02156 | PRKCE | S655 | Sugiyama | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
P62829 | RPL23 | S41 | Sugiyama | Large ribosomal subunit protein uL14 (60S ribosomal protein L17) (60S ribosomal protein L23) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P08151 | GLI1 | S595 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
P49327 | FASN | S1597 | Sugiyama | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
Q14164 | IKBKE | S479 | Sugiyama | Inhibitor of nuclear factor kappa-B kinase subunit epsilon (I-kappa-B kinase epsilon) (IKK-E) (IKK-epsilon) (IkBKE) (EC 2.7.11.10) (Inducible I kappa-B kinase) (IKK-i) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to viral infection, through the activation of the type I IFN, NF-kappa-B and STAT signaling. Also involved in TNFA and inflammatory cytokines, like Interleukin-1, signaling. Following activation of viral RNA sensors, such as RIG-I-like receptors, associates with DDX3X and phosphorylates interferon regulatory factors (IRFs), IRF3 and IRF7, as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRF3 leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNB. In order to establish such an antiviral state, IKBKE forms several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including IPS1/MAVS, TANK, AZI2/NAP1 or TBKBP1/SINTBAD can be recruited to the IKBKE-containing-complexes. Activated by polyubiquitination in response to TNFA and interleukin-1, regulates the NF-kappa-B signaling pathway through, at least, the phosphorylation of CYLD. Phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. In addition, is also required for the induction of a subset of ISGs which displays antiviral activity, may be through the phosphorylation of STAT1 at 'Ser-708'. Phosphorylation of STAT1 at 'Ser-708' also seems to promote the assembly and DNA binding of ISGF3 (STAT1:STAT2:IRF9) complexes compared to GAF (STAT1:STAT1) complexes, in this way regulating the balance between type I and type II IFN responses. Protects cells against DNA damage-induced cell death. Also plays an important role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, wich leads to a negative impact on insulin sensitivity. Phosphorylates AKT1. {ECO:0000269|PubMed:17568778, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:19153231, ECO:0000269|PubMed:20188669, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:22532683, ECO:0000269|PubMed:23453969, ECO:0000269|PubMed:23478265}. |
Q92731 | ESR2 | S165 | GPS6 | Estrogen receptor beta (ER-beta) (Nuclear receptor subfamily 3 group A member 2) | Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1/ER-alpha, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). {ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:29261182, ECO:0000269|PubMed:30113650, ECO:0000269|PubMed:9325313}.; FUNCTION: [Isoform 2]: Lacks ligand binding ability and has no or only very low ERE binding activity resulting in the loss of ligand-dependent transactivation ability. {ECO:0000269|PubMed:9671811}. |
O00469 | PLOD2 | S83 | Sugiyama | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (EC 1.14.11.4) (Lysyl hydroxylase 2) (LH2) | Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens. These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links. {ECO:0000250|UniProtKB:P24802}. |
Q6P2M8 | PNCK | S323 | Sugiyama | Calcium/calmodulin-dependent protein kinase type 1B (EC 2.7.11.17) (CaM kinase I beta) (CaM kinase IB) (CaM-KI beta) (CaMKI-beta) (Pregnancy up-regulated non-ubiquitously-expressed CaM kinase) | Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade. In vitro phosphorylates CREB1 and SYN1/synapsin I. Phosphorylates and activates CAMK1 (By similarity). {ECO:0000250}. |
Q6XUX3 | DSTYK | S66 | Sugiyama | Dual serine/threonine and tyrosine protein kinase (EC 2.7.12.1) (Dusty protein kinase) (Dusty PK) (RIP-homologous kinase) (Receptor-interacting serine/threonine-protein kinase 5) (Sugen kinase 496) (SgK496) | Acts as a positive regulator of ERK phosphorylation downstream of fibroblast growth factor-receptor activation (PubMed:23862974, PubMed:28157540). Involved in the regulation of both caspase-dependent apoptosis and caspase-independent cell death (PubMed:15178406). In the skin, it plays a predominant role in suppressing caspase-dependent apoptosis in response to UV stress in a range of dermal cell types (PubMed:28157540). {ECO:0000269|PubMed:15178406, ECO:0000269|PubMed:23862974, ECO:0000269|PubMed:28157540}. |
Q8NBK3 | SUMF1 | S234 | Sugiyama | Formylglycine-generating enzyme (FGE) (EC 1.8.3.7) (C-alpha-formylglycine-generating enzyme 1) (Sulfatase-modifying factor 1) | Oxidase that catalyzes the conversion of cysteine to 3-oxoalanine on target proteins, using molecular oxygen and an unidentified reducing agent (PubMed:12757706, PubMed:15657036, PubMed:15907468, PubMed:16368756, PubMed:21224894, PubMed:25931126). 3-oxoalanine modification, which is also named formylglycine (fGly), occurs in the maturation of arylsulfatases and some alkaline phosphatases that use the hydrated form of 3-oxoalanine as a catalytic nucleophile (PubMed:12757706, PubMed:15657036, PubMed:15907468, PubMed:16368756, PubMed:25931126). Known substrates include GALNS, ARSA, STS and ARSE (PubMed:12757706, PubMed:15657036, PubMed:15907468). {ECO:0000269|PubMed:12757706, ECO:0000269|PubMed:15657036, ECO:0000269|PubMed:15907468, ECO:0000269|PubMed:16368756, ECO:0000269|PubMed:21224894, ECO:0000269|PubMed:25931126}. |
P57721 | PCBP3 | S139 | Sugiyama | Poly(rC)-binding protein 3 (Alpha-CP3) (PCBP3-overlapping transcript) (PCBP3-overlapping transcript 1) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. {ECO:0000250}. |
Q15366 | PCBP2 | S107 | Sugiyama | Poly(rC)-binding protein 2 (Alpha-CP2) (Heterogeneous nuclear ribonucleoprotein E2) (hnRNP E2) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:12414943, PubMed:7607214). Major cellular poly(rC)-binding protein (PubMed:12414943). Also binds poly(rU) (PubMed:12414943). Acts as a negative regulator of antiviral signaling (PubMed:19881509, PubMed:35322803). Negatively regulates cellular antiviral responses mediated by MAVS signaling (PubMed:19881509). It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation (PubMed:19881509). Negativeley regulates the cGAS-STING pathway via interaction with CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:35322803). Together with PCBP1, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:Q61990, ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:7607214}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12414943, PubMed:24371074). Also plays a role in initiation of viral RNA replication in concert with the viral protein 3CD (PubMed:12414943). {ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:24371074}. |
Q5T5U3 | ARHGAP21 | S131 | PSP | Rho GTPase-activating protein 21 (Rho GTPase-activating protein 10) (Rho-type GTPase-activating protein 21) | Functions as a GTPase-activating protein (GAP) for RHOA and CDC42. Downstream partner of ARF1 which may control Golgi apparatus structure and function. Also required for CTNNA1 recruitment to adherens junctions. {ECO:0000269|PubMed:15793564, ECO:0000269|PubMed:16184169}. |
Q9P227 | ARHGAP23 | S127 | EPSD|PSP | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q99439 | CNN2 | S177 | Sugiyama | Calponin-2 (Calponin H2, smooth muscle) (Neutral calponin) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q96AE4 | FUBP1 | S270 | Sugiyama | Far upstream element-binding protein 1 (FBP) (FUSE-binding protein 1) (DNA helicase V) (hDH V) | Regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. May act both as activator and repressor of transcription. {ECO:0000269|PubMed:8125259}. |
Q96NW7 | LRRC7 | S1439 | SIGNOR|iPTMNet | Leucine-rich repeat-containing protein 7 (Densin-180) (Densin) (Protein LAP1) | Required for normal synaptic spine architecture and function. Necessary for DISC1 and GRM5 localization to postsynaptic density complexes and for both N-methyl D-aspartate receptor-dependent and metabotropic glutamate receptor-dependent long term depression. {ECO:0000269|PubMed:11729199}. |
A5A3E0 | POTEF | S733 | ochoa | POTE ankyrin domain family member F (ANKRD26-like family C member 1B) (Chimeric POTE-actin protein) | None |
A6NKT7 | RGPD3 | S1006 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NMY6 | ANXA2P2 | S22 | ochoa | Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) | Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}. |
B0I1T2 | MYO1G | S527 | ochoa | Unconventional myosin-Ig [Cleaved into: Minor histocompatibility antigen HA-2 (mHag HA-2)] | Unconventional myosin required during immune response for detection of rare antigen-presenting cells by regulating T-cell migration. Unconventional myosins are actin-based motor molecules with ATPase activity and serve in intracellular movements. Acts as a regulator of T-cell migration by generating membrane tension, enforcing cell-intrinsic meandering search, thereby enhancing detection of rare antigens during lymph-node surveillance, enabling pathogen eradication. Also required in B-cells, where it regulates different membrane/cytoskeleton-dependent processes. Involved in Fc-gamma receptor (Fc-gamma-R) phagocytosis. {ECO:0000250|UniProtKB:Q5SUA5}.; FUNCTION: [Minor histocompatibility antigen HA-2]: Constitutes the minor histocompatibility antigen HA-2. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and their expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. HA-2 is restricted to MHC class I HLA-A*0201. {ECO:0000269|PubMed:11544309, ECO:0000305}. |
F5H423 | None | S62 | ochoa | ADP-ribosylation factor 3 | None |
O00311 | CDC7 | S285 | psp | Cell division cycle 7-related protein kinase (CDC7-related kinase) (HsCdc7) (huCdc7) (EC 2.7.11.1) | Kinase involved in initiation of DNA replication. Phosphorylates critical substrates that regulate the G1/S phase transition and initiation of DNA replication, such as MCM proteins and CLASPIN. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:27401717}. |
O14523 | C2CD2L | S619 | ochoa | Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) | Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}. |
O14907 | TAX1BP3 | S61 | ochoa | Tax1-binding protein 3 (Glutaminase-interacting protein 3) (Tax interaction protein 1) (TIP-1) (Tax-interacting protein 1) | May regulate a number of protein-protein interactions by competing for PDZ domain binding sites. Binds CTNNB1 and may thereby act as an inhibitor of the Wnt signaling pathway. Competes with LIN7A for KCNJ4 binding, and thereby promotes KCNJ4 internalization. May play a role in the Rho signaling pathway. May play a role in activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:10940294, ECO:0000269|PubMed:16855024, ECO:0000269|PubMed:21139582}. |
O43167 | ZBTB24 | S523 | ochoa | Zinc finger and BTB domain-containing protein 24 (Zinc finger protein 450) | May be involved in BMP2-induced transcription. {ECO:0000250}. |
O43683 | BUB1 | S176 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O60269 | GPRIN2 | S266 | ochoa | G protein-regulated inducer of neurite outgrowth 2 (GRIN2) | May be involved in neurite outgrowth. {ECO:0000269|PubMed:10480904}. |
O60271 | SPAG9 | S387 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60271 | SPAG9 | S705 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60361 | NME2P1 | S84 | ochoa | Putative nucleoside diphosphate kinase (NDK) (NDP kinase) (EC 2.7.4.6) | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (By similarity). {ECO:0000250}. |
O60907 | TBL1X | S45 | ochoa | F-box-like/WD repeat-containing protein TBL1X (SMAP55) (Transducin beta-like protein 1X) (Transducin-beta-like protein 1, X-linked) | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units (PubMed:14980219). Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of corepressor complexes that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of transcription repressor complexes, thereby allowing cofactor exchange (PubMed:21240272). {ECO:0000269|PubMed:14980219, ECO:0000269|PubMed:21240272}. |
O75052 | NOS1AP | S249 | ochoa | Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (C-terminal PDZ ligand of neuronal nitric oxide synthase protein) (Nitric oxide synthase 1 adaptor protein) | Adapter protein involved in neuronal nitric-oxide (NO) synthesis regulation via its association with nNOS/NOS1. The complex formed with NOS1 and synapsins is necessary for specific NO and synapsin functions at a presynaptic level. Mediates an indirect interaction between NOS1 and RASD1 leading to enhance the ability of NOS1 to activate RASD1. Competes with DLG4 for interaction with NOS1, possibly affecting NOS1 activity by regulating the interaction between NOS1 and DLG4 (By similarity). In kidney podocytes, plays a role in podosomes and filopodia formation through CDC42 activation (PubMed:33523862). {ECO:0000250|UniProtKB:O54960, ECO:0000269|PubMed:33523862}. |
O75083 | WDR1 | S198 | ochoa | WD repeat-containing protein 1 (Actin-interacting protein 1) (AIP1) (NORI-1) | Induces disassembly of actin filaments in conjunction with ADF/cofilin family proteins (PubMed:15629458, PubMed:27557945, PubMed:29751004). Enhances cofilin-mediated actin severing (By similarity). Involved in cytokinesis. Involved in chemotactic cell migration by restricting lamellipodial membrane protrusions (PubMed:18494608). Involved in myocardium sarcomere organization. Required for cardiomyocyte growth and maintenance (By similarity). Involved in megakaryocyte maturation and platelet shedding. Required for the establishment of planar cell polarity (PCP) during follicular epithelium development and for cell shape changes during PCP; the function seems to implicate cooperation with CFL1 and/or DSTN/ADF. Involved in the generation/maintenance of cortical tension (By similarity). Involved in assembly and maintenance of epithelial apical cell junctions and plays a role in the organization of the perijunctional actomyosin belt (PubMed:25792565). {ECO:0000250|UniProtKB:O88342, ECO:0000250|UniProtKB:Q9W7F2, ECO:0000269|PubMed:15629458, ECO:0000269|PubMed:18494608, ECO:0000269|PubMed:25792565, ECO:0000269|PubMed:27557945, ECO:0000269|PubMed:29751004}. |
O75369 | FLNB | S1528 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75534 | CSDE1 | S584 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O75923 | DYSF | S1540 | ochoa | Dysferlin (Dystrophy-associated fer-1-like protein) (Fer-1-like protein 1) | Key calcium ion sensor involved in the Ca(2+)-triggered synaptic vesicle-plasma membrane fusion. Plays a role in the sarcolemma repair mechanism of both skeletal muscle and cardiomyocytes that permits rapid resealing of membranes disrupted by mechanical stress (By similarity). {ECO:0000250}. |
O75955 | FLOT1 | S383 | ochoa | Flotillin-1 | May act as a scaffolding protein within caveolar membranes, functionally participating in formation of caveolae or caveolae-like vesicles. |
O94778 | AQP8 | S21 | ochoa | Aquaporin-8 (AQP-8) | Channel that allows the facilitated permeation of water and uncharged molecules, such as hydrogen peroxide and the neutral form of ammonia (NH3), through cellular membranes such as plasma membrane, inner mitochondrial membrane and endoplasmic reticulum membrane of several tissues (PubMed:15948717, PubMed:18948439, PubMed:23541115, PubMed:26972385, PubMed:29732408, PubMed:30579780). The transport of the ammonia neutral form induces a parallel transport of proton, at alkaline pH when the concentration of ammonia is high (By similarity). However, it is unclear whether the transport of proton takes place via the aquaporin or via an endogenous pathway (By similarity). Also, may transport ammonia analogs such as formamide and methylamine, a transport favourited at basic pH due to the increase of unprotonated (neutral) form, which is expected to favor diffusion (PubMed:15948717). Does not transport urea or glycerol (PubMed:15948717). The water transport mechanism is mercury- and copper-sensitive and passive in response to osmotic driving forces (PubMed:15948717). At the canicular plasma membrane, mediates the osmotic transport of water toward the bile canaliculus and facilitates the cAMP-induced bile canalicular water secretion, a process involved in bile formation (PubMed:18948439). In addition, mediates the hydrogen peroxide release from hepatocyte mitochondria that modulates the SREBF2-mediated cholesterol synthesis and facilitates the mitochondrial ammonia uptake which is metabolized into urea, mainly under glucagon stimulation (PubMed:30579780, PubMed:34292591). In B cells, transports the CYBB-generated hydrogen peroxide from the external leaflet of the plasma membrane to the cytosol to promote B cell activation and differentiation for signal amplification (By similarity). In the small intestine and colon system, mediates water transport through mitochondria and apical membrane of epithelial cells (By similarity). May play an important role in the adaptive response of proximal tubule cells to acidosis possibly by facilitating the mitochondrial ammonia transport (PubMed:22622463). {ECO:0000250|UniProtKB:P56404, ECO:0000250|UniProtKB:P56405, ECO:0000269|PubMed:15948717, ECO:0000269|PubMed:18948439, ECO:0000269|PubMed:22622463, ECO:0000269|PubMed:23541115, ECO:0000269|PubMed:26972385, ECO:0000269|PubMed:29732408, ECO:0000269|PubMed:30579780, ECO:0000269|PubMed:34292591}. |
O94906 | PRPF6 | S261 | ochoa | Pre-mRNA-processing factor 6 (Androgen receptor N-terminal domain-transactivating protein 1) (ANT-1) (PRP6 homolog) (U5 snRNP-associated 102 kDa protein) (U5-102 kDa protein) | Involved in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex, one of the building blocks of the spliceosome (PubMed:20118938, PubMed:21549338, PubMed:28781166). Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but does not affect estrogen-induced transactivation. {ECO:0000269|PubMed:12039962, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:21549338, ECO:0000269|PubMed:28781166}. |
O94915 | FRYL | S1945 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O95772 | STARD3NL | S39 | ochoa | STARD3 N-terminal-like protein (MLN64 N-terminal domain homolog) | Tethering protein that creates contact site between the endoplasmic reticulum and late endosomes: localizes to late endosome membranes and contacts the endoplasmic reticulum via interaction with VAPA and VAPB (PubMed:24105263). {ECO:0000269|PubMed:24105263}. |
O95831 | AIFM1 | S100 | ochoa | Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) | Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}. |
P00505 | GOT2 | S133 | ochoa | Aspartate aminotransferase, mitochondrial (mAspAT) (EC 2.6.1.1) (EC 2.6.1.7) (Fatty acid-binding protein) (FABP-1) (Glutamate oxaloacetate transaminase 2) (Kynurenine aminotransferase 4) (Kynurenine aminotransferase IV) (Kynurenine--oxoglutarate transaminase 4) (Kynurenine--oxoglutarate transaminase IV) (Plasma membrane-associated fatty acid-binding protein) (FABPpm) (Transaminase A) | Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). As a member of the malate-aspartate shuttle, it has a key role in the intracellular NAD(H) redox balance. Is important for metabolite exchange between mitochondria and cytosol, and for amino acid metabolism. Facilitates cellular uptake of long-chain free fatty acids. {ECO:0000269|PubMed:31422819, ECO:0000269|PubMed:9537447}. |
P05187 | ALPP | S177 | ochoa | Alkaline phosphatase, placental type (EC 3.1.3.1) (Alkaline phosphatase Regan isozyme) (Placental alkaline phosphatase 1) (PLAP-1) | Alkaline phosphatase that can hydrolyze various phosphate compounds. {ECO:0000269|PubMed:1939159, ECO:0000269|PubMed:25775211}. |
P07237 | P4HB | S281 | ochoa | Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) | This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}. |
P07339 | CTSD | S359 | ochoa | Cathepsin D (EC 3.4.23.5) [Cleaved into: Cathepsin D light chain; Cathepsin D heavy chain] | Acid protease active in intracellular protein breakdown. Plays a role in APP processing following cleavage and activation by ADAM30 which leads to APP degradation (PubMed:27333034). Involved in the pathogenesis of several diseases such as breast cancer and possibly Alzheimer disease. {ECO:0000269|PubMed:27333034}. |
P07355 | ANXA2 | S22 | ochoa|psp | Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) | Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}. |
P09923 | ALPI | S174 | ochoa | Intestinal-type alkaline phosphatase (IAP) (Intestinal alkaline phosphatase) (EC 3.1.3.1) | Alkaline phosphatase that can hydrolyze various phosphate compounds. {ECO:0000250|UniProtKB:P15693}. |
P0CG38 | POTEI | S733 | ochoa | POTE ankyrin domain family member I | None |
P0DMV8 | HSPA1A | S106 | ochoa | Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1) (Heat shock protein family A member 1A) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). Required as a co-chaperone for optimal STUB1/CHIP ubiquitination of NFATC3 (By similarity). Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation (PubMed:28842558). {ECO:0000250|UniProtKB:P0DMW0, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28842558, ECO:0000269|PubMed:9499401, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P0DMV9 | HSPA1B | S106 | ochoa | Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2) (Heat shock protein family A member 1B) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). {ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P0DPH7 | TUBA3C | S54 | ochoa | Tubulin alpha-3C chain (EC 3.6.5.-) (Alpha-tubulin 2) (Alpha-tubulin 3C) (Tubulin alpha-2 chain) [Cleaved into: Detyrosinated tubulin alpha-3C chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P0DPH8 | TUBA3D | S54 | ochoa | Tubulin alpha-3D chain (EC 3.6.5.-) (Alpha-tubulin 3D) [Cleaved into: Detyrosinated tubulin alpha-3D chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P10636 | MAPT | S606 | ochoa | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P10809 | HSPD1 | S499 | ochoa | 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) | Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}. |
P11055 | MYH3 | S181 | ochoa | Myosin-3 (Muscle embryonic myosin heavy chain) (Myosin heavy chain 3) (Myosin heavy chain, fast skeletal muscle, embryonic) (SMHCE) | Muscle contraction. |
P11142 | HSPA8 | S221 | ochoa | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
P12882 | MYH1 | S181 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P12883 | MYH7 | S180 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13533 | MYH6 | S180 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13535 | MYH8 | S183 | ochoa | Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) | Muscle contraction. |
P14317 | HCLS1 | S97 | ochoa | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P14317 | HCLS1 | S134 | ochoa | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P14866 | HNRNPL | S291 | ochoa | Heterogeneous nuclear ribonucleoprotein L (hnRNP L) | Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements (PubMed:11809897, PubMed:22570490, PubMed:24164894, PubMed:25623890, PubMed:26051023). Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts (PubMed:2687284). Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (PubMed:11809897). As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPK and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Regulates alternative splicing of a core group of genes involved in neuronal differentiation, likely by mediating H3K36me3-coupled transcription elongation and co-transcriptional RNA processing via interaction with CHD8. {ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:22570490, ECO:0000269|PubMed:25623890, ECO:0000269|PubMed:26051023, ECO:0000269|PubMed:2687284, ECO:0000269|PubMed:33174841, ECO:0000269|PubMed:36537238}. |
P15531 | NME1 | S99 | ochoa | Nucleoside diphosphate kinase A (NDK A) (NDP kinase A) (EC 2.7.4.6) (Granzyme A-activated DNase) (GAAD) (Metastasis inhibition factor nm23) (NM23-H1) (Tumor metastatic process-associated protein) | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination. During GZMA-mediated cell death, works in concert with TREX1. NME1 nicks one strand of DNA and TREX1 removes bases from the free 3' end to enhance DNA damage and prevent DNA end reannealing and rapid repair. {ECO:0000269|PubMed:12628186, ECO:0000269|PubMed:16818237, ECO:0000269|PubMed:8810265}. |
P15924 | DSP | S2209 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P18615 | NELFE | S353 | ochoa | Negative elongation factor E (NELF-E) (RNA-binding protein RD) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
P20963 | CD247 | S124 | ochoa | T-cell surface glycoprotein CD3 zeta chain (T-cell receptor T3 zeta chain) (CD antigen CD247) | Part of the TCR-CD3 complex present on T-lymphocyte cell surface that plays an essential role in adaptive immune response. When antigen presenting cells (APCs) activate T-cell receptor (TCR), TCR-mediated signals are transmitted across the cell membrane by the CD3 chains CD3D, CD3E, CD3G and CD3Z. All CD3 chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic domain. Upon TCR engagement, these motifs become phosphorylated by Src family protein tyrosine kinases LCK and FYN, resulting in the activation of downstream signaling pathways (PubMed:1384049, PubMed:1385158, PubMed:2470098, PubMed:7509083). CD3Z ITAMs phosphorylation creates multiple docking sites for the protein kinase ZAP70 leading to ZAP70 phosphorylation and its conversion into a catalytically active enzyme (PubMed:7509083). Plays an important role in intrathymic T-cell differentiation. Additionally, participates in the activity-dependent synapse formation of retinal ganglion cells (RGCs) in both the retina and dorsal lateral geniculate nucleus (dLGN) (By similarity). {ECO:0000250|UniProtKB:P24161, ECO:0000269|PubMed:1384049, ECO:0000269|PubMed:1385158, ECO:0000269|PubMed:16027224, ECO:0000269|PubMed:2470098, ECO:0000269|PubMed:28465009, ECO:0000269|PubMed:7509083}. |
P21333 | FLNA | S1835 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P22392 | NME2 | S99 | ochoa | Nucleoside diphosphate kinase B (NDK B) (NDP kinase B) (EC 2.7.4.6) (C-myc purine-binding transcription factor PUF) (Histidine protein kinase NDKB) (EC 2.7.13.3) (nm23-H2) | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (By similarity). Negatively regulates Rho activity by interacting with AKAP13/LBC (PubMed:15249197). Acts as a transcriptional activator of the MYC gene; binds DNA non-specifically (PubMed:19435876, PubMed:8392752). Binds to both single-stranded guanine- and cytosine-rich strands within the nuclease hypersensitive element (NHE) III(1) region of the MYC gene promoter. Does not bind to duplex NHE III(1) (PubMed:19435876). Has G-quadruplex (G4) DNA-binding activity, which is independent of its nucleotide-binding and kinase activity. Binds both folded and unfolded G4 with similar low nanomolar affinities. Stabilizes folded G4s regardless of whether they are prefolded or not (PubMed:25679041). Exhibits histidine protein kinase activity (PubMed:20946858). {ECO:0000250|UniProtKB:P36010, ECO:0000269|PubMed:15249197, ECO:0000269|PubMed:19435876, ECO:0000269|PubMed:20946858, ECO:0000269|PubMed:25679041, ECO:0000269|PubMed:8392752}. |
P23634 | ATP2B4 | S1115 | ochoa|psp | Plasma membrane calcium-transporting ATPase 4 (PMCA4) (EC 7.2.2.10) (Matrix-remodeling-associated protein 1) (Plasma membrane calcium ATPase isoform 4) (Plasma membrane calcium pump isoform 4) | Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity). {ECO:0000250|UniProtKB:Q6Q477, ECO:0000269|PubMed:8530416}. |
P25054 | APC | S969 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P26639 | TARS1 | S534 | ochoa | Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) | Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}. |
P28072 | PSMB6 | S58 | ochoa | Proteasome subunit beta type-6 (EC 3.4.25.1) (Macropain delta chain) (Multicatalytic endopeptidase complex delta chain) (Proteasome delta chain) (Proteasome subunit Y) (Proteasome subunit beta-1) (beta-1) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). Within the 20S core complex, PSMB6 displays a peptidylglutamyl-hydrolizing activity also termed postacidic or caspase-like activity, meaning that the peptides bond hydrolysis occurs directly after acidic residues. {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P28347 | TEAD1 | S61 | ochoa | Transcriptional enhancer factor TEF-1 (NTEF-1) (Protein GT-IIC) (TEA domain family member 1) (TEAD-1) (Transcription factor 13) (TCF-13) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and cooperatively to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription in vivo in a cell-specific manner. The activation function appears to be mediated by a limiting cell-specific transcriptional intermediary factor (TIF). Involved in cardiac development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
P29083 | GTF2E1 | S268 | ochoa | General transcription factor IIE subunit 1 (General transcription factor IIE 56 kDa subunit) (Transcription initiation factor IIE subunit alpha) (TFIIE-alpha) | Recruits TFIIH to the initiation complex and stimulates the RNA polymerase II C-terminal domain kinase and DNA-dependent ATPase activities of TFIIH. Both TFIIH and TFIIE are required for promoter clearance by RNA polymerase. |
P29317 | EPHA2 | S897 | ochoa|psp | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P32926 | DSG3 | S971 | ochoa | Desmoglein-3 (130 kDa pemphigus vulgaris antigen) (PVA) (Cadherin family member 6) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:31835537). Required for adherens and desmosome junction assembly in response to mechanical force in keratinocytes (PubMed:31835537). Required for desmosome-mediated cell-cell adhesion of cells surrounding the telogen hair club and the basal layer of the outer root sheath epithelium, consequently is essential for the anchoring of telogen hairs in the hair follicle (PubMed:9701552). Required for the maintenance of the epithelial barrier via promoting desmosome-mediated intercellular attachment of suprabasal epithelium to basal cells (By similarity). May play a role in the protein stability of the desmosome plaque components DSP, JUP, PKP1, PKP2 and PKP3 (PubMed:22294297). Required for YAP1 localization at the plasma membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, PKP1 and YWHAG (PubMed:31835537). May also be involved in the positive regulation of YAP1 target gene transcription and as a result cell proliferation (PubMed:31835537). Positively regulates cellular contractility and cell junction formation via organization of cortical F-actin bundles and anchoring of actin to tight junctions, in conjunction with RAC1 (PubMed:22796473). The cytoplasmic pool of DSG3 is required for the localization of CDH1 and CTNNB1 at developing adherens junctions, potentially via modulation of SRC activity (PubMed:22294297). Inhibits keratinocyte migration via suppression of p38MAPK signaling, may therefore play a role in moderating wound healing (PubMed:26763450). {ECO:0000250|UniProtKB:O35902, ECO:0000269|PubMed:22294297, ECO:0000269|PubMed:22796473, ECO:0000269|PubMed:26763450, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9701552}. |
P35269 | GTF2F1 | S65 | ochoa | General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}. |
P35749 | MYH11 | S201 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P36507 | MAP2K2 | S76 | ochoa | Dual specificity mitogen-activated protein kinase kinase 2 (MAP kinase kinase 2) (MAPKK 2) (EC 2.7.12.2) (ERK activator kinase 2) (MAPK/ERK kinase 2) (MEK 2) | Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in MAP kinases. Activates the ERK1 and ERK2 MAP kinases (By similarity). Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). {ECO:0000250|UniProtKB:Q63932, ECO:0000269|PubMed:29433126}. |
P37275 | ZEB1 | S521 | ochoa | Zinc finger E-box-binding homeobox 1 (NIL-2-A zinc finger protein) (Negative regulator of IL2) (Transcription factor 8) (TCF-8) | Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). In the absence of TGFB1, acts as a repressor of COL1A2 transcription via binding to the E-box in the upstream enhancer region (By similarity). {ECO:0000250|UniProtKB:Q64318, ECO:0000269|PubMed:19935649, ECO:0000269|PubMed:20175752, ECO:0000269|PubMed:20418909}. |
P38919 | EIF4A3 | S84 | ochoa | Eukaryotic initiation factor 4A-III (eIF-4A-III) (eIF4A-III) (EC 3.6.4.13) (ATP-dependent RNA helicase DDX48) (ATP-dependent RNA helicase eIF4A-3) (DEAD box protein 48) (Eukaryotic initiation factor 4A-like NUK-34) (Eukaryotic translation initiation factor 4A isoform 3) (Nuclear matrix protein 265) (NMP 265) (hNMP 265) [Cleaved into: Eukaryotic initiation factor 4A-III, N-terminally processed] | ATP-dependent RNA helicase (PubMed:16170325). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs (PubMed:16170325, PubMed:16209946, PubMed:16314458, PubMed:16923391, PubMed:16931718, PubMed:19033377, PubMed:20479275). The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Its RNA-dependent ATPase and RNA-helicase activities are induced by CASC3, but abolished in presence of the MAGOH-RBM8A heterodimer, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The inhibition of ATPase activity by the MAGOH-RBM8A heterodimer increases the RNA-binding affinity of the EJC. Involved in translational enhancement of spliced mRNAs after formation of the 80S ribosome complex. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Shows higher affinity for single-stranded RNA in an ATP-bound core EJC complex than after the ATP is hydrolyzed. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly (PubMed:22203037). Involved in craniofacial development (PubMed:24360810). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15034551, ECO:0000269|PubMed:16170325, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16314458, ECO:0000269|PubMed:16923391, ECO:0000269|PubMed:16931718, ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:19033377, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:20479275, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:24360810, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
P40227 | CCT6A | S428 | ochoa | T-complex protein 1 subunit zeta (TCP-1-zeta) (EC 3.6.1.-) (Acute morphine dependence-related protein 2) (CCT-zeta-1) (Chaperonin containing T-complex polypeptide 1 subunit 6A) (HTR3) (Tcp20) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P41235 | HNF4A | S303 | psp | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P46527 | CDKN1B | S140 | ochoa|psp | Cyclin-dependent kinase inhibitor 1B (Cyclin-dependent kinase inhibitor p27) (p27Kip1) | Important regulator of cell cycle progression. Inhibits the kinase activity of CDK2 bound to cyclin A, but has little inhibitory activity on CDK2 bound to SPDYA (PubMed:28666995). Involved in G1 arrest. Potent inhibitor of cyclin E- and cyclin A-CDK2 complexes. Forms a complex with cyclin type D-CDK4 complexes and is involved in the assembly, stability, and modulation of CCND1-CDK4 complex activation. Acts either as an inhibitor or an activator of cyclin type D-CDK4 complexes depending on its phosphorylation state and/or stoichometry. {ECO:0000269|PubMed:10831586, ECO:0000269|PubMed:12244301, ECO:0000269|PubMed:16782892, ECO:0000269|PubMed:17254966, ECO:0000269|PubMed:19075005, ECO:0000269|PubMed:28666995}. |
P48444 | ARCN1 | S252 | ochoa | Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) | Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
P48444 | ARCN1 | S342 | ochoa | Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) | Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
P49257 | LMAN1 | S425 | ochoa | Protein ERGIC-53 (ER-Golgi intermediate compartment 53 kDa protein) (Gp58) (Intracellular mannose-specific lectin MR60) (Lectin mannose-binding 1) | Mannose-specific lectin. May recognize sugar residues of glycoproteins, glycolipids, or glycosylphosphatidyl inositol anchors and may be involved in the sorting or recycling of proteins, lipids, or both. The LMAN1-MCFD2 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins. {ECO:0000269|PubMed:12717434, ECO:0000269|PubMed:13130098}. |
P49773 | HINT1 | S102 | ochoa | Adenosine 5'-monophosphoramidase HINT1 (EC 3.9.1.-) (Desumoylating isopeptidase HINT1) (EC 3.4.22.-) (Histidine triad nucleotide-binding protein 1) (Protein kinase C inhibitor 1) (Protein kinase C-interacting protein 1) (PKCI-1) | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (PubMed:15703176, PubMed:16835243, PubMed:17217311, PubMed:17337452, PubMed:22329685, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (PubMed:15703176, PubMed:16835243). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester (PubMed:15703176, PubMed:17337452, PubMed:22329685). Hydrolyzes 3-indolepropionic acyl-adenylate, tryptamine adenosine phosphoramidate monoester and other fluorogenic purine nucleoside tryptamine phosphoramidates in vitro (PubMed:17217311, PubMed:17337452, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide (PubMed:30772266). In addition, functions as scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (PubMed:16014379, PubMed:22647378). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis (PubMed:16835243). Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex (PubMed:19112177). Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RGS17 (PubMed:31088288). Deconjugates SUMO1 from RANGAP1 (By similarity). {ECO:0000250|UniProtKB:P80912, ECO:0000269|PubMed:15703176, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16835243, ECO:0000269|PubMed:17217311, ECO:0000269|PubMed:17337452, ECO:0000269|PubMed:19112177, ECO:0000269|PubMed:22329685, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:23614568, ECO:0000269|PubMed:28691797, ECO:0000269|PubMed:29787766, ECO:0000269|PubMed:30772266, ECO:0000269|PubMed:31088288, ECO:0000269|PubMed:31990367}. |
P49790 | NUP153 | S709 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49792 | RANBP2 | S1981 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S3137 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P50991 | CCT4 | S234 | ochoa | T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P51610 | HCFC1 | S507 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51911 | CNN1 | S175 | ochoa | Calponin-1 (Basic calponin) (Calponin H1, smooth muscle) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity (By similarity). {ECO:0000250}. |
P54136 | RARS1 | S378 | ochoa | Arginine--tRNA ligase, cytoplasmic (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS) | Forms part of a macromolecular complex that catalyzes the attachment of specific amino acids to cognate tRNAs during protein synthesis (PubMed:25288775). Modulates the secretion of AIMP1 and may be involved in generation of the inflammatory cytokine EMAP2 from AIMP1 (PubMed:17443684). {ECO:0000269|PubMed:17443684, ECO:0000269|PubMed:25288775}. |
P54296 | MYOM2 | S207 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54652 | HSPA2 | S224 | ochoa | Heat shock-related 70 kDa protein 2 (Heat shock 70 kDa protein 2) (Heat shock protein family A member 2) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release (PubMed:26865365). Plays a role in spermatogenesis. In association with SHCBP1L may participate in the maintenance of spindle integrity during meiosis in male germ cells (By similarity). {ECO:0000250|UniProtKB:P17156, ECO:0000303|PubMed:26865365}. |
P55884 | EIF3B | S372 | ochoa | Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P60709 | ACTB | S33 | ochoa | Actin, cytoplasmic 1 (EC 3.6.4.-) (Beta-actin) [Cleaved into: Actin, cytoplasmic 1, N-terminally processed] | Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells (PubMed:25255767, PubMed:29581253). Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction (PubMed:29581253). In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA (PubMed:29925947). Plays a role in the assembly of the gamma-tubulin ring complex (gTuRC), which regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments (PubMed:39321809, PubMed:38609661). Part of the ACTR1A/ACTB filament around which the dynactin complex is built (By similarity). The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:Q6QAQ1, ECO:0000269|PubMed:25255767, ECO:0000269|PubMed:29581253, ECO:0000269|PubMed:29925947, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
P60842 | EIF4A1 | S78 | ochoa | Eukaryotic initiation factor 4A-I (eIF-4A-I) (eIF4A-I) (EC 3.6.4.13) (ATP-dependent RNA helicase eIF4A-1) | ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome (PubMed:20156963). In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon. As a result, promotes cell proliferation and growth (PubMed:20156963). {ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291, ECO:0000269|PubMed:20156963}. |
P61006 | RAB8A | S181 | ochoa | Ras-related protein Rab-8A (EC 3.6.5.2) (Oncogene c-mel) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB8A is involved in polarized vesicular trafficking and neurotransmitter release. Together with RAB11A, RAB3IP, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Regulates the compacted morphology of the Golgi (PubMed:26209634). Together with MYO5B and RAB11A participates in epithelial cell polarization (PubMed:21282656). Also involved in membrane trafficking to the cilium and ciliogenesis (PubMed:21844891, PubMed:30398148, PubMed:20631154). Together with MICALL2, may also regulate adherens junction assembly (By similarity). May play a role in insulin-induced transport to the plasma membrane of the glucose transporter GLUT4 and therefore play a role in glucose homeostasis (By similarity). Involved in autophagy (PubMed:27103069). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation (PubMed:30209220). Suppresses stress-induced lysosomal enlargement through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P35280, ECO:0000250|UniProtKB:P55258, ECO:0000269|PubMed:20631154, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:21844891, ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}. |
P61204 | ARF3 | S62 | ochoa | ADP-ribosylation factor 3 | GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking; may modulate vesicle budding and uncoating within the Golgi apparatus. |
P61925 | PKIA | S30 | ochoa | cAMP-dependent protein kinase inhibitor alpha (PKI-alpha) (cAMP-dependent protein kinase inhibitor, muscle/brain isoform) | Extremely potent competitive inhibitor of cAMP-dependent protein kinase activity, this protein interacts with the catalytic subunit of the enzyme after the cAMP-induced dissociation of its regulatory chains. |
P61978 | HNRNPK | S401 | ochoa | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P62314 | SNRPD1 | S59 | ochoa | Small nuclear ribonucleoprotein Sm D1 (Sm-D1) (Sm-D autoantigen) (snRNP core protein D1) | Plays a role in pre-mRNA splicing as a core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome (PubMed:11991638, PubMed:18984161, PubMed:19325628, PubMed:23333303, PubMed:25555158, PubMed:26912367, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Component of both the pre-catalytic spliceosome B complex and activated spliceosome C complexes (PubMed:11991638, PubMed:26912367, PubMed:28076346, PubMed:28502770, PubMed:28781166). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077). May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP-snRNP interactions through non-specific electrostatic contacts with RNA (PubMed:23333303). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:23333303, ECO:0000269|PubMed:25555158, ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000305|PubMed:23333303}. |
P62736 | ACTA2 | S35 | ochoa | Actin, aortic smooth muscle (EC 3.6.4.-) (Alpha-actin-2) (Cell growth-inhibiting gene 46 protein) [Cleaved into: Actin, aortic smooth muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P62937 | PPIA | S77 | ochoa | Peptidyl-prolyl cis-trans isomerase A (PPIase A) (EC 5.2.1.8) (Cyclophilin A) (Cyclosporin A-binding protein) (Rotamase A) [Cleaved into: Peptidyl-prolyl cis-trans isomerase A, N-terminally processed] | Catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (PubMed:2001362, PubMed:20676357, PubMed:21245143, PubMed:21593166, PubMed:25678563). Exerts a strong chemotactic effect on leukocytes partly through activation of one of its membrane receptors BSG/CD147, initiating a signaling cascade that culminates in MAPK/ERK activation (PubMed:11943775, PubMed:21245143). Activates endothelial cells (ECs) in a pro-inflammatory manner by stimulating activation of NF-kappa-B and ERK, JNK and p38 MAP-kinases and by inducing expression of adhesion molecules including SELE and VCAM1 (PubMed:15130913). Induces apoptosis in ECs by promoting the FOXO1-dependent expression of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). In response to oxidative stress, initiates proapoptotic and antiapoptotic signaling in ECs via activation of NF-kappa-B and AKT1 and up-regulation of antiapoptotic protein BCL2 (PubMed:23180369). Negatively regulates MAP3K5/ASK1 kinase activity, autophosphorylation and oxidative stress-induced apoptosis mediated by MAP3K5/ASK1 (PubMed:26095851). Necessary for the assembly of TARDBP in heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and regulates TARDBP binding to RNA UG repeats and TARDBP-dependent expression of HDAC6, ATG7 and VCP which are involved in clearance of protein aggregates (PubMed:25678563). Plays an important role in platelet activation and aggregation (By similarity). Regulates calcium mobilization and integrin ITGA2B:ITGB3 bidirectional signaling via increased ROS production as well as by facilitating the interaction between integrin and the cell cytoskeleton (By similarity). Binds heparan sulfate glycosaminoglycans (PubMed:11943775). Inhibits replication of influenza A virus (IAV) (PubMed:19207730). Inhibits ITCH/AIP4-mediated ubiquitination of matrix protein 1 (M1) of IAV by impairing the interaction of ITCH/AIP4 with M1, followed by the suppression of the nuclear export of M1, and finally reduction of the replication of IAV (PubMed:22347431, PubMed:30328013). {ECO:0000250|UniProtKB:P17742, ECO:0000269|PubMed:11943775, ECO:0000269|PubMed:15130913, ECO:0000269|PubMed:19207730, ECO:0000269|PubMed:2001362, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:21245143, ECO:0000269|PubMed:21593166, ECO:0000269|PubMed:22347431, ECO:0000269|PubMed:23180369, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:26095851, ECO:0000269|PubMed:30328013, ECO:0000269|PubMed:31063815}.; FUNCTION: (Microbial infection) May act as a mediator between human SARS coronavirus nucleoprotein and BSG/CD147 in the process of invasion of host cells by the virus (PubMed:15688292). {ECO:0000269|PubMed:15688292}.; FUNCTION: (Microbial infection) Stimulates RNA-binding ability of HCV NS5A in a peptidyl-prolyl cis-trans isomerase activity-dependent manner. {ECO:0000269|PubMed:21593166}. |
P63261 | ACTG1 | S33 | ochoa | Actin, cytoplasmic 2 (EC 3.6.4.-) (Gamma-actin) [Cleaved into: Actin, cytoplasmic 2, N-terminally processed] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. May play a role in the repair of noise-induced stereocilia gaps thereby maintains hearing sensitivity following loud noise damage (By similarity). {ECO:0000250|UniProtKB:P63260, ECO:0000305|PubMed:29581253}. |
P63267 | ACTG2 | S34 | ochoa | Actin, gamma-enteric smooth muscle (EC 3.6.4.-) (Alpha-actin-3) (Gamma-2-actin) (Smooth muscle gamma-actin) [Cleaved into: Actin, gamma-enteric smooth muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P68032 | ACTC1 | S35 | ochoa | Actin, alpha cardiac muscle 1 (EC 3.6.4.-) (Alpha-cardiac actin) [Cleaved into: Actin, alpha cardiac muscle 1, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P68133 | ACTA1 | S35 | ochoa | Actin, alpha skeletal muscle (EC 3.6.4.-) (Alpha-actin-1) [Cleaved into: Actin, alpha skeletal muscle, intermediate form] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
P68363 | TUBA1B | S54 | ochoa | Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
P78344 | EIF4G2 | S381 | ochoa | Eukaryotic translation initiation factor 4 gamma 2 (eIF-4-gamma 2) (eIF-4G 2) (eIF4G 2) (Death-associated protein 5) (DAP-5) (p97) | Appears to play a role in the switch from cap-dependent to IRES-mediated translation during mitosis, apoptosis and viral infection. Cleaved by some caspases and viral proteases. {ECO:0000269|PubMed:11511540, ECO:0000269|PubMed:11943866, ECO:0000269|PubMed:9032289, ECO:0000269|PubMed:9049310}. |
P84077 | ARF1 | S62 | ochoa | ADP-ribosylation factor 1 (EC 3.6.5.2) | Small GTPase involved in protein trafficking between different compartments (PubMed:8253837). Modulates vesicle budding and uncoating within the Golgi complex (PubMed:8253837). In its GTP-bound form, triggers the recruitment of coatomer proteins to the Golgi membrane (PubMed:8253837). The hydrolysis of ARF1-bound GTP, which is mediated by ARFGAPs proteins, is required for dissociation of coat proteins from Golgi membranes and vesicles (PubMed:8253837). The GTP-bound form interacts with PICK1 to limit PICK1-mediated inhibition of Arp2/3 complex activity; the function is linked to AMPA receptor (AMPAR) trafficking, regulation of synaptic plasticity of excitatory synapses and spine shrinkage during long-term depression (LTD) (By similarity). Plays a key role in the regulation of intestinal stem cells and gut microbiota, and is essential for maintaining intestinal homeostasis (By similarity). Also plays a critical role in mast cell expansion but not in mast cell maturation by facilitating optimal mTORC1 activation (By similarity). {ECO:0000250|UniProtKB:P84079, ECO:0000269|PubMed:8253837}.; FUNCTION: (Microbial infection) Functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. {ECO:0000305}. |
Q02487 | DSC2 | S796 | ochoa | Desmocollin-2 (Cadherin family member 2) (Desmocollin-3) (Desmosomal glycoprotein II) (Desmosomal glycoprotein III) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:33596089). Promotes timely incorporation of DSG2 into desmosome intercellular junctions and promotes interaction of desmosome cell junctions with intermediate filament cytokeratin, via modulation of DSP phosphorylation (PubMed:33596089). Plays an important role in desmosome-mediated maintenance of intestinal epithelial cell intercellular adhesion strength and barrier function (PubMed:33596089). Positively regulates wound healing of intestinal mucosa via promotion of epithelial cell migration, and also plays a role in mechanotransduction of force between intestinal epithelial cells and extracellular matrix (PubMed:31967937). May contribute to epidermal cell positioning (stratification) by mediating differential adhesiveness between cells that express different isoforms. May promote p38MAPK signaling activation that facilitates keratinocyte migration (By similarity). {ECO:0000250|UniProtKB:P55292, ECO:0000269|PubMed:31967937, ECO:0000269|PubMed:33596089}. |
Q02750 | MAP2K1 | S72 | ochoa|psp | Dual specificity mitogen-activated protein kinase kinase 1 (MAP kinase kinase 1) (MAPKK 1) (MKK1) (EC 2.7.12.2) (ERK activator kinase 1) (MAPK/ERK kinase 1) (MEK 1) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Activates BRAF in a KSR1 or KSR2-dependent manner; by binding to KSR1 or KSR2 releases the inhibitory intramolecular interaction between KSR1 or KSR2 protein kinase and N-terminal domains which promotes KSR1 or KSR2-BRAF dimerization and BRAF activation (PubMed:29433126). Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis. {ECO:0000269|PubMed:14737111, ECO:0000269|PubMed:17101779, ECO:0000269|PubMed:29433126}. |
Q07812 | BAX | S163 | psp | Apoptosis regulator BAX (Bcl-2-like protein 4) (Bcl2-L-4) | Plays a role in the mitochondrial apoptotic process (PubMed:10772918, PubMed:11060313, PubMed:16113678, PubMed:16199525, PubMed:18948948, PubMed:21199865, PubMed:21458670, PubMed:25609812, PubMed:36361894, PubMed:8358790, PubMed:8521816). Under normal conditions, BAX is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by BCL2L1/Bcl-xL, which avoids accumulation of toxic BAX levels at the mitochondrial outer membrane (MOM) (PubMed:21458670). Under stress conditions, undergoes a conformation change that causes translocation to the mitochondrion membrane, leading to the release of cytochrome c that then triggers apoptosis (PubMed:10772918, PubMed:11060313, PubMed:16113678, PubMed:16199525, PubMed:18948948, PubMed:21199865, PubMed:21458670, PubMed:25609812, PubMed:8358790, PubMed:8521816). Promotes activation of CASP3, and thereby apoptosis (PubMed:10772918, PubMed:11060313, PubMed:16113678, PubMed:16199525, PubMed:18948948, PubMed:21199865, PubMed:21458670, PubMed:25609812, PubMed:8358790, PubMed:8521816). {ECO:0000269|PubMed:10772918, ECO:0000269|PubMed:11060313, ECO:0000269|PubMed:16113678, ECO:0000269|PubMed:16199525, ECO:0000269|PubMed:18948948, ECO:0000269|PubMed:21199865, ECO:0000269|PubMed:21458670, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:36361894, ECO:0000269|PubMed:8358790, ECO:0000269|PubMed:8521816}. |
Q07817 | BCL2L1 | S145 | psp | Bcl-2-like protein 1 (Bcl2-L-1) (Apoptosis regulator Bcl-X) | Potent inhibitor of cell death. Inhibits activation of caspases. Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.; FUNCTION: Isoform Bcl-X(L) also regulates presynaptic plasticity, including neurotransmitter release and recovery, number of axonal mitochondria as well as size and number of synaptic vesicle clusters. During synaptic stimulation, increases ATP availability from mitochondria through regulation of mitochondrial membrane ATP synthase F(1)F(0) activity and regulates endocytic vesicle retrieval in hippocampal neurons through association with DMN1L and stimulation of its GTPase activity in synaptic vesicles. May attenuate inflammation impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release (PubMed:17418785). {ECO:0000269|PubMed:17418785}.; FUNCTION: Isoform Bcl-X(S) promotes apoptosis. |
Q07955 | SRSF1 | S182 | ochoa | Serine/arginine-rich splicing factor 1 (Alternative-splicing factor 1) (ASF-1) (Splicing factor, arginine/serine-rich 1) (pre-mRNA-splicing factor SF2, P33 subunit) | Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5'-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5'-RGAAGAAC-3' (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5'-CGAGGCG-3' motif in vitro. Three copies of the octamer constitute a powerful splicing enhancer in vitro, the ASF/SF2 splicing enhancer (ASE) which can specifically activate ASE-dependent splicing. Isoform ASF-2 and isoform ASF-3 act as splicing repressors. May function as export adapter involved in mRNA nuclear export through the TAP/NXF1 pathway. {ECO:0000269|PubMed:8139654}. |
Q09666 | AHNAK | S5542 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5651 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12830 | BPTF | S1765 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q13043 | STK4 | S414 | psp | Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}. |
Q13151 | HNRNPA0 | S119 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13201 | MMRN1 | S358 | ochoa | Multimerin-1 (EMILIN-4) (Elastin microfibril interface located protein 4) (Elastin microfibril interfacer 4) (Endothelial cell multimerin) [Cleaved into: Platelet glycoprotein Ia*; 155 kDa platelet multimerin (p-155) (p155)] | Carrier protein for platelet (but not plasma) factor V/Va. Plays a role in the storage and stabilization of factor V in platelets. Upon release following platelet activation, may limit platelet and plasma factor Va-dependent thrombin generation. Ligand for integrin alpha-IIb/beta-3 and integrin alpha-V/beta-3 on activated platelets, and may function as an extracellular matrix or adhesive protein. {ECO:0000269|PubMed:16363244, ECO:0000269|PubMed:19132231, ECO:0000269|PubMed:7629143}. |
Q13724 | MOGS | S736 | ochoa | Mannosyl-oligosaccharide glucosidase (EC 3.2.1.106) (Processing A-glucosidase I) | In the context of N-glycan degradation, cleaves the distal alpha 1,2-linked glucose residue from the Glc(3)Man(9)GlcNAc(2) oligosaccharide precursor in a highly specific manner. {ECO:0000269|PubMed:7635146}. |
Q14155 | ARHGEF7 | S392 | ochoa | Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) | Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}. |
Q14160 | SCRIB | S1140 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14164 | IKBKE | S172 | psp | Inhibitor of nuclear factor kappa-B kinase subunit epsilon (I-kappa-B kinase epsilon) (IKK-E) (IKK-epsilon) (IkBKE) (EC 2.7.11.10) (Inducible I kappa-B kinase) (IKK-i) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to viral infection, through the activation of the type I IFN, NF-kappa-B and STAT signaling. Also involved in TNFA and inflammatory cytokines, like Interleukin-1, signaling. Following activation of viral RNA sensors, such as RIG-I-like receptors, associates with DDX3X and phosphorylates interferon regulatory factors (IRFs), IRF3 and IRF7, as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRF3 leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNB. In order to establish such an antiviral state, IKBKE forms several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including IPS1/MAVS, TANK, AZI2/NAP1 or TBKBP1/SINTBAD can be recruited to the IKBKE-containing-complexes. Activated by polyubiquitination in response to TNFA and interleukin-1, regulates the NF-kappa-B signaling pathway through, at least, the phosphorylation of CYLD. Phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. In addition, is also required for the induction of a subset of ISGs which displays antiviral activity, may be through the phosphorylation of STAT1 at 'Ser-708'. Phosphorylation of STAT1 at 'Ser-708' also seems to promote the assembly and DNA binding of ISGF3 (STAT1:STAT2:IRF9) complexes compared to GAF (STAT1:STAT1) complexes, in this way regulating the balance between type I and type II IFN responses. Protects cells against DNA damage-induced cell death. Also plays an important role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, wich leads to a negative impact on insulin sensitivity. Phosphorylates AKT1. {ECO:0000269|PubMed:17568778, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:19153231, ECO:0000269|PubMed:20188669, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:22532683, ECO:0000269|PubMed:23453969, ECO:0000269|PubMed:23478265}. |
Q14240 | EIF4A2 | S79 | ochoa | Eukaryotic initiation factor 4A-II (eIF-4A-II) (eIF4A-II) (EC 3.6.4.13) (ATP-dependent RNA helicase eIF4A-2) | ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon. |
Q14247 | CTTN | S98 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14247 | CTTN | S135 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14247 | CTTN | S172 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14254 | FLOT2 | S165 | ochoa | Flotillin-2 (Epidermal surface antigen) (ESA) (Membrane component chromosome 17 surface marker 1) | May act as a scaffolding protein within caveolar membranes, functionally participating in formation of caveolae or caveolae-like vesicles. May be involved in epidermal cell adhesion and epidermal structure and function. |
Q14315 | FLNC | S1161 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S2077 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14573 | ITPR3 | S916 | ochoa|psp | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR3 (IP3 receptor isoform 3) (IP3R-3) (InsP3R3) (Type 3 inositol 1,4,5-trisphosphate receptor) (Type 3 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon 1D-myo-inositol 1,4,5-trisphosphate binding, transports calcium from the endoplasmic reticulum lumen to cytoplasm, thus releasing the intracellular calcium and therefore participates in cellular calcium ion homeostasis (PubMed:32949214, PubMed:37898605, PubMed:8081734, PubMed:8288584). 1D-myo-inositol 1,4,5-trisphosphate binds to the ligand-free channel without altering its global conformation, yielding the low-energy resting state, then progresses through resting-to preactivated transitions to the higher energy preactivated state, which increases affinity for calcium, promoting binding of the low basal cytosolic calcium at the juxtamembrane domain (JD) site, favoring the transition through the ensemble of high-energy intermediate states along the trajectory to the fully-open activated state (PubMed:30013099, PubMed:35301323, PubMed:37898605). Upon opening, releases calcium in the cytosol where it can bind to the low-affinity cytoplasmic domain (CD) site and stabilizes the inhibited state to terminate calcium release (PubMed:30013099, PubMed:35301323, PubMed:37898605). {ECO:0000269|PubMed:30013099, ECO:0000269|PubMed:32949214, ECO:0000269|PubMed:35301323, ECO:0000269|PubMed:37898605, ECO:0000269|PubMed:8081734, ECO:0000269|PubMed:8288584}. |
Q14790 | CASP8 | S347 | psp | Caspase-8 (CASP-8) (EC 3.4.22.61) (Apoptotic cysteine protease) (Apoptotic protease Mch-5) (CAP4) (FADD-homologous ICE/ced-3-like protease) (FADD-like ICE) (FLICE) (ICE-like apoptotic protease 5) (MORT1-associated ced-3 homolog) (MACH) [Cleaved into: Caspase-8 subunit p18; Caspase-8 subunit p10] | Thiol protease that plays a key role in programmed cell death by acting as a molecular switch for apoptosis, necroptosis and pyroptosis, and is required to prevent tissue damage during embryonic development and adulthood (PubMed:23516580, PubMed:35338844, PubMed:35446120, PubMed:8681376, PubMed:8681377, PubMed:8962078, PubMed:9006941, PubMed:9184224). Initiator protease that induces extrinsic apoptosis by mediating cleavage and activation of effector caspases responsible for FAS/CD95-mediated and TNFRSF1A-induced cell death (PubMed:23516580, PubMed:35338844, PubMed:35446120, PubMed:8681376, PubMed:8681377, PubMed:8962078, PubMed:9006941, PubMed:9184224). Cleaves and activates effector caspases CASP3, CASP4, CASP6, CASP7, CASP9 and CASP10 (PubMed:16916640, PubMed:8962078, PubMed:9006941). Binding to the adapter molecule FADD recruits it to either receptor FAS/TNFRSF6 or TNFRSF1A (PubMed:8681376, PubMed:8681377). The resulting aggregate called the death-inducing signaling complex (DISC) performs CASP8 proteolytic activation (PubMed:9184224). The active dimeric enzyme is then liberated from the DISC and free to activate downstream apoptotic proteases (PubMed:9184224). Proteolytic fragments of the N-terminal propeptide (termed CAP3, CAP5 and CAP6) are likely retained in the DISC (PubMed:9184224). In addition to extrinsic apoptosis, also acts as a negative regulator of necroptosis: acts by cleaving RIPK1 at 'Asp-324', which is crucial to inhibit RIPK1 kinase activity, limiting TNF-induced apoptosis, necroptosis and inflammatory response (PubMed:31827280, PubMed:31827281). Also able to initiate pyroptosis by mediating cleavage and activation of gasdermin-C and -D (GSDMC and GSDMD, respectively): gasdermin cleavage promotes release of the N-terminal moiety that binds to membranes and forms pores, triggering pyroptosis (PubMed:32929201, PubMed:34012073). Initiates pyroptosis following inactivation of MAP3K7/TAK1 (By similarity). Also acts as a regulator of innate immunity by mediating cleavage and inactivation of N4BP1 downstream of TLR3 or TLR4, thereby promoting cytokine production (By similarity). May participate in the Granzyme B (GZMB) cell death pathways (PubMed:8755496). Cleaves PARP1 and PARP2 (PubMed:8681376). Independent of its protease activity, promotes cell migration following phosphorylation at Tyr-380 (PubMed:18216014, PubMed:27109099). {ECO:0000250|UniProtKB:O89110, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:18216014, ECO:0000269|PubMed:23516580, ECO:0000269|PubMed:27109099, ECO:0000269|PubMed:31827280, ECO:0000269|PubMed:31827281, ECO:0000269|PubMed:32929201, ECO:0000269|PubMed:34012073, ECO:0000269|PubMed:35338844, ECO:0000269|PubMed:35446120, ECO:0000269|PubMed:8681376, ECO:0000269|PubMed:8681377, ECO:0000269|PubMed:8755496, ECO:0000269|PubMed:8962078, ECO:0000269|PubMed:9006941, ECO:0000269|PubMed:9184224}.; FUNCTION: [Isoform 5]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex. {ECO:0000305|PubMed:8681376}.; FUNCTION: [Isoform 6]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex. {ECO:0000305|PubMed:8681376}.; FUNCTION: [Isoform 7]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex (Probable). Acts as an inhibitor of the caspase cascade (PubMed:12010809). {ECO:0000269|PubMed:12010809, ECO:0000305|PubMed:8681376}.; FUNCTION: [Isoform 8]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex. {ECO:0000305|PubMed:8681376}. |
Q14814 | MEF2D | S275 | psp | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q15047 | SETDB1 | S1025 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15185 | PTGES3 | S39 | ochoa | Prostaglandin E synthase 3 (EC 5.3.99.3) (Cytosolic prostaglandin E2 synthase) (cPGES) (Hsp90 co-chaperone) (Progesterone receptor complex p23) (Telomerase-binding protein p23) | Cytosolic prostaglandin synthase that catalyzes the oxidoreduction of prostaglandin endoperoxide H2 (PGH2) to prostaglandin E2 (PGE2) (PubMed:10922363). Molecular chaperone that localizes to genomic response elements in a hormone-dependent manner and disrupts receptor-mediated transcriptional activation, by promoting disassembly of transcriptional regulatory complexes (PubMed:11274138, PubMed:12077419). Facilitates HIF alpha proteins hydroxylation via interaction with EGLN1/PHD2, leading to recruit EGLN1/PHD2 to the HSP90 pathway (PubMed:24711448). {ECO:0000269|PubMed:10922363, ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:12077419, ECO:0000269|PubMed:24711448}. |
Q15417 | CNN3 | S162 | ochoa | Calponin-3 (Calponin, acidic isoform) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q15417 | CNN3 | S259 | ochoa | Calponin-3 (Calponin, acidic isoform) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q15561 | TEAD4 | S69 | ochoa | Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15562 | TEAD2 | S71 | ochoa | Transcriptional enhancer factor TEF-4 (TEA domain family member 2) (TEAD-2) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15648 | MED1 | S874 | ochoa|psp | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15696 | ZRSR2 | S355 | ochoa | U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 2 (CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 2) (Renal carcinoma antigen NY-REN-20) (U2(RNU2) small nuclear RNA auxiliary factor 1-like 2) (U2AF35-related protein) (URP) | Pre-mRNA-binding protein required for splicing of both U2- and U12-type introns. Selectively interacts with the 3'-splice site of U2- and U12-type pre-mRNAs and promotes different steps in U2 and U12 intron splicing. Recruited to U12 pre-mRNAs in an ATP-dependent manner and is required for assembly of the pre-spliceosome, a precursor to other spliceosomal complexes. For U2-type introns, it is selectively and specifically required for the second step of splicing. {ECO:0000269|PubMed:21041408, ECO:0000269|PubMed:9237760}. |
Q15717 | ELAVL1 | S304 | psp | ELAV-like protein 1 (Hu-antigen R) (HuR) | RNA-binding protein that binds to the 3'-UTR region of mRNAs and increases their stability (PubMed:14517288, PubMed:18285462, PubMed:31358969). Involved in embryonic stem cell (ESC) differentiation: preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESC differentiation (By similarity). Has also been shown to be capable of binding to m6A-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398, PubMed:17632515, PubMed:18285462, PubMed:23519412, PubMed:8626503). Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUUA motifs. Binds preferentially to the 5'-UUUU[AG]UUU-3' motif in vitro (PubMed:8626503). With ZNF385A, binds the 3'-UTR of p53/TP53 mRNA to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind with ZNF385A the CCNB1 mRNA (By similarity). Increases the stability of the leptin mRNA harboring an AU-rich element (ARE) in its 3' UTR (PubMed:29180010). {ECO:0000250|UniProtKB:P70372, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:17632515, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23519412, ECO:0000269|PubMed:29180010, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8626503}. |
Q16576 | RBBP7 | S109 | ochoa | Histone-binding protein RBBP7 (Histone acetyltransferase type B subunit 2) (Nucleosome-remodeling factor subunit RBAP46) (Retinoblastoma-binding protein 7) (RBBP-7) (Retinoblastoma-binding protein p46) | Core histone-binding subunit that may target chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the type B histone acetyltransferase (HAT) complex, which is required for chromatin assembly following DNA replication; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling; and the PRC2/EED-EZH2 complex, which promotes repression of homeotic genes during development; and the NURF (nucleosome remodeling factor) complex. {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q16890 | TPD52L1 | S115 | ochoa | Tumor protein D53 (hD53) (Tumor protein D52-like 1) | None |
Q29RF7 | PDS5A | S1233 | ochoa | Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) | Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}. |
Q38SD2 | LRRK1 | S1064 | psp | Leucine-rich repeat serine/threonine-protein kinase 1 (EC 2.7.11.1) | Serine/threonine-protein kinase which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). Phosphorylates RAB7A; this activity is dependent on protein kinase C (PKC) activation (PubMed:36040231, PubMed:37558661, PubMed:37857821). Plays a role in the negative regulation of bone mass, acting through the maturation of osteoclasts (By similarity). {ECO:0000250|UniProtKB:Q3UHC2, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:37558661, ECO:0000269|PubMed:37857821}. |
Q3MIW9 | MUCL3 | S126 | ochoa | Mucin-like protein 3 (Diffuse panbronchiolitis critical region protein 1) | May modulate NF-kappaB signaling and play a role in cell growth. {ECO:0000269|PubMed:29242154}. |
Q53EL6 | PDCD4 | S317 | ochoa | Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) | Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}. |
Q56P03 | EAPP | S89 | ochoa | E2F-associated phosphoprotein (EAPP) | May play an important role in the fine-tuning of both major E2F1 activities, the regulation of the cell-cycle and the induction of apoptosis. Promotes S-phase entry, and inhibits p14(ARP) expression. {ECO:0000269|PubMed:15716352}. |
Q58EX2 | SDK2 | S2105 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q5H9R7 | PPP6R3 | S817 | ochoa | Serine/threonine-protein phosphatase 6 regulatory subunit 3 (SAPS domain family member 3) (Sporulation-induced transcript 4-associated protein SAPL) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. May have an important role in maintaining immune self-tolerance. {ECO:0000269|PubMed:11401438, ECO:0000269|PubMed:16769727}. |
Q5QJE6 | DNTTIP2 | S37 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5SW79 | CEP170 | S725 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T0W9 | FAM83B | S466 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T8D3 | ACBD5 | S257 | ochoa | Acyl-CoA-binding domain-containing protein 5 | Acyl-CoA binding protein which acts as the peroxisome receptor for pexophagy but is dispensable for aggrephagy and nonselective autophagy. Binds medium- and long-chain acyl-CoA esters. {ECO:0000269|PubMed:24535825}. |
Q5VUJ6 | LRCH2 | S351 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 2 | May play a role in the organization of the cytoskeleton. {ECO:0000250|UniProtKB:Q960C5, ECO:0000250|UniProtKB:Q96II8}. |
Q6IQ49 | SDE2 | S373 | ochoa | Splicing regulator SDE2 (Replication stress response regulator SDE2) | Inhibits translesion DNA synthesis by preventing monoubiquitination of PCNA, this is necessary to counteract damage due to ultraviolet light-induced replication stress (PubMed:27906959). SDE2 is cleaved following PCNA binding, and its complete degradation is necessary to allow S-phase progression following DNA damage (PubMed:27906959). {ECO:0000269|PubMed:27906959}.; FUNCTION: Plays a role in pre-mRNA splicing by facilitating excision of relatively short introns featuring weak 3'-splice sites (ss) and high GC content (PubMed:34365507). May recruit CACTIN to the spliceosome (By similarity). {ECO:0000250|UniProtKB:O14113, ECO:0000269|PubMed:34365507}.; FUNCTION: Plays a role in ribosome biogenesis by enabling SNORD3- and SNORD118-dependent cleavage of the 47S rRNA precursor (PubMed:34365507). Binds ncRNA (non-coding RNA) including the snoRNAs SNORD3 and SNORD118 (PubMed:34365507). {ECO:0000269|PubMed:34365507}. |
Q6NXE6 | ARMC6 | S80 | ochoa | Armadillo repeat-containing protein 6 | None |
Q6P4Q7 | CNNM4 | S689 | ochoa | Metal transporter CNNM4 (Ancient conserved domain-containing protein 4) (Cyclin-M4) | Probable metal transporter. The interaction with the metal ion chaperone COX11 suggests that it may play a role in sensory neuron functions (By similarity). May play a role in biomineralization and retinal function. {ECO:0000250, ECO:0000269|PubMed:19200525, ECO:0000269|PubMed:19200527}. |
Q6PEY2 | TUBA3E | S54 | ochoa | Tubulin alpha-3E chain (EC 3.6.5.-) (Alpha-tubulin 3E) [Cleaved into: Detyrosinated tubulin alpha-3E chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q6PIZ9 | TRAT1 | S116 | ochoa | T-cell receptor-associated transmembrane adapter 1 (T-cell receptor-interacting molecule) (TRIM) (pp29/30) | Stabilizes the TCR (T-cell antigen receptor)/CD3 complex at the surface of T-cells. {ECO:0000269|PubMed:11390434}. |
Q6PJG2 | MIDEAS | S709 | ochoa | Mitotic deacetylase-associated SANT domain protein (ELM2 and SANT domain-containing protein 1) | None |
Q6PJT7 | ZC3H14 | S553 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6S8J3 | POTEE | S733 | ochoa | POTE ankyrin domain family member E (ANKRD26-like family C member 1A) (Prostate, ovary, testis-expressed protein on chromosome 2) (POTE-2) | None |
Q6ZV73 | FGD6 | S652 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q71U36 | TUBA1A | S54 | ochoa | Tubulin alpha-1A chain (EC 3.6.5.-) (Alpha-tubulin 3) (Tubulin B-alpha-1) (Tubulin alpha-3 chain) [Cleaved into: Detyrosinated tubulin alpha-1A chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q7L0J3 | SV2A | S411 | psp | Synaptic vesicle glycoprotein 2A | Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}. |
Q7L576 | CYFIP1 | S1228 | ochoa | Cytoplasmic FMR1-interacting protein 1 (Specifically Rac1-associated protein 1) (Sra-1) (p140sra-1) | Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit is an adapter between EIF4E and FMR1. Promotes the translation repression activity of FMR1 in brain probably by mediating its association with EIF4E and mRNA (By similarity). Regulates formation of membrane ruffles and lamellipodia. Plays a role in axon outgrowth. Binds to F-actin but not to RNA. Part of the WAVE complex that regulates actin filament reorganization via its interaction with the Arp2/3 complex. Actin remodeling activity is regulated by RAC1. Regulator of epithelial morphogenesis. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). May act as an invasion suppressor in cancers. {ECO:0000250|UniProtKB:Q7TMB8, ECO:0000269|PubMed:16260607, ECO:0000269|PubMed:19524508, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:9417078}. |
Q7L5A8 | FA2H | S346 | ochoa | Fatty acid 2-hydroxylase (EC 1.14.18.-) (Fatty acid alpha-hydroxylase) (Fatty acid hydroxylase domain-containing protein 1) | Catalyzes the hydroxylation of free fatty acids at the C-2 position to produce 2-hydroxy fatty acids, which are building blocks of sphingolipids and glycosphingolipids common in neural tissue and epidermis (PubMed:15337768, PubMed:15863841, PubMed:17355976, PubMed:22517924). FA2H is stereospecific for the production of (R)-2-hydroxy fatty acids (PubMed:22517924). Plays an essential role in the synthesis of galactosphingolipids of the myelin sheath (By similarity). Responsible for the synthesis of sphingolipids and glycosphingolipids involved in the formation of epidermal lamellar bodies critical for skin permeability barrier (PubMed:17355976). Participates in the synthesis of glycosphingolipids and a fraction of type II wax diesters in sebaceous gland, specifically regulating hair follicle homeostasis (By similarity). Involved in the synthesis of sphingolipids of plasma membrane rafts, controlling lipid raft mobility and trafficking of raft-associated proteins (By similarity). {ECO:0000250|UniProtKB:Q5MPP0, ECO:0000269|PubMed:15337768, ECO:0000269|PubMed:15863841, ECO:0000269|PubMed:17355976, ECO:0000269|PubMed:22517924}. |
Q7Z7C8 | TAF8 | S278 | ochoa | Transcription initiation factor TFIID subunit 8 (Protein taube nuss) (TBP-associated factor 43 kDa) (TBP-associated factor 8) (Transcription initiation factor TFIID 43 kDa subunit) (TAFII-43) (TAFII43) (hTAFII43) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF8 is involved in forming the TFIID-B module, together with TAF5 (PubMed:33795473). Mediates both basal and activator-dependent transcription (PubMed:14580349). Plays a role in the differentiation of preadipocyte fibroblasts to adipocytes, however, does not seem to play a role in differentiation of myoblasts (PubMed:14580349). Required for the integration of TAF10 in the TAF complex (PubMed:14580349). May be important for survival of cells of the inner cell mass which constitute the pluripotent cell population of the early embryo (By similarity). {ECO:0000250|UniProtKB:Q9EQH4, ECO:0000269|PubMed:14580349, ECO:0000269|PubMed:33795473}. |
Q86SQ0 | PHLDB2 | S117 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86U44 | METTL3 | S358 | ochoa | N(6)-adenosine-methyltransferase catalytic subunit METTL3 (EC 2.1.1.348) (Methyltransferase-like protein 3) (hMETTL3) (N(6)-adenosine-methyltransferase 70 kDa subunit) (MT-A70) | The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:28297716, PubMed:29348140, PubMed:29506078, PubMed:30428350, PubMed:9409616). In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA destabilization and degradation (PubMed:28637692). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian clock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of hepatic lipid metabolism (PubMed:30428350). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). Also required for oogenesis (By similarity). Involved in the response to DNA damage: in response to ultraviolet irradiation, METTL3 rapidly catalyzes the formation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:28297716). M6A is also required for T-cell homeostasis and differentiation: m6A methylation of transcripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes mRNA destabilization and degradation, promoting T-cell differentiation (By similarity). Inhibits the type I interferon response by mediating m6A methylation of IFNB (PubMed:30559377). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates m6A methylation of Xist RNA, thereby participating in random X inactivation: m6A methylation of Xist leads to target YTHDC1 reader on Xist and promote transcription repression activity of Xist (PubMed:27602518). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). METTL3 mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998). Acts as a positive regulator of mRNA translation independently of the methyltransferase activity: promotes translation by interacting with the translation initiation machinery in the cytoplasm (PubMed:27117702). Its overexpression in a number of cancer cells suggests that it may participate in cancer cell proliferation by promoting mRNA translation (PubMed:27117702). During human coronavirus SARS-CoV-2 infection, adds m6A modifications in SARS-CoV-2 RNA leading to decreased RIGI binding and subsequently dampening the sensing and activation of innate immune responses (PubMed:33961823). {ECO:0000250|UniProtKB:Q8C3P7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26321680, ECO:0000269|PubMed:26593424, ECO:0000269|PubMed:27117702, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:28297716, ECO:0000269|PubMed:28637692, ECO:0000269|PubMed:29348140, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:33961823, ECO:0000269|PubMed:9409616}. |
Q86UR5 | RIMS1 | S1613 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86V87 | FHIP2B | S526 | ochoa | FHF complex subunit HOOK-interacting protein 2B (FHIP2B) (Retinoic acid-induced protein 16) | Able to activate MAPK/ERK and TGFB signaling pathways (PubMed:22971576). May regulate the activity of genes involved in intestinal barrier function and immunoprotective inflammation (By similarity). May play a role in cell proliferation (PubMed:22971576). {ECO:0000250|UniProtKB:Q80YR2, ECO:0000269|PubMed:22971576}. |
Q86YS3 | RAB11FIP4 | S320 | ochoa | Rab11 family-interacting protein 4 (FIP4-Rab11) (Rab11-FIP4) (Arfophilin-2) | Acts as a regulator of endocytic traffic by participating in membrane delivery. Required for the abscission step in cytokinesis, possibly by acting as an 'address tag' delivering recycling endosome membranes to the cleavage furrow during late cytokinesis. In case of infection by HCMV (human cytomegalovirus), may participate in egress of the virus out of nucleus; this function is independent of ARF6. {ECO:0000269|PubMed:12470645}. |
Q8IVL1 | NAV2 | S1019 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IYT2 | CMTR2 | S423 | ochoa | Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 2 (EC 2.1.1.296) (Cap methyltransferase 2) (Cap2 2'O-ribose methyltransferase 2) (HMTr2) (MTr2) (FtsJ methyltransferase domain-containing protein 1) (Protein adrift homolog) | S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap2 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the second nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) (cap0) to produce m(7)GpppRmpNm (cap2). Recognizes a guanosine cap on RNA independently of its N(7) methylation status. Display cap2 methylation on both cap0 and cap1. Displays a preference for cap1 RNAs. {ECO:0000269|PubMed:21310715}. |
Q8N1G2 | CMTR1 | S121 | ochoa | Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) | S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}. |
Q8N1S5 | SLC39A11 | S153 | ochoa | Zinc transporter ZIP11 (Solute carrier family 39 member 11) (Zrt- and Irt-like protein 11) (ZIP-11) | Zinc importer that regulates cytosolic zinc concentrations either via zinc influx from the extracellular compartment or efflux from intracellular organelles such as Golgi apparatus. May transport copper ions as well. The transport mechanism remains to be elucidated. {ECO:0000250|UniProtKB:Q8BWY7}. |
Q8NBF6 | AVL9 | S613 | ochoa | Late secretory pathway protein AVL9 homolog | Functions in cell migration. {ECO:0000269|PubMed:22595670}. |
Q8ND04 | SMG8 | S894 | ochoa | Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}. |
Q8ND24 | RNF214 | S114 | ochoa | RING finger protein 214 | None |
Q8NEV8 | EXPH5 | S1236 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NI08 | NCOA7 | S424 | ochoa | Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) | Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}. |
Q8TF40 | FNIP1 | S220 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8WZ64 | ARAP2 | S493 | ochoa | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (Centaurin-delta-1) (Cnt-d1) (Protein PARX) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members. Is activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding. Can be activated by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding, albeit with lower efficiency (By similarity). {ECO:0000250}. |
Q92499 | DDX1 | S632 | ochoa | ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) | Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}. |
Q92499 | DDX1 | S700 | ochoa | ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) | Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}. |
Q92545 | TMEM131 | S1178 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92901 | RPL3L | S372 | ochoa | Ribosomal protein uL3-like (60S ribosomal protein L3-like) (Large ribosomal subunit protein uL3-like) | Heart- and skeletal muscle-specific component of the ribosome, which regulates muscle function. Component of the large ribosomal subunit in striated muscle cells: replaces the RPL3 paralog in the ribosome in these cells. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Inhibits myotube growth and muscle function. {ECO:0000250|UniProtKB:E9PWZ3}. |
Q96BY6 | DOCK10 | S1232 | ochoa | Dedicator of cytokinesis protein 10 (Zizimin-3) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 and RAC1 by exchanging bound GDP for free GTP. Essential for dendritic spine morphogenesis in Purkinje cells and in hippocampal neurons, via a CDC42-mediated pathway. Sustains B-cell lymphopoiesis in secondary lymphoid tissues and regulates FCER2/CD23 expression. {ECO:0000250|UniProtKB:Q8BZN6}. |
Q96CV9 | OPTN | S519 | ochoa | Optineurin (E3-14.7K-interacting protein) (FIP-2) (Huntingtin yeast partner L) (Huntingtin-interacting protein 7) (HIP-7) (Huntingtin-interacting protein L) (NEMO-related protein) (Optic neuropathy-inducing protein) (Transcription factor IIIA-interacting protein) (TFIIIA-IntP) | Plays an important role in the maintenance of the Golgi complex, in membrane trafficking, in exocytosis, through its interaction with myosin VI and Rab8 (PubMed:27534431). Links myosin VI to the Golgi complex and plays an important role in Golgi ribbon formation (PubMed:27534431). Plays a role in the activation of innate immune response during viral infection. Mechanistically, recruits TBK1 at the Golgi apparatus, promoting its trans-phosphorylation after RLR or TLR3 stimulation (PubMed:27538435). In turn, activated TBK1 phosphorylates its downstream partner IRF3 to produce IFN-beta/IFNB1. Plays a neuroprotective role in the eye and optic nerve. May act by regulating membrane trafficking and cellular morphogenesis via a complex that contains Rab8 and huntingtin (HD). Mediates the interaction of Rab8 with the probable GTPase-activating protein TBC1D17 during Rab8-mediated endocytic trafficking, such as that of transferrin receptor (TFRC/TfR); regulates Rab8 recruitment to tubules emanating from the endocytic recycling compartment (PubMed:22854040). Autophagy receptor that interacts directly with both the cargo to become degraded and an autophagy modifier of the MAP1 LC3 family; targets ubiquitin-coated bacteria (xenophagy), such as cytoplasmic Salmonella enterica, and appears to function in the same pathway as SQSTM1 and CALCOCO2/NDP52. {ECO:0000269|PubMed:11834836, ECO:0000269|PubMed:15837803, ECO:0000269|PubMed:20085643, ECO:0000269|PubMed:20174559, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:22854040, ECO:0000269|PubMed:27534431, ECO:0000269|PubMed:27538435}.; FUNCTION: (Microbial infection) May constitute a cellular target for various viruses, such as adenovirus E3 14.7 or Bluetongue virus, to inhibit innate immune response (PubMed:27538435, PubMed:9488477). During RNA virus infection, such as that of Sendai virus, negatively regulates the induction of IFNB1 (PubMed:20174559). {ECO:0000269|PubMed:20174559, ECO:0000269|PubMed:27538435, ECO:0000269|PubMed:9488477}. |
Q96EE3 | SEH1L | S259 | ochoa | Nucleoporin SEH1 (GATOR2 complex protein SEH1) (Nup107-160 subcomplex subunit SEH1) (SEC13-like protein) | Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC (PubMed:15146057, PubMed:17363900). The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation. This subunit plays a role in recruitment of the Nup107-160 subcomplex to the kinetochore (PubMed:15146057, PubMed:17363900). {ECO:0000269|PubMed:15146057, ECO:0000269|PubMed:17363900}.; FUNCTION: As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:26972053, PubMed:27487210). Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex (PubMed:35831510). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26972053, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}. |
Q96N67 | DOCK7 | S440 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96QD8 | SLC38A2 | S55 | ochoa | Sodium-coupled neutral amino acid symporter 2 (Amino acid transporter A2) (Protein 40-9-1) (Solute carrier family 38 member 2) (System A amino acid transporter 2) (System A transporter 1) (System N amino acid transporter 2) | Symporter that cotransports neutral amino acids and sodium ions from the extracellular to the intracellular side of the cell membrane (PubMed:10930503, PubMed:15774260, PubMed:15922329, PubMed:16621798). The transport is pH-sensitive, Li(+)-intolerant, electrogenic, driven by the Na(+) electrochemical gradient and cotransports of neutral amino acids and sodium ions with a stoichiometry of 1:1. May function in the transport of amino acids at the blood-brain barrier (PubMed:10930503, PubMed:15774260). May function in the transport of amino acids in the supply of maternal nutrients to the fetus through the placenta (By similarity). Maintains a key metabolic glutamine/glutamate balance underpinning retrograde signaling by dendritic release of the neurotransmitter glutamate (By similarity). Transports L-proline in differentiating osteoblasts for the efficient synthesis of proline-enriched proteins and provides proline essential for osteoblast differentiation and bone formation during bone development (By similarity). {ECO:0000250|UniProtKB:Q8CFE6, ECO:0000250|UniProtKB:Q9JHE5, ECO:0000269|PubMed:10930503, ECO:0000269|PubMed:15774260, ECO:0000269|PubMed:15922329, ECO:0000269|PubMed:16621798}. |
Q96RL1 | UIMC1 | S545 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96TA2 | YME1L1 | S704 | ochoa | ATP-dependent zinc metalloprotease YME1L1 (EC 3.4.24.-) (EC 3.6.-.-) (ATP-dependent metalloprotease FtsH1) (Meg-4) (Presenilin-associated metalloprotease) (PAMP) (YME1-like protein 1) | ATP-dependent metalloprotease that catalyzes the degradation of folded and unfolded proteins with a suitable degron sequence in the mitochondrial intermembrane region (PubMed:24315374, PubMed:26923599, PubMed:27786171, PubMed:31695197, PubMed:33237841, PubMed:36206740). Plays an important role in regulating mitochondrial morphology and function by cleaving OPA1 at position S2, giving rise to a form of OPA1 that promotes maintenance of normal mitochondrial structure and mitochondrial protein metabolism (PubMed:18076378, PubMed:26923599, PubMed:27495975, PubMed:33237841). Ensures cell proliferation, maintains normal cristae morphology and complex I respiration activity, promotes antiapoptotic activity and protects mitochondria from the accumulation of oxidatively damaged membrane proteins (PubMed:22262461). Required to control the accumulation of nonassembled respiratory chain subunits (NDUFB6, OX4 and ND1) (PubMed:22262461). Involved in the mitochondrial adaptation in response to various signals, such as stress or developmental cues, by mediating degradation of mitochondrial proteins to rewire the mitochondrial proteome (PubMed:31695197). Catalyzes degradation of mitochondrial proteins, such as translocases, lipid transfer proteins and metabolic enzymes in response to nutrient starvation in order to limit mitochondrial biogenesis: mechanistically, YME1L is activated by decreased phosphatidylethanolamine levels caused by LPIN1 activity in response to mTORC1 inhibition (PubMed:31695197). Acts as a regulator of adult neural stem cell self-renewal by promoting mitochondrial proteome rewiring, preserving neural stem and progenitor cells self-renewal (By similarity). Required for normal, constitutive degradation of PRELID1 (PubMed:27495975). Catalyzes the degradation of OMA1 in response to membrane depolarization (PubMed:26923599). Mediates degradation of TIMM17A downstream of the integrated stress response (ISR) (PubMed:24315374). Catalyzes degradation of MICU1 when MICU1 is not assembled via an interchain disulfide (PubMed:36206740). {ECO:0000250|UniProtKB:O88967, ECO:0000269|PubMed:18076378, ECO:0000269|PubMed:22262461, ECO:0000269|PubMed:24315374, ECO:0000269|PubMed:26923599, ECO:0000269|PubMed:27495975, ECO:0000269|PubMed:27786171, ECO:0000269|PubMed:31695197, ECO:0000269|PubMed:33237841, ECO:0000269|PubMed:36206740}. |
Q99570 | PIK3R4 | S861 | ochoa | Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) | Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}. |
Q99594 | TEAD3 | S61 | ochoa | Transcriptional enhancer factor TEF-5 (DTEF-1) (TEA domain family member 3) (TEAD-3) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q99759 | MAP3K3 | S520 | psp | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q99832 | CCT7 | S221 | ochoa | T-complex protein 1 subunit eta (TCP-1-eta) (EC 3.6.1.-) (CCT-eta) (Chaperonin containing T-complex polypeptide 1 subunit 7) (HIV-1 Nef-interacting protein) [Cleaved into: T-complex protein 1 subunit eta, N-terminally processed] | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q99959 | PKP2 | S70 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q99962 | SH3GL2 | S278 | ochoa | Endophilin-A1 (EEN-B1) (Endophilin-1) (SH3 domain protein 2A) (SH3 domain-containing GRB2-like protein 2) | Implicated in synaptic vesicle endocytosis. May recruit other proteins to membranes with high curvature. Required for BDNF-dependent dendrite outgrowth. Cooperates with SH3GL2 to mediate BDNF-NTRK2 early endocytic trafficking and signaling from early endosomes. {ECO:0000250|UniProtKB:Q62420}. |
Q9BPX3 | NCAPG | S390 | ochoa | Condensin complex subunit 3 (Chromosome-associated protein G) (Condensin subunit CAP-G) (hCAP-G) (Melanoma antigen NY-MEL-3) (Non-SMC condensin I complex subunit G) (XCAP-G homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9BQE3 | TUBA1C | S54 | ochoa | Tubulin alpha-1C chain (EC 3.6.5.-) (Alpha-tubulin 6) (Tubulin alpha-6 chain) [Cleaved into: Detyrosinated tubulin alpha-1C chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q9BZK7 | TBL1XR1 | S202 | ochoa | F-box-like/WD repeat-containing protein TBL1XR1 (Nuclear receptor corepressor/HDAC3 complex subunit TBLR1) (TBL1-related protein 1) (Transducin beta-like 1X-related protein 1) | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of the N-Cor corepressor complex that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of N-Cor complex, thereby allowing cofactor exchange, and transcription activation. {ECO:0000269|PubMed:14980219}. |
Q9C0C2 | TNKS1BP1 | S1253 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0H5 | ARHGAP39 | S388 | ochoa | Rho GTPase-activating protein 39 | None |
Q9H0E9 | BRD8 | S387 | ochoa | Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) | May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q9H4A3 | WNK1 | S1935 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4G0 | EPB41L1 | S578 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9H930 | SP140L | S203 | ochoa | Nuclear body protein SP140-like protein | None |
Q9NQC3 | RTN4 | S1094 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NRR3 | CDC42SE2 | S27 | ochoa | CDC42 small effector protein 2 (Small effector of CDC42 protein 2) | Probably involved in the organization of the actin cytoskeleton by acting downstream of CDC42, inducing actin filament assembly. Alters CDC42-induced cell shape changes. In activated T-cells, may play a role in CDC42-mediated F-actin accumulation at the immunological synapse. May play a role in early contractile events in phagocytosis in macrophages. {ECO:0000269|PubMed:10816584, ECO:0000269|PubMed:15840583}. |
Q9NZM1 | MYOF | S1806 | ochoa | Myoferlin (Fer-1-like protein 3) | Calcium/phospholipid-binding protein that plays a role in the plasmalemma repair mechanism of endothelial cells that permits rapid resealing of membranes disrupted by mechanical stress. Involved in endocytic recycling. Implicated in VEGF signal transduction by regulating the levels of the receptor KDR (By similarity). {ECO:0000250}. |
Q9NZN3 | EHD3 | S479 | ochoa | EH domain-containing protein 3 (PAST homolog 3) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (PubMed:25686250). In vitro causes tubulation of endocytic membranes (PubMed:24019528). Binding to phosphatidic acid induces its membrane tubulation activity (By similarity). Plays a role in endocytic transport. Involved in early endosome to recycling endosome compartment (ERC), retrograde early endosome to Golgi, and endosome to plasma membrane (rapid recycling) protein transport. Involved in the regulation of Golgi maintenance and morphology (PubMed:16251358, PubMed:17233914, PubMed:19139087, PubMed:23781025). Involved in the recycling of internalized D1 dopamine receptor (PubMed:21791287). Plays a role in cardiac protein trafficking probably implicating ANK2 (PubMed:20489164). Involved in the ventricular membrane targeting of SLC8A1 and CACNA1C and probably the atrial membrane localization of CACNA1GG and CACNA1H implicated in the regulation of atrial myocyte excitability and cardiac conduction (By similarity). In conjunction with EHD4 may be involved in endocytic trafficking of KDR/VEGFR2 implicated in control of glomerular function (By similarity). Involved in the rapid recycling of integrin beta-3 implicated in cell adhesion maintenance (PubMed:23781025). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle, an early step in cilium biogenesis; possibly sharing redundant functions with EHD1 (PubMed:25686250). {ECO:0000250|UniProtKB:Q9QXY6, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:19139087, ECO:0000269|PubMed:21791287, ECO:0000269|PubMed:23781025, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000305|PubMed:20489164}. |
Q9NZN4 | EHD2 | S484 | ochoa | EH domain-containing protein 2 (PAST homolog 2) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (By similarity). Plays a role in membrane trafficking between the plasma membrane and endosomes (PubMed:17233914). Important for the internalization of GLUT4. Required for fusion of myoblasts to skeletal muscle myotubes. Required for normal translocation of FER1L5 to the plasma membrane (By similarity). Regulates the equilibrium between cell surface-associated and cell surface-dissociated caveolae by constraining caveolae at the cell membrane (PubMed:25588833). {ECO:0000250|UniProtKB:Q8BH64, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:25588833}. |
Q9P0U3 | SENP1 | S132 | ochoa | Sentrin-specific protease 1 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP1) | Protease that catalyzes two essential functions in the SUMO pathway (PubMed:10652325, PubMed:15199155, PubMed:15487983, PubMed:16253240, PubMed:16553580, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins (PubMed:15487983). The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein (PubMed:15199155, PubMed:16253240, PubMed:21829689, PubMed:21965678, PubMed:23160374, PubMed:24943844, PubMed:25406032, PubMed:29506078, PubMed:34048572, PubMed:37257451). Deconjugates SUMO1 from HIPK2 (PubMed:16253240). Deconjugates SUMO1 from HDAC1 and BHLHE40/DEC1, which decreases its transcriptional repression activity (PubMed:15199155, PubMed:21829689). Deconjugates SUMO1 from CLOCK, which decreases its transcriptional activation activity (PubMed:23160374). Deconjugates SUMO2 from MTA1 (PubMed:21965678). Inhibits N(6)-methyladenosine (m6A) RNA methylation by mediating SUMO1 deconjugation from METTL3 and ALKBH5: METTL3 inhibits the m6A RNA methyltransferase activity, while ALKBH5 desumoylation promotes m6A demethylation (PubMed:29506078, PubMed:34048572, PubMed:37257451). Desumoylates CCAR2 which decreases its interaction with SIRT1 (PubMed:25406032). Deconjugates SUMO1 from GPS2 (PubMed:24943844). {ECO:0000269|PubMed:10652325, ECO:0000269|PubMed:15199155, ECO:0000269|PubMed:15487983, ECO:0000269|PubMed:16253240, ECO:0000269|PubMed:16553580, ECO:0000269|PubMed:21829689, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:23160374, ECO:0000269|PubMed:24943844, ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:37257451}. |
Q9P0V9 | SEPTIN10 | S24 | ochoa | Septin-10 | Filament-forming cytoskeletal GTPase. May play a role in cytokinesis (Potential). {ECO:0000305}. |
Q9P2E9 | RRBP1 | S655 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9UHF7 | TRPS1 | S389 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHW9 | SLC12A6 | S1064 | ochoa | Solute carrier family 12 member 6 (Electroneutral potassium-chloride cotransporter 3) (K-Cl cotransporter 3) | [Isoform 1]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10600773, PubMed:11551954, PubMed:16048901, PubMed:18566107, PubMed:19665974, PubMed:21628467, PubMed:27485015). May contribute to cell volume homeostasis in single cells (PubMed:16048901, PubMed:27485015). {ECO:0000269|PubMed:10600773, ECO:0000269|PubMed:11551954, ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:18566107, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21628467, ECO:0000269|PubMed:27485015, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 2]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901, PubMed:33199848, PubMed:34031912). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:33199848, ECO:0000269|PubMed:34031912, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 3]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 4]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 5]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 6]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}. |
Q9UI14 | RABAC1 | S28 | ochoa | Prenylated Rab acceptor protein 1 (PRA1 family protein 1) | General Rab protein regulator required for vesicle formation from the Golgi complex. May control vesicle docking and fusion by mediating the action of Rab GTPases to the SNARE complexes. In addition it inhibits the removal of Rab GTPases from the membrane by GDI. {ECO:0000250|UniProtKB:O35394}. |
Q9UKJ3 | GPATCH8 | S62 | ochoa | G patch domain-containing protein 8 | None |
Q9UKX2 | MYH2 | S181 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9ULF5 | SLC39A10 | S539 | ochoa | Zinc transporter ZIP10 (Solute carrier family 39 member 10) (Zrt- and Irt-like protein 10) (ZIP-10) | Zinc-influx transporter (PubMed:17359283, PubMed:27274087, PubMed:30520657). When associated with SLC39A6, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial-to-mesenchymal transition (EMT) (PubMed:23186163). SLC39A10-SLC39A6 heterodimers play also an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Plays an important for both mature B-cell maintenance and humoral immune responses (By similarity). When associated with SLC39A10, the heterodimer controls NCAM1 phosphorylation and integration into focal adhesion complexes during EMT (By similarity). {ECO:0000250|UniProtKB:Q6P5F6, ECO:0000269|PubMed:17359283, ECO:0000269|PubMed:23186163, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30520657, ECO:0000269|PubMed:32797246}. |
Q9ULJ3 | ZBTB21 | S320 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULK5 | VANGL2 | S58 | ochoa | Vang-like protein 2 (Loop-tail protein 1 homolog) (Strabismus 1) (Van Gogh-like protein 2) | Involved in the control of early morphogenesis and patterning of both axial midline structures and the development of neural plate. Plays a role in the regulation of planar cell polarity, particularly in the orientation of stereociliary bundles in the cochlea. Required for polarization and movement of myocardializing cells in the outflow tract and seems to act via RHOA signaling to regulate this process. Required for cell surface localization of FZD3 and FZD6 in the inner ear (By similarity). {ECO:0000250|UniProtKB:Q91ZD4}. |
Q9UMZ2 | SYNRG | S817 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UPV0 | CEP164 | S407 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UPZ3 | HPS5 | S679 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9Y250 | LZTS1 | S233 | ochoa | Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) | Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}. |
Q9Y3B2 | EXOSC1 | S98 | ochoa | Exosome complex component CSL4 (Exosome component 1) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC1 as peripheral part of the Exo-9 complex stabilizes the hexameric ring of RNase PH-domain subunits through contacts with EXOSC6 and EXOSC8. |
Q9Y3B9 | RRP15 | S84 | ochoa | RRP15-like protein (Ribosomal RNA-processing protein 15) | None |
Q9Y4B4 | RAD54L2 | S673 | ochoa | Helicase ARIP4 (EC 3.6.4.12) (Androgen receptor-interacting protein 4) (RAD54-like protein 2) | DNA helicase that modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. Not able to remodel mononucleosomes in vitro (By similarity). {ECO:0000250}. |
Q9Y4B5 | MTCL1 | S1616 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B6 | DCAF1 | S1328 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4G8 | RAPGEF2 | S1244 | psp | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y623 | MYH4 | S181 | ochoa | Myosin-4 (Myosin heavy chain 2b) (MyHC-2b) (Myosin heavy chain 4) (Myosin heavy chain IIb) (MyHC-IIb) (Myosin heavy chain, skeletal muscle, fetal) | Muscle contraction. |
Q9Y6Q9 | NCOA3 | S101 | psp | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q14247 | CTTN | S209 | Sugiyama | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
P07900 | HSP90AA1 | S165 | Sugiyama | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P08238 | HSP90AB1 | S160 | Sugiyama | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
Q14568 | HSP90AA2P | S165 | Sugiyama | Heat shock protein HSP 90-alpha A2 (Heat shock 90 kDa protein 1 alpha-like 3) (Heat shock protein HSP 90-alpha A2 pseudogene) (Heat shock protein family C member 2) | Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}. |
Q13242 | SRSF9 | S172 | Sugiyama | Serine/arginine-rich splicing factor 9 (Pre-mRNA-splicing factor SRp30C) (Splicing factor, arginine/serine-rich 9) | Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:10196175, ECO:0000269|PubMed:11875052, ECO:0000269|PubMed:12024014, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:15009090, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:15695522, ECO:0000269|PubMed:7556075}. |
P11047 | LAMC1 | S942 | Sugiyama | Laminin subunit gamma-1 (Laminin B2 chain) (Laminin-1 subunit gamma) (Laminin-10 subunit gamma) (Laminin-11 subunit gamma) (Laminin-2 subunit gamma) (Laminin-3 subunit gamma) (Laminin-4 subunit gamma) (Laminin-6 subunit gamma) (Laminin-7 subunit gamma) (Laminin-8 subunit gamma) (Laminin-9 subunit gamma) (S-laminin subunit gamma) (S-LAM gamma) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. |
P33240 | CSTF2 | S37 | Sugiyama | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
Q06830 | PRDX1 | S126 | Sugiyama | Peroxiredoxin-1 (EC 1.11.1.24) (Natural killer cell-enhancing factor A) (NKEF-A) (Proliferation-associated gene protein) (PAG) (Thioredoxin peroxidase 2) (Thioredoxin-dependent peroxide reductase 2) (Thioredoxin-dependent peroxiredoxin 1) | Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. Might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of H(2)O(2) (PubMed:9497357). Reduces an intramolecular disulfide bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic motor neuron differentiation (By similarity). {ECO:0000250|UniProtKB:P0CB50, ECO:0000269|PubMed:9497357}. |
Q15648 | MED1 | S935 | Sugiyama | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q9NRR5 | UBQLN4 | S274 | Sugiyama | Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) | Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}. |
Q9UMX0 | UBQLN1 | S264 | Sugiyama | Ubiquilin-1 (Protein linking IAP with cytoskeleton 1) (PLIC-1) (hPLIC-1) | Plays an important role in the regulation of different protein degradation mechanisms and pathways including ubiquitin-proteasome system (UPS), autophagy and endoplasmic reticulum-associated protein degradation (ERAD) pathway. Mediates the proteasomal targeting of misfolded or accumulated proteins for degradation by binding (via UBA domain) to their polyubiquitin chains and by interacting (via ubiquitin-like domain) with the subunits of the proteasome (PubMed:15147878). Plays a role in the ERAD pathway via its interaction with ER-localized proteins UBXN4, VCP and HERPUD1 and may form a link between the polyubiquitinated ERAD substrates and the proteasome (PubMed:18307982, PubMed:19822669). Involved in the regulation of macroautophagy and autophagosome formation; required for maturation of autophagy-related protein LC3 from the cytosolic form LC3-I to the membrane-bound form LC3-II and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:19148225, PubMed:20529957, PubMed:23459205). Negatively regulates the TICAM1/TRIF-dependent toll-like receptor signaling pathway by decreasing the abundance of TICAM1 via the autophagic pathway (PubMed:21695056). Promotes the ubiquitination and lysosomal degradation of ORAI1, consequently down-regulating the ORAI1-mediated Ca2+ mobilization (PubMed:23307288). Suppresses the maturation and proteasomal degradation of amyloid beta A4 protein (A4) by stimulating the lysine 63 (K63)-linked polyubiquitination. Delays the maturation of A4 by sequestering it in the Golgi apparatus and preventing its transport to the cell surface for subsequent processing (By similarity). Ubiquitinates BCL2L10 and thereby stabilizes protein abundance (PubMed:22233804). {ECO:0000250|UniProtKB:Q9JJP9, ECO:0000269|PubMed:18307982, ECO:0000269|PubMed:19148225, ECO:0000269|PubMed:19822669, ECO:0000269|PubMed:20529957, ECO:0000269|PubMed:21695056, ECO:0000269|PubMed:22233804, ECO:0000269|PubMed:23307288, ECO:0000269|PubMed:23459205, ECO:0000303|PubMed:15147878}.; FUNCTION: [Isoform 1]: Plays a role in unfolded protein response (UPR) by attenuating the induction of UPR-inducible genes, DDTI3/CHOP, HSPA5 and PDIA2 during ER stress (PubMed:18953672). Plays a key role in the regulation of the levels of PSEN1 by targeting its accumulation to aggresomes which may then be removed from cells by autophagocytosis (PubMed:21143716). {ECO:0000269|PubMed:18953672, ECO:0000269|PubMed:21143716}.; FUNCTION: [Isoform 2]: Plays a role in unfolded protein response (UPR) by attenuating the induction of UPR-inducible genes, DDTI3/CHOP, HSPA5 and PDIA2 during ER stress. {ECO:0000269|PubMed:18953672}.; FUNCTION: [Isoform 3]: Plays a role in unfolded protein response (UPR) by attenuating the induction of UPR-inducible genes, DDTI3/CHOP, HSPA5 and PDIA2 during ER stress (PubMed:18953672). Plays a key role in the regulation of the levels of PSEN1 by targeting its accumulation to aggresomes which may then be removed from cells by autophagocytosis (PubMed:21143716). {ECO:0000269|PubMed:18953672, ECO:0000269|PubMed:21143716}. |
Q9Y3F4 | STRAP | S260 | Sugiyama | Serine-threonine kinase receptor-associated protein (MAP activator with WD repeats) (UNR-interacting protein) (WD-40 repeat protein PT-WD) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. STRAP plays a role in the cellular distribution of the SMN complex. Negatively regulates TGF-beta signaling but positively regulates the PDPK1 kinase activity by enhancing its autophosphorylation and by significantly reducing the association of PDPK1 with 14-3-3 protein. {ECO:0000269|PubMed:16251192, ECO:0000269|PubMed:18984161}. |
Q8WW59 | SPRYD4 | S113 | Sugiyama | SPRY domain-containing protein 4 | None |
Q9BZK7 | TBL1XR1 | S451 | Sugiyama | F-box-like/WD repeat-containing protein TBL1XR1 (Nuclear receptor corepressor/HDAC3 complex subunit TBLR1) (TBL1-related protein 1) (Transducin beta-like 1X-related protein 1) | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of the N-Cor corepressor complex that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of N-Cor complex, thereby allowing cofactor exchange, and transcription activation. {ECO:0000269|PubMed:14980219}. |
P33992 | MCM5 | S490 | Sugiyama | DNA replication licensing factor MCM5 (EC 3.6.4.12) (CDC46 homolog) (P1-CDC46) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232}. |
P14625 | HSP90B1 | S650 | Sugiyama | Endoplasmin (EC 3.6.4.-) (94 kDa glucose-regulated protein) (GRP-94) (Heat shock protein 90 kDa beta member 1) (Heat shock protein family C member 4) (Tumor rejection antigen 1) (gp96 homolog) | ATP-dependent chaperone involved in the processing of proteins in the endoplasmic reticulum, regulating their transport (PubMed:23572575, PubMed:39509507). Together with MESD, acts as a modulator of the Wnt pathway by promoting the folding of LRP6, a coreceptor of the canonical Wnt pathway (PubMed:23572575, PubMed:39509507). When associated with CNPY3, required for proper folding of Toll-like receptors (PubMed:11584270). Promotes folding and trafficking of TLR4 to the cell surface (PubMed:11584270). May participate in the unfolding of cytosolic leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1 to facilitate their translocation into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) and secretion; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:11584270, ECO:0000269|PubMed:23572575, ECO:0000269|PubMed:32272059, ECO:0000269|PubMed:39509507}. |
P40227 | CCT6A | S49 | Sugiyama | T-complex protein 1 subunit zeta (TCP-1-zeta) (EC 3.6.1.-) (Acute morphine dependence-related protein 2) (CCT-zeta-1) (Chaperonin containing T-complex polypeptide 1 subunit 6A) (HTR3) (Tcp20) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
O00116 | AGPS | S632 | Sugiyama | Alkyldihydroxyacetonephosphate synthase, peroxisomal (Alkyl-DHAP synthase) (EC 2.5.1.26) (Aging-associated gene 5 protein) (Alkylglycerone-phosphate synthase) | Catalyzes the exchange of the acyl chain in acyl-dihydroxyacetonephosphate (acyl-DHAP) for a long chain fatty alcohol, yielding the first ether linked intermediate, i.e. alkyl-dihydroxyacetonephosphate (alkyl-DHAP), in the pathway of ether lipid biosynthesis. {ECO:0000269|PubMed:8399344, ECO:0000269|PubMed:9553082}. |
O75340 | PDCD6 | S120 | Sugiyama | Programmed cell death protein 6 (Apoptosis-linked gene 2 protein homolog) (ALG-2) | Calcium sensor that plays a key role in processes such as endoplasmic reticulum (ER)-Golgi vesicular transport, endosomal biogenesis or membrane repair. Acts as an adapter that bridges unrelated proteins or stabilizes weak protein-protein complexes in response to calcium: calcium-binding triggers exposure of apolar surface, promoting interaction with different sets of proteins thanks to 3 different hydrophobic pockets, leading to translocation to membranes (PubMed:20691033, PubMed:25667979). Involved in ER-Golgi transport by promoting the association between PDCD6IP and TSG101, thereby bridging together the ESCRT-III and ESCRT-I complexes (PubMed:19520058). Together with PEF1, acts as a calcium-dependent adapter for the BCR(KLHL12) complex, a complex involved in ER-Golgi transport by regulating the size of COPII coats (PubMed:27716508). In response to cytosolic calcium increase, the heterodimer formed with PEF1 interacts with, and bridges together the BCR(KLHL12) complex and SEC31 (SEC31A or SEC31B), promoting monoubiquitination of SEC31 and subsequent collagen export, which is required for neural crest specification (PubMed:27716508). Involved in the regulation of the distribution and function of MCOLN1 in the endosomal pathway (PubMed:19864416). Promotes localization and polymerization of TFG at endoplasmic reticulum exit site (PubMed:27813252). Required for T-cell receptor-, Fas-, and glucocorticoid-induced apoptosis (By similarity). May mediate Ca(2+)-regulated signals along the death pathway: interaction with DAPK1 can accelerate apoptotic cell death by increasing caspase-3 activity (PubMed:16132846). Its role in apoptosis may however be indirect, as suggested by knockout experiments (By similarity). May inhibit KDR/VEGFR2-dependent angiogenesis; the function involves inhibition of VEGF-induced phosphorylation of the Akt signaling pathway (PubMed:21893193). In case of infection by HIV-1 virus, indirectly inhibits HIV-1 production by affecting viral Gag expression and distribution (PubMed:27784779). {ECO:0000250|UniProtKB:P12815, ECO:0000269|PubMed:16132846, ECO:0000269|PubMed:19520058, ECO:0000269|PubMed:19864416, ECO:0000269|PubMed:20691033, ECO:0000269|PubMed:21893193, ECO:0000269|PubMed:25667979, ECO:0000269|PubMed:27716508, ECO:0000269|PubMed:27784779, ECO:0000269|PubMed:27813252}.; FUNCTION: [Isoform 2]: Has a lower Ca(2+) affinity than isoform 1 (By similarity). {ECO:0000250|UniProtKB:P12815}. |
P05771 | PRKCB | S270 | Sugiyama | Protein kinase C beta type (PKC-B) (PKC-beta) (EC 2.7.11.13) | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity (PubMed:11598012). Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A (PubMed:20228790). In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. Participates in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4. Phosphorylates SLC2A1/GLUT1, promoting glucose uptake by SLC2A1/GLUT1 (PubMed:25982116). Under high glucose in pancreatic beta-cells, is probably involved in the inhibition of the insulin gene transcription, via regulation of MYC expression. In endothelial cells, activation of PRKCB induces increased phosphorylation of RB1, increased VEGFA-induced cell proliferation, and inhibits PI3K/AKT-dependent nitric oxide synthase (NOS3/eNOS) regulation by insulin, which causes endothelial dysfunction. Also involved in triglyceride homeostasis (By similarity). Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription (PubMed:19176525). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P68404, ECO:0000269|PubMed:11598012, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:20228790, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:36040231}. |
P11137 | MAP2 | S1675 | EPSD | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
Q6UXD5 | SEZ6L2 | S719 | Sugiyama | Seizure 6-like protein 2 | May contribute to specialized endoplasmic reticulum functions in neurons. {ECO:0000250}. |
Q8IZQ8 | MYOCD | S815 | GPS6 | Myocardin | Smooth muscle cells (SM) and cardiac muscle cells-specific transcriptional factor which uses the canonical single or multiple CArG boxes DNA sequence. Acts as a cofactor of serum response factor (SRF) with the potential to modulate SRF-target genes. Plays a crucial role in cardiogenesis, urinary bladder development, and differentiation of the smooth muscle cell lineage (myogenesis) (By similarity). Positively regulates the transcription of genes involved in vascular smooth muscle contraction (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q8R5I7, ECO:0000269|PubMed:12640126, ECO:0000269|PubMed:31513549}. |
P33981 | TTK | S214 | SIGNOR | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P10636 | MAPT | S575 | GPS6|ELM|EPSD | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
Q5H9R7 | PPP6R3 | S502 | Sugiyama | Serine/threonine-protein phosphatase 6 regulatory subunit 3 (SAPS domain family member 3) (Sporulation-induced transcript 4-associated protein SAPL) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. May have an important role in maintaining immune self-tolerance. {ECO:0000269|PubMed:11401438, ECO:0000269|PubMed:16769727}. |
P30101 | PDIA3 | S343 | Sugiyama | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
Q13310 | PABPC4 | S212 | Sugiyama | Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) | Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}. |
Q9Y262 | EIF3L | S255 | Sugiyama | Eukaryotic translation initiation factor 3 subunit L (eIF3l) (Eukaryotic translation initiation factor 3 subunit 6-interacting protein) (Eukaryotic translation initiation factor 3 subunit E-interacting protein) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03011, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P06733 | ENO1 | S104 | Sugiyama | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
Q92630 | DYRK2 | S482 | Sugiyama | Dual specificity tyrosine-phosphorylation-regulated kinase 2 (EC 2.7.12.1) | Serine/threonine-protein kinase involved in the regulation of the mitotic cell cycle, cell proliferation, apoptosis, organization of the cytoskeleton and neurite outgrowth. Functions in part via its role in ubiquitin-dependent proteasomal protein degradation. Functions downstream of ATM and phosphorylates p53/TP53 at 'Ser-46', and thereby contributes to the induction of apoptosis in response to DNA damage. Phosphorylates NFATC1, and thereby inhibits its accumulation in the nucleus and its transcription factor activity. Phosphorylates EIF2B5 at 'Ser-544', enabling its subsequent phosphorylation and inhibition by GSK3B. Likewise, phosphorylation of NFATC1, CRMP2/DPYSL2 and CRMP4/DPYSL3 promotes their subsequent phosphorylation by GSK3B. May play a general role in the priming of GSK3 substrates. Inactivates GYS1 by phosphorylation at 'Ser-641', and potentially also a second phosphorylation site, thus regulating glycogen synthesis. Mediates EDVP E3 ligase complex formation and is required for the phosphorylation and subsequent degradation of KATNA1. Phosphorylates TERT at 'Ser-457', promoting TERT ubiquitination by the EDVP complex. Phosphorylates SIAH2, and thereby increases its ubiquitin ligase activity. Promotes the proteasomal degradation of MYC and JUN, and thereby regulates progress through the mitotic cell cycle and cell proliferation. Promotes proteasomal degradation of GLI2 and GLI3, and thereby plays a role in smoothened and sonic hedgehog signaling. Plays a role in cytoskeleton organization and neurite outgrowth via its phosphorylation of DCX and DPYSL2. Phosphorylates CRMP2/DPYSL2, CRMP4/DPYSL3, DCX, EIF2B5, EIF4EBP1, GLI2, GLI3, GYS1, JUN, MDM2, MYC, NFATC1, p53/TP53, TAU/MAPT and KATNA1. Can phosphorylate histone H1, histone H3 and histone H2B (in vitro). Can phosphorylate CARHSP1 (in vitro). {ECO:0000269|PubMed:11311121, ECO:0000269|PubMed:12588975, ECO:0000269|PubMed:14593110, ECO:0000269|PubMed:15910284, ECO:0000269|PubMed:16511445, ECO:0000269|PubMed:16611631, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:18599021, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:22307329, ECO:0000269|PubMed:22878263, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:9748265}. |
Q7Z401 | DENND4A | S186 | Sugiyama | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q15417 | CNN3 | S175 | Sugiyama | Calponin-3 (Calponin, acidic isoform) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
P10646 | TFPI | S237 | Sugiyama | Tissue factor pathway inhibitor (TFPI) (Extrinsic pathway inhibitor) (EPI) (Lipoprotein-associated coagulation inhibitor) (LACI) | Inhibits factor X (X(a)) directly and, in a Xa-dependent way, inhibits VIIa/tissue factor activity, presumably by forming a quaternary Xa/LACI/VIIa/TF complex. It possesses an antithrombotic action and also the ability to associate with lipoproteins in plasma. {ECO:0000269|PubMed:20676107}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-8953897 | Cellular responses to stimuli | 1.724443e-11 | 10.763 |
R-HSA-3371568 | Attenuation phase | 5.216105e-11 | 10.283 |
R-HSA-2262752 | Cellular responses to stress | 1.151307e-10 | 9.939 |
R-HSA-3371571 | HSF1-dependent transactivation | 2.116497e-10 | 9.674 |
R-HSA-3371556 | Cellular response to heat stress | 4.630611e-10 | 9.334 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 8.264109e-09 | 8.083 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 5.814898e-08 | 7.235 |
R-HSA-3371511 | HSF1 activation | 7.462699e-08 | 7.127 |
R-HSA-9675108 | Nervous system development | 8.928548e-08 | 7.049 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 1.123501e-07 | 6.949 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 8.732229e-07 | 6.059 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 9.076781e-07 | 6.042 |
R-HSA-422475 | Axon guidance | 8.194456e-07 | 6.086 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 9.971353e-07 | 6.001 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 4.927861e-06 | 5.307 |
R-HSA-9020591 | Interleukin-12 signaling | 5.324110e-06 | 5.274 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 6.090016e-06 | 5.215 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 1.465247e-05 | 4.834 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 1.465247e-05 | 4.834 |
R-HSA-1266738 | Developmental Biology | 1.901373e-05 | 4.721 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 2.019986e-05 | 4.695 |
R-HSA-447115 | Interleukin-12 family signaling | 2.477696e-05 | 4.606 |
R-HSA-162582 | Signal Transduction | 2.653492e-05 | 4.576 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 3.431935e-05 | 4.464 |
R-HSA-9833482 | PKR-mediated signaling | 3.777442e-05 | 4.423 |
R-HSA-446728 | Cell junction organization | 5.324810e-05 | 4.274 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 6.658597e-05 | 4.177 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 8.005653e-05 | 4.097 |
R-HSA-69278 | Cell Cycle, Mitotic | 8.452883e-05 | 4.073 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 1.032074e-04 | 3.986 |
R-HSA-190828 | Gap junction trafficking | 1.061424e-04 | 3.974 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 1.287786e-04 | 3.890 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 1.343581e-04 | 3.872 |
R-HSA-1257604 | PIP3 activates AKT signaling | 1.359994e-04 | 3.866 |
R-HSA-9006925 | Intracellular signaling by second messengers | 1.297000e-04 | 3.887 |
R-HSA-109581 | Apoptosis | 1.402326e-04 | 3.853 |
R-HSA-418990 | Adherens junctions interactions | 1.363617e-04 | 3.865 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 1.405115e-04 | 3.852 |
R-HSA-9018519 | Estrogen-dependent gene expression | 1.502604e-04 | 3.823 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 1.559315e-04 | 3.807 |
R-HSA-5357801 | Programmed Cell Death | 1.538260e-04 | 3.813 |
R-HSA-2467813 | Separation of Sister Chromatids | 1.617692e-04 | 3.791 |
R-HSA-437239 | Recycling pathway of L1 | 1.661059e-04 | 3.780 |
R-HSA-1500931 | Cell-Cell communication | 1.763035e-04 | 3.754 |
R-HSA-68886 | M Phase | 1.907734e-04 | 3.719 |
R-HSA-157858 | Gap junction trafficking and regulation | 2.201946e-04 | 3.657 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 2.622346e-04 | 3.581 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 2.522223e-04 | 3.598 |
R-HSA-390450 | Folding of actin by CCT/TriC | 2.768355e-04 | 3.558 |
R-HSA-1640170 | Cell Cycle | 2.903528e-04 | 3.537 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 3.035512e-04 | 3.518 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 3.164322e-04 | 3.500 |
R-HSA-438064 | Post NMDA receptor activation events | 3.322616e-04 | 3.479 |
R-HSA-421270 | Cell-cell junction organization | 3.728484e-04 | 3.428 |
R-HSA-8939211 | ESR-mediated signaling | 4.086181e-04 | 3.389 |
R-HSA-72649 | Translation initiation complex formation | 4.229984e-04 | 3.374 |
R-HSA-68877 | Mitotic Prometaphase | 4.380598e-04 | 3.358 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 4.276450e-04 | 3.369 |
R-HSA-190861 | Gap junction assembly | 4.639347e-04 | 3.334 |
R-HSA-525793 | Myogenesis | 5.361274e-04 | 3.271 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 5.387628e-04 | 3.269 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 5.390304e-04 | 3.268 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 5.390304e-04 | 3.268 |
R-HSA-373760 | L1CAM interactions | 6.296608e-04 | 3.201 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 6.412629e-04 | 3.193 |
R-HSA-426486 | Small interfering RNA (siRNA) biogenesis | 6.699499e-04 | 3.174 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 6.699499e-04 | 3.174 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 6.802546e-04 | 3.167 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 7.041491e-04 | 3.152 |
R-HSA-69275 | G2/M Transition | 7.128243e-04 | 3.147 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 8.273261e-04 | 3.082 |
R-HSA-453274 | Mitotic G2-G2/M phases | 8.007487e-04 | 3.097 |
R-HSA-390466 | Chaperonin-mediated protein folding | 1.095686e-03 | 2.960 |
R-HSA-1169408 | ISG15 antiviral mechanism | 1.101470e-03 | 2.958 |
R-HSA-5610787 | Hedgehog 'off' state | 1.237569e-03 | 2.907 |
R-HSA-9663891 | Selective autophagy | 1.194628e-03 | 2.923 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 1.259299e-03 | 2.900 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 1.265646e-03 | 2.898 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 1.397990e-03 | 2.854 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 1.436120e-03 | 2.843 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 1.446532e-03 | 2.840 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 1.452663e-03 | 2.838 |
R-HSA-68882 | Mitotic Anaphase | 1.634065e-03 | 2.787 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 1.661288e-03 | 2.780 |
R-HSA-2682334 | EPH-Ephrin signaling | 1.807009e-03 | 2.743 |
R-HSA-391251 | Protein folding | 1.807009e-03 | 2.743 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 1.717634e-03 | 2.765 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 1.748229e-03 | 2.757 |
R-HSA-9711123 | Cellular response to chemical stress | 1.867140e-03 | 2.729 |
R-HSA-449147 | Signaling by Interleukins | 2.011379e-03 | 2.697 |
R-HSA-429947 | Deadenylation of mRNA | 2.067832e-03 | 2.684 |
R-HSA-9652169 | Signaling by MAP2K mutants | 2.320696e-03 | 2.634 |
R-HSA-9839394 | TGFBR3 expression | 2.429682e-03 | 2.614 |
R-HSA-9675151 | Disorders of Developmental Biology | 2.305483e-03 | 2.637 |
R-HSA-9764561 | Regulation of CDH1 Function | 2.269689e-03 | 2.644 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 2.525846e-03 | 2.598 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 2.706976e-03 | 2.568 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 2.810285e-03 | 2.551 |
R-HSA-913531 | Interferon Signaling | 3.048906e-03 | 2.516 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 3.318199e-03 | 2.479 |
R-HSA-3928664 | Ephrin signaling | 3.390510e-03 | 2.470 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 3.226776e-03 | 2.491 |
R-HSA-389948 | Co-inhibition by PD-1 | 3.477748e-03 | 2.459 |
R-HSA-6807070 | PTEN Regulation | 3.579868e-03 | 2.446 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 3.614910e-03 | 2.442 |
R-HSA-4839735 | Signaling by AXIN mutants | 4.229467e-03 | 2.374 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 4.229467e-03 | 2.374 |
R-HSA-9612973 | Autophagy | 4.089811e-03 | 2.388 |
R-HSA-1632852 | Macroautophagy | 4.014854e-03 | 2.396 |
R-HSA-373755 | Semaphorin interactions | 4.025812e-03 | 2.395 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 4.320662e-03 | 2.364 |
R-HSA-9646399 | Aggrephagy | 4.596111e-03 | 2.338 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 5.018343e-03 | 2.299 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 5.165322e-03 | 2.287 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 5.165322e-03 | 2.287 |
R-HSA-5674135 | MAP2K and MAPK activation | 5.726312e-03 | 2.242 |
R-HSA-9656223 | Signaling by RAF1 mutants | 5.726312e-03 | 2.242 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 5.296068e-03 | 2.276 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 5.231462e-03 | 2.281 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 5.305390e-03 | 2.275 |
R-HSA-168256 | Immune System | 5.266608e-03 | 2.278 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 5.726312e-03 | 2.242 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 6.051896e-03 | 2.218 |
R-HSA-9700206 | Signaling by ALK in cancer | 6.051896e-03 | 2.218 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 6.444364e-03 | 2.191 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 6.444364e-03 | 2.191 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 6.528977e-03 | 2.185 |
R-HSA-193648 | NRAGE signals death through JNK | 7.047813e-03 | 2.152 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 7.127418e-03 | 2.147 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 7.127418e-03 | 2.147 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 7.318453e-03 | 2.136 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 7.938497e-03 | 2.100 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 7.938497e-03 | 2.100 |
R-HSA-162909 | Host Interactions of HIV factors | 7.537716e-03 | 2.123 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 7.674373e-03 | 2.115 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 7.261236e-03 | 2.139 |
R-HSA-8953854 | Metabolism of RNA | 7.956368e-03 | 2.099 |
R-HSA-5358351 | Signaling by Hedgehog | 8.049179e-03 | 2.094 |
R-HSA-390522 | Striated Muscle Contraction | 8.160258e-03 | 2.088 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 8.160258e-03 | 2.088 |
R-HSA-194441 | Metabolism of non-coding RNA | 9.118530e-03 | 2.040 |
R-HSA-191859 | snRNP Assembly | 9.118530e-03 | 2.040 |
R-HSA-72172 | mRNA Splicing | 9.214384e-03 | 2.036 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 8.413386e-03 | 2.075 |
R-HSA-180746 | Nuclear import of Rev protein | 9.136567e-03 | 2.039 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 9.450758e-03 | 2.025 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 9.450758e-03 | 2.025 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 9.450758e-03 | 2.025 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 8.464674e-03 | 2.072 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 9.118530e-03 | 2.040 |
R-HSA-194138 | Signaling by VEGF | 8.427678e-03 | 2.074 |
R-HSA-6802949 | Signaling by RAS mutants | 9.450758e-03 | 2.025 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 9.273835e-03 | 2.033 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 9.125185e-03 | 2.040 |
R-HSA-75153 | Apoptotic execution phase | 9.450758e-03 | 2.025 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 9.475733e-03 | 2.023 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 9.475733e-03 | 2.023 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 9.534208e-03 | 2.021 |
R-HSA-446353 | Cell-extracellular matrix interactions | 9.534208e-03 | 2.021 |
R-HSA-983189 | Kinesins | 9.900487e-03 | 2.004 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 1.019358e-02 | 1.992 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 1.036880e-02 | 1.984 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 1.065583e-02 | 1.972 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 1.095139e-02 | 1.961 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 1.133464e-02 | 1.946 |
R-HSA-72737 | Cap-dependent Translation Initiation | 1.157327e-02 | 1.937 |
R-HSA-72613 | Eukaryotic Translation Initiation | 1.157327e-02 | 1.937 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 1.186415e-02 | 1.926 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 1.216316e-02 | 1.915 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 1.222447e-02 | 1.913 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 1.222447e-02 | 1.913 |
R-HSA-6804754 | Regulation of TP53 Expression | 1.306246e-02 | 1.884 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 1.457562e-02 | 1.836 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 1.529446e-02 | 1.815 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 1.538389e-02 | 1.813 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 1.538389e-02 | 1.813 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 1.680359e-02 | 1.775 |
R-HSA-376176 | Signaling by ROBO receptors | 1.700493e-02 | 1.769 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 1.728400e-02 | 1.762 |
R-HSA-445355 | Smooth Muscle Contraction | 1.728400e-02 | 1.762 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 1.984679e-02 | 1.702 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 1.984679e-02 | 1.702 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 2.040040e-02 | 1.690 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 1.938591e-02 | 1.713 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 1.938591e-02 | 1.713 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 1.938591e-02 | 1.713 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 1.794338e-02 | 1.746 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 2.067958e-02 | 1.684 |
R-HSA-9627069 | Regulation of the apoptosome activity | 1.896070e-02 | 1.722 |
R-HSA-111458 | Formation of apoptosome | 1.896070e-02 | 1.722 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 1.794338e-02 | 1.746 |
R-HSA-111471 | Apoptotic factor-mediated response | 1.794338e-02 | 1.746 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 1.920617e-02 | 1.717 |
R-HSA-69620 | Cell Cycle Checkpoints | 1.870729e-02 | 1.728 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 1.841221e-02 | 1.735 |
R-HSA-73887 | Death Receptor Signaling | 1.817656e-02 | 1.740 |
R-HSA-1280218 | Adaptive Immune System | 2.002766e-02 | 1.698 |
R-HSA-3214841 | PKMTs methylate histone lysines | 1.841221e-02 | 1.735 |
R-HSA-844455 | The NLRP1 inflammasome | 1.984679e-02 | 1.702 |
R-HSA-195721 | Signaling by WNT | 2.091955e-02 | 1.679 |
R-HSA-141424 | Amplification of signal from the kinetochores | 2.167196e-02 | 1.664 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 2.167196e-02 | 1.664 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 2.197731e-02 | 1.658 |
R-HSA-162906 | HIV Infection | 2.219082e-02 | 1.654 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 2.261421e-02 | 1.646 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 2.261421e-02 | 1.646 |
R-HSA-4839744 | Signaling by APC mutants | 2.295842e-02 | 1.639 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 2.295842e-02 | 1.639 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 2.295842e-02 | 1.639 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 2.295842e-02 | 1.639 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 2.737771e-02 | 1.563 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 2.737771e-02 | 1.563 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 2.345620e-02 | 1.630 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 2.749461e-02 | 1.561 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 2.749461e-02 | 1.561 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 2.511012e-02 | 1.600 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 2.737771e-02 | 1.563 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 2.737771e-02 | 1.563 |
R-HSA-3928662 | EPHB-mediated forward signaling | 2.589472e-02 | 1.587 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 2.737771e-02 | 1.563 |
R-HSA-4791275 | Signaling by WNT in cancer | 2.497795e-02 | 1.602 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 2.655706e-02 | 1.576 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 2.445549e-02 | 1.612 |
R-HSA-4839748 | Signaling by AMER1 mutants | 2.737771e-02 | 1.563 |
R-HSA-9609690 | HCMV Early Events | 2.531483e-02 | 1.597 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 2.339326e-02 | 1.631 |
R-HSA-5675482 | Regulation of necroptotic cell death | 2.749461e-02 | 1.561 |
R-HSA-397014 | Muscle contraction | 2.457679e-02 | 1.609 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 2.655706e-02 | 1.576 |
R-HSA-4839726 | Chromatin organization | 2.529444e-02 | 1.597 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 2.512633e-02 | 1.600 |
R-HSA-70171 | Glycolysis | 2.319248e-02 | 1.635 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 2.545496e-02 | 1.594 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 2.779348e-02 | 1.556 |
R-HSA-5660489 | MTF1 activates gene expression | 2.779348e-02 | 1.556 |
R-HSA-3247509 | Chromatin modifying enzymes | 2.810090e-02 | 1.551 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 2.854084e-02 | 1.545 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 3.016683e-02 | 1.520 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 3.016683e-02 | 1.520 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 3.016683e-02 | 1.520 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 3.029822e-02 | 1.519 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 3.029822e-02 | 1.519 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 3.029822e-02 | 1.519 |
R-HSA-9839373 | Signaling by TGFBR3 | 3.029822e-02 | 1.519 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 3.042199e-02 | 1.517 |
R-HSA-9856651 | MITF-M-dependent gene expression | 3.154677e-02 | 1.501 |
R-HSA-1474244 | Extracellular matrix organization | 3.155482e-02 | 1.501 |
R-HSA-68875 | Mitotic Prophase | 3.195913e-02 | 1.495 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 3.221670e-02 | 1.492 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 3.221670e-02 | 1.492 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 3.221670e-02 | 1.492 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 3.221670e-02 | 1.492 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 3.221670e-02 | 1.492 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 3.221670e-02 | 1.492 |
R-HSA-9005895 | Pervasive developmental disorders | 3.221670e-02 | 1.492 |
R-HSA-9697154 | Disorders of Nervous System Development | 3.221670e-02 | 1.492 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 3.267285e-02 | 1.486 |
R-HSA-6784531 | tRNA processing in the nucleus | 3.293395e-02 | 1.482 |
R-HSA-166208 | mTORC1-mediated signalling | 3.346340e-02 | 1.475 |
R-HSA-5467345 | Deletions in the AXIN1 gene destabilize the destruction complex | 4.188588e-02 | 1.378 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 4.188588e-02 | 1.378 |
R-HSA-9723905 | Loss of function of TP53 in cancer due to loss of tetramerization ability | 4.188588e-02 | 1.378 |
R-HSA-9723907 | Loss of Function of TP53 in Cancer | 4.188588e-02 | 1.378 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 3.679353e-02 | 1.434 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 3.679353e-02 | 1.434 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 3.727287e-02 | 1.429 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 3.598707e-02 | 1.444 |
R-HSA-2559585 | Oncogene Induced Senescence | 3.598707e-02 | 1.444 |
R-HSA-170968 | Frs2-mediated activation | 3.747122e-02 | 1.426 |
R-HSA-5617833 | Cilium Assembly | 3.860277e-02 | 1.413 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 3.516512e-02 | 1.454 |
R-HSA-211000 | Gene Silencing by RNA | 3.471202e-02 | 1.460 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 3.651155e-02 | 1.438 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 3.910090e-02 | 1.408 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 3.727287e-02 | 1.429 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 3.793256e-02 | 1.421 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 3.912727e-02 | 1.408 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 3.471357e-02 | 1.460 |
R-HSA-416482 | G alpha (12/13) signalling events | 3.389754e-02 | 1.470 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 4.130879e-02 | 1.384 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 4.227766e-02 | 1.374 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 4.245356e-02 | 1.372 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 4.245356e-02 | 1.372 |
R-HSA-6807878 | COPI-mediated anterograde transport | 4.343192e-02 | 1.362 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 4.555359e-02 | 1.341 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 4.560881e-02 | 1.341 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 4.593240e-02 | 1.338 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 4.593240e-02 | 1.338 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 4.633950e-02 | 1.334 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 4.674501e-02 | 1.330 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 4.674501e-02 | 1.330 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 4.674501e-02 | 1.330 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 4.674501e-02 | 1.330 |
R-HSA-5218859 | Regulated Necrosis | 4.742774e-02 | 1.324 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 4.764352e-02 | 1.322 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 4.920052e-02 | 1.308 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 4.920052e-02 | 1.308 |
R-HSA-6802957 | Oncogenic MAPK signaling | 4.939234e-02 | 1.306 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 4.957608e-02 | 1.305 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 4.957608e-02 | 1.305 |
R-HSA-199991 | Membrane Trafficking | 4.968881e-02 | 1.304 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 5.013494e-02 | 1.300 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 5.232928e-02 | 1.281 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 5.338502e-02 | 1.273 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 5.338502e-02 | 1.273 |
R-HSA-9020702 | Interleukin-1 signaling | 5.472672e-02 | 1.262 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 5.489850e-02 | 1.260 |
R-HSA-169893 | Prolonged ERK activation events | 5.565795e-02 | 1.254 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 5.601598e-02 | 1.252 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 5.705531e-02 | 1.244 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 5.719446e-02 | 1.243 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 5.735935e-02 | 1.241 |
R-HSA-164944 | Nef and signal transduction | 5.755269e-02 | 1.240 |
R-HSA-70326 | Glucose metabolism | 5.864536e-02 | 1.232 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 5.904459e-02 | 1.229 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 5.904459e-02 | 1.229 |
R-HSA-114294 | Activation, translocation and oligomerization of BAX | 8.201978e-02 | 1.086 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 8.201978e-02 | 1.086 |
R-HSA-4793954 | Defective MOGS causes CDG-2b | 8.201978e-02 | 1.086 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 6.912761e-02 | 1.160 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 6.912761e-02 | 1.160 |
R-HSA-446107 | Type I hemidesmosome assembly | 8.138672e-02 | 1.089 |
R-HSA-196025 | Formation of annular gap junctions | 8.138672e-02 | 1.089 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 6.513023e-02 | 1.186 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 7.949030e-02 | 1.100 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 6.249663e-02 | 1.204 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 7.388193e-02 | 1.131 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 7.247018e-02 | 1.140 |
R-HSA-212165 | Epigenetic regulation of gene expression | 6.801512e-02 | 1.167 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 6.580320e-02 | 1.182 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 7.059311e-02 | 1.151 |
R-HSA-165159 | MTOR signalling | 6.580320e-02 | 1.182 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 7.465324e-02 | 1.127 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 6.777676e-02 | 1.169 |
R-HSA-373756 | SDK interactions | 8.201978e-02 | 1.086 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 7.969562e-02 | 1.099 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 7.875696e-02 | 1.104 |
R-HSA-168898 | Toll-like Receptor Cascades | 7.179483e-02 | 1.144 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 6.249663e-02 | 1.204 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 7.969562e-02 | 1.099 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 6.912761e-02 | 1.160 |
R-HSA-2132295 | MHC class II antigen presentation | 7.388193e-02 | 1.131 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 7.819951e-02 | 1.107 |
R-HSA-9609646 | HCMV Infection | 7.706628e-02 | 1.113 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 8.138672e-02 | 1.089 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 6.912761e-02 | 1.160 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 7.490273e-02 | 1.126 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 6.912761e-02 | 1.160 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 8.138672e-02 | 1.089 |
R-HSA-9013694 | Signaling by NOTCH4 | 6.545516e-02 | 1.184 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 6.513023e-02 | 1.186 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 7.606077e-02 | 1.119 |
R-HSA-210745 | Regulation of gene expression in beta cells | 6.513023e-02 | 1.186 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 8.262573e-02 | 1.083 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 8.262573e-02 | 1.083 |
R-HSA-9707616 | Heme signaling | 8.298508e-02 | 1.081 |
R-HSA-9006936 | Signaling by TGFB family members | 8.505959e-02 | 1.070 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 8.517621e-02 | 1.070 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 8.690225e-02 | 1.061 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 8.733688e-02 | 1.059 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 8.733688e-02 | 1.059 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 8.733688e-02 | 1.059 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 8.832726e-02 | 1.054 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 8.832726e-02 | 1.054 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 8.832726e-02 | 1.054 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 9.259598e-02 | 1.033 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 9.341165e-02 | 1.030 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 9.341165e-02 | 1.030 |
R-HSA-445144 | Signal transduction by L1 | 9.341165e-02 | 1.030 |
R-HSA-9613354 | Lipophagy | 9.425260e-02 | 1.026 |
R-HSA-190873 | Gap junction degradation | 9.425260e-02 | 1.026 |
R-HSA-112411 | MAPK1 (ERK2) activation | 9.425260e-02 | 1.026 |
R-HSA-9700645 | ALK mutants bind TKIs | 9.425260e-02 | 1.026 |
R-HSA-176974 | Unwinding of DNA | 9.425260e-02 | 1.026 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 9.425260e-02 | 1.026 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 9.425260e-02 | 1.026 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 9.425260e-02 | 1.026 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 9.467260e-02 | 1.024 |
R-HSA-5620924 | Intraflagellar transport | 9.502734e-02 | 1.022 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 9.773222e-02 | 1.010 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 9.845472e-02 | 1.007 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 1.004487e-01 | 0.998 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 1.004487e-01 | 0.998 |
R-HSA-8854518 | AURKA Activation by TPX2 | 1.011245e-01 | 0.995 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 1.012266e-01 | 0.995 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 1.012266e-01 | 0.995 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 1.012266e-01 | 0.995 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 1.017217e-01 | 0.993 |
R-HSA-210991 | Basigin interactions | 1.019605e-01 | 0.992 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 1.028338e-01 | 0.988 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 1.028338e-01 | 0.988 |
R-HSA-5619039 | Defective SLC12A6 causes agenesis of the corpus callosum, with peripheral neurop... | 1.204749e-01 | 0.919 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 1.204749e-01 | 0.919 |
R-HSA-5619056 | Defective HK1 causes hexokinase deficiency (HK deficiency) | 1.204749e-01 | 0.919 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 1.204749e-01 | 0.919 |
R-HSA-5602680 | MyD88 deficiency (TLR5) | 1.204749e-01 | 0.919 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 1.573213e-01 | 0.803 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 1.573213e-01 | 0.803 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 1.573213e-01 | 0.803 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 1.573213e-01 | 0.803 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 1.573213e-01 | 0.803 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 1.573213e-01 | 0.803 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 1.573213e-01 | 0.803 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 1.573213e-01 | 0.803 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 1.573213e-01 | 0.803 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 1.573213e-01 | 0.803 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 1.573213e-01 | 0.803 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 1.076531e-01 | 0.968 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 1.199364e-01 | 0.921 |
R-HSA-6803529 | FGFR2 alternative splicing | 1.199364e-01 | 0.921 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 1.079838e-01 | 0.967 |
R-HSA-4641257 | Degradation of AXIN | 1.220839e-01 | 0.913 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 1.176105e-01 | 0.930 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 1.236206e-01 | 0.908 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 1.360556e-01 | 0.866 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 1.556917e-01 | 0.808 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 1.373889e-01 | 0.862 |
R-HSA-380287 | Centrosome maturation | 1.487378e-01 | 0.828 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 1.360415e-01 | 0.866 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 1.424736e-01 | 0.846 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 1.199364e-01 | 0.921 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 1.117431e-01 | 0.952 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 1.318729e-01 | 0.880 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 1.490202e-01 | 0.827 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 1.288080e-01 | 0.890 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 1.288080e-01 | 0.890 |
R-HSA-190704 | Oligomerization of connexins into connexons | 1.204749e-01 | 0.919 |
R-HSA-162587 | HIV Life Cycle | 1.355362e-01 | 0.868 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 1.079838e-01 | 0.967 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 1.117431e-01 | 0.952 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 1.524470e-01 | 0.817 |
R-HSA-3214815 | HDACs deacetylate histones | 1.360556e-01 | 0.866 |
R-HSA-9636667 | Manipulation of host energy metabolism | 1.204749e-01 | 0.919 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 1.204749e-01 | 0.919 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 1.573213e-01 | 0.803 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 1.504132e-01 | 0.823 |
R-HSA-350054 | Notch-HLH transcription pathway | 1.199364e-01 | 0.921 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 1.149383e-01 | 0.940 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 1.220839e-01 | 0.913 |
R-HSA-68949 | Orc1 removal from chromatin | 1.176105e-01 | 0.930 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 1.369229e-01 | 0.864 |
R-HSA-9909396 | Circadian clock | 1.077197e-01 | 0.968 |
R-HSA-69541 | Stabilization of p53 | 1.369229e-01 | 0.864 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 1.211685e-01 | 0.917 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 1.389777e-01 | 0.857 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 1.283360e-01 | 0.892 |
R-HSA-9682385 | FLT3 signaling in disease | 1.149383e-01 | 0.940 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 1.109143e-01 | 0.955 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 1.179418e-01 | 0.928 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 1.108073e-01 | 0.955 |
R-HSA-9635465 | Suppression of apoptosis | 1.215210e-01 | 0.915 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 1.369229e-01 | 0.864 |
R-HSA-112315 | Transmission across Chemical Synapses | 1.560381e-01 | 0.807 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 1.211685e-01 | 0.917 |
R-HSA-4086398 | Ca2+ pathway | 1.373889e-01 | 0.862 |
R-HSA-9607240 | FLT3 Signaling | 1.524470e-01 | 0.817 |
R-HSA-9603505 | NTRK3 as a dependence receptor | 1.204749e-01 | 0.919 |
R-HSA-75108 | Activation, myristolyation of BID and translocation to mitochondria | 1.573213e-01 | 0.803 |
R-HSA-9683686 | Maturation of spike protein | 1.076531e-01 | 0.968 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 1.076531e-01 | 0.968 |
R-HSA-400685 | Sema4D in semaphorin signaling | 1.488577e-01 | 0.827 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 1.236206e-01 | 0.908 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 1.176105e-01 | 0.930 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 1.357937e-01 | 0.867 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 1.293318e-01 | 0.888 |
R-HSA-168255 | Influenza Infection | 1.476199e-01 | 0.831 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 1.377607e-01 | 0.861 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 1.215210e-01 | 0.915 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 1.216381e-01 | 0.915 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 1.369229e-01 | 0.864 |
R-HSA-157118 | Signaling by NOTCH | 1.534123e-01 | 0.814 |
R-HSA-446652 | Interleukin-1 family signaling | 1.179418e-01 | 0.928 |
R-HSA-9678108 | SARS-CoV-1 Infection | 1.335279e-01 | 0.874 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 1.573580e-01 | 0.803 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 1.589560e-01 | 0.799 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 1.589560e-01 | 0.799 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 1.589560e-01 | 0.799 |
R-HSA-69481 | G2/M Checkpoints | 1.597797e-01 | 0.796 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 1.604484e-01 | 0.795 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 1.604484e-01 | 0.795 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 1.604484e-01 | 0.795 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 1.604484e-01 | 0.795 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 1.619452e-01 | 0.791 |
R-HSA-5683057 | MAPK family signaling cascades | 1.650576e-01 | 0.782 |
R-HSA-9796292 | Formation of axial mesoderm | 1.653255e-01 | 0.782 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 1.653255e-01 | 0.782 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 1.653255e-01 | 0.782 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 1.653255e-01 | 0.782 |
R-HSA-4086400 | PCP/CE pathway | 1.665177e-01 | 0.779 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 1.692564e-01 | 0.771 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 1.692564e-01 | 0.771 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 1.692564e-01 | 0.771 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 1.692564e-01 | 0.771 |
R-HSA-264876 | Insulin processing | 1.692564e-01 | 0.771 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 1.693933e-01 | 0.771 |
R-HSA-379724 | tRNA Aminoacylation | 1.693933e-01 | 0.771 |
R-HSA-5603037 | IRAK4 deficiency (TLR5) | 1.926262e-01 | 0.715 |
R-HSA-1296061 | HCN channels | 2.264540e-01 | 0.645 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 2.264540e-01 | 0.645 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 2.588665e-01 | 0.587 |
R-HSA-164525 | Plus-strand DNA synthesis | 2.899228e-01 | 0.538 |
R-HSA-176417 | Phosphorylation of Emi1 | 2.899228e-01 | 0.538 |
R-HSA-8849470 | PTK6 Regulates Cell Cycle | 2.899228e-01 | 0.538 |
R-HSA-9652817 | Signaling by MAPK mutants | 2.899228e-01 | 0.538 |
R-HSA-9645135 | STAT5 Activation | 3.196794e-01 | 0.495 |
R-HSA-162585 | Uncoating of the HIV Virion | 3.196794e-01 | 0.495 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 1.958319e-01 | 0.708 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 2.113365e-01 | 0.675 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 2.113365e-01 | 0.675 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 2.269549e-01 | 0.644 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 2.269549e-01 | 0.644 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 2.269549e-01 | 0.644 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 2.426502e-01 | 0.615 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 1.797431e-01 | 0.745 |
R-HSA-167287 | HIV elongation arrest and recovery | 1.797431e-01 | 0.745 |
R-HSA-113418 | Formation of the Early Elongation Complex | 1.797431e-01 | 0.745 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 1.797431e-01 | 0.745 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 2.898734e-01 | 0.538 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 3.055648e-01 | 0.515 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 2.113434e-01 | 0.675 |
R-HSA-72187 | mRNA 3'-end processing | 2.567103e-01 | 0.591 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 1.728870e-01 | 0.762 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 2.361181e-01 | 0.627 |
R-HSA-8957275 | Post-translational protein phosphorylation | 1.898761e-01 | 0.722 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 3.263029e-01 | 0.486 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 3.263029e-01 | 0.486 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 3.086962e-01 | 0.510 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 2.833119e-01 | 0.548 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 2.833119e-01 | 0.548 |
R-HSA-167172 | Transcription of the HIV genome | 2.283542e-01 | 0.641 |
R-HSA-167169 | HIV Transcription Elongation | 3.263029e-01 | 0.486 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 2.660163e-01 | 0.575 |
R-HSA-68962 | Activation of the pre-replicative complex | 2.012128e-01 | 0.696 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 3.263029e-01 | 0.486 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 1.853221e-01 | 0.732 |
R-HSA-198753 | ERK/MAPK targets | 3.055648e-01 | 0.515 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 3.147058e-01 | 0.502 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 2.759303e-01 | 0.559 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 2.899228e-01 | 0.538 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 1.797431e-01 | 0.745 |
R-HSA-5633007 | Regulation of TP53 Activity | 2.361258e-01 | 0.627 |
R-HSA-453276 | Regulation of mitotic cell cycle | 2.518584e-01 | 0.599 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 2.518584e-01 | 0.599 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 2.583887e-01 | 0.588 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 2.660163e-01 | 0.575 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 2.045420e-01 | 0.689 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 2.094013e-01 | 0.679 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 2.394725e-01 | 0.621 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 2.277787e-01 | 0.642 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 1.835452e-01 | 0.736 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 3.228784e-01 | 0.491 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 2.269549e-01 | 0.644 |
R-HSA-5689603 | UCH proteinases | 2.922326e-01 | 0.534 |
R-HSA-9711097 | Cellular response to starvation | 3.418712e-01 | 0.466 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 2.264540e-01 | 0.645 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 2.264540e-01 | 0.645 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 2.588665e-01 | 0.587 |
R-HSA-5250992 | Toxicity of botulinum toxin type E (botE) | 2.899228e-01 | 0.538 |
R-HSA-5250955 | Toxicity of botulinum toxin type D (botD) | 3.196794e-01 | 0.495 |
R-HSA-5250981 | Toxicity of botulinum toxin type F (botF) | 3.196794e-01 | 0.495 |
R-HSA-392851 | Prostacyclin signalling through prostacyclin receptor | 2.741393e-01 | 0.562 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 2.113365e-01 | 0.675 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 2.598254e-01 | 0.585 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 2.025547e-01 | 0.693 |
R-HSA-5205647 | Mitophagy | 2.570831e-01 | 0.590 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 1.790359e-01 | 0.747 |
R-HSA-8866376 | Reelin signalling pathway | 2.588665e-01 | 0.587 |
R-HSA-111457 | Release of apoptotic factors from the mitochondria | 2.899228e-01 | 0.538 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 1.958319e-01 | 0.708 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 2.583887e-01 | 0.588 |
R-HSA-164378 | PKA activation in glucagon signalling | 2.583887e-01 | 0.588 |
R-HSA-182971 | EGFR downregulation | 2.121653e-01 | 0.673 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 2.121653e-01 | 0.673 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 3.211895e-01 | 0.493 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 2.439544e-01 | 0.613 |
R-HSA-5260271 | Diseases of Immune System | 3.263029e-01 | 0.486 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 3.263029e-01 | 0.486 |
R-HSA-75893 | TNF signaling | 2.942690e-01 | 0.531 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 3.420609e-01 | 0.466 |
R-HSA-9734767 | Developmental Cell Lineages | 3.291461e-01 | 0.483 |
R-HSA-381042 | PERK regulates gene expression | 2.685196e-01 | 0.571 |
R-HSA-1234174 | Cellular response to hypoxia | 2.055420e-01 | 0.687 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 2.457158e-01 | 0.610 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 2.854780e-01 | 0.544 |
R-HSA-69242 | S Phase | 1.790359e-01 | 0.747 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 3.439426e-01 | 0.464 |
R-HSA-5632684 | Hedgehog 'on' state | 2.518584e-01 | 0.599 |
R-HSA-9692913 | SARS-CoV-1-mediated effects on programmed cell death | 2.264540e-01 | 0.645 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 2.264540e-01 | 0.645 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 3.367256e-01 | 0.473 |
R-HSA-6804757 | Regulation of TP53 Degradation | 2.800125e-01 | 0.553 |
R-HSA-69052 | Switching of origins to a post-replicative state | 2.678509e-01 | 0.572 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 3.439426e-01 | 0.464 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 2.724776e-01 | 0.565 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 1.898761e-01 | 0.722 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 2.955286e-01 | 0.529 |
R-HSA-5653656 | Vesicle-mediated transport | 2.394241e-01 | 0.621 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 1.898761e-01 | 0.722 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 1.898761e-01 | 0.722 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 2.113365e-01 | 0.675 |
R-HSA-1236975 | Antigen processing-Cross presentation | 2.572413e-01 | 0.590 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 1.788456e-01 | 0.748 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 2.899228e-01 | 0.538 |
R-HSA-480985 | Synthesis of dolichyl-phosphate-glucose | 3.196794e-01 | 0.495 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 2.583887e-01 | 0.588 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 2.232429e-01 | 0.651 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 3.055648e-01 | 0.515 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 2.685196e-01 | 0.571 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 2.753828e-01 | 0.560 |
R-HSA-3214847 | HATs acetylate histones | 1.956851e-01 | 0.708 |
R-HSA-69206 | G1/S Transition | 2.540623e-01 | 0.595 |
R-HSA-418597 | G alpha (z) signalling events | 2.848027e-01 | 0.545 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 2.518584e-01 | 0.599 |
R-HSA-9856872 | Malate-aspartate shuttle | 1.804805e-01 | 0.744 |
R-HSA-4641258 | Degradation of DVL | 2.915492e-01 | 0.535 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 3.147058e-01 | 0.502 |
R-HSA-5688426 | Deubiquitination | 2.929617e-01 | 0.533 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 2.572413e-01 | 0.590 |
R-HSA-177929 | Signaling by EGFR | 2.942690e-01 | 0.531 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 2.264540e-01 | 0.645 |
R-HSA-194313 | VEGF ligand-receptor interactions | 2.899228e-01 | 0.538 |
R-HSA-389542 | NADPH regeneration | 3.196794e-01 | 0.495 |
R-HSA-9842640 | Signaling by LTK in cancer | 3.196794e-01 | 0.495 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 1.958319e-01 | 0.708 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 2.800125e-01 | 0.553 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 1.764151e-01 | 0.753 |
R-HSA-112316 | Neuronal System | 2.757398e-01 | 0.560 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 3.055648e-01 | 0.515 |
R-HSA-8876725 | Protein methylation | 1.958319e-01 | 0.708 |
R-HSA-176187 | Activation of ATR in response to replication stress | 2.344311e-01 | 0.630 |
R-HSA-5689896 | Ovarian tumor domain proteases | 2.915492e-01 | 0.535 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 2.636942e-01 | 0.579 |
R-HSA-9824446 | Viral Infection Pathways | 3.028275e-01 | 0.519 |
R-HSA-75157 | FasL/ CD95L signaling | 1.926262e-01 | 0.715 |
R-HSA-8866423 | VLDL assembly | 3.196794e-01 | 0.495 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 1.958319e-01 | 0.708 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 2.012128e-01 | 0.696 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 2.457158e-01 | 0.610 |
R-HSA-169911 | Regulation of Apoptosis | 2.685196e-01 | 0.571 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 2.474721e-01 | 0.606 |
R-HSA-1592230 | Mitochondrial biogenesis | 3.302939e-01 | 0.481 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 2.899297e-01 | 0.538 |
R-HSA-187687 | Signalling to ERKs | 2.685196e-01 | 0.571 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 1.851439e-01 | 0.732 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 2.583887e-01 | 0.588 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 1.938784e-01 | 0.712 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 1.938784e-01 | 0.712 |
R-HSA-622312 | Inflammasomes | 1.797431e-01 | 0.745 |
R-HSA-1226099 | Signaling by FGFR in disease | 2.759303e-01 | 0.559 |
R-HSA-75158 | TRAIL signaling | 2.899228e-01 | 0.538 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 2.899228e-01 | 0.538 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 2.269549e-01 | 0.644 |
R-HSA-6807004 | Negative regulation of MET activity | 2.898734e-01 | 0.538 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 3.263029e-01 | 0.486 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 3.378980e-01 | 0.471 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 3.378980e-01 | 0.471 |
R-HSA-202424 | Downstream TCR signaling | 2.523545e-01 | 0.598 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 3.211895e-01 | 0.493 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 3.211895e-01 | 0.493 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 2.503175e-01 | 0.602 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 2.899228e-01 | 0.538 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 1.816829e-01 | 0.741 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 1.726360e-01 | 0.763 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 2.684684e-01 | 0.571 |
R-HSA-166520 | Signaling by NTRKs | 2.837696e-01 | 0.547 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 2.426502e-01 | 0.615 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 2.567103e-01 | 0.591 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 1.981131e-01 | 0.703 |
R-HSA-140834 | Extrinsic Pathway of Fibrin Clot Formation | 2.264540e-01 | 0.645 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 2.113365e-01 | 0.675 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 2.583887e-01 | 0.588 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 2.942690e-01 | 0.531 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 1.907794e-01 | 0.719 |
R-HSA-9831926 | Nephron development | 2.583887e-01 | 0.588 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 2.942690e-01 | 0.531 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 3.263029e-01 | 0.486 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 3.378980e-01 | 0.471 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 2.426502e-01 | 0.615 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 3.378980e-01 | 0.471 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 2.583887e-01 | 0.588 |
R-HSA-9679506 | SARS-CoV Infections | 3.418309e-01 | 0.466 |
R-HSA-9755088 | Ribavirin ADME | 3.211895e-01 | 0.493 |
R-HSA-5660526 | Response to metal ions | 2.269549e-01 | 0.644 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 2.246327e-01 | 0.649 |
R-HSA-381070 | IRE1alpha activates chaperones | 2.665591e-01 | 0.574 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 2.570831e-01 | 0.590 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 3.211895e-01 | 0.493 |
R-HSA-186712 | Regulation of beta-cell development | 3.228784e-01 | 0.491 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 3.147058e-01 | 0.502 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 3.481909e-01 | 0.458 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 3.481909e-01 | 0.458 |
R-HSA-72731 | Recycling of eIF2:GDP | 3.481909e-01 | 0.458 |
R-HSA-114516 | Disinhibition of SNARE formation | 3.481909e-01 | 0.458 |
R-HSA-163754 | Insulin effects increased synthesis of Xylulose-5-Phosphate | 3.481909e-01 | 0.458 |
R-HSA-9032845 | Activated NTRK2 signals through CDK5 | 3.481909e-01 | 0.458 |
R-HSA-1614603 | Cysteine formation from homocysteine | 3.481909e-01 | 0.458 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 3.481909e-01 | 0.458 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 3.481909e-01 | 0.458 |
R-HSA-8847453 | Synthesis of PIPs in the nucleus | 3.481909e-01 | 0.458 |
R-HSA-8964041 | LDL remodeling | 3.481909e-01 | 0.458 |
R-HSA-8948747 | Regulation of PTEN localization | 3.481909e-01 | 0.458 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 3.481909e-01 | 0.458 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 3.481909e-01 | 0.458 |
R-HSA-447041 | CHL1 interactions | 3.481909e-01 | 0.458 |
R-HSA-2559583 | Cellular Senescence | 3.485312e-01 | 0.458 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 3.487697e-01 | 0.457 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 3.494809e-01 | 0.457 |
R-HSA-167161 | HIV Transcription Initiation | 3.494809e-01 | 0.457 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 3.494809e-01 | 0.457 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 3.494809e-01 | 0.457 |
R-HSA-6811438 | Intra-Golgi traffic | 3.494809e-01 | 0.457 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 3.494809e-01 | 0.457 |
R-HSA-9683701 | Translation of Structural Proteins | 3.494809e-01 | 0.457 |
R-HSA-109582 | Hemostasis | 3.511507e-01 | 0.455 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 3.516662e-01 | 0.454 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 3.521531e-01 | 0.453 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 3.521531e-01 | 0.453 |
R-HSA-1483255 | PI Metabolism | 3.550004e-01 | 0.450 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 3.610416e-01 | 0.442 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 3.612728e-01 | 0.442 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 3.645335e-01 | 0.438 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 3.645335e-01 | 0.438 |
R-HSA-6794362 | Protein-protein interactions at synapses | 3.670865e-01 | 0.435 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 3.674538e-01 | 0.435 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 3.674538e-01 | 0.435 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 3.725708e-01 | 0.429 |
R-HSA-8854214 | TBC/RABGAPs | 3.725708e-01 | 0.429 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 3.725708e-01 | 0.429 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 3.725708e-01 | 0.429 |
R-HSA-72766 | Translation | 3.740254e-01 | 0.427 |
R-HSA-162589 | Reverse Transcription of HIV RNA | 3.755091e-01 | 0.425 |
R-HSA-164516 | Minus-strand DNA synthesis | 3.755091e-01 | 0.425 |
R-HSA-3371378 | Regulation by c-FLIP | 3.755091e-01 | 0.425 |
R-HSA-69416 | Dimerization of procaspase-8 | 3.755091e-01 | 0.425 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 3.755091e-01 | 0.425 |
R-HSA-111995 | phospho-PLA2 pathway | 3.755091e-01 | 0.425 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 3.755091e-01 | 0.425 |
R-HSA-1462054 | Alpha-defensins | 3.755091e-01 | 0.425 |
R-HSA-444257 | RSK activation | 3.755091e-01 | 0.425 |
R-HSA-9020933 | Interleukin-23 signaling | 3.755091e-01 | 0.425 |
R-HSA-9620244 | Long-term potentiation | 3.826114e-01 | 0.417 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 3.826114e-01 | 0.417 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 3.826114e-01 | 0.417 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 3.826114e-01 | 0.417 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 3.838518e-01 | 0.416 |
R-HSA-9907900 | Proteasome assembly | 3.840596e-01 | 0.416 |
R-HSA-3214858 | RMTs methylate histone arginines | 3.840596e-01 | 0.416 |
R-HSA-6798695 | Neutrophil degranulation | 3.942065e-01 | 0.404 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 3.954993e-01 | 0.403 |
R-HSA-774815 | Nucleosome assembly | 3.954993e-01 | 0.403 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 3.954993e-01 | 0.403 |
R-HSA-1489509 | DAG and IP3 signaling | 3.954993e-01 | 0.403 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 3.954993e-01 | 0.403 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 3.954993e-01 | 0.403 |
R-HSA-9824272 | Somitogenesis | 3.954993e-01 | 0.403 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 3.976109e-01 | 0.401 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 3.976109e-01 | 0.401 |
R-HSA-5693606 | DNA Double Strand Break Response | 3.995981e-01 | 0.398 |
R-HSA-9645723 | Diseases of programmed cell death | 4.005963e-01 | 0.397 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 4.016839e-01 | 0.396 |
R-HSA-5218900 | CASP8 activity is inhibited | 4.016839e-01 | 0.396 |
R-HSA-5250968 | Toxicity of botulinum toxin type A (botA) | 4.016839e-01 | 0.396 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 4.016839e-01 | 0.396 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 4.016839e-01 | 0.396 |
R-HSA-193697 | p75NTR regulates axonogenesis | 4.016839e-01 | 0.396 |
R-HSA-2025928 | Calcineurin activates NFAT | 4.016839e-01 | 0.396 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 4.016839e-01 | 0.396 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 4.016839e-01 | 0.396 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 4.016839e-01 | 0.396 |
R-HSA-430116 | GP1b-IX-V activation signalling | 4.016839e-01 | 0.396 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 4.068820e-01 | 0.391 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 4.068820e-01 | 0.391 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 4.077038e-01 | 0.390 |
R-HSA-1236974 | ER-Phagosome pathway | 4.089516e-01 | 0.388 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 4.091272e-01 | 0.388 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 4.124390e-01 | 0.385 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 4.124390e-01 | 0.385 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 4.124390e-01 | 0.385 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 4.124390e-01 | 0.385 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 4.124390e-01 | 0.385 |
R-HSA-9694516 | SARS-CoV-2 Infection | 4.128065e-01 | 0.384 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 4.128156e-01 | 0.384 |
R-HSA-69002 | DNA Replication Pre-Initiation | 4.152225e-01 | 0.382 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 4.181999e-01 | 0.379 |
R-HSA-202403 | TCR signaling | 4.227306e-01 | 0.374 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 4.256108e-01 | 0.371 |
R-HSA-173107 | Binding and entry of HIV virion | 4.267632e-01 | 0.370 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 4.267632e-01 | 0.370 |
R-HSA-110056 | MAPK3 (ERK1) activation | 4.267632e-01 | 0.370 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 4.267632e-01 | 0.370 |
R-HSA-426048 | Arachidonate production from DAG | 4.267632e-01 | 0.370 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 4.267632e-01 | 0.370 |
R-HSA-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 4.267632e-01 | 0.370 |
R-HSA-9664873 | Pexophagy | 4.267632e-01 | 0.370 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 4.267632e-01 | 0.370 |
R-HSA-74749 | Signal attenuation | 4.267632e-01 | 0.370 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 4.267632e-01 | 0.370 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 4.267632e-01 | 0.370 |
R-HSA-77387 | Insulin receptor recycling | 4.270838e-01 | 0.369 |
R-HSA-5620971 | Pyroptosis | 4.270838e-01 | 0.369 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 4.270838e-01 | 0.369 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 4.294458e-01 | 0.367 |
R-HSA-389356 | Co-stimulation by CD28 | 4.294458e-01 | 0.367 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 4.339078e-01 | 0.363 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 4.375091e-01 | 0.359 |
R-HSA-5689880 | Ub-specific processing proteases | 4.376298e-01 | 0.359 |
R-HSA-9843745 | Adipogenesis | 4.403350e-01 | 0.356 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 4.406129e-01 | 0.356 |
R-HSA-9766229 | Degradation of CDH1 | 4.406129e-01 | 0.356 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 4.406129e-01 | 0.356 |
R-HSA-9615710 | Late endosomal microautophagy | 4.415346e-01 | 0.355 |
R-HSA-72086 | mRNA Capping | 4.415346e-01 | 0.355 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 4.415346e-01 | 0.355 |
R-HSA-418360 | Platelet calcium homeostasis | 4.415346e-01 | 0.355 |
R-HSA-420092 | Glucagon-type ligand receptors | 4.415346e-01 | 0.355 |
R-HSA-156842 | Eukaryotic Translation Elongation | 4.421789e-01 | 0.354 |
R-HSA-74752 | Signaling by Insulin receptor | 4.421789e-01 | 0.354 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 4.422264e-01 | 0.354 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 4.468860e-01 | 0.350 |
R-HSA-68867 | Assembly of the pre-replicative complex | 4.504208e-01 | 0.346 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 4.507927e-01 | 0.346 |
R-HSA-192905 | vRNP Assembly | 4.507927e-01 | 0.346 |
R-HSA-8963888 | Chylomicron assembly | 4.507927e-01 | 0.346 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 4.507927e-01 | 0.346 |
R-HSA-210990 | PECAM1 interactions | 4.507927e-01 | 0.346 |
R-HSA-9020558 | Interleukin-2 signaling | 4.507927e-01 | 0.346 |
R-HSA-75205 | Dissolution of Fibrin Clot | 4.507927e-01 | 0.346 |
R-HSA-5658442 | Regulation of RAS by GAPs | 4.516948e-01 | 0.345 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 4.540232e-01 | 0.343 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 4.557819e-01 | 0.341 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 4.557819e-01 | 0.341 |
R-HSA-114452 | Activation of BH3-only proteins | 4.557819e-01 | 0.341 |
R-HSA-9008059 | Interleukin-37 signaling | 4.557819e-01 | 0.341 |
R-HSA-1474290 | Collagen formation | 4.586305e-01 | 0.339 |
R-HSA-399719 | Trafficking of AMPA receptors | 4.698174e-01 | 0.328 |
R-HSA-2129379 | Molecules associated with elastic fibres | 4.698174e-01 | 0.328 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 4.698174e-01 | 0.328 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 4.698174e-01 | 0.328 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 4.735790e-01 | 0.325 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 4.735790e-01 | 0.325 |
R-HSA-6794361 | Neurexins and neuroligins | 4.735790e-01 | 0.325 |
R-HSA-428540 | Activation of RAC1 | 4.738163e-01 | 0.324 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 4.738163e-01 | 0.324 |
R-HSA-202670 | ERKs are inactivated | 4.738163e-01 | 0.324 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 4.738163e-01 | 0.324 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 4.738163e-01 | 0.324 |
R-HSA-209560 | NF-kB is activated and signals survival | 4.738163e-01 | 0.324 |
R-HSA-75896 | Plasmalogen biosynthesis | 4.738163e-01 | 0.324 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 4.738163e-01 | 0.324 |
R-HSA-168330 | Viral RNP Complexes in the Host Cell Nucleus | 4.738163e-01 | 0.324 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 4.738163e-01 | 0.324 |
R-HSA-1236977 | Endosomal/Vacuolar pathway | 4.738163e-01 | 0.324 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 4.738163e-01 | 0.324 |
R-HSA-162592 | Integration of provirus | 4.738163e-01 | 0.324 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 4.749416e-01 | 0.323 |
R-HSA-74160 | Gene expression (Transcription) | 4.778859e-01 | 0.321 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 4.802537e-01 | 0.319 |
R-HSA-163685 | Integration of energy metabolism | 4.811824e-01 | 0.318 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 4.830374e-01 | 0.316 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 4.830374e-01 | 0.316 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 4.836339e-01 | 0.315 |
R-HSA-69190 | DNA strand elongation | 4.836339e-01 | 0.315 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 4.843705e-01 | 0.315 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 4.910898e-01 | 0.309 |
R-HSA-9948299 | Ribosome-associated quality control | 4.946254e-01 | 0.306 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 4.950549e-01 | 0.305 |
R-HSA-3656237 | Defective EXT2 causes exostoses 2 | 4.958761e-01 | 0.305 |
R-HSA-3656253 | Defective EXT1 causes exostoses 1, TRPS2 and CHDS | 4.958761e-01 | 0.305 |
R-HSA-3000484 | Scavenging by Class F Receptors | 4.958761e-01 | 0.305 |
R-HSA-4641265 | Repression of WNT target genes | 4.958761e-01 | 0.305 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 4.958761e-01 | 0.305 |
R-HSA-209543 | p75NTR recruits signalling complexes | 4.958761e-01 | 0.305 |
R-HSA-1679131 | Trafficking and processing of endosomal TLR | 4.958761e-01 | 0.305 |
R-HSA-446205 | Synthesis of GDP-mannose | 4.958761e-01 | 0.305 |
R-HSA-193144 | Estrogen biosynthesis | 4.958761e-01 | 0.305 |
R-HSA-8983432 | Interleukin-15 signaling | 4.958761e-01 | 0.305 |
R-HSA-9842663 | Signaling by LTK | 4.958761e-01 | 0.305 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 4.958761e-01 | 0.305 |
R-HSA-8983711 | OAS antiviral response | 4.958761e-01 | 0.305 |
R-HSA-354192 | Integrin signaling | 4.972251e-01 | 0.303 |
R-HSA-9930044 | Nuclear RNA decay | 4.972251e-01 | 0.303 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 4.972251e-01 | 0.303 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 4.972251e-01 | 0.303 |
R-HSA-9733709 | Cardiogenesis | 4.972251e-01 | 0.303 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 5.079600e-01 | 0.294 |
R-HSA-9664407 | Parasite infection | 5.079600e-01 | 0.294 |
R-HSA-9664417 | Leishmania phagocytosis | 5.079600e-01 | 0.294 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 5.105855e-01 | 0.292 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 5.105855e-01 | 0.292 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 5.105855e-01 | 0.292 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 5.105855e-01 | 0.292 |
R-HSA-9659379 | Sensory processing of sound | 5.109342e-01 | 0.292 |
R-HSA-382556 | ABC-family proteins mediated transport | 5.149613e-01 | 0.288 |
R-HSA-5578775 | Ion homeostasis | 5.160845e-01 | 0.287 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 5.170124e-01 | 0.286 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 5.170124e-01 | 0.286 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 5.170124e-01 | 0.286 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 5.170124e-01 | 0.286 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 5.170124e-01 | 0.286 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 5.170124e-01 | 0.286 |
R-HSA-9683610 | Maturation of nucleoprotein | 5.170124e-01 | 0.286 |
R-HSA-8949664 | Processing of SMDT1 | 5.170124e-01 | 0.286 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 5.170124e-01 | 0.286 |
R-HSA-5654738 | Signaling by FGFR2 | 5.198144e-01 | 0.284 |
R-HSA-6806834 | Signaling by MET | 5.198144e-01 | 0.284 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 5.237107e-01 | 0.281 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 5.237107e-01 | 0.281 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 5.237107e-01 | 0.281 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 5.237107e-01 | 0.281 |
R-HSA-901042 | Calnexin/calreticulin cycle | 5.237107e-01 | 0.281 |
R-HSA-5673000 | RAF activation | 5.237107e-01 | 0.281 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 5.237107e-01 | 0.281 |
R-HSA-1663150 | The activation of arylsulfatases | 5.372636e-01 | 0.270 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 5.372636e-01 | 0.270 |
R-HSA-177504 | Retrograde neurotrophin signalling | 5.372636e-01 | 0.270 |
R-HSA-1433559 | Regulation of KIT signaling | 5.372636e-01 | 0.270 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 5.372636e-01 | 0.270 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 5.372636e-01 | 0.270 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 5.372636e-01 | 0.270 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 5.372636e-01 | 0.270 |
R-HSA-399956 | CRMPs in Sema3A signaling | 5.372636e-01 | 0.270 |
R-HSA-5578768 | Physiological factors | 5.372636e-01 | 0.270 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 5.372636e-01 | 0.270 |
R-HSA-9828642 | Respiratory syncytial virus genome transcription | 5.372636e-01 | 0.270 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 5.372636e-01 | 0.270 |
R-HSA-435354 | Zinc transporters | 5.372636e-01 | 0.270 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 5.459836e-01 | 0.263 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 5.460380e-01 | 0.263 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 5.460380e-01 | 0.263 |
R-HSA-212300 | PRC2 methylates histones and DNA | 5.492409e-01 | 0.260 |
R-HSA-8853659 | RET signaling | 5.492409e-01 | 0.260 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 5.492409e-01 | 0.260 |
R-HSA-8941326 | RUNX2 regulates bone development | 5.492409e-01 | 0.260 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 5.566670e-01 | 0.254 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 5.566670e-01 | 0.254 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 5.566670e-01 | 0.254 |
R-HSA-193639 | p75NTR signals via NF-kB | 5.566670e-01 | 0.254 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 5.566670e-01 | 0.254 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 5.566670e-01 | 0.254 |
R-HSA-1502540 | Signaling by Activin | 5.566670e-01 | 0.254 |
R-HSA-1295596 | Spry regulation of FGF signaling | 5.566670e-01 | 0.254 |
R-HSA-73942 | DNA Damage Reversal | 5.566670e-01 | 0.254 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 5.566802e-01 | 0.254 |
R-HSA-1227986 | Signaling by ERBB2 | 5.566802e-01 | 0.254 |
R-HSA-351202 | Metabolism of polyamines | 5.566802e-01 | 0.254 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 5.566802e-01 | 0.254 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 5.566802e-01 | 0.254 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 5.566802e-01 | 0.254 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 5.566802e-01 | 0.254 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 5.566802e-01 | 0.254 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 5.599680e-01 | 0.252 |
R-HSA-72306 | tRNA processing | 5.599680e-01 | 0.252 |
R-HSA-5673001 | RAF/MAP kinase cascade | 5.622733e-01 | 0.250 |
R-HSA-450294 | MAP kinase activation | 5.665056e-01 | 0.247 |
R-HSA-445717 | Aquaporin-mediated transport | 5.665056e-01 | 0.247 |
R-HSA-112043 | PLC beta mediated events | 5.665056e-01 | 0.247 |
R-HSA-9793380 | Formation of paraxial mesoderm | 5.665056e-01 | 0.247 |
R-HSA-114608 | Platelet degranulation | 5.671672e-01 | 0.246 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 5.713943e-01 | 0.243 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 5.737942e-01 | 0.241 |
R-HSA-8875878 | MET promotes cell motility | 5.737942e-01 | 0.241 |
R-HSA-1566948 | Elastic fibre formation | 5.737942e-01 | 0.241 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 5.752579e-01 | 0.240 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 5.752579e-01 | 0.240 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 5.752579e-01 | 0.240 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 5.752579e-01 | 0.240 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 5.752579e-01 | 0.240 |
R-HSA-69239 | Synthesis of DNA | 5.761373e-01 | 0.239 |
R-HSA-9679191 | Potential therapeutics for SARS | 5.788443e-01 | 0.237 |
R-HSA-71336 | Pentose phosphate pathway | 5.857005e-01 | 0.232 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 5.930702e-01 | 0.227 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 5.930702e-01 | 0.227 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 5.930702e-01 | 0.227 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 5.930702e-01 | 0.227 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 5.930702e-01 | 0.227 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 5.930702e-01 | 0.227 |
R-HSA-432047 | Passive transport by Aquaporins | 5.930702e-01 | 0.227 |
R-HSA-196783 | Coenzyme A biosynthesis | 5.930702e-01 | 0.227 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 5.944164e-01 | 0.226 |
R-HSA-74751 | Insulin receptor signalling cascade | 5.951657e-01 | 0.225 |
R-HSA-156902 | Peptide chain elongation | 5.959900e-01 | 0.225 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 5.973588e-01 | 0.224 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 5.973588e-01 | 0.224 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 5.973588e-01 | 0.224 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 5.973588e-01 | 0.224 |
R-HSA-202433 | Generation of second messenger molecules | 5.973588e-01 | 0.224 |
R-HSA-451927 | Interleukin-2 family signaling | 5.973588e-01 | 0.224 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 6.043958e-01 | 0.219 |
R-HSA-9694548 | Maturation of spike protein | 6.087691e-01 | 0.216 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 6.101366e-01 | 0.215 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 6.101366e-01 | 0.215 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 6.101366e-01 | 0.215 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 6.101366e-01 | 0.215 |
R-HSA-2028269 | Signaling by Hippo | 6.101366e-01 | 0.215 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 6.101366e-01 | 0.215 |
R-HSA-209905 | Catecholamine biosynthesis | 6.101366e-01 | 0.215 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 6.101366e-01 | 0.215 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 6.101366e-01 | 0.215 |
R-HSA-112310 | Neurotransmitter release cycle | 6.119118e-01 | 0.213 |
R-HSA-1483249 | Inositol phosphate metabolism | 6.122267e-01 | 0.213 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 6.192266e-01 | 0.208 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 6.197260e-01 | 0.208 |
R-HSA-112040 | G-protein mediated events | 6.225646e-01 | 0.206 |
R-HSA-9830369 | Kidney development | 6.225646e-01 | 0.206 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 6.264882e-01 | 0.203 |
R-HSA-156711 | Polo-like kinase mediated events | 6.264882e-01 | 0.203 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 6.264882e-01 | 0.203 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 6.264882e-01 | 0.203 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 6.308470e-01 | 0.200 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 6.308470e-01 | 0.200 |
R-HSA-111996 | Ca-dependent events | 6.308470e-01 | 0.200 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 6.314111e-01 | 0.200 |
R-HSA-1433557 | Signaling by SCF-KIT | 6.415165e-01 | 0.193 |
R-HSA-9710421 | Defective pyroptosis | 6.415165e-01 | 0.193 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 6.415165e-01 | 0.193 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 6.421550e-01 | 0.192 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 6.421550e-01 | 0.192 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 6.421550e-01 | 0.192 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 6.421550e-01 | 0.192 |
R-HSA-844456 | The NLRP3 inflammasome | 6.421550e-01 | 0.192 |
R-HSA-9694631 | Maturation of nucleoprotein | 6.421550e-01 | 0.192 |
R-HSA-392517 | Rap1 signalling | 6.421550e-01 | 0.192 |
R-HSA-1237112 | Methionine salvage pathway | 6.421550e-01 | 0.192 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 6.421550e-01 | 0.192 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 6.486698e-01 | 0.188 |
R-HSA-448424 | Interleukin-17 signaling | 6.486698e-01 | 0.188 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 6.486698e-01 | 0.188 |
R-HSA-9837999 | Mitochondrial protein degradation | 6.499788e-01 | 0.187 |
R-HSA-69236 | G1 Phase | 6.519413e-01 | 0.186 |
R-HSA-69231 | Cyclin D associated events in G1 | 6.519413e-01 | 0.186 |
R-HSA-3000178 | ECM proteoglycans | 6.570808e-01 | 0.182 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 6.571656e-01 | 0.182 |
R-HSA-389513 | Co-inhibition by CTLA4 | 6.571656e-01 | 0.182 |
R-HSA-8848584 | Wax and plasmalogen biosynthesis | 6.571656e-01 | 0.182 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 6.571656e-01 | 0.182 |
R-HSA-373753 | Nephrin family interactions | 6.571656e-01 | 0.182 |
R-HSA-9823730 | Formation of definitive endoderm | 6.571656e-01 | 0.182 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 6.571656e-01 | 0.182 |
R-HSA-196108 | Pregnenolone biosynthesis | 6.571656e-01 | 0.182 |
R-HSA-1181150 | Signaling by NODAL | 6.571656e-01 | 0.182 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 6.572868e-01 | 0.182 |
R-HSA-2980736 | Peptide hormone metabolism | 6.596151e-01 | 0.181 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 6.605343e-01 | 0.180 |
R-HSA-2408522 | Selenoamino acid metabolism | 6.612624e-01 | 0.180 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 6.621234e-01 | 0.179 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 6.621234e-01 | 0.179 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 6.621234e-01 | 0.179 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 6.621234e-01 | 0.179 |
R-HSA-72764 | Eukaryotic Translation Termination | 6.644915e-01 | 0.178 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 6.653461e-01 | 0.177 |
R-HSA-168249 | Innate Immune System | 6.675201e-01 | 0.176 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 6.715473e-01 | 0.173 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 6.715473e-01 | 0.173 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 6.715473e-01 | 0.173 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 6.715473e-01 | 0.173 |
R-HSA-5619102 | SLC transporter disorders | 6.775905e-01 | 0.169 |
R-HSA-73857 | RNA Polymerase II Transcription | 6.795867e-01 | 0.168 |
R-HSA-69473 | G2/M DNA damage checkpoint | 6.814388e-01 | 0.167 |
R-HSA-212436 | Generic Transcription Pathway | 6.825682e-01 | 0.166 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 6.853267e-01 | 0.164 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 6.853267e-01 | 0.164 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 6.853267e-01 | 0.164 |
R-HSA-9694614 | Attachment and Entry | 6.853267e-01 | 0.164 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 6.853267e-01 | 0.164 |
R-HSA-2022377 | Metabolism of Angiotensinogen to Angiotensins | 6.853267e-01 | 0.164 |
R-HSA-175474 | Assembly Of The HIV Virion | 6.853267e-01 | 0.164 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 6.853267e-01 | 0.164 |
R-HSA-422356 | Regulation of insulin secretion | 6.854811e-01 | 0.164 |
R-HSA-190236 | Signaling by FGFR | 6.854811e-01 | 0.164 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 6.892667e-01 | 0.162 |
R-HSA-9634597 | GPER1 signaling | 6.912340e-01 | 0.160 |
R-HSA-9031628 | NGF-stimulated transcription | 6.912340e-01 | 0.160 |
R-HSA-1980143 | Signaling by NOTCH1 | 6.969494e-01 | 0.157 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 6.985287e-01 | 0.156 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 6.985287e-01 | 0.156 |
R-HSA-168799 | Neurotoxicity of clostridium toxins | 6.985287e-01 | 0.156 |
R-HSA-9669938 | Signaling by KIT in disease | 6.985287e-01 | 0.156 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 6.985287e-01 | 0.156 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 6.985287e-01 | 0.156 |
R-HSA-6809371 | Formation of the cornified envelope | 7.031050e-01 | 0.153 |
R-HSA-9694635 | Translation of Structural Proteins | 7.044874e-01 | 0.152 |
R-HSA-2408557 | Selenocysteine synthesis | 7.055291e-01 | 0.151 |
R-HSA-5619115 | Disorders of transmembrane transporters | 7.057194e-01 | 0.151 |
R-HSA-109704 | PI3K Cascade | 7.094704e-01 | 0.149 |
R-HSA-9748787 | Azathioprine ADME | 7.094704e-01 | 0.149 |
R-HSA-912526 | Interleukin receptor SHC signaling | 7.111776e-01 | 0.148 |
R-HSA-9830674 | Formation of the ureteric bud | 7.111776e-01 | 0.148 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 7.111776e-01 | 0.148 |
R-HSA-1369062 | ABC transporters in lipid homeostasis | 7.111776e-01 | 0.148 |
R-HSA-3000170 | Syndecan interactions | 7.111776e-01 | 0.148 |
R-HSA-982772 | Growth hormone receptor signaling | 7.111776e-01 | 0.148 |
R-HSA-216083 | Integrin cell surface interactions | 7.118813e-01 | 0.148 |
R-HSA-5619084 | ABC transporter disorders | 7.118813e-01 | 0.148 |
R-HSA-9842860 | Regulation of endogenous retroelements | 7.120022e-01 | 0.148 |
R-HSA-5663205 | Infectious disease | 7.178708e-01 | 0.144 |
R-HSA-192823 | Viral mRNA Translation | 7.183708e-01 | 0.144 |
R-HSA-9758941 | Gastrulation | 7.188484e-01 | 0.143 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 7.232966e-01 | 0.141 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 7.232966e-01 | 0.141 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 7.232966e-01 | 0.141 |
R-HSA-8963898 | Plasma lipoprotein assembly | 7.232966e-01 | 0.141 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 7.232966e-01 | 0.141 |
R-HSA-8863678 | Neurodegenerative Diseases | 7.232966e-01 | 0.141 |
R-HSA-111885 | Opioid Signalling | 7.246349e-01 | 0.140 |
R-HSA-3000157 | Laminin interactions | 7.349077e-01 | 0.134 |
R-HSA-1482801 | Acyl chain remodelling of PS | 7.349077e-01 | 0.134 |
R-HSA-3214842 | HDMs demethylate histones | 7.349077e-01 | 0.134 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 7.349077e-01 | 0.134 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 7.349077e-01 | 0.134 |
R-HSA-1221632 | Meiotic synapsis | 7.351285e-01 | 0.134 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 7.351285e-01 | 0.134 |
R-HSA-69306 | DNA Replication | 7.393229e-01 | 0.131 |
R-HSA-9824443 | Parasitic Infection Pathways | 7.401729e-01 | 0.131 |
R-HSA-9658195 | Leishmania infection | 7.401729e-01 | 0.131 |
R-HSA-418346 | Platelet homeostasis | 7.428043e-01 | 0.129 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 7.432420e-01 | 0.129 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 7.460323e-01 | 0.127 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 7.460323e-01 | 0.127 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 7.460323e-01 | 0.127 |
R-HSA-8874081 | MET activates PTK2 signaling | 7.460323e-01 | 0.127 |
R-HSA-5689901 | Metalloprotease DUBs | 7.460323e-01 | 0.127 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 7.460323e-01 | 0.127 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 7.460323e-01 | 0.127 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 7.467198e-01 | 0.127 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 7.486545e-01 | 0.126 |
R-HSA-8949613 | Cristae formation | 7.566907e-01 | 0.121 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 7.566907e-01 | 0.121 |
R-HSA-201451 | Signaling by BMP | 7.566907e-01 | 0.121 |
R-HSA-9610379 | HCMV Late Events | 7.587115e-01 | 0.120 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 7.588314e-01 | 0.120 |
R-HSA-112399 | IRS-mediated signalling | 7.663147e-01 | 0.116 |
R-HSA-171319 | Telomere Extension By Telomerase | 7.669024e-01 | 0.115 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 7.669024e-01 | 0.115 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 7.669024e-01 | 0.115 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 7.721002e-01 | 0.112 |
R-HSA-1614635 | Sulfur amino acid metabolism | 7.721002e-01 | 0.112 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 7.735953e-01 | 0.111 |
R-HSA-5334118 | DNA methylation | 7.766861e-01 | 0.110 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 7.766861e-01 | 0.110 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 7.766861e-01 | 0.110 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 7.766861e-01 | 0.110 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 7.766861e-01 | 0.110 |
R-HSA-180024 | DARPP-32 events | 7.766861e-01 | 0.110 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 7.806772e-01 | 0.108 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 7.806772e-01 | 0.108 |
R-HSA-446203 | Asparagine N-linked glycosylation | 7.858646e-01 | 0.105 |
R-HSA-2424491 | DAP12 signaling | 7.860597e-01 | 0.105 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 7.860597e-01 | 0.105 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 7.860597e-01 | 0.105 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 7.860597e-01 | 0.105 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 7.860597e-01 | 0.105 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 7.860597e-01 | 0.105 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 7.874758e-01 | 0.104 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 7.875641e-01 | 0.104 |
R-HSA-1442490 | Collagen degradation | 7.942599e-01 | 0.100 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 7.942599e-01 | 0.100 |
R-HSA-162588 | Budding and maturation of HIV virion | 7.950405e-01 | 0.100 |
R-HSA-5694530 | Cargo concentration in the ER | 7.950405e-01 | 0.100 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 7.950405e-01 | 0.100 |
R-HSA-162710 | Synthesis of glycosylphosphatidylinositol (GPI) | 7.950405e-01 | 0.100 |
R-HSA-186763 | Downstream signal transduction | 7.950405e-01 | 0.100 |
R-HSA-73884 | Base Excision Repair | 7.953622e-01 | 0.099 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 8.007685e-01 | 0.096 |
R-HSA-1268020 | Mitochondrial protein import | 8.007685e-01 | 0.096 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 8.007685e-01 | 0.096 |
R-HSA-1538133 | G0 and Early G1 | 8.036447e-01 | 0.095 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 8.036447e-01 | 0.095 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 8.036447e-01 | 0.095 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 8.036447e-01 | 0.095 |
R-HSA-2024096 | HS-GAG degradation | 8.036447e-01 | 0.095 |
R-HSA-9007101 | Rab regulation of trafficking | 8.110771e-01 | 0.091 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 8.114804e-01 | 0.091 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 8.118883e-01 | 0.091 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 8.118883e-01 | 0.091 |
R-HSA-936837 | Ion transport by P-type ATPases | 8.132399e-01 | 0.090 |
R-HSA-2428924 | IGF1R signaling cascade | 8.132399e-01 | 0.090 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 8.192104e-01 | 0.087 |
R-HSA-1482788 | Acyl chain remodelling of PC | 8.197862e-01 | 0.086 |
R-HSA-8964539 | Glutamate and glutamine metabolism | 8.197862e-01 | 0.086 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 8.273530e-01 | 0.082 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 8.273530e-01 | 0.082 |
R-HSA-203615 | eNOS activation | 8.273530e-01 | 0.082 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 8.273530e-01 | 0.082 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 8.273530e-01 | 0.082 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 8.273530e-01 | 0.082 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 8.273530e-01 | 0.082 |
R-HSA-73886 | Chromosome Maintenance | 8.288480e-01 | 0.082 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 8.306406e-01 | 0.081 |
R-HSA-196071 | Metabolism of steroid hormones | 8.306406e-01 | 0.081 |
R-HSA-2408508 | Metabolism of ingested SeMet, Sec, MeSec into H2Se | 8.346026e-01 | 0.079 |
R-HSA-1482839 | Acyl chain remodelling of PE | 8.346026e-01 | 0.079 |
R-HSA-917977 | Transferrin endocytosis and recycling | 8.346026e-01 | 0.079 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 8.368067e-01 | 0.077 |
R-HSA-2022928 | HS-GAG biosynthesis | 8.415481e-01 | 0.075 |
R-HSA-9845576 | Glycosphingolipid transport | 8.415481e-01 | 0.075 |
R-HSA-111933 | Calmodulin induced events | 8.415481e-01 | 0.075 |
R-HSA-111997 | CaM pathway | 8.415481e-01 | 0.075 |
R-HSA-69205 | G1/S-Specific Transcription | 8.415481e-01 | 0.075 |
R-HSA-163560 | Triglyceride catabolism | 8.415481e-01 | 0.075 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 8.415481e-01 | 0.075 |
R-HSA-114604 | GPVI-mediated activation cascade | 8.415481e-01 | 0.075 |
R-HSA-72312 | rRNA processing | 8.442656e-01 | 0.074 |
R-HSA-204005 | COPII-mediated vesicle transport | 8.465666e-01 | 0.072 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 8.465666e-01 | 0.072 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 8.482024e-01 | 0.072 |
R-HSA-110331 | Cleavage of the damaged purine | 8.482024e-01 | 0.072 |
R-HSA-419037 | NCAM1 interactions | 8.482024e-01 | 0.072 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 8.482024e-01 | 0.072 |
R-HSA-196757 | Metabolism of folate and pterines | 8.482024e-01 | 0.072 |
R-HSA-8978934 | Metabolism of cofactors | 8.515652e-01 | 0.070 |
R-HSA-73927 | Depurination | 8.545776e-01 | 0.068 |
R-HSA-9931953 | Biofilm formation | 8.545776e-01 | 0.068 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 8.545776e-01 | 0.068 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 8.553827e-01 | 0.068 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 8.606855e-01 | 0.065 |
R-HSA-9648002 | RAS processing | 8.606855e-01 | 0.065 |
R-HSA-3781860 | Diseases associated with N-glycosylation of proteins | 8.606855e-01 | 0.065 |
R-HSA-1989781 | PPARA activates gene expression | 8.620383e-01 | 0.064 |
R-HSA-1236394 | Signaling by ERBB4 | 8.656832e-01 | 0.063 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 8.656832e-01 | 0.063 |
R-HSA-9854311 | Maturation of TCA enzymes and regulation of TCA cycle | 8.665372e-01 | 0.062 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 8.665372e-01 | 0.062 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 8.684353e-01 | 0.061 |
R-HSA-917937 | Iron uptake and transport | 8.701086e-01 | 0.060 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 8.721434e-01 | 0.059 |
R-HSA-5576891 | Cardiac conduction | 8.739938e-01 | 0.058 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 8.743996e-01 | 0.058 |
R-HSA-3000480 | Scavenging by Class A Receptors | 8.775144e-01 | 0.057 |
R-HSA-73864 | RNA Polymerase I Transcription | 8.825924e-01 | 0.054 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 8.826602e-01 | 0.054 |
R-HSA-73928 | Depyrimidination | 8.826602e-01 | 0.054 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 8.826602e-01 | 0.054 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 8.826602e-01 | 0.054 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 8.865009e-01 | 0.052 |
R-HSA-1461973 | Defensins | 8.875901e-01 | 0.052 |
R-HSA-5654743 | Signaling by FGFR4 | 8.875901e-01 | 0.052 |
R-HSA-8951664 | Neddylation | 8.901163e-01 | 0.051 |
R-HSA-2172127 | DAP12 interactions | 8.923131e-01 | 0.049 |
R-HSA-5683826 | Surfactant metabolism | 8.923131e-01 | 0.049 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 8.939588e-01 | 0.049 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 8.968379e-01 | 0.047 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 8.968379e-01 | 0.047 |
R-HSA-5654741 | Signaling by FGFR3 | 8.968379e-01 | 0.047 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 8.975145e-01 | 0.047 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 9.011729e-01 | 0.045 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 9.011729e-01 | 0.045 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 9.011729e-01 | 0.045 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 9.042953e-01 | 0.044 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 9.053260e-01 | 0.043 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 9.055385e-01 | 0.043 |
R-HSA-1500620 | Meiosis | 9.075263e-01 | 0.042 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 9.088570e-01 | 0.042 |
R-HSA-70263 | Gluconeogenesis | 9.093048e-01 | 0.041 |
R-HSA-425410 | Metal ion SLC transporters | 9.093048e-01 | 0.041 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 9.093048e-01 | 0.041 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 9.106552e-01 | 0.041 |
R-HSA-389661 | Glyoxylate metabolism and glycine degradation | 9.131167e-01 | 0.039 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 9.136848e-01 | 0.039 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 9.167685e-01 | 0.038 |
R-HSA-2162123 | Synthesis of Prostaglandins (PG) and Thromboxanes (TX) | 9.167685e-01 | 0.038 |
R-HSA-5693538 | Homology Directed Repair | 9.211873e-01 | 0.036 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 9.248643e-01 | 0.034 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.280896e-01 | 0.032 |
R-HSA-73894 | DNA Repair | 9.333062e-01 | 0.030 |
R-HSA-9609507 | Protein localization | 9.343115e-01 | 0.030 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 9.346686e-01 | 0.029 |
R-HSA-209776 | Metabolism of amine-derived hormones | 9.356763e-01 | 0.029 |
R-HSA-5654736 | Signaling by FGFR1 | 9.356763e-01 | 0.029 |
R-HSA-8935690 | Digestion | 9.356763e-01 | 0.029 |
R-HSA-1483166 | Synthesis of PA | 9.383811e-01 | 0.028 |
R-HSA-1643685 | Disease | 9.422947e-01 | 0.026 |
R-HSA-983712 | Ion channel transport | 9.426857e-01 | 0.026 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 9.432528e-01 | 0.025 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 9.434547e-01 | 0.025 |
R-HSA-9033241 | Peroxisomal protein import | 9.434547e-01 | 0.025 |
R-HSA-180786 | Extension of Telomeres | 9.434547e-01 | 0.025 |
R-HSA-8979227 | Triglyceride metabolism | 9.434547e-01 | 0.025 |
R-HSA-8873719 | RAB geranylgeranylation | 9.458328e-01 | 0.024 |
R-HSA-9614085 | FOXO-mediated transcription | 9.489755e-01 | 0.023 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 9.502937e-01 | 0.022 |
R-HSA-186797 | Signaling by PDGF | 9.502937e-01 | 0.022 |
R-HSA-1474228 | Degradation of the extracellular matrix | 9.520335e-01 | 0.021 |
R-HSA-8848021 | Signaling by PTK6 | 9.523846e-01 | 0.021 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 9.523846e-01 | 0.021 |
R-HSA-8963743 | Digestion and absorption | 9.523846e-01 | 0.021 |
R-HSA-392499 | Metabolism of proteins | 9.525295e-01 | 0.021 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 9.581448e-01 | 0.019 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 9.588124e-01 | 0.018 |
R-HSA-9833110 | RSV-host interactions | 9.588124e-01 | 0.018 |
R-HSA-1483257 | Phospholipid metabolism | 9.594446e-01 | 0.018 |
R-HSA-5696398 | Nucleotide Excision Repair | 9.602643e-01 | 0.018 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.641557e-01 | 0.016 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.641557e-01 | 0.016 |
R-HSA-2672351 | Stimuli-sensing channels | 9.643316e-01 | 0.016 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.645534e-01 | 0.016 |
R-HSA-9840310 | Glycosphingolipid catabolism | 9.647574e-01 | 0.016 |
R-HSA-6805567 | Keratinization | 9.647600e-01 | 0.016 |
R-HSA-975634 | Retinoid metabolism and transport | 9.662406e-01 | 0.015 |
R-HSA-597592 | Post-translational protein modification | 9.666109e-01 | 0.015 |
R-HSA-74259 | Purine catabolism | 9.676615e-01 | 0.014 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.688641e-01 | 0.014 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 9.693763e-01 | 0.014 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 9.715757e-01 | 0.013 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 9.715757e-01 | 0.013 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 9.780417e-01 | 0.010 |
R-HSA-977225 | Amyloid fiber formation | 9.780417e-01 | 0.010 |
R-HSA-8957322 | Metabolism of steroids | 9.798377e-01 | 0.009 |
R-HSA-390918 | Peroxisomal lipid metabolism | 9.807009e-01 | 0.008 |
R-HSA-877300 | Interferon gamma signaling | 9.813033e-01 | 0.008 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 9.830385e-01 | 0.007 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.834503e-01 | 0.007 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.854237e-01 | 0.006 |
R-HSA-1474165 | Reproduction | 9.862535e-01 | 0.006 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 9.867559e-01 | 0.006 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 9.874516e-01 | 0.005 |
R-HSA-418555 | G alpha (s) signalling events | 9.879213e-01 | 0.005 |
R-HSA-2029481 | FCGR activation | 9.879805e-01 | 0.005 |
R-HSA-1296071 | Potassium Channels | 9.898825e-01 | 0.004 |
R-HSA-157579 | Telomere Maintenance | 9.903091e-01 | 0.004 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.939057e-01 | 0.003 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.939885e-01 | 0.003 |
R-HSA-6803157 | Antimicrobial peptides | 9.949229e-01 | 0.002 |
R-HSA-2871796 | FCERI mediated MAPK activation | 9.951371e-01 | 0.002 |
R-HSA-15869 | Metabolism of nucleotides | 9.951482e-01 | 0.002 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 9.953943e-01 | 0.002 |
R-HSA-428157 | Sphingolipid metabolism | 9.957140e-01 | 0.002 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 9.960804e-01 | 0.002 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 9.972244e-01 | 0.001 |
R-HSA-1660662 | Glycosphingolipid metabolism | 9.972244e-01 | 0.001 |
R-HSA-977606 | Regulation of Complement cascade | 9.974540e-01 | 0.001 |
R-HSA-8956319 | Nucleotide catabolism | 9.979482e-01 | 0.001 |
R-HSA-611105 | Respiratory electron transport | 9.980231e-01 | 0.001 |
R-HSA-416476 | G alpha (q) signalling events | 9.980867e-01 | 0.001 |
R-HSA-9717189 | Sensory perception of taste | 9.981975e-01 | 0.001 |
R-HSA-3781865 | Diseases of glycosylation | 9.984335e-01 | 0.001 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.985273e-01 | 0.001 |
R-HSA-5173105 | O-linked glycosylation | 9.986678e-01 | 0.001 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.990787e-01 | 0.000 |
R-HSA-166658 | Complement cascade | 9.990970e-01 | 0.000 |
R-HSA-2187338 | Visual phototransduction | 9.991718e-01 | 0.000 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.992542e-01 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.993074e-01 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 9.993328e-01 | 0.000 |
R-HSA-9748784 | Drug ADME | 9.996029e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.996363e-01 | 0.000 |
R-HSA-382551 | Transport of small molecules | 9.997594e-01 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 9.997754e-01 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.998918e-01 | 0.000 |
R-HSA-9640148 | Infection with Enterobacteria | 9.999298e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.999572e-01 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 9.999640e-01 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.999768e-01 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.999836e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 9.999887e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.999999e-01 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000e+00 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.840 | 0.091 | 2 | 0.922 |
GCN2 |
0.835 | 0.163 | 2 | 0.865 |
PRKD1 |
0.834 | 0.161 | -3 | 0.855 |
CDC7 |
0.833 | 0.059 | 1 | 0.840 |
NDR2 |
0.831 | 0.109 | -3 | 0.862 |
PIM3 |
0.830 | 0.083 | -3 | 0.858 |
ULK2 |
0.829 | 0.077 | 2 | 0.856 |
PRPK |
0.829 | 0.018 | -1 | 0.892 |
IKKB |
0.829 | 0.053 | -2 | 0.827 |
MOS |
0.828 | 0.103 | 1 | 0.877 |
TBK1 |
0.828 | 0.005 | 1 | 0.799 |
NEK6 |
0.827 | 0.136 | -2 | 0.911 |
RIPK3 |
0.827 | -0.028 | 3 | 0.119 |
MTOR |
0.827 | 0.036 | 1 | 0.821 |
WNK1 |
0.827 | 0.049 | -2 | 0.946 |
RAF1 |
0.826 | 0.008 | 1 | 0.878 |
PRKD2 |
0.826 | 0.120 | -3 | 0.801 |
CLK3 |
0.826 | 0.064 | 1 | 0.824 |
NLK |
0.826 | 0.064 | 1 | 0.846 |
MST4 |
0.825 | 0.106 | 2 | 0.894 |
CAMK1B |
0.824 | 0.024 | -3 | 0.890 |
PDHK4 |
0.824 | -0.071 | 1 | 0.885 |
DSTYK |
0.824 | 0.000 | 2 | 0.935 |
RSK2 |
0.823 | 0.062 | -3 | 0.803 |
IKKE |
0.823 | -0.014 | 1 | 0.794 |
CAMK2D |
0.823 | 0.099 | -3 | 0.873 |
PKN3 |
0.823 | 0.037 | -3 | 0.855 |
NEK7 |
0.822 | 0.049 | -3 | 0.869 |
NDR1 |
0.822 | 0.056 | -3 | 0.858 |
ERK5 |
0.822 | 0.056 | 1 | 0.834 |
TGFBR2 |
0.822 | 0.049 | -2 | 0.822 |
PDHK1 |
0.822 | -0.023 | 1 | 0.888 |
SRPK1 |
0.821 | 0.042 | -3 | 0.776 |
CDKL5 |
0.821 | 0.057 | -3 | 0.824 |
P90RSK |
0.821 | 0.049 | -3 | 0.806 |
CAMK2G |
0.821 | -0.023 | 2 | 0.869 |
HIPK4 |
0.821 | 0.077 | 1 | 0.798 |
SKMLCK |
0.820 | 0.052 | -2 | 0.903 |
BMPR2 |
0.820 | 0.012 | -2 | 0.935 |
MAPKAPK3 |
0.820 | 0.085 | -3 | 0.806 |
CDKL1 |
0.820 | 0.023 | -3 | 0.830 |
NUAK2 |
0.820 | 0.011 | -3 | 0.865 |
LATS2 |
0.819 | 0.080 | -5 | 0.822 |
PIM1 |
0.819 | 0.077 | -3 | 0.803 |
ATR |
0.819 | 0.004 | 1 | 0.873 |
CHAK2 |
0.818 | 0.027 | -1 | 0.881 |
MARK4 |
0.818 | -0.014 | 4 | 0.849 |
AMPKA1 |
0.818 | 0.034 | -3 | 0.879 |
PKCD |
0.818 | 0.068 | 2 | 0.851 |
MLK1 |
0.818 | 0.003 | 2 | 0.872 |
RSK3 |
0.818 | 0.049 | -3 | 0.798 |
NIK |
0.817 | 0.015 | -3 | 0.906 |
IKKA |
0.817 | 0.051 | -2 | 0.811 |
HUNK |
0.817 | -0.066 | 2 | 0.868 |
CAMLCK |
0.817 | 0.009 | -2 | 0.893 |
MASTL |
0.817 | -0.005 | -2 | 0.892 |
NEK9 |
0.816 | 0.056 | 2 | 0.900 |
PKN2 |
0.816 | 0.025 | -3 | 0.860 |
NIM1 |
0.816 | -0.029 | 3 | 0.108 |
TSSK1 |
0.816 | 0.045 | -3 | 0.900 |
IRE1 |
0.816 | -0.002 | 1 | 0.835 |
MNK2 |
0.815 | 0.097 | -2 | 0.834 |
WNK3 |
0.815 | -0.086 | 1 | 0.865 |
MAPKAPK2 |
0.815 | 0.072 | -3 | 0.756 |
AMPKA2 |
0.814 | 0.038 | -3 | 0.847 |
BCKDK |
0.814 | -0.024 | -1 | 0.815 |
GRK1 |
0.814 | 0.083 | -2 | 0.839 |
ICK |
0.814 | 0.056 | -3 | 0.864 |
MLK2 |
0.814 | 0.084 | 2 | 0.878 |
DAPK2 |
0.814 | 0.015 | -3 | 0.897 |
TSSK2 |
0.814 | 0.014 | -5 | 0.902 |
ULK1 |
0.813 | -0.037 | -3 | 0.844 |
PKACG |
0.813 | 0.046 | -2 | 0.777 |
AURC |
0.813 | 0.078 | -2 | 0.675 |
GRK5 |
0.812 | -0.059 | -3 | 0.871 |
RIPK1 |
0.812 | -0.068 | 1 | 0.862 |
SRPK2 |
0.811 | 0.029 | -3 | 0.700 |
KIS |
0.811 | 0.001 | 1 | 0.703 |
P70S6KB |
0.811 | 0.034 | -3 | 0.826 |
CAMK2B |
0.811 | 0.053 | 2 | 0.833 |
ANKRD3 |
0.810 | -0.017 | 1 | 0.908 |
PKR |
0.810 | 0.148 | 1 | 0.878 |
MELK |
0.810 | 0.022 | -3 | 0.836 |
PRKD3 |
0.809 | 0.059 | -3 | 0.773 |
CDK8 |
0.809 | 0.034 | 1 | 0.674 |
SRPK3 |
0.808 | 0.004 | -3 | 0.745 |
PHKG1 |
0.808 | 0.029 | -3 | 0.852 |
IRE2 |
0.808 | -0.055 | 2 | 0.815 |
MNK1 |
0.808 | 0.080 | -2 | 0.839 |
PKCA |
0.808 | 0.060 | 2 | 0.793 |
MLK3 |
0.808 | 0.028 | 2 | 0.807 |
DYRK2 |
0.807 | 0.067 | 1 | 0.706 |
GRK6 |
0.807 | -0.070 | 1 | 0.848 |
PKCB |
0.806 | 0.047 | 2 | 0.798 |
PAK1 |
0.806 | 0.030 | -2 | 0.816 |
PKCZ |
0.806 | 0.039 | 2 | 0.846 |
TGFBR1 |
0.806 | 0.078 | -2 | 0.837 |
CAMK2A |
0.806 | 0.025 | 2 | 0.842 |
PAK3 |
0.806 | -0.001 | -2 | 0.820 |
TTBK2 |
0.806 | -0.030 | 2 | 0.791 |
PAK6 |
0.805 | 0.054 | -2 | 0.744 |
NUAK1 |
0.805 | -0.017 | -3 | 0.818 |
CAMK4 |
0.805 | -0.022 | -3 | 0.845 |
PKCG |
0.805 | 0.030 | 2 | 0.803 |
CDK19 |
0.805 | 0.030 | 1 | 0.634 |
FAM20C |
0.805 | 0.020 | 2 | 0.668 |
AURB |
0.805 | 0.048 | -2 | 0.673 |
PERK |
0.805 | 0.151 | -2 | 0.880 |
NEK2 |
0.805 | 0.027 | 2 | 0.875 |
CDK5 |
0.805 | 0.015 | 1 | 0.692 |
MSK2 |
0.804 | 0.005 | -3 | 0.767 |
LATS1 |
0.804 | 0.061 | -3 | 0.878 |
GRK4 |
0.804 | -0.059 | -2 | 0.867 |
QSK |
0.804 | -0.029 | 4 | 0.822 |
QIK |
0.804 | -0.058 | -3 | 0.865 |
CHAK1 |
0.804 | -0.021 | 2 | 0.845 |
VRK2 |
0.803 | 0.073 | 1 | 0.911 |
ALK4 |
0.803 | 0.024 | -2 | 0.870 |
ATM |
0.803 | -0.018 | 1 | 0.813 |
CDK7 |
0.803 | 0.007 | 1 | 0.674 |
CLK4 |
0.803 | 0.033 | -3 | 0.793 |
RSK4 |
0.803 | 0.047 | -3 | 0.767 |
CLK1 |
0.803 | 0.034 | -3 | 0.773 |
DLK |
0.803 | -0.095 | 1 | 0.867 |
CHK1 |
0.803 | 0.052 | -3 | 0.857 |
PKCH |
0.803 | 0.029 | 2 | 0.790 |
SMG1 |
0.802 | 0.006 | 1 | 0.831 |
PKG2 |
0.802 | 0.048 | -2 | 0.699 |
WNK4 |
0.802 | 0.011 | -2 | 0.947 |
DNAPK |
0.801 | 0.011 | 1 | 0.766 |
BRSK2 |
0.801 | -0.019 | -3 | 0.846 |
YSK4 |
0.800 | 0.005 | 1 | 0.823 |
PLK1 |
0.800 | -0.041 | -2 | 0.843 |
SIK |
0.800 | -0.022 | -3 | 0.791 |
TLK2 |
0.800 | 0.070 | 1 | 0.834 |
SGK3 |
0.800 | 0.056 | -3 | 0.788 |
AKT2 |
0.800 | 0.054 | -3 | 0.716 |
PIM2 |
0.799 | 0.050 | -3 | 0.776 |
MEK1 |
0.799 | -0.029 | 2 | 0.888 |
CDK13 |
0.799 | -0.011 | 1 | 0.646 |
MSK1 |
0.799 | 0.017 | -3 | 0.773 |
P38A |
0.799 | 0.033 | 1 | 0.716 |
MYLK4 |
0.798 | -0.010 | -2 | 0.801 |
PAK2 |
0.798 | -0.021 | -2 | 0.806 |
MLK4 |
0.798 | -0.029 | 2 | 0.788 |
BRSK1 |
0.798 | -0.035 | -3 | 0.820 |
PKACB |
0.798 | 0.049 | -2 | 0.695 |
HRI |
0.798 | -0.004 | -2 | 0.895 |
AURA |
0.797 | 0.037 | -2 | 0.637 |
MAPKAPK5 |
0.797 | -0.023 | -3 | 0.751 |
MARK3 |
0.797 | -0.033 | 4 | 0.782 |
IRAK4 |
0.797 | -0.018 | 1 | 0.856 |
SNRK |
0.797 | -0.088 | 2 | 0.747 |
BMPR1B |
0.797 | 0.016 | 1 | 0.782 |
JNK2 |
0.797 | 0.050 | 1 | 0.615 |
CDK1 |
0.797 | -0.006 | 1 | 0.615 |
DCAMKL1 |
0.796 | 0.052 | -3 | 0.813 |
MARK2 |
0.796 | -0.044 | 4 | 0.743 |
CDK3 |
0.796 | -0.001 | 1 | 0.558 |
CDK9 |
0.796 | -0.009 | 1 | 0.657 |
CDK18 |
0.796 | 0.015 | 1 | 0.601 |
CDK2 |
0.796 | -0.052 | 1 | 0.704 |
CLK2 |
0.796 | 0.051 | -3 | 0.774 |
MEKK1 |
0.795 | -0.000 | 1 | 0.875 |
HIPK1 |
0.795 | 0.048 | 1 | 0.728 |
MPSK1 |
0.795 | 0.143 | 1 | 0.844 |
PLK3 |
0.794 | -0.054 | 2 | 0.830 |
JNK3 |
0.794 | 0.029 | 1 | 0.651 |
PHKG2 |
0.794 | 0.002 | -3 | 0.826 |
HIPK2 |
0.794 | 0.050 | 1 | 0.611 |
MST3 |
0.793 | 0.059 | 2 | 0.886 |
NEK5 |
0.793 | 0.034 | 1 | 0.884 |
PKCT |
0.793 | 0.016 | 2 | 0.798 |
PRKX |
0.793 | 0.066 | -3 | 0.700 |
CAMK1G |
0.793 | -0.012 | -3 | 0.790 |
PLK4 |
0.793 | -0.043 | 2 | 0.696 |
CDK12 |
0.792 | -0.007 | 1 | 0.617 |
ALK2 |
0.792 | -0.010 | -2 | 0.842 |
ERK1 |
0.792 | 0.019 | 1 | 0.630 |
ACVR2A |
0.792 | -0.017 | -2 | 0.821 |
DRAK1 |
0.792 | -0.051 | 1 | 0.769 |
ZAK |
0.792 | -0.013 | 1 | 0.845 |
PRP4 |
0.792 | 0.039 | -3 | 0.810 |
PKCI |
0.791 | 0.022 | 2 | 0.811 |
HIPK3 |
0.791 | 0.019 | 1 | 0.734 |
DYRK1A |
0.791 | 0.020 | 1 | 0.742 |
MEK5 |
0.791 | -0.064 | 2 | 0.882 |
P38B |
0.791 | 0.019 | 1 | 0.637 |
AKT1 |
0.790 | 0.051 | -3 | 0.734 |
MEKK2 |
0.790 | -0.019 | 2 | 0.867 |
BRAF |
0.790 | -0.028 | -4 | 0.846 |
MARK1 |
0.790 | -0.077 | 4 | 0.803 |
MEKK3 |
0.790 | -0.061 | 1 | 0.848 |
GRK7 |
0.790 | -0.025 | 1 | 0.773 |
ACVR2B |
0.789 | -0.014 | -2 | 0.831 |
GSK3B |
0.789 | 0.035 | 4 | 0.568 |
P70S6K |
0.789 | 0.021 | -3 | 0.738 |
SSTK |
0.789 | -0.026 | 4 | 0.819 |
TAO3 |
0.788 | 0.059 | 1 | 0.836 |
DYRK3 |
0.788 | 0.054 | 1 | 0.735 |
ERK2 |
0.788 | -0.016 | 1 | 0.670 |
IRAK1 |
0.788 | -0.103 | -1 | 0.800 |
P38G |
0.788 | 0.029 | 1 | 0.533 |
CDK17 |
0.788 | -0.004 | 1 | 0.537 |
CDK14 |
0.787 | 0.005 | 1 | 0.650 |
PKCE |
0.787 | 0.040 | 2 | 0.789 |
PINK1 |
0.787 | -0.069 | 1 | 0.847 |
SMMLCK |
0.787 | -0.023 | -3 | 0.845 |
DCAMKL2 |
0.787 | -0.005 | -3 | 0.838 |
GAK |
0.786 | 0.104 | 1 | 0.901 |
TLK1 |
0.785 | -0.032 | -2 | 0.858 |
CAMK1D |
0.785 | 0.020 | -3 | 0.715 |
DYRK4 |
0.785 | 0.028 | 1 | 0.622 |
TTBK1 |
0.785 | -0.055 | 2 | 0.708 |
PKACA |
0.785 | 0.029 | -2 | 0.639 |
GSK3A |
0.784 | 0.043 | 4 | 0.576 |
PAK5 |
0.784 | 0.019 | -2 | 0.676 |
CK1E |
0.784 | 0.000 | -3 | 0.524 |
CK1G1 |
0.784 | 0.006 | -3 | 0.514 |
LKB1 |
0.784 | 0.095 | -3 | 0.870 |
PKN1 |
0.783 | 0.013 | -3 | 0.757 |
TAO2 |
0.783 | -0.005 | 2 | 0.906 |
BMPR1A |
0.783 | 0.004 | 1 | 0.761 |
NEK4 |
0.783 | -0.001 | 1 | 0.850 |
PASK |
0.782 | -0.034 | -3 | 0.871 |
CDK10 |
0.782 | 0.009 | 1 | 0.633 |
PAK4 |
0.782 | 0.011 | -2 | 0.674 |
EEF2K |
0.782 | -0.023 | 3 | 0.123 |
CK2A2 |
0.781 | -0.032 | 1 | 0.687 |
VRK1 |
0.781 | 0.154 | 2 | 0.891 |
NEK8 |
0.781 | -0.037 | 2 | 0.880 |
DYRK1B |
0.781 | 0.010 | 1 | 0.651 |
CAMKK1 |
0.780 | -0.023 | -2 | 0.825 |
PDK1 |
0.780 | 0.015 | 1 | 0.841 |
CDK16 |
0.780 | 0.006 | 1 | 0.558 |
P38D |
0.780 | 0.022 | 1 | 0.570 |
GRK2 |
0.780 | -0.067 | -2 | 0.752 |
CAMKK2 |
0.779 | 0.015 | -2 | 0.822 |
HGK |
0.779 | -0.010 | 3 | 0.140 |
MEKK6 |
0.779 | 0.013 | 1 | 0.854 |
MINK |
0.779 | 0.016 | 1 | 0.845 |
ROCK2 |
0.778 | 0.109 | -3 | 0.811 |
TNIK |
0.778 | 0.018 | 3 | 0.149 |
NEK11 |
0.778 | -0.084 | 1 | 0.838 |
ERK7 |
0.778 | 0.035 | 2 | 0.599 |
NEK1 |
0.778 | 0.040 | 1 | 0.860 |
DAPK3 |
0.778 | 0.006 | -3 | 0.824 |
BUB1 |
0.777 | 0.075 | -5 | 0.860 |
MRCKB |
0.777 | 0.063 | -3 | 0.764 |
PBK |
0.777 | 0.129 | 1 | 0.846 |
MAP3K15 |
0.777 | 0.007 | 1 | 0.829 |
CDK6 |
0.776 | -0.012 | 1 | 0.635 |
CHK2 |
0.776 | 0.013 | -3 | 0.662 |
AKT3 |
0.776 | 0.041 | -3 | 0.649 |
GCK |
0.775 | -0.005 | 1 | 0.832 |
CDK4 |
0.775 | -0.003 | 1 | 0.603 |
MOK |
0.775 | 0.079 | 1 | 0.751 |
LOK |
0.775 | 0.018 | -2 | 0.844 |
SGK1 |
0.774 | 0.047 | -3 | 0.632 |
NEK3 |
0.774 | 0.070 | 1 | 0.833 |
MRCKA |
0.774 | 0.048 | -3 | 0.780 |
MAK |
0.774 | 0.077 | -2 | 0.765 |
CK2A1 |
0.774 | -0.033 | 1 | 0.662 |
RIPK2 |
0.774 | -0.121 | 1 | 0.804 |
DAPK1 |
0.773 | -0.001 | -3 | 0.805 |
MST2 |
0.773 | -0.005 | 1 | 0.850 |
LRRK2 |
0.773 | -0.044 | 2 | 0.908 |
KHS1 |
0.773 | 0.018 | 1 | 0.828 |
TAK1 |
0.773 | 0.039 | 1 | 0.860 |
JNK1 |
0.773 | -0.003 | 1 | 0.593 |
YSK1 |
0.773 | 0.042 | 2 | 0.870 |
CAMK1A |
0.772 | 0.019 | -3 | 0.677 |
HPK1 |
0.772 | -0.010 | 1 | 0.819 |
KHS2 |
0.771 | 0.014 | 1 | 0.831 |
CK1D |
0.771 | -0.020 | -3 | 0.469 |
CK1A2 |
0.770 | -0.030 | -3 | 0.468 |
STK33 |
0.769 | -0.074 | 2 | 0.693 |
MEK2 |
0.769 | -0.026 | 2 | 0.865 |
GRK3 |
0.768 | -0.043 | -2 | 0.701 |
SBK |
0.768 | 0.033 | -3 | 0.597 |
PLK2 |
0.767 | -0.030 | -3 | 0.816 |
PKG1 |
0.766 | 0.016 | -2 | 0.614 |
DMPK1 |
0.765 | 0.048 | -3 | 0.783 |
MST1 |
0.765 | -0.046 | 1 | 0.837 |
SLK |
0.764 | -0.030 | -2 | 0.793 |
BIKE |
0.763 | 0.105 | 1 | 0.805 |
ROCK1 |
0.763 | 0.061 | -3 | 0.779 |
PDHK3_TYR |
0.760 | 0.102 | 4 | 0.929 |
CRIK |
0.759 | 0.041 | -3 | 0.730 |
MYO3B |
0.759 | 0.025 | 2 | 0.881 |
HASPIN |
0.759 | 0.007 | -1 | 0.718 |
TTK |
0.758 | -0.045 | -2 | 0.849 |
TAO1 |
0.757 | 0.005 | 1 | 0.783 |
OSR1 |
0.757 | 0.031 | 2 | 0.854 |
PKMYT1_TYR |
0.755 | 0.052 | 3 | 0.155 |
ASK1 |
0.752 | -0.034 | 1 | 0.816 |
TESK1_TYR |
0.752 | -0.019 | 3 | 0.147 |
LIMK2_TYR |
0.751 | 0.066 | -3 | 0.921 |
MYO3A |
0.750 | -0.038 | 1 | 0.826 |
MAP2K4_TYR |
0.749 | -0.005 | -1 | 0.903 |
AAK1 |
0.748 | 0.124 | 1 | 0.708 |
ROS1 |
0.747 | -0.041 | 3 | 0.128 |
MAP2K7_TYR |
0.747 | -0.104 | 2 | 0.915 |
ABL2 |
0.747 | 0.067 | -1 | 0.844 |
PDHK4_TYR |
0.747 | -0.019 | 2 | 0.922 |
TYK2 |
0.746 | -0.031 | 1 | 0.861 |
MAP2K6_TYR |
0.745 | -0.055 | -1 | 0.904 |
RET |
0.745 | -0.024 | 1 | 0.857 |
JAK2 |
0.745 | -0.041 | 1 | 0.861 |
TYRO3 |
0.745 | -0.058 | 3 | 0.128 |
ABL1 |
0.745 | 0.076 | -1 | 0.838 |
TNK2 |
0.745 | -0.044 | 3 | 0.103 |
MST1R |
0.745 | -0.058 | 3 | 0.136 |
PINK1_TYR |
0.744 | -0.125 | 1 | 0.865 |
PDHK1_TYR |
0.742 | -0.057 | -1 | 0.913 |
LIMK1_TYR |
0.742 | -0.049 | 2 | 0.914 |
EPHB4 |
0.742 | -0.034 | -1 | 0.863 |
BMPR2_TYR |
0.742 | -0.036 | -1 | 0.878 |
FGR |
0.742 | 0.000 | 1 | 0.895 |
HCK |
0.742 | 0.004 | -1 | 0.858 |
EPHA6 |
0.741 | -0.046 | -1 | 0.873 |
YANK3 |
0.741 | -0.059 | 2 | 0.462 |
CSF1R |
0.741 | -0.079 | 3 | 0.118 |
LCK |
0.741 | 0.038 | -1 | 0.857 |
CK1A |
0.740 | -0.006 | -3 | 0.372 |
YES1 |
0.740 | -0.036 | -1 | 0.880 |
TNNI3K_TYR |
0.740 | 0.043 | 1 | 0.884 |
TNK1 |
0.739 | -0.013 | 3 | 0.138 |
BLK |
0.739 | 0.025 | -1 | 0.861 |
DDR1 |
0.739 | -0.101 | 4 | 0.861 |
JAK1 |
0.738 | 0.005 | 1 | 0.813 |
TXK |
0.737 | 0.024 | 1 | 0.846 |
ITK |
0.735 | -0.021 | -1 | 0.838 |
INSRR |
0.735 | -0.117 | 3 | 0.093 |
SRMS |
0.735 | -0.023 | 1 | 0.866 |
PDGFRB |
0.734 | -0.094 | 3 | 0.116 |
EPHB3 |
0.734 | -0.048 | -1 | 0.850 |
STLK3 |
0.734 | -0.073 | 1 | 0.807 |
AXL |
0.734 | -0.084 | 3 | 0.104 |
FER |
0.734 | -0.106 | 1 | 0.887 |
EPHB1 |
0.733 | -0.077 | 1 | 0.871 |
JAK3 |
0.733 | -0.095 | 1 | 0.836 |
ALPHAK3 |
0.732 | -0.130 | -1 | 0.798 |
MERTK |
0.732 | -0.059 | 3 | 0.113 |
LYN |
0.731 | -0.039 | 3 | 0.115 |
FLT3 |
0.731 | -0.104 | 3 | 0.115 |
LTK |
0.731 | -0.076 | 3 | 0.111 |
KDR |
0.731 | -0.113 | 3 | 0.093 |
ALK |
0.731 | -0.113 | 3 | 0.094 |
EPHB2 |
0.730 | -0.053 | -1 | 0.842 |
TEK |
0.730 | -0.142 | 3 | 0.087 |
PDGFRA |
0.730 | -0.094 | 3 | 0.132 |
NEK10_TYR |
0.730 | -0.013 | 1 | 0.728 |
EPHA4 |
0.729 | -0.062 | 2 | 0.822 |
FYN |
0.729 | 0.008 | -1 | 0.827 |
FGFR1 |
0.729 | -0.129 | 3 | 0.102 |
KIT |
0.729 | -0.122 | 3 | 0.104 |
FGFR2 |
0.728 | -0.144 | 3 | 0.096 |
BTK |
0.728 | -0.074 | -1 | 0.810 |
TEC |
0.728 | -0.066 | -1 | 0.781 |
BMX |
0.727 | -0.032 | -1 | 0.751 |
EPHA1 |
0.727 | -0.087 | 3 | 0.101 |
DDR2 |
0.726 | -0.068 | 3 | 0.072 |
WEE1_TYR |
0.726 | -0.054 | -1 | 0.785 |
PTK6 |
0.725 | -0.014 | -1 | 0.776 |
NTRK1 |
0.725 | -0.088 | -1 | 0.839 |
FRK |
0.724 | -0.076 | -1 | 0.871 |
EPHA7 |
0.724 | -0.082 | 2 | 0.833 |
MET |
0.723 | -0.107 | 3 | 0.110 |
INSR |
0.723 | -0.110 | 3 | 0.106 |
NTRK2 |
0.723 | -0.132 | 3 | 0.107 |
FLT4 |
0.723 | -0.107 | 3 | 0.117 |
PTK2B |
0.721 | -0.063 | -1 | 0.819 |
SRC |
0.720 | -0.048 | -1 | 0.829 |
ERBB2 |
0.720 | -0.115 | 1 | 0.799 |
EPHA3 |
0.720 | -0.108 | 2 | 0.803 |
NTRK3 |
0.718 | -0.100 | -1 | 0.792 |
CK1G3 |
0.716 | -0.055 | -3 | 0.320 |
FLT1 |
0.716 | -0.105 | -1 | 0.844 |
FGFR3 |
0.715 | -0.164 | 3 | 0.081 |
EPHA8 |
0.714 | -0.081 | -1 | 0.822 |
EPHA5 |
0.714 | -0.098 | 2 | 0.809 |
CSK |
0.713 | -0.088 | 2 | 0.835 |
IGF1R |
0.709 | -0.122 | 3 | 0.081 |
MUSK |
0.708 | -0.065 | 1 | 0.700 |
YANK2 |
0.708 | -0.080 | 2 | 0.480 |
MATK |
0.708 | -0.098 | -1 | 0.766 |
EGFR |
0.706 | -0.061 | 1 | 0.710 |
EPHA2 |
0.705 | -0.090 | -1 | 0.782 |
FGFR4 |
0.704 | -0.097 | -1 | 0.794 |
CK1G2 |
0.702 | -0.056 | -3 | 0.423 |
PTK2 |
0.700 | -0.047 | -1 | 0.777 |
SYK |
0.697 | -0.025 | -1 | 0.776 |
ERBB4 |
0.697 | -0.089 | 1 | 0.710 |
FES |
0.694 | -0.128 | -1 | 0.729 |
ZAP70 |
0.674 | -0.063 | -1 | 0.697 |