Motif 873 (n=821)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0C4DFX4 | None | S2706 | ochoa | Snf2 related CREBBP activator protein | None |
O00148 | DDX39A | S40 | ochoa | ATP-dependent RNA helicase DDX39A (EC 3.6.4.13) (DEAD box protein 39) (Nuclear RNA helicase URH49) | Helicase that plays an essential role in mRNA export and is involved in multiple steps in RNA metabolism including alternative splicing (PubMed:33941617, PubMed:38801080). Regulates nuclear mRNA export to the cytoplasm through association with ECD (PubMed:33941617). Also involved in spliceosomal uridine-rich small nuclear RNA (U snRNA) export by stimulating the RNA binding of adapter PHAX (PubMed:39011894). Plays a role in the negative regulation of type I IFN production by increasing the nuclear retention of antiviral transcripts and thus reducing their protein expression (PubMed:32393512). Independently of the interferon pathway, plays an antiviral role against alphaviruses by binding to a 5' conserved sequence element in the viral genomic RNA (PubMed:37949067). {ECO:0000269|PubMed:15047853, ECO:0000269|PubMed:17548965, ECO:0000269|PubMed:32393512, ECO:0000269|PubMed:33941617, ECO:0000269|PubMed:37949067, ECO:0000269|PubMed:38801080}. |
O00311 | CDC7 | S509 | ochoa | Cell division cycle 7-related protein kinase (CDC7-related kinase) (HsCdc7) (huCdc7) (EC 2.7.11.1) | Kinase involved in initiation of DNA replication. Phosphorylates critical substrates that regulate the G1/S phase transition and initiation of DNA replication, such as MCM proteins and CLASPIN. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:27401717}. |
O00560 | SDCBP | S88 | ochoa | Syntenin-1 (Melanoma differentiation-associated protein 9) (MDA-9) (Pro-TGF-alpha cytoplasmic domain-interacting protein 18) (TACIP18) (Scaffold protein Pbp1) (Syndecan-binding protein 1) | Multifunctional adapter protein involved in diverse array of functions including trafficking of transmembrane proteins, neuro and immunomodulation, exosome biogenesis, and tumorigenesis (PubMed:26291527). Positively regulates TGFB1-mediated SMAD2/3 activation and TGFB1-induced epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types. May increase TGFB1 signaling by enhancing cell-surface expression of TGFR1 by preventing the interaction between TGFR1 and CAV1 and subsequent CAV1-dependent internalization and degradation of TGFR1 (PubMed:25893292). In concert with SDC1/4 and PDCD6IP, regulates exosome biogenesis (PubMed:22660413). Regulates migration, growth, proliferation, and cell cycle progression in a variety of cancer types (PubMed:26539120). In adherens junctions may function to couple syndecans to cytoskeletal proteins or signaling components. Seems to couple transcription factor SOX4 to the IL-5 receptor (IL5RA) (PubMed:11498591). May also play a role in vesicular trafficking (PubMed:11179419). Seems to be required for the targeting of TGFA to the cell surface in the early secretory pathway (PubMed:10230395). {ECO:0000269|PubMed:10230395, ECO:0000269|PubMed:11179419, ECO:0000269|PubMed:11498591, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:25893292, ECO:0000269|PubMed:26539120, ECO:0000303|PubMed:26291527}. |
O14745 | NHERF1 | S340 | psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHERF-1) (Ezrin-radixin-moesin-binding phosphoprotein 50) (EBP50) (Regulatory cofactor of Na(+)/H(+) exchanger) (Sodium-hydrogen exchanger regulatory factor 1) (Solute carrier family 9 isoform A3 regulatory factor 1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for recycling of internalized ADRB2. Was first known to play a role in the regulation of the activity and subcellular location of SLC9A3. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3. May enhance Wnt signaling. May participate in HTR4 targeting to microvilli (By similarity). Involved in the regulation of phosphate reabsorption in the renal proximal tubules. Involved in sperm capacitation. May participate in the regulation of the chloride and bicarbonate homeostasis in spermatozoa. {ECO:0000250, ECO:0000269|PubMed:10499588, ECO:0000269|PubMed:18784102, ECO:0000269|PubMed:9096337, ECO:0000269|PubMed:9430655}. |
O14791 | APOL1 | S311 | ochoa|psp | Apolipoprotein L1 (Apolipoprotein L) (Apo-L) (ApoL) (Apolipoprotein L-I) (ApoL-I) | May play a role in lipid exchange and transport throughout the body. May participate in reverse cholesterol transport from peripheral cells to the liver. |
O15527 | OGG1 | S326 | psp | N-glycosylase/DNA lyase [Includes: 8-oxoguanine DNA glycosylase (EC 3.2.2.-); DNA-(apurinic or apyrimidinic site) lyase (AP lyase) (EC 4.2.99.18)] | DNA repair enzyme that incises DNA at 8-oxoG residues. Excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (FAPY) from damaged DNA. Has a beta-lyase activity that nicks DNA 3' to the lesion. |
O15554 | KCNN4 | S178 | ochoa | Intermediate conductance calcium-activated potassium channel protein 4 (SKCa 4) (SKCa4) (hSK4) (Gardos channel) (IKCa1) (hIK1) (KCa3.1) (Putative Gardos channel) (hKCa4) | Intermediate conductance calcium-activated potassium channel that mediates the voltage-independent transmembrane transfer of potassium across the cell membrane through a constitutive interaction with calmodulin which binds the intracellular calcium allowing its opening (PubMed:10026195, PubMed:10961988, PubMed:11425865, PubMed:15831468, PubMed:17157250, PubMed:18796614, PubMed:26148990, PubMed:9326665, PubMed:9380751, PubMed:9407042). The current is characterized by a voltage-independent activation, an intracellular calcium concentration increase-dependent activation and a single-channel conductance of about 25 picosiemens (PubMed:9326665, PubMed:9380751, PubMed:9407042). Also presents an inwardly rectifying current, thus reducing its already small outward conductance of potassium ions, which is particularly the case when the membrane potential displays positive values, above + 20 mV (PubMed:9326665, PubMed:9380751, PubMed:9407042). Controls calcium influx during vascular contractility by being responsible of membrane hyperpolarization induced by vasoactive factors in proliferative vascular smooth muscle cell types (By similarity). Following calcium influx, the consecutive activation of KCNN4 channel leads to a hyperpolarization of the cell membrane potential and hence an increase of the electrical driving force for further calcium influx promoting sustained calcium entry in response to stimulation with chemotactic peptides (PubMed:26418693). Required for maximal calcium influx and proliferation during the reactivation of naive T-cells (PubMed:17157250, PubMed:18796614). Plays a role in the late stages of EGF-induced macropinocytosis through activation by PI(3)P (PubMed:24591580). {ECO:0000250|UniProtKB:Q9QYW1, ECO:0000269|PubMed:10026195, ECO:0000269|PubMed:10961988, ECO:0000269|PubMed:11425865, ECO:0000269|PubMed:15831468, ECO:0000269|PubMed:17157250, ECO:0000269|PubMed:18796614, ECO:0000269|PubMed:24591580, ECO:0000269|PubMed:26148990, ECO:0000269|PubMed:26418693, ECO:0000269|PubMed:9326665, ECO:0000269|PubMed:9380751, ECO:0000269|PubMed:9407042}. |
O43149 | ZZEF1 | S1970 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43290 | SART1 | S84 | ochoa | U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) | Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}. |
O43683 | BUB1 | S411 | ochoa | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O60240 | PLIN1 | S382 | ochoa | Perilipin-1 (Lipid droplet-associated protein) | Modulator of adipocyte lipid metabolism. Coats lipid storage droplets to protect them from breakdown by hormone-sensitive lipase (HSL). Its absence may result in leanness. Plays a role in unilocular lipid droplet formation by activating CIDEC. Their interaction promotes lipid droplet enlargement and directional net neutral lipid transfer. May modulate lipolysis and triglyceride levels. {ECO:0000269|PubMed:23399566}. |
O60318 | MCM3AP | S579 | ochoa | Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) | [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}. |
O60610 | DIAPH1 | S1254 | ochoa | Protein diaphanous homolog 1 (Diaphanous-related formin-1) (DRF1) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers (By similarity). Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization (By similarity). Required for cytokinesis, and transcriptional activation of the serum response factor (By similarity). DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics (By similarity). Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration (By similarity). Has neurite outgrowth promoting activity. Acts in a Rho-dependent manner to recruit PFY1 to the membrane (By similarity). In hear cells, it may play a role in the regulation of actin polymerization in hair cells (PubMed:20937854, PubMed:21834987, PubMed:26912466). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854, PubMed:21834987). It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity (PubMed:20937854, PubMed:21834987). In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854, PubMed:21834987). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (PubMed:20937854, PubMed:21834987). Plays a role in brain development (PubMed:24781755). Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity (By similarity). {ECO:0000250|UniProtKB:O08808, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24781755, ECO:0000269|PubMed:26912466}. |
O60832 | DKC1 | S451 | ochoa | H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) | [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}. |
O60934 | NBN | S58 | ochoa | Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) | Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}. |
O75363 | BCAS1 | S535 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75376 | NCOR1 | S1742 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O76070 | SNCG | S54 | ochoa | Gamma-synuclein (Breast cancer-specific gene 1 protein) (Persyn) (Synoretin) (SR) | Plays a role in neurofilament network integrity. May be involved in modulating axonal architecture during development and in the adult. In vitro, increases the susceptibility of neurofilament-H to calcium-dependent proteases (By similarity). May also function in modulating the keratin network in skin. Activates the MAPK and Elk-1 signal transduction pathway (By similarity). {ECO:0000250}. |
O94929 | ABLIM3 | S277 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O95359 | TACC2 | S2117 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95405 | ZFYVE9 | S121 | ochoa | Zinc finger FYVE domain-containing protein 9 (Mothers against decapentaplegic homolog-interacting protein) (Madh-interacting protein) (Novel serine protease) (NSP) (Receptor activation anchor) (hSARA) (Smad anchor for receptor activation) | Early endosomal protein that functions to recruit SMAD2/SMAD3 to intracellular membranes and to the TGF-beta receptor. Plays a significant role in TGF-mediated signaling by regulating the subcellular location of SMAD2 and SMAD3 and modulating the transcriptional activity of the SMAD3/SMAD4 complex. Possibly associated with TGF-beta receptor internalization. {ECO:0000269|PubMed:15356634, ECO:0000269|PubMed:9865696}. |
O95758 | PTBP3 | S159 | ochoa | Polypyrimidine tract-binding protein 3 (Regulator of differentiation 1) (Rod1) | RNA-binding protein that mediates pre-mRNA alternative splicing regulation. Plays a role in the regulation of cell proliferation, differentiation and migration. Positive regulator of EPO-dependent erythropoiesis. Participates in cell differentiation regulation by repressing tissue-specific exons. Promotes FAS exon 6 skipping. Binds RNA, preferentially to both poly(G) and poly(U). {ECO:0000269|PubMed:10207106, ECO:0000269|PubMed:18335065, ECO:0000269|PubMed:19441079, ECO:0000269|PubMed:20937273}. |
O95816 | BAG2 | S20 | ochoa|psp | BAG family molecular chaperone regulator 2 (BAG-2) (Bcl-2-associated athanogene 2) | Co-chaperone for HSP70 and HSC70 chaperone proteins. Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from the HSP70 and HSC70 proteins thereby triggering client/substrate protein release (PubMed:24318877, PubMed:9873016). {ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:9873016}. |
P01833 | PIGR | S673 | ochoa | Polymeric immunoglobulin receptor (PIgR) (Poly-Ig receptor) (Hepatocellular carcinoma-associated protein TB6) [Cleaved into: Secretory component] | [Polymeric immunoglobulin receptor]: Mediates selective transcytosis of polymeric IgA and IgM across mucosal epithelial cells. Binds polymeric IgA and IgM at the basolateral surface of epithelial cells. The complex is then transported across the cell to be secreted at the apical surface. During this process, a cleavage occurs that separates the extracellular (known as the secretory component) from the transmembrane segment. {ECO:0000269|PubMed:10229845, ECO:0000269|PubMed:15530357, ECO:0000269|PubMed:9379029}.; FUNCTION: [Secretory component]: Through its N-linked glycans ensures anchoring of secretory IgA (sIgA) molecules to mucus lining the epithelial surface to neutralize extracellular pathogens (PubMed:12150896). On its own (free form) may act as a non-specific microbial scavenger to prevent pathogen interaction with epithelial cells (PubMed:16543244). {ECO:0000269|PubMed:12150896, ECO:0000269|PubMed:16543244}. |
P04075 | ALDOA | S100 | ochoa | Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) | Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}. |
P04075 | ALDOA | S309 | ochoa | Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) | Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}. |
P04150 | NR3C1 | S617 | psp | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
P06213 | INSR | S1062 | psp | Insulin receptor (IR) (EC 2.7.10.1) (CD antigen CD220) [Cleaved into: Insulin receptor subunit alpha; Insulin receptor subunit beta] | Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin. In adipocytes, inhibits lipolysis (By similarity). {ECO:0000250|UniProtKB:P15208, ECO:0000269|PubMed:12138094, ECO:0000269|PubMed:16314505, ECO:0000269|PubMed:16831875, ECO:0000269|PubMed:8257688, ECO:0000269|PubMed:8276809, ECO:0000269|PubMed:8452530, ECO:0000269|PubMed:9428692}. |
P06401 | PGR | S102 | ochoa|psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P07237 | P4HB | S188 | ochoa | Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) | This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}. |
P07737 | PFN1 | S58 | ochoa | Profilin-1 (Epididymis tissue protein Li 184a) (Profilin I) | Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG. Inhibits androgen receptor (AR) and HTT aggregation and binding of G-actin is essential for its inhibition of AR. {ECO:0000269|PubMed:18573880}. |
P08133 | ANXA6 | S38 | ochoa | Annexin A6 (67 kDa calelectrin) (Annexin VI) (Annexin-6) (Calphobindin-II) (CPB-II) (Chromobindin-20) (Lipocortin VI) (Protein III) (p68) (p70) | May associate with CD21. May regulate the release of Ca(2+) from intracellular stores. |
P08962 | CD63 | S113 | ochoa | CD63 antigen (Granulophysin) (Lysosomal-associated membrane protein 3) (LAMP-3) (Lysosome integral membrane protein 1) (Limp1) (Melanoma-associated antigen ME491) (OMA81H) (Ocular melanoma-associated antigen) (Tetraspanin-30) (Tspan-30) (CD antigen CD63) | Functions as a cell surface receptor for TIMP1 and plays a role in the activation of cellular signaling cascades. Plays a role in the activation of ITGB1 and integrin signaling, leading to the activation of AKT, FAK/PTK2 and MAP kinases. Promotes cell survival, reorganization of the actin cytoskeleton, cell adhesion, spreading and migration, via its role in the activation of AKT and FAK/PTK2. Plays a role in VEGFA signaling via its role in regulating the internalization of KDR/VEGFR2. Plays a role in intracellular vesicular transport processes, and is required for normal trafficking of the PMEL luminal domain that is essential for the development and maturation of melanocytes. Plays a role in the adhesion of leukocytes onto endothelial cells via its role in the regulation of SELP trafficking. May play a role in mast cell degranulation in response to Ms4a2/FceRI stimulation, but not in mast cell degranulation in response to other stimuli. {ECO:0000269|PubMed:16917503, ECO:0000269|PubMed:21803846, ECO:0000269|PubMed:21962903, ECO:0000269|PubMed:23632027, ECO:0000269|PubMed:24635319}. |
P0C7M8 | CLEC2L | S48 | ochoa | C-type lectin domain family 2 member L | None |
P10275 | AR | S579 | psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P11137 | MAP2 | S1362 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P13693 | TPT1 | S64 | psp | Translationally-controlled tumor protein (TCTP) (Fortilin) (Histamine-releasing factor) (HRF) (p23) | Involved in calcium binding and microtubule stabilization (PubMed:12167714, PubMed:15162379, PubMed:15958728). Acts as a negative regulator of TSC22D1-mediated apoptosis, via interaction with and destabilization of TSC22D1 protein (PubMed:18325344). {ECO:0000269|PubMed:12167714, ECO:0000269|PubMed:15162379, ECO:0000269|PubMed:15958728, ECO:0000269|PubMed:18325344}. |
P14416 | DRD2 | S147 | psp | D(2) dopamine receptor (Dopamine D2 receptor) | Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase (PubMed:21645528). Positively regulates postnatal regression of retinal hyaloid vessels via suppression of VEGFR2/KDR activity, downstream of OPN5 (By similarity). {ECO:0000250|UniProtKB:P61168, ECO:0000269|PubMed:21645528}. |
P16144 | ITGB4 | S1000 | ochoa | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P16615 | ATP2A2 | S663 | ochoa|psp | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) (SR Ca(2+)-ATPase 2) (EC 7.2.2.10) (Calcium pump 2) (Calcium-transporting ATPase sarcoplasmic reticulum type, slow twitch skeletal muscle isoform) (Endoplasmic reticulum class 1/2 Ca(2+) ATPase) | This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (PubMed:12542527, PubMed:16402920). Involved in autophagy in response to starvation. Upon interaction with VMP1 and activation, controls ER-isolation membrane contacts for autophagosome formation (PubMed:28890335). Also modulates ER contacts with lipid droplets, mitochondria and endosomes (PubMed:28890335). In coordination with FLVCR2 mediates heme-stimulated switching from mitochondrial ATP synthesis to thermogenesis (By similarity). {ECO:0000250|UniProtKB:O55143, ECO:0000269|PubMed:12542527, ECO:0000269|PubMed:16402920, ECO:0000269|PubMed:28890335}.; FUNCTION: [Isoform 2]: Involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic Ca(2+) spiking for activation of NFATC1 and production of mitochondrial ROS, thereby triggering Ca(2+) signaling cascades that promote osteoclast differentiation and activation. {ECO:0000250|UniProtKB:O55143}. |
P18754 | RCC1 | S26 | psp | Regulator of chromosome condensation (Cell cycle regulatory protein) (Chromosome condensation protein 1) | Guanine-nucleotide releasing factor that promotes the exchange of Ran-bound GDP by GTP, and thereby plays an important role in RAN-mediated functions in nuclear import and mitosis (PubMed:11336674, PubMed:17435751, PubMed:1944575, PubMed:20668449, PubMed:22215983, PubMed:29042532). Contributes to the generation of high levels of chromosome-associated, GTP-bound RAN, which is important for mitotic spindle assembly and normal progress through mitosis (PubMed:12194828, PubMed:17435751, PubMed:22215983). Via its role in maintaining high levels of GTP-bound RAN in the nucleus, contributes to the release of cargo proteins from importins after nuclear import (PubMed:22215983). Involved in the regulation of onset of chromosome condensation in the S phase (PubMed:3678831). Binds both to the nucleosomes and double-stranded DNA (PubMed:17435751, PubMed:18762580). {ECO:0000269|PubMed:11336674, ECO:0000269|PubMed:12194828, ECO:0000269|PubMed:17435751, ECO:0000269|PubMed:18762580, ECO:0000269|PubMed:1944575, ECO:0000269|PubMed:20668449, ECO:0000269|PubMed:22215983, ECO:0000269|PubMed:29042532, ECO:0000269|PubMed:3678831}. |
P20810 | CAST | S411 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P21283 | ATP6V1C1 | S362 | ochoa | V-type proton ATPase subunit C 1 (V-ATPase subunit C 1) (Vacuolar proton pump subunit C 1) | Subunit of the V1 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:33065002). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Subunit C is necessary for the assembly of the catalytic sector of the enzyme and is likely to have a specific function in its catalytic activity (By similarity). {ECO:0000250|UniProtKB:P21282, ECO:0000250|UniProtKB:P31412, ECO:0000269|PubMed:33065002}. |
P21333 | FLNA | S2284 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P25205 | MCM3 | S535 | ochoa|psp | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P29350 | PTPN6 | S556 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 6 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine phosphatase) (Protein-tyrosine phosphatase 1C) (PTP-1C) (Protein-tyrosine phosphatase SHP-1) (SH-PTP1) | Tyrosine phosphatase enzyme that plays important roles in controlling immune signaling pathways and fundamental physiological processes such as hematopoiesis (PubMed:14739280, PubMed:29925997). Dephosphorylates and negatively regulate several receptor tyrosine kinases (RTKs) such as EGFR, PDGFR and FGFR, thereby modulating their signaling activities (PubMed:21258366, PubMed:9733788). When recruited to immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors such as immunoglobulin-like transcript 2/LILRB1, programmed cell death protein 1/PDCD1, CD3D, CD22, CLEC12A and other receptors involved in immune regulation, initiates their dephosphorylation and subsequently inhibits downstream signaling events (PubMed:11907092, PubMed:14739280, PubMed:37932456, PubMed:38166031). Modulates the signaling of several cytokine receptors including IL-4 receptor (PubMed:9065461). Additionally, targets multiple cytoplasmic signaling molecules including STING1, LCK or STAT1 among others involved in diverse cellular processes including modulation of T-cell activation or cGAS-STING signaling (PubMed:34811497, PubMed:38532423). Within the nucleus, negatively regulates the activity of some transcription factors such as NFAT5 via direct dephosphorylation. Also acts as a key transcriptional regulator of hepatic gluconeogenesis by controlling recruitment of RNA polymerase II to the PCK1 promoter together with STAT5A (PubMed:37595871). {ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:11266449, ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:29925997, ECO:0000269|PubMed:34811497, ECO:0000269|PubMed:37595871, ECO:0000269|PubMed:37932456, ECO:0000269|PubMed:38166031, ECO:0000269|PubMed:38532423, ECO:0000269|PubMed:9065461, ECO:0000269|PubMed:9733788}. |
P29374 | ARID4A | S1108 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P29401 | TKT | S105 | ochoa | Transketolase (TK) (EC 2.2.1.1) | Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}. |
P30101 | PDIA3 | S126 | ochoa | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
P30203 | CD6 | S505 | psp | T-cell differentiation antigen CD6 (T12) (TP120) (CD antigen CD6) [Cleaved into: Soluble CD6] | Cell adhesion molecule that mediates cell-cell contacts and regulates T-cell responses via its interaction with ALCAM/CD166 (PubMed:15048703, PubMed:15294938, PubMed:16352806, PubMed:16914752, PubMed:24584089, PubMed:24945728). Contributes to signaling cascades triggered by activation of the TCR/CD3 complex (PubMed:24584089). Functions as a costimulatory molecule; promotes T-cell activation and proliferation (PubMed:15294938, PubMed:16352806, PubMed:16914752). Contributes to the formation and maturation of the immunological synapse (PubMed:15294938, PubMed:16352806). Functions as a calcium-dependent pattern receptor that binds and aggregates both Gram-positive and Gram-negative bacteria. Binds both lipopolysaccharide (LPS) from Gram-negative bacteria and lipoteichoic acid from Gram-positive bacteria (PubMed:17601777). LPS binding leads to the activation of signaling cascades and down-stream MAP kinases (PubMed:17601777). Mediates activation of the inflammatory response and the secretion of pro-inflammatory cytokines in response to LPS (PubMed:17601777). {ECO:0000269|PubMed:15048703, ECO:0000269|PubMed:15294938, ECO:0000269|PubMed:16352806, ECO:0000269|PubMed:16914752, ECO:0000269|PubMed:17601777, ECO:0000269|PubMed:24584089, ECO:0000269|PubMed:24945728}. |
P30405 | PPIF | S39 | ochoa | Peptidyl-prolyl cis-trans isomerase F, mitochondrial (PPIase F) (EC 5.2.1.8) (Cyclophilin D) (CyP-D) (CypD) (Cyclophilin F) (Mitochondrial cyclophilin) (CyP-M) (Rotamase F) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Involved in regulation of the mitochondrial permeability transition pore (mPTP) (PubMed:26387735). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probability of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated (PubMed:26387735). In cooperation with mitochondrial p53/TP53 is involved in activating oxidative stress-induced necrosis (PubMed:22726440). Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels (By similarity). Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis (PubMed:19228691). {ECO:0000250|UniProtKB:Q99KR7, ECO:0000269|PubMed:19228691, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:26387735}. |
P31327 | CPS1 | S1203 | ochoa | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
P31415 | CASQ1 | S128 | ochoa | Calsequestrin-1 (Calmitine) (Calsequestrin, skeletal muscle isoform) | Calsequestrin is a high-capacity, moderate affinity, calcium-binding protein and thus acts as an internal calcium store in muscle (PubMed:28895244). Calcium ions are bound by clusters of acidic residues at the protein surface, often at the interface between subunits. Can bind around 80 Ca(2+) ions (PubMed:28895244). Regulates the release of lumenal Ca(2+) via the calcium release channel RYR1; this plays an important role in triggering muscle contraction. Negatively regulates store-operated Ca(2+) entry (SOCE) activity (PubMed:27185316). {ECO:0000269|PubMed:22337878, ECO:0000269|PubMed:27185316, ECO:0000269|PubMed:28895244, ECO:0000303|PubMed:22337878}. |
P31939 | ATIC | S314 | ochoa | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
P31948 | STIP1 | S42 | ochoa | Stress-induced-phosphoprotein 1 (STI1) (Hsc70/Hsp90-organizing protein) (Hop) (Renal carcinoma antigen NY-REN-11) (Transformation-sensitive protein IEF SSP 3521) | Acts as a co-chaperone for HSP90AA1 (PubMed:27353360). Mediates the association of the molecular chaperones HSPA8/HSC70 and HSP90 (By similarity). {ECO:0000250|UniProtKB:O35814, ECO:0000303|PubMed:27353360}. |
P32519 | ELF1 | S542 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P35221 | CTNNA1 | S118 | ochoa | Catenin alpha-1 (Alpha E-catenin) (Cadherin-associated protein) (Renal carcinoma antigen NY-REN-13) | Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. Can associate with both E- and N-cadherins. Originally believed to be a stable component of E-cadherin/catenin adhesion complexes and to mediate the linkage of cadherins to the actin cytoskeleton at adherens junctions. In contrast, cortical actin was found to be much more dynamic than E-cadherin/catenin complexes and CTNNA1 was shown not to bind to F-actin when assembled in the complex suggesting a different linkage between actin and adherens junctions components. The homodimeric form may regulate actin filament assembly and inhibit actin branching by competing with the Arp2/3 complex for binding to actin filaments. Involved in the regulation of WWTR1/TAZ, YAP1 and TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). May play a crucial role in cell differentiation. {ECO:0000250|UniProtKB:P26231, ECO:0000269|PubMed:25653389}. |
P35222 | CTNNB1 | S184 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P37231 | PPARG | S273 | psp | Peroxisome proliferator-activated receptor gamma (PPAR-gamma) (Nuclear receptor subfamily 1 group C member 3) | Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity). {ECO:0000250|UniProtKB:P37238, ECO:0000269|PubMed:16150867, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:9065481}.; FUNCTION: (Microbial infection) Upon treatment with M.tuberculosis or its lipoprotein LpqH, phosphorylation of MAPK p38 and IL-6 production are modulated, probably via this protein. {ECO:0000269|PubMed:25504154}. |
P43268 | ETV4 | S19 | ochoa | ETS translocation variant 4 (Adenovirus E1A enhancer-binding protein) (E1A-F) (Polyomavirus enhancer activator 3 homolog) (Protein PEA3) | Transcriptional activator (PubMed:19307308, PubMed:31552090). May play a role in keratinocyte differentiation (PubMed:31552090). {ECO:0000269|PubMed:19307308, ECO:0000269|PubMed:31552090}.; FUNCTION: (Microbial infection) Binds to the enhancer of the adenovirus E1A gene and acts as a transcriptional activator; the core-binding sequence is 5'-[AC]GGA[AT]GT-3'. {ECO:0000269|PubMed:8441666}. |
P46821 | MAP1B | S1501 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48382 | RFX5 | S460 | ochoa | DNA-binding protein RFX5 (Regulatory factor X 5) | Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters. |
P48549 | KCNJ3 | S385 | psp | G protein-activated inward rectifier potassium channel 1 (GIRK-1) (Inward rectifier K(+) channel Kir3.1) (Potassium channel, inwardly rectifying subfamily J member 3) | Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This potassium channel is controlled by G proteins (PubMed:8804710, PubMed:8868049). This receptor plays a crucial role in regulating the heartbeat (By similarity). {ECO:0000250|UniProtKB:P63251, ECO:0000269|PubMed:8804710, ECO:0000269|PubMed:8868049}. |
P48643 | CCT5 | S346 | ochoa | T-complex protein 1 subunit epsilon (TCP-1-epsilon) (EC 3.6.1.-) (CCT-epsilon) (Chaperonin containing T-complex polypeptide 1 subunit 5) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P49006 | MARCKSL1 | S36 | ochoa | MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) | Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}. |
P49589 | CARS1 | S34 | ochoa | Cysteine--tRNA ligase, cytoplasmic (EC 6.1.1.16) (Cysteinyl-tRNA synthetase) (CysRS) | Catalyzes the ATP-dependent ligation of cysteine to tRNA(Cys). {ECO:0000269|PubMed:11347887, ECO:0000269|PubMed:30824121}. |
P49790 | NUP153 | S1046 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49792 | RANBP2 | S2889 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P50148 | GNAQ | S122 | ochoa | Guanine nucleotide-binding protein G(q) subunit alpha (EC 3.6.5.-) (Guanine nucleotide-binding protein alpha-q) | Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades (PubMed:37991948). The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state (PubMed:37991948). Signaling by an activated GPCR promotes GDP release and GTP binding (PubMed:37991948). The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal (PubMed:37991948). Both GDP release and GTP hydrolysis are modulated by numerous regulatory proteins (PubMed:37991948). Signaling is mediated via phospholipase C-beta-dependent inositol lipid hydrolysis for signal propagation: activates phospholipase C-beta: following GPCR activation, GNAQ activates PLC-beta (PLCB1, PLCB2, PLCB3 or PLCB4), leading to production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:37991948). Required for platelet activation (By similarity). Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity (By similarity). Regulates chemotaxis of BM-derived neutrophils and dendritic cells (in vitro) (By similarity). Transduces FFAR4 signaling in response to long-chain fatty acids (LCFAs) (PubMed:27852822). Together with GNA11, required for heart development (By similarity). {ECO:0000250|UniProtKB:P21279, ECO:0000269|PubMed:27852822, ECO:0000269|PubMed:37991948}. |
P60520 | GABARAPL2 | S87 | psp | Gamma-aminobutyric acid receptor-associated protein-like 2 (GABA(A) receptor-associated protein-like 2) (Ganglioside expression factor 2) (GEF-2) (General protein transport factor p16) (Golgi-associated ATPase enhancer of 16 kDa) (GATE-16) (MAP1 light chain 3-related protein) | Ubiquitin-like modifier involved in intra-Golgi traffic (By similarity). Modulates intra-Golgi transport through coupling between NSF activity and SNAREs activation (By similarity). It first stimulates the ATPase activity of NSF which in turn stimulates the association with GOSR1 (By similarity). Involved in autophagy (PubMed:20418806, PubMed:23209295). Plays a role in mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production (PubMed:20418806, PubMed:23209295). Whereas LC3s are involved in elongation of the phagophore membrane, the GABARAP/GATE-16 subfamily is essential for a later stage in autophagosome maturation (PubMed:20418806, PubMed:23209295). {ECO:0000250|UniProtKB:P60519, ECO:0000269|PubMed:20418806, ECO:0000269|PubMed:23209295}. |
P60900 | PSMA6 | S177 | ochoa | Proteasome subunit alpha type-6 (27 kDa prosomal protein) (PROS-27) (p27K) (Macropain iota chain) (Multicatalytic endopeptidase complex iota chain) (Proteasome iota chain) (Proteasome subunit alpha-1) (alpha-1) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P61106 | RAB14 | S97 | ochoa | Ras-related protein Rab-14 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:22595670). Involved in membrane trafficking between the Golgi complex and endosomes during early embryonic development (By similarity). Regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. May act by modulating the kinesin KIF16B-cargo association to endosomes (By similarity). Regulates, together with its guanine nucleotide exchange factor DENND6A, the specific endocytic transport of ADAM10, N-cadherin/CDH2 shedding and cell-cell adhesion (PubMed:22595670). Mediates endosomal tethering and fusion through the interaction with RUFY1 and RAB4B (PubMed:20534812). Interaction with RAB11FIP1 may function in the process of neurite formation (PubMed:26032412). {ECO:0000250|UniProtKB:P61107, ECO:0000250|UniProtKB:Q91V41, ECO:0000269|PubMed:20534812, ECO:0000269|PubMed:22595670, ECO:0000269|PubMed:26032412}. |
P78368 | CSNK1G2 | S33 | ochoa | Casein kinase I isoform gamma-2 (CKI-gamma 2) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling (By similarity). Phosphorylates COL4A3BP/CERT, MTA1 and SMAD3. SMAD3 phosphorylation promotes its ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Hyperphosphorylation of the serine-repeat motif of COL4A3BP/CERT leads to its inactivation by dissociation from the Golgi complex, thus down-regulating ER-to-Golgi transport of ceramide and sphingomyelin synthesis. Triggers PER1 proteasomal degradation probably through phosphorylation (PubMed:15077195, PubMed:15917222, PubMed:18794808, PubMed:19005213). Involved in brain development and vesicular trafficking and neurotransmitter releasing from small synaptic vesicles. Regulates fast synaptic transmission mediated by glutamate (By similarity). Involved in regulation of reactive oxygen species (ROS) levels (PubMed:37099597). {ECO:0000250|UniProtKB:P48729, ECO:0000250|UniProtKB:Q8BVP5, ECO:0000269|PubMed:15077195, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:18794808, ECO:0000269|PubMed:19005213, ECO:0000269|PubMed:37099597}. |
P98171 | ARHGAP4 | S217 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
Q00796 | SORD | S206 | ochoa | Sorbitol dehydrogenase (SDH) (EC 1.1.1.-) ((R,R)-butanediol dehydrogenase) (EC 1.1.1.4) (L-iditol 2-dehydrogenase) (EC 1.1.1.14) (Polyol dehydrogenase) (Ribitol dehydrogenase) (RDH) (EC 1.1.1.56) (Xylitol dehydrogenase) (XDH) (EC 1.1.1.9) | Polyol dehydrogenase that catalyzes the reversible NAD(+)-dependent oxidation of various sugar alcohols. Is mostly active with D-sorbitol (D-glucitol), L-threitol, xylitol and ribitol as substrates, leading to the C2-oxidized products D-fructose, L-erythrulose, D-xylulose, and D-ribulose, respectively (PubMed:3365415). Is a key enzyme in the polyol pathway that interconverts glucose and fructose via sorbitol, which constitutes an important alternate route for glucose metabolism. The polyol pathway is believed to be involved in the etiology of diabetic complications, such as diabetic neuropathy and retinopathy, induced by hyperglycemia (PubMed:12962626, PubMed:25105142, PubMed:29966615). May play a role in sperm motility by using sorbitol as an alternative energy source for sperm motility (PubMed:16278369). May have a more general function in the metabolism of secondary alcohols since it also catalyzes the stereospecific oxidation of (2R,3R)-2,3-butanediol. To a lesser extent, can also oxidize L-arabinitol, galactitol and D-mannitol and glycerol in vitro. Oxidizes neither ethanol nor other primary alcohols. Cannot use NADP(+) as the electron acceptor (PubMed:3365415). {ECO:0000269|PubMed:16278369, ECO:0000269|PubMed:3365415, ECO:0000303|PubMed:25105142, ECO:0000303|PubMed:29966615, ECO:0000305|PubMed:12962626}. |
Q00872 | MYBPC1 | S423 | ochoa | Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}. |
Q00G26 | PLIN5 | S322 | ochoa | Perilipin-5 (Lipid storage droplet protein 5) | Lipid droplet-associated protein that maintains the balance between lipogenesis and lipolysis and also regulates fatty acid oxidation in oxidative tissues. Recruits mitochondria to the surface of lipid droplets and is involved in lipid droplet homeostasis by regulating both the storage of fatty acids in the form of triglycerides and the release of fatty acids for mitochondrial fatty acid oxidation. In lipid droplet triacylglycerol hydrolysis, plays a role as a scaffolding protein for three major key lipolytic players: ABHD5, PNPLA2 and LIPE. Reduces the triacylglycerol hydrolase activity of PNPLA2 by recruiting and sequestering PNPLA2 to lipid droplets. Phosphorylation by PKA enables lipolysis probably by promoting release of ABHD5 from the perilipin scaffold and by facilitating interaction of ABHD5 with PNPLA2. Also increases lipolysis through interaction with LIPE and upon PKA-mediated phosphorylation of LIPE (By similarity). {ECO:0000250, ECO:0000269|PubMed:17234449}. |
Q01082 | SPTBN1 | S2041 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q02156 | PRKCE | S316 | psp | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
Q02952 | AKAP12 | S472 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02978 | SLC25A11 | S203 | ochoa | Mitochondrial 2-oxoglutarate/malate carrier protein (OGCP) (alpha-oxoglutarate carrier) (Solute carrier family 25 member 11) (SLC25A11) | Catalyzes the transport of 2-oxoglutarate (alpha-oxoglutarate) across the inner mitochondrial membrane in an electroneutral exchange for malate. Can also exchange 2-oxoglutarate for other dicarboxylic acids such as malonate, succinate, maleate and oxaloacetate, although with lower affinity. Contributes to several metabolic processes, including the malate-aspartate shuttle, the oxoglutarate/isocitrate shuttle, in gluconeogenesis from lactate, and in nitrogen metabolism (By similarity). Maintains mitochondrial fusion and fission events, and the organization and morphology of cristae (PubMed:21448454). Involved in the regulation of apoptosis (By similarity). Helps protect from cytotoxic-induced apoptosis by modulating glutathione levels in mitochondria (By similarity). {ECO:0000250|UniProtKB:P22292, ECO:0000250|UniProtKB:P97700, ECO:0000250|UniProtKB:Q9CR62, ECO:0000269|PubMed:21448454}. |
Q03188 | CENPC | S177 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q05209 | PTPN12 | S639 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05D32 | CTDSPL2 | S33 | ochoa | CTD small phosphatase-like protein 2 (CTDSP-like 2) (EC 3.1.3.-) | Probable phosphatase. {ECO:0000250}. |
Q06546 | GABPA | S303 | ochoa | GA-binding protein alpha chain (GABP subunit alpha) (Nuclear respiratory factor 2 subunit alpha) (Transcription factor E4TF1-60) | Transcription factor capable of interacting with purine rich repeats (GA repeats). Positively regulates transcription of transcriptional repressor RHIT/ZNF205 (PubMed:22306510). {ECO:0000269|PubMed:22306510}.; FUNCTION: (Microbial infection) Necessary for the expression of the Adenovirus E4 gene. |
Q0ZGT2 | NEXN | S357 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q13426 | XRCC4 | S259 | ochoa | DNA repair protein XRCC4 (hXRCC4) (X-ray repair cross-complementing protein 4) [Cleaved into: Protein XRCC4, C-terminus (XRCC4/C)] | [DNA repair protein XRCC4]: DNA non-homologous end joining (NHEJ) core factor, required for double-strand break repair and V(D)J recombination (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:16412978, PubMed:17124166, PubMed:17290226, PubMed:22228831, PubMed:25597996, PubMed:25742519, PubMed:25934149, PubMed:26100018, PubMed:26774286, PubMed:8548796). Acts as a scaffold protein that regulates recruitment of other proteins to DNA double-strand breaks (DSBs) (PubMed:15385968, PubMed:20852255, PubMed:26774286, PubMed:27437582). Associates with NHEJ1/XLF to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Plays a key role in the NHEJ ligation step of the broken DNA during DSB repair via direct interaction with DNA ligase IV (LIG4): the LIG4-XRCC4 subcomplex reseals the DNA breaks after the gap filling is completed (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:17290226, PubMed:19837014, PubMed:9242410). XRCC4 stabilizes LIG4, regulates its subcellular localization and enhances LIG4's joining activity (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:17290226, PubMed:21982441, PubMed:22228831, PubMed:9242410). Binding of the LIG4-XRCC4 subcomplex to DNA ends is dependent on the assembly of the DNA-dependent protein kinase complex DNA-PK to these DNA ends (PubMed:10757784, PubMed:10854421). Promotes displacement of PNKP from processed strand break termini (PubMed:20852255, PubMed:28453785). {ECO:0000269|PubMed:10757784, ECO:0000269|PubMed:10854421, ECO:0000269|PubMed:12517771, ECO:0000269|PubMed:15385968, ECO:0000269|PubMed:16412978, ECO:0000269|PubMed:17124166, ECO:0000269|PubMed:17290226, ECO:0000269|PubMed:19837014, ECO:0000269|PubMed:20852255, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:21982441, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25597996, ECO:0000269|PubMed:25742519, ECO:0000269|PubMed:25934149, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28453785, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:8548796, ECO:0000269|PubMed:9242410}.; FUNCTION: [Protein XRCC4, C-terminus]: Acts as an activator of the phospholipid scramblase activity of XKR4 (PubMed:33725486). This form, which is generated upon caspase-3 (CASP3) cleavage, translocates into the cytoplasm and interacts with XKR4, thereby promoting phosphatidylserine scramblase activity of XKR4 and leading to phosphatidylserine exposure on apoptotic cell surface (PubMed:33725486). {ECO:0000269|PubMed:33725486}. |
Q13428 | TCOF1 | S1050 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13469 | NFATC2 | S790 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q13838 | DDX39B | S41 | ochoa | Spliceosome RNA helicase DDX39B (EC 3.6.4.13) (56 kDa U2AF65-associated protein) (ATP-dependent RNA helicase p47) (DEAD box protein UAP56) (HLA-B-associated transcript 1 protein) | Involved in nuclear export of spliced and unspliced mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). The THOC1-THOC2-THOC3 core complex alone is sufficient to promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). Associates with SARNP/CIP29, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). May undergo several rounds of ATP hydrolysis during assembly of TREX to drive subsequent loading of components such as ALYREF/THOC4 and CHTOP onto mRNA. Also associates with pre-mRNA independent of ALYREF/THOC4. Involved in the nuclear export of intronless mRNA; the ATP-bound form is proposed to recruit export adapter ALYREF/THOC4 to intronless mRNA; its ATPase activity is cooperatively stimulated by RNA and ALYREF/THOC4 and ATP hydrolysis is thought to trigger the dissociation from RNA to allow the association of ALYREF/THOC4 and the NXF1-NXT1 heterodimer. Involved in transcription elongation and genome stability. {ECO:0000269|PubMed:11675789, ECO:0000269|PubMed:15585580, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:17562711, ECO:0000269|PubMed:17984224, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:22144908, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:23299939, ECO:0000269|PubMed:33191911, ECO:0000269|PubMed:37578863, ECO:0000269|PubMed:9242493}.; FUNCTION: Splice factor that is required for the first ATP-dependent step in spliceosome assembly and for the interaction of U2 snRNP with the branchpoint. Has both RNA-stimulated ATP binding/hydrolysis activity and ATP-dependent RNA unwinding activity. Even with the stimulation of RNA, the ATPase activity is weak. Can only hydrolyze ATP but not other NTPs. The RNA stimulation of ATPase activity does not have a strong preference for the sequence and length of the RNA. However, ssRNA stimulates the ATPase activity much more strongly than dsRNA. Can unwind 5' or 3' overhangs or blunt end RNA duplexes in vitro. The ATPase and helicase activities are not influenced by U2AF2; the effect of ALYREF/THOC4 is reported conflictingly with [PubMed:23299939] reporting a stimulatory effect. {ECO:0000269|PubMed:23299939, ECO:0000269|PubMed:9242493}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q14157 | UBAP2L | S340 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14451 | GRB7 | S411 | ochoa | Growth factor receptor-bound protein 7 (B47) (Epidermal growth factor receptor GRB-7) (GRB7 adapter protein) | Adapter protein that interacts with the cytoplasmic domain of numerous receptor kinases and modulates down-stream signaling. Promotes activation of down-stream protein kinases, including STAT3, AKT1, MAPK1 and/or MAPK3. Promotes activation of HRAS. Plays a role in signal transduction in response to EGF. Plays a role in the regulation of cell proliferation and cell migration. Plays a role in the assembly and stability of RNA stress granules. Binds to the 5'UTR of target mRNA molecules and represses translation of target mRNA species, when not phosphorylated. Phosphorylation impairs RNA binding and promotes stress granule disassembly during recovery after cellular stress (By similarity). {ECO:0000250, ECO:0000269|PubMed:10893408, ECO:0000269|PubMed:12021278, ECO:0000269|PubMed:12223469, ECO:0000269|PubMed:20622016}. |
Q14814 | MEF2D | S212 | ochoa | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q15004 | PCLAF | S31 | ochoa | PCNA-associated factor (Hepatitis C virus NS5A-transactivated protein 9) (HCV NS5A-transactivated protein 9) (Overexpressed in anaplastic thyroid carcinoma 1) (OEATC-1) (PCNA-associated factor of 15 kDa) (PAF15) (p15PAF) (PCNA-clamp-associated factor) | PCNA-binding protein that acts as a regulator of DNA repair during DNA replication. Following DNA damage, the interaction with PCNA is disrupted, facilitating the interaction between monoubiquitinated PCNA and the translesion DNA synthesis DNA polymerase eta (POLH) at stalled replisomes, facilitating the bypass of replication-fork-blocking lesions. Also acts as a regulator of centrosome number. {ECO:0000269|PubMed:21673012, ECO:0000269|PubMed:23000965}. |
Q15149 | PLEC | S647 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15365 | PCBP1 | S85 | ochoa | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15776 | ZKSCAN8 | S170 | ochoa | Zinc finger protein with KRAB and SCAN domains 8 (LD5-1) (Zinc finger protein 192) | May be involved in transcriptional regulation. |
Q15785 | TOMM34 | S280 | ochoa | Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) | Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}. |
Q16658 | FSCN1 | S38 | ochoa|psp | Fascin (55 kDa actin-bundling protein) (Singed-like protein) (p55) | Actin-binding protein that contains 2 major actin binding sites (PubMed:21685497, PubMed:23184945). Organizes filamentous actin into parallel bundles (PubMed:20393565, PubMed:21685497, PubMed:23184945). Plays a role in the organization of actin filament bundles and the formation of microspikes, membrane ruffles, and stress fibers (PubMed:22155786). Important for the formation of a diverse set of cell protrusions, such as filopodia, and for cell motility and migration (PubMed:20393565, PubMed:21685497, PubMed:23184945). Mediates reorganization of the actin cytoskeleton and axon growth cone collapse in response to NGF (PubMed:22155786). {ECO:0000269|PubMed:20137952, ECO:0000269|PubMed:20393565, ECO:0000269|PubMed:21685497, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:23184945, ECO:0000269|PubMed:9362073, ECO:0000269|PubMed:9571235}. |
Q16666 | IFI16 | S132 | psp | Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) | Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}. |
Q16828 | DUSP6 | S331 | ochoa | Dual specificity protein phosphatase 6 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST1) (Mitogen-activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) (MKP-3) | Dual specificity protein phosphatase, which mediates dephosphorylation and inactivation of MAP kinases (PubMed:8670865). Has a specificity for the ERK family (PubMed:8670865). Plays an important role in alleviating chronic postoperative pain (By similarity). Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity). Promotes cell differentiation by regulating MAPK1/MAPK3 activity and regulating the expression of AP1 transcription factors (PubMed:29043977). {ECO:0000250|UniProtKB:Q9DBB1, ECO:0000269|PubMed:29043977, ECO:0000269|PubMed:8670865}. |
Q16829 | DUSP7 | S369 | ochoa | Dual specificity protein phosphatase 7 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST2) | Dual specificity protein phosphatase (PubMed:9788880). Shows high activity towards MAPK1/ERK2 (PubMed:9788880). Also has lower activity towards MAPK14 and MAPK8 (PubMed:9788880). In arrested oocytes, plays a role in meiotic resumption (By similarity). Promotes nuclear envelope breakdown and activation of the CDK1/Cyclin-B complex in oocytes, probably by dephosphorylating and inactivating the conventional protein kinase C (cPKC) isozyme PRKCB (By similarity). May also inactivate PRKCA and/or PRKCG (By similarity). Also important in oocytes for normal chromosome alignment on the metaphase plate and progression to anaphase, where it might regulate activity of the spindle-assembly checkpoint (SAC) complex (By similarity). {ECO:0000250|UniProtKB:Q91Z46, ECO:0000269|PubMed:9788880}. |
Q16890 | TPD52L1 | S122 | ochoa | Tumor protein D53 (hD53) (Tumor protein D52-like 1) | None |
Q2M3G0 | ABCB5 | S1059 | ochoa | ATP-binding cassette sub-family B member 5 (ABCB5 P-gp) (P-glycoprotein ABCB5) (EC 7.6.2.2) | Energy-dependent efflux transporter responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:12960149, PubMed:15205344, PubMed:15899824, PubMed:22306008). Specifically present in limbal stem cells, where it plays a key role in corneal development and repair (By similarity). {ECO:0000250|UniProtKB:B5X0E4, ECO:0000269|PubMed:12960149, ECO:0000269|PubMed:15205344, ECO:0000269|PubMed:15899824, ECO:0000269|PubMed:22306008}. |
Q58DX5 | NAALADL2 | S280 | ochoa | Inactive N-acetylated-alpha-linked acidic dipeptidase-like protein 2 (NAALADase L2) | May be catalytically inactive. |
Q5QJE6 | DNTTIP2 | S21 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5SY16 | NOL9 | S487 | ochoa | Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) | Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}. |
Q5T0W9 | FAM83B | S543 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T8A7 | PPP1R26 | S1161 | ochoa | Protein phosphatase 1 regulatory subunit 26 | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. May positively regulate cell proliferation. {ECO:0000269|PubMed:16053918, ECO:0000269|PubMed:19389623}. |
Q5ZPR3 | CD276 | S513 | ochoa | CD276 antigen (4Ig-B7-H3) (B7 homolog 3) (B7-H3) (Costimulatory molecule) (CD antigen CD276) | May participate in the regulation of T-cell-mediated immune response. May play a protective role in tumor cells by inhibiting natural-killer mediated cell lysis as well as a role of marker for detection of neuroblastoma cells. May be involved in the development of acute and chronic transplant rejection and in the regulation of lymphocytic activity at mucosal surfaces. Could also play a key role in providing the placenta and fetus with a suitable immunological environment throughout pregnancy. Both isoform 1 and isoform 2 appear to be redundant in their ability to modulate CD4 T-cell responses. Isoform 2 is shown to enhance the induction of cytotoxic T-cells and selectively stimulates interferon gamma production in the presence of T-cell receptor signaling. {ECO:0000269|PubMed:11224528, ECO:0000269|PubMed:12906861, ECO:0000269|PubMed:14764704, ECO:0000269|PubMed:15314238, ECO:0000269|PubMed:15682454, ECO:0000269|PubMed:15961727}. |
Q6PIZ9 | TRAT1 | S112 | ochoa | T-cell receptor-associated transmembrane adapter 1 (T-cell receptor-interacting molecule) (TRIM) (pp29/30) | Stabilizes the TCR (T-cell antigen receptor)/CD3 complex at the surface of T-cells. {ECO:0000269|PubMed:11390434}. |
Q6PKG0 | LARP1 | S761 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6ZRS2 | SRCAP | S2883 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZRV2 | FAM83H | S436 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZSR9 | None | S235 | ochoa | Uncharacterized protein FLJ45252 | None |
Q6ZTU2 | EP400P1 | S153 | ochoa | Putative EP400-like protein (EP400 pseudogene 1) | None |
Q6ZVF9 | GPRIN3 | S336 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7L590 | MCM10 | S488 | ochoa | Protein MCM10 homolog (HsMCM10) | Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}. |
Q7Z2E3 | APTX | S158 | ochoa | Aprataxin (EC 3.6.1.71) (EC 3.6.1.72) (Forkhead-associated domain histidine triad-like protein) (FHA-HIT) | DNA-binding protein involved in single-strand DNA break repair, double-strand DNA break repair and base excision repair (PubMed:15044383, PubMed:15380105, PubMed:16964241, PubMed:17276982, PubMed:24362567). Resolves abortive DNA ligation intermediates formed either at base excision sites, or when DNA ligases attempt to repair non-ligatable breaks induced by reactive oxygen species (PubMed:16964241, PubMed:24362567). Catalyzes the release of adenylate groups covalently linked to 5'-phosphate termini, resulting in the production of 5'-phosphate termini that can be efficiently rejoined (PubMed:16964241, PubMed:17276982, PubMed:24362567). Also able to hydrolyze adenosine 5'-monophosphoramidate (AMP-NH(2)) and diadenosine tetraphosphate (AppppA), but with lower catalytic activity (PubMed:16547001). Likewise, catalyzes the release of 3'-linked guanosine (DNAppG) and inosine (DNAppI) from DNA, but has higher specific activity with 5'-linked adenosine (AppDNA) (By similarity). {ECO:0000250|UniProtKB:O74859, ECO:0000269|PubMed:15044383, ECO:0000269|PubMed:15380105, ECO:0000269|PubMed:16547001, ECO:0000269|PubMed:16964241, ECO:0000269|PubMed:17276982, ECO:0000269|PubMed:24362567}. |
Q7Z2K8 | GPRIN1 | S571 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2W4 | ZC3HAV1 | S408 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z4S6 | KIF21A | S524 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z5J4 | RAI1 | S637 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q86UX6 | STK32C | S362 | ochoa | Serine/threonine-protein kinase 32C (EC 2.7.11.1) (PKE) (Yet another novel kinase 3) | None |
Q86V48 | LUZP1 | S611 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86YT6 | MIB1 | S408 | ochoa | E3 ubiquitin-protein ligase MIB1 (EC 2.3.2.27) (DAPK-interacting protein 1) (DIP-1) (Mind bomb homolog 1) (RING-type E3 ubiquitin transferase MIB1) (Zinc finger ZZ type with ankyrin repeat domain protein 2) | E3 ubiquitin-protein ligase that mediates ubiquitination of Delta receptors, which act as ligands of Notch proteins. Positively regulates the Delta-mediated Notch signaling by ubiquitinating the intracellular domain of Delta, leading to endocytosis of Delta receptors. Probably mediates ubiquitination and subsequent proteasomal degradation of DAPK1, thereby antagonizing anti-apoptotic effects of DAPK1 to promote TNF-induced apoptosis (By similarity). Involved in ubiquitination of centriolar satellite CEP131, CEP290 and PCM1 proteins and hence inhibits primary cilium formation in proliferating cells. Mediates 'Lys-63'-linked polyubiquitination of TBK1, which probably participates in kinase activation. {ECO:0000250, ECO:0000269|PubMed:24121310}.; FUNCTION: (Microbial infection) During adenovirus infection, mediates ubiquitination of Core-capsid bridging protein. This allows viral genome delivery into nucleus for infection. {ECO:0000269|PubMed:31851912}. |
Q8IVF2 | AHNAK2 | S797 | ochoa | Protein AHNAK2 | None |
Q8IVT2 | MISP | S543 | ochoa|psp | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IZQ1 | WDFY3 | S1942 | ochoa | WD repeat and FYVE domain-containing protein 3 (Autophagy-linked FYVE protein) (Alfy) | Required for selective macroautophagy (aggrephagy). Acts as an adapter protein by linking specific proteins destined for degradation to the core autophagic machinery members, such as the ATG5-ATG12-ATG16L E3-like ligase, SQSTM1 and LC3 (PubMed:20417604). Along with p62/SQSTM1, involved in the formation and autophagic degradation of cytoplasmic ubiquitin-containing inclusions (p62 bodies, ALIS/aggresome-like induced structures). Along with SQSTM1, required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Important for normal brain development. Essential for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Involved in the ability of neural cells to respond to guidance cues. Required for cortical neurons to respond to the trophic effects of netrin-1/NTN1 (By similarity). Regulates Wnt signaling through the removal of DVL3 aggregates, likely in an autophagy-dependent manner. This process may be important for the determination of brain size during embryonic development (PubMed:27008544). May regulate osteoclastogenesis by acting on the TNFSF11/RANKL - TRAF6 pathway (By similarity). After cytokinetic abscission, involved in midbody remnant degradation (PubMed:24128730). In vitro strongly binds to phosphatidylinositol 3-phosphate (PtdIns3P) (PubMed:15292400). {ECO:0000250|UniProtKB:Q6VNB8, ECO:0000269|PubMed:15292400, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20417604, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:27008544}. |
Q8N0Z3 | SPICE1 | S800 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N1F7 | NUP93 | S72 | ochoa | Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor nucleoporins, but not NUP153 and TPR, to the NPC. During renal development, regulates podocyte migration and proliferation through SMAD4 signaling (PubMed:26878725). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:15703211, ECO:0000269|PubMed:26878725, ECO:0000269|PubMed:9348540}. |
Q8N3C0 | ASCC3 | S139 | ochoa | Activating signal cointegrator 1 complex subunit 3 (EC 5.6.2.4) (ASC-1 complex subunit p200) (ASC1p200) (Helicase, ATP binding 1) (Trip4 complex subunit p200) | ATPase involved both in DNA repair and rescue of stalled ribosomes (PubMed:22055184, PubMed:28757607, PubMed:32099016, PubMed:32579943, PubMed:36302773). 3'-5' DNA helicase involved in repair of alkylated DNA: promotes DNA unwinding to generate single-stranded substrate needed for ALKBH3, enabling ALKBH3 to process alkylated N3-methylcytosine (3mC) within double-stranded regions (PubMed:22055184). Also involved in activation of the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:28757607, PubMed:32099016, PubMed:32579943, PubMed:36302773). Drives the splitting of stalled ribosomes that are ubiquitinated in a ZNF598-dependent manner, as part of the ribosome quality control trigger (RQT) complex (PubMed:28757607, PubMed:32099016, PubMed:32579943, PubMed:36302773). Part of the ASC-1 complex that enhances NF-kappa-B, SRF and AP1 transactivation (PubMed:12077347). {ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:22055184, ECO:0000269|PubMed:28757607, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}. |
Q8N3F8 | MICALL1 | S273 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3X1 | FNBP4 | S124 | ochoa | Formin-binding protein 4 (Formin-binding protein 30) | None |
Q8N6H7 | ARFGAP2 | S139 | ochoa | ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}. |
Q8NDB2 | BANK1 | S295 | ochoa | B-cell scaffold protein with ankyrin repeats | Involved in B-cell receptor (BCR)-induced Ca(2+) mobilization from intracellular stores. Promotes Lyn-mediated phosphorylation of IP3 receptors 1 and 2. {ECO:0000269|PubMed:11782428}. |
Q8NEG4 | FAM83F | S101 | ochoa | Protein FAM83F | None |
Q8NEY1 | NAV1 | S757 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NFA0 | USP32 | S1454 | ochoa | Ubiquitin carboxyl-terminal hydrolase 32 (EC 3.4.19.12) (Deubiquitinating enzyme 32) (Renal carcinoma antigen NY-REN-60) (Ubiquitin thioesterase 32) (Ubiquitin-specific-processing protease 32) | Deubiquitinase that can remove conjugated ubiquitin from target proteins, such as RAB7A and LAMTOR1 (PubMed:36476874). Acts as a positive regulator of the mTORC1 signaling by mediating deubiquitination of LAMTOR1, thereby promoting the association between LAMTOR1 and the lysosomal V-ATPase complex and subsequent activation of the mTORC1 complex (PubMed:36476874). {ECO:0000269|PubMed:36476874}. |
Q8TBX8 | PIP4K2C | S26 | ochoa | Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma (EC 2.7.1.149) (Phosphatidylinositol 5-phosphate 4-kinase type II gamma) (PI(5)P 4-kinase type II gamma) (PIP4KII-gamma) | Phosphatidylinositol 5-phosphate 4-kinase with low enzymatic activity. May be a GTP sensor, has higher GTP-dependent kinase activity than ATP-dependent kinase activity. PIP4Ks negatively regulate insulin signaling through a catalytic-independent mechanism. They interact with PIP5Ks and suppress PIP5K-mediated PtdIns(4,5)P2 synthesis and insulin-dependent conversion to PtdIns(3,4,5)P3 (PubMed:31091439). {ECO:0000269|PubMed:26774281, ECO:0000269|PubMed:31091439}. |
Q8TBZ3 | WDR20 | S465 | ochoa | WD repeat-containing protein 20 (Protein DMR) | Regulator of deubiquitinating complexes. Activates deubiquitinating activity of complexes containing USP12 (PubMed:20147737, PubMed:27373336). Anchors at the base of the ubiquitin-contacting loop of USP12 and remotely modulates the catalytic center of the enzyme (PubMed:27373336). Regulates shuttling of the USP12 deubiquitinase complex between the plasma membrane, cytoplasm and nucleus (PubMed:30466959). {ECO:0000269|PubMed:20147737, ECO:0000269|PubMed:27373336, ECO:0000269|PubMed:30466959}. |
Q8TDY4 | ASAP3 | S729 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 3 (Development and differentiation-enhancing factor-like 1) (Protein up-regulated in liver cancer 1) | Promotes cell proliferation. {ECO:0000269|PubMed:14654939}. |
Q8TEQ6 | GEMIN5 | S810 | ochoa | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q8WWQ0 | PHIP | S136 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WXE9 | STON2 | S767 | ochoa | Stonin-2 (Stoned B) | Adapter protein involved in endocytic machinery. Involved in the synaptic vesicle recycling. May facilitate clathrin-coated vesicle uncoating. {ECO:0000269|PubMed:11381094, ECO:0000269|PubMed:11454741, ECO:0000269|PubMed:21102408}. |
Q92576 | PHF3 | S707 | ochoa | PHD finger protein 3 | None |
Q92953 | KCNB2 | S599 | ochoa | Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells. {ECO:0000250|UniProtKB:A6H8H5, ECO:0000250|UniProtKB:Q63099}. |
Q969G3 | SMARCE1 | S204 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 (BRG1-associated factor 57) (BAF57) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Required for the coactivation of estrogen responsive promoters by SWI/SNF complexes and the SRC/p160 family of histone acetyltransferases (HATs). Also specifically interacts with the CoREST corepressor resulting in repression of neuronal specific gene promoters in non-neuronal cells. {ECO:0000250|UniProtKB:O54941, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q969R2 | OSBP2 | S284 | ochoa | Oxysterol-binding protein 2 (Oxysterol-binding protein-related protein 4) (ORP-4) (OSBP-related protein 4) | Binds 7-ketocholesterol (PubMed:11278871). Acts during spermatid development where its function is required prior to the removal of cytoplasm from the sperm head (By similarity). {ECO:0000250|UniProtKB:Q8CF21, ECO:0000269|PubMed:11278871}. |
Q96CP2 | FLYWCH2 | S67 | ochoa | FLYWCH family member 2 | None |
Q96DX7 | TRIM44 | S323 | ochoa | Tripartite motif-containing protein 44 (Protein DIPB) | May play a role in the process of differentiation and maturation of neuronal cells (By similarity). May regulate the activity of TRIM17. Is a negative regulator of PAX6 expression (PubMed:26394807). {ECO:0000250, ECO:0000269|PubMed:19358823, ECO:0000269|PubMed:26394807}. |
Q96FA3 | PELI1 | S78 | psp | E3 ubiquitin-protein ligase pellino homolog 1 (Pellino-1) (EC 2.3.2.27) (Pellino-related intracellular-signaling molecule) (RING-type E3 ubiquitin transferase pellino homolog 1) | E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:12496252, PubMed:17675297, PubMed:29883609, PubMed:30952868). Involved in the TLR and IL-1 signaling pathways via interaction with the complex containing IRAK kinases and TRAF6 (PubMed:12496252, PubMed:17675297). Acts as a positive regulator of inflammatory response in microglia through activation of NF-kappa-B and MAP kinase (By similarity). Mediates 'Lys-63'-linked polyubiquitination of IRAK1 allowing subsequent NF-kappa-B activation (PubMed:12496252, PubMed:17675297). Conjugates 'Lys-63'-linked ubiquitin chains to the adapter protein ASC/PYCARD, which in turn is crucial for NLRP3 inflammasome activation (PubMed:34706239). Mediates 'Lys-48'-linked polyubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation; preferentially recognizes and mediates the degradation of the 'Thr-182' phosphorylated form of RIPK3 (PubMed:29883609). Negatively regulates necroptosis by reducing RIPK3 expression (PubMed:29883609). Mediates 'Lys-63'-linked ubiquitination of RIPK1 (PubMed:29883609). Following phosphorylation by ATM, catalyzes 'Lys-63'-linked ubiquitination of NBN, promoting DNA repair via homologous recombination (PubMed:30952868). Negatively regulates activation of the metabolic mTORC1 signaling pathway by mediating 'Lys-63'-linked ubiquitination of mTORC1-inhibitory protein TSC1 and thereby promoting TSC1/TSC2 complex stability (PubMed:33215753). {ECO:0000250|UniProtKB:Q8C669, ECO:0000269|PubMed:12496252, ECO:0000269|PubMed:17675297, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:33215753}. |
Q96L91 | EP400 | S164 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96P48 | ARAP1 | S429 | ochoa | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (Centaurin-delta-2) (Cnt-d2) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members (PubMed:11804590, PubMed:19666464). Activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding and, to a lesser extent, by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) binding (PubMed:11804590). Has a preference for ARF1 and ARF5 (PubMed:11804590, PubMed:19666464). Positively regulates the ring size of circular dorsal ruffles and promotes macropinocytosis (PubMed:22573888). Acts as a bridging factor in osteoclasts to control actin and membrane dynamics (By similarity). Regulates the condensing of osteoclast podosomes into sealing zones which segregate the bone-facing membrane from other membrane domains and are required for osteoclast resorption activity (By similarity). Also regulates recruitment of the AP-3 complex to endosomal membranes and trafficking of lysosomal membrane proteins to the ruffled membrane border of osteoclasts to modulate bone resorption (By similarity). Regulates the endocytic trafficking of EGFR (PubMed:18764928, PubMed:18939958, PubMed:21275903). Regulates the incorporation of CD63 and CD9 into multivesicular bodies (PubMed:38682696). Required in the retinal pigment epithelium (RPE) for photoreceptor survival due to its role in promoting RPE phagocytosis (By similarity). {ECO:0000250|UniProtKB:Q4LDD4, ECO:0000269|PubMed:11804590, ECO:0000269|PubMed:18764928, ECO:0000269|PubMed:18939958, ECO:0000269|PubMed:19666464, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:22573888, ECO:0000269|PubMed:38682696}. |
Q96SN8 | CDK5RAP2 | S1102 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96T58 | SPEN | S2789 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99570 | PIK3R4 | S814 | ochoa | Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) | Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}. |
Q99956 | DUSP9 | S328 | ochoa | Dual specificity protein phosphatase 9 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 4) (MAP kinase phosphatase 4) (MKP-4) | Inactivates MAP kinases. Has a specificity for the ERK family. |
Q9BQE5 | APOL2 | S250 | ochoa | Apolipoprotein L2 (Apolipoprotein L-II) (ApoL-II) | May affect the movement of lipids in the cytoplasm or allow the binding of lipids to organelles. |
Q9BR39 | JPH2 | S523 | ochoa | Junctophilin-2 (JP-2) (Junctophilin type 2) [Cleaved into: Junctophilin-2 N-terminal fragment (JP2NT)] | [Junctophilin-2]: Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes (PubMed:20095964). Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads (By similarity). Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its involvement in ryanodine receptor-mediated calcium ion release (By similarity). Contributes to the construction of skeletal muscle triad junctions (By similarity). {ECO:0000250|UniProtKB:Q9ET78, ECO:0000269|PubMed:20095964}.; FUNCTION: [Junctophilin-2 N-terminal fragment]: Transcription repressor required to safeguard against the deleterious effects of cardiac stress. Generated following cleavage of the Junctophilin-2 chain by calpain in response to cardiac stress in cardiomyocytes. Following cleavage and release from the membrane, translocates to the nucleus, binds DNA and represses expression of genes implicated in cell growth and differentiation, hypertrophy, inflammation and fibrosis. Modifies the transcription profile and thereby attenuates pathological remodeling in response to cardiac stress. Probably acts by competing with MEF2 transcription factors and TATA-binding proteins. {ECO:0000250|UniProtKB:Q9ET78}. |
Q9BRJ6 | C7orf50 | S175 | ochoa | Protein cholesin | Hormone secreted from the intestine in response to cholesterol, where it acts to inhibit cholesterol synthesis in the liver and VLDL secretion,leading to a reduction in circulating cholesterol levels. Acts through binding to its receptor, GPR146. {ECO:0000269|PubMed:38503280}. |
Q9BSJ8 | ESYT1 | S963 | ochoa | Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) | Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}. |
Q9BV36 | MLPH | S552 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BWS9 | CHID1 | S90 | ochoa | Chitinase domain-containing protein 1 (Stabilin-1-interacting chitinase-like protein) (SI-CLP) | Saccharide- and LPS-binding protein with possible roles in pathogen sensing and endotoxin neutralization. Ligand-binding specificity relates to the length of the oligosaccharides, with preference for chitotetraose (in vitro). {ECO:0000269|PubMed:20724479}. |
Q9BXT4 | TDRD1 | S685 | ochoa | Tudor domain-containing protein 1 (Cancer/testis antigen 41.1) (CT41.1) | Plays a central role during spermatogenesis by participating in the repression transposable elements and preventing their mobilization, which is essential for the germline integrity. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons. Required for the localization of Piwi proteins to the meiotic nuage. Involved in the piRNA metabolic process by ensuring the entry of correct transcripts into the normal piRNA pool and limiting the entry of cellular transcripts into the piRNA pathway. May act by allowing the recruitment of piRNA biogenesis or loading factors that ensure the correct entry of transcripts and piRNAs into Piwi proteins (By similarity). {ECO:0000250}. |
Q9C0C2 | TNKS1BP1 | S268 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9H089 | LSG1 | S97 | ochoa | Large subunit GTPase 1 homolog (hLsg1) (EC 3.6.5.-) | Functions as a GTPase (PubMed:16209721). May act by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm during the 60S ribosomal subunit maturation (PubMed:31148378). {ECO:0000269|PubMed:16209721, ECO:0000269|PubMed:31148378}. |
Q9H223 | EHD4 | S482 | ochoa | EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) | ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}. |
Q9H6U6 | BCAS3 | S877 | ochoa | BCAS3 microtubule associated cell migration factor (Breast carcinoma-amplified sequence 3) (GAOB1) | Plays a role in angiogenesis. Participates in the regulation of cell polarity and directional endothelial cell migration by mediating both the activation and recruitment of CDC42 and the reorganization of the actin cytoskeleton at the cell leading edge. Promotes filipodia formation (By similarity). Functions synergistically with PELP1 as a transcriptional coactivator of estrogen receptor-responsive genes. Stimulates histone acetyltransferase activity. Binds to chromatin. Plays a regulatory role in autophagic activity. In complex with PHAF1, associates with the preautophagosomal structure during both non-selective and selective autophagy (PubMed:33499712). Probably binds phosphatidylinositol 3-phosphate (PtdIns3P) which would mediate the recruitment preautophagosomal structures (PubMed:33499712). {ECO:0000250|UniProtKB:Q8CCN5, ECO:0000269|PubMed:17505058, ECO:0000269|PubMed:33499712}. |
Q9H792 | PEAK1 | S495 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H7C4 | SYNC | S26 | ochoa | Syncoilin (Syncoilin intermediate filament 1) (Syncoilin-1) | Atypical type III intermediate filament (IF) protein that may play a supportive role in the efficient coupling of mechanical stress between the myofibril and fiber exterior. May facilitate lateral force transmission during skeletal muscle contraction. Does not form homofilaments nor heterofilaments with other IF proteins. {ECO:0000250|UniProtKB:Q9EPM5}. |
Q9H7N4 | SCAF1 | S867 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9HCD5 | NCOA5 | S529 | ochoa | Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) | Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}. |
Q9HCK8 | CHD8 | S1679 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9HDC5 | JPH1 | S530 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NNW5 | WDR6 | S548 | ochoa | tRNA (34-2'-O)-methyltransferase regulator WDR6 (WD repeat-containing protein 6) | Together with methyltransferase FTSJ1, methylates the 2'-O-ribose of nucleotides at position 34 of the tRNA anticodon loop of substrate tRNAs (PubMed:32558197, PubMed:33771871). Required for the correct positioning of the substrate tRNA for methylation (PubMed:32558197). Required to suppress amino acid starvation-induced autophagy (PubMed:22354037). Enhances the STK11/LKB1-induced cell growth suppression activity (PubMed:17216128). {ECO:0000269|PubMed:17216128, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:32558197, ECO:0000269|PubMed:33771871}. |
Q9NPL8 | TIMMDC1 | S108 | ochoa | Complex I assembly factor TIMMDC1, mitochondrial (Protein M5-14) (Translocase of inner mitochondrial membrane domain-containing protein 1) (TIMM domain containing-protein 1) | Chaperone protein involved in the assembly of the mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). Participates in constructing the membrane arm of complex I. {ECO:0000269|PubMed:24191001}. |
Q9NQ84 | GPRC5C | S406 | ochoa | G-protein coupled receptor family C group 5 member C (Retinoic acid-induced gene 3 protein) (RAIG-3) | This retinoic acid-inducible G-protein coupled receptor provide evidence for a possible interaction between retinoid and G-protein signaling pathways. {ECO:0000250}. |
Q9NQS5 | GPR84 | S221 | psp | G-protein coupled receptor 84 (Inflammation-related G-protein coupled receptor EX33) | G protein-coupled receptor that responds endogenously to dietary fatty acids or nutrient, specifically medium-chain free fatty acid (FFA) with carbon chain lengths of C9 to C14. Capric acid (C10:0), undecanoic acid (C11:0) and lauric acid (C12:0) are the most potent agonists (PubMed:16966319). In immune cells, functions as a pro-inflammatory receptor via 6-OAU and promotes the expression of pro-inflammatory mediators such as TNFalpha, IL-6 and IL-12B as well as stimulating chemotactic responses through activation of signaling mediators AKT, ERK and NF-kappa-B (By similarity). In addition, triggers increased bacterial adhesion and phagocytosis in macrophages and regulates pro-inflammatory function via enhancing NLRP3 inflammasome activation (By similarity). Also plays an important role in inflammation by modulating neutrophil functions (By similarity). Mechanistically, promotes neutrophil chemotaxis, reactive oxygen species (ROS) production and degranulation via LYN-AKT/ERK pathway (By similarity). To regulate ROS, communicates with the two formyl peptide receptors FPR2 and FPR1 to control the NADPH oxidase activity in neutrophils (PubMed:33789297). {ECO:0000250|UniProtKB:Q8CIM5, ECO:0000269|PubMed:16966319, ECO:0000269|PubMed:33789297}. |
Q9NS91 | RAD18 | S125 | ochoa | E3 ubiquitin-protein ligase RAD18 (EC 2.3.2.27) (Postreplication repair protein RAD18) (hHR18) (hRAD18) (RING finger protein 73) (RING-type E3 ubiquitin transferase RAD18) | E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:21659603}. |
Q9NTZ6 | RBM12 | S554 | ochoa | RNA-binding protein 12 (RNA-binding motif protein 12) (SH3/WW domain anchor protein in the nucleus) (SWAN) | None |
Q9NX20 | MRPL16 | S38 | ochoa | Large ribosomal subunit protein uL16m (39S ribosomal protein L16, mitochondrial) (L16mt) (MRP-L16) | None |
Q9NZN3 | EHD3 | S479 | ochoa | EH domain-containing protein 3 (PAST homolog 3) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (PubMed:25686250). In vitro causes tubulation of endocytic membranes (PubMed:24019528). Binding to phosphatidic acid induces its membrane tubulation activity (By similarity). Plays a role in endocytic transport. Involved in early endosome to recycling endosome compartment (ERC), retrograde early endosome to Golgi, and endosome to plasma membrane (rapid recycling) protein transport. Involved in the regulation of Golgi maintenance and morphology (PubMed:16251358, PubMed:17233914, PubMed:19139087, PubMed:23781025). Involved in the recycling of internalized D1 dopamine receptor (PubMed:21791287). Plays a role in cardiac protein trafficking probably implicating ANK2 (PubMed:20489164). Involved in the ventricular membrane targeting of SLC8A1 and CACNA1C and probably the atrial membrane localization of CACNA1GG and CACNA1H implicated in the regulation of atrial myocyte excitability and cardiac conduction (By similarity). In conjunction with EHD4 may be involved in endocytic trafficking of KDR/VEGFR2 implicated in control of glomerular function (By similarity). Involved in the rapid recycling of integrin beta-3 implicated in cell adhesion maintenance (PubMed:23781025). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle, an early step in cilium biogenesis; possibly sharing redundant functions with EHD1 (PubMed:25686250). {ECO:0000250|UniProtKB:Q9QXY6, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:19139087, ECO:0000269|PubMed:21791287, ECO:0000269|PubMed:23781025, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000305|PubMed:20489164}. |
Q9NZN4 | EHD2 | S484 | ochoa | EH domain-containing protein 2 (PAST homolog 2) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (By similarity). Plays a role in membrane trafficking between the plasma membrane and endosomes (PubMed:17233914). Important for the internalization of GLUT4. Required for fusion of myoblasts to skeletal muscle myotubes. Required for normal translocation of FER1L5 to the plasma membrane (By similarity). Regulates the equilibrium between cell surface-associated and cell surface-dissociated caveolae by constraining caveolae at the cell membrane (PubMed:25588833). {ECO:0000250|UniProtKB:Q8BH64, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:25588833}. |
Q9P2E9 | RRBP1 | S602 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9UBI6 | GNG12 | S26 | ochoa | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 | Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. |
Q9UBT2 | UBA2 | S297 | ochoa | SUMO-activating enzyme subunit 2 (EC 2.3.2.-) (Anthracycline-associated resistance ARX) (Ubiquitin-like 1-activating enzyme E1B) (Ubiquitin-like modifier-activating enzyme 2) | The heterodimer acts as an E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2. {ECO:0000269|PubMed:11451954, ECO:0000269|PubMed:11481243, ECO:0000269|PubMed:15660128, ECO:0000269|PubMed:17643372, ECO:0000269|PubMed:19443651, ECO:0000269|PubMed:20164921}. |
Q9UH92 | MLX | S77 | ochoa | Max-like protein X (Class D basic helix-loop-helix protein 13) (bHLHd13) (Max-like bHLHZip protein) (Protein BigMax) (Transcription factor-like protein 4) | Transcription regulator. Forms a sequence-specific DNA-binding protein complex with MAD1, MAD4, MNT, WBSCR14 and MLXIP which recognizes the core sequence 5'-CACGTG-3'. The TCFL4-MAD1, TCFL4-MAD4, TCFL4-WBSCR14 complexes are transcriptional repressors. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. {ECO:0000269|PubMed:10593926, ECO:0000269|PubMed:12446771, ECO:0000269|PubMed:16782875}. |
Q9UHR4 | BAIAP2L1 | S317 | ochoa | BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) | May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}. |
Q9UK32 | RPS6KA6 | S389 | ochoa|psp | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Q9ULJ7 | ANKRD50 | S1213 | ochoa | Ankyrin repeat domain-containing protein 50 | Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). |
Q9ULR3 | PPM1H | S119 | ochoa | Protein phosphatase 1H (EC 3.1.3.16) | Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}. |
Q9ULW3 | ABT1 | S188 | ochoa | Activator of basal transcription 1 (hABT1) (Basal transcriptional activator) | Could be a novel TATA-binding protein (TBP) which can function as a basal transcription activator. Can act as a regulator of basal transcription for class II genes (By similarity). {ECO:0000250}. |
Q9UMZ2 | SYNRG | S809 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UPN4 | CEP131 | S498 | ochoa | Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) | Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}. |
Q9UPU5 | USP24 | S1352 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UQR1 | ZNF148 | S727 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9Y210 | TRPC6 | S197 | ochoa | Short transient receptor potential channel 6 (TrpC6) (Transient receptor protein 6) (TRP-6) | Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:19936226, PubMed:23291369, PubMed:26892346, PubMed:9930701). Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C (PubMed:26892346). Seems not to be activated by intracellular calcium store depletion. {ECO:0000269|PubMed:19936226, ECO:0000269|PubMed:23291369, ECO:0000269|PubMed:26892346, ECO:0000269|PubMed:9930701}. |
Q9Y2J2 | EPB41L3 | S1068 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2W2 | WBP11 | S604 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y2X9 | ZNF281 | S201 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y3S1 | WNK2 | S1889 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y490 | TLN1 | S1201 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | T2011 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y5M8 | SRPRB | S235 | ochoa | Signal recognition particle receptor subunit beta (SR-beta) (Protein APMCF1) | Component of the signal recognition particle (SRP) complex receptor (SR) (By similarity). Ensures, in conjunction with the SRP complex, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system (By similarity). May mediate the membrane association of SR (By similarity). {ECO:0000250|UniProtKB:P47758}. |
Q9Y5S2 | CDC42BPB | S1029 | ochoa | Serine/threonine-protein kinase MRCK beta (EC 2.7.11.1) (CDC42-binding protein kinase beta) (CDC42BP-beta) (DMPK-like beta) (Myotonic dystrophy kinase-related CDC42-binding kinase beta) (MRCK beta) (Myotonic dystrophy protein kinase-like beta) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715, PubMed:21949762). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates PPP1R12A (PubMed:21457715). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). {ECO:0000250|UniProtKB:Q7TT50, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:21949762}. |
Q9Y616 | IRAK3 | S325 | ochoa | Interleukin-1 receptor-associated kinase 3 (IRAK-3) (IL-1 receptor-associated kinase M) (IRAK-M) (Inactive IL-1 receptor-associated kinase 3) | Putative inactive protein kinase which regulates signaling downstream of immune receptors including IL1R and Toll-like receptors (PubMed:10383454, PubMed:29686383). Inhibits dissociation of IRAK1 and IRAK4 from the Toll-like receptor signaling complex by either inhibiting the phosphorylation of IRAK1 and IRAK4 or stabilizing the receptor complex (By similarity). Upon IL33-induced lung inflammation, positively regulates expression of IL6, CSF3, CXCL2 and CCL5 mRNAs in dendritic cells (PubMed:29686383). {ECO:0000250|UniProtKB:Q8K4B2, ECO:0000269|PubMed:10383454, ECO:0000269|PubMed:29686383}. |
Q9Y6X8 | ZHX2 | S719 | ochoa | Zinc fingers and homeoboxes protein 2 (Alpha-fetoprotein regulator 1) (AFP regulator 1) (Regulator of AFP) (Zinc finger and homeodomain protein 2) | Acts as a transcriptional repressor (PubMed:12741956). Represses the promoter activity of the CDC25C gene stimulated by NFYA (PubMed:12741956). May play a role in retinal development where it regulates the composition of bipolar cell populations, by promoting differentiation of bipolar OFF-type cells (By similarity). In the brain, may promote maintenance and suppress differentiation of neural progenitor cells in the developing cortex (By similarity). {ECO:0000250|UniProtKB:Q8C0C0, ECO:0000269|PubMed:12741956}. |
Q9Y6Y8 | SEC23IP | S728 | ochoa | SEC23-interacting protein (p125) | Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}. |
P60174 | TPI1 | S212 | Sugiyama | Triosephosphate isomerase (TIM) (EC 5.3.1.1) (Methylglyoxal synthase) (EC 4.2.3.3) (Triose-phosphate isomerase) | Triosephosphate isomerase is an extremely efficient metabolic enzyme that catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (G3P) in glycolysis and gluconeogenesis. {ECO:0000269|PubMed:18562316}.; FUNCTION: It is also responsible for the non-negligible production of methylglyoxal a reactive cytotoxic side-product that modifies and can alter proteins, DNA and lipids. {ECO:0000250|UniProtKB:P00939}. |
P11586 | MTHFD1 | S129 | Sugiyama | C-1-tetrahydrofolate synthase, cytoplasmic (C1-THF synthase) (Epididymis secretory sperm binding protein) [Cleaved into: C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed] [Includes: Methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5); Methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9); Formyltetrahydrofolate synthetase (EC 6.3.4.3)] | Trifunctional enzyme that catalyzes the interconversion of three forms of one-carbon-substituted tetrahydrofolate: (6R)-5,10-methylene-5,6,7,8-tetrahydrofolate, 5,10-methenyltetrahydrofolate and (6S)-10-formyltetrahydrofolate (PubMed:10828945, PubMed:18767138, PubMed:1881876). These derivatives of tetrahydrofolate are differentially required in nucleotide and amino acid biosynthesis, (6S)-10-formyltetrahydrofolate being required for purine biosynthesis while (6R)-5,10-methylene-5,6,7,8-tetrahydrofolate is used for serine and methionine biosynthesis for instance (PubMed:18767138, PubMed:25633902). {ECO:0000269|PubMed:10828945, ECO:0000269|PubMed:18767138, ECO:0000269|PubMed:1881876, ECO:0000269|PubMed:25633902}. |
P36871 | PGM1 | S483 | Sugiyama | Phosphoglucomutase-1 (PGM 1) (EC 5.4.2.2) (Glucose phosphomutase 1) | Catalyzes the reversible isomerization of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate (PubMed:15378030, PubMed:25288802). The mechanism proceeds via the intermediate compound alpha-D-glucose 1,6-bisphosphate (Probable) (PubMed:25288802). This enzyme participates in both the breakdown and synthesis of glucose (PubMed:17924679, PubMed:25288802). {ECO:0000269|PubMed:15378030, ECO:0000269|PubMed:17924679, ECO:0000269|PubMed:25288802, ECO:0000305|PubMed:15378030}. |
P29401 | TKT | S332 | Sugiyama | Transketolase (TK) (EC 2.2.1.1) | Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}. |
P30084 | ECHS1 | S107 | Sugiyama | Enoyl-CoA hydratase, mitochondrial (mECH) (mECH1) (EC 4.2.1.17) (EC 5.3.3.8) (Enoyl-CoA hydratase 1) (ECHS1) (Short-chain enoyl-CoA hydratase) (SCEH) | Converts unsaturated trans-2-enoyl-CoA species ((2E)-enoyl-CoA) to the corresponding (3S)-3hydroxyacyl-CoA species through addition of a water molecule to the double bond (PubMed:25125611, PubMed:26251176). Catalyzes the hydration of medium- and short-chained fatty enoyl-CoA thioesters from 4 carbons long (C4) up to C16 (PubMed:26251176). Has high substrate specificity for crotonyl-CoA ((2E)-butenoyl-CoA) and moderate specificity for acryloyl-CoA, 3-methylcrotonyl-CoA (3-methyl-(2E)-butenoyl-CoA) and methacrylyl-CoA ((2E)-2-methylpropenoyl-CoA) (PubMed:26251176). Can bind tiglyl-CoA (2-methylcrotonoyl-CoA), but hydrates only a small amount of this substrate (PubMed:26251176). Plays a key role in the beta-oxidation spiral of short- and medium-chain fatty acid oxidation (PubMed:25125611, PubMed:26251176). At a lower rate than the hydratase reaction, catalyzes the isomerase reaction of trans-3-enoyl-CoA species (such as (3E)-hexenoyl-CoA) to trans-2-enoyl-CoA species (such as (2E)-hexenoyl-CoA), which are subsequently hydrated to 3(S)-3-hydroxyacyl-CoA species (such as (3S)-hydroxyhexanoyl-CoA) (By similarity). {ECO:0000250|UniProtKB:P14604, ECO:0000269|PubMed:25125611, ECO:0000269|PubMed:26251176}. |
P63220 | RPS21 | S31 | Sugiyama | Small ribosomal subunit protein eS21 (40S ribosomal protein S21) | Component of the small ribosomal subunit (PubMed:23636399, PubMed:25901680, PubMed:25957688). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:25901680, PubMed:25957688). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688}. |
Q9UNF0 | PACSIN2 | S273 | Sugiyama | Protein kinase C and casein kinase substrate in neurons protein 2 (Syndapin-2) (Syndapin-II) (SdpII) | Regulates the morphogenesis and endocytosis of caveolae (By similarity). Lipid-binding protein that is able to promote the tubulation of the phosphatidic acid-containing membranes it preferentially binds. Plays a role in intracellular vesicle-mediated transport. Involved in the endocytosis of cell-surface receptors like the EGF receptor, contributing to its internalization in the absence of EGF stimulus (PubMed:21693584, PubMed:23129763, PubMed:23236520, PubMed:23596323). Essential for endothelial organization in sprouting angiogenesis, modulates CDH5-based junctions. Facilitates endothelial front-rear polarity during migration by recruiting EHD4 and MICALL1 to asymmetric adherens junctions between leader and follower cells (By similarity). {ECO:0000250|UniProtKB:Q9WVE8, ECO:0000269|PubMed:21693584, ECO:0000269|PubMed:23129763, ECO:0000269|PubMed:23236520, ECO:0000269|PubMed:23596323}.; FUNCTION: (Microbial infection) Specifically enhances the efficiency of HIV-1 virion spread by cell-to-cell transfer (PubMed:29891700). Also promotes the protrusion engulfment during cell-to-cell spread of bacterial pathogens like Listeria monocytogenes (PubMed:31242077). Involved in lipid droplet formation, which is important for HCV virion assembly (PubMed:31801866). {ECO:0000269|PubMed:29891700, ECO:0000269|PubMed:31242077, ECO:0000269|PubMed:31801866}. |
Q96CW6 | SLC7A6OS | S32 | Sugiyama | Probable RNA polymerase II nuclear localization protein SLC7A6OS (ADAMS proteinase-related protein) (Solute carrier family 7 member 6 opposite strand transcript) | Directs RNA polymerase II nuclear import. {ECO:0000250}. |
P15880 | RPS2 | S249 | Sugiyama | Small ribosomal subunit protein uS5 (40S ribosomal protein S2) (40S ribosomal protein S4) (Protein LLRep3) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399). Plays a role in the assembly and function of the 40S ribosomal subunit (By similarity). Mutations in this protein affects the control of translational fidelity (By similarity). Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly (By similarity). {ECO:0000250|UniProtKB:P25443, ECO:0000269|PubMed:23636399}. |
Q8NBP7 | PCSK9 | S485 | Sugiyama | Proprotein convertase subtilisin/kexin type 9 (EC 3.4.21.-) (Neural apoptosis-regulated convertase 1) (NARC-1) (Proprotein convertase 9) (PC9) (Subtilisin/kexin-like protease PC9) | Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:17461796, PubMed:18197702, PubMed:18799458, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways. {ECO:0000269|PubMed:17461796, ECO:0000269|PubMed:18039658, ECO:0000269|PubMed:18197702, ECO:0000269|PubMed:18660751, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22074827, ECO:0000269|PubMed:22493497, ECO:0000269|PubMed:22580899}. |
P16070 | CD44 | S43 | Sugiyama | CD44 antigen (CDw44) (Epican) (Extracellular matrix receptor III) (ECMR-III) (GP90 lymphocyte homing/adhesion receptor) (HUTCH-I) (Heparan sulfate proteoglycan) (Hermes antigen) (Hyaluronate receptor) (Phagocytic glycoprotein 1) (PGP-1) (Phagocytic glycoprotein I) (PGP-I) (CD antigen CD44) | Cell-surface receptor that plays a role in cell-cell interactions, cell adhesion and migration, helping them to sense and respond to changes in the tissue microenvironment (PubMed:16541107, PubMed:19703720, PubMed:22726066). Participates thereby in a wide variety of cellular functions including the activation, recirculation and homing of T-lymphocytes, hematopoiesis, inflammation and response to bacterial infection (PubMed:7528188). Engages, through its ectodomain, extracellular matrix components such as hyaluronan/HA, collagen, growth factors, cytokines or proteases and serves as a platform for signal transduction by assembling, via its cytoplasmic domain, protein complexes containing receptor kinases and membrane proteases (PubMed:18757307, PubMed:23589287). Such effectors include PKN2, the RhoGTPases RAC1 and RHOA, Rho-kinases and phospholipase C that coordinate signaling pathways promoting calcium mobilization and actin-mediated cytoskeleton reorganization essential for cell migration and adhesion (PubMed:15123640). {ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:18757307, ECO:0000269|PubMed:19703720, ECO:0000269|PubMed:22726066, ECO:0000269|PubMed:23589287, ECO:0000269|PubMed:7528188}. |
O95359 | TACC2 | S2270 | Sugiyama | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
Q14697 | GANAB | S913 | Sugiyama | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
Q9UJX3 | ANAPC7 | S23 | ELM|PSP | Anaphase-promoting complex subunit 7 (APC7) (Cyclosome subunit 7) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). APC7 is not required for the assembly of the APC/C complex, but has an enzyme-substrate adapter activity mediating the processive ubiquitination of specific substrates (PubMed:34942119). Involved in brain development through the specific ubiquitination and clearance of MKI67 from constitutive heterochromatin after neuronal progenitors exit mitosis (PubMed:34942119). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34942119}. |
Q9UPQ9 | TNRC6B | S992 | Sugiyama | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q00536 | CDK16 | S417 | Sugiyama | Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) | Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}. |
Q5S007 | LRRK2 | S1508 | EPSD|PSP | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q99700 | ATXN2 | S451 | Sugiyama | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
P10586 | PTPRF | S1853 | Sugiyama | Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) | Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one. |
P23468 | PTPRD | S1858 | Sugiyama | Receptor-type tyrosine-protein phosphatase delta (Protein-tyrosine phosphatase delta) (R-PTP-delta) (EC 3.1.3.48) | Can bidirectionally induce pre- and post-synaptic differentiation of neurons by mediating interaction with IL1RAP and IL1RAPL1 trans-synaptically. Involved in pre-synaptic differentiation through interaction with SLITRK2. {ECO:0000250|UniProtKB:Q64487}. |
Q13332 | PTPRS | S1894 | Sugiyama | Receptor-type tyrosine-protein phosphatase S (R-PTP-S) (EC 3.1.3.48) (Receptor-type tyrosine-protein phosphatase sigma) (R-PTP-sigma) | Cell surface receptor that binds to glycosaminoglycans, including chondroitin sulfate proteoglycans and heparan sulfate proteoglycan (PubMed:21454754). Binding to chondroitin sulfate and heparan sulfate proteoglycans has opposite effects on PTPRS oligomerization and regulation of neurite outgrowth. Contributes to the inhibition of neurite and axonal outgrowth by chondroitin sulfate proteoglycans, also after nerve transection. Plays a role in stimulating neurite outgrowth in response to the heparan sulfate proteoglycan GPC2. Required for normal brain development, especially for normal development of the pituitary gland and the olfactory bulb. Functions as a tyrosine phosphatase (PubMed:8524829). Mediates dephosphorylation of NTRK1, NTRK2 and NTRK3 (By similarity). Plays a role in down-regulation of signaling cascades that lead to the activation of Akt and MAP kinases (By similarity). Down-regulates TLR9-mediated activation of NF-kappa-B, as well as production of TNF, interferon alpha and interferon beta (PubMed:26231120). {ECO:0000250|UniProtKB:B0V2N1, ECO:0000250|UniProtKB:F1NWE3, ECO:0000269|PubMed:21454754, ECO:0000269|PubMed:26231120, ECO:0000269|PubMed:8524829}. |
Q92499 | DDX1 | S113 | Sugiyama | ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) | Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}. |
Q15750 | TAB1 | S339 | Sugiyama | TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 1) (TGF-beta-activated kinase 1-binding protein 1) (TAK1-binding protein 1) | Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (PubMed:22307082, PubMed:24403530). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (PubMed:10838074, PubMed:25260751, PubMed:37832545). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (PubMed:11847341, PubMed:29229647). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism (PubMed:14592977). Also plays a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits (PubMed:18021073). {ECO:0000269|PubMed:10838074, ECO:0000269|PubMed:11847341, ECO:0000269|PubMed:14592977, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:22307082, ECO:0000269|PubMed:24403530, ECO:0000269|PubMed:25260751, ECO:0000269|PubMed:29229647, ECO:0000269|PubMed:37832545}. |
Q99439 | CNN2 | S138 | Sugiyama | Calponin-2 (Calponin H2, smooth muscle) (Neutral calponin) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q9H1R3 | MYLK2 | S203 | Sugiyama | Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) | Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}. |
A0AVT1 | UBA6 | S19 | ochoa | Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) | Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}. |
A2A3K4 | PTPDC1 | S457 | ochoa | Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) | May play roles in cilia formation and/or maintenance. {ECO:0000250}. |
A5PKW4 | PSD | S990 | ochoa | PH and SEC7 domain-containing protein 1 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6) (Exchange factor for ARF6) (Exchange factor for ARF6 A) (Pleckstrin homology and SEC7 domain-containing protein 1) | Guanine nucleotide exchange factor for ARF6 (PubMed:23603394). Induces cytoskeletal remodeling (By similarity). {ECO:0000250|UniProtKB:Q5DTT2, ECO:0000269|PubMed:23603394}. |
A6NCI8 | C2orf78 | S819 | ochoa | Uncharacterized protein C2orf78 | None |
A6NI28 | ARHGAP42 | S811 | ochoa | Rho GTPase-activating protein 42 (Rho GTPase-activating protein 10-like) (Rho-type GTPase-activating protein 42) | May influence blood pressure by functioning as a GTPase-activating protein for RHOA in vascular smooth muscle. {ECO:0000269|PubMed:24335996}. |
A8CG34 | POM121C | S970 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
E9PLD3 | None | S65 | ochoa | Uncharacterized protein | None |
E9PRG8 | C11orf98 | S65 | ochoa | Uncharacterized protein C11orf98 | None |
H0YGG7 | None | S22 | ochoa | ADP-ribosylation factor 1 | None |
H0YHG0 | None | S444 | ochoa | DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}. |
H3BN57 | BLOC1S5-TXNDC5 | S21 | ochoa | Biogenesis of lysosome-related organelles complex 1 subunit 5 (Protein Muted homolog) | None |
H3BQ06 | None | S28 | ochoa | TBC1 domain family member 24 | May act as a GTPase-activating protein for Rab family protein(s). Involved in neuronal projections development, probably through a negative modulation of ARF6 function. Involved in the regulation of synaptic vesicle trafficking. {ECO:0000256|ARBA:ARBA00046245}. |
K7ELQ4 | ATF7-NPFF | S100 | ochoa | ATF7-NPFF readthrough | None |
O00178 | GTPBP1 | S44 | ochoa | GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) | Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}. |
O14686 | KMT2D | S31 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3238 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14813 | PHOX2A | S153 | psp | Paired mesoderm homeobox protein 2A (ARIX1 homeodomain protein) (Aristaless homeobox protein homolog) (Paired-like homeobox 2A) | May be involved in regulating the specificity of expression of the catecholamine biosynthetic genes. Acts as a transcription activator/factor. Could maintain the noradrenergic phenotype. |
O14974 | PPP1R12A | S401 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O15037 | KHNYN | S458 | ochoa | Protein KHNYN (KH and NYN domain-containing protein) | None |
O15047 | SETD1A | S556 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15350 | TP73 | S166 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O43164 | PJA2 | S253 | ochoa | E3 ubiquitin-protein ligase Praja-2 (Praja2) (EC 2.3.2.27) (RING finger protein 131) (RING-type E3 ubiquitin transferase Praja-2) | Has E2-dependent E3 ubiquitin-protein ligase activity (PubMed:12036302, PubMed:21423175). Responsible for ubiquitination of cAMP-dependent protein kinase type I and type II-alpha/beta regulatory subunits and for targeting them for proteasomal degradation. Essential for PKA-mediated long-term memory processes (PubMed:21423175). Through the ubiquitination of MFHAS1, positively regulates the TLR2 signaling pathway that leads to the activation of the downstream p38 and JNK MAP kinases and promotes the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). Plays a role in ciliogenesis by ubiquitinating OFD1 (PubMed:33934390). {ECO:0000269|PubMed:12036302, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:33934390}. |
O43166 | SIPA1L1 | S1708 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43561 | LAT | S131 | ochoa | Linker for activation of T-cells family member 1 (36 kDa phosphotyrosine adapter protein) (pp36) (p36-38) | Required for TCR (T-cell antigen receptor)- and pre-TCR-mediated signaling, both in mature T-cells and during their development (PubMed:23514740, PubMed:25907557). Involved in FCGR3 (low affinity immunoglobulin gamma Fc region receptor III)-mediated signaling in natural killer cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Couples activation of these receptors and their associated kinases with distal intracellular events such as mobilization of intracellular calcium stores, PKC activation, MAPK activation or cytoskeletal reorganization through the recruitment of PLCG1, GRB2, GRAP2, and other signaling molecules. {ECO:0000269|PubMed:10072481, ECO:0000269|PubMed:23514740, ECO:0000269|PubMed:25907557}. |
O43615 | TIMM44 | S185 | ochoa | Mitochondrial import inner membrane translocase subunit TIM44 | Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner (By similarity). Recruits mitochondrial HSP70 to drive protein translocation into the matrix using ATP as an energy source (By similarity). {ECO:0000250|UniProtKB:O35857, ECO:0000250|UniProtKB:Q01852}. |
O43633 | CHMP2A | S95 | ochoa | Charged multivesicular body protein 2a (Chromatin-modifying protein 2a) (CHMP2a) (Putative breast adenocarcinoma marker BC-2) (Vacuolar protein sorting-associated protein 2-1) (Vps2-1) (hVps2-1) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:21310966). Together with SPAST, the ESCRT-III complex promotes nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Recruited to the reforming nuclear envelope (NE) during anaphase by LEMD2 (PubMed:28242692). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. {ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692, ECO:0000305}.; FUNCTION: (Microbial infection) The ESCRT machinery functions in topologically equivalent membrane fission events, such as the budding of enveloped viruses (HIV-1 and other lentiviruses). Involved in HIV-1 p6- and p9-dependent virus release. {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844}. |
O43633 | CHMP2A | S203 | ochoa | Charged multivesicular body protein 2a (Chromatin-modifying protein 2a) (CHMP2a) (Putative breast adenocarcinoma marker BC-2) (Vacuolar protein sorting-associated protein 2-1) (Vps2-1) (hVps2-1) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:21310966). Together with SPAST, the ESCRT-III complex promotes nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Recruited to the reforming nuclear envelope (NE) during anaphase by LEMD2 (PubMed:28242692). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. {ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692, ECO:0000305}.; FUNCTION: (Microbial infection) The ESCRT machinery functions in topologically equivalent membrane fission events, such as the budding of enveloped viruses (HIV-1 and other lentiviruses). Involved in HIV-1 p6- and p9-dependent virus release. {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844}. |
O43639 | NCK2 | S270 | ochoa | Cytoplasmic protein NCK2 (Growth factor receptor-bound protein 4) (NCK adaptor protein 2) (Nck-2) (SH2/SH3 adaptor protein NCK-beta) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16835242}. |
O43639 | NCK2 | S276 | ochoa | Cytoplasmic protein NCK2 (Growth factor receptor-bound protein 4) (NCK adaptor protein 2) (Nck-2) (SH2/SH3 adaptor protein NCK-beta) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16835242}. |
O43707 | ACTN4 | S461 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O43900 | PRICKLE3 | S475 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60242 | ADGRB3 | S1220 | ochoa | Adhesion G protein-coupled receptor B3 (Brain-specific angiogenesis inhibitor 3) | Receptor that plays a role in the regulation of synaptogenesis and dendritic spine formation at least partly via interaction with ELMO1 and RAC1 activity (By similarity). Promotes myoblast fusion through ELMO/DOCK1 (PubMed:24567399). {ECO:0000250|UniProtKB:Q80ZF8, ECO:0000269|PubMed:24567399}. |
O60264 | SMARCA5 | S32 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) | ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}. |
O60291 | MGRN1 | S524 | ochoa | E3 ubiquitin-protein ligase MGRN1 (EC 2.3.2.27) (Mahogunin RING finger protein 1) (RING finger protein 156) (RING-type E3 ubiquitin transferase MGRN1) | E3 ubiquitin-protein ligase. Mediates monoubiquitination at multiple sites of TSG101 in the presence of UBE2D1, but not of UBE2G1, nor UBE2H. Plays a role in the regulation of endosome-to-lysosome trafficking. Impairs MC1R- and MC4R-signaling by competing with GNAS-binding to MCRs and inhibiting agonist-induced cAMP production. Does not inhibit ADRB2-signaling. Does not promote MC1R ubiquitination. Acts also as a negative regulator of hedgehog signaling (By similarity). {ECO:0000250|UniProtKB:Q9D074, ECO:0000269|PubMed:17229889, ECO:0000269|PubMed:19703557, ECO:0000269|PubMed:19737927}. |
O60346 | PHLPP1 | S450 | ochoa|psp | PH domain leucine-rich repeat-containing protein phosphatase 1 (EC 3.1.3.16) (Pleckstrin homology domain-containing family E member 1) (PH domain-containing family E member 1) (Suprachiasmatic nucleus circadian oscillatory protein) (hSCOP) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA (PubMed:15808505, PubMed:17386267, PubMed:18162466). Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons (By similarity). Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation (PubMed:18162466). Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor (PubMed:19079341). Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). May act as a negative regulator of K-Ras signaling in membrane rafts (By similarity). Involved in the hippocampus-dependent long-term memory formation (By similarity). Involved in circadian control by regulating the consolidation of circadian periodicity after resetting (By similarity). Involved in development and function of regulatory T-cells (By similarity). {ECO:0000250|UniProtKB:Q8CHE4, ECO:0000250|UniProtKB:Q9WTR8, ECO:0000269|PubMed:15808505, ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
O60347 | TBC1D12 | S113 | ochoa | TBC1 domain family member 12 | RAB11A-binding protein that plays a role in neurite outgrowth. {ECO:0000250|UniProtKB:M0R7T9}. |
O60437 | PPL | S667 | ochoa | Periplakin (190 kDa paraneoplastic pemphigus antigen) (195 kDa cornified envelope precursor protein) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. May act as a localization signal in PKB/AKT-mediated signaling. {ECO:0000269|PubMed:9412476}. |
O60583 | CCNT2 | S424 | ochoa | Cyclin-T2 (CycT2) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin T) complex, also called positive transcription elongation factor B (P-TEFB), which is proposed to facilitate the transition from abortive to production elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNAP II) (PubMed:15563843, PubMed:9499409). The activity of this complex is regulated by binding with 7SK snRNA (PubMed:11713533). Plays a role during muscle differentiation; P-TEFB complex interacts with MYOD1; this tripartite complex promotes the transcriptional activity of MYOD1 through its CDK9-mediated phosphorylation and binds the chromatin of promoters and enhancers of muscle-specific genes; this event correlates with hyperphosphorylation of the CTD domain of RNA pol II (By similarity). In addition, enhances MYOD1-dependent transcription through interaction with PKN1 (PubMed:16331689). Involved in early embryo development (By similarity). {ECO:0000250|UniProtKB:Q7TQK0, ECO:0000269|PubMed:11713533, ECO:0000269|PubMed:15563843, ECO:0000269|PubMed:16331689, ECO:0000269|PubMed:9499409}.; FUNCTION: (Microbial infection) Promotes transcriptional activation of early and late herpes simplex virus 1/HHV-1 promoters. {ECO:0000269|PubMed:21509660}. |
O60664 | PLIN3 | S167 | ochoa | Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) | Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}. |
O60832 | DKC1 | S420 | ochoa | H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) | [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}. |
O75152 | ZC3H11A | S687 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75152 | ZC3H11A | S688 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75179 | ANKRD17 | T227 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75376 | NCOR1 | S1592 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75385 | ULK1 | S716 | ochoa | Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) | Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}. |
O75385 | ULK1 | S881 | ochoa | Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) | Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}. |
O75533 | SF3B1 | S287 | ochoa | Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
O75665 | OFD1 | S827 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75914 | PAK3 | S435 | ochoa | Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}. |
O75970 | MPDZ | S1584 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O75970 | MPDZ | S1587 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O75995 | SASH3 | S320 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O94819 | KBTBD11 | S310 | ochoa | Kelch repeat and BTB domain-containing protein 11 (Chronic myelogenous leukemia-associated protein) (Kelch domain-containing protein 7B) | None |
O94966 | USP19 | S406 | ochoa | Ubiquitin carboxyl-terminal hydrolase 19 (EC 3.4.19.12) (Deubiquitinating enzyme 19) (Ubiquitin thioesterase 19) (Ubiquitin-specific-processing protease 19) (Zinc finger MYND domain-containing protein 9) | Deubiquitinating enzyme that regulates the degradation of various proteins by removing ubiquitin moieties, thereby preventing their proteasomal degradation. Stabilizes RNF123, which promotes CDKN1B degradation and contributes to cell proliferation (By similarity). Decreases the levels of ubiquitinated proteins during skeletal muscle formation and acts to repress myogenesis. Modulates transcription of major myofibrillar proteins. Also involved in turnover of endoplasmic-reticulum-associated degradation (ERAD) substrates (PubMed:19465887, PubMed:24356957). Mechanistically, deubiquitinates and thereby stabilizes several E3 ligases involved in the ERAD pathway including SYVN1 or MARCHF6 (PubMed:24356957). Regulates the stability of other E3 ligases including BIRC2/c-IAP1 and BIRC3/c-IAP2 by preventing their ubiquitination (PubMed:21849505). Required for cells to mount an appropriate response to hypoxia by rescuing HIF1A from degradation in a non-catalytic manner and by mediating the deubiquitination of FUNDC1 (PubMed:22128162, PubMed:33978709). Attenuates mitochondrial damage and ferroptosis by targeting and stabilizing NADPH oxidase 4/NOX4 (PubMed:38943386). Negatively regulates TNF-alpha- and IL-1beta-triggered NF-kappa-B activation by hydrolyzing 'Lys-27'- and 'Lys-63'-linked polyubiquitin chains from MAP3K7 (PubMed:31127032). Modulates also the protein level and aggregation of polyQ-expanded huntingtin/HTT through HSP90AA1 (PubMed:33094816). {ECO:0000250|UniProtKB:Q3UJD6, ECO:0000250|UniProtKB:Q6J1Y9, ECO:0000269|PubMed:19465887, ECO:0000269|PubMed:21849505, ECO:0000269|PubMed:22128162, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:24356957, ECO:0000269|PubMed:31127032, ECO:0000269|PubMed:33094816, ECO:0000269|PubMed:33978709, ECO:0000269|PubMed:38943386}. |
O95049 | TJP3 | S564 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95197 | RTN3 | S591 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
O95391 | SLU7 | S308 | ochoa | Pre-mRNA-splicing factor SLU7 (hSlu7) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:10197984, PubMed:28502770, PubMed:30705154). Participates in the second catalytic step of pre-mRNA splicing, when the free hydroxyl group of exon I attacks the 3'-splice site to generate spliced mRNA and the excised lariat intron. Required for holding exon 1 properly in the spliceosome and for correct AG identification when more than one possible AG exists in 3'-splicing site region. May be involved in the activation of proximal AG. Probably also involved in alternative splicing regulation. {ECO:0000269|PubMed:10197984, ECO:0000269|PubMed:10647016, ECO:0000269|PubMed:12764196, ECO:0000269|PubMed:15181151, ECO:0000269|PubMed:15728250, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:30705154}. |
O95436 | SLC34A2 | S671 | ochoa | Sodium-dependent phosphate transport protein 2B (Sodium-phosphate transport protein 2B) (Na(+)-dependent phosphate cotransporter 2B) (NaPi3b) (Sodium/phosphate cotransporter 2B) (Na(+)/Pi cotransporter 2B) (NaPi-2b) (Solute carrier family 34 member 2) | Involved in actively transporting phosphate into cells via Na(+) cotransport. {ECO:0000269|PubMed:10329428}. |
O95644 | NFATC1 | S324 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95785 | WIZ | S1517 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95835 | LATS1 | S909 | ochoa|psp | Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}. |
O95977 | S1PR4 | S349 | ochoa | Sphingosine 1-phosphate receptor 4 (S1P receptor 4) (S1P4) (Endothelial differentiation G-protein coupled receptor 6) (Sphingosine 1-phosphate receptor Edg-6) (S1P receptor Edg-6) | Receptor for the lysosphingolipid sphingosine 1-phosphate (S1P). S1P is a bioactive lysophospholipid that elicits diverse physiological effect on most types of cells and tissues. May be involved in cell migration processes that are specific for lymphocytes. {ECO:0000269|PubMed:10679247, ECO:0000269|PubMed:10753843}. |
O96005 | CLPTM1 | S27 | ochoa | Putative lipid scramblase CLPTM1 (Cleft lip and palate transmembrane protein 1) | Involved in GABAergic but not glutamatergic transmission. Binds and traps GABAA receptors in the endoplasmic reticulum (ER). Modulates postsynaptic GABAergic transmission, and therefore inhibitory neurotransmission, by reducing the plasma membrane expression of these receptors. Altered GABAergic signaling is one among many causes of cleft palate (By similarity). Might function as a lipid scramblase, translocating lipids in membranes from one leaflet to the other one (By similarity). Required for efficient glycosylphosphatidylinositol (GPI) inositol deacylation in the ER, which is a crucial step to switch GPI-anchored proteins (GPI-APs) from protein folding to transport states (PubMed:29255114). May play a role in T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8VBZ3, ECO:0000250|UniProtKB:Q96KA5, ECO:0000269|PubMed:29255114}. |
O96028 | NSD2 | S437 | ochoa | Histone-lysine N-methyltransferase NSD2 (EC 2.1.1.357) (Multiple myeloma SET domain-containing protein) (MMSET) (Nuclear SET domain-containing protein 2) (Protein trithorax-5) (Wolf-Hirschhorn syndrome candidate 1 protein) | Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:19808676, PubMed:22099308, PubMed:27571355, PubMed:29728617, PubMed:33941880). Also monomethylates nucleosomal histone H3 at 'Lys-36' (H3K36me) in vitro (PubMed:22099308). Does not trimethylate nucleosomal histone H3 at 'Lys-36' (H3K36me3) (PubMed:22099308). However, specifically trimethylates histone H3 at 'Lys-36' (H3K36me3) at euchromatic regions in embryonic stem (ES) cells (By similarity). By methylating histone H3 at 'Lys-36', involved in the regulation of gene transcription during various biological processes (PubMed:16115125, PubMed:22099308, PubMed:29728617). In ES cells, associates with developmental transcription factors such as SALL1 and represses inappropriate gene transcription mediated by histone deacetylation (By similarity). During heart development, associates with transcription factor NKX2-5 to repress transcription of NKX2-5 target genes (By similarity). Plays an essential role in adipogenesis, by regulating expression of genes involved in pre-adipocyte differentiation (PubMed:29728617). During T-cell receptor (TCR) and CD28-mediated T-cell activation, promotes the transcription of transcription factor BCL6 which is required for follicular helper T (Tfh) cell differentiation (By similarity). During B-cell development, required for the generation of the B1 lineage (By similarity). During B2 cell activation, may contribute to the control of isotype class switch recombination (CRS), splenic germinal center formation, and the humoral immune response (By similarity). Plays a role in class switch recombination of the immunoglobulin heavy chain (IgH) locus during B-cell activation (By similarity). By regulating the methylation of histone H3 at 'Lys-36' and histone H4 at 'Lys-20' at the IgH locus, involved in TP53BP1 recruitment to the IgH switch region and promotes the transcription of IgA (By similarity). {ECO:0000250|UniProtKB:Q8BVE8, ECO:0000269|PubMed:16115125, ECO:0000269|PubMed:19808676, ECO:0000269|PubMed:22099308, ECO:0000269|PubMed:27571355, ECO:0000269|PubMed:29728617, ECO:0000269|PubMed:33941880}.; FUNCTION: [Isoform 1]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:22099308}.; FUNCTION: [Isoform 4]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:22099308). Methylation of histone H3 at 'Lys-27' is controversial (PubMed:18172012, PubMed:22099308). Mono-, di- or tri-methylates histone H3 at 'Lys-27' (H3K27me, H3K27me2 and H3K27me3) (PubMed:18172012). Does not methylate histone H3 at 'Lys-27' (PubMed:22099308). May act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment (PubMed:11152655, PubMed:18172012). {ECO:0000269|PubMed:11152655, ECO:0000269|PubMed:18172012, ECO:0000269|PubMed:22099308}. |
P00325 | ADH1B | S23 | ochoa | All-trans-retinol dehydrogenase [NAD(+)] ADH1B (EC 1.1.1.105) (Alcohol dehydrogenase 1B) (Alcohol dehydrogenase subunit beta) | Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate in retinoid metabolism (PubMed:15369820, PubMed:16787387). In vitro can also catalyze the NADH-dependent reduction of all-trans-retinal and its derivatives such as all-trans-4-oxoretinal (PubMed:15369820, PubMed:16787387). Catalyzes in the oxidative direction with higher efficiency (PubMed:16787387). Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal (PubMed:15369820). {ECO:0000269|PubMed:15369820, ECO:0000269|PubMed:16787387}. |
P00326 | ADH1C | S23 | ochoa | Alcohol dehydrogenase 1C (EC 1.1.1.1) (Alcohol dehydrogenase subunit gamma) | Alcohol dehydrogenase. Exhibits high activity for ethanol oxidation and plays a major role in ethanol catabolism. {ECO:0000269|PubMed:6391957}. |
P00519 | ABL1 | S1011 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P00558 | PGK1 | S175 | ochoa | Phosphoglycerate kinase 1 (EC 2.7.11.1) (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2) | Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate (PubMed:30323285, PubMed:7391028). Both L- and D- forms of purine and pyrimidine nucleotides can be used as substrates, but the activity is much lower on pyrimidines (PubMed:18463139). In addition to its role as a glycolytic enzyme, it seems that PGK1 acts as a polymerase alpha cofactor protein (primer recognition protein) (PubMed:2324090). Acts as a protein kinase when localized to the mitochondrion where it phosphorylates pyruvate dehydrogenase kinase PDK1 to inhibit pyruvate dehydrogenase complex activity and suppress the formation of acetyl-coenzyme A from pyruvate, and consequently inhibit oxidative phosphorylation and promote glycolysis (PubMed:26942675, PubMed:36849569). May play a role in sperm motility (PubMed:26677959). {ECO:0000269|PubMed:18463139, ECO:0000269|PubMed:2324090, ECO:0000269|PubMed:26677959, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:30323285, ECO:0000269|PubMed:36849569, ECO:0000269|PubMed:7391028}. |
P00747 | PLG | S597 | psp | Plasminogen (EC 3.4.21.7) [Cleaved into: Plasmin heavy chain A; Activation peptide; Angiostatin; Plasmin heavy chain A, short form; Plasmin light chain B] | Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1, C4 and C5 (PubMed:6447255). Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells. {ECO:0000269|PubMed:14699093, ECO:0000269|PubMed:6447255}.; FUNCTION: Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo. {ECO:0000269|PubMed:14699093}.; FUNCTION: (Microbial infection) ENO/enoloase from parasite P.falciparum (strain NF54) interacts with PLG present in the mosquito blood meal to promote the invasion of the mosquito midgut by the parasite ookinete (PubMed:21949403). The catalytic active form, plasmin, is essential for the invasion of the mosquito midgut (PubMed:21949403). {ECO:0000269|PubMed:21949403}.; FUNCTION: (Microbial infection) Binds to OspC on the surface of B.burgdorferi cells, possibly conferring an extracellular protease activity on the bacteria that allows it to traverse host tissue. {ECO:0000269|PubMed:22433849}.; FUNCTION: (Microbial infection) Interacts with dengue virus type 2 particles (PubMed:31726374). Enhances dengue virus type 2 infection in Aedes aegypti mosquito midgut by increasing midgut internalization, resulting in higher infection rates and viral dissemination in mosquitoes (PubMed:31726374). {ECO:0000269|PubMed:31726374}. |
P02652 | APOA2 | S35 | ochoa | Apolipoprotein A-II (Apo-AII) (ApoA-II) (Apolipoprotein A2) [Cleaved into: Proapolipoprotein A-II (ProapoA-II); Truncated apolipoprotein A-II (Apolipoprotein A-II(1-76))] | May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. |
P04792 | HSPB1 | S82 | ochoa|psp | Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) | Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}. |
P04843 | RPN1 | S535 | ochoa | Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 67 kDa subunit) (Ribophorin I) (RPN-I) (Ribophorin-1) | Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation (PubMed:31831667). N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity (By similarity). {ECO:0000250|UniProtKB:E2RQ08, ECO:0000269|PubMed:31831667, ECO:0000269|PubMed:39567208}. |
P06732 | CKM | S224 | ochoa | Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) | Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}. |
P07327 | ADH1A | S23 | ochoa | Alcohol dehydrogenase 1A (EC 1.1.1.1) (Alcohol dehydrogenase subunit alpha) | Alcohol dehydrogenase (PubMed:2738060). Oxidizes primary as well as secondary alcohols. Ethanol is a very poor substrate (PubMed:2738060). {ECO:0000269|PubMed:2738060}. |
P08047 | SP1 | S728 | psp | Transcription factor Sp1 | Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}. |
P08493 | MGP | S22 | psp | Matrix Gla protein (MGP) (Cell growth-inhibiting gene 36 protein) | Associates with the organic matrix of bone and cartilage. Thought to act as an inhibitor of bone formation. |
P08833 | IGFBP1 | S126 | psp | Insulin-like growth factor-binding protein 1 (IBP-1) (IGF-binding protein 1) (IGFBP-1) (Placental protein 12) (PP12) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including cell migration, proliferation, differentiation or apoptosis in a cell-type specific manner (PubMed:11397844, PubMed:15972819). Also plays a positive role in cell migration by interacting with integrin ITGA5:ITGB1 through its RGD motif (PubMed:7504269). Mechanistically, binding to integrins leads to activation of focal adhesion kinase/PTK2 and stimulation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:11397844). Regulates cardiomyocyte apoptosis by suppressing HIF-1alpha/HIF1A ubiquitination and subsequent degradation (By similarity). {ECO:0000250|UniProtKB:P21743, ECO:0000269|PubMed:11397844, ECO:0000269|PubMed:15972819, ECO:0000269|PubMed:3419931, ECO:0000269|PubMed:7504269}. |
P09104 | ENO2 | S37 | ochoa | Gamma-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 2) (Neural enolase) (Neuron-specific enolase) (NSE) | Has neurotrophic and neuroprotective properties on a broad spectrum of central nervous system (CNS) neurons. Binds, in a calcium-dependent manner, to cultured neocortical neurons and promotes cell survival (By similarity). {ECO:0000250}. |
P09874 | PARP1 | S542 | ochoa | Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}. |
P0C7U0 | ELFN1 | S623 | ochoa | Protein ELFN1 (Extracellular leucine-rich repeat and fibronectin type-III domain-containing protein 1) (Protein phosphatase 1 regulatory subunit 28) | Postsynaptic protein that regulates circuit dynamics in the central nervous system by modulating the temporal dynamics of interneuron recruitment. Specifically present in excitatory synapses onto oriens-lacunosum molecular (OLM) interneurons and acts as a regulator of presynaptic release probability to direct the formation of highly facilitating pyramidal-OLM synapses (By similarity). Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000250, ECO:0000269|PubMed:19389623}. |
P0DMV8 | HSPA1A | S40 | ochoa | Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1) (Heat shock protein family A member 1A) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). Required as a co-chaperone for optimal STUB1/CHIP ubiquitination of NFATC3 (By similarity). Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation (PubMed:28842558). {ECO:0000250|UniProtKB:P0DMW0, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28842558, ECO:0000269|PubMed:9499401, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P0DMV9 | HSPA1B | S40 | ochoa | Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2) (Heat shock protein family A member 1B) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). {ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P0DPH7 | TUBA3C | S379 | ochoa | Tubulin alpha-3C chain (EC 3.6.5.-) (Alpha-tubulin 2) (Alpha-tubulin 3C) (Tubulin alpha-2 chain) [Cleaved into: Detyrosinated tubulin alpha-3C chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P0DPH8 | TUBA3D | S379 | ochoa | Tubulin alpha-3D chain (EC 3.6.5.-) (Alpha-tubulin 3D) [Cleaved into: Detyrosinated tubulin alpha-3D chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P10412 | H1-4 | S41 | ochoa | Histone H1.4 (Histone H1b) (Histone H1s-4) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
P10768 | ESD | S197 | ochoa | S-formylglutathione hydrolase (FGH) (EC 3.1.2.12) (Esterase D) (Methylumbelliferyl-acetate deacetylase) (EC 3.1.1.56) | Serine hydrolase involved in the detoxification of formaldehyde. {ECO:0000269|PubMed:3770744, ECO:0000269|PubMed:4768551}. |
P11142 | HSPA8 | S40 | ochoa | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
P11277 | SPTB | S1376 | ochoa | Spectrin beta chain, erythrocytic (Beta-I spectrin) | Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane. |
P11766 | ADH5 | S21 | ochoa | Alcohol dehydrogenase class-3 (EC 1.1.1.1) (Alcohol dehydrogenase 5) (Alcohol dehydrogenase class chi chain) (Alcohol dehydrogenase class-III) (Glutathione-dependent formaldehyde dehydrogenase) (FALDH) (FDH) (GSH-FDH) (EC 1.1.1.-) (S-(hydroxymethyl)glutathione dehydrogenase) (EC 1.1.1.284) | Catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione (PubMed:8460164). Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate (PubMed:16081420). Class-III ADH is remarkably ineffective in oxidizing ethanol (PubMed:8460164). Required for clearance of cellular formaldehyde, a cytotoxic and carcinogenic metabolite that induces DNA damage (PubMed:33355142). Also acts as a S-nitroso-glutathione reductase by catalyzing the NADH-dependent reduction of S-nitrosoglutathione, thereby regulating protein S-nitrosylation (By similarity). {ECO:0000250|UniProtKB:P28474, ECO:0000269|PubMed:16081420, ECO:0000269|PubMed:33355142, ECO:0000269|PubMed:8460164}. |
P12931 | SRC | S69 | ochoa | Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) | Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}. |
P13521 | SCG2 | S432 | ochoa | Secretogranin-2 (Chromogranin-C) (Secretogranin II) (SgII) [Cleaved into: Secretoneurin (SN); Manserin] | Neuroendocrine protein of the granin family that regulates the biogenesis of secretory granules. {ECO:0000269|PubMed:19357184}. |
P13804 | ETFA | S185 | ochoa | Electron transfer flavoprotein subunit alpha, mitochondrial (Alpha-ETF) | Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase (PubMed:10356313, PubMed:15159392, PubMed:15975918, PubMed:27499296, PubMed:9334218). It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (PubMed:9334218). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism (PubMed:12815589, PubMed:1430199, PubMed:1882842). {ECO:0000269|PubMed:10356313, ECO:0000269|PubMed:12815589, ECO:0000269|PubMed:1430199, ECO:0000269|PubMed:15159392, ECO:0000269|PubMed:15975918, ECO:0000269|PubMed:27499296, ECO:0000269|PubMed:9334218, ECO:0000303|PubMed:17941859, ECO:0000305|PubMed:1882842}. |
P13929 | ENO3 | S37 | ochoa | Beta-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 3) (Muscle-specific enolase) (MSE) (Skeletal muscle enolase) | Glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate. Appears to have a function in striated muscle development and regeneration. {ECO:0000250|UniProtKB:P15429}. |
P14859 | POU2F1 | S167 | psp | POU domain, class 2, transcription factor 1 (NF-A1) (Octamer-binding protein 1) (Oct-1) (Octamer-binding transcription factor 1) (OTF-1) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') and activates the promoters of the genes for some small nuclear RNAs (snRNA) and of genes such as those for histone H2B and immunoglobulins. Modulates transcription transactivation by NR3C1, AR and PGR. {ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:1684878, ECO:0000269|PubMed:7859290}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, POU2F1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and HCFC1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000305|PubMed:12826401}. |
P17066 | HSPA6 | S42 | ochoa | Heat shock 70 kDa protein 6 (Heat shock 70 kDa protein B') (Heat shock protein family A member 6) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release (PubMed:26865365). {ECO:0000303|PubMed:26865365}. |
P17302 | GJA1 | S325 | ochoa|psp | Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) | Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}. |
P17844 | DDX5 | S198 | psp | Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) | Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}. |
P17936 | IGFBP3 | S156 | psp | Insulin-like growth factor-binding protein 3 (IBP-3) (IGF-binding protein 3) (IGFBP-3) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including proliferation, differentiation, and apoptosis in a cell-type specific manner (PubMed:10874028, PubMed:19556345). Also exhibits IGF-independent antiproliferative and apoptotic effects mediated by its receptor TMEM219/IGFBP-3R (PubMed:20353938). Inhibits the positive effect of humanin on insulin sensitivity (PubMed:19623253). Promotes testicular germ cell apoptosis (PubMed:19952275). Acts via LRP-1/alpha2M receptor, also known as TGF-beta type V receptor, to mediate cell growth inhibition independent of IGF1 (PubMed:9252371). Mechanistically, induces serine-specific dephosphorylation of IRS1 or IRS2 upon ligation to its receptor, leading to the inhibitory cascade (PubMed:15371331). In the nucleus, interacts with transcription factors such as retinoid X receptor-alpha/RXRA to regulate transcriptional signaling and apoptosis (PubMed:10874028). {ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:15371331, ECO:0000269|PubMed:19159218, ECO:0000269|PubMed:19556345, ECO:0000269|PubMed:19623253, ECO:0000269|PubMed:19952275, ECO:0000269|PubMed:20353938}. |
P18206 | VCL | S52 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S275 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S600 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S726 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P19338 | NCL | S67 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P20700 | LMNB1 | S158 | ochoa | Lamin-B1 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}. |
P21333 | FLNA | S912 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21554 | CNR1 | S429 | psp | Cannabinoid receptor 1 (CB-R) (CB1) (CANN6) | G-protein coupled receptor for endogenous cannabinoids (eCBs), including N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG), as well as phytocannabinoids, such as delta(9)-tetrahydrocannabinol (THC) (PubMed:15620723, PubMed:27768894, PubMed:27851727). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP (PubMed:1718258, PubMed:21895628, PubMed:27768894). In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses. At high doses, CNR1 signal transduction involves G-protein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2. In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression. In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake. In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission. Also reduces excitatory synaptic transmission (By similarity). In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner (PubMed:17895407). In cerebral vascular smooth muscle cells, cannabinoid-induced inhibition of voltage-gated Ca(2+) channels leads to vasodilation and decreased vascular tone (By similarity). Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia. In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes (By similarity). In the liver, activation by endocannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes. May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake. Peripherally modulates energy metabolism (By similarity). In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism (By similarity). In response to cannabinoid anandamide, elicits a pro-inflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion (By similarity). In macrophages infiltrating pancreatic islets, this process may participate in the progression of type-2 diabetes and associated loss of pancreatic beta-cells (PubMed:23955712). {ECO:0000250|UniProtKB:O02777, ECO:0000250|UniProtKB:P47746, ECO:0000269|PubMed:15620723, ECO:0000269|PubMed:1718258, ECO:0000269|PubMed:17895407, ECO:0000269|PubMed:21895628, ECO:0000269|PubMed:23955712, ECO:0000269|PubMed:27768894, ECO:0000269|PubMed:27851727}.; FUNCTION: [Isoform 1]: Binds both 2-arachidonoylglycerol (2-AG) and anandamide. {ECO:0000269|PubMed:15620723}.; FUNCTION: [Isoform 2]: Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 2 in assays measuring GTP binding to membranes. {ECO:0000269|PubMed:15620723}.; FUNCTION: [Isoform 3]: Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 3 in assays measuring GTP binding to membranes. {ECO:0000269|PubMed:15620723}. |
P21796 | VDAC1 | S215 | ochoa | Non-selective voltage-gated ion channel VDAC1 (Outer mitochondrial membrane protein porin 1) (Plasmalemmal porin) (Porin 31HL) (Porin 31HM) (Voltage-dependent anion-selective channel protein 1) (VDAC-1) (hVDAC1) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:30061676, PubMed:8420959). The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:8420959). It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV (PubMed:10661876, PubMed:18755977, PubMed:8420959). The open state has a weak anion selectivity whereas the closed state is cation-selective (PubMed:18755977, PubMed:8420959). Binds various signaling molecules, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:18755977, PubMed:31015432). In depolarized mitochondria, acts downstream of PRKN and PINK1 to promote mitophagy or prevent apoptosis; polyubiquitination by PRKN promotes mitophagy, while monoubiquitination by PRKN decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:32047033). May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis (PubMed:15033708, PubMed:25296756). May mediate ATP export from cells (PubMed:30061676). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Mediates cytochrome c efflux (PubMed:20230784). {ECO:0000250|UniProtKB:Q60932, ECO:0000269|PubMed:10661876, ECO:0000269|PubMed:11845315, ECO:0000269|PubMed:15033708, ECO:0000269|PubMed:18755977, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:25296756, ECO:0000269|PubMed:30061676, ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P22670 | RFX1 | S193 | ochoa | MHC class II regulatory factor RFX1 (Enhancer factor C) (EF-C) (Regulatory factor X 1) (RFX) (Transcription factor RFX1) | Regulatory factor essential for MHC class II genes expression. Binds to the X boxes of MHC class II genes. Also binds to an inverted repeat (ENH1) required for hepatitis B virus genes expression and to the most upstream element (alpha) of the RPL30 promoter. |
P23025 | XPA | S23 | ochoa | DNA repair protein complementing XP-A cells (Xeroderma pigmentosum group A-complementing protein) | Involved in DNA nucleotide excision repair (NER). Initiates repair by binding to damaged sites with various affinities, depending on the photoproduct and the transcriptional state of the region. Required for UV-induced CHEK1 phosphorylation and the recruitment of CEP164 to cyclobutane pyrimidine dimmers (CPD), sites of DNA damage after UV irradiation (PubMed:19197159). During NER stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). Connects XPD/ERCC2 and XPB/ERCC3 during NER, retaining DNA near the XPB/ERCC3 active site, and stabilizing the complex in a different conformation than in transcribing TFIIH (PubMed:31253769). {ECO:0000269|PubMed:19197159, ECO:0000269|PubMed:31253769}. |
P23526 | AHCY | S187 | ochoa | Adenosylhomocysteinase (AdoHcyase) (EC 3.13.2.1) (S-adenosyl-L-homocysteine hydrolase) | Catalyzes the hydrolysis of S-adenosyl-L-homocysteine to form adenosine and homocysteine (PubMed:10933798). Binds copper ions (By similarity). {ECO:0000250|UniProtKB:P50247, ECO:0000269|PubMed:10933798}. |
P23769 | GATA2 | S119 | psp | Endothelial transcription factor GATA-2 (GATA-binding protein 2) | Transcriptional activator which regulates endothelin-1 gene expression in endothelial cells. Binds to the consensus sequence 5'-AGATAG-3'. |
P24394 | IL4R | Y575 | psp | Interleukin-4 receptor subunit alpha (IL-4 receptor subunit alpha) (IL-4R subunit alpha) (IL-4R-alpha) (IL-4RA) (CD antigen CD124) [Cleaved into: Soluble interleukin-4 receptor subunit alpha (Soluble IL-4 receptor subunit alpha) (Soluble IL-4R-alpha) (sIL4Ralpha/prot) (IL-4-binding protein) (IL4-BP)] | Receptor for both interleukin 4 and interleukin 13 (PubMed:17030238). Couples to the JAK1/2/3-STAT6 pathway. The IL4 response is involved in promoting Th2 differentiation. The IL4/IL13 responses are involved in regulating IgE production and, chemokine and mucus production at sites of allergic inflammation. In certain cell types, can signal through activation of insulin receptor substrates, IRS1/IRS2. {ECO:0000269|PubMed:17030238, ECO:0000269|PubMed:8124718}.; FUNCTION: Soluble IL4R (sIL4R) inhibits IL4-mediated cell proliferation and IL5 up-regulation by T-cells. {ECO:0000269|PubMed:8124718}. |
P25054 | APC | S1315 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2129 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25090 | FPR2 | S236 | psp | N-formyl peptide receptor 2 (FMLP-related receptor I) (FMLP-R-I) (Formyl peptide receptor-like 1) (HM63) (Lipoxin A4 receptor) (LXA4 receptor) (RFP) | Low affinity receptor for N-formyl-methionyl peptides, which are powerful neutrophil chemotactic factors (PubMed:1374236). Binding of FMLP to the receptor causes activation of neutrophils (PubMed:1374236). This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system (PubMed:1374236). The activation of LXA4R could result in an anti-inflammatory outcome counteracting the actions of pro-inflammatory signals such as LTB4 (leukotriene B4) (PubMed:9547339). Receptor for the chemokine-like protein FAM19A5, mediating FAM19A5-stimulated macrophage chemotaxis and the inhibitory effect on TNFSF11/RANKL-induced osteoclast differentiation (By similarity). Acts as a receptor for humanin (PubMed:15465011). {ECO:0000250|UniProtKB:O88536, ECO:0000269|PubMed:1374236, ECO:0000269|PubMed:15465011, ECO:0000269|PubMed:9547339}. |
P25440 | BRD2 | S37 | ochoa | Bromodomain-containing protein 2 (O27.1.1) | Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}. |
P27448 | MARK3 | S476 | ochoa | MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) | Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}. |
P27635 | RPL10 | S137 | ochoa | Large ribosomal subunit protein uL16 (60S ribosomal protein L10) (Laminin receptor homolog) (Protein QM) (Ribosomal protein L10) (Tumor suppressor QM) | Component of the large ribosomal subunit (PubMed:26290468). Plays a role in the formation of actively translating ribosomes (PubMed:26290468). May play a role in the embryonic brain development (PubMed:25316788). {ECO:0000269|PubMed:25316788, ECO:0000269|PubMed:26290468, ECO:0000305|PubMed:12962325}. |
P27816 | MAP4 | S825 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27816 | MAP4 | S983 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28062 | PSMB8 | S28 | ochoa | Proteasome subunit beta type-8 (EC 3.4.25.1) (Low molecular mass protein 7) (Macropain subunit C13) (Multicatalytic endopeptidase complex subunit C13) (Proteasome component C13) (Proteasome subunit beta-5i) (Really interesting new gene 10 protein) | The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. Replacement of PSMB5 by PSMB8 increases the capacity of the immunoproteasome to cleave model peptides after hydrophobic and basic residues. Involved in the generation of spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119). Acts as a major component of interferon gamma-induced sensitivity. Plays a key role in apoptosis via the degradation of the apoptotic inhibitor MCL1. May be involved in the inflammatory response pathway. In cancer cells, substitution of isoform 1 (E2) by isoform 2 (E1) results in immunoproteasome deficiency. Required for the differentiation of preadipocytes into adipocytes. {ECO:0000269|PubMed:16423992, ECO:0000269|PubMed:19443843, ECO:0000269|PubMed:21881205, ECO:0000269|PubMed:27049119, ECO:0000269|PubMed:8163024}. |
P28066 | PSMA5 | S179 | ochoa | Proteasome subunit alpha type-5 (Macropain zeta chain) (Multicatalytic endopeptidase complex zeta chain) (Proteasome subunit alpha-5) (alpha-5) (Proteasome zeta chain) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P28290 | ITPRID2 | S593 | ochoa|psp | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28715 | ERCC5 | S1129 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P29144 | TPP2 | S643 | ochoa | Tripeptidyl-peptidase 2 (TPP-2) (EC 3.4.14.10) (Tripeptidyl aminopeptidase) (Tripeptidyl-peptidase II) (TPP-II) | Cytosolic tripeptidyl-peptidase that releases N-terminal tripeptides from polypeptides and is a component of the proteolytic cascade acting downstream of the 26S proteasome in the ubiquitin-proteasome pathway (PubMed:25525876, PubMed:30533531). It plays an important role in intracellular amino acid homeostasis (PubMed:25525876). Stimulates adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q64514, ECO:0000269|PubMed:25525876, ECO:0000269|PubMed:30533531}. |
P29274 | ADORA2A | S335 | ochoa | Adenosine receptor A2a | Receptor for adenosine (By similarity). The activity of this receptor is mediated by G proteins which activate adenylyl cyclase (By similarity). {ECO:0000250|UniProtKB:P11617}. |
P29372 | MPG | S48 | ochoa | DNA-3-methyladenine glycosylase (EC 3.2.2.21) (3-alkyladenine DNA glycosylase) (3-methyladenine DNA glycosidase) (ADPG) (N-methylpurine-DNA glycosylase) | Hydrolysis of the deoxyribose N-glycosidic bond to excise 3-methyladenine, and 7-methylguanine from the damaged DNA polymer formed by alkylation lesions. |
P29401 | TKT | S387 | psp | Transketolase (TK) (EC 2.2.1.1) | Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}. |
P29966 | MARCKS | S26 | ochoa | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P30519 | HMOX2 | S280 | ochoa | Heme oxygenase 2 (HO-2) (EC 1.14.14.18) [Cleaved into: Heme oxygenase 2 soluble form] | [Heme oxygenase 2]: Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron. {ECO:0000269|PubMed:1575508, ECO:0000269|PubMed:7890772}.; FUNCTION: [Heme oxygenase 2 soluble form]: Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron. {ECO:0000269|PubMed:7890772}. |
P31629 | HIVEP2 | S71 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P33240 | CSTF2 | S103 | ochoa | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
P33991 | MCM4 | S145 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P34931 | HSPA1L | S42 | ochoa | Heat shock 70 kDa protein 1-like (Heat shock 70 kDa protein 1L) (Heat shock 70 kDa protein 1-Hom) (HSP70-Hom) (Heat shock protein family A member 1L) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release (PubMed:26865365). Positive regulator of PRKN translocation to damaged mitochondria (PubMed:24270810). {ECO:0000269|PubMed:24270810, ECO:0000303|PubMed:26865365}. |
P35221 | CTNNA1 | S117 | ochoa | Catenin alpha-1 (Alpha E-catenin) (Cadherin-associated protein) (Renal carcinoma antigen NY-REN-13) | Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. Can associate with both E- and N-cadherins. Originally believed to be a stable component of E-cadherin/catenin adhesion complexes and to mediate the linkage of cadherins to the actin cytoskeleton at adherens junctions. In contrast, cortical actin was found to be much more dynamic than E-cadherin/catenin complexes and CTNNA1 was shown not to bind to F-actin when assembled in the complex suggesting a different linkage between actin and adherens junctions components. The homodimeric form may regulate actin filament assembly and inhibit actin branching by competing with the Arp2/3 complex for binding to actin filaments. Involved in the regulation of WWTR1/TAZ, YAP1 and TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). May play a crucial role in cell differentiation. {ECO:0000250|UniProtKB:P26231, ECO:0000269|PubMed:25653389}. |
P35221 | CTNNA1 | S268 | ochoa | Catenin alpha-1 (Alpha E-catenin) (Cadherin-associated protein) (Renal carcinoma antigen NY-REN-13) | Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. Can associate with both E- and N-cadherins. Originally believed to be a stable component of E-cadherin/catenin adhesion complexes and to mediate the linkage of cadherins to the actin cytoskeleton at adherens junctions. In contrast, cortical actin was found to be much more dynamic than E-cadherin/catenin complexes and CTNNA1 was shown not to bind to F-actin when assembled in the complex suggesting a different linkage between actin and adherens junctions components. The homodimeric form may regulate actin filament assembly and inhibit actin branching by competing with the Arp2/3 complex for binding to actin filaments. Involved in the regulation of WWTR1/TAZ, YAP1 and TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). May play a crucial role in cell differentiation. {ECO:0000250|UniProtKB:P26231, ECO:0000269|PubMed:25653389}. |
P35568 | IRS1 | S1134 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P37837 | TALDO1 | S75 | ochoa | Transaldolase (EC 2.2.1.2) | Catalyzes the rate-limiting step of the non-oxidative phase in the pentose phosphate pathway. Catalyzes the reversible conversion of sedheptulose-7-phosphate and D-glyceraldehyde 3-phosphate into erythrose-4-phosphate and beta-D-fructose 6-phosphate (PubMed:18687684, PubMed:8955144). Not only acts as a pentose phosphate pathway enzyme, but also affects other metabolite pathways by altering its subcellular localization between the nucleus and the cytoplasm (By similarity). {ECO:0000250|UniProtKB:Q93092, ECO:0000269|PubMed:18687684, ECO:0000269|PubMed:8955144}. |
P38398 | BRCA1 | S1598 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P40222 | TXLNA | S35 | ochoa | Alpha-taxilin | May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells. |
P40222 | TXLNA | S48 | ochoa | Alpha-taxilin | May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells. |
P40925 | MDH1 | S242 | ochoa | Malate dehydrogenase, cytoplasmic (EC 1.1.1.37) (Aromatic alpha-keto acid reductase) (KAR) (EC 1.1.1.96) (Cytosolic malate dehydrogenase) | Catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH (PubMed:2449162, PubMed:3052244). Plays essential roles in the malate-aspartate shuttle and the tricarboxylic acid cycle, important in mitochondrial NADH supply for oxidative phosphorylation (PubMed:31538237). Catalyzes the reduction of 2-oxoglutarate to 2-hydroxyglutarate, leading to elevated reactive oxygen species (ROS) (PubMed:34012073). {ECO:0000269|PubMed:2449162, ECO:0000269|PubMed:3052244, ECO:0000269|PubMed:31538237}. |
P41146 | OPRL1 | S346 | psp | Nociceptin receptor (Kappa-type 3 opioid receptor) (KOR-3) (Orphanin FQ receptor) | G-protein coupled opioid receptor that functions as a receptor for the endogenous neuropeptide nociceptin. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling via G proteins mediates inhibition of adenylate cyclase activity and calcium channel activity. Arrestins modulate signaling via G proteins and mediate the activation of alternative signaling pathways that lead to the activation of MAP kinases. Plays a role in modulating nociception and the perception of pain. Plays a role in the regulation of locomotor activity by the neuropeptide nociceptin. {ECO:0000269|PubMed:11238602, ECO:0000269|PubMed:12568343, ECO:0000269|PubMed:22596163, ECO:0000269|PubMed:23086955, ECO:0000269|PubMed:8137918}. |
P42224 | STAT1 | S640 | ochoa | Signal transducer and activator of transcription 1-alpha/beta (Transcription factor ISGF-3 components p91/p84) | Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors (PubMed:12764129, PubMed:12855578, PubMed:15322115, PubMed:23940278, PubMed:34508746, PubMed:35568036, PubMed:9724754). Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus (PubMed:28753426, PubMed:35568036). ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state (PubMed:28753426, PubMed:35568036). In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated (PubMed:26479788). It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state (PubMed:8156998). Becomes activated in response to KITLG/SCF and KIT signaling (PubMed:15526160). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:19088846). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylated at Thr-749 by IKBKB which promotes binding of STAT1 to the 5'-TTTGAGGC-3' sequence in the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). Phosphorylation at Thr-749 also promotes binding of STAT1 to the 5'-TTTGAGTC-3' sequence in the IL12B promoter and activation of IL12B transcription (PubMed:32209697). Involved in food tolerance in small intestine: associates with the Gasdermin-D, p13 cleavage product (13 kDa GSDMD) and promotes transcription of CIITA, inducing type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:P42225, ECO:0000269|PubMed:12764129, ECO:0000269|PubMed:12855578, ECO:0000269|PubMed:15322115, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:23940278, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28753426, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:34508746, ECO:0000269|PubMed:35568036, ECO:0000269|PubMed:8156998, ECO:0000269|PubMed:9724754, ECO:0000303|PubMed:15526160}. |
P42695 | NCAPD3 | S1321 | ochoa | Condensin-2 complex subunit D3 (Non-SMC condensin II complex subunit D3) (hCAP-D3) | Regulatory subunit of the condensin-2 complex, a complex which establishes mitotic chromosome architecture and is involved in physical rigidity of the chromatid axis (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Specifically required for decatenation of centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:14532007, ECO:0000269|PubMed:27737959}. |
P43243 | MATR3 | S41 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P43681 | CHRNA4 | S467 | psp | Neuronal acetylcholine receptor subunit alpha-4 | Component of neuronal acetylcholine receptors (nAChRs) that function as pentameric, ligand-gated cation channels with high calcium permeability among other activities. nAChRs are excitatory neurotrasnmitter receptors formed by a collection of nAChR subunits known to mediate synaptic transmission in the nervous system and the neuromuscular junction. Each nAchR subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, cation permeability, and binding to allosteric modulators (PubMed:22361591, PubMed:27698419, PubMed:29720657, PubMed:38454578). CHRNA4 forms heteropentameric neuronal acetylcholine receptors with CHRNB2 and CHRNB4, as well as CHRNA5 and CHRNB3 as accesory subunits. Is the most abundant nAChR subtype expressed in the central nervous system (PubMed:16835356, PubMed:22361591, PubMed:27698419, PubMed:29720657, PubMed:38454578). Found in two major stoichiometric forms,(CHRNA4)3:(CHRNB2)2 and (CHRNA4)2:(CHRNB2)3, the two stoichiometric forms differ in their unitary conductance, calcium permeability, ACh sensitivity and potentiation by divalent cation (PubMed:27698419, PubMed:29720657, PubMed:38454578). Involved in the modulation of calcium-dependent signaling pathways, influences the release of neurotransmitters, including dopamine, glutamate and GABA (By similarity). {ECO:0000250|UniProtKB:O70174, ECO:0000269|PubMed:16835356, ECO:0000269|PubMed:22361591, ECO:0000269|PubMed:27698419, ECO:0000269|PubMed:29720657, ECO:0000269|PubMed:38454578}. |
P45880 | VDAC2 | S243 | ochoa | Non-selective voltage-gated ion channel VDAC2 (VDAC-2) (hVDAC2) (Outer mitochondrial membrane protein porin 2) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:8420959). The channel adopts an open conformation at zero mV and a closed conformation at both positive and negative potentials (PubMed:8420959). There are two populations of channels; the main that functions in a lower open-state conductance with lower ion selectivity, that switch, in a voltage-dependent manner, from the open to a low-conducting 'closed' state and the other that has a normal ion selectivity in the typical high conductance, 'open' state (PubMed:8420959). Binds various lipids, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:31015432). Binding of ceramide promotes the mitochondrial outer membrane permeabilization (MOMP) apoptotic pathway (PubMed:31015432). {ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P46013 | MKI67 | S827 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46777 | RPL5 | S172 | ochoa | Large ribosomal subunit protein uL18 (60S ribosomal protein L5) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel. As part of the 5S RNP/5S ribonucleoprotein particle it is an essential component of the LSU, required for its formation and the maturation of rRNAs (PubMed:12962325, PubMed:19061985, PubMed:23636399, PubMed:24120868). It also couples ribosome biogenesis to p53/TP53 activation. As part of the 5S RNP it accumulates in the nucleoplasm and inhibits MDM2, when ribosome biogenesis is perturbed, mediating the stabilization and the activation of TP53 (PubMed:24120868). {ECO:0000269|PubMed:12962325, ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:24120868}. |
P46777 | RPL5 | S176 | ochoa | Large ribosomal subunit protein uL18 (60S ribosomal protein L5) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel. As part of the 5S RNP/5S ribonucleoprotein particle it is an essential component of the LSU, required for its formation and the maturation of rRNAs (PubMed:12962325, PubMed:19061985, PubMed:23636399, PubMed:24120868). It also couples ribosome biogenesis to p53/TP53 activation. As part of the 5S RNP it accumulates in the nucleoplasm and inhibits MDM2, when ribosome biogenesis is perturbed, mediating the stabilization and the activation of TP53 (PubMed:24120868). {ECO:0000269|PubMed:12962325, ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:24120868}. |
P46821 | MAP1B | S1835 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S2280 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46937 | YAP1 | S163 | ochoa|psp | Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) | Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}. |
P47897 | QARS1 | S46 | ochoa | Glutamine--tRNA ligase (EC 6.1.1.18) (Glutaminyl-tRNA synthetase) (GlnRS) | Glutamine--tRNA ligase (PubMed:26869582). Plays a critical role in brain development (PubMed:24656866). {ECO:0000269|PubMed:24656866, ECO:0000269|PubMed:26869582}. |
P48444 | ARCN1 | S223 | ochoa | Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) | Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
P48634 | PRRC2A | S193 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S1314 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48643 | CCT5 | S51 | psp | T-complex protein 1 subunit epsilon (TCP-1-epsilon) (EC 3.6.1.-) (CCT-epsilon) (Chaperonin containing T-complex polypeptide 1 subunit 5) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P48643 | CCT5 | S154 | ochoa | T-complex protein 1 subunit epsilon (TCP-1-epsilon) (EC 3.6.1.-) (CCT-epsilon) (Chaperonin containing T-complex polypeptide 1 subunit 5) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P48741 | HSPA7 | S42 | ochoa | Putative heat shock 70 kDa protein 7 (Heat shock 70 kDa protein B) (Heat shock protein family A member 7) | None |
P49005 | POLD2 | S254 | ochoa | DNA polymerase delta subunit 2 (DNA polymerase delta subunit p50) | Accessory component of both the DNA polymerase delta complex and the DNA polymerase zeta complex (PubMed:17317665, PubMed:22801543, PubMed:24449906). As a component of the trimeric and tetrameric DNA polymerase delta complexes (Pol-delta3 and Pol-delta4, respectively), plays a role in high fidelity genome replication, including in lagging strand synthesis, and repair (PubMed:12403614, PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24035200). Pol-delta3 and Pol-delta4 are characterized by the absence or the presence of POLD4. They exhibit differences in catalytic activity. Most notably, Pol-delta3 shows higher proofreading activity than Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may also be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation (PubMed:20227374). Under conditions of DNA replication stress, required for the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine or abasic sites performed by Pol-delta4, independently of DNA polymerase zeta (REV3L) or eta (POLH). Facilitates abasic site bypass by DNA polymerase delta by promoting extension from the nucleotide inserted opposite the lesion. Also involved in TLS as a component of the DNA polymerase zeta complex (PubMed:24449906). Along with POLD3, dramatically increases the efficiency and processivity of DNA synthesis of the DNA polymerase zeta complex compared to the minimal zeta complex, consisting of only REV3L and REV7 (PubMed:24449906). {ECO:0000269|PubMed:12403614, ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:24449906}. |
P49321 | NASP | S71 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49716 | CEBPD | S57 | psp | CCAAT/enhancer-binding protein delta (C/EBP delta) (Nuclear factor NF-IL6-beta) (NF-IL6-beta) | Transcription activator that recognizes two different DNA motifs: the CCAAT homology common to many promoters and the enhanced core homology common to many enhancers (PubMed:16397300). Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:16397300, PubMed:1741402). Transcriptional activator that enhances IL6 transcription alone and as heterodimer with CEBPB (PubMed:1741402). {ECO:0000269|PubMed:1741402}. |
P49790 | NUP153 | S386 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P50552 | VASP | S239 | ochoa|psp | Vasodilator-stimulated phosphoprotein (VASP) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance, lamellipodial and filopodial dynamics, platelet activation and cell migration. VASP promotes actin filament elongation. It protects the barbed end of growing actin filaments against capping and increases the rate of actin polymerization in the presence of capping protein. VASP stimulates actin filament elongation by promoting the transfer of profilin-bound actin monomers onto the barbed end of growing actin filaments. Plays a role in actin-based mobility of Listeria monocytogenes in host cells. Regulates actin dynamics in platelets and plays an important role in regulating platelet aggregation. {ECO:0000269|PubMed:10087267, ECO:0000269|PubMed:10438535, ECO:0000269|PubMed:15939738, ECO:0000269|PubMed:17082196, ECO:0000269|PubMed:18559661}. |
P51587 | BRCA2 | S1982 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51812 | RPS6KA3 | S715 | ochoa | Ribosomal protein S6 kinase alpha-3 (S6K-alpha-3) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 3) (p90-RSK 3) (p90RSK3) (Insulin-stimulated protein kinase 1) (ISPK-1) (MAP kinase-activated protein kinase 1b) (MAPK-activated protein kinase 1b) (MAPKAP kinase 1b) (MAPKAPK-1b) (Ribosomal S6 kinase 2) (RSK-2) (pp90RSK2) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:16213824, PubMed:16223362, PubMed:17360704, PubMed:9770464). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:10436156, PubMed:9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:18508509, PubMed:18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:18722121). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4-induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). {ECO:0000250|UniProtKB:P18654, ECO:0000269|PubMed:10436156, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:8250835, ECO:0000269|PubMed:9770464, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}. |
P54198 | HIRA | S557 | ochoa | Protein HIRA (TUP1-like enhancer of split protein 1) | Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit. {ECO:0000269|PubMed:12370293, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527}. |
P54274 | TERF1 | S367 | psp | Telomeric repeat-binding factor 1 (NIMA-interacting protein 2) (TTAGGG repeat-binding factor 1) (Telomeric protein Pin2/TRF1) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and negatively regulates telomere length. Involved in the regulation of the mitotic spindle. Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. {ECO:0000269|PubMed:16166375}. |
P54277 | PMS1 | S673 | ochoa | PMS1 protein homolog 1 (DNA mismatch repair protein PMS1) | Probably involved in the repair of mismatches in DNA. {ECO:0000269|PubMed:10748105}. |
P54296 | MYOM2 | S207 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54652 | HSPA2 | S41 | ochoa | Heat shock-related 70 kDa protein 2 (Heat shock 70 kDa protein 2) (Heat shock protein family A member 2) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release (PubMed:26865365). Plays a role in spermatogenesis. In association with SHCBP1L may participate in the maintenance of spindle integrity during meiosis in male germ cells (By similarity). {ECO:0000250|UniProtKB:P17156, ECO:0000303|PubMed:26865365}. |
P55011 | SLC12A2 | S132 | ochoa | Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) | Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}. |
P57103 | SLC8A3 | S384 | ochoa | Sodium/calcium exchanger 3 (Na(+)/Ca(2+)-exchange protein 3) (Solute carrier family 8 member 3) | Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells, both in muscle and in brain. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A3 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels rapidly return to baseline. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In neurons, contributes to the rapid decrease of cytoplasmic Ca(2+) levels back to baseline after neuronal activation, and thereby contributes to modulate synaptic plasticity, learning and memory (By similarity). Required for normal oligodendrocyte differentiation and for normal myelination (PubMed:21959935). Mediates Ca(2+) efflux from mitochondria and contributes to mitochondrial Ca(2+) ion homeostasis (By similarity). {ECO:0000250|UniProtKB:S4R2P9, ECO:0000269|PubMed:21959935}. |
P57735 | RAB25 | S79 | ochoa | Ras-related protein Rab-25 (EC 3.6.5.2) (CATX-8) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB25 regulates epithelial cell differentiation, proliferation and survival, thereby playing key roles in tumorigenesis (PubMed:17925226). Promotes invasive migration of cells in which it functions to localize and maintain integrin alpha-V/beta-1 at the tips of extending pseudopodia (PubMed:17925226). Involved in the regulation of epithelial morphogenesis through the control of CLDN4 expression and localization at tight junctions (By similarity). May selectively regulate the apical recycling pathway (By similarity). Together with MYO5B regulates transcytosis (By similarity). {ECO:0000250|UniProtKB:E2RQ15, ECO:0000250|UniProtKB:P46629, ECO:0000250|UniProtKB:P61106, ECO:0000250|UniProtKB:Q9WTL2, ECO:0000269|PubMed:17925226}. |
P61204 | ARF3 | S147 | ochoa | ADP-ribosylation factor 3 | GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking; may modulate vesicle budding and uncoating within the Golgi apparatus. |
P62266 | RPS23 | S45 | ochoa | Small ribosomal subunit protein uS12 (40S ribosomal protein S23) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:28257692). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399, PubMed:25901680, PubMed:25957688). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399, PubMed:25901680, PubMed:25957688). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399, PubMed:25901680, PubMed:25957688). Plays an important role in translational accuracy (PubMed:28257692). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:28257692, ECO:0000269|PubMed:34516797}. |
P62491 | RAB11A | S78 | ochoa | Ras-related protein Rab-11A (Rab-11) (EC 3.6.5.2) (YL8) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:15601896, PubMed:15689490, PubMed:17462998, PubMed:19542231, PubMed:20026645, PubMed:20890297, PubMed:21282656, PubMed:26032412). The small Rab GTPase RAB11A regulates endocytic recycling (PubMed:20026645). Forms a functional Rab11/RAB11FIP3/dynein complex that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). Acts as a major regulator of membrane delivery during cytokinesis (PubMed:15601896). Together with MYO5B and RAB8A participates in epithelial cell polarization (PubMed:21282656). Together with Rabin8/RAB3IP, RAB8A, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Together with MYO5B participates in CFTR trafficking to the plasma membrane and TF (Transferrin) recycling in nonpolarized cells (PubMed:17462998). Required in a complex with MYO5B and RAB11FIP2 for the transport of NPC1L1 to the plasma membrane (PubMed:19542231). Participates in the sorting and basolateral transport of CDH1 from the Golgi apparatus to the plasma membrane (PubMed:15689490). Regulates the recycling of FCGRT (receptor of Fc region of monomeric IgG) to basolateral membranes (By similarity). May also play a role in melanosome transport and release from melanocytes (By similarity). Promotes Rabin8/RAB3IP preciliary vesicular trafficking to mother centriole by forming a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, thereby regulating ciliogenesis initiation (PubMed:25673879, PubMed:31204173). On the contrary, upon LPAR1 receptor signaling pathway activation, interaction with phosphorylated WDR44 prevents Rab11-RAB3IP-RAB11FIP3 complex formation and cilia growth (PubMed:31204173). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-endososomal dependent export route via interaction with WDR44 (PubMed:32344433). {ECO:0000250|UniProtKB:P62490, ECO:0000250|UniProtKB:P62492, ECO:0000269|PubMed:15601896, ECO:0000269|PubMed:15689490, ECO:0000269|PubMed:17462998, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:20026645, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26032412, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
P62701 | RPS4X | S223 | ochoa | Small ribosomal subunit protein eS4, X isoform (40S ribosomal protein S4) (SCR10) (Single copy abundant mRNA protein) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P62750 | RPL23A | S85 | ochoa | Large ribosomal subunit protein uL23 (60S ribosomal protein L23a) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). Binds a specific region on the 26S rRNA (PubMed:23636399, PubMed:32669547). May promote p53/TP53 degradation possibly through the stimulation of MDM2-mediated TP53 polyubiquitination (PubMed:26203195). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:26203195, ECO:0000269|PubMed:32669547}. |
P62937 | PPIA | S21 | ochoa | Peptidyl-prolyl cis-trans isomerase A (PPIase A) (EC 5.2.1.8) (Cyclophilin A) (Cyclosporin A-binding protein) (Rotamase A) [Cleaved into: Peptidyl-prolyl cis-trans isomerase A, N-terminally processed] | Catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (PubMed:2001362, PubMed:20676357, PubMed:21245143, PubMed:21593166, PubMed:25678563). Exerts a strong chemotactic effect on leukocytes partly through activation of one of its membrane receptors BSG/CD147, initiating a signaling cascade that culminates in MAPK/ERK activation (PubMed:11943775, PubMed:21245143). Activates endothelial cells (ECs) in a pro-inflammatory manner by stimulating activation of NF-kappa-B and ERK, JNK and p38 MAP-kinases and by inducing expression of adhesion molecules including SELE and VCAM1 (PubMed:15130913). Induces apoptosis in ECs by promoting the FOXO1-dependent expression of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). In response to oxidative stress, initiates proapoptotic and antiapoptotic signaling in ECs via activation of NF-kappa-B and AKT1 and up-regulation of antiapoptotic protein BCL2 (PubMed:23180369). Negatively regulates MAP3K5/ASK1 kinase activity, autophosphorylation and oxidative stress-induced apoptosis mediated by MAP3K5/ASK1 (PubMed:26095851). Necessary for the assembly of TARDBP in heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and regulates TARDBP binding to RNA UG repeats and TARDBP-dependent expression of HDAC6, ATG7 and VCP which are involved in clearance of protein aggregates (PubMed:25678563). Plays an important role in platelet activation and aggregation (By similarity). Regulates calcium mobilization and integrin ITGA2B:ITGB3 bidirectional signaling via increased ROS production as well as by facilitating the interaction between integrin and the cell cytoskeleton (By similarity). Binds heparan sulfate glycosaminoglycans (PubMed:11943775). Inhibits replication of influenza A virus (IAV) (PubMed:19207730). Inhibits ITCH/AIP4-mediated ubiquitination of matrix protein 1 (M1) of IAV by impairing the interaction of ITCH/AIP4 with M1, followed by the suppression of the nuclear export of M1, and finally reduction of the replication of IAV (PubMed:22347431, PubMed:30328013). {ECO:0000250|UniProtKB:P17742, ECO:0000269|PubMed:11943775, ECO:0000269|PubMed:15130913, ECO:0000269|PubMed:19207730, ECO:0000269|PubMed:2001362, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:21245143, ECO:0000269|PubMed:21593166, ECO:0000269|PubMed:22347431, ECO:0000269|PubMed:23180369, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:26095851, ECO:0000269|PubMed:30328013, ECO:0000269|PubMed:31063815}.; FUNCTION: (Microbial infection) May act as a mediator between human SARS coronavirus nucleoprotein and BSG/CD147 in the process of invasion of host cells by the virus (PubMed:15688292). {ECO:0000269|PubMed:15688292}.; FUNCTION: (Microbial infection) Stimulates RNA-binding ability of HCV NS5A in a peptidyl-prolyl cis-trans isomerase activity-dependent manner. {ECO:0000269|PubMed:21593166}. |
P68363 | TUBA1B | S340 | ochoa | Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
P68363 | TUBA1B | S379 | ochoa | Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
P68366 | TUBA4A | S340 | ochoa | Tubulin alpha-4A chain (EC 3.6.5.-) (Alpha-tubulin 1) (Testis-specific alpha-tubulin) (Tubulin H2-alpha) (Tubulin alpha-1 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P68366 | TUBA4A | S379 | ochoa | Tubulin alpha-4A chain (EC 3.6.5.-) (Alpha-tubulin 1) (Testis-specific alpha-tubulin) (Tubulin H2-alpha) (Tubulin alpha-1 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P78344 | EIF4G2 | S479 | ochoa | Eukaryotic translation initiation factor 4 gamma 2 (eIF-4-gamma 2) (eIF-4G 2) (eIF4G 2) (Death-associated protein 5) (DAP-5) (p97) | Appears to play a role in the switch from cap-dependent to IRES-mediated translation during mitosis, apoptosis and viral infection. Cleaved by some caspases and viral proteases. {ECO:0000269|PubMed:11511540, ECO:0000269|PubMed:11943866, ECO:0000269|PubMed:9032289, ECO:0000269|PubMed:9049310}. |
P78347 | GTF2I | S710 | ochoa | General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) | Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}. |
P82094 | TMF1 | S23 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P82909 | KGD4 | S53 | ochoa | Alpha-ketoglutarate dehydrogenase component 4 (Alpha-ketoglutarate dehydrogenase subunit 4) | Molecular adapter that is necessary to form a stable 2-oxoglutarate dehydrogenase enzyme complex (OGDHC). Enables the specific recruitment of E3 subunit to E2 subunit in the 2-oxoglutarate dehydrogenase complex (OGDHC). {ECO:0000250|UniProtKB:Q9CQX8}. |
P82979 | SARNP | S131 | ochoa | SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}. |
P84077 | ARF1 | S147 | ochoa | ADP-ribosylation factor 1 (EC 3.6.5.2) | Small GTPase involved in protein trafficking between different compartments (PubMed:8253837). Modulates vesicle budding and uncoating within the Golgi complex (PubMed:8253837). In its GTP-bound form, triggers the recruitment of coatomer proteins to the Golgi membrane (PubMed:8253837). The hydrolysis of ARF1-bound GTP, which is mediated by ARFGAPs proteins, is required for dissociation of coat proteins from Golgi membranes and vesicles (PubMed:8253837). The GTP-bound form interacts with PICK1 to limit PICK1-mediated inhibition of Arp2/3 complex activity; the function is linked to AMPA receptor (AMPAR) trafficking, regulation of synaptic plasticity of excitatory synapses and spine shrinkage during long-term depression (LTD) (By similarity). Plays a key role in the regulation of intestinal stem cells and gut microbiota, and is essential for maintaining intestinal homeostasis (By similarity). Also plays a critical role in mast cell expansion but not in mast cell maturation by facilitating optimal mTORC1 activation (By similarity). {ECO:0000250|UniProtKB:P84079, ECO:0000269|PubMed:8253837}.; FUNCTION: (Microbial infection) Functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. {ECO:0000305}. |
P98175 | RBM10 | S492 | ochoa | RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) | Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}. |
Q01543 | FLI1 | S37 | ochoa | Friend leukemia integration 1 transcription factor (Proto-oncogene Fli-1) (Transcription factor ERGB) | Sequence-specific transcriptional activator (PubMed:24100448, PubMed:26316623, PubMed:28255014). Recognizes the DNA sequence 5'-C[CA]GGAAGT-3'. {ECO:0000269|PubMed:24100448, ECO:0000269|PubMed:26316623, ECO:0000269|PubMed:28255014}. |
Q01826 | SATB1 | S465 | ochoa | DNA-binding protein SATB1 (Special AT-rich sequence-binding protein 1) | Crucial silencing factor contributing to the initiation of X inactivation mediated by Xist RNA that occurs during embryogenesis and in lymphoma (By similarity). Binds to DNA at special AT-rich sequences, the consensus SATB1-binding sequence (CSBS), at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcriptional repressor controlling nuclear and viral gene expression in a phosphorylated and acetylated status-dependent manner, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes (e.g. PML at the MHC-I locus) and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Modulates genes that are essential in the maturation of the immune T-cell CD8SP from thymocytes. Required for the switching of fetal globin species, and beta- and gamma-globin genes regulation during erythroid differentiation. Plays a role in chromatin organization and nuclear architecture during apoptosis. Interacts with the unique region (UR) of cytomegalovirus (CMV). Alu-like motifs and SATB1-binding sites provide a unique chromatin context which seems preferentially targeted by the HIV-1 integration machinery. Moreover, HIV-1 Tat may overcome SATB1-mediated repression of IL2 and IL2RA (interleukin) in T-cells by binding to the same domain than HDAC1. Delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. Reprograms chromatin organization and the transcription profiles of breast tumors to promote growth and metastasis. Promotes neuronal differentiation of neural stem/progenitor cells in the adult subventricular zone, possibly by positively regulating the expression of NEUROD1 (By similarity). {ECO:0000250|UniProtKB:Q60611, ECO:0000269|PubMed:10595394, ECO:0000269|PubMed:11463840, ECO:0000269|PubMed:12374985, ECO:0000269|PubMed:12692553, ECO:0000269|PubMed:1505028, ECO:0000269|PubMed:15618465, ECO:0000269|PubMed:15713622, ECO:0000269|PubMed:16377216, ECO:0000269|PubMed:16630892, ECO:0000269|PubMed:17173041, ECO:0000269|PubMed:17376900, ECO:0000269|PubMed:18337816, ECO:0000269|PubMed:19103759, ECO:0000269|PubMed:19247486, ECO:0000269|PubMed:19332023, ECO:0000269|PubMed:19430959, ECO:0000269|PubMed:33513338, ECO:0000269|PubMed:9111059, ECO:0000269|PubMed:9548713}. |
Q01831 | XPC | S883 | ochoa | DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) | Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}. |
Q01995 | TAGLN | S135 | ochoa | Transgelin (22 kDa actin-binding protein) (Protein WS3-10) (Smooth muscle protein 22-alpha) (SM22-alpha) | Actin cross-linking/gelling protein (By similarity). Involved in calcium interactions and contractile properties of the cell that may contribute to replicative senescence. {ECO:0000250}. |
Q02539 | H1-1 | S42 | ochoa | Histone H1.1 (Histone H1a) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
Q02880 | TOP2B | S1279 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02952 | AKAP12 | S841 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | S887 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03252 | LMNB2 | S175 | ochoa | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q05209 | PTPN12 | S661 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05519 | SRSF11 | S212 | ochoa | Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) | May function in pre-mRNA splicing. |
Q05682 | CALD1 | S660 | ochoa | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q07065 | CKAP4 | S460 | ochoa | Cytoskeleton-associated protein 4 (63-kDa cytoskeleton-linking membrane protein) (Climp-63) (p63) | Mediates the anchoring of the endoplasmic reticulum to microtubules. {ECO:0000269|PubMed:15703217}.; FUNCTION: High-affinity epithelial cell surface receptor for the FZD8-related low molecular weight sialoglycopeptide APF/antiproliferative factor. Mediates the APF antiproliferative signaling within cells. {ECO:0000269|PubMed:17030514, ECO:0000269|PubMed:19144824}. |
Q07157 | TJP1 | S1397 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08188 | TGM3 | S124 | ochoa | Protein-glutamine gamma-glutamyltransferase E (EC 2.3.2.13) (Transglutaminase E) (TG(E)) (TGE) (TGase E) (Transglutaminase-3) (TGase-3) [Cleaved into: Protein-glutamine gamma-glutamyltransferase E 50 kDa catalytic chain; Protein-glutamine gamma-glutamyltransferase E 27 kDa non-catalytic chain] | Catalyzes the calcium-dependent formation of isopeptide cross-links between glutamine and lysine residues in various proteins, as well as the conjugation of polyamines to proteins. Involved in the formation of the cornified envelope (CE), a specialized component consisting of covalent cross-links of proteins beneath the plasma membrane of terminally differentiated keratinocytes. Catalyzes small proline-rich proteins (SPRR1 and SPRR2) and LOR cross-linking to form small interchain oligomers, which are further cross-linked by TGM1 onto the growing CE scaffold (By similarity). In hair follicles, involved in cross-linking structural proteins to hardening the inner root sheath. {ECO:0000250}. |
Q08379 | GOLGA2 | S792 | ochoa | Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) | Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}. |
Q09666 | AHNAK | S298 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12802 | AKAP13 | S864 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12802 | AKAP13 | S1849 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12830 | BPTF | S737 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12888 | TP53BP1 | S222 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1481 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12905 | ILF2 | S218 | ochoa | Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) | Chromatin-interacting protein that forms a stable heterodimer with interleukin enhancer-binding factor 3/ILF3 and plays a role in several biological processes including transcription, innate immunity or cell growth (PubMed:18458058, PubMed:31212927). Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus. Together with ILF3, forms an RNA-binding complex that is required for mitotic progression and cytokinesis by regulating the expression of a cluster of mitotic genes. Mechanistically, competes with STAU1/STAU2-mediated mRNA decay (PubMed:32433969). Also plays a role in the inhibition of various viruses including Japanese encephalitis virus or enterovirus 71. {ECO:0000269|PubMed:10574923, ECO:0000269|PubMed:11739746, ECO:0000269|PubMed:18458058, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:31212927, ECO:0000269|PubMed:32433969, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12906 | ILF3 | S506 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12929 | EPS8 | S502 | psp | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q12959 | DLG1 | S598 | ochoa | Disks large homolog 1 (Synapse-associated protein 97) (SAP-97) (SAP97) (hDlg) | Essential multidomain scaffolding protein required for normal development (By similarity). Recruits channels, receptors and signaling molecules to discrete plasma membrane domains in polarized cells. Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). May also play a role in adherens junction assembly, signal transduction, cell proliferation, synaptogenesis and lymphocyte activation. Regulates the excitability of cardiac myocytes by modulating the functional expression of Kv4 channels. Functional regulator of Kv1.5 channel. During long-term depression in hippocampal neurons, it recruits ADAM10 to the plasma membrane (PubMed:23676497). {ECO:0000250|UniProtKB:A0A8C0TYJ0, ECO:0000250|UniProtKB:Q811D0, ECO:0000269|PubMed:10656683, ECO:0000269|PubMed:12445884, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15263016, ECO:0000269|PubMed:19213956, ECO:0000269|PubMed:20605917, ECO:0000269|PubMed:23676497}. |
Q13009 | TIAM1 | S311 | ochoa | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13098 | GPS1 | S468 | ochoa|psp | COP9 signalosome complex subunit 1 (SGN1) (Signalosome subunit 1) (G protein pathway suppressor 1) (GPS-1) (JAB1-containing signalosome subunit 1) (Protein MFH) | Essential component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Suppresses G-protein- and mitogen-activated protein kinase-mediated signal transduction. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}. |
Q13118 | KLF10 | S184 | ochoa | Krueppel-like factor 10 (EGR-alpha) (Transforming growth factor-beta-inducible early growth response protein 1) (TGFB-inducible early growth response protein 1) (TIEG-1) | Transcriptional repressor which binds to the consensus sequence 5'-GGTGTG-3'. Plays a role in the regulation of the circadian clock; binds to the GC box sequence in the promoter of the core clock component ARTNL/BMAL1 and represses its transcriptional activity. Regulates the circadian expression of genes involved in lipogenesis, gluconeogenesis, and glycolysis in the liver. Represses the expression of PCK2, a rate-limiting step enzyme of gluconeogenesis (By similarity). May play a role in the cell cycle regulation. {ECO:0000250|UniProtKB:O89091, ECO:0000269|PubMed:8584037}. |
Q13153 | PAK1 | S422 | ochoa | Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) | Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}. |
Q13177 | PAK2 | S401 | ochoa | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13418 | ILK | S343 | psp | Scaffold protein ILK (ILK-1) (ILK-2) (Inactive integrin-linked kinase) (p59ILK) | Scaffold protein which mediates protein-protein interactions during a range of cellular events including focal adhesion assembly, cell adhesion and cell migration (PubMed:17420447, PubMed:20005845, PubMed:30367047, PubMed:32528174). Regulates integrin-mediated signal transduction by contributing to inside-out integrin activation (By similarity). Recruits PARVA and LIMS1/PITCH to form the heterotrimeric IPP (ILK-PINCH-PARVIN) complex which binds to F-actin via the C-terminal tail of LIMS1 and the N-terminal region of PARVA, promoting F-actin filament bundling, a process required to generate force for actin cytoskeleton reorganization and subsequent dynamic cell adhesion events such as cell spreading and migration (PubMed:30367047). Binding to PARVA promotes effective assembly of ILK into focal adhesions while PARVA-bound ILK can simultaneously engage integrin-beta cytoplasmic tails to mediate cell adhesion (PubMed:20005845). Plays a role with PARVG in promoting the cell adhesion and spreading of leukocytes (PubMed:16517730). Acts as an upstream effector of both AKT1/PKB and GSK3 (PubMed:9736715). Mediates trafficking of caveolae to the cell surface in an ITGB1-dependent manner by promoting the recruitment of IQGAP1 to the cell cortex which cooperates with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Required for the maintenance of mitotic spindle integrity by promoting phosphorylation of TACC3 by AURKA (PubMed:18283114). Associates with chromatin and may act as a negative regulator of transcription when located in the nucleus (PubMed:17420447). {ECO:0000250|UniProtKB:O55222, ECO:0000250|UniProtKB:Q99J82, ECO:0000269|PubMed:16517730, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:18283114, ECO:0000269|PubMed:20005845, ECO:0000269|PubMed:30367047, ECO:0000269|PubMed:32528174, ECO:0000269|PubMed:9736715}. |
Q13423 | NNT | S769 | ochoa | NAD(P) transhydrogenase, mitochondrial (EC 7.1.1.1) (Nicotinamide nucleotide transhydrogenase) (Pyridine nucleotide transhydrogenase) | The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane (By similarity). May play a role in reactive oxygen species (ROS) detoxification in the adrenal gland (PubMed:22634753). {ECO:0000250|UniProtKB:P07001, ECO:0000269|PubMed:22634753}. |
Q13426 | XRCC4 | S260 | ochoa|psp | DNA repair protein XRCC4 (hXRCC4) (X-ray repair cross-complementing protein 4) [Cleaved into: Protein XRCC4, C-terminus (XRCC4/C)] | [DNA repair protein XRCC4]: DNA non-homologous end joining (NHEJ) core factor, required for double-strand break repair and V(D)J recombination (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:16412978, PubMed:17124166, PubMed:17290226, PubMed:22228831, PubMed:25597996, PubMed:25742519, PubMed:25934149, PubMed:26100018, PubMed:26774286, PubMed:8548796). Acts as a scaffold protein that regulates recruitment of other proteins to DNA double-strand breaks (DSBs) (PubMed:15385968, PubMed:20852255, PubMed:26774286, PubMed:27437582). Associates with NHEJ1/XLF to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Plays a key role in the NHEJ ligation step of the broken DNA during DSB repair via direct interaction with DNA ligase IV (LIG4): the LIG4-XRCC4 subcomplex reseals the DNA breaks after the gap filling is completed (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:17290226, PubMed:19837014, PubMed:9242410). XRCC4 stabilizes LIG4, regulates its subcellular localization and enhances LIG4's joining activity (PubMed:10757784, PubMed:10854421, PubMed:12517771, PubMed:17290226, PubMed:21982441, PubMed:22228831, PubMed:9242410). Binding of the LIG4-XRCC4 subcomplex to DNA ends is dependent on the assembly of the DNA-dependent protein kinase complex DNA-PK to these DNA ends (PubMed:10757784, PubMed:10854421). Promotes displacement of PNKP from processed strand break termini (PubMed:20852255, PubMed:28453785). {ECO:0000269|PubMed:10757784, ECO:0000269|PubMed:10854421, ECO:0000269|PubMed:12517771, ECO:0000269|PubMed:15385968, ECO:0000269|PubMed:16412978, ECO:0000269|PubMed:17124166, ECO:0000269|PubMed:17290226, ECO:0000269|PubMed:19837014, ECO:0000269|PubMed:20852255, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:21982441, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25597996, ECO:0000269|PubMed:25742519, ECO:0000269|PubMed:25934149, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28453785, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:8548796, ECO:0000269|PubMed:9242410}.; FUNCTION: [Protein XRCC4, C-terminus]: Acts as an activator of the phospholipid scramblase activity of XKR4 (PubMed:33725486). This form, which is generated upon caspase-3 (CASP3) cleavage, translocates into the cytoplasm and interacts with XKR4, thereby promoting phosphatidylserine scramblase activity of XKR4 and leading to phosphatidylserine exposure on apoptotic cell surface (PubMed:33725486). {ECO:0000269|PubMed:33725486}. |
Q13459 | MYO9B | S26 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13554 | CAMK2B | S276 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit beta (CaM kinase II subunit beta) (CaMK-II subunit beta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in dendritic spine and synapse formation, neuronal plasticity and regulation of sarcoplasmic reticulum Ca(2+) transport in skeletal muscle (PubMed:16690701). In neurons, plays an essential structural role in the reorganization of the actin cytoskeleton during plasticity by binding and bundling actin filaments in a kinase-independent manner. This structural function is required for correct targeting of CaMK2A, which acts downstream of NMDAR to promote dendritic spine and synapse formation and maintain synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In developing hippocampal neurons, promotes arborization of the dendritic tree and in mature neurons, promotes dendritic remodeling. Also regulates the migration of developing neurons (PubMed:29100089). Participates in the modulation of skeletal muscle function in response to exercise (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of triadin, a ryanodine receptor-coupling factor, and phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). Phosphorylates reticulophagy regulator RETREG1 at 'Ser-151' under endoplasmic reticulum stress conditions which enhances RETREG1 oligomerization and its membrane scission and reticulophagy activity (PubMed:31930741). {ECO:0000250|UniProtKB:P08413, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:29100089, ECO:0000269|PubMed:31930741}. |
Q13554 | CAMK2B | S417 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit beta (CaM kinase II subunit beta) (CaMK-II subunit beta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in dendritic spine and synapse formation, neuronal plasticity and regulation of sarcoplasmic reticulum Ca(2+) transport in skeletal muscle (PubMed:16690701). In neurons, plays an essential structural role in the reorganization of the actin cytoskeleton during plasticity by binding and bundling actin filaments in a kinase-independent manner. This structural function is required for correct targeting of CaMK2A, which acts downstream of NMDAR to promote dendritic spine and synapse formation and maintain synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In developing hippocampal neurons, promotes arborization of the dendritic tree and in mature neurons, promotes dendritic remodeling. Also regulates the migration of developing neurons (PubMed:29100089). Participates in the modulation of skeletal muscle function in response to exercise (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of triadin, a ryanodine receptor-coupling factor, and phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). Phosphorylates reticulophagy regulator RETREG1 at 'Ser-151' under endoplasmic reticulum stress conditions which enhances RETREG1 oligomerization and its membrane scission and reticulophagy activity (PubMed:31930741). {ECO:0000250|UniProtKB:P08413, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:29100089, ECO:0000269|PubMed:31930741}. |
Q13555 | CAMK2G | S276 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}. |
Q13557 | CAMK2D | S276 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}. |
Q13573 | SNW1 | S182 | ochoa | SNW domain-containing protein 1 (Nuclear protein SkiP) (Nuclear receptor coactivator NCoA-62) (Ski-interacting protein) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Required for the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. May recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1-mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coactivators such as MAML1 to form an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ to form a transcriptional activation complex by releasing SNW1 and redundant NOTCH1 NICD. {ECO:0000269|PubMed:10644367, ECO:0000269|PubMed:11278756, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:11514567, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12840015, ECO:0000269|PubMed:14985122, ECO:0000269|PubMed:15194481, ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:19818711, ECO:0000269|PubMed:21245387, ECO:0000269|PubMed:21460037, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:9632709, ECO:0000305|PubMed:33509932}.; FUNCTION: (Microbial infection) Is recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat transcription by recruitment of MYC, MEN1 and TRRAP to the HIV promoter. {ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:19818711}.; FUNCTION: (Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters. {ECO:0000269|PubMed:10644367}. |
Q13619 | CUL4A | S40 | ochoa | Cullin-4A (CUL-4A) | Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination of target proteins (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620, PubMed:30166453, PubMed:33854232, PubMed:33854239). As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620). The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1 (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition component (PubMed:14578910, PubMed:14739464, PubMed:15448697, PubMed:15548678, PubMed:15811626, PubMed:16678110, PubMed:17041588, PubMed:24209620). DCX(DET1-COP1) directs ubiquitination of JUN (PubMed:14739464). DCX(DDB2) directs ubiquitination of XPC (PubMed:15811626). DCX(DDB2) ubiquitinates histones H3-H4 and is required for efficient histone deposition during replication-coupled (H3.1) and replication-independent (H3.3) nucleosome assembly, probably by facilitating the transfer of H3 from ASF1A/ASF1B to other chaperones involved in histone deposition (PubMed:16678110, PubMed:17041588, PubMed:24209620). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of p53/TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:14578910, PubMed:15448697, PubMed:15548678). DCX(DTL) directs autoubiquitination of DTL (PubMed:23478445). In association with DDB1 and SKP2 probably is involved in ubiquitination of CDKN1B/p27kip (PubMed:16537899). Is involved in ubiquitination of HOXA9 (PubMed:14609952). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). The DCX(ERCC8) complex (also named CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). With CUL4B, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:14609952, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15548678, ECO:0000269|PubMed:15811626, ECO:0000269|PubMed:16537899, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:24209620, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}. |
Q13627 | DYRK1A | S555 | ochoa | Dual specificity tyrosine-phosphorylation-regulated kinase 1A (EC 2.7.11.23) (EC 2.7.12.1) (Dual specificity YAK1-related kinase) (HP86) (Protein kinase minibrain homolog) (MNBH) (hMNB) | Dual-specificity kinase which possesses both serine/threonine and tyrosine kinase activities (PubMed:20981014, PubMed:21127067, PubMed:23665168, PubMed:30773093, PubMed:8769099). Exhibits a substrate preference for proline at position P+1 and arginine at position P-3 (PubMed:23665168). Plays an important role in double-strand breaks (DSBs) repair following DNA damage (PubMed:31024071). Mechanistically, phosphorylates RNF169 and increases its ability to block accumulation of TP53BP1 at the DSB sites thereby promoting homologous recombination repair (HRR) (PubMed:30773093). Also acts as a positive regulator of transcription by acting as a CTD kinase that mediates phosphorylation of the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A (PubMed:25620562, PubMed:29849146). May play a role in a signaling pathway regulating nuclear functions of cell proliferation (PubMed:14500717). Modulates alternative splicing by phosphorylating the splice factor SRSF6 (By similarity). Has pro-survival function and negatively regulates the apoptotic process (By similarity). Promotes cell survival upon genotoxic stress through phosphorylation of SIRT1 (By similarity). This in turn inhibits p53/TP53 activity and apoptosis (By similarity). Phosphorylates SEPTIN4, SEPTIN5 and SF3B1 at 'Thr-434' (By similarity). {ECO:0000250|UniProtKB:Q61214, ECO:0000250|UniProtKB:Q63470, ECO:0000269|PubMed:14500717, ECO:0000269|PubMed:20981014, ECO:0000269|PubMed:21127067, ECO:0000269|PubMed:23665168, ECO:0000269|PubMed:25620562, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30773093, ECO:0000269|PubMed:31024071, ECO:0000269|PubMed:8769099}. |
Q13685 | AAMP | S20 | ochoa | Angio-associated migratory cell protein | Plays a role in angiogenesis and cell migration. In smooth muscle cell migration, may act through the RhoA pathway. {ECO:0000269|PubMed:10329261, ECO:0000269|PubMed:18634987}. |
Q14126 | DSG2 | S939 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14160 | SCRIB | S1223 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14160 | SCRIB | S1523 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14247 | CTTN | S109 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14258 | TRIM25 | S433 | ochoa | E3 ubiquitin/ISG15 ligase TRIM25 (EC 6.3.2.n3) (Estrogen-responsive finger protein) (RING finger protein 147) (RING-type E3 ubiquitin transferase) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase TRIM25) (Tripartite motif-containing protein 25) (Ubiquitin/ISG15-conjugating enzyme TRIM25) (Zinc finger protein 147) | Functions as a ubiquitin E3 ligase and as an ISG15 E3 ligase (PubMed:16352599). Involved in innate immune defense against viruses by mediating ubiquitination of RIGI and IFIH1 (PubMed:17392790, PubMed:29357390, PubMed:30193849, PubMed:31710640, PubMed:33849980, PubMed:36045682). Mediates 'Lys-63'-linked polyubiquitination of the RIGI N-terminal CARD-like region and may play a role in signal transduction that leads to the production of interferons in response to viral infection (PubMed:17392790, PubMed:23950712). Mediates 'Lys-63'-linked polyubiquitination of IFIH1 (PubMed:30193849). Promotes ISGylation of 14-3-3 sigma (SFN), an adapter protein implicated in the regulation of a large spectrum signaling pathway (PubMed:16352599, PubMed:17069755). Mediates estrogen action in various target organs (PubMed:22452784). Mediates the ubiquitination and subsequent proteasomal degradation of ZFHX3 (PubMed:22452784). Plays a role in promoting the restart of stalled replication forks via interaction with the KHDC3L-OOEP scaffold and subsequent ubiquitination of BLM, resulting in the recruitment and retainment of BLM at DNA replication forks (By similarity). Plays an essential role in the antiviral activity of ZAP/ZC3HAV1; an antiviral protein which inhibits the replication of certain viruses. Mechanistically, mediates 'Lys-63'-linked polyubiquitination of ZAP/ZC3HAV1 that is required for its optimal binding to target mRNA (PubMed:28060952, PubMed:28202764). Also mediates the ubiquitination of various substrates implicated in stress granule formation, nonsense-mediated mRNA decay, nucleoside synthesis and mRNA translation and stability (PubMed:36067236). {ECO:0000250|UniProtKB:Q61510, ECO:0000269|PubMed:16352599, ECO:0000269|PubMed:17069755, ECO:0000269|PubMed:17392790, ECO:0000269|PubMed:22452784, ECO:0000269|PubMed:23950712, ECO:0000269|PubMed:29357390, ECO:0000269|PubMed:30193849, ECO:0000269|PubMed:31710640, ECO:0000269|PubMed:33849980, ECO:0000269|PubMed:36045682, ECO:0000269|PubMed:36067236}. |
Q14596 | NBR1 | S116 | ochoa | Next to BRCA1 gene 1 protein (Cell migration-inducing gene 19 protein) (Membrane component chromosome 17 surface marker 2) (Neighbor of BRCA1 gene 1 protein) (Protein 1A1-3B) | Ubiquitin-binding autophagy adapter that participates in different processes including host defense or intracellular homeostasis (PubMed:24692539, PubMed:33577621). Possesses a double function during the selective autophagy by acting as a shuttle bringing ubiquitinated proteins to autophagosomes and also by participating in the formation of protein aggregates (PubMed:24879152, PubMed:34471133). Plays a role in the regulation of the innate immune response by modulating type I interferon production and targeting ubiquitinated IRF3 for autophagic degradation (PubMed:35914352). In response to oxidative stress, promotes an increase in SQSTM1 levels, phosphorylation, and body formation by preventing its autophagic degradation (By similarity). In turn, activates the KEAP1-NRF2/NFE2L2 antioxidant pathway (By similarity). Also plays non-autophagy role by mediating the shuttle of IL-12 to late endosome for subsequent secretion (By similarity). {ECO:0000250|UniProtKB:P97432, ECO:0000269|PubMed:19250911, ECO:0000269|PubMed:24692539, ECO:0000269|PubMed:24879152, ECO:0000269|PubMed:33577621, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:35914352}. |
Q14669 | TRIP12 | S977 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14676 | MDC1 | S544 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14678 | KANK1 | S195 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14684 | RRP1B | S460 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14694 | USP10 | S97 | ochoa | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q147X3 | NAA30 | S134 | ochoa | N-alpha-acetyltransferase 30 (EC 2.3.1.256) (N-acetyltransferase 12) (N-acetyltransferase MAK3 homolog) (NatC catalytic subunit) | Catalytic subunit of the N-terminal acetyltransferase C (NatC) complex (PubMed:19398576, PubMed:37891180). Catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Leu-Ala and Met-Leu-Gly (PubMed:19398576, PubMed:37891180). N-terminal acetylation protects proteins from ubiquitination and degradation by the N-end rule pathway (PubMed:37891180). Necessary for the lysosomal localization and function of ARL8B sugeesting that ARL8B is a NatC substrate (PubMed:19398576). {ECO:0000269|PubMed:19398576, ECO:0000269|PubMed:37891180}. |
Q14802 | FXYD3 | S69 | ochoa | FXYD domain-containing ion transport regulator 3 (Chloride conductance inducer protein Mat-8) (Mammary tumor 8 kDa protein) (Phospholemman-like) (Sodium/potassium-transporting ATPase subunit FXYD3) | Associates with and regulates the activity of the sodium/potassium-transporting ATPase (NKA) which transports Na(+) out of the cell and K(+) into the cell (PubMed:17077088). Reduces glutathionylation of the NKA beta-1 subunit ATP1B1, thus reversing glutathionylation-mediated inhibition of ATP1B1 (PubMed:21454534). Induces a hyperpolarization-activated chloride current when expressed in Xenopus oocytes (PubMed:7836447). {ECO:0000269|PubMed:17077088, ECO:0000269|PubMed:21454534, ECO:0000269|PubMed:7836447}.; FUNCTION: [Isoform 1]: Decreases the apparent K+ and Na+ affinity of the sodium/potassium-transporting ATPase over a large range of membrane potentials. {ECO:0000269|PubMed:17077088}.; FUNCTION: [Isoform 2]: Decreases the apparent K+ affinity of the sodium/potassium-transporting ATPase only at slightly negative and positive membrane potentials and increases the apparent Na+ affinity over a large range of membrane potentials. {ECO:0000269|PubMed:17077088}. |
Q15004 | PCLAF | S29 | ochoa | PCNA-associated factor (Hepatitis C virus NS5A-transactivated protein 9) (HCV NS5A-transactivated protein 9) (Overexpressed in anaplastic thyroid carcinoma 1) (OEATC-1) (PCNA-associated factor of 15 kDa) (PAF15) (p15PAF) (PCNA-clamp-associated factor) | PCNA-binding protein that acts as a regulator of DNA repair during DNA replication. Following DNA damage, the interaction with PCNA is disrupted, facilitating the interaction between monoubiquitinated PCNA and the translesion DNA synthesis DNA polymerase eta (POLH) at stalled replisomes, facilitating the bypass of replication-fork-blocking lesions. Also acts as a regulator of centrosome number. {ECO:0000269|PubMed:21673012, ECO:0000269|PubMed:23000965}. |
Q15021 | NCAPD2 | S585 | ochoa | Condensin complex subunit 1 (Chromosome condensation-related SMC-associated protein 1) (Chromosome-associated protein D2) (hCAP-D2) (Non-SMC condensin I complex subunit D2) (XCAP-D2 homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. May target the condensin complex to DNA via its C-terminal domain (PubMed:11136719). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of non-centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15149 | PLEC | S2755 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S2958 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S3036 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S4365 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15424 | SAFB | S24 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15583 | TGIF1 | S149 | ochoa | Homeobox protein TGIF1 (5'-TG-3'-interacting factor 1) | Binds to a retinoid X receptor (RXR) responsive element from the cellular retinol-binding protein II promoter (CRBPII-RXRE). Inhibits the 9-cis-retinoic acid-dependent RXR alpha transcription activation of the retinoic acid responsive element. Active transcriptional corepressor of SMAD2. Links the nodal signaling pathway to the bifurcation of the forebrain and the establishment of ventral midline structures. May participate in the transmission of nuclear signals during development and in the adult, as illustrated by the down-modulation of the RXR alpha activities. |
Q15772 | SPEG | S485 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15907 | RAB11B | S78 | ochoa | Ras-related protein Rab-11B (EC 3.6.5.2) (GTP-binding protein YPT3) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:14627637, PubMed:19029296, PubMed:19244346, PubMed:20717956, PubMed:21248079, PubMed:22129970, PubMed:26032412). The small Rab GTPase RAB11B plays a role in endocytic recycling, regulating apical recycling of several transmembrane proteins including cystic fibrosis transmembrane conductance regulator/CFTR, epithelial sodium channel/ENaC, potassium voltage-gated channel, and voltage-dependent L-type calcium channel. May also regulate constitutive and regulated secretion, like insulin granule exocytosis. Required for melanosome transport and release from melanocytes. Also regulates V-ATPase intracellular transport in response to extracellular acidosis (PubMed:14627637, PubMed:19029296, PubMed:19244346, PubMed:20717956, PubMed:21248079, PubMed:22129970). Promotes Rabin8/RAB3IP preciliary vesicular trafficking to mother centriole by forming a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, thereby regulating ciliogenesis initiation (PubMed:25673879). On the contrary, upon LPAR1 receptor signaling pathway activation, interaction with phosphorylated WDR44 prevents Rab11-RAB3IP-RAB11FIP3 complex formation and cilia growth (PubMed:31204173). {ECO:0000269|PubMed:14627637, ECO:0000269|PubMed:19029296, ECO:0000269|PubMed:19244346, ECO:0000269|PubMed:20717956, ECO:0000269|PubMed:21248079, ECO:0000269|PubMed:22129970, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26032412, ECO:0000269|PubMed:31204173}. |
Q16584 | MAP3K11 | S548 | ochoa|psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16678 | CYP1B1 | S112 | ochoa | Cytochrome P450 1B1 (EC 1.14.14.1) (CYPIB1) (Hydroperoxy icosatetraenoate dehydratase) (EC 4.2.1.152) | A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:15258110, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:15258110, PubMed:20972997). Exhibits catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2- and 4-hydroxy E1 and E2. Displays a predominant hydroxylase activity toward E2 at the C-4 position (PubMed:11555828, PubMed:12865317). Metabolizes testosterone and progesterone to B or D ring hydroxylated metabolites (PubMed:10426814). May act as a major enzyme for all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376, PubMed:15258110). Catalyzes the epoxidation of double bonds of certain PUFA. Converts arachidonic acid toward epoxyeicosatrienoic acid (EpETrE) regioisomers, 8,9-, 11,12-, and 14,15- EpETrE, that function as lipid mediators in the vascular system (PubMed:20972997). Additionally, displays dehydratase activity toward oxygenated eicosanoids hydroperoxyeicosatetraenoates (HpETEs). This activity is independent of cytochrome P450 reductase, NADPH, and O2 (PubMed:21068195). Also involved in the oxidative metabolism of xenobiotics, particularly converting polycyclic aromatic hydrocarbons and heterocyclic aryl amines procarcinogens to DNA-damaging products (PubMed:10426814). Plays an important role in retinal vascular development. Under hyperoxic O2 conditions, promotes retinal angiogenesis and capillary morphogenesis, likely by metabolizing the oxygenated products generated during the oxidative stress. Also, contributes to oxidative homeostasis and ultrastructural organization and function of trabecular meshwork tissue through modulation of POSTN expression (By similarity). {ECO:0000250|UniProtKB:Q64429, ECO:0000269|PubMed:10426814, ECO:0000269|PubMed:10681376, ECO:0000269|PubMed:11555828, ECO:0000269|PubMed:12865317, ECO:0000269|PubMed:15258110, ECO:0000269|PubMed:20972997, ECO:0000269|PubMed:21068195}. |
Q16825 | PTPN21 | S492 | ochoa | Tyrosine-protein phosphatase non-receptor type 21 (EC 3.1.3.48) (Protein-tyrosine phosphatase D1) | None |
Q17R98 | ZNF827 | S146 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q27J81 | INF2 | S23 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2M1Z3 | ARHGAP31 | S863 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2M2I8 | AAK1 | S670 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2PPJ7 | RALGAPA2 | S465 | ochoa | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q2TAZ0 | ATG2A | S866 | ochoa | Autophagy-related protein 2 homolog A | Lipid transfer protein involved in autophagosome assembly (PubMed:28561066, PubMed:30952800, PubMed:31271352). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:30952800, PubMed:31271352). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (PubMed:30952800, PubMed:31271352). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Also regulates lipid droplets morphology and distribution within the cell (PubMed:22219374, PubMed:28561066). {ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:30952800, ECO:0000269|PubMed:31271352}. |
Q2TV78 | MST1L | S398 | ochoa | Putative macrophage stimulating 1-like protein (Brain rescue factor 1) (BRF-1) (Hepatocyte growth factor-like protein homolog) | None |
Q32MZ4 | LRRFIP1 | S116 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q4V328 | GRIPAP1 | S318 | ochoa | GRIP1-associated protein 1 (GRASP-1) [Cleaved into: GRASP-1 C-terminal chain (30kDa C-terminus form)] | Regulates the endosomal recycling back to the neuronal plasma membrane, possibly by connecting early and late recycling endosomal domains and promoting segregation of recycling endosomes from early endosomal membranes. Involved in the localization of recycling endosomes to dendritic spines, thereby playing a role in the maintenance of dendritic spine morphology. Required for the activity-induced AMPA receptor recycling to dendrite membranes and for long-term potentiation and synaptic plasticity (By similarity). {ECO:0000250|UniProtKB:Q9JHZ4}.; FUNCTION: [GRASP-1 C-terminal chain]: Functions as a scaffold protein to facilitate MAP3K1/MEKK1-mediated activation of the JNK1 kinase by phosphorylation, possibly by bringing MAP3K1/MEKK1 and JNK1 in close proximity. {ECO:0000269|PubMed:17761173}. |
Q4V9L6 | TMEM119 | S125 | ochoa | Transmembrane protein 119 (Osteoblast induction factor) (OBIF) | Plays an important role in bone formation and normal bone mineralization. Promotes the differentiation of myoblasts into osteoblasts (PubMed:20025746). May induce the commitment and differentiation of myoblasts into osteoblasts through an enhancement of BMP2 production and interaction with the BMP-RUNX2 pathway. Up-regulates the expression of ATF4, a transcription factor which plays a central role in osteoblast differentiation. Essential for normal spermatogenesis and late testicular differentiation (By similarity). {ECO:0000250|UniProtKB:Q8R138, ECO:0000269|PubMed:20025746}. |
Q5BJD5 | TMEM41B | S35 | ochoa | Transmembrane protein 41B (Protein stasimon) | Phospholipid scramblase involved in lipid homeostasis and membrane dynamics processes (PubMed:33850023, PubMed:33929485, PubMed:34015269). Has phospholipid scramblase activity toward cholesterol and phosphatidylserine, as well as phosphatidylethanolamine and phosphatidylcholine (PubMed:33850023, PubMed:33929485, PubMed:34015269). Required for autophagosome formation: participates in early stages of autophagosome biogenesis at the endoplasmic reticulum (ER) membrane by reequilibrating the leaflets of the ER as lipids are extracted by ATG2 (ATG2A or ATG2B) to mediate autophagosome assembly (PubMed:30093494, PubMed:30126924, PubMed:30933966, PubMed:33850023, PubMed:33929485, PubMed:34015269, PubMed:34043740). In addition to autophagy, involved in other processes in which phospholipid scramblase activity is required (PubMed:33850023). Required for normal motor neuron development (By similarity). {ECO:0000250|UniProtKB:A1A5V7, ECO:0000269|PubMed:30093494, ECO:0000269|PubMed:30126924, ECO:0000269|PubMed:30933966, ECO:0000269|PubMed:33850023, ECO:0000269|PubMed:33929485, ECO:0000269|PubMed:34015269, ECO:0000269|PubMed:34043740}.; FUNCTION: (Microbial infection) Critical host factor required for infection by human coronaviruses SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E, as well as all flaviviruses tested such as Zika virus and Yellow fever virus (PubMed:33338421, PubMed:33382968). Required post-entry of the virus to facilitate the ER membrane remodeling necessary to form replication organelles (PubMed:33382968). {ECO:0000269|PubMed:33338421, ECO:0000269|PubMed:33382968, ECO:0000269|PubMed:34043740}. |
Q5BKX6 | SLC45A4 | S43 | ochoa | Solute carrier family 45 member 4 | Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}. |
Q5FWE3 | PRRT3 | S908 | ochoa | Proline-rich transmembrane protein 3 | None |
Q5JSH3 | WDR44 | S411 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5M775 | SPECC1 | S792 | ochoa | Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) | None |
Q5MNZ9 | WIPI1 | S392 | ochoa | WD repeat domain phosphoinositide-interacting protein 1 (WIPI-1) (Atg18 protein homolog) (WD40 repeat protein interacting with phosphoinositides of 49 kDa) (WIPI 49 kDa) | Component of the autophagy machinery that controls the major intracellular degradation process by which cytoplasmic materials are packaged into autophagosomes and delivered to lysosomes for degradation (PubMed:15602573, PubMed:20114074, PubMed:20484055, PubMed:20639694, PubMed:23088497, PubMed:28561066, PubMed:31271352). Plays an important role in starvation- and calcium-mediated autophagy, as well as in mitophagy (PubMed:28561066). Functions downstream of the ULK1 and PI3-kinases that produce phosphatidylinositol 3-phosphate (PtdIns3P) on membranes of the endoplasmic reticulum once activated (PubMed:28561066). Binds phosphatidylinositol 3-phosphate (PtdIns3P), and maybe other phosphoinositides including PtdIns3,5P2 and PtdIns5P, and is recruited to phagophore assembly sites at the endoplasmic reticulum membranes (PubMed:28561066, PubMed:31271352, PubMed:33499712). There, it assists WIPI2 in the recruitment of ATG12-ATG5-ATG16L1, a complex that directly controls the elongation of the nascent autophagosomal membrane (PubMed:28561066). Together with WDR45/WIPI4, promotes ATG2 (ATG2A or ATG2B)-mediated lipid transfer by enhancing ATG2-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Involved in xenophagy of Staphylococcus aureus (PubMed:22829830). Invading S.aureus cells become entrapped in autophagosome-like WIPI1 positive vesicles targeted for lysosomal degradation (PubMed:22829830). Also plays a distinct role in controlling the transcription of melanogenic enzymes and melanosome maturation, a process that is distinct from starvation-induced autophagy (PubMed:21317285). May also regulate the trafficking of proteins involved in the mannose-6-phosphate receptor (MPR) recycling pathway (PubMed:15020712). {ECO:0000269|PubMed:15020712, ECO:0000269|PubMed:15602573, ECO:0000269|PubMed:20114074, ECO:0000269|PubMed:20484055, ECO:0000269|PubMed:20639694, ECO:0000269|PubMed:21317285, ECO:0000269|PubMed:22829830, ECO:0000269|PubMed:23088497, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:31271352, ECO:0000269|PubMed:33499712}. |
Q5QJE6 | DNTTIP2 | S38 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5R3F8 | ELFN2 | S633 | ochoa | Protein phosphatase 1 regulatory subunit 29 (Extracellular leucine-rich repeat and fibronectin type III domain-containing protein 2) (Leucine-rich repeat and fibronectin type-III domain-containing protein 6) (Leucine-rich repeat-containing protein 62) | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000269|PubMed:19389623}. |
Q5SYE7 | NHSL1 | S322 | ochoa | NHS-like protein 1 | None |
Q5T0B9 | ZNF362 | S146 | ochoa | Zinc finger protein 362 | May be involved in transcriptional regulation. |
Q5T1M5 | FKBP15 | S1161 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T4S7 | UBR4 | S3348 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T5X7 | BEND3 | S39 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5T5Y3 | CAMSAP1 | S470 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T5Y3 | CAMSAP1 | S583 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5TCZ1 | SH3PXD2A | S572 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TH69 | ARFGEF3 | S628 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5UIP0 | RIF1 | S2006 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VT52 | RPRD2 | S864 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VV42 | CDKAL1 | S99 | ochoa | Threonylcarbamoyladenosine tRNA methylthiotransferase (EC 2.8.4.5) (CDK5 regulatory subunit-associated protein 1-like 1) (tRNA-t(6)A37 methylthiotransferase) | Catalyzes the methylthiolation of N6-threonylcarbamoyladenosine (t(6)A), leading to the formation of 2-methylthio-N6-threonylcarbamoyladenosine (ms(2)t(6)A) at position 37 in tRNAs that read codons beginning with adenine. {ECO:0000250|UniProtKB:Q91WE6}. |
Q5VZ18 | SHE | S104 | ochoa | SH2 domain-containing adapter protein E | None |
Q5W0B1 | OBI1 | S276 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q63HR2 | TNS2 | S33 | ochoa | Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) | Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}. |
Q66K74 | MAP1S | S569 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q68EM7 | ARHGAP17 | S840 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q69YQ0 | SPECC1L | S889 | ochoa | Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) | Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}. |
Q6DKI7 | PVRIG | S284 | ochoa | Transmembrane protein PVRIG (CD112 receptor) (CD112R) (Poliovirus receptor-related immunoglobulin domain-containing protein) | Cell surface receptor for NECTIN2. May act as a coinhibitory receptor that suppresses T-cell receptor-mediated signals. Following interaction with NECTIN2, inhibits T-cell proliferation. Competes with CD226 for NECTIN2-binding. {ECO:0000269|PubMed:26755705}. |
Q6IQ49 | SDE2 | S188 | ochoa | Splicing regulator SDE2 (Replication stress response regulator SDE2) | Inhibits translesion DNA synthesis by preventing monoubiquitination of PCNA, this is necessary to counteract damage due to ultraviolet light-induced replication stress (PubMed:27906959). SDE2 is cleaved following PCNA binding, and its complete degradation is necessary to allow S-phase progression following DNA damage (PubMed:27906959). {ECO:0000269|PubMed:27906959}.; FUNCTION: Plays a role in pre-mRNA splicing by facilitating excision of relatively short introns featuring weak 3'-splice sites (ss) and high GC content (PubMed:34365507). May recruit CACTIN to the spliceosome (By similarity). {ECO:0000250|UniProtKB:O14113, ECO:0000269|PubMed:34365507}.; FUNCTION: Plays a role in ribosome biogenesis by enabling SNORD3- and SNORD118-dependent cleavage of the 47S rRNA precursor (PubMed:34365507). Binds ncRNA (non-coding RNA) including the snoRNAs SNORD3 and SNORD118 (PubMed:34365507). {ECO:0000269|PubMed:34365507}. |
Q6NUJ5 | PWWP2B | S43 | ochoa | PWWP domain-containing protein 2B | Chromatin-binding protein that acts as an adapter between distinct nucleosome components (H3K36me3 or H2A.Z) and chromatin-modifying complexes, contributing to the regulation of the levels of histone acetylation at actively transcribed genes (PubMed:30228260). Competes with CHD4 and MBD3 for interaction with MTA1 to form a NuRD subcomplex, preventing the formation of full NuRD complex (containing CHD4 and MBD3), leading to recruitment of HDACs to gene promoters resulting in turn in the deacetylation of nearby H3K27 and H2A.Z (PubMed:30228260). Plays a role in facilitating transcriptional elongation through regulation of histone acetylation (By similarity). Negatively regulates brown adipocyte thermogenesis by interacting with and stabilizing HDAC1 at the UCP1 gene promoter, thereby promoting histone deacetylation at the promoter leading to the repression of UCP1 expression (By similarity). {ECO:0000250|UniProtKB:Q69Z61, ECO:0000269|PubMed:30228260}. |
Q6NYC8 | PPP1R18 | S468 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6P1N0 | CC2D1A | S292 | ochoa | Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}. |
Q6P4F7 | ARHGAP11A | S762 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P4R8 | NFRKB | S799 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6P597 | KLC3 | S466 | ochoa | Kinesin light chain 3 (KLC2-like) (kinesin light chain 2) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. Plays a role during spermiogenesis in the development of the sperm tail midpiece and in the normal function of spermatozoa (By similarity). May play a role in the formation of the mitochondrial sheath formation in the developing spermatid midpiece (By similarity). {ECO:0000250|UniProtKB:Q91W40}. |
Q6PJG6 | BRAT1 | S573 | ochoa | Integrator complex assembly factor BRAT1 (BRCA1-associated ATM activator 1) (BRCA1-associated protein required for ATM activation protein 1) | Component of a multiprotein complex required for the assembly of the RNA endonuclease module of the integrator complex (PubMed:39032489, PubMed:39032490). Associates with INTS9 and INTS11 in the cytoplasm and blocks the active site of INTS11 to inhibit the endonuclease activity of INTS11 before formation of the full integrator complex (PubMed:39032489, PubMed:39032490). Following dissociation of WDR73 of the complex, BRAT1 facilitates the nuclear import of the INTS9-INTS11 heterodimer (PubMed:39032489). In the nucleus, INTS4 is integrated to the INTS9-INTS11 heterodimer and BRAT1 is released from the mature RNA endonuclease module by inositol hexakisphosphate (InsP6) (PubMed:39032489). BRAT1 is also involved in DNA damage response; activates kinases ATM, SMC1A and PRKDC by modulating their phosphorylation status following ionizing radiation (IR) stress (PubMed:16452482, PubMed:22977523). Plays a role in regulating mitochondrial function and cell proliferation (PubMed:25070371). Required for protein stability of MTOR and MTOR-related proteins, and cell cycle progress by growth factors (PubMed:25657994). {ECO:0000269|PubMed:16452482, ECO:0000269|PubMed:22977523, ECO:0000269|PubMed:25070371, ECO:0000269|PubMed:25657994, ECO:0000269|PubMed:39032489, ECO:0000269|PubMed:39032490}. |
Q6PJW8 | CNST | S293 | ochoa | Consortin | Required for targeting of connexins to the plasma membrane. {ECO:0000269|PubMed:19864490}. |
Q6PL18 | ATAD2 | S25 | ochoa | ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) | May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}. |
Q6PL18 | ATAD2 | S60 | ochoa | ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) | May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}. |
Q6PL18 | ATAD2 | S61 | ochoa | ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) | May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}. |
Q6R327 | RICTOR | S1470 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6T4R5 | NHS | S533 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UUV7 | CRTC3 | S135 | ochoa | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6ZRV2 | FAM83H | S785 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZV29 | PNPLA7 | S355 | ochoa | Patatin-like phospholipase domain-containing protein 7 (EC 3.1.1.-) (EC 3.1.1.5) | Lysophospholipase which preferentially deacylates unsaturated lysophosphatidylcholine (C18:1), generating glycerophosphocholine. Also can deacylate, to a lesser extent, lysophosphatidylethanolamine (C18:1), lysophosphatidyl-L-serine (C18:1) and lysophosphatidic acid (C16:0). {ECO:0000250|UniProtKB:A2AJ88}. |
Q6ZV73 | FGD6 | S1313 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q71U36 | TUBA1A | S379 | ochoa | Tubulin alpha-1A chain (EC 3.6.5.-) (Alpha-tubulin 3) (Tubulin B-alpha-1) (Tubulin alpha-3 chain) [Cleaved into: Detyrosinated tubulin alpha-1A chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q76N89 | HECW1 | S874 | ochoa | E3 ubiquitin-protein ligase HECW1 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 1) (HECT-type E3 ubiquitin transferase HECW1) (NEDD4-like E3 ubiquitin-protein ligase 1) (hNEDL1) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent degradation of DVL1. Also targets the mutant SOD1 protein involved in familial amyotrophic lateral sclerosis (FALS). Forms cytotoxic aggregates with DVL1, SSR3 and mutant SOD1 that lead to motor neuron death in FALS. {ECO:0000269|PubMed:14684739}. |
Q7Z2Y5 | NRK | S1034 | ochoa | Nik-related protein kinase (EC 2.7.11.1) | May phosphorylate cofilin-1 and induce actin polymerization through this process, during the late stages of embryogenesis. Involved in the TNF-alpha-induced signaling pathway (By similarity). {ECO:0000250}. |
Q7Z3G6 | PRICKLE2 | S319 | ochoa | Prickle-like protein 2 | None |
Q7Z434 | MAVS | S401 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z4H7 | HAUS6 | S530 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z5L9 | IRF2BP2 | S87 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z5L9 | IRF2BP2 | S212 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z5L9 | IRF2BP2 | S290 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z6I6 | ARHGAP30 | S835 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q86U86 | PBRM1 | S948 | ochoa|psp | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86UR5 | RIMS1 | S1486 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86VS8 | HOOK3 | S690 | ochoa | Protein Hook homolog 3 (h-hook3) (hHK3) | Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Predominantly recruits 2 dyneins, which increases both the force and speed of the microtubule motor (PubMed:25035494, PubMed:33734450). Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). May regulate clearance of endocytosed receptors such as MSR1. Participates in defining the architecture and localization of the Golgi complex. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000250|UniProtKB:Q8BUK6, ECO:0000269|PubMed:11238449, ECO:0000269|PubMed:17237231, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:32073997, ECO:0000269|PubMed:33734450}.; FUNCTION: (Microbial infection) May serve as a target for the spiC protein from Salmonella typhimurium, which inactivates it, leading to a strong alteration in cellular trafficking. {ECO:0000305}. |
Q86W50 | METTL16 | S453 | ochoa | RNA N(6)-adenosine-methyltransferase METTL16 (EC 2.1.1.348) (Methyltransferase 10 domain-containing protein) (Methyltransferase-like protein 16) (U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase) (EC 2.1.1.346) | RNA N6-methyltransferase that methylates adenosine residues at the N(6) position of a subset of RNAs and is involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts (PubMed:28525753, PubMed:30197297, PubMed:30197299, PubMed:33428944, PubMed:33930289). Able to N6-methylate a subset of mRNAs and U6 small nuclear RNAs (U6 snRNAs) (PubMed:28525753). In contrast to the METTL3-METTL14 heterodimer, only able to methylate a limited number of RNAs: requires both a 5'UACAGAGAA-3' nonamer sequence and a specific RNA structure (PubMed:28525753, PubMed:30197297, PubMed:30197299). Plays a key role in S-adenosyl-L-methionine homeostasis by mediating N6-methylation of MAT2A mRNAs, altering splicing of MAT2A transcripts: in presence of S-adenosyl-L-methionine, binds the 3'-UTR region of MAT2A mRNA and specifically N6-methylates the first hairpin of MAT2A mRNA, preventing recognition of their 3'-splice site by U2AF1/U2AF35, thereby inhibiting splicing and protein production of S-adenosylmethionine synthase (PubMed:28525753, PubMed:33930289). In S-adenosyl-L-methionine-limiting conditions, binds the 3'-UTR region of MAT2A mRNA but stalls due to the lack of a methyl donor, preventing N6-methylation and promoting expression of MAT2A (PubMed:28525753). In addition to mRNAs, also able to mediate N6-methylation of U6 small nuclear RNA (U6 snRNA): specifically N6-methylates adenine in position 43 of U6 snRNAs (PubMed:28525753, PubMed:29051200, PubMed:32266935). Also able to bind various lncRNAs, such as 7SK snRNA (7SK RNA) or 7SL RNA (PubMed:29051200). Specifically binds the 3'-end of the MALAT1 long non-coding RNA (PubMed:27872311). {ECO:0000269|PubMed:27872311, ECO:0000269|PubMed:28525753, ECO:0000269|PubMed:29051200, ECO:0000269|PubMed:30197297, ECO:0000269|PubMed:30197299, ECO:0000269|PubMed:32266935, ECO:0000269|PubMed:33428944}. |
Q86X29 | LSR | S321 | ochoa | Lipolysis-stimulated lipoprotein receptor (Angulin-1) | Probable role in the clearance of triglyceride-rich lipoprotein from blood. Binds chylomicrons, LDL and VLDL in presence of free fatty acids and allows their subsequent uptake in the cells (By similarity). Maintains epithelial barrier function by recruiting MARVELD2/tricellulin to tricellular tight junctions (By similarity). {ECO:0000250|UniProtKB:Q99KG5, ECO:0000250|UniProtKB:Q9WU74}. |
Q86X51 | EZHIP | S222 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q86XD5 | FAM131B | S59 | ochoa | Protein FAM131B | None |
Q86XJ1 | GAS2L3 | S495 | ochoa | GAS2-like protein 3 (Growth arrest-specific protein 2-like 3) | Cytoskeletal linker protein. May promote and stabilize the formation of the actin and microtubule network. {ECO:0000269|PubMed:21561867}. |
Q86YL5 | TDRP | S41 | ochoa | Testis development-related protein (Protein INM01) | Contributes to normal sperm motility, but not essential for male fertility. {ECO:0000250|UniProtKB:Q8C5P7}. |
Q8IV31 | TMEM139 | S155 | ochoa | Transmembrane protein 139 | May be involved in cellular trafficking of proteins such as SLC4A1. {ECO:0000305|PubMed:26049106}. |
Q8IV32 | CCDC71 | S144 | ochoa | Coiled-coil domain-containing protein 71 | None |
Q8IV36 | HID1 | S616 | ochoa | Protein HID1 (Down-regulated in multiple cancers 1) (HID1 domain-containing protein) (Protein hid-1 homolog) | May play an important role in the development of cancers in a broad range of tissues. {ECO:0000269|PubMed:11281419}. |
Q8IVF2 | AHNAK2 | S5542 | ochoa | Protein AHNAK2 | None |
Q8IVF5 | TIAM2 | S1565 | ochoa | Rho guanine nucleotide exchange factor TIAM2 (SIF and TIAM1-like exchange factor) (T-lymphoma invasion and metastasis-inducing protein 2) (TIAM-2) | Modulates the activity of RHO-like proteins and connects extracellular signals to cytoskeletal activities. Acts as a GDP-dissociation stimulator protein that stimulates the GDP-GTP exchange activity of RHO-like GTPases and activates them. Mediates extracellular laminin signals to activate Rac1, contributing to neurite growth. Involved in lamellipodial formation and advancement of the growth cone of embryonic hippocampal neurons. Promotes migration of neurons in the cerebral cortex. When overexpressed, induces membrane ruffling accompanied by the accumulation of actin filaments along the altered plasma membrane (By similarity). Activates specifically RAC1, but not CDC42 and RHOA. {ECO:0000250, ECO:0000269|PubMed:10512681}. |
Q8IWE2 | FAM114A1 | S40 | ochoa | Protein NOXP20 (Nervous system overexpressed protein 20) (Protein FAM114A1) | May play a role in neuronal cell development. {ECO:0000250}. |
Q8IWZ3 | ANKHD1 | S198 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IXK0 | PHC2 | S737 | ochoa | Polyhomeotic-like protein 2 (hPH2) (Early development regulatory protein 2) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. |
Q8IXS8 | HYCC2 | S491 | ochoa | Hyccin 2 | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}. |
Q8IY63 | AMOTL1 | S809 | ochoa | Angiomotin-like protein 1 | Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}. |
Q8IYI6 | EXOC8 | S147 | ochoa | Exocyst complex component 8 (Exocyst complex 84 kDa subunit) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. |
Q8IZL8 | PELP1 | S25 | ochoa | Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) | Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}. |
Q8N157 | AHI1 | S1005 | ochoa | Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) | Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}. |
Q8N163 | CCAR2 | S804 | ochoa | Cell cycle and apoptosis regulator protein 2 (Cell division cycle and apoptosis regulator protein 2) (DBIRD complex subunit KIAA1967) (Deleted in breast cancer gene 1 protein) (DBC-1) (DBC.1) (NET35) (p30 DBC) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions (PubMed:22446626). Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acetylation and p53-mediated apoptosis (PubMed:18235501, PubMed:18235502, PubMed:23352644). Inhibits SUV39H1 methyltransferase activity (PubMed:19218236). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). Plays a critical role in maintaining genomic stability and cellular integrity following UV-induced genotoxic stress (PubMed:23398316). Regulates the circadian expression of the core clock components NR1D1 and BMAL1 (PubMed:23398316). Enhances the transcriptional repressor activity of NR1D1 through stabilization of NR1D1 protein levels by preventing its ubiquitination and subsequent degradation (PubMed:23398316). Represses the ligand-dependent transcriptional activation function of ESR2 (PubMed:20074560). Acts as a regulator of PCK1 expression and gluconeogenesis by a mechanism that involves, at least in part, both NR1D1 and SIRT1 (PubMed:24415752). Negatively regulates the deacetylase activity of HDAC3 and can alter its subcellular localization (PubMed:21030595). Positively regulates the beta-catenin pathway (canonical Wnt signaling pathway) and is required for MCC-mediated repression of the beta-catenin pathway (PubMed:24824780). Represses ligand-dependent transcriptional activation function of NR1H2 and NR1H3 and inhibits the interaction of SIRT1 with NR1H3 (PubMed:25661920). Plays an important role in tumor suppression through p53/TP53 regulation; stabilizes p53/TP53 by affecting its interaction with ubiquitin ligase MDM2 (PubMed:25732823). Represses the transcriptional activator activity of BRCA1 (PubMed:20160719). Inhibits SIRT1 in a CHEK2 and PSEM3-dependent manner and inhibits the activity of CHEK2 in vitro (PubMed:25361978). {ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19218236, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:22446626, ECO:0000269|PubMed:23352644, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:25732823}. |
Q8N1F7 | NUP93 | S165 | ochoa | Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor nucleoporins, but not NUP153 and TPR, to the NPC. During renal development, regulates podocyte migration and proliferation through SMAD4 signaling (PubMed:26878725). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:15703211, ECO:0000269|PubMed:26878725, ECO:0000269|PubMed:9348540}. |
Q8N3K9 | CMYA5 | S1157 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3K9 | CMYA5 | S1158 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3K9 | CMYA5 | S2092 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3V7 | SYNPO | S289 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N5C8 | TAB3 | S672 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N612 | FHIP1B | S855 | ochoa | FHF complex subunit HOOK-interacting protein 1B (FHIP1B) (FTS- and Hook-interacting protein) (FHIP) | Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q8N684 | CPSF7 | S325 | ochoa | Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}. |
Q8N6S5 | ARL6IP6 | S71 | ochoa | ADP-ribosylation factor-like protein 6-interacting protein 6 (ARL-6-interacting protein 6) (Aip-6) (Phosphonoformate immuno-associated protein 1) | None |
Q8N884 | CGAS | S64 | ochoa | Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) | Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}. |
Q8NBA8 | DTWD2 | S51 | ochoa | tRNA-uridine aminocarboxypropyltransferase 2 (EC 2.5.1.25) (DTW domain-containing protein 2) | Catalyzes the formation of 3-(3-amino-3-carboxypropyl)uridine (acp3U) at position 20a in the D-loop of several cytoplasmic tRNAs (acp3U(20a)) (PubMed:31804502, PubMed:39173631). Also has a weak activity to form acp3U at position 20 in the D-loop of tRNAs (acp3U(20)) (PubMed:31804502). Involved in glycoRNA biosynthesis by mediating formation of acp3U, which acts as an attachment site for N-glycans on tRNAs (PubMed:39173631). GlycoRNAs consist of RNAs modified with secretory N-glycans that are presented on the cell surface (PubMed:39173631). {ECO:0000269|PubMed:31804502, ECO:0000269|PubMed:39173631}. |
Q8NBR6 | MINDY2 | S26 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) | Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}. |
Q8ND82 | ZNF280C | S114 | ochoa | Zinc finger protein 280C (Suppressor of hairy wing homolog 3) (Zinc finger protein 633) | May function as a transcription factor. |
Q8NE71 | ABCF1 | S287 | ochoa | ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) | Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}. |
Q8NEV8 | EXPH5 | S630 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEZ4 | KMT2C | S2011 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NFP9 | NBEA | S1267 | ochoa | Neurobeachin (Lysosomal-trafficking regulator 2) (Protein BCL8B) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the membrane. May anchor the kinase to cytoskeletal and/or organelle-associated proteins (By similarity). {ECO:0000250}. |
Q8NG08 | HELB | S64 | ochoa | DNA helicase B (hDHB) (EC 3.6.4.12) | 5'-3' DNA helicase involved in DNA damage response by acting as an inhibitor of DNA end resection (PubMed:25617833, PubMed:26774285). Recruitment to single-stranded DNA (ssDNA) following DNA damage leads to inhibit the nucleases catalyzing resection, such as EXO1, BLM and DNA2, possibly via the 5'-3' ssDNA translocase activity of HELB (PubMed:26774285). As cells approach S phase, DNA end resection is promoted by the nuclear export of HELB following phosphorylation (PubMed:26774285). Acts independently of TP53BP1 (PubMed:26774285). Unwinds duplex DNA with 5'-3' polarity. Has single-strand DNA-dependent ATPase and DNA helicase activities. Prefers ATP and dATP as substrates (PubMed:12181327). During S phase, may facilitate cellular recovery from replication stress (PubMed:22194613). {ECO:0000269|PubMed:12181327, ECO:0000269|PubMed:22194613, ECO:0000269|PubMed:25617833, ECO:0000269|PubMed:26774285}. |
Q8NI35 | PATJ | S351 | ochoa | InaD-like protein (Inadl protein) (hINADL) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight junctions) | Scaffolding protein that facilitates the localization of proteins to the cell membrane (PubMed:11927608, PubMed:16678097, PubMed:22006950). Required for the correct formation of tight junctions and epithelial apico-basal polarity (PubMed:11927608, PubMed:16678097). Acts (via its L27 domain) as an apical connector and elongation factor for multistranded TJP1/ZO1 condensates that form a tight junction belt, thereby required for the formation of the tight junction-mediated cell barrier (By similarity). Positively regulates epithelial cell microtubule elongation and cell migration, possibly via facilitating localization of PRKCI/aPKC and PAR3D/PAR3 at the leading edge of migrating cells (By similarity). Plays a role in the correct reorientation of the microtubule-organizing center during epithelial migration (By similarity). May regulate the surface expression and/or function of ASIC3 in sensory neurons (By similarity). May recruit ARHGEF18 to apical cell-cell boundaries (PubMed:22006950). {ECO:0000250|UniProtKB:E2QYC9, ECO:0000250|UniProtKB:Q63ZW7, ECO:0000269|PubMed:11927608, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:22006950}. |
Q8TDH9 | BLOC1S5 | S25 | ochoa | Biogenesis of lysosome-related organelles complex 1 subunit 5 (BLOC-1 subunit 5) (Protein Muted homolog) | Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes (PubMed:32565547). In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Plays a role in intracellular vesicle trafficking. {ECO:0000269|PubMed:17182842, ECO:0000269|PubMed:32565547}. |
Q8TEA7 | TBCK | S409 | ochoa | TBC domain-containing protein kinase-like protein (FERRY endosomal RAB5 effector complex subunit 1) (Fy-1) | Component of the FERRY complex (Five-subunit Endosomal Rab5 and RNA/ribosome intermediary) (PubMed:37267905). The FERRY complex directly interacts with mRNAs and RAB5A, and functions as a RAB5A effector involved in the localization and the distribution of specific mRNAs most likely by mediating their endosomal transport. The complex recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction (PubMed:37267905). Also involved in the modulation of mTOR signaling and expression of mTOR complex components (PubMed:23977024, PubMed:27040691). Involved in the control of actin-cytoskeleton organization (PubMed:23977024). {ECO:0000269|PubMed:23977024, ECO:0000269|PubMed:24576458, ECO:0000269|PubMed:27040691, ECO:0000269|PubMed:37267905}. |
Q8TF17 | SH3TC2 | S886 | ochoa | SH3 domain and tetratricopeptide repeat-containing protein 2 | None |
Q8TF72 | SHROOM3 | S1137 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WUD1 | RAB2B | S192 | ochoa | Ras-related protein Rab-2B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology. Regulates the compacted morphology of the Golgi (Probable). Promotes cytosolic DNA-induced innate immune responses. Regulates IFN responses against DNA viruses by regulating the CGAS-STING signaling axis (By similarity). Together with RAB2A redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000250|UniProtKB:P59279, ECO:0000269|PubMed:28483915, ECO:0000305|PubMed:26209634}. |
Q8WUF5 | PPP1R13L | S225 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WWH5 | TRUB1 | S134 | ochoa | Pseudouridylate synthase TRUB1 (EC 5.4.99.-) (TruB pseudouridine synthase homolog 1) (tRNA pseudouridine 55 synthase TRUB1) (Psi55 synthase TRUB1) (EC 5.4.99.25) | Pseudouridine synthase that catalyzes pseudouridylation of mRNAs and tRNAs (PubMed:28073919, PubMed:31477916, PubMed:32926445). Mediates pseudouridylation of mRNAs with the consensus sequence 5'-GUUCNANNC-3', harboring a stem-loop structure (PubMed:28073919, PubMed:31477916). Constitutes the major pseudouridine synthase acting on mRNAs (PubMed:28073919). Also catalyzes pseudouridylation of some tRNAs, including synthesis of pseudouridine(55) from uracil-55, in the psi GC loop of a subset of tRNAs (PubMed:32926445, PubMed:33023933). Promotes the processing of pri-let-7 microRNAs (pri-miRNAs) independently of its RNA pseudouridylate synthase activity (PubMed:32926445). Acts by binding to the stem-loop structure on pri-let-7, preventing LIN28-binding (LIN28A and/or LIN28B), thereby enhancing the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation (PubMed:32926445). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:32926445, ECO:0000269|PubMed:33023933}. |
Q8WXE0 | CASKIN2 | S825 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q8WXI9 | GATAD2B | S494 | ochoa | Transcriptional repressor p66-beta (GATA zinc finger domain-containing protein 2B) (p66/p68) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2A (PubMed:16415179). Targets MBD3 to discrete loci in the nucleus (PubMed:11756549). May play a role in synapse development (PubMed:23644463). {ECO:0000269|PubMed:11756549, ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:23644463, ECO:0000269|PubMed:28977666}. |
Q8WY36 | BBX | S917 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q8WYP5 | AHCTF1 | S1629 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WZ42 | TTN | S4099 | psp | Titin (EC 2.7.11.1) (Connectin) (Rhabdomyosarcoma antigen MU-RMS-40.14) | Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase. {ECO:0000269|PubMed:11846417, ECO:0000269|PubMed:9804419}. |
Q8WZ75 | ROBO4 | S896 | ochoa | Roundabout homolog 4 (Magic roundabout) | Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}. |
Q92539 | LPIN2 | S186 | ochoa | Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) | Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}. |
Q92539 | LPIN2 | S187 | ochoa | Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) | Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}. |
Q92574 | TSC1 | S270 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92614 | MYO18A | S132 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92619 | ARHGAP45 | S84 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92619 | ARHGAP45 | S880 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92630 | DYRK2 | S442 | psp | Dual specificity tyrosine-phosphorylation-regulated kinase 2 (EC 2.7.12.1) | Serine/threonine-protein kinase involved in the regulation of the mitotic cell cycle, cell proliferation, apoptosis, organization of the cytoskeleton and neurite outgrowth. Functions in part via its role in ubiquitin-dependent proteasomal protein degradation. Functions downstream of ATM and phosphorylates p53/TP53 at 'Ser-46', and thereby contributes to the induction of apoptosis in response to DNA damage. Phosphorylates NFATC1, and thereby inhibits its accumulation in the nucleus and its transcription factor activity. Phosphorylates EIF2B5 at 'Ser-544', enabling its subsequent phosphorylation and inhibition by GSK3B. Likewise, phosphorylation of NFATC1, CRMP2/DPYSL2 and CRMP4/DPYSL3 promotes their subsequent phosphorylation by GSK3B. May play a general role in the priming of GSK3 substrates. Inactivates GYS1 by phosphorylation at 'Ser-641', and potentially also a second phosphorylation site, thus regulating glycogen synthesis. Mediates EDVP E3 ligase complex formation and is required for the phosphorylation and subsequent degradation of KATNA1. Phosphorylates TERT at 'Ser-457', promoting TERT ubiquitination by the EDVP complex. Phosphorylates SIAH2, and thereby increases its ubiquitin ligase activity. Promotes the proteasomal degradation of MYC and JUN, and thereby regulates progress through the mitotic cell cycle and cell proliferation. Promotes proteasomal degradation of GLI2 and GLI3, and thereby plays a role in smoothened and sonic hedgehog signaling. Plays a role in cytoskeleton organization and neurite outgrowth via its phosphorylation of DCX and DPYSL2. Phosphorylates CRMP2/DPYSL2, CRMP4/DPYSL3, DCX, EIF2B5, EIF4EBP1, GLI2, GLI3, GYS1, JUN, MDM2, MYC, NFATC1, p53/TP53, TAU/MAPT and KATNA1. Can phosphorylate histone H1, histone H3 and histone H2B (in vitro). Can phosphorylate CARHSP1 (in vitro). {ECO:0000269|PubMed:11311121, ECO:0000269|PubMed:12588975, ECO:0000269|PubMed:14593110, ECO:0000269|PubMed:15910284, ECO:0000269|PubMed:16511445, ECO:0000269|PubMed:16611631, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:18599021, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:22307329, ECO:0000269|PubMed:22878263, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:9748265}. |
Q92667 | AKAP1 | S274 | ochoa | A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) | Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}. |
Q92674 | CENPI | S22 | ochoa | Centromere protein I (CENP-I) (FSH primary response protein 1) (Follicle-stimulating hormone primary response protein) (Interphase centromere complex protein 19) (Leucine-rich primary response protein 1) | Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. Required for the localization of CENPF, MAD1L1 and MAD2 (MAD2L1 or MAD2L2) to kinetochores. Involved in the response of gonadal tissues to follicle-stimulating hormone. {ECO:0000269|PubMed:12640463, ECO:0000269|PubMed:16622420}. |
Q92766 | RREB1 | S848 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92793 | CREBBP | S976 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92841 | DDX17 | S52 | ochoa | Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72) | As an RNA helicase, unwinds RNA and alters RNA structures through ATP binding and hydrolysis. Involved in multiple cellular processes, including pre-mRNA splicing, alternative splicing, ribosomal RNA processing and miRNA processing, as well as transcription regulation. Regulates the alternative splicing of exons exhibiting specific features (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). For instance, promotes the inclusion of AC-rich alternative exons in CD44 transcripts (PubMed:12138182). This function requires the RNA helicase activity (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). Affects NFAT5 and histone macro-H2A.1/MACROH2A1 alternative splicing in a CDK9-dependent manner (PubMed:22266867, PubMed:26209609). In NFAT5, promotes the introduction of alternative exon 4, which contains 2 stop codons and may target NFAT5 exon 4-containing transcripts to nonsense-mediated mRNA decay, leading to the down-regulation of NFAT5 protein (PubMed:22266867). Affects splicing of mediators of steroid hormone signaling pathway, including kinases that phosphorylates ESR1, such as CDK2, MAPK1 and GSK3B, and transcriptional regulators, such as CREBBP, MED1, NCOR1 and NCOR2. By affecting GSK3B splicing, participates in ESR1 and AR stabilization (PubMed:24275493). In myoblasts and epithelial cells, cooperates with HNRNPH1 to control the splicing of specific subsets of exons (PubMed:24910439). In addition to binding mature mRNAs, also interacts with certain pri-microRNAs, including MIR663/miR-663a, MIR99B/miR-99b, and MIR6087/miR-6087 (PubMed:25126784). Binds pri-microRNAs on the 3' segment flanking the stem loop via the 5'-[ACG]CAUC[ACU]-3' consensus sequence (PubMed:24581491). Required for the production of subsets of microRNAs, including MIR21 and MIR125B1 (PubMed:24581491, PubMed:27478153). May be involved not only in microRNA primary transcript processing, but also stabilization (By similarity). Participates in MYC down-regulation at high cell density through the production of MYC-targeting microRNAs (PubMed:24581491). Along with DDX5, may be involved in the processing of the 32S intermediate into the mature 28S ribosomal RNA (PubMed:17485482). Promoter-specific transcription regulator, functioning as a coactivator or corepressor depending on the context of the promoter and the transcriptional complex in which it exists (PubMed:15298701). Enhances NFAT5 transcriptional activity (PubMed:22266867). Synergizes with TP53 in the activation of the MDM2 promoter; this activity requires acetylation on lysine residues (PubMed:17226766, PubMed:19995069, PubMed:20663877). May also coactivate MDM2 transcription through a TP53-independent pathway (PubMed:17226766). Coactivates MMP7 transcription (PubMed:17226766). Along with CTNNB1, coactivates MYC, JUN, FOSL1 and cyclin D1/CCND1 transcription (PubMed:17699760). Alone or in combination with DDX5 and/or SRA1 non-coding RNA, plays a critical role in promoting the assembly of proteins required for the formation of the transcription initiation complex and chromatin remodeling leading to coactivation of MYOD1-dependent transcription. This helicase-independent activity is required for skeletal muscle cells to properly differentiate into myotubes (PubMed:17011493, PubMed:24910439). During epithelial-to-mesenchymal transition, coregulates SMAD-dependent transcriptional activity, directly controlling key effectors of differentiation, including miRNAs which in turn directly repress its expression (PubMed:24910439). Plays a role in estrogen and testosterone signaling pathway at several levels. Mediates the use of alternative promoters in estrogen-responsive genes and regulates transcription and splicing of a large number of steroid hormone target genes (PubMed:19995069, PubMed:20406972, PubMed:20663877, PubMed:24275493). Contrary to splicing regulation activity, transcriptional coregulation of the estrogen receptor ESR1 is helicase-independent (PubMed:19718048, PubMed:24275493). Plays a role in innate immunity. Specifically restricts bunyavirus infection, including Rift Valley fever virus (RVFV) or La Crosse virus (LACV), but not vesicular stomatitis virus (VSV), in an interferon- and DROSHA-independent manner (PubMed:25126784). Binds to RVFV RNA, likely via structured viral RNA elements (PubMed:25126784). Promotes mRNA degradation mediated by the antiviral zinc-finger protein ZC3HAV1, in an ATPase-dependent manner (PubMed:18334637). {ECO:0000250|UniProtKB:Q501J6, ECO:0000269|PubMed:12138182, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766, ECO:0000269|PubMed:17485482, ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:18334637, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:19995069, ECO:0000269|PubMed:20406972, ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:23022728, ECO:0000269|PubMed:24275493, ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24910439, ECO:0000269|PubMed:25126784, ECO:0000269|PubMed:26209609, ECO:0000269|PubMed:27478153, ECO:0000305}. |
Q92974 | ARHGEF2 | S107 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q93052 | LPP | S313 | ochoa | Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) | May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}. |
Q969S3 | ZNF622 | S141 | ochoa | Cytoplasmic 60S subunit biogenesis factor ZNF622 (Zinc finger protein 622) (Zinc finger-like protein 9) | Pre-60S-associated cytoplasmic factor involved in the cytoplasmic maturation of the 60S subunit. {ECO:0000269|PubMed:33711283}. |
Q96AE4 | FUBP1 | S52 | ochoa | Far upstream element-binding protein 1 (FBP) (FUSE-binding protein 1) (DNA helicase V) (hDH V) | Regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. May act both as activator and repressor of transcription. {ECO:0000269|PubMed:8125259}. |
Q96AQ6 | PBXIP1 | S469 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96AY4 | TTC28 | S2366 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96BH1 | RNF25 | S302 | ochoa | E3 ubiquitin-protein ligase RNF25 (EC 2.3.2.27) (RING finger protein 25) (RING finger protein AO7) | E3 ubiquitin-protein ligase that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:36638793, PubMed:37651229, PubMed:37951216). Catalyzes ubiquitination of RPS27A in response to ribosome collisions, promoting activation of RNF14 (PubMed:36638793). RNF25 catalyzes ubiquitination of other ribosomal proteins on stalled ribosomes, such as RPL0, RPL1, RPL12, RPS13 and RPS17 (PubMed:36638793). Also involved in ubiquitination and degradation of stalled ETF1/eRF1 (PubMed:36638793, PubMed:37651229). Independently of its function in the response to stalled ribosomes, mediates ubiquitination and subsequent proteasomal degradation of NKD2 (By similarity). May also stimulate transcription mediated by NF-kappa-B via its interaction with RELA/p65 (PubMed:12748188). {ECO:0000250|UniProtKB:Q9QZR0, ECO:0000269|PubMed:12748188, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951216}. |
Q96C57 | CUSTOS | S61 | ochoa | Protein CUSTOS | Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}. |
Q96EC8 | YIPF6 | S24 | ochoa | Protein YIPF6 (YIP1 family member 6) | May be required for stable YIPF1 and YIPF2 protein expression. {ECO:0000269|PubMed:28286305}. |
Q96F24 | NRBF2 | S105 | ochoa | Nuclear receptor-binding factor 2 (NRBF-2) (Comodulator of PPAR and RXR) | May modulate transcriptional activation by target nuclear receptors. Can act as transcriptional activator (in vitro). {ECO:0000269|PubMed:15610520}.; FUNCTION: Involved in starvation-induced autophagy probably by its association with PI3K complex I (PI3KC3-C1). However, effects has been described variably. Involved in the induction of starvation-induced autophagy (PubMed:24785657). Stabilizes PI3KC3-C1 assembly and enhances ATG14-linked lipid kinase activity of PIK3C3 (By similarity). Proposed to negatively regulate basal and starvation-induced autophagy and to inhibit PIK3C3 activity by modulating interactions in PI3KC3-C1 (PubMed:25086043). May be involved in autophagosome biogenesis (PubMed:25086043). May play a role in neural progenitor cell survival during differentiation (By similarity). {ECO:0000250|UniProtKB:Q8VCQ3, ECO:0000269|PubMed:24785657, ECO:0000269|PubMed:25086043}. |
Q96FA3 | PELI1 | S70 | psp | E3 ubiquitin-protein ligase pellino homolog 1 (Pellino-1) (EC 2.3.2.27) (Pellino-related intracellular-signaling molecule) (RING-type E3 ubiquitin transferase pellino homolog 1) | E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:12496252, PubMed:17675297, PubMed:29883609, PubMed:30952868). Involved in the TLR and IL-1 signaling pathways via interaction with the complex containing IRAK kinases and TRAF6 (PubMed:12496252, PubMed:17675297). Acts as a positive regulator of inflammatory response in microglia through activation of NF-kappa-B and MAP kinase (By similarity). Mediates 'Lys-63'-linked polyubiquitination of IRAK1 allowing subsequent NF-kappa-B activation (PubMed:12496252, PubMed:17675297). Conjugates 'Lys-63'-linked ubiquitin chains to the adapter protein ASC/PYCARD, which in turn is crucial for NLRP3 inflammasome activation (PubMed:34706239). Mediates 'Lys-48'-linked polyubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation; preferentially recognizes and mediates the degradation of the 'Thr-182' phosphorylated form of RIPK3 (PubMed:29883609). Negatively regulates necroptosis by reducing RIPK3 expression (PubMed:29883609). Mediates 'Lys-63'-linked ubiquitination of RIPK1 (PubMed:29883609). Following phosphorylation by ATM, catalyzes 'Lys-63'-linked ubiquitination of NBN, promoting DNA repair via homologous recombination (PubMed:30952868). Negatively regulates activation of the metabolic mTORC1 signaling pathway by mediating 'Lys-63'-linked ubiquitination of mTORC1-inhibitory protein TSC1 and thereby promoting TSC1/TSC2 complex stability (PubMed:33215753). {ECO:0000250|UniProtKB:Q8C669, ECO:0000269|PubMed:12496252, ECO:0000269|PubMed:17675297, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:33215753}. |
Q96FA3 | PELI1 | S76 | psp | E3 ubiquitin-protein ligase pellino homolog 1 (Pellino-1) (EC 2.3.2.27) (Pellino-related intracellular-signaling molecule) (RING-type E3 ubiquitin transferase pellino homolog 1) | E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:12496252, PubMed:17675297, PubMed:29883609, PubMed:30952868). Involved in the TLR and IL-1 signaling pathways via interaction with the complex containing IRAK kinases and TRAF6 (PubMed:12496252, PubMed:17675297). Acts as a positive regulator of inflammatory response in microglia through activation of NF-kappa-B and MAP kinase (By similarity). Mediates 'Lys-63'-linked polyubiquitination of IRAK1 allowing subsequent NF-kappa-B activation (PubMed:12496252, PubMed:17675297). Conjugates 'Lys-63'-linked ubiquitin chains to the adapter protein ASC/PYCARD, which in turn is crucial for NLRP3 inflammasome activation (PubMed:34706239). Mediates 'Lys-48'-linked polyubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation; preferentially recognizes and mediates the degradation of the 'Thr-182' phosphorylated form of RIPK3 (PubMed:29883609). Negatively regulates necroptosis by reducing RIPK3 expression (PubMed:29883609). Mediates 'Lys-63'-linked ubiquitination of RIPK1 (PubMed:29883609). Following phosphorylation by ATM, catalyzes 'Lys-63'-linked ubiquitination of NBN, promoting DNA repair via homologous recombination (PubMed:30952868). Negatively regulates activation of the metabolic mTORC1 signaling pathway by mediating 'Lys-63'-linked ubiquitination of mTORC1-inhibitory protein TSC1 and thereby promoting TSC1/TSC2 complex stability (PubMed:33215753). {ECO:0000250|UniProtKB:Q8C669, ECO:0000269|PubMed:12496252, ECO:0000269|PubMed:17675297, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:33215753}. |
Q96G42 | KLHDC7B | S517 | ochoa | Kelch domain-containing protein 7B | None |
Q96GS4 | BORCS6 | S160 | ochoa | BLOC-1-related complex subunit 6 (Lysosome-dispersing protein) (Lyspersin) | As part of the BORC complex may play a role in lysosomes movement and localization at the cell periphery. Associated with the cytosolic face of lysosomes, the BORC complex may recruit ARL8B and couple lysosomes to microtubule plus-end-directed kinesin motor. {ECO:0000269|PubMed:25898167}. |
Q96HW7 | INTS4 | S345 | ochoa | Integrator complex subunit 4 (Int4) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:29471365, PubMed:33243860, PubMed:33548203, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Within the integrator complex, INTS4 acts as an scaffold that links INTS9 and INTS11 (PubMed:29471365, PubMed:33548203). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:29471365, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33548203, ECO:0000269|PubMed:38570683}. |
Q96JH8 | RADIL | S962 | ochoa | Ras-associating and dilute domain-containing protein | Downstream effector of Rap required for cell adhesion and migration of neural crest precursors during development. {ECO:0000269|PubMed:17704304}. |
Q96KP4 | CNDP2 | S58 | ochoa | Cytosolic non-specific dipeptidase (EC 3.4.13.18) (CNDP dipeptidase 2) (Glutamate carboxypeptidase-like protein 1) (Peptidase A) (Threonyl dipeptidase) | Catalyzes the peptide bond hydrolysis in dipeptides, displaying a non-redundant activity toward threonyl dipeptides (By similarity). Mediates threonyl dipeptide catabolism in a tissue-specific way (By similarity). Has high dipeptidase activity toward cysteinylglycine, an intermediate metabolite in glutathione metabolism (PubMed:12473676, PubMed:19346245). Metabolizes N-lactoyl-amino acids, both through hydrolysis to form lactic acid and amino acids, as well as through their formation by reverse proteolysis (PubMed:25964343). Plays a role in the regulation of cell cycle arrest and apoptosis (PubMed:17121880, PubMed:24395568). {ECO:0000250|UniProtKB:Q9D1A2, ECO:0000269|PubMed:12473676, ECO:0000269|PubMed:17121880, ECO:0000269|PubMed:19346245, ECO:0000269|PubMed:24395568, ECO:0000269|PubMed:25964343}. |
Q96KQ7 | EHMT2 | S173 | ochoa | Histone-lysine N-methyltransferase EHMT2 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 2) (HLA-B-associated transcript 8) (Histone H3-K9 methyltransferase 3) (H3-K9-HMTase 3) (Lysine N-methyltransferase 1C) (Protein G9a) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also mediates monomethylation of 'Lys-56' of histone H3 (H3K56me1) in G1 phase, leading to promote interaction between histone H3 and PCNA and regulating DNA replication. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. May also methylate histone H1. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Also methylates CDYL, WIZ, ACIN1, DNMT1, HDAC1, ERCC6, KLF12 and itself. {ECO:0000250|UniProtKB:Q9Z148, ECO:0000269|PubMed:11316813, ECO:0000269|PubMed:18438403, ECO:0000269|PubMed:20084102, ECO:0000269|PubMed:20118233, ECO:0000269|PubMed:22387026, ECO:0000269|PubMed:8457211}. |
Q96MY1 | NOL4L | S294 | ochoa | Nucleolar protein 4-like | None |
Q96PE2 | ARHGEF17 | S829 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PE3 | INPP4A | S487 | ochoa | Inositol polyphosphate-4-phosphatase type I A (Inositol polyphosphate 4-phosphatase type I) (Type I inositol 3,4-bisphosphate 4-phosphatase) (EC 3.1.3.66) | Catalyzes the hydrolysis of the 4-position phosphate of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) (PubMed:15716355, PubMed:20463662). Also catalyzes inositol 1,3,4-trisphosphate and inositol 1,4-bisphosphate (By similarity). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (By similarity) (PubMed:30071275). May protect neurons from excitotoxic cell death by regulating the synaptic localization of cell surface N-methyl-D-aspartate-type glutamate receptors (NMDARs) and NMDAR-mediated excitatory postsynaptic current (By similarity). {ECO:0000250|UniProtKB:Q62784, ECO:0000250|UniProtKB:Q9EPW0, ECO:0000269|PubMed:15716355, ECO:0000269|PubMed:20463662, ECO:0000269|PubMed:30071275}.; FUNCTION: [Isoform 4]: Displays no 4-phosphatase activity for PtdIns(3,4)P2, Ins(3,4)P2, or Ins(1,3,4)P3. {ECO:0000269|PubMed:9295334}. |
Q96PK6 | RBM14 | S280 | ochoa | RNA-binding protein 14 (Paraspeckle protein 2) (PSP2) (RNA-binding motif protein 14) (RRM-containing coactivator activator/modulator) (Synaptotagmin-interacting protein) (SYT-interacting protein) | Isoform 1 may function as a nuclear receptor coactivator, enhancing transcription through other coactivators such as NCOA6 and CITED1. Isoform 2, functions as a transcriptional repressor, modulating transcriptional activities of coactivators including isoform 1, NCOA6 and CITED1 (PubMed:11443112). Regulates centriole biogenesis by suppressing the formation of aberrant centriolar protein complexes in the cytoplasm and thus preserving mitotic spindle integrity. Prevents the formation of the STIL-CPAP complex (which can induce the formation of aberrant centriolar protein complexes) by interfering with the interaction of STIL with CPAP (PubMed:25385835). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also involved in the regulation of pre-mRNA alternative splicing (PubMed:37548402). {ECO:0000269|PubMed:11443112, ECO:0000269|PubMed:25385835, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:37548402}. |
Q96PN7 | TRERF1 | S618 | ochoa | Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) | Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}. |
Q96PN7 | TRERF1 | S619 | ochoa | Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) | Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}. |
Q96QE3 | ATAD5 | S817 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96R06 | SPAG5 | S197 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RG2 | PASK | S1289 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RS6 | NUDCD1 | S388 | ochoa | NudC domain-containing protein 1 (Chronic myelogenous leukemia tumor antigen 66) (Tumor antigen CML66) | None |
Q96T37 | RBM15 | S365 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T60 | PNKP | S143 | ochoa | Bifunctional polynucleotide phosphatase/kinase (DNA 5'-kinase/3'-phosphatase) (Polynucleotide kinase-3'-phosphatase) [Includes: Polynucleotide 3'-phosphatase (EC 3.1.3.32) (2'(3')-polynucleotidase); Polynucleotide 5'-hydroxyl-kinase (EC 2.7.1.78)] | Plays a key role in the repair of DNA damage, functioning as part of both the non-homologous end-joining (NHEJ) and base excision repair (BER) pathways (PubMed:10446192, PubMed:10446193, PubMed:15385968, PubMed:20852255, PubMed:28453785). Through its two catalytic activities, PNK ensures that DNA termini are compatible with extension and ligation by either removing 3'-phosphates from, or by phosphorylating 5'-hydroxyl groups on, the ribose sugar of the DNA backbone (PubMed:10446192, PubMed:10446193). {ECO:0000269|PubMed:10446192, ECO:0000269|PubMed:10446193, ECO:0000269|PubMed:15385968, ECO:0000269|PubMed:20852255, ECO:0000269|PubMed:28453785}. |
Q99490 | AGAP2 | S638 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) | GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}. |
Q99538 | LGMN | S368 | ochoa | Legumain (EC 3.4.22.34) (Asparaginyl endopeptidase) (AEP) (Protease, cysteine 1) | Has a strict specificity for hydrolysis of asparaginyl bonds (PubMed:23776206). Can also cleave aspartyl bonds slowly, especially under acidic conditions (PubMed:23776206). Involved in the processing of proteins for MHC class II antigen presentation in the lysosomal/endosomal system (PubMed:9872320). Also involved in MHC class I antigen presentation in cross-presenting dendritic cells by mediating cleavage and maturation of Perforin-2 (MPEG1), thereby promoting antigen translocation in the cytosol (By similarity). Required for normal lysosomal protein degradation in renal proximal tubules (By similarity). Required for normal degradation of internalized EGFR (By similarity). Plays a role in the regulation of cell proliferation via its role in EGFR degradation (By similarity). {ECO:0000250|UniProtKB:O89017, ECO:0000269|PubMed:23776206, ECO:0000269|PubMed:9872320}. |
Q99549 | MPHOSPH8 | S51 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99623 | PHB2 | S39 | psp | Prohibitin-2 (B-cell receptor-associated protein BAP37) (D-prohibitin) (Repressor of estrogen receptor activity) | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors and sex steroid hormones in the nucleus. {ECO:0000269|PubMed:10359819, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:24003225, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Also regulates cytochrome-c oxidase assembly (COX) and mitochondrial respiration (PubMed:11302691, PubMed:20959514). Binding to sphingoid 1-phosphate (SPP) modulates its regulator activity (PubMed:11302691, PubMed:20959514). Has a key role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305|PubMed:25904163}.; FUNCTION: In the nucleus, serves as transcriptional co-regulator (Probable). Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases. Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000305|PubMed:25904163}.; FUNCTION: In the plasma membrane, is involved in IGFBP6-induced cell migration (PubMed:24003225). Cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates. Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:24003225}.; FUNCTION: (Microbial infection) Involved in human enterovirus 71/EV-71 infection by enhancing the autophagy mechanism during the infection. {ECO:0000269|PubMed:32276428}. |
Q99623 | PHB2 | S267 | ochoa | Prohibitin-2 (B-cell receptor-associated protein BAP37) (D-prohibitin) (Repressor of estrogen receptor activity) | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors and sex steroid hormones in the nucleus. {ECO:0000269|PubMed:10359819, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:24003225, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Also regulates cytochrome-c oxidase assembly (COX) and mitochondrial respiration (PubMed:11302691, PubMed:20959514). Binding to sphingoid 1-phosphate (SPP) modulates its regulator activity (PubMed:11302691, PubMed:20959514). Has a key role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305|PubMed:25904163}.; FUNCTION: In the nucleus, serves as transcriptional co-regulator (Probable). Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases. Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000305|PubMed:25904163}.; FUNCTION: In the plasma membrane, is involved in IGFBP6-induced cell migration (PubMed:24003225). Cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates. Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:24003225}.; FUNCTION: (Microbial infection) Involved in human enterovirus 71/EV-71 infection by enhancing the autophagy mechanism during the infection. {ECO:0000269|PubMed:32276428}. |
Q99759 | MAP3K3 | S520 | psp | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q99952 | PTPN18 | S390 | ochoa | Tyrosine-protein phosphatase non-receptor type 18 (EC 3.1.3.48) (Brain-derived phosphatase) | Differentially dephosphorylate autophosphorylated tyrosine kinases which are known to be overexpressed in tumor tissues. |
Q99959 | PKP2 | S197 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q9BQ15 | NABP2 | S134 | psp | SOSS complex subunit B1 (Nucleic acid-binding protein 2) (Oligonucleotide/oligosaccharide-binding fold-containing protein 2B) (Sensor of single-strand DNA complex subunit B1) (Sensor of ssDNA subunit B1) (SOSS-B1) (Single-stranded DNA-binding protein 1) (hSSB1) | Component of the SOSS complex, a multiprotein complex that functions downstream of the MRN complex to promote DNA repair and G2/M checkpoint (PubMed:25249620). In the SOSS complex, acts as a sensor of single-stranded DNA that binds to single-stranded DNA, in particular to polypyrimidines. The SOSS complex associates with DNA lesions and influences diverse endpoints in the cellular DNA damage response including cell-cycle checkpoint activation, recombinational repair and maintenance of genomic stability. Required for efficient homologous recombination-dependent repair of double-strand breaks (DSBs) and ATM-dependent signaling pathways. {ECO:0000269|PubMed:18449195, ECO:0000269|PubMed:19605351, ECO:0000269|PubMed:19683501, ECO:0000269|PubMed:25249620}. |
Q9BRS2 | RIOK1 | S416 | ochoa | Serine/threonine-protein kinase RIO1 (EC 2.7.11.1) (EC 3.6.1.-) (RIO kinase 1) | Involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in processing of 18S-E pre-rRNA to the mature 18S rRNA. Required for the recycling of NOB1 and PNO1 from the late 40S precursor (PubMed:22072790). The association with the very late 40S subunit intermediate may involve a translation-like checkpoint point cycle preceeding the binding to the 60S ribosomal subunit (By similarity). Despite the protein kinase domain is proposed to act predominantly as an ATPase (By similarity). The catalytic activity regulates its dynamic association with the 40S subunit (By similarity). In addition to its role in ribosomal biogenesis acts as an adapter protein by recruiting NCL/nucleolin the to PRMT5 complex for its symmetrical methylation (PubMed:21081503). {ECO:0000250|UniProtKB:G0S3J5, ECO:0000250|UniProtKB:Q12196, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:22072790}. |
Q9BTC0 | DIDO1 | S501 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BTK6 | PAGR1 | S26 | ochoa | PAXIP1-associated glutamate-rich protein 1 (Glutamate-rich coactivator interacting with SRC1) (GAS) (PAXIP1-associated protein 1) (PTIP-associated protein 1) | Its association with the histone methyltransferase MLL2/MLL3 complex is suggesting a role in epigenetic transcriptional activation. However, in association with PAXIP1/PTIP is proposed to function at least in part independently of the MLL2/MLL3 complex. Proposed to be recruited by PAXIP1 to sites of DNA damage where the PAGR1:PAXIP1 complex is required for cell survival in response to DNA damage independently of the MLL2/MLL3 complex (PubMed:19124460). However, its function in DNA damage has been questioned (By similarity). During immunoglobulin class switching in activated B-cells is involved in transcription regulation of downstream switch regions at the immunoglobulin heavy-chain (Igh) locus independently of the MLL2/MLL3 complex (By similarity). Involved in both estrogen receptor-regulated gene transcription and estrogen-stimulated G1/S cell-cycle transition (PubMed:19039327). Acts as a transcriptional cofactor for nuclear hormone receptors. Inhibits the induction properties of several steroid receptors such as NR3C1, AR and PPARG; the mechanism of inhibition appears to be gene-dependent (PubMed:23161582). {ECO:0000250|UniProtKB:Q99L02, ECO:0000269|PubMed:19039327, ECO:0000269|PubMed:19124460, ECO:0000269|PubMed:23161582, ECO:0000305}. |
Q9BV29 | CCDC32 | S131 | ochoa | Coiled-coil domain-containing protein 32 | Regulates clathrin-mediated endocytsois of cargos such as transferrin probably through the association and modulation of adaptor protein complex 2 (AP-2) (PubMed:33859415). Has a role in ciliogenesis (By similarity). Required for proper cephalic and left/right axis development (PubMed:32307552). {ECO:0000250|UniProtKB:X1WGV5, ECO:0000269|PubMed:32307552, ECO:0000269|PubMed:33859415}. |
Q9BWT7 | CARD10 | S551 | ochoa | Caspase recruitment domain-containing protein 10 (CARD-containing MAGUK protein 3) (Carma 3) | Scaffold protein that plays an important role in mediating the activation of NF-kappa-B via BCL10 or EGFR. {ECO:0000269|PubMed:27991920}. |
Q9BXA9 | SALL3 | S39 | ochoa | Sal-like protein 3 (Zinc finger protein 796) (Zinc finger protein SALL3) (hSALL3) | Probable transcription factor. |
Q9BXI6 | TBC1D10A | S25 | ochoa | TBC1 domain family member 10A (EBP50-PDX interactor of 64 kDa) (EPI64 protein) (Rab27A-GAP-alpha) | GTPase-activating protein (GAP) specific for RAB27A and RAB35 (PubMed:16923811, PubMed:30905672). Does not show GAP activity for RAB2A, RAB3A and RAB4A (PubMed:16923811). {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:30905672}. |
Q9BXS6 | NUSAP1 | S269 | ochoa | Nucleolar and spindle-associated protein 1 (NuSAP) | Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}. |
Q9BYI3 | HYCC1 | S453 | ochoa | Hyccin (Down-regulated by CTNNB1 protein A) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (PubMed:26571211). HYCC1 plays a key role in oligodendrocytes formation, a cell type with expanded plasma membrane that requires generation of PtdIns(4)P (PubMed:26571211). Its role in oligodendrocytes formation probably explains its importance in myelination of the central and peripheral nervous system (PubMed:16951682, PubMed:26571211). May also have a role in the beta-catenin/Lef signaling pathway (Probable). {ECO:0000269|PubMed:16951682, ECO:0000269|PubMed:26571211, ECO:0000305|PubMed:10910037}. |
Q9BZ23 | PANK2 | S189 | ochoa|psp | Pantothenate kinase 2, mitochondrial (hPanK2) (EC 2.7.1.33) (Pantothenic acid kinase 2) [Cleaved into: Pantothenate kinase 2, mitochondrial intermediate form (iPanK2); Pantothenate kinase 2, mitochondrial mature form (mPanK2)] | [Isoform 1]: Mitochondrial isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis (PubMed:15659606, PubMed:16272150, PubMed:17242360, PubMed:17825826). Required for angiogenic activity of umbilical vein of endothelial cells (HUVEC) (PubMed:30221726). {ECO:0000269|PubMed:15659606, ECO:0000269|PubMed:16272150, ECO:0000269|PubMed:17242360, ECO:0000269|PubMed:17825826, ECO:0000269|PubMed:30221726}.; FUNCTION: [Isoform 4]: Cytoplasmic isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:16272150}. |
Q9C0B1 | FTO | S173 | ochoa | Alpha-ketoglutarate-dependent dioxygenase FTO (Fat mass and obesity-associated protein) (U6 small nuclear RNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (EC 1.14.11.-) (U6 small nuclear RNA N(6)-methyladenosine-demethylase FTO) (EC 1.14.11.-) (mRNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (m6A(m)-demethylase FTO) (EC 1.14.11.-) (mRNA N(6)-methyladenosine demethylase FTO) (EC 1.14.11.53) (tRNA N1-methyl adenine demethylase FTO) (EC 1.14.11.-) | RNA demethylase that mediates oxidative demethylation of different RNA species, such as mRNAs, tRNAs and snRNAs, and acts as a regulator of fat mass, adipogenesis and energy homeostasis (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:28002401, PubMed:30197295). Specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:30197295). M6A demethylation by FTO affects mRNA expression and stability (PubMed:30197295). Also able to demethylate m6A in U6 small nuclear RNA (snRNA) (PubMed:30197295). Mediates demethylation of N(6),2'-O-dimethyladenosine cap (m6A(m)), by demethylating the N(6)-methyladenosine at the second transcribed position of mRNAs and U6 snRNA (PubMed:28002401, PubMed:30197295). Demethylation of m6A(m) in the 5'-cap by FTO affects mRNA stability by promoting susceptibility to decapping (PubMed:28002401). Also acts as a tRNA demethylase by removing N(1)-methyladenine from various tRNAs (PubMed:30197295). Has no activity towards 1-methylguanine (PubMed:20376003). Has no detectable activity towards double-stranded DNA (PubMed:20376003). Also able to repair alkylated DNA and RNA by oxidative demethylation: demethylates single-stranded RNA containing 3-methyluracil, single-stranded DNA containing 3-methylthymine and has low demethylase activity towards single-stranded DNA containing 1-methyladenine or 3-methylcytosine (PubMed:18775698, PubMed:20376003). Ability to repair alkylated DNA and RNA is however unsure in vivo (PubMed:18775698, PubMed:20376003). Involved in the regulation of fat mass, adipogenesis and body weight, thereby contributing to the regulation of body size and body fat accumulation (PubMed:18775698, PubMed:20376003). Involved in the regulation of thermogenesis and the control of adipocyte differentiation into brown or white fat cells (PubMed:26287746). Regulates activity of the dopaminergic midbrain circuitry via its ability to demethylate m6A in mRNAs (By similarity). Plays an oncogenic role in a number of acute myeloid leukemias by enhancing leukemic oncogene-mediated cell transformation: acts by mediating m6A demethylation of target transcripts such as MYC, CEBPA, ASB2 and RARA, leading to promote their expression (PubMed:28017614, PubMed:29249359). {ECO:0000250|UniProtKB:Q8BGW1, ECO:0000269|PubMed:18775698, ECO:0000269|PubMed:20376003, ECO:0000269|PubMed:22002720, ECO:0000269|PubMed:25452335, ECO:0000269|PubMed:26287746, ECO:0000269|PubMed:26457839, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:28002401, ECO:0000269|PubMed:28017614, ECO:0000269|PubMed:29249359, ECO:0000269|PubMed:30197295}. |
Q9C0B9 | ZCCHC2 | S767 | ochoa | Zinc finger CCHC domain-containing protein 2 | None |
Q9GZR2 | REXO4 | S131 | ochoa | RNA exonuclease 4 (EC 3.1.-.-) (Exonuclease XPMC2) (Prevents mitotic catastrophe 2 protein homolog) (hPMC2) | None |
Q9H0J9 | PARP12 | S70 | ochoa | Protein mono-ADP-ribosyltransferase PARP12 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 12) (ARTD12) (Poly [ADP-ribose] polymerase 12) (PARP-12) (Zinc finger CCCH domain-containing protein 1) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins (PubMed:25043379, PubMed:34969853). Acts as an antiviral factor by cooperating with PARP11 to suppress Zika virus replication (PubMed:34187568). Displays anti-alphavirus activity during IFN-gamma immune activation by directly ADP-ribosylating the alphaviral non-structural proteins nsP3 and nsP4 (PubMed:39888989). Acts as a component of the PRKD1-driven regulatory cascade that selectively controls a major branch of the basolateral transport pathway by catalyzing the MARylation of GOLGA1 (PubMed:34969853). Acts also as a key regulator of mitochondrial function, protein translation, and inflammation. Inhibits PINK1/Parkin-dependent mitophagy and promotes cartilage degeneration by inhibiting the ubiquitination and SUMOylation of MFN1/2 by upregulating ISG15 and ISGylation (PubMed:39465252). {ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:34187568, ECO:0000269|PubMed:34969853, ECO:0000269|PubMed:39465252, ECO:0000269|PubMed:39888989}. |
Q9H0R3 | TMEM222 | S40 | ochoa | Transmembrane protein 222 | None |
Q9H2G2 | SLK | S565 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2P0 | ADNP | S441 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2P0 | ADNP | S442 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H4A3 | WNK1 | S2297 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H6T3 | RPAP3 | S481 | ochoa | RNA polymerase II-associated protein 3 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. {ECO:0000269|PubMed:17643375}. |
Q9H7E9 | C8orf33 | S23 | ochoa | UPF0488 protein C8orf33 | None |
Q9H8Y8 | GORASP2 | S408 | ochoa | Golgi reassembly-stacking protein 2 (GRS2) (Golgi phosphoprotein 6) (GOLPH6) (Golgi reassembly-stacking protein of 55 kDa) (GRASP55) (p59) | Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP1/GRASP65, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP2 plays a role in the assembly and membrane stacking of the Golgi cisternae, and in the process by which Golgi stacks reform after breakdown during mitosis and meiosis (PubMed:10487747, PubMed:21515684, PubMed:22523075). May regulate the intracellular transport and presentation of a defined set of transmembrane proteins, such as transmembrane TGFA (PubMed:11101516). Required for normal acrosome formation during spermiogenesis and normal male fertility, probably by promoting colocalization of JAM2 and JAM3 at contact sites between germ cells and Sertoli cells (By similarity). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936, PubMed:27062250, PubMed:28067262). {ECO:0000250|UniProtKB:Q99JX3, ECO:0000269|PubMed:10487747, ECO:0000269|PubMed:11101516, ECO:0000269|PubMed:21515684, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:22523075, ECO:0000269|PubMed:27062250, ECO:0000269|PubMed:28067262}. |
Q9H9A5 | CNOT10 | S21 | ochoa | CCR4-NOT transcription complex subunit 10 | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Is not required for association of CNOT7 to the CCR4-NOT complex. {ECO:0000269|PubMed:23221646}. |
Q9HAW4 | CLSPN | S34 | psp | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HBE1 | PATZ1 | S490 | ochoa | POZ-, AT hook-, and zinc finger-containing protein 1 (BTB/POZ domain zinc finger transcription factor) (Protein kinase A RI subunit alpha-associated protein) (Zinc finger and BTB domain-containing protein 19) (Zinc finger protein 278) (Zinc finger sarcoma gene protein) | Transcriptional regulator that plays a role in many biological processes such as embryogenesis, senescence, T-cell development or neurogenesis (PubMed:10713105, PubMed:25755280, PubMed:31875552). Interacts with the TP53 protein to control genes that are important in proliferation and in the DNA-damage response. Mechanistically, the interaction inhibits the DNA binding and transcriptional activity of TP53/p53 (PubMed:25755280). Part of the transcriptional network modulating regulatory T-cell development and controls the generation of the regulatory T-cell pool under homeostatic conditions (PubMed:31875552). {ECO:0000269|PubMed:10713105, ECO:0000269|PubMed:25755280, ECO:0000269|PubMed:31875552}.; FUNCTION: (Microbial infection) Plays a positive role in viral cDNA synthesis. {ECO:0000269|PubMed:31060775}. |
Q9HBR0 | SLC38A10 | S646 | ochoa | Solute carrier family 38 member 10 (Amino acid transporter SLC38A10) | Facilitates bidirectional transport of amino acids. May act as a glutamate sensor that regulates glutamate-glutamine cycle and mTOR signaling in the brain. The transport mechanism remains to be elucidated. {ECO:0000250|UniProtKB:Q5I012}. |
Q9HCC9 | ZFYVE28 | S334 | ochoa | Lateral signaling target protein 2 homolog (hLst2) (Zinc finger FYVE domain-containing protein 28) | Negative regulator of epidermal growth factor receptor (EGFR) signaling. Acts by promoting EGFR degradation in endosomes when not monoubiquitinated. {ECO:0000269|PubMed:19460345}. |
Q9NP61 | ARFGAP3 | S345 | ochoa | ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}. |
Q9NQ11 | ATP13A2 | S151 | ochoa | Polyamine-transporting ATPase 13A2 (EC 7.6.2.-) | ATPase which acts as a lysosomal polyamine exporter with high affinity for spermine (PubMed:31996848). Also stimulates cellular uptake of polyamines and protects against polyamine toxicity (PubMed:31996848). Plays a role in intracellular cation homeostasis and the maintenance of neuronal integrity (PubMed:22186024). Contributes to cellular zinc homeostasis (PubMed:24603074). Confers cellular protection against Mn(2+) and Zn(2+) toxicity and mitochondrial stress (PubMed:26134396). Required for proper lysosomal and mitochondrial maintenance (PubMed:22296644, PubMed:28137957). Regulates the autophagy-lysosome pathway through the control of SYT11 expression at both transcriptional and post-translational levels (PubMed:27278822). Facilitates recruitment of deacetylase HDAC6 to lysosomes to deacetylate CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy (PubMed:30538141). Promotes secretion of exosomes as well as secretion of SCNA via exosomes (PubMed:24603074, PubMed:25392495). Plays a role in lipid homeostasis (PubMed:31132336). {ECO:0000269|PubMed:22186024, ECO:0000269|PubMed:22296644, ECO:0000269|PubMed:24603074, ECO:0000269|PubMed:25392495, ECO:0000269|PubMed:26134396, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28137957, ECO:0000269|PubMed:30538141, ECO:0000269|PubMed:31132336, ECO:0000269|PubMed:31996848}. |
Q9NSY1 | BMP2K | S392 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NSY1 | BMP2K | S1135 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NWH9 | SLTM | S815 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NY59 | SMPD3 | S209 | ochoa|psp | Sphingomyelin phosphodiesterase 3 (EC 3.1.4.12) (Neutral sphingomyelinase 2) (nSMase-2) (nSMase2) (Neutral sphingomyelinase II) | Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (PubMed:10823942, PubMed:14741383, PubMed:15051724). Binds to anionic phospholipids (APLs) such as phosphatidylserine (PS) and phosphatidic acid (PA) that modulate enzymatic activity and subcellular location. May be involved in IL-1-beta-induced JNK activation in hepatocytes (By similarity). May act as a mediator in transcriptional regulation of NOS2/iNOS via the NF-kappa-B activation under inflammatory conditions (By similarity). {ECO:0000250|UniProtKB:O35049, ECO:0000250|UniProtKB:Q9JJY3, ECO:0000269|PubMed:10823942, ECO:0000269|PubMed:14741383, ECO:0000269|PubMed:15051724}. |
Q9NY65 | TUBA8 | S379 | ochoa | Tubulin alpha-8 chain (EC 3.6.5.-) (Alpha-tubulin 8) (Tubulin alpha chain-like 2) [Cleaved into: Dephenylalaninated tubulin alpha-8 chain] | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q9NYF8 | BCLAF1 | S320 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYV4 | CDK12 | S420 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NYV4 | CDK12 | S423 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NYV6 | RRN3 | S199 | psp | RNA polymerase I-specific transcription initiation factor RRN3 (Transcription initiation factor IA) (TIF-IA) | Required for efficient transcription initiation by RNA polymerase I (Pol I). Required for the formation of the competent pre-initiation complex (PIC). {ECO:0000250, ECO:0000269|PubMed:10758157, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11265758, ECO:0000269|PubMed:15805466}. |
Q9NZB2 | FAM120A | S925 | ochoa | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Q9NZB2 | FAM120A | S1023 | ochoa | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Q9NZL9 | MAT2B | S274 | ochoa | Methionine adenosyltransferase 2 subunit beta (Methionine adenosyltransferase II beta) (MAT II beta) (Putative dTDP-4-keto-6-deoxy-D-glucose 4-reductase) | Regulatory subunit of S-adenosylmethionine synthetase 2, an enzyme that catalyzes the formation of S-adenosylmethionine from methionine and ATP. Regulates MAT2A catalytic activity by changing its kinetic properties, increasing its affinity for L-methionine (PubMed:10644686, PubMed:23189196, PubMed:25075345). Can bind NADP (in vitro) (PubMed:23189196, PubMed:23425511). {ECO:0000269|PubMed:10644686, ECO:0000269|PubMed:23189196, ECO:0000269|PubMed:23425511, ECO:0000269|PubMed:25075345}. |
Q9NZM3 | ITSN2 | S1119 | ochoa | Intersectin-2 (SH3 domain-containing protein 1B) (SH3P18) (SH3P18-like WASP-associated protein) | Adapter protein that may provide indirect link between the endocytic membrane traffic and the actin assembly machinery. May regulate the formation of clathrin-coated vesicles (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:23999003}. |
Q9NZN8 | CNOT2 | S242 | ochoa | CCR4-NOT transcription complex subunit 2 (CCR4-associated factor 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may specifically involve the N-Cor repressor complex containing HDAC3, NCOR1 and NCOR2. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:16712523, ECO:0000269|PubMed:21299754, ECO:0000269|PubMed:22367759}. |
Q9P1Y6 | PHRF1 | S547 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P244 | LRFN1 | S705 | ochoa | Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) | Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}. |
Q9P265 | DIP2B | S83 | ochoa | Disco-interacting protein 2 homolog B (DIP2 homolog B) | Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}. |
Q9P270 | SLAIN2 | S72 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P273 | TENM3 | S111 | ochoa | Teneurin-3 (Ten-3) (Protein Odd Oz/ten-m homolog 3) (Tenascin-M3) (Ten-m3) (Teneurin transmembrane protein 3) | Involved in neural development by regulating the establishment of proper connectivity within the nervous system. Acts in both pre- and postsynaptic neurons in the hippocampus to control the assembly of a precise topographic projection: required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum, probably by promoting homophilic cell adhesion. Required for proper dendrite morphogenesis and axon targeting in the vertebrate visual system, thereby playing a key role in the development of the visual pathway. Regulates the formation in ipsilateral retinal mapping to both the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). May also be involved in the differentiation of the fibroblast-like cells in the superficial layer of mandibular condylar cartilage into chondrocytes. {ECO:0000250|UniProtKB:Q9WTS6}. |
Q9P2D3 | HEATR5B | S1564 | ochoa | HEAT repeat-containing protein 5B | Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025}. |
Q9P2E9 | RRBP1 | S604 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2F8 | SIPA1L2 | S197 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2F8 | SIPA1L2 | S1304 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9UBC2 | EPS15L1 | S49 | ochoa | Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) | Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}. |
Q9UBQ7 | GRHPR | S36 | ochoa | Glyoxylate reductase/hydroxypyruvate reductase (EC 1.1.1.79) (EC 1.1.1.81) | Enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. Reduces hydroxypyruvate to D-glycerate, glyoxylate to glycolate, oxidizes D-glycerate to hydroxypyruvate. {ECO:0000269|PubMed:10484776, ECO:0000269|PubMed:10524214}. |
Q9UDY2 | TJP2 | S1031 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UDY8 | MALT1 | S795 | ochoa | Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (EC 3.4.22.-) (MALT lymphoma-associated translocation) (Paracaspase) | Protease that enhances BCL10-induced activation: acts via formation of CBM complexes that channel adaptive and innate immune signaling downstream of CARD domain-containing proteins (CARD9, CARD11 and CARD14) to activate NF-kappa-B and MAP kinase p38 pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:11262391, PubMed:18264101, PubMed:24074955). Mediates BCL10 cleavage: MALT1-dependent BCL10 cleavage plays an important role in T-cell antigen receptor-induced integrin adhesion (PubMed:11262391, PubMed:18264101). Involved in the induction of T helper 17 cells (Th17) differentiation (PubMed:11262391, PubMed:18264101). Cleaves RC3H1 and ZC3H12A in response to T-cell receptor (TCR) stimulation which releases their cooperatively repressed targets to promote Th17 cell differentiation (By similarity). Also mediates cleavage of N4BP1 in T-cells following TCR-mediated activation, leading to N4BP1 inactivation (PubMed:31133753). May also have ubiquitin ligase activity: binds to TRAF6, inducing TRAF6 oligomerization and activation of its ligase activity (PubMed:14695475). {ECO:0000250|UniProtKB:Q2TBA3, ECO:0000269|PubMed:11262391, ECO:0000269|PubMed:14695475, ECO:0000269|PubMed:18264101, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:31133753}. |
Q9UEY8 | ADD3 | S360 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UFC0 | LRWD1 | S212 | ochoa | Leucine-rich repeat and WD repeat-containing protein 1 (Centromere protein 33) (CENP-33) (Origin recognition complex-associated protein) (ORC-associated protein) (ORCA) | Required for G1/S transition. Recruits and stabilizes the origin recognition complex (ORC) onto chromatin during G1 to establish pre-replication complex (preRC) and to heterochromatic sites in post-replicated cells. Binds a combination of DNA and histone methylation repressive marks on heterochromatin. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3 in a cooperative manner with DNA methylation. Required for silencing of major satellite repeats. May be important ORC2, ORC3 and ORC4 stability. {ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:20932478, ECO:0000269|PubMed:21029866, ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22645314}. |
Q9UGU0 | TCF20 | S1122 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UH92 | MLX | S106 | ochoa | Max-like protein X (Class D basic helix-loop-helix protein 13) (bHLHd13) (Max-like bHLHZip protein) (Protein BigMax) (Transcription factor-like protein 4) | Transcription regulator. Forms a sequence-specific DNA-binding protein complex with MAD1, MAD4, MNT, WBSCR14 and MLXIP which recognizes the core sequence 5'-CACGTG-3'. The TCFL4-MAD1, TCFL4-MAD4, TCFL4-WBSCR14 complexes are transcriptional repressors. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. {ECO:0000269|PubMed:10593926, ECO:0000269|PubMed:12446771, ECO:0000269|PubMed:16782875}. |
Q9UHD8 | SEPTIN9 | S111 | ochoa | Septin-9 (MLL septin-like fusion protein MSF-A) (MLL septin-like fusion protein) (Ovarian/Breast septin) (Ov/Br septin) (Septin D1) | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). May play a role in the internalization of 2 intracellular microbial pathogens, Listeria monocytogenes and Shigella flexneri. {ECO:0000250, ECO:0000305}. |
Q9UHP3 | USP25 | S745 | psp | Ubiquitin carboxyl-terminal hydrolase 25 (EC 3.4.19.12) (Deubiquitinating enzyme 25) (USP on chromosome 21) (Ubiquitin thioesterase 25) (Ubiquitin-specific-processing protease 25) | Deubiquitinating enzyme that hydrolyzes ubiquitin moieties conjugated to substrates and thus, functions in various biological processes including inflammation and immune response (PubMed:29518389, PubMed:37683630). Modulates the Wnt/beta-catenin pathway by deubiquitinating and stabilizing tankyrases TNKS1 and TNKS2 (PubMed:28619731, PubMed:30926243, PubMed:38875478). Regulates KEAP1-NRF2 axis in the defense against oxidative assaults by deubiquitinating KEAP1 and protecting it from degradation leading to degradation of the NRF2 transcription factor that is responsible for mounting an anti-oxidation gene expression program (PubMed:37339955). Positively regulates RNA virus-induced innate signaling by interacting with and deubiquitinating ERLIN1 and ERLIN2 (PubMed:37683630). In turn, restricts virus production by regulating cholesterol biosynthetic flux (PubMed:37683630). Acts as a negative regulator of interleukin-17-mediated signaling and inflammation through the removal of 'Lys-63'-linked ubiquitination of TRAF5 and TRAF6 (PubMed:23042150). Prevents the ubiquitination and degradation of TRAF3 to reduce the phosphorylation levels of JNK and P38, the secretion of IL-1B and to induce endotoxin tolerance (PubMed:30579117). {ECO:0000269|PubMed:23042150, ECO:0000269|PubMed:28619731, ECO:0000269|PubMed:29518389, ECO:0000269|PubMed:30579117, ECO:0000269|PubMed:30926243, ECO:0000269|PubMed:37339955, ECO:0000269|PubMed:37683630, ECO:0000269|PubMed:38875478}.; FUNCTION: The muscle-specific isoform (USP25m) may have a role in the regulation of muscular differentiation and function. |
Q9UJF2 | RASAL2 | S916 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJU6 | DBNL | S106 | ochoa | Drebrin-like protein (Cervical SH3P7) (Cervical mucin-associated protein) (Drebrin-F) (HPK1-interacting protein of 55 kDa) (HIP-55) (SH3 domain-containing protein 7) | Adapter protein that binds F-actin and DNM1, and thereby plays a role in receptor-mediated endocytosis. Plays a role in the reorganization of the actin cytoskeleton, formation of cell projections, such as neurites, in neuron morphogenesis and synapse formation via its interaction with WASL and COBL. Does not bind G-actin and promote actin polymerization by itself. Required for the formation of organized podosome rosettes (By similarity). May act as a common effector of antigen receptor-signaling pathways in leukocytes. Acts as a key component of the immunological synapse that regulates T-cell activation by bridging TCRs and the actin cytoskeleton to gene activation and endocytic processes. {ECO:0000250, ECO:0000269|PubMed:14729663}. |
Q9UJY5 | GGA1 | S317 | ochoa | ADP-ribosylation factor-binding protein GGA1 (Gamma-adaptin-related protein 1) (Golgi-localized, gamma ear-containing, ARF-binding protein 1) | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:11301005, PubMed:15886016). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:27901063). Required for targeting PKD1:PKD2 complex from the trans-Golgi network to the cilium membrane (By similarity). Regulates retrograde transport of proteins such as phosphorylated form of BACE1 from endosomes to the trans-Golgi network (PubMed:15615712, PubMed:15886016). {ECO:0000250|UniProtKB:Q8R0H9, ECO:0000269|PubMed:11301005, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:15886016, ECO:0000269|PubMed:27901063}. |
Q9UKA4 | AKAP11 | S1013 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKI8 | TLK1 | S41 | ochoa | Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) | Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}. |
Q9ULI0 | ATAD2B | S61 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9ULP9 | TBC1D24 | S28 | ochoa | TBC1 domain family member 24 | May act as a GTPase-activating protein for Rab family protein(s) (PubMed:20727515, PubMed:20797691). Involved in neuronal projections development, probably through a negative modulation of ARF6 function (PubMed:20727515). Involved in the regulation of synaptic vesicle trafficking (PubMed:31257402). {ECO:0000269|PubMed:20727515, ECO:0000269|PubMed:20797691, ECO:0000269|PubMed:31257402}. |
Q9ULT8 | HECTD1 | S251 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9ULT8 | HECTD1 | S252 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9ULW3 | ABT1 | S208 | ochoa | Activator of basal transcription 1 (hABT1) (Basal transcriptional activator) | Could be a novel TATA-binding protein (TBP) which can function as a basal transcription activator. Can act as a regulator of basal transcription for class II genes (By similarity). {ECO:0000250}. |
Q9ULX9 | MAFF | S142 | ochoa | Transcription factor MafF (U-Maf) (V-maf musculoaponeurotic fibrosarcoma oncogene homolog F) | Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves (PubMed:8932385). However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2L1/NRF1, and recruiting them to specific DNA-binding sites. Interacts with the upstream promoter region of the oxytocin receptor gene (PubMed:16549056, PubMed:8932385). May be a transcriptional enhancer in the up-regulation of the oxytocin receptor gene at parturition (PubMed:10527846). {ECO:0000269|PubMed:10527846, ECO:0000269|PubMed:16549056, ECO:0000269|PubMed:8932385}. |
Q9UNH7 | SNX6 | S316 | ochoa | Sorting nexin-6 (TRAF4-associated factor 2) [Cleaved into: Sorting nexin-6, N-terminally processed] | Involved in several stages of intracellular trafficking. Interacts with membranes phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 4,5-bisphosphate (Probable). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:19935774). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Does not have in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptor IGF2R (PubMed:17148574). May function as link between transport vesicles and dynactin (Probable). Negatively regulates retrograde transport of BACE1 from the cell surface to the trans-Golgi network (PubMed:20354142). Involved in E-cadherin sorting and degradation; inhibits PIP5K1C isoform 3-mediated E-cadherin degradation (PubMed:24610942). In association with GIT1 involved in EGFR degradation. Promotes lysosomal degradation of CDKN1B (By similarity). May contribute to transcription regulation (Probable). {ECO:0000250|UniProtKB:Q6P8X1, ECO:0000269|PubMed:17148574, ECO:0000269|PubMed:19935774, ECO:0000269|PubMed:20354142, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:24610942, ECO:0000303|PubMed:19935774, ECO:0000303|PubMed:20830743, ECO:0000305}. |
Q9UNZ2 | NSFL1C | S176 | ochoa|psp | NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) | Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}. |
Q9UPN4 | CEP131 | S47 | ochoa|psp | Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) | Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}. |
Q9UPN4 | CEP131 | S447 | ochoa | Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) | Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}. |
Q9UPT6 | MAPK8IP3 | S273 | ochoa | C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}. |
Q9UPT8 | ZC3H4 | S1065 | ochoa | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UQB8 | BAIAP2 | S475 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9UQB8 | BAIAP2 | S484 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9Y2H0 | DLGAP4 | S651 | ochoa | Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) | May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane. |
Q9Y2Q0 | ATP8A1 | S25 | ochoa | Phospholipid-transporting ATPase IA (EC 7.6.2.1) (ATPase class I type 8A member 1) (Chromaffin granule ATPase II) (P4-ATPase flippase complex alpha subunit ATP8A1) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids (PubMed:31416931). Phospholipid translocation also seems to be implicated in vesicle formation and in uptake of lipid signaling molecules. In vitro, its ATPase activity is selectively and stereospecifically stimulated by phosphatidylserine (PS) (PubMed:31416931). The flippase complex ATP8A1:TMEM30A seems to play a role in regulation of cell migration probably involving flippase-mediated translocation of phosphatidylethanolamine (PE) at the cell membrane (By similarity). Acts as aminophospholipid translocase at the cell membrane in neuronal cells (By similarity). {ECO:0000250|UniProtKB:P70704, ECO:0000269|PubMed:31416931}. |
Q9Y2U5 | MAP3K2 | S514 | ochoa | Mitogen-activated protein kinase kinase kinase 2 (EC 2.7.11.25) (MAPK/ERK kinase kinase 2) (MEK kinase 2) (MEKK 2) | Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics. {ECO:0000250, ECO:0000269|PubMed:10713157, ECO:0000269|PubMed:16001074}. |
Q9Y2U8 | LEMD3 | S141 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2U8 | LEMD3 | S309 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2W1 | THRAP3 | S211 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2W2 | WBP11 | S615 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y490 | TLN1 | S458 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S677 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S945 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S992 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S1156 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S1914 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4D8 | HECTD4 | S1716 | ochoa | Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}. |
Q9Y4F5 | CEP170B | S907 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F5 | CEP170B | S1199 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F9 | RIPOR2 | S344 | ochoa | Rho family-interacting cell polarization regulator 2 | Acts as an inhibitor of the small GTPase RHOA and plays several roles in the regulation of myoblast and hair cell differentiation, lymphocyte T proliferation and neutrophil polarization (PubMed:17150207, PubMed:23241886, PubMed:24687993, PubMed:24958875, PubMed:25588844, PubMed:27556504). Inhibits chemokine-induced T lymphocyte responses, such as cell adhesion, polarization and migration (PubMed:23241886). Involved also in the regulation of neutrophil polarization, chemotaxis and adhesion (By similarity). Required for normal development of inner and outer hair cell stereocilia within the cochlea of the inner ear (By similarity). Plays a role for maintaining the structural organization of the basal domain of stereocilia (By similarity). Involved in mechanosensory hair cell function (By similarity). Required for normal hearing (PubMed:24958875). {ECO:0000250|UniProtKB:Q80U16, ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:23241886, ECO:0000269|PubMed:24687993, ECO:0000269|PubMed:24958875, ECO:0000269|PubMed:27556504}.; FUNCTION: [Isoform 2]: Acts as an inhibitor of the small GTPase RHOA (PubMed:25588844). Plays a role in fetal mononuclear myoblast differentiation by promoting filopodia and myotube formation (PubMed:17150207). Maintains naive T lymphocytes in a quiescent state (PubMed:27556504). {ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:25588844, ECO:0000269|PubMed:27556504}. |
Q9Y5B9 | SUPT16H | S19 | ochoa | FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}. |
Q9Y6J0 | CABIN1 | S1744 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6J0 | CABIN1 | S2067 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6R0 | NUMBL | S224 | ochoa | Numb-like protein (Numb-related protein) (Numb-R) | Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}. |
Q9Y6X6 | MYO16 | S1341 | ochoa | Unconventional myosin-XVI (Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 3) (Unconventional myosin-16) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. May be involved in targeting of the catalytic subunit of protein phosphatase 1 during brain development. Activates PI3K and concomitantly recruits the WAVE1 complex to the close vicinity of PI3K and regulates neuronal morphogenesis (By similarity). {ECO:0000250}. |
R4GMW8 | BIVM-ERCC5 | S1583 | ochoa | DNA excision repair protein ERCC-5 | None |
P17987 | TCP1 | S35 | Sugiyama | T-complex protein 1 subunit alpha (TCP-1-alpha) (EC 3.6.1.-) (CCT-alpha) (Chaperonin containing T-complex polypeptide 1 subunit 1) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P50991 | CCT4 | S51 | Sugiyama | T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P63167 | DYNLL1 | S21 | Sugiyama | Dynein light chain 1, cytoplasmic (8 kDa dynein light chain) (DLC8) (Dynein light chain LC8-type 1) (Protein inhibitor of neuronal nitric oxide synthase) (PIN) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function (By similarity). Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules (By similarity). May play a role in changing or maintaining the spatial distribution of cytoskeletal structures (By similarity). In addition to its role in cytoskeleton and transport, acts as a protein-protein adapter, which inhibits and/or sequesters target proteins (PubMed:10198631, PubMed:15193260, PubMed:15891768, PubMed:16684779, PubMed:30464262, PubMed:37696958). Involved in the response to DNA damage by acting as a key regulator of DNA end resection: when phosphorylated at Ser-88, recruited to DNA double-strand breaks (DSBs) by TP53BP1 and acts by disrupting MRE11 dimerization, thereby inhibiting DNA end resection (PubMed:30464262, PubMed:37696958). In a subset of DSBs, DYNLL1 remains unphosphorylated and promotes the recruitment of the Shieldin complex (PubMed:37696958). Binds and inhibits the catalytic activity of neuronal nitric oxide synthase/NOS1 (By similarity). Promotes transactivation functions of ESR1 and plays a role in the nuclear localization of ESR1 (PubMed:15891768, PubMed:16684779). Regulates apoptotic activities of BCL2L11 by sequestering it to microtubules (PubMed:10198631, PubMed:15193260). Upon apoptotic stimuli the BCL2L11-DYNLL1 complex dissociates from cytoplasmic dynein and translocates to mitochondria and sequesters BCL2 thus neutralizing its antiapoptotic activity (PubMed:10198631, PubMed:15193260). {ECO:0000250|UniProtKB:P61285, ECO:0000250|UniProtKB:P63170, ECO:0000269|PubMed:10198631, ECO:0000269|PubMed:15193260, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:30464262, ECO:0000269|PubMed:37696958}. |
Q96GM8 | TOE1 | S420 | Sugiyama | Target of EGR1 protein 1 | Inhibits cell growth rate and cell cycle. Induces CDKN1A expression as well as TGF-beta expression. Mediates the inhibitory growth effect of EGR1. Involved in the maturation of snRNAs and snRNA 3'-tail processing (PubMed:28092684). {ECO:0000269|PubMed:12562764, ECO:0000269|PubMed:28092684}. |
P36578 | RPL4 | S63 | Sugiyama | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P05023 | ATP1A1 | S757 | Sugiyama | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P13637 | ATP1A3 | S747 | Sugiyama | Sodium/potassium-transporting ATPase subunit alpha-3 (Na(+)/K(+) ATPase alpha-3 subunit) (EC 7.2.2.13) (Na(+)/K(+) ATPase alpha(III) subunit) (Sodium pump subunit alpha-3) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}. |
P50993 | ATP1A2 | S754 | Sugiyama | Sodium/potassium-transporting ATPase subunit alpha-2 (Na(+)/K(+) ATPase alpha-2 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-2) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}. |
P61916 | NPC2 | S29 | Sugiyama | NPC intracellular cholesterol transporter 2 (Epididymal secretory protein E1) (Human epididymis-specific protein 1) (He1) (Niemann-Pick disease type C2 protein) | Intracellular cholesterol transporter which acts in concert with NPC1 and plays an important role in the egress of cholesterol from the lysosomal compartment (PubMed:11125141, PubMed:15937921, PubMed:17018531, PubMed:18772377, PubMed:29580834). Unesterified cholesterol that has been released from LDLs in the lumen of the late endosomes/lysosomes is transferred by NPC2 to the cholesterol-binding pocket in the N-terminal domain of NPC1 (PubMed:17018531, PubMed:18772377, PubMed:27238017). May bind and mobilize cholesterol that is associated with membranes (PubMed:18823126). NPC2 binds cholesterol with a 1:1 stoichiometry (PubMed:17018531). Can bind a variety of sterols, including lathosterol, desmosterol and the plant sterols stigmasterol and beta-sitosterol (PubMed:17018531). The secreted form of NCP2 regulates biliary cholesterol secretion via stimulation of ABCG5/ABCG8-mediated cholesterol transport (By similarity). {ECO:0000250|UniProtKB:Q9Z0J0, ECO:0000269|PubMed:11125141, ECO:0000269|PubMed:15937921, ECO:0000269|PubMed:17018531, ECO:0000269|PubMed:18772377, ECO:0000269|PubMed:18823126, ECO:0000269|PubMed:27238017, ECO:0000269|PubMed:29580834}. |
Q13733 | ATP1A4 | S763 | Sugiyama | Sodium/potassium-transporting ATPase subunit alpha-4 (Na(+)/K(+) ATPase alpha-4 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-4) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility. |
Q14247 | CTTN | S331 | Sugiyama | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q9BQA1 | WDR77 | S185 | Sugiyama | Methylosome protein WDR77 (Androgen receptor cofactor p44) (Methylosome protein 50) (MEP-50) (WD repeat-containing protein 77) (p44/Mep50) | Non-catalytic component of the methylosome complex, composed of PRMT5, WDR77 and CLNS1A, which modifies specific arginines to dimethylarginines in several spliceosomal Sm proteins and histones (PubMed:11756452). This modification targets Sm proteins to the survival of motor neurons (SMN) complex for assembly into small nuclear ribonucleoprotein core particles. Might play a role in transcription regulation. The methylosome complex also methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (PubMed:23071334). {ECO:0000269|PubMed:11756452, ECO:0000269|PubMed:23071334}. |
Q9BRK5 | SDF4 | S158 | Sugiyama | 45 kDa calcium-binding protein (Cab45) (Stromal cell-derived factor 4) (SDF-4) | May regulate calcium-dependent activities in the endoplasmic reticulum lumen or post-ER compartment. {ECO:0000250}.; FUNCTION: Isoform 5 may be involved in the exocytosis of zymogens by pancreatic acini. |
O43264 | ZW10 | S605 | Sugiyama | Centromere/kinetochore protein zw10 homolog | Essential component of the mitotic checkpoint, which prevents cells from prematurely exiting mitosis. Required for the assembly of the dynein-dynactin and MAD1-MAD2 complexes onto kinetochores. Its function related to the spindle assembly machinery is proposed to depend on its association in the mitotic RZZ complex (PubMed:11590237, PubMed:15485811, PubMed:15824131). Involved in regulation of membrane traffic between the Golgi and the endoplasmic reticulum (ER); the function is proposed to depend on its association in the interphase NRZ complex which is believed to play a role in SNARE assembly at the ER (PubMed:15029241). {ECO:0000269|PubMed:11590237, ECO:0000269|PubMed:15029241, ECO:0000269|PubMed:15094189, ECO:0000269|PubMed:15485811, ECO:0000269|PubMed:15824131, ECO:0000305}. |
O15146 | MUSK | S752 | Sugiyama | Muscle, skeletal receptor tyrosine-protein kinase (EC 2.7.10.1) (Muscle-specific tyrosine-protein kinase receptor) (MuSK) (Muscle-specific kinase receptor) | Receptor tyrosine kinase which plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ), the synapse between the motor neuron and the skeletal muscle (PubMed:25537362). Recruitment of AGRIN by LRP4 to the MUSK signaling complex induces phosphorylation and activation of MUSK, the kinase of the complex. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. May regulate AChR phosphorylation and clustering through activation of ABL1 and Src family kinases which in turn regulate MUSK. DVL1 and PAK1 that form a ternary complex with MUSK are also important for MUSK-dependent regulation of AChR clustering. May positively regulate Rho family GTPases through FNTA. Mediates the phosphorylation of FNTA which promotes prenylation, recruitment to membranes and activation of RAC1 a regulator of the actin cytoskeleton and of gene expression. Other effectors of the MUSK signaling include DNAJA3 which functions downstream of MUSK. May also play a role within the central nervous system by mediating cholinergic responses, synaptic plasticity and memory formation (By similarity). {ECO:0000250, ECO:0000269|PubMed:25537362}. |
O43290 | SART1 | S116 | Sugiyama | U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) | Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}. |
O75676 | RPS6KA4 | S402 | Sugiyama | Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}. |
Q9BWG6 | SCNM1 | S199 | Sugiyama | Sodium channel modifier 1 | As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:36084634). Plays a role in the regulation of primary cilia length and Hedgehog signaling (PubMed:36084634). {ECO:0000269|PubMed:36084634}. |
P04818 | TYMS | S154 | Sugiyama | Thymidylate synthase (TS) (TSase) (EC 2.1.1.45) | Catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to thymidine 5'-monophosphate (dTMP), using the cosubstrate, 5,10- methylenetetrahydrofolate (CH2H4folate) as a 1-carbon donor and reductant and contributes to the de novo mitochondrial thymidylate biosynthesis pathway. {ECO:0000269|PubMed:11278511, ECO:0000269|PubMed:21876188}. |
Q9UHX1 | PUF60 | S232 | Sugiyama | Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) | DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}. |
O14732 | IMPA2 | S160 | Sugiyama | Inositol monophosphatase 2 (IMP 2) (IMPase 2) (EC 3.1.3.25) (Inositol-1(or 4)-monophosphatase 2) (Myo-inositol monophosphatase A2) | Phosphatase that can use myo-inositol monophosphates, myo-inositol 1,4-diphosphate, scyllo-inositol-1,4-diphosphate, glucose-1-phosphate, beta-glycerophosphate and 2'-AMP as substrates in vitro (PubMed:17068342). It is likely that IMPA2 has an as yet unidentified in vivo substrate(s) (PubMed:17068342). Has been implicated as the pharmacological target for lithium (Li(+)) action in brain (PubMed:17068342). {ECO:0000269|PubMed:17068342}. |
Q96I99 | SUCLG2 | S98 | Sugiyama | Succinate--CoA ligase [GDP-forming] subunit beta, mitochondrial (EC 6.2.1.4) (GTP-specific succinyl-CoA synthetase subunit beta) (G-SCS) (GTPSCS) (Succinyl-CoA synthetase beta-G chain) (SCS-betaG) | GTP-specific succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. {ECO:0000255|HAMAP-Rule:MF_03221}. |
P30153 | PPP2R1A | S146 | Sugiyama | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform (PP2Aa) (Medium tumor antigen-associated 61 kDa protein) (PP2A subunit A isoform PR65-alpha) (PP2A subunit A isoform R1-alpha) | The PR65 subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit (PubMed:15525651, PubMed:16580887, PubMed:33243860, PubMed:33633399, PubMed:34004147, PubMed:8694763). Upon interaction with GNA12 promotes dephosphorylation of microtubule associated protein TAU/MAPT (PubMed:15525651). Required for proper chromosome segregation and for centromeric localization of SGO1 in mitosis (PubMed:16580887). Together with RACK1 adapter, mediates dephosphorylation of AKT1 at 'Ser-473', preventing AKT1 activation and AKT-mTOR signaling pathway (By similarity). Dephosphorylation of AKT1 is essential for regulatory T-cells (Treg) homeostasis and stability (By similarity). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:18782753, PubMed:33633399). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753, PubMed:33633399). Key mediator of a quality checkpoint during transcription elongation as part of the Integrator-PP2A (INTAC) complex (PubMed:33243860, PubMed:34004147). The INTAC complex drives premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: within the INTAC complex, acts as a scaffolding subunit for PPP2CA, which catalyzes dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, thereby preventing transcriptional elongation (PubMed:33243860, PubMed:34004147). Regulates the recruitment of the SKA complex to kinetochores (PubMed:28982702). {ECO:0000250|UniProtKB:Q76MZ3, ECO:0000269|PubMed:15525651, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:28982702, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33633399, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:8694763}. |
P30154 | PPP2R1B | S158 | Sugiyama | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform (PP2A subunit A isoform PR65-beta) (PP2A subunit A isoform R1-beta) | The PR65 subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. |
Q92896 | GLG1 | S1091 | Sugiyama | Golgi apparatus protein 1 (CFR-1) (Cysteine-rich fibroblast growth factor receptor) (E-selectin ligand 1) (ESL-1) (Golgi sialoglycoprotein MG-160) | Binds fibroblast growth factor and E-selectin (cell-adhesion lectin on endothelial cells mediating the binding of neutrophils). {ECO:0000269|PubMed:8985126}. |
O00469 | PLOD2 | S441 | Sugiyama | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (EC 1.14.11.4) (Lysyl hydroxylase 2) (LH2) | Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens. These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links. {ECO:0000250|UniProtKB:P24802}. |
Q5JR12 | PPM1J | S93 | SIGNOR | Protein phosphatase 1J (EC 3.1.3.16) (Protein phosphatase 2C isoform zeta) (PP2C-zeta) | None |
P11308 | ERG | S45 | EPSD | Transcriptional regulator ERG (Transforming protein ERG) | Transcriptional regulator. May participate in transcriptional regulation through the recruitment of SETDB1 histone methyltransferase and subsequent modification of local chromatin structure. |
O60563 | CCNT1 | S431 | Sugiyama | Cyclin-T1 (CycT1) (Cyclin-T) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II) (PubMed:16109376, PubMed:16109377, PubMed:30134174, PubMed:35393539). Required to activate the protein kinase activity of CDK9: acts by mediating formation of liquid-liquid phase separation (LLPS) that enhances binding of P-TEFb to the CTD of RNA Pol II (PubMed:29849146, PubMed:35393539). {ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:35393539}.; FUNCTION: (Microbial infection) In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. {ECO:0000269|PubMed:10329125, ECO:0000269|PubMed:10329126}. |
P51451 | BLK | S387 | Sugiyama | Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) | Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}. |
P35637 | FUS | S360 | Sugiyama | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P51617 | IRAK1 | S607 | Sugiyama | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
Q9Y6W5 | WASF2 | S442 | Sugiyama | Actin-binding protein WASF2 (Protein WAVE-2) (Verprolin homology domain-containing protein 2) (Wiskott-Aldrich syndrome protein family member 2) (WASP family protein member 2) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation. The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex. {ECO:0000269|PubMed:10381382, ECO:0000269|PubMed:16275905}. |
Q15785 | TOMM34 | S51 | Sugiyama | Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) | Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}. |
P53778 | MAPK12 | S35 | Sugiyama | Mitogen-activated protein kinase 12 (MAP kinase 12) (MAPK 12) (EC 2.7.11.24) (Extracellular signal-regulated kinase 6) (ERK-6) (Mitogen-activated protein kinase p38 gamma) (MAP kinase p38 gamma) (Stress-activated protein kinase 3) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK12 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases such as MAPKAPK2, which are activated through phosphorylation and further phosphorylate additional targets. Plays a role in myoblast differentiation and also in the down-regulation of cyclin D1 in response to hypoxia in adrenal cells suggesting MAPK12 may inhibit cell proliferation while promoting differentiation. Phosphorylates DLG1. Following osmotic shock, MAPK12 in the cell nucleus increases its association with nuclear DLG1, thereby causing dissociation of DLG1-SFPQ complexes. This function is independent of its catalytic activity and could affect mRNA processing and/or gene transcription to aid cell adaptation to osmolarity changes in the environment. Regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage and G2 arrest after gamma-radiation exposure. MAPK12 is involved in the regulation of SLC2A1 expression and basal glucose uptake in L6 myotubes; and negatively regulates SLC2A4 expression and contraction-mediated glucose uptake in adult skeletal muscle. C-Jun (JUN) phosphorylation is stimulated by MAPK14 and inhibited by MAPK12, leading to a distinct AP-1 regulation. MAPK12 is required for the normal kinetochore localization of PLK1, prevents chromosomal instability and supports mitotic cell viability. MAPK12-signaling is also positively regulating the expansion of transient amplifying myogenic precursor cells during muscle growth and regeneration. {ECO:0000269|PubMed:10848581, ECO:0000269|PubMed:14592936, ECO:0000269|PubMed:17724032, ECO:0000269|PubMed:20605917, ECO:0000269|PubMed:21172807, ECO:0000269|PubMed:8633070, ECO:0000269|PubMed:9430721}. |
Q14432 | PDE3A | S273 | Sugiyama | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q15751 | HERC1 | S3240 | Sugiyama | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q13526 | PIN1 | S126 | Sugiyama | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans isomerase Pin1) (PPIase Pin1) (Rotamase Pin1) | Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs (PubMed:21497122, PubMed:23623683, PubMed:29686383). By inducing conformational changes in a subset of phosphorylated proteins, acts as a molecular switch in multiple cellular processes (PubMed:21497122, PubMed:22033920, PubMed:23623683). Displays a preference for acidic residues located N-terminally to the proline bond to be isomerized. Regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Down-regulates kinase activity of BTK (PubMed:16644721). Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation (PubMed:15664191). Binds and targets PML and BCL6 for degradation in a phosphorylation-dependent manner (PubMed:17828269). Acts as a regulator of JNK cascade by binding to phosphorylated FBXW7, disrupting FBXW7 dimerization and promoting FBXW7 autoubiquitination and degradation: degradation of FBXW7 leads to subsequent stabilization of JUN (PubMed:22608923). May facilitate the ubiquitination and proteasomal degradation of RBBP8/CtIP through CUL3/KLHL15 E3 ubiquitin-protein ligase complex, hence favors DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:23623683, PubMed:27561354). Upon IL33-induced lung inflammation, catalyzes cis-trans isomerization of phosphorylated IRAK3/IRAK-M, inducing IRAK3 stabilization, nuclear translocation and expression of pro-inflammatory genes in dendritic cells (PubMed:29686383). Catalyzes cis-trans isomerization of phosphorylated phosphoglycerate kinase PGK1 under hypoxic conditions to promote its binding to the TOM complex and targeting to the mitochondrion (PubMed:26942675). {ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:16644721, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:21497122, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:23623683, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:27561354, ECO:0000269|PubMed:29686383}. |
P58012 | FOXL2 | S263 | ELM|iPTMNet | Forkhead box protein L2 | Transcriptional regulator. Critical factor essential for ovary differentiation and maintenance, and repression of the genetic program for somatic testis determination. Prevents trans-differentiation of ovary to testis through transcriptional repression of the Sertoli cell-promoting gene SOX9 (By similarity). Has apoptotic activity in ovarian cells. Suppresses ESR1-mediated transcription of PTGS2/COX2 stimulated by tamoxifen (By similarity). Is a regulator of CYP19 expression (By similarity). Participates in SMAD3-dependent transcription of FST via the intronic SMAD-binding element (By similarity). Is a transcriptional repressor of STAR. Activates SIRT1 transcription under cellular stress conditions. Activates transcription of OSR2. {ECO:0000250, ECO:0000269|PubMed:16153597, ECO:0000269|PubMed:19010791, ECO:0000269|PubMed:19429596, ECO:0000269|PubMed:19744555}. |
Q9BTC0 | DIDO1 | S988 | Sugiyama | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q16539 | MAPK14 | S154 | Sugiyama | Mitogen-activated protein kinase 14 (MAP kinase 14) (MAPK 14) (EC 2.7.11.24) (Cytokine suppressive anti-inflammatory drug-binding protein) (CSAID-binding protein) (CSBP) (MAP kinase MXI2) (MAX-interacting protein 2) (Mitogen-activated protein kinase p38 alpha) (MAP kinase p38 alpha) (Stress-activated protein kinase 2a) (SAPK2a) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1 (PubMed:9687510, PubMed:9792677). RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery (PubMed:9687510, PubMed:9792677). On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2 (PubMed:11154262). MAPK14 also interacts with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53 (PubMed:10747897). In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3 (PubMed:17003045). MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9 (PubMed:19893488). Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors (PubMed:16932740). Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17 (PubMed:20188673). Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A (PubMed:10330143, PubMed:9430721, PubMed:9858528). The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation (PubMed:11333986). Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation (PubMed:20932473). The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression (PubMed:10943842). Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113' (PubMed:15905572). Phosphorylates NLRP1 downstream of MAP3K20/ZAK in response to UV-B irradiation and ribosome collisions, promoting activation of the NLRP1 inflammasome and pyroptosis (PubMed:35857590). {ECO:0000269|PubMed:10330143, ECO:0000269|PubMed:10747897, ECO:0000269|PubMed:10943842, ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11333986, ECO:0000269|PubMed:15905572, ECO:0000269|PubMed:16932740, ECO:0000269|PubMed:17003045, ECO:0000269|PubMed:17724032, ECO:0000269|PubMed:19893488, ECO:0000269|PubMed:20188673, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:35857590, ECO:0000269|PubMed:9430721, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9792677, ECO:0000269|PubMed:9858528}.; FUNCTION: (Microbial infection) Activated by phosphorylation by M.tuberculosis EsxA in T-cells leading to inhibition of IFN-gamma production; phosphorylation is apparent within 15 minutes and is inhibited by kinase-specific inhibitors SB203580 and siRNA (PubMed:21586573). {ECO:0000269|PubMed:21586573}. |
O75976 | CPD | S84 | Sugiyama | Carboxypeptidase D (EC 3.4.17.22) (Metallocarboxypeptidase D) (gp180) | None |
Q8N392 | ARHGAP18 | S156 | SIGNOR | Rho GTPase-activating protein 18 (MacGAP) (Rho-type GTPase-activating protein 18) | Rho GTPase activating protein that suppresses F-actin polymerization by inhibiting Rho. Rho GTPase activating proteins act by converting Rho-type GTPases to an inactive GDP-bound state (PubMed:21865595). Plays a key role in tissue tension and 3D tissue shape by regulating cortical actomyosin network formation. Acts downstream of YAP1 and inhibits actin polymerization, which in turn reduces nuclear localization of YAP1 (PubMed:25778702). Regulates cell shape, spreading, and migration (PubMed:21865595). {ECO:0000269|PubMed:21865595, ECO:0000269|PubMed:25778702}. |
P29083 | GTF2E1 | S284 | Sugiyama | General transcription factor IIE subunit 1 (General transcription factor IIE 56 kDa subunit) (Transcription initiation factor IIE subunit alpha) (TFIIE-alpha) | Recruits TFIIH to the initiation complex and stimulates the RNA polymerase II C-terminal domain kinase and DNA-dependent ATPase activities of TFIIH. Both TFIIH and TFIIE are required for promoter clearance by RNA polymerase. |
P51659 | HSD17B4 | S185 | Sugiyama | Peroxisomal multifunctional enzyme type 2 (MFE-2) (17-beta-hydroxysteroid dehydrogenase 4) (17-beta-HSD 4) (D-bifunctional protein) (DBP) (Multifunctional protein 2) (MFP-2) (Short chain dehydrogenase/reductase family 8C member 1) [Cleaved into: (3R)-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.n12); Enoyl-CoA hydratase 2 (EC 4.2.1.107) (EC 4.2.1.119) (3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholest-24-enoyl-CoA hydratase)] | Bifunctional enzyme acting on the peroxisomal fatty acid beta-oxidation pathway. Catalyzes two of the four reactions in fatty acid degradation: hydration of 2-enoyl-CoA (trans-2-enoyl-CoA) to produce (3R)-3-hydroxyacyl-CoA, and dehydrogenation of (3R)-3-hydroxyacyl-CoA to produce 3-ketoacyl-CoA (3-oxoacyl-CoA), which is further metabolized by SCPx. Can use straight-chain and branched-chain fatty acids, as well as bile acid intermediates as substrates. {ECO:0000269|PubMed:10671535, ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:8902629, ECO:0000269|PubMed:9089413}. |
Q96GD4 | AURKB | S62 | Sugiyama | Aurora kinase B (EC 2.7.11.1) (Aurora 1) (Aurora- and IPL1-like midbody-associated protein 1) (AIM-1) (Aurora/IPL1-related kinase 2) (ARK-2) (Aurora-related kinase 2) (STK-1) (Serine/threonine-protein kinase 12) (Serine/threonine-protein kinase 5) (Serine/threonine-protein kinase aurora-B) | Serine/threonine-protein kinase component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:29449677). The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:26829474). Involved in the bipolar attachment of spindle microtubules to kinetochores and is a key regulator for the onset of cytokinesis during mitosis (PubMed:15249581). Required for central/midzone spindle assembly and cleavage furrow formation (PubMed:12458200, PubMed:12686604). Key component of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage: phosphorylates CHMP4C, leading to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis (PubMed:22422861, PubMed:24814515). AURKB phosphorylates the CPC complex subunits BIRC5/survivin, CDCA8/borealin and INCENP (PubMed:11516652, PubMed:12925766, PubMed:14610074). Phosphorylation of INCENP leads to increased AURKB activity (PubMed:11516652, PubMed:12925766, PubMed:14610074). Other known AURKB substrates involved in centromeric functions and mitosis are CENPA, DES/desmin, GPAF, KIF2C, NSUN2, RACGAP1, SEPTIN1, VIM/vimentin, HASPIN, and histone H3 (PubMed:11756469, PubMed:11784863, PubMed:11856369, PubMed:12689593, PubMed:14602875, PubMed:16103226, PubMed:21658950). A positive feedback loop involving HASPIN and AURKB contributes to localization of CPC to centromeres (PubMed:21658950). Phosphorylation of VIM controls vimentin filament segregation in cytokinetic process, whereas histone H3 is phosphorylated at 'Ser-10' and 'Ser-28' during mitosis (H3S10ph and H3S28ph, respectively) (PubMed:11784863, PubMed:11856369). AURKB is also required for kinetochore localization of BUB1 and SGO1 (PubMed:15020684, PubMed:17617734). Phosphorylation of p53/TP53 negatively regulates its transcriptional activity (PubMed:20959462). Key regulator of active promoters in resting B- and T-lymphocytes: acts by mediating phosphorylation of H3S28ph at active promoters in resting B-cells, inhibiting RNF2/RING1B-mediated ubiquitination of histone H2A and enhancing binding and activity of the USP16 deubiquitinase at transcribed genes (By similarity). Acts as an inhibitor of CGAS during mitosis: catalyzes phosphorylation of the N-terminus of CGAS during the G2-M transition, blocking CGAS liquid phase separation and activation, and thereby preventing CGAS-induced autoimmunity (PubMed:33542149). Phosphorylates KRT5 during anaphase and telophase (By similarity). Phosphorylates ATXN10 which promotes phosphorylation of ATXN10 by PLK1 and may play a role in the regulation of cytokinesis and stimulating the proteasomal degradation of ATXN10 (PubMed:25666058). {ECO:0000250|UniProtKB:O70126, ECO:0000269|PubMed:11516652, ECO:0000269|PubMed:11756469, ECO:0000269|PubMed:11784863, ECO:0000269|PubMed:11856369, ECO:0000269|PubMed:12458200, ECO:0000269|PubMed:12686604, ECO:0000269|PubMed:12689593, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:14602875, ECO:0000269|PubMed:14610074, ECO:0000269|PubMed:14722118, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:21658950, ECO:0000269|PubMed:22422861, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:25666058, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:29449677, ECO:0000269|PubMed:33542149}. |
Q9H4A3 | WNK1 | Y54 | Sugiyama | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q04637 | EIF4G1 | S1246 | Sugiyama | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
P36578 | RPL4 | S139 | Sugiyama | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-3371571 | HSF1-dependent transactivation | 4.551914e-15 | 14.342 |
R-HSA-3371568 | Attenuation phase | 2.797762e-14 | 13.553 |
R-HSA-3371556 | Cellular response to heat stress | 1.826317e-13 | 12.738 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 1.331157e-12 | 11.876 |
R-HSA-3371511 | HSF1 activation | 2.303292e-09 | 8.638 |
R-HSA-8953897 | Cellular responses to stimuli | 4.828588e-09 | 8.316 |
R-HSA-2262752 | Cellular responses to stress | 2.075112e-08 | 7.683 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 2.553698e-07 | 6.593 |
R-HSA-9833482 | PKR-mediated signaling | 1.643068e-06 | 5.784 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 2.993557e-06 | 5.524 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 4.285967e-06 | 5.368 |
R-HSA-75153 | Apoptotic execution phase | 8.354754e-06 | 5.078 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 1.920458e-05 | 4.717 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 3.861385e-05 | 4.413 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 4.341659e-05 | 4.362 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 4.534578e-05 | 4.343 |
R-HSA-9020591 | Interleukin-12 signaling | 5.448575e-05 | 4.264 |
R-HSA-447115 | Interleukin-12 family signaling | 6.927963e-05 | 4.159 |
R-HSA-1640170 | Cell Cycle | 9.957518e-05 | 4.002 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 1.943576e-04 | 3.711 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 1.848688e-04 | 3.733 |
R-HSA-68882 | Mitotic Anaphase | 1.881437e-04 | 3.726 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 1.784678e-04 | 3.748 |
R-HSA-376176 | Signaling by ROBO receptors | 1.721376e-04 | 3.764 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 2.009231e-04 | 3.697 |
R-HSA-438064 | Post NMDA receptor activation events | 2.284914e-04 | 3.641 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 2.347114e-04 | 3.629 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 2.536956e-04 | 3.596 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 2.536956e-04 | 3.596 |
R-HSA-913531 | Interferon Signaling | 2.709140e-04 | 3.567 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 3.053655e-04 | 3.515 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 3.069425e-04 | 3.513 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 3.217326e-04 | 3.493 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 4.192210e-04 | 3.378 |
R-HSA-68886 | M Phase | 4.996055e-04 | 3.301 |
R-HSA-6802957 | Oncogenic MAPK signaling | 5.229749e-04 | 3.282 |
R-HSA-422475 | Axon guidance | 5.579913e-04 | 3.253 |
R-HSA-6807878 | COPI-mediated anterograde transport | 6.911644e-04 | 3.160 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 6.908702e-04 | 3.161 |
R-HSA-69278 | Cell Cycle, Mitotic | 6.974672e-04 | 3.156 |
R-HSA-5578775 | Ion homeostasis | 7.046332e-04 | 3.152 |
R-HSA-373760 | L1CAM interactions | 6.773113e-04 | 3.169 |
R-HSA-9663891 | Selective autophagy | 7.812091e-04 | 3.107 |
R-HSA-437239 | Recycling pathway of L1 | 7.987522e-04 | 3.098 |
R-HSA-2467813 | Separation of Sister Chromatids | 8.369990e-04 | 3.077 |
R-HSA-1632852 | Macroautophagy | 9.051010e-04 | 3.043 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 9.835569e-04 | 3.007 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 1.014596e-03 | 2.994 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 1.139761e-03 | 2.943 |
R-HSA-9675108 | Nervous system development | 1.223749e-03 | 2.912 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 1.233955e-03 | 2.909 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 1.297456e-03 | 2.887 |
R-HSA-9620244 | Long-term potentiation | 1.435306e-03 | 2.843 |
R-HSA-3928664 | Ephrin signaling | 1.517634e-03 | 2.819 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 1.627150e-03 | 2.789 |
R-HSA-525793 | Myogenesis | 1.714699e-03 | 2.766 |
R-HSA-5673000 | RAF activation | 1.682534e-03 | 2.774 |
R-HSA-936837 | Ion transport by P-type ATPases | 1.778062e-03 | 2.750 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 1.929409e-03 | 2.715 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 1.933527e-03 | 2.714 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 2.900772e-03 | 2.537 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 2.833883e-03 | 2.548 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 2.833883e-03 | 2.548 |
R-HSA-156902 | Peptide chain elongation | 2.245247e-03 | 2.649 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 2.294057e-03 | 2.639 |
R-HSA-9612973 | Autophagy | 2.640359e-03 | 2.578 |
R-HSA-198753 | ERK/MAPK targets | 2.779189e-03 | 2.556 |
R-HSA-68877 | Mitotic Prometaphase | 2.364635e-03 | 2.626 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 2.481728e-03 | 2.605 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 2.901115e-03 | 2.537 |
R-HSA-449147 | Signaling by Interleukins | 2.957548e-03 | 2.529 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 3.337304e-03 | 2.477 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 3.337304e-03 | 2.477 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 3.337304e-03 | 2.477 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 3.337304e-03 | 2.477 |
R-HSA-162582 | Signal Transduction | 3.179693e-03 | 2.498 |
R-HSA-157858 | Gap junction trafficking and regulation | 3.632809e-03 | 2.440 |
R-HSA-156842 | Eukaryotic Translation Elongation | 3.418838e-03 | 2.466 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 3.573541e-03 | 2.447 |
R-HSA-109581 | Apoptosis | 3.780981e-03 | 2.422 |
R-HSA-191650 | Regulation of gap junction activity | 4.090683e-03 | 2.388 |
R-HSA-9948299 | Ribosome-associated quality control | 4.121838e-03 | 2.385 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 4.090683e-03 | 2.388 |
R-HSA-2025928 | Calcineurin activates NFAT | 3.944271e-03 | 2.404 |
R-HSA-69620 | Cell Cycle Checkpoints | 4.004462e-03 | 2.397 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 4.291445e-03 | 2.367 |
R-HSA-5683057 | MAPK family signaling cascades | 4.302315e-03 | 2.366 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 4.680366e-03 | 2.330 |
R-HSA-72764 | Eukaryotic Translation Termination | 4.680366e-03 | 2.330 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 4.625849e-03 | 2.335 |
R-HSA-5357801 | Programmed Cell Death | 4.705023e-03 | 2.327 |
R-HSA-9694516 | SARS-CoV-2 Infection | 4.647708e-03 | 2.333 |
R-HSA-168255 | Influenza Infection | 4.854011e-03 | 2.314 |
R-HSA-8953854 | Metabolism of RNA | 4.900273e-03 | 2.310 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 5.025315e-03 | 2.299 |
R-HSA-1169408 | ISG15 antiviral mechanism | 5.119616e-03 | 2.291 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 5.231177e-03 | 2.281 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 5.231177e-03 | 2.281 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 6.019954e-03 | 2.220 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 5.585544e-03 | 2.253 |
R-HSA-8854214 | TBC/RABGAPs | 6.161857e-03 | 2.210 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 6.250527e-03 | 2.204 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 6.250527e-03 | 2.204 |
R-HSA-190861 | Gap junction assembly | 6.530615e-03 | 2.185 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 6.530615e-03 | 2.185 |
R-HSA-2028269 | Signaling by Hippo | 6.545164e-03 | 2.184 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 6.593369e-03 | 2.181 |
R-HSA-9652817 | Signaling by MAPK mutants | 8.978822e-03 | 2.047 |
R-HSA-428540 | Activation of RAC1 | 8.522276e-03 | 2.069 |
R-HSA-202670 | ERKs are inactivated | 8.522276e-03 | 2.069 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 8.522276e-03 | 2.069 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 9.052635e-03 | 2.043 |
R-HSA-192823 | Viral mRNA Translation | 8.316531e-03 | 2.080 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 8.516162e-03 | 2.070 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 8.516162e-03 | 2.070 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 8.516162e-03 | 2.070 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 8.347904e-03 | 2.078 |
R-HSA-6802949 | Signaling by RAS mutants | 8.516162e-03 | 2.070 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 7.398066e-03 | 2.131 |
R-HSA-194138 | Signaling by VEGF | 8.269478e-03 | 2.083 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 7.511464e-03 | 2.124 |
R-HSA-2408557 | Selenocysteine synthesis | 7.248374e-03 | 2.140 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 8.895109e-03 | 2.051 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 7.555471e-03 | 2.122 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 9.778689e-03 | 2.010 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 9.832138e-03 | 2.007 |
R-HSA-9656249 | Defective Base Excision Repair Associated with OGG1 | 1.112878e-02 | 1.954 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 1.059392e-02 | 1.975 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 1.059392e-02 | 1.975 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 1.059392e-02 | 1.975 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 1.059392e-02 | 1.975 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 1.059392e-02 | 1.975 |
R-HSA-72737 | Cap-dependent Translation Initiation | 1.007195e-02 | 1.997 |
R-HSA-72613 | Eukaryotic Translation Initiation | 1.007195e-02 | 1.997 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 1.120717e-02 | 1.951 |
R-HSA-6794362 | Protein-protein interactions at synapses | 1.132143e-02 | 1.946 |
R-HSA-141424 | Amplification of signal from the kinetochores | 1.216687e-02 | 1.915 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 1.216687e-02 | 1.915 |
R-HSA-73894 | DNA Repair | 1.185335e-02 | 1.926 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 1.284943e-02 | 1.891 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 1.169919e-02 | 1.932 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 1.232573e-02 | 1.909 |
R-HSA-450294 | MAP kinase activation | 1.180658e-02 | 1.928 |
R-HSA-9646399 | Aggrephagy | 1.305798e-02 | 1.884 |
R-HSA-9008059 | Interleukin-37 signaling | 1.271274e-02 | 1.896 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 1.310571e-02 | 1.883 |
R-HSA-199991 | Membrane Trafficking | 1.321446e-02 | 1.879 |
R-HSA-390466 | Chaperonin-mediated protein folding | 1.400098e-02 | 1.854 |
R-HSA-5673001 | RAF/MAP kinase cascade | 1.415861e-02 | 1.849 |
R-HSA-72187 | mRNA 3'-end processing | 1.515787e-02 | 1.819 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 1.547018e-02 | 1.811 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 1.594659e-02 | 1.797 |
R-HSA-70171 | Glycolysis | 1.594659e-02 | 1.797 |
R-HSA-9656223 | Signaling by RAF1 mutants | 1.601872e-02 | 1.795 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 1.601872e-02 | 1.795 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 1.638908e-02 | 1.785 |
R-HSA-72649 | Translation initiation complex formation | 1.803611e-02 | 1.744 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 1.803611e-02 | 1.744 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 1.807013e-02 | 1.743 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 1.814550e-02 | 1.741 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 1.866221e-02 | 1.729 |
R-HSA-391251 | Protein folding | 2.076218e-02 | 1.683 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 2.076610e-02 | 1.683 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 2.128632e-02 | 1.672 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 2.432635e-02 | 1.614 |
R-HSA-190828 | Gap junction trafficking | 2.130718e-02 | 1.671 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 2.305791e-02 | 1.637 |
R-HSA-180746 | Nuclear import of Rev protein | 2.239560e-02 | 1.650 |
R-HSA-397014 | Muscle contraction | 2.310986e-02 | 1.636 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 2.239560e-02 | 1.650 |
R-HSA-448424 | Interleukin-17 signaling | 2.379865e-02 | 1.623 |
R-HSA-9679506 | SARS-CoV Infections | 2.201121e-02 | 1.657 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 2.493073e-02 | 1.603 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 2.544054e-02 | 1.594 |
R-HSA-69275 | G2/M Transition | 2.572271e-02 | 1.590 |
R-HSA-68875 | Mitotic Prophase | 2.706387e-02 | 1.568 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 2.708413e-02 | 1.567 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 2.769962e-02 | 1.558 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 2.789856e-02 | 1.554 |
R-HSA-453274 | Mitotic G2-G2/M phases | 2.789856e-02 | 1.554 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 2.883494e-02 | 1.540 |
R-HSA-983189 | Kinesins | 2.899011e-02 | 1.538 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 3.009105e-02 | 1.522 |
R-HSA-389356 | Co-stimulation by CD28 | 3.009105e-02 | 1.522 |
R-HSA-5617833 | Cilium Assembly | 3.020970e-02 | 1.520 |
R-HSA-74160 | Gene expression (Transcription) | 3.060979e-02 | 1.514 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 3.118145e-02 | 1.506 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 3.138151e-02 | 1.503 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 3.185101e-02 | 1.497 |
R-HSA-390450 | Folding of actin by CCT/TriC | 3.185101e-02 | 1.497 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 3.185101e-02 | 1.497 |
R-HSA-4839744 | Signaling by APC mutants | 3.830810e-02 | 1.417 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 3.830810e-02 | 1.417 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 3.830810e-02 | 1.417 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 3.830810e-02 | 1.417 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 3.589849e-02 | 1.445 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 3.589849e-02 | 1.445 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 3.871339e-02 | 1.412 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 3.348355e-02 | 1.475 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 3.877183e-02 | 1.411 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 3.883175e-02 | 1.411 |
R-HSA-432142 | Platelet sensitization by LDL | 3.413497e-02 | 1.467 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 3.682263e-02 | 1.434 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 3.938175e-02 | 1.405 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 3.302174e-02 | 1.481 |
R-HSA-73857 | RNA Polymerase II Transcription | 3.429010e-02 | 1.465 |
R-HSA-162909 | Host Interactions of HIV factors | 3.303074e-02 | 1.481 |
R-HSA-446652 | Interleukin-1 family signaling | 3.780023e-02 | 1.423 |
R-HSA-114608 | Platelet degranulation | 3.989119e-02 | 1.399 |
R-HSA-69481 | G2/M Checkpoints | 3.989119e-02 | 1.399 |
R-HSA-9824446 | Viral Infection Pathways | 4.040788e-02 | 1.394 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 4.042776e-02 | 1.393 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 4.049787e-02 | 1.393 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 4.062304e-02 | 1.391 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 4.283220e-02 | 1.368 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 4.283364e-02 | 1.368 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 4.316744e-02 | 1.365 |
R-HSA-8854518 | AURKA Activation by TPX2 | 4.383931e-02 | 1.358 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 4.394903e-02 | 1.357 |
R-HSA-4839735 | Signaling by AXIN mutants | 4.537774e-02 | 1.343 |
R-HSA-4839748 | Signaling by AMER1 mutants | 4.537774e-02 | 1.343 |
R-HSA-9657050 | Defective OGG1 Localization | 5.106428e-02 | 1.292 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 5.106428e-02 | 1.292 |
R-HSA-9656255 | Defective OGG1 Substrate Binding | 5.106428e-02 | 1.292 |
R-HSA-74713 | IRS activation | 5.286578e-02 | 1.277 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 4.713888e-02 | 1.327 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 4.713888e-02 | 1.327 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 5.649536e-02 | 1.248 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 5.649536e-02 | 1.248 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 5.529486e-02 | 1.257 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 5.649536e-02 | 1.248 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 5.655819e-02 | 1.248 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 5.610976e-02 | 1.251 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 5.769110e-02 | 1.239 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 5.421327e-02 | 1.266 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 5.507187e-02 | 1.259 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 5.286578e-02 | 1.277 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 5.169309e-02 | 1.287 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 5.074738e-02 | 1.295 |
R-HSA-70326 | Glucose metabolism | 4.682505e-02 | 1.330 |
R-HSA-447038 | NrCAM interactions | 5.286578e-02 | 1.277 |
R-HSA-176187 | Activation of ATR in response to replication stress | 5.649536e-02 | 1.248 |
R-HSA-5633007 | Regulation of TP53 Activity | 5.213877e-02 | 1.283 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 5.435274e-02 | 1.265 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 5.007417e-02 | 1.300 |
R-HSA-9764561 | Regulation of CDH1 Function | 5.796537e-02 | 1.237 |
R-HSA-166520 | Signaling by NTRKs | 5.878386e-02 | 1.231 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 5.895420e-02 | 1.229 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 5.965466e-02 | 1.224 |
R-HSA-2408522 | Selenoamino acid metabolism | 6.056497e-02 | 1.218 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 6.129004e-02 | 1.213 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 6.129004e-02 | 1.213 |
R-HSA-71384 | Ethanol oxidation | 6.147431e-02 | 1.211 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 6.154555e-02 | 1.211 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 6.154555e-02 | 1.211 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 6.154555e-02 | 1.211 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 6.189150e-02 | 1.208 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 6.298775e-02 | 1.201 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 6.492185e-02 | 1.188 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 6.492185e-02 | 1.188 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 6.492185e-02 | 1.188 |
R-HSA-194441 | Metabolism of non-coding RNA | 6.578631e-02 | 1.182 |
R-HSA-191859 | snRNP Assembly | 6.578631e-02 | 1.182 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 6.578631e-02 | 1.182 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 6.661530e-02 | 1.176 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 6.676085e-02 | 1.175 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 6.676085e-02 | 1.175 |
R-HSA-9605308 | Diseases of Base Excision Repair | 6.676085e-02 | 1.175 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 6.676085e-02 | 1.175 |
R-HSA-5696400 | Dual Incision in GG-NER | 6.684283e-02 | 1.175 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 6.684283e-02 | 1.175 |
R-HSA-392518 | Signal amplification | 6.684283e-02 | 1.175 |
R-HSA-9675135 | Diseases of DNA repair | 6.745714e-02 | 1.171 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 6.745714e-02 | 1.171 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 6.898568e-02 | 1.161 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 7.009273e-02 | 1.154 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 7.009273e-02 | 1.154 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 7.009273e-02 | 1.154 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 7.238574e-02 | 1.140 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 7.238574e-02 | 1.140 |
R-HSA-163767 | PP2A-mediated dephosphorylation of key metabolic factors | 9.756083e-02 | 1.011 |
R-HSA-163754 | Insulin effects increased synthesis of Xylulose-5-Phosphate | 9.756083e-02 | 1.011 |
R-HSA-9031528 | NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... | 9.756083e-02 | 1.011 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 7.942904e-02 | 1.100 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 8.927351e-02 | 1.049 |
R-HSA-429947 | Deadenylation of mRNA | 7.487351e-02 | 1.126 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 9.696323e-02 | 1.013 |
R-HSA-380287 | Centrosome maturation | 7.424977e-02 | 1.129 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 7.487351e-02 | 1.126 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 9.756083e-02 | 1.011 |
R-HSA-9843745 | Adipogenesis | 9.082188e-02 | 1.042 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 8.419953e-02 | 1.075 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 9.696323e-02 | 1.013 |
R-HSA-8849473 | PTK6 Expression | 9.756083e-02 | 1.011 |
R-HSA-171007 | p38MAPK events | 7.942904e-02 | 1.100 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 9.256293e-02 | 1.034 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 7.942904e-02 | 1.100 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 8.961569e-02 | 1.048 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 8.419953e-02 | 1.075 |
R-HSA-5620924 | Intraflagellar transport | 7.717039e-02 | 1.113 |
R-HSA-6784531 | tRNA processing in the nucleus | 7.865533e-02 | 1.104 |
R-HSA-9711097 | Cellular response to starvation | 8.458418e-02 | 1.073 |
R-HSA-446353 | Cell-extracellular matrix interactions | 7.942904e-02 | 1.100 |
R-HSA-112316 | Neuronal System | 8.778333e-02 | 1.057 |
R-HSA-1500931 | Cell-Cell communication | 8.275741e-02 | 1.082 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 8.419953e-02 | 1.075 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 9.558556e-02 | 1.020 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 9.558556e-02 | 1.020 |
R-HSA-8941326 | RUNX2 regulates bone development | 7.817220e-02 | 1.107 |
R-HSA-9766229 | Degradation of CDH1 | 8.230788e-02 | 1.085 |
R-HSA-5689880 | Ub-specific processing proteases | 8.553233e-02 | 1.068 |
R-HSA-73893 | DNA Damage Bypass | 8.230788e-02 | 1.085 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 7.487351e-02 | 1.126 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 9.756083e-02 | 1.011 |
R-HSA-9022707 | MECP2 regulates transcription factors | 9.756083e-02 | 1.011 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 9.696323e-02 | 1.013 |
R-HSA-5576891 | Cardiac conduction | 9.082188e-02 | 1.042 |
R-HSA-5688426 | Deubiquitination | 9.280139e-02 | 1.032 |
R-HSA-983712 | Ion channel transport | 8.608945e-02 | 1.065 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 8.264649e-02 | 1.083 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 9.696323e-02 | 1.013 |
R-HSA-9678108 | SARS-CoV-1 Infection | 9.121389e-02 | 1.040 |
R-HSA-9656256 | Defective OGG1 Substrate Processing | 9.952394e-02 | 1.002 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 9.952394e-02 | 1.002 |
R-HSA-5632987 | Defective Mismatch Repair Associated With PMS2 | 9.952394e-02 | 1.002 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 9.952394e-02 | 1.002 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 9.952394e-02 | 1.002 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 9.952394e-02 | 1.002 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 9.952394e-02 | 1.002 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 9.952394e-02 | 1.002 |
R-HSA-5545483 | Defective Mismatch Repair Associated With MLH1 | 9.952394e-02 | 1.002 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 9.959926e-02 | 1.002 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 9.959926e-02 | 1.002 |
R-HSA-212436 | Generic Transcription Pathway | 1.015584e-01 | 0.993 |
R-HSA-5693606 | DNA Double Strand Break Response | 1.031176e-01 | 0.987 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 1.036915e-01 | 0.984 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 1.036915e-01 | 0.984 |
R-HSA-202433 | Generation of second messenger molecules | 1.036915e-01 | 0.984 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 1.036915e-01 | 0.984 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 1.036915e-01 | 0.984 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 1.046960e-01 | 0.980 |
R-HSA-445355 | Smooth Muscle Contraction | 1.046960e-01 | 0.980 |
R-HSA-162906 | HIV Infection | 1.048923e-01 | 0.979 |
R-HSA-176034 | Interactions of Tat with host cellular proteins | 1.455117e-01 | 0.837 |
R-HSA-9916720 | Mitochondrial short-chain enoyl-CoA hydratase deficiency 1 | 1.455117e-01 | 0.837 |
R-HSA-6791462 | TALDO1 deficiency: failed conversion of Fru(6)P, E4P to SH7P, GA3P | 1.455117e-01 | 0.837 |
R-HSA-5619045 | Defective SLC34A2 causes pulmonary alveolar microlithiasis (PALM) | 1.455117e-01 | 0.837 |
R-HSA-6791055 | TALDO1 deficiency: failed conversion of SH7P, GA3P to Fru(6)P, E4P | 1.455117e-01 | 0.837 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 1.455117e-01 | 0.837 |
R-HSA-5609974 | Defective PGM1 causes PGM1-CDG | 1.455117e-01 | 0.837 |
R-HSA-5687583 | Defective SLC34A2 causes PALM | 1.455117e-01 | 0.837 |
R-HSA-446107 | Type I hemidesmosome assembly | 1.141910e-01 | 0.942 |
R-HSA-444257 | RSK activation | 1.141910e-01 | 0.942 |
R-HSA-9613354 | Lipophagy | 1.314771e-01 | 0.881 |
R-HSA-451308 | Activation of Ca-permeable Kainate Receptor | 1.493090e-01 | 0.826 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 1.331807e-01 | 0.876 |
R-HSA-389513 | Co-inhibition by CTLA4 | 1.451453e-01 | 0.838 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 1.451453e-01 | 0.838 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 1.451453e-01 | 0.838 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 1.451453e-01 | 0.838 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 1.451453e-01 | 0.838 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 1.318735e-01 | 0.880 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 1.305880e-01 | 0.884 |
R-HSA-8957275 | Post-translational protein phosphorylation | 1.238617e-01 | 0.907 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 1.232736e-01 | 0.909 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 1.232736e-01 | 0.909 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 1.232736e-01 | 0.909 |
R-HSA-6798695 | Neutrophil degranulation | 1.356940e-01 | 0.867 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 1.143361e-01 | 0.942 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 1.148447e-01 | 0.940 |
R-HSA-68962 | Activation of the pre-replicative complex | 1.228470e-01 | 0.911 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 1.097305e-01 | 0.960 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 1.215819e-01 | 0.915 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 1.203526e-01 | 0.920 |
R-HSA-9762292 | Regulation of CDH11 function | 1.493090e-01 | 0.826 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 1.140965e-01 | 0.943 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 1.241449e-01 | 0.906 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 1.411638e-01 | 0.850 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 1.314771e-01 | 0.881 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 1.195580e-01 | 0.922 |
R-HSA-162587 | HIV Life Cycle | 1.359244e-01 | 0.867 |
R-HSA-74749 | Signal attenuation | 1.493090e-01 | 0.826 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 1.106445e-01 | 0.956 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 1.355921e-01 | 0.868 |
R-HSA-4791275 | Signaling by WNT in cancer | 1.411638e-01 | 0.850 |
R-HSA-1433557 | Signaling by SCF-KIT | 1.327972e-01 | 0.877 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 1.129181e-01 | 0.947 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 1.407022e-01 | 0.852 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 1.455117e-01 | 0.837 |
R-HSA-9636667 | Manipulation of host energy metabolism | 1.455117e-01 | 0.837 |
R-HSA-176974 | Unwinding of DNA | 1.314771e-01 | 0.881 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 1.493090e-01 | 0.826 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 1.215819e-01 | 0.915 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 1.485824e-01 | 0.828 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 1.129181e-01 | 0.947 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 1.190468e-01 | 0.924 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 1.312244e-01 | 0.882 |
R-HSA-3214841 | PKMTs methylate histone lysines | 1.106445e-01 | 0.956 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 1.106445e-01 | 0.956 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 1.314771e-01 | 0.881 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 1.493090e-01 | 0.826 |
R-HSA-2559583 | Cellular Senescence | 1.064357e-01 | 0.973 |
R-HSA-72312 | rRNA processing | 1.195824e-01 | 0.922 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 1.429714e-01 | 0.845 |
R-HSA-202403 | TCR signaling | 1.129181e-01 | 0.947 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 1.314771e-01 | 0.881 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 1.056338e-01 | 0.976 |
R-HSA-9020702 | Interleukin-1 signaling | 1.389201e-01 | 0.857 |
R-HSA-190704 | Oligomerization of connexins into connexons | 1.455117e-01 | 0.837 |
R-HSA-352238 | Breakdown of the nuclear lamina | 1.455117e-01 | 0.837 |
R-HSA-430116 | GP1b-IX-V activation signalling | 1.314771e-01 | 0.881 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 1.574460e-01 | 0.803 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 1.069513e-01 | 0.971 |
R-HSA-186763 | Downstream signal transduction | 1.318735e-01 | 0.880 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 1.069513e-01 | 0.971 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 1.312197e-01 | 0.882 |
R-HSA-167044 | Signalling to RAS | 1.574460e-01 | 0.803 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 1.254873e-01 | 0.901 |
R-HSA-177929 | Signaling by EGFR | 1.233531e-01 | 0.909 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 1.314771e-01 | 0.881 |
R-HSA-399719 | Trafficking of AMPA receptors | 1.318735e-01 | 0.880 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 1.106445e-01 | 0.956 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 1.467776e-01 | 0.833 |
R-HSA-373753 | Nephrin family interactions | 1.451453e-01 | 0.838 |
R-HSA-5610787 | Hedgehog 'off' state | 1.337995e-01 | 0.874 |
R-HSA-1489509 | DAG and IP3 signaling | 1.485824e-01 | 0.828 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 1.141910e-01 | 0.942 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 1.141910e-01 | 0.942 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 1.314771e-01 | 0.881 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 1.451453e-01 | 0.838 |
R-HSA-1227986 | Signaling by ERBB2 | 1.505547e-01 | 0.822 |
R-HSA-69206 | G1/S Transition | 1.232736e-01 | 0.909 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 1.493090e-01 | 0.826 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 1.363746e-01 | 0.865 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 1.312244e-01 | 0.882 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 1.507052e-01 | 0.822 |
R-HSA-9793380 | Formation of paraxial mesoderm | 1.577440e-01 | 0.802 |
R-HSA-5693538 | Homology Directed Repair | 1.604833e-01 | 0.795 |
R-HSA-186797 | Signaling by PDGF | 1.650801e-01 | 0.782 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 1.657152e-01 | 0.781 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 1.675860e-01 | 0.776 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 1.675860e-01 | 0.776 |
R-HSA-8963888 | Chylomicron assembly | 1.675860e-01 | 0.776 |
R-HSA-451306 | Ionotropic activity of kainate receptors | 1.675860e-01 | 0.776 |
R-HSA-210990 | PECAM1 interactions | 1.675860e-01 | 0.776 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 1.675860e-01 | 0.776 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 1.678590e-01 | 0.775 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 1.700534e-01 | 0.769 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 1.700534e-01 | 0.769 |
R-HSA-5205647 | Mitophagy | 1.704885e-01 | 0.768 |
R-HSA-2682334 | EPH-Ephrin signaling | 1.713029e-01 | 0.766 |
R-HSA-5653656 | Vesicle-mediated transport | 1.721712e-01 | 0.764 |
R-HSA-70263 | Gluconeogenesis | 1.736477e-01 | 0.760 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 1.774576e-01 | 0.751 |
R-HSA-9700206 | Signaling by ALK in cancer | 1.774576e-01 | 0.751 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 1.801730e-01 | 0.744 |
R-HSA-169911 | Regulation of Apoptosis | 1.807035e-01 | 0.743 |
R-HSA-350054 | Notch-HLH transcription pathway | 1.829382e-01 | 0.738 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 1.829382e-01 | 0.738 |
R-HSA-8964038 | LDL clearance | 1.829382e-01 | 0.738 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 1.829382e-01 | 0.738 |
R-HSA-9669938 | Signaling by KIT in disease | 1.829382e-01 | 0.738 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 1.829382e-01 | 0.738 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 1.829382e-01 | 0.738 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 1.862164e-01 | 0.730 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 1.862164e-01 | 0.730 |
R-HSA-162592 | Integration of provirus | 1.862164e-01 | 0.730 |
R-HSA-2132295 | MHC class II antigen presentation | 1.874424e-01 | 0.727 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 1.891534e-01 | 0.723 |
R-HSA-5578997 | Defective AHCY causes HMAHCHD | 1.891534e-01 | 0.723 |
R-HSA-8941237 | Invadopodia formation | 2.305687e-01 | 0.637 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 2.305687e-01 | 0.637 |
R-HSA-5579000 | Defective CYP1B1 causes Glaucoma | 2.305687e-01 | 0.637 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 2.305687e-01 | 0.637 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 2.698711e-01 | 0.569 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 2.698711e-01 | 0.569 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 2.698711e-01 | 0.569 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 2.698711e-01 | 0.569 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 3.071681e-01 | 0.513 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 3.071681e-01 | 0.513 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 3.071681e-01 | 0.513 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 2.051164e-01 | 0.688 |
R-HSA-937039 | IRAK1 recruits IKK complex | 2.051164e-01 | 0.688 |
R-HSA-164525 | Plus-strand DNA synthesis | 3.425621e-01 | 0.465 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 3.425621e-01 | 0.465 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 3.425621e-01 | 0.465 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 2.242102e-01 | 0.649 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 2.242102e-01 | 0.649 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 3.761499e-01 | 0.425 |
R-HSA-629587 | Highly sodium permeable postsynaptic acetylcholine nicotinic receptors | 3.761499e-01 | 0.425 |
R-HSA-162585 | Uncoating of the HIV Virion | 3.761499e-01 | 0.425 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 3.761499e-01 | 0.425 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 2.819962e-01 | 0.550 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 2.229733e-01 | 0.652 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 3.012380e-01 | 0.521 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 3.012380e-01 | 0.521 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 3.203892e-01 | 0.494 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 3.203892e-01 | 0.494 |
R-HSA-167287 | HIV elongation arrest and recovery | 2.645096e-01 | 0.578 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 2.645096e-01 | 0.578 |
R-HSA-5658442 | Regulation of RAS by GAPs | 1.911951e-01 | 0.719 |
R-HSA-9615710 | Late endosomal microautophagy | 2.785696e-01 | 0.555 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 2.785696e-01 | 0.555 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 2.093377e-01 | 0.679 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 2.186117e-01 | 0.660 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 2.186117e-01 | 0.660 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 2.683647e-01 | 0.571 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 2.375231e-01 | 0.624 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 2.471435e-01 | 0.607 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 3.494568e-01 | 0.457 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 3.147425e-01 | 0.502 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 3.636101e-01 | 0.439 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 3.636101e-01 | 0.439 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 3.264617e-01 | 0.486 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 2.329353e-01 | 0.633 |
R-HSA-72172 | mRNA Splicing | 2.904690e-01 | 0.537 |
R-HSA-209543 | p75NTR recruits signalling complexes | 2.051164e-01 | 0.688 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 3.252743e-01 | 0.488 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 2.094260e-01 | 0.679 |
R-HSA-5696398 | Nucleotide Excision Repair | 2.739771e-01 | 0.562 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 2.942613e-01 | 0.531 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 2.434287e-01 | 0.614 |
R-HSA-77387 | Insulin receptor recycling | 2.645096e-01 | 0.578 |
R-HSA-1221632 | Meiotic synapsis | 2.186117e-01 | 0.660 |
R-HSA-354192 | Integrin signaling | 3.352702e-01 | 0.475 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 3.352702e-01 | 0.475 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 3.012380e-01 | 0.521 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 3.499664e-01 | 0.456 |
R-HSA-453276 | Regulation of mitotic cell cycle | 2.368698e-01 | 0.625 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 2.368698e-01 | 0.625 |
R-HSA-193639 | p75NTR signals via NF-kB | 2.627095e-01 | 0.581 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 2.202590e-01 | 0.657 |
R-HSA-877312 | Regulation of IFNG signaling | 2.051164e-01 | 0.688 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 3.425621e-01 | 0.465 |
R-HSA-9796292 | Formation of axial mesoderm | 2.242102e-01 | 0.649 |
R-HSA-9609690 | HCMV Early Events | 2.430429e-01 | 0.614 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 2.051164e-01 | 0.688 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 3.012380e-01 | 0.521 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 2.343873e-01 | 0.630 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 3.068708e-01 | 0.513 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 2.926974e-01 | 0.534 |
R-HSA-1500620 | Meiosis | 2.192221e-01 | 0.659 |
R-HSA-73927 | Depurination | 2.124771e-01 | 0.673 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 2.803159e-01 | 0.552 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 3.071681e-01 | 0.513 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 3.761499e-01 | 0.425 |
R-HSA-418885 | DCC mediated attractive signaling | 2.627095e-01 | 0.581 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 3.012380e-01 | 0.521 |
R-HSA-6783984 | Glycine degradation | 3.012380e-01 | 0.521 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 2.017117e-01 | 0.695 |
R-HSA-5674135 | MAP2K and MAPK activation | 2.569580e-01 | 0.590 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 2.683647e-01 | 0.571 |
R-HSA-9907900 | Proteasome assembly | 2.914291e-01 | 0.535 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 3.494568e-01 | 0.457 |
R-HSA-1295596 | Spry regulation of FGF signaling | 2.627095e-01 | 0.581 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 3.394090e-01 | 0.469 |
R-HSA-5693537 | Resolution of D-Loop Structures | 3.494568e-01 | 0.457 |
R-HSA-212165 | Epigenetic regulation of gene expression | 3.461083e-01 | 0.461 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 3.071681e-01 | 0.513 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 3.203892e-01 | 0.494 |
R-HSA-69190 | DNA strand elongation | 3.210684e-01 | 0.493 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 2.117982e-01 | 0.674 |
R-HSA-5358508 | Mismatch Repair | 3.394090e-01 | 0.469 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 3.352702e-01 | 0.475 |
R-HSA-6794361 | Neurexins and neuroligins | 2.093377e-01 | 0.679 |
R-HSA-4641258 | Degradation of DVL | 2.017117e-01 | 0.695 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 2.344612e-01 | 0.630 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 2.344612e-01 | 0.630 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 3.252743e-01 | 0.488 |
R-HSA-69002 | DNA Replication Pre-Initiation | 3.039229e-01 | 0.517 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 3.203892e-01 | 0.494 |
R-HSA-9609646 | HCMV Infection | 3.449717e-01 | 0.462 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 2.051164e-01 | 0.688 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 1.891534e-01 | 0.723 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 1.891534e-01 | 0.723 |
R-HSA-111446 | Activation of BIM and translocation to mitochondria | 2.305687e-01 | 0.637 |
R-HSA-427589 | Type II Na+/Pi cotransporters | 2.305687e-01 | 0.637 |
R-HSA-417973 | Adenosine P1 receptors | 2.305687e-01 | 0.637 |
R-HSA-390651 | Dopamine receptors | 2.698711e-01 | 0.569 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 2.698711e-01 | 0.569 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 3.071681e-01 | 0.513 |
R-HSA-187024 | NGF-independant TRKA activation | 3.425621e-01 | 0.465 |
R-HSA-6791465 | Pentose phosphate pathway disease | 3.425621e-01 | 0.465 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 3.425621e-01 | 0.465 |
R-HSA-1433559 | Regulation of KIT signaling | 2.434287e-01 | 0.614 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 2.094260e-01 | 0.679 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 2.645096e-01 | 0.578 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 2.645096e-01 | 0.578 |
R-HSA-68949 | Orc1 removal from chromatin | 2.093377e-01 | 0.679 |
R-HSA-69052 | Switching of origins to a post-replicative state | 2.539923e-01 | 0.595 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 2.661728e-01 | 0.575 |
R-HSA-168898 | Toll-like Receptor Cascades | 2.181072e-01 | 0.661 |
R-HSA-3214858 | RMTs methylate histone arginines | 2.914291e-01 | 0.535 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 2.344612e-01 | 0.630 |
R-HSA-73942 | DNA Damage Reversal | 2.627095e-01 | 0.581 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 3.030609e-01 | 0.518 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 3.066412e-01 | 0.513 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 2.343401e-01 | 0.630 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 3.068708e-01 | 0.513 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 3.352702e-01 | 0.475 |
R-HSA-8873719 | RAB geranylgeranylation | 2.865263e-01 | 0.543 |
R-HSA-9707616 | Heme signaling | 3.066412e-01 | 0.513 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 3.734849e-01 | 0.428 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 1.957934e-01 | 0.708 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 2.456523e-01 | 0.610 |
R-HSA-9006925 | Intracellular signaling by second messengers | 2.027343e-01 | 0.693 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 2.242102e-01 | 0.649 |
R-HSA-418360 | Platelet calcium homeostasis | 2.785696e-01 | 0.555 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 3.203892e-01 | 0.494 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 3.404820e-01 | 0.468 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 3.161809e-01 | 0.500 |
R-HSA-446728 | Cell junction organization | 2.250566e-01 | 0.648 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 3.030609e-01 | 0.518 |
R-HSA-73884 | Base Excision Repair | 2.655393e-01 | 0.576 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 2.305687e-01 | 0.637 |
R-HSA-5626978 | TNFR1-mediated ceramide production | 2.698711e-01 | 0.569 |
R-HSA-9675151 | Disorders of Developmental Biology | 3.012380e-01 | 0.521 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 3.210684e-01 | 0.493 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 2.965554e-01 | 0.528 |
R-HSA-416482 | G alpha (12/13) signalling events | 2.981222e-01 | 0.526 |
R-HSA-112315 | Transmission across Chemical Synapses | 2.657439e-01 | 0.576 |
R-HSA-373752 | Netrin-1 signaling | 2.914291e-01 | 0.535 |
R-HSA-418346 | Platelet homeostasis | 2.813886e-01 | 0.551 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 2.926974e-01 | 0.534 |
R-HSA-9824272 | Somitogenesis | 3.030609e-01 | 0.518 |
R-HSA-1059683 | Interleukin-6 signaling | 2.242102e-01 | 0.649 |
R-HSA-9856872 | Malate-aspartate shuttle | 2.434287e-01 | 0.614 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 3.761499e-01 | 0.425 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 3.761499e-01 | 0.425 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 2.233982e-01 | 0.651 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 3.352702e-01 | 0.475 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 3.097901e-01 | 0.509 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 3.097901e-01 | 0.509 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 3.352702e-01 | 0.475 |
R-HSA-168256 | Immune System | 3.511363e-01 | 0.455 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 2.366868e-01 | 0.626 |
R-HSA-9007101 | Rab regulation of trafficking | 2.530258e-01 | 0.597 |
R-HSA-111885 | Opioid Signalling | 2.593243e-01 | 0.586 |
R-HSA-9927353 | Co-inhibition by BTLA | 3.071681e-01 | 0.513 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 3.425621e-01 | 0.465 |
R-HSA-199920 | CREB phosphorylation | 3.761499e-01 | 0.425 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 2.819962e-01 | 0.550 |
R-HSA-9945266 | Differentiation of T cells | 2.819962e-01 | 0.550 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 2.819962e-01 | 0.550 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 2.819962e-01 | 0.550 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 2.456523e-01 | 0.610 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 3.582607e-01 | 0.446 |
R-HSA-112043 | PLC beta mediated events | 2.965554e-01 | 0.528 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 2.965554e-01 | 0.528 |
R-HSA-8876725 | Protein methylation | 2.627095e-01 | 0.581 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 3.559419e-01 | 0.449 |
R-HSA-111933 | Calmodulin induced events | 1.911159e-01 | 0.719 |
R-HSA-1834941 | STING mediated induction of host immune responses | 3.582607e-01 | 0.446 |
R-HSA-111997 | CaM pathway | 1.911159e-01 | 0.719 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 2.242102e-01 | 0.649 |
R-HSA-391160 | Signal regulatory protein family interactions | 2.434287e-01 | 0.614 |
R-HSA-8866423 | VLDL assembly | 3.761499e-01 | 0.425 |
R-HSA-164944 | Nef and signal transduction | 3.761499e-01 | 0.425 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 2.284453e-01 | 0.641 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 3.494568e-01 | 0.457 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 3.636101e-01 | 0.439 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 3.636101e-01 | 0.439 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 3.734849e-01 | 0.428 |
R-HSA-112040 | G-protein mediated events | 3.576428e-01 | 0.447 |
R-HSA-9006936 | Signaling by TGFB family members | 3.332548e-01 | 0.477 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 3.404235e-01 | 0.468 |
R-HSA-111996 | Ca-dependent events | 2.683647e-01 | 0.571 |
R-HSA-8863678 | Neurodegenerative Diseases | 2.094260e-01 | 0.679 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 2.094260e-01 | 0.679 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 3.030609e-01 | 0.518 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 3.030609e-01 | 0.518 |
R-HSA-982772 | Growth hormone receptor signaling | 1.960718e-01 | 0.708 |
R-HSA-9856651 | MITF-M-dependent gene expression | 2.704637e-01 | 0.568 |
R-HSA-69231 | Cyclin D associated events in G1 | 2.914291e-01 | 0.535 |
R-HSA-69236 | G1 Phase | 2.914291e-01 | 0.535 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 2.505406e-01 | 0.601 |
R-HSA-5358351 | Signaling by Hedgehog | 1.956753e-01 | 0.708 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 3.425621e-01 | 0.465 |
R-HSA-447043 | Neurofascin interactions | 3.761499e-01 | 0.425 |
R-HSA-193648 | NRAGE signals death through JNK | 2.471435e-01 | 0.607 |
R-HSA-73887 | Death Receptor Signaling | 2.951568e-01 | 0.530 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 3.352702e-01 | 0.475 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 3.394090e-01 | 0.469 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 3.769121e-01 | 0.424 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 3.777130e-01 | 0.423 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 3.777130e-01 | 0.423 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 3.777130e-01 | 0.423 |
R-HSA-187687 | Signalling to ERKs | 3.777130e-01 | 0.423 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 3.803777e-01 | 0.420 |
R-HSA-1483255 | PI Metabolism | 3.812263e-01 | 0.419 |
R-HSA-1592230 | Mitochondrial biogenesis | 3.812534e-01 | 0.419 |
R-HSA-1257604 | PIP3 activates AKT signaling | 3.884387e-01 | 0.411 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 3.917491e-01 | 0.407 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 3.917491e-01 | 0.407 |
R-HSA-6804757 | Regulation of TP53 Degradation | 3.917491e-01 | 0.407 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 3.937535e-01 | 0.405 |
R-HSA-202040 | G-protein activation | 3.953345e-01 | 0.403 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 3.953345e-01 | 0.403 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 3.953345e-01 | 0.403 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 3.953345e-01 | 0.403 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 3.953345e-01 | 0.403 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 3.986755e-01 | 0.399 |
R-HSA-195721 | Signaling by WNT | 4.036458e-01 | 0.394 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 4.057034e-01 | 0.392 |
R-HSA-110331 | Cleavage of the damaged purine | 4.057034e-01 | 0.392 |
R-HSA-4641257 | Degradation of AXIN | 4.057034e-01 | 0.392 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 4.057034e-01 | 0.392 |
R-HSA-5689896 | Ovarian tumor domain proteases | 4.057034e-01 | 0.392 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 4.080237e-01 | 0.389 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 4.080237e-01 | 0.389 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 4.080237e-01 | 0.389 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 4.080237e-01 | 0.389 |
R-HSA-112412 | SOS-mediated signalling | 4.080237e-01 | 0.389 |
R-HSA-9032845 | Activated NTRK2 signals through CDK5 | 4.080237e-01 | 0.389 |
R-HSA-5576890 | Phase 3 - rapid repolarisation | 4.080237e-01 | 0.389 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 4.080237e-01 | 0.389 |
R-HSA-8964041 | LDL remodeling | 4.080237e-01 | 0.389 |
R-HSA-8964046 | VLDL clearance | 4.080237e-01 | 0.389 |
R-HSA-8847453 | Synthesis of PIPs in the nucleus | 4.080237e-01 | 0.389 |
R-HSA-1296052 | Ca2+ activated K+ channels | 4.080237e-01 | 0.389 |
R-HSA-187015 | Activation of TRKA receptors | 4.080237e-01 | 0.389 |
R-HSA-418886 | Netrin mediated repulsion signals | 4.080237e-01 | 0.389 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 4.080237e-01 | 0.389 |
R-HSA-447041 | CHL1 interactions | 4.080237e-01 | 0.389 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 4.080237e-01 | 0.389 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 4.086060e-01 | 0.389 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 4.086060e-01 | 0.389 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 4.089065e-01 | 0.388 |
R-HSA-9018519 | Estrogen-dependent gene expression | 4.101342e-01 | 0.387 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 4.101342e-01 | 0.387 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 4.135025e-01 | 0.384 |
R-HSA-9671555 | Signaling by PDGFR in disease | 4.135025e-01 | 0.384 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 4.183187e-01 | 0.378 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 4.191133e-01 | 0.378 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 4.195616e-01 | 0.377 |
R-HSA-9012852 | Signaling by NOTCH3 | 4.202327e-01 | 0.377 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 4.278279e-01 | 0.369 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 4.282784e-01 | 0.368 |
R-HSA-69473 | G2/M DNA damage checkpoint | 4.292897e-01 | 0.367 |
R-HSA-1236394 | Signaling by ERBB4 | 4.292897e-01 | 0.367 |
R-HSA-9013694 | Signaling by NOTCH4 | 4.292897e-01 | 0.367 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 4.313941e-01 | 0.365 |
R-HSA-9857377 | Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autopha... | 4.313941e-01 | 0.365 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 4.313941e-01 | 0.365 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 4.318044e-01 | 0.365 |
R-HSA-75893 | TNF signaling | 4.318044e-01 | 0.365 |
R-HSA-69239 | Synthesis of DNA | 4.318627e-01 | 0.365 |
R-HSA-211000 | Gene Silencing by RNA | 4.318627e-01 | 0.365 |
R-HSA-8964043 | Plasma lipoprotein clearance | 4.333104e-01 | 0.363 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 4.333104e-01 | 0.363 |
R-HSA-201556 | Signaling by ALK | 4.333104e-01 | 0.363 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 4.333104e-01 | 0.363 |
R-HSA-69541 | Stabilization of p53 | 4.333104e-01 | 0.363 |
R-HSA-381070 | IRE1alpha activates chaperones | 4.355861e-01 | 0.361 |
R-HSA-162589 | Reverse Transcription of HIV RNA | 4.382709e-01 | 0.358 |
R-HSA-164516 | Minus-strand DNA synthesis | 4.382709e-01 | 0.358 |
R-HSA-112126 | ALKBH3 mediated reversal of alkylation damage | 4.382709e-01 | 0.358 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 4.382709e-01 | 0.358 |
R-HSA-196025 | Formation of annular gap junctions | 4.382709e-01 | 0.358 |
R-HSA-629597 | Highly calcium permeable nicotinic acetylcholine receptors | 4.382709e-01 | 0.358 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 4.382709e-01 | 0.358 |
R-HSA-5652227 | Fructose biosynthesis | 4.382709e-01 | 0.358 |
R-HSA-8985947 | Interleukin-9 signaling | 4.382709e-01 | 0.358 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 4.382709e-01 | 0.358 |
R-HSA-444473 | Formyl peptide receptors bind formyl peptides and many other ligands | 4.382709e-01 | 0.358 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 4.382709e-01 | 0.358 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 4.382709e-01 | 0.358 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 4.382709e-01 | 0.358 |
R-HSA-9020933 | Interleukin-23 signaling | 4.382709e-01 | 0.358 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 4.394297e-01 | 0.357 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 4.423203e-01 | 0.354 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 4.469375e-01 | 0.350 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 4.469375e-01 | 0.350 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 4.489903e-01 | 0.348 |
R-HSA-1980143 | Signaling by NOTCH1 | 4.495274e-01 | 0.347 |
R-HSA-68867 | Assembly of the pre-replicative complex | 4.538289e-01 | 0.343 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 4.547495e-01 | 0.342 |
R-HSA-6782135 | Dual incision in TC-NER | 4.547495e-01 | 0.342 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 4.604314e-01 | 0.337 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 4.604314e-01 | 0.337 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 4.604314e-01 | 0.337 |
R-HSA-3247509 | Chromatin modifying enzymes | 4.615731e-01 | 0.336 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 4.661075e-01 | 0.332 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 4.662744e-01 | 0.331 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 4.662744e-01 | 0.331 |
R-HSA-8963898 | Plasma lipoprotein assembly | 4.662744e-01 | 0.331 |
R-HSA-6783589 | Interleukin-6 family signaling | 4.662744e-01 | 0.331 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 4.669743e-01 | 0.331 |
R-HSA-190873 | Gap junction degradation | 4.669743e-01 | 0.331 |
R-HSA-9020958 | Interleukin-21 signaling | 4.669743e-01 | 0.331 |
R-HSA-1433617 | Regulation of signaling by NODAL | 4.669743e-01 | 0.331 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 4.669743e-01 | 0.331 |
R-HSA-9768777 | Regulation of NPAS4 gene transcription | 4.669743e-01 | 0.331 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 4.669743e-01 | 0.331 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 4.669743e-01 | 0.331 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 4.669743e-01 | 0.331 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 4.669743e-01 | 0.331 |
R-HSA-4086400 | PCP/CE pathway | 4.695738e-01 | 0.328 |
R-HSA-109582 | Hemostasis | 4.711814e-01 | 0.327 |
R-HSA-1483249 | Inositol phosphate metabolism | 4.736480e-01 | 0.325 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 4.737815e-01 | 0.324 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 4.737815e-01 | 0.324 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 4.737815e-01 | 0.324 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 4.737815e-01 | 0.324 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 4.737815e-01 | 0.324 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 4.737815e-01 | 0.324 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 4.773795e-01 | 0.321 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 4.773795e-01 | 0.321 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 4.773795e-01 | 0.321 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 4.773795e-01 | 0.321 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 4.773795e-01 | 0.321 |
R-HSA-389948 | Co-inhibition by PD-1 | 4.780321e-01 | 0.321 |
R-HSA-418990 | Adherens junctions interactions | 4.785016e-01 | 0.320 |
R-HSA-1266738 | Developmental Biology | 4.799746e-01 | 0.319 |
R-HSA-997272 | Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits | 4.832324e-01 | 0.316 |
R-HSA-1296059 | G protein gated Potassium channels | 4.832324e-01 | 0.316 |
R-HSA-1296041 | Activation of G protein gated Potassium channels | 4.832324e-01 | 0.316 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 4.832324e-01 | 0.316 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 4.832324e-01 | 0.316 |
R-HSA-9839394 | TGFBR3 expression | 4.832324e-01 | 0.316 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 4.832324e-01 | 0.316 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 4.832324e-01 | 0.316 |
R-HSA-72766 | Translation | 4.939561e-01 | 0.306 |
R-HSA-173107 | Binding and entry of HIV virion | 4.942126e-01 | 0.306 |
R-HSA-629594 | Highly calcium permeable postsynaptic nicotinic acetylcholine receptors | 4.942126e-01 | 0.306 |
R-HSA-198203 | PI3K/AKT activation | 4.942126e-01 | 0.306 |
R-HSA-164843 | 2-LTR circle formation | 4.942126e-01 | 0.306 |
R-HSA-9664873 | Pexophagy | 4.942126e-01 | 0.306 |
R-HSA-9020956 | Interleukin-27 signaling | 4.942126e-01 | 0.306 |
R-HSA-9683686 | Maturation of spike protein | 4.942126e-01 | 0.306 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 4.942126e-01 | 0.306 |
R-HSA-2586552 | Signaling by Leptin | 4.942126e-01 | 0.306 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 4.966777e-01 | 0.304 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 4.996387e-01 | 0.301 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 4.998526e-01 | 0.301 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 4.998526e-01 | 0.301 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 4.998526e-01 | 0.301 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 4.998526e-01 | 0.301 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 4.998526e-01 | 0.301 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 5.000122e-01 | 0.301 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 5.106136e-01 | 0.292 |
R-HSA-8848021 | Signaling by PTK6 | 5.106136e-01 | 0.292 |
R-HSA-373755 | Semaphorin interactions | 5.106136e-01 | 0.292 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 5.106136e-01 | 0.292 |
R-HSA-3928662 | EPHB-mediated forward signaling | 5.128758e-01 | 0.290 |
R-HSA-5683826 | Surfactant metabolism | 5.128758e-01 | 0.290 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 5.128758e-01 | 0.290 |
R-HSA-9909396 | Circadian clock | 5.131477e-01 | 0.290 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 5.161252e-01 | 0.287 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 5.161252e-01 | 0.287 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 5.161252e-01 | 0.287 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 5.161252e-01 | 0.287 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 5.161252e-01 | 0.287 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 5.161252e-01 | 0.287 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 5.161252e-01 | 0.287 |
R-HSA-264876 | Insulin processing | 5.161252e-01 | 0.287 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 5.161252e-01 | 0.287 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 5.161252e-01 | 0.287 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 5.200606e-01 | 0.284 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 5.200606e-01 | 0.284 |
R-HSA-75205 | Dissolution of Fibrin Clot | 5.200606e-01 | 0.284 |
R-HSA-192814 | vRNA Synthesis | 5.200606e-01 | 0.284 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 5.200606e-01 | 0.284 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 5.200606e-01 | 0.284 |
R-HSA-774815 | Nucleosome assembly | 5.255614e-01 | 0.279 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 5.255614e-01 | 0.279 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 5.255614e-01 | 0.279 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 5.255614e-01 | 0.279 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 5.255614e-01 | 0.279 |
R-HSA-171319 | Telomere Extension By Telomerase | 5.320424e-01 | 0.274 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 5.320424e-01 | 0.274 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 5.320424e-01 | 0.274 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 5.320424e-01 | 0.274 |
R-HSA-1234174 | Cellular response to hypoxia | 5.322260e-01 | 0.274 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 5.380625e-01 | 0.269 |
R-HSA-69306 | DNA Replication | 5.400836e-01 | 0.268 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 5.445892e-01 | 0.264 |
R-HSA-622323 | Presynaptic nicotinic acetylcholine receptors | 5.445892e-01 | 0.264 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 5.445892e-01 | 0.264 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 5.445892e-01 | 0.264 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 5.445892e-01 | 0.264 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 5.445892e-01 | 0.264 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 5.445892e-01 | 0.264 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 5.445892e-01 | 0.264 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 5.445892e-01 | 0.264 |
R-HSA-209560 | NF-kB is activated and signals survival | 5.445892e-01 | 0.264 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 5.445892e-01 | 0.264 |
R-HSA-168330 | Viral RNP Complexes in the Host Cell Nucleus | 5.445892e-01 | 0.264 |
R-HSA-425561 | Sodium/Calcium exchangers | 5.445892e-01 | 0.264 |
R-HSA-4839726 | Chromatin organization | 5.469812e-01 | 0.262 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 5.475979e-01 | 0.262 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 5.475979e-01 | 0.262 |
R-HSA-180024 | DARPP-32 events | 5.475979e-01 | 0.262 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 5.503729e-01 | 0.259 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 5.503729e-01 | 0.259 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 5.503729e-01 | 0.259 |
R-HSA-163685 | Integration of energy metabolism | 5.503837e-01 | 0.259 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 5.533555e-01 | 0.257 |
R-HSA-1989781 | PPARA activates gene expression | 5.539454e-01 | 0.257 |
R-HSA-168249 | Innate Immune System | 5.553626e-01 | 0.255 |
R-HSA-421270 | Cell-cell junction organization | 5.580555e-01 | 0.253 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 5.627872e-01 | 0.250 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 5.627872e-01 | 0.250 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 5.627872e-01 | 0.250 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 5.627872e-01 | 0.250 |
R-HSA-114452 | Activation of BH3-only proteins | 5.627872e-01 | 0.250 |
R-HSA-167172 | Transcription of the HIV genome | 5.637281e-01 | 0.249 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 5.637281e-01 | 0.249 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 5.637281e-01 | 0.249 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 5.676371e-01 | 0.246 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 5.678655e-01 | 0.246 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 5.678655e-01 | 0.246 |
R-HSA-8866427 | VLDLR internalisation and degradation | 5.678655e-01 | 0.246 |
R-HSA-8984722 | Interleukin-35 Signalling | 5.678655e-01 | 0.246 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 5.678655e-01 | 0.246 |
R-HSA-9842663 | Signaling by LTK | 5.678655e-01 | 0.246 |
R-HSA-69091 | Polymerase switching | 5.678655e-01 | 0.246 |
R-HSA-69109 | Leading Strand Synthesis | 5.678655e-01 | 0.246 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 5.678655e-01 | 0.246 |
R-HSA-9697154 | Disorders of Nervous System Development | 5.678655e-01 | 0.246 |
R-HSA-9005895 | Pervasive developmental disorders | 5.678655e-01 | 0.246 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 5.678655e-01 | 0.246 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 5.678655e-01 | 0.246 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 5.678655e-01 | 0.246 |
R-HSA-5687613 | Diseases associated with surfactant metabolism | 5.678655e-01 | 0.246 |
R-HSA-1679131 | Trafficking and processing of endosomal TLR | 5.678655e-01 | 0.246 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 5.678655e-01 | 0.246 |
R-HSA-8983711 | OAS antiviral response | 5.678655e-01 | 0.246 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 5.721555e-01 | 0.242 |
R-HSA-389661 | Glyoxylate metabolism and glycine degradation | 5.744015e-01 | 0.241 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 5.744015e-01 | 0.241 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 5.744015e-01 | 0.241 |
R-HSA-162588 | Budding and maturation of HIV virion | 5.776070e-01 | 0.238 |
R-HSA-182971 | EGFR downregulation | 5.776070e-01 | 0.238 |
R-HSA-877300 | Interferon gamma signaling | 5.811463e-01 | 0.236 |
R-HSA-1236974 | ER-Phagosome pathway | 5.837029e-01 | 0.234 |
R-HSA-181431 | Acetylcholine binding and downstream events | 5.899535e-01 | 0.229 |
R-HSA-622327 | Postsynaptic nicotinic acetylcholine receptors | 5.899535e-01 | 0.229 |
R-HSA-9853506 | OGDH complex synthesizes succinyl-CoA from 2-OG | 5.899535e-01 | 0.229 |
R-HSA-8963901 | Chylomicron remodeling | 5.899535e-01 | 0.229 |
R-HSA-8949664 | Processing of SMDT1 | 5.899535e-01 | 0.229 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 5.899535e-01 | 0.229 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 5.899535e-01 | 0.229 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 5.920555e-01 | 0.228 |
R-HSA-202424 | Downstream TCR signaling | 5.926130e-01 | 0.227 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 5.940323e-01 | 0.226 |
R-HSA-5632684 | Hedgehog 'on' state | 5.940323e-01 | 0.226 |
R-HSA-912446 | Meiotic recombination | 5.976123e-01 | 0.224 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 5.976123e-01 | 0.224 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 6.003680e-01 | 0.222 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 6.038519e-01 | 0.219 |
R-HSA-397795 | G-protein beta:gamma signalling | 6.061319e-01 | 0.217 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 6.061319e-01 | 0.217 |
R-HSA-5675482 | Regulation of necroptotic cell death | 6.061319e-01 | 0.217 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 6.073374e-01 | 0.217 |
R-HSA-597592 | Post-translational protein modification | 6.078699e-01 | 0.216 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 6.089027e-01 | 0.215 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 6.089027e-01 | 0.215 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 6.089027e-01 | 0.215 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 6.089027e-01 | 0.215 |
R-HSA-69166 | Removal of the Flap Intermediate | 6.109138e-01 | 0.214 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 6.109138e-01 | 0.214 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 6.109138e-01 | 0.214 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 6.109138e-01 | 0.214 |
R-HSA-77348 | Beta oxidation of octanoyl-CoA to hexanoyl-CoA | 6.109138e-01 | 0.214 |
R-HSA-77310 | Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA | 6.109138e-01 | 0.214 |
R-HSA-77350 | Beta oxidation of hexanoyl-CoA to butanoyl-CoA | 6.109138e-01 | 0.214 |
R-HSA-6814848 | Glycerophospholipid catabolism | 6.109138e-01 | 0.214 |
R-HSA-9828642 | Respiratory syncytial virus genome transcription | 6.109138e-01 | 0.214 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 6.109138e-01 | 0.214 |
R-HSA-4086398 | Ca2+ pathway | 6.135260e-01 | 0.212 |
R-HSA-74752 | Signaling by Insulin receptor | 6.186958e-01 | 0.209 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 6.186958e-01 | 0.209 |
R-HSA-390522 | Striated Muscle Contraction | 6.198364e-01 | 0.208 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 6.198364e-01 | 0.208 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 6.199796e-01 | 0.208 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 6.199796e-01 | 0.208 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 6.199796e-01 | 0.208 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 6.230524e-01 | 0.205 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 6.308039e-01 | 0.200 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 6.308039e-01 | 0.200 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 6.308039e-01 | 0.200 |
R-HSA-69183 | Processive synthesis on the lagging strand | 6.308039e-01 | 0.200 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 6.308039e-01 | 0.200 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 6.308039e-01 | 0.200 |
R-HSA-9857492 | Protein lipoylation | 6.308039e-01 | 0.200 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 6.308039e-01 | 0.200 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 6.308039e-01 | 0.200 |
R-HSA-77352 | Beta oxidation of butanoyl-CoA to acetyl-CoA | 6.308039e-01 | 0.200 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 6.308039e-01 | 0.200 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 6.308039e-01 | 0.200 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 6.308039e-01 | 0.200 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 6.308039e-01 | 0.200 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 6.308039e-01 | 0.200 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 6.324291e-01 | 0.199 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 6.331704e-01 | 0.198 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 6.331704e-01 | 0.198 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 6.331704e-01 | 0.198 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 6.331704e-01 | 0.198 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 6.331704e-01 | 0.198 |
R-HSA-901042 | Calnexin/calreticulin cycle | 6.331704e-01 | 0.198 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 6.331704e-01 | 0.198 |
R-HSA-5365859 | RA biosynthesis pathway | 6.331704e-01 | 0.198 |
R-HSA-3214815 | HDACs deacetylate histones | 6.414858e-01 | 0.193 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 6.416542e-01 | 0.193 |
R-HSA-5689603 | UCH proteinases | 6.416542e-01 | 0.193 |
R-HSA-1474165 | Reproduction | 6.433344e-01 | 0.192 |
R-HSA-2559585 | Oncogene Induced Senescence | 6.461358e-01 | 0.190 |
R-HSA-381042 | PERK regulates gene expression | 6.461358e-01 | 0.190 |
R-HSA-9711123 | Cellular response to chemical stress | 6.475776e-01 | 0.189 |
R-HSA-2142816 | Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE) | 6.496783e-01 | 0.187 |
R-HSA-176412 | Phosphorylation of the APC/C | 6.496783e-01 | 0.187 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 6.496783e-01 | 0.187 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 6.496783e-01 | 0.187 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 6.496783e-01 | 0.187 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 6.496783e-01 | 0.187 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 6.496783e-01 | 0.187 |
R-HSA-5635838 | Activation of SMO | 6.496783e-01 | 0.187 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 6.496783e-01 | 0.187 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 6.507264e-01 | 0.187 |
R-HSA-9679191 | Potential therapeutics for SARS | 6.539716e-01 | 0.184 |
R-HSA-9845576 | Glycosphingolipid transport | 6.587355e-01 | 0.181 |
R-HSA-163560 | Triglyceride catabolism | 6.587355e-01 | 0.181 |
R-HSA-9682385 | FLT3 signaling in disease | 6.587355e-01 | 0.181 |
R-HSA-114604 | GPVI-mediated activation cascade | 6.587355e-01 | 0.181 |
R-HSA-8853659 | RET signaling | 6.587355e-01 | 0.181 |
R-HSA-69205 | G1/S-Specific Transcription | 6.587355e-01 | 0.181 |
R-HSA-73864 | RNA Polymerase I Transcription | 6.596444e-01 | 0.181 |
R-HSA-1296071 | Potassium Channels | 6.598937e-01 | 0.181 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 6.621208e-01 | 0.179 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 6.675889e-01 | 0.175 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 6.675889e-01 | 0.175 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 6.675889e-01 | 0.175 |
R-HSA-77346 | Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA | 6.675889e-01 | 0.175 |
R-HSA-70370 | Galactose catabolism | 6.675889e-01 | 0.175 |
R-HSA-5661270 | Formation of xylulose-5-phosphate | 6.675889e-01 | 0.175 |
R-HSA-196783 | Coenzyme A biosynthesis | 6.675889e-01 | 0.175 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 6.675889e-01 | 0.175 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 6.675889e-01 | 0.175 |
R-HSA-9659379 | Sensory processing of sound | 6.684071e-01 | 0.175 |
R-HSA-909733 | Interferon alpha/beta signaling | 6.687294e-01 | 0.175 |
R-HSA-1296072 | Voltage gated Potassium channels | 6.709730e-01 | 0.173 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 6.721103e-01 | 0.173 |
R-HSA-1280218 | Adaptive Immune System | 6.765870e-01 | 0.170 |
R-HSA-180786 | Extension of Telomeres | 6.818810e-01 | 0.166 |
R-HSA-8979227 | Triglyceride metabolism | 6.818810e-01 | 0.166 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 6.828524e-01 | 0.166 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 6.828524e-01 | 0.166 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 6.845848e-01 | 0.165 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 6.845848e-01 | 0.165 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 6.845848e-01 | 0.165 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 6.845848e-01 | 0.165 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 6.845848e-01 | 0.165 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 6.845848e-01 | 0.165 |
R-HSA-382556 | ABC-family proteins mediated transport | 6.907080e-01 | 0.161 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 6.914334e-01 | 0.160 |
R-HSA-351202 | Metabolism of polyamines | 6.914334e-01 | 0.160 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 6.943783e-01 | 0.158 |
R-HSA-71336 | Pentose phosphate pathway | 6.943783e-01 | 0.158 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 6.943783e-01 | 0.158 |
R-HSA-8939211 | ESR-mediated signaling | 6.946103e-01 | 0.158 |
R-HSA-9610379 | HCMV Late Events | 6.972183e-01 | 0.157 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 7.007127e-01 | 0.154 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 7.007127e-01 | 0.154 |
R-HSA-2142670 | Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET) | 7.007127e-01 | 0.154 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 7.007127e-01 | 0.154 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 7.007127e-01 | 0.154 |
R-HSA-163615 | PKA activation | 7.007127e-01 | 0.154 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 7.007127e-01 | 0.154 |
R-HSA-428643 | Organic anion transport by SLC5/17/25 transporters | 7.007127e-01 | 0.154 |
R-HSA-180292 | GAB1 signalosome | 7.007127e-01 | 0.154 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 7.007127e-01 | 0.154 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 7.007127e-01 | 0.154 |
R-HSA-210993 | Tie2 Signaling | 7.007127e-01 | 0.154 |
R-HSA-418038 | Nucleotide-like (purinergic) receptors | 7.007127e-01 | 0.154 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 7.007127e-01 | 0.154 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 7.018934e-01 | 0.154 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 7.055557e-01 | 0.151 |
R-HSA-167169 | HIV Transcription Elongation | 7.055557e-01 | 0.151 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 7.055557e-01 | 0.151 |
R-HSA-451927 | Interleukin-2 family signaling | 7.055557e-01 | 0.151 |
R-HSA-6807070 | PTEN Regulation | 7.089252e-01 | 0.149 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 7.098869e-01 | 0.149 |
R-HSA-73886 | Chromosome Maintenance | 7.099471e-01 | 0.149 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 7.135675e-01 | 0.147 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 7.160169e-01 | 0.145 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 7.160169e-01 | 0.145 |
R-HSA-9754189 | Germ layer formation at gastrulation | 7.160169e-01 | 0.145 |
R-HSA-392851 | Prostacyclin signalling through prostacyclin receptor | 7.160169e-01 | 0.145 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 7.160169e-01 | 0.145 |
R-HSA-9834899 | Specification of the neural plate border | 7.160169e-01 | 0.145 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 7.160169e-01 | 0.145 |
R-HSA-449836 | Other interleukin signaling | 7.160169e-01 | 0.145 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 7.160169e-01 | 0.145 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 7.160169e-01 | 0.145 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 7.163902e-01 | 0.145 |
R-HSA-9694548 | Maturation of spike protein | 7.163902e-01 | 0.145 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 7.195643e-01 | 0.143 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 7.253605e-01 | 0.139 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 7.264703e-01 | 0.139 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 7.264703e-01 | 0.139 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 7.268876e-01 | 0.139 |
R-HSA-74751 | Insulin receptor signalling cascade | 7.274798e-01 | 0.138 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 7.305394e-01 | 0.136 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 7.305394e-01 | 0.136 |
R-HSA-1181150 | Signaling by NODAL | 7.305394e-01 | 0.136 |
R-HSA-71288 | Creatine metabolism | 7.305394e-01 | 0.136 |
R-HSA-9823730 | Formation of definitive endoderm | 7.305394e-01 | 0.136 |
R-HSA-9629569 | Protein hydroxylation | 7.305394e-01 | 0.136 |
R-HSA-445144 | Signal transduction by L1 | 7.305394e-01 | 0.136 |
R-HSA-3322077 | Glycogen synthesis | 7.305394e-01 | 0.136 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 7.370541e-01 | 0.133 |
R-HSA-991365 | Activation of GABAB receptors | 7.370541e-01 | 0.133 |
R-HSA-977444 | GABA B receptor activation | 7.370541e-01 | 0.133 |
R-HSA-165159 | MTOR signalling | 7.370541e-01 | 0.133 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 7.370541e-01 | 0.133 |
R-HSA-73928 | Depyrimidination | 7.370541e-01 | 0.133 |
R-HSA-392170 | ADP signalling through P2Y purinoceptor 12 | 7.443200e-01 | 0.128 |
R-HSA-69186 | Lagging Strand Synthesis | 7.443200e-01 | 0.128 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 7.443200e-01 | 0.128 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 7.443200e-01 | 0.128 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 7.443200e-01 | 0.128 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 7.443200e-01 | 0.128 |
R-HSA-2161541 | Abacavir metabolism | 7.443200e-01 | 0.128 |
R-HSA-210991 | Basigin interactions | 7.443200e-01 | 0.128 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 7.443200e-01 | 0.128 |
R-HSA-5654743 | Signaling by FGFR4 | 7.468959e-01 | 0.127 |
R-HSA-1236975 | Antigen processing-Cross presentation | 7.528654e-01 | 0.123 |
R-HSA-5663205 | Infectious disease | 7.543243e-01 | 0.122 |
R-HSA-156581 | Methylation | 7.564197e-01 | 0.121 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 7.564197e-01 | 0.121 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 7.573967e-01 | 0.121 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 7.573967e-01 | 0.121 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 7.573967e-01 | 0.121 |
R-HSA-174403 | Glutathione synthesis and recycling | 7.573967e-01 | 0.121 |
R-HSA-175474 | Assembly Of The HIV Virion | 7.573967e-01 | 0.121 |
R-HSA-5218859 | Regulated Necrosis | 7.601408e-01 | 0.119 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 7.656323e-01 | 0.116 |
R-HSA-5654741 | Signaling by FGFR3 | 7.656323e-01 | 0.116 |
R-HSA-69242 | S Phase | 7.659646e-01 | 0.116 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 7.698053e-01 | 0.114 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 7.698053e-01 | 0.114 |
R-HSA-5652084 | Fructose metabolism | 7.698053e-01 | 0.114 |
R-HSA-166208 | mTORC1-mediated signalling | 7.698053e-01 | 0.114 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 7.698053e-01 | 0.114 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 7.698053e-01 | 0.114 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 7.698053e-01 | 0.114 |
R-HSA-9758941 | Gastrulation | 7.711919e-01 | 0.113 |
R-HSA-72306 | tRNA processing | 7.727789e-01 | 0.112 |
R-HSA-9839373 | Signaling by TGFBR3 | 7.745406e-01 | 0.111 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 7.752450e-01 | 0.111 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 7.815800e-01 | 0.107 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 7.815800e-01 | 0.107 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 7.815800e-01 | 0.107 |
R-HSA-8854691 | Interleukin-20 family signaling | 7.815800e-01 | 0.107 |
R-HSA-912526 | Interleukin receptor SHC signaling | 7.815800e-01 | 0.107 |
R-HSA-3000170 | Syndecan interactions | 7.815800e-01 | 0.107 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 7.815800e-01 | 0.107 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 7.867878e-01 | 0.104 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 7.895600e-01 | 0.103 |
R-HSA-9634597 | GPER1 signaling | 7.914723e-01 | 0.102 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 7.914723e-01 | 0.102 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 7.914723e-01 | 0.102 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 7.927531e-01 | 0.101 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 7.927531e-01 | 0.101 |
R-HSA-1474290 | Collagen formation | 7.935949e-01 | 0.100 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 7.995100e-01 | 0.097 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 7.996029e-01 | 0.097 |
R-HSA-157118 | Signaling by NOTCH | 8.004496e-01 | 0.097 |
R-HSA-1226099 | Signaling by FGFR in disease | 8.031094e-01 | 0.095 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 8.033552e-01 | 0.095 |
R-HSA-420029 | Tight junction interactions | 8.033552e-01 | 0.095 |
R-HSA-389887 | Beta-oxidation of pristanoyl-CoA | 8.033552e-01 | 0.095 |
R-HSA-2160916 | Hyaluronan degradation | 8.033552e-01 | 0.095 |
R-HSA-9830364 | Formation of the nephric duct | 8.033552e-01 | 0.095 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 8.033552e-01 | 0.095 |
R-HSA-3000157 | Laminin interactions | 8.033552e-01 | 0.095 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 8.033552e-01 | 0.095 |
R-HSA-1266695 | Interleukin-7 signaling | 8.033552e-01 | 0.095 |
R-HSA-109704 | PI3K Cascade | 8.072718e-01 | 0.093 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 8.096048e-01 | 0.092 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 8.134156e-01 | 0.090 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 8.134156e-01 | 0.090 |
R-HSA-8874081 | MET activates PTK2 signaling | 8.134156e-01 | 0.090 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 8.134156e-01 | 0.090 |
R-HSA-5689901 | Metalloprotease DUBs | 8.134156e-01 | 0.090 |
R-HSA-3295583 | TRP channels | 8.134156e-01 | 0.090 |
R-HSA-70635 | Urea cycle | 8.134156e-01 | 0.090 |
R-HSA-2161522 | Abacavir ADME | 8.134156e-01 | 0.090 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 8.134156e-01 | 0.090 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 8.134156e-01 | 0.090 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 8.134156e-01 | 0.090 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 8.165441e-01 | 0.088 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 8.219964e-01 | 0.085 |
R-HSA-171306 | Packaging Of Telomere Ends | 8.229619e-01 | 0.085 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 8.229619e-01 | 0.085 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 8.229619e-01 | 0.085 |
R-HSA-75109 | Triglyceride biosynthesis | 8.229619e-01 | 0.085 |
R-HSA-1483213 | Synthesis of PE | 8.229619e-01 | 0.085 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 8.229619e-01 | 0.085 |
R-HSA-9614085 | FOXO-mediated transcription | 8.275484e-01 | 0.082 |
R-HSA-5619084 | ABC transporter disorders | 8.280132e-01 | 0.082 |
R-HSA-5620971 | Pyroptosis | 8.320203e-01 | 0.080 |
R-HSA-446203 | Asparagine N-linked glycosylation | 8.399355e-01 | 0.076 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 8.406157e-01 | 0.075 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 8.406157e-01 | 0.075 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 8.406157e-01 | 0.075 |
R-HSA-420092 | Glucagon-type ligand receptors | 8.406157e-01 | 0.075 |
R-HSA-418597 | G alpha (z) signalling events | 8.421927e-01 | 0.075 |
R-HSA-9842860 | Regulation of endogenous retroelements | 8.427097e-01 | 0.074 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 8.484489e-01 | 0.071 |
R-HSA-5654736 | Signaling by FGFR1 | 8.484489e-01 | 0.071 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 8.484489e-01 | 0.071 |
R-HSA-2424491 | DAP12 signaling | 8.487719e-01 | 0.071 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 8.487719e-01 | 0.071 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 8.487719e-01 | 0.071 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 8.487719e-01 | 0.071 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 8.487719e-01 | 0.071 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 8.492083e-01 | 0.071 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 8.501688e-01 | 0.070 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 8.510427e-01 | 0.070 |
R-HSA-112399 | IRS-mediated signalling | 8.544785e-01 | 0.068 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 8.553041e-01 | 0.068 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 8.565111e-01 | 0.067 |
R-HSA-9833110 | RSV-host interactions | 8.567344e-01 | 0.067 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 8.602885e-01 | 0.065 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 8.638547e-01 | 0.064 |
R-HSA-1538133 | G0 and Early G1 | 8.638547e-01 | 0.064 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 8.658855e-01 | 0.063 |
R-HSA-186712 | Regulation of beta-cell development | 8.658855e-01 | 0.063 |
R-HSA-9930044 | Nuclear RNA decay | 8.708228e-01 | 0.060 |
R-HSA-9733709 | Cardiogenesis | 8.708228e-01 | 0.060 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 8.708228e-01 | 0.060 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 8.712760e-01 | 0.060 |
R-HSA-379724 | tRNA Aminoacylation | 8.712760e-01 | 0.060 |
R-HSA-977443 | GABA receptor activation | 8.712760e-01 | 0.060 |
R-HSA-156590 | Glutathione conjugation | 8.712760e-01 | 0.060 |
R-HSA-5362517 | Signaling by Retinoic Acid | 8.712760e-01 | 0.060 |
R-HSA-2672351 | Stimuli-sensing channels | 8.737665e-01 | 0.059 |
R-HSA-392499 | Metabolism of proteins | 8.737836e-01 | 0.059 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 8.764666e-01 | 0.057 |
R-HSA-445717 | Aquaporin-mediated transport | 8.764666e-01 | 0.057 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 8.774348e-01 | 0.057 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 8.774348e-01 | 0.057 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 8.774348e-01 | 0.057 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 8.774348e-01 | 0.057 |
R-HSA-5223345 | Miscellaneous transport and binding events | 8.774348e-01 | 0.057 |
R-HSA-189483 | Heme degradation | 8.774348e-01 | 0.057 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 8.784719e-01 | 0.056 |
R-HSA-1268020 | Mitochondrial protein import | 8.814635e-01 | 0.055 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 8.814635e-01 | 0.055 |
R-HSA-9645723 | Diseases of programmed cell death | 8.829932e-01 | 0.054 |
R-HSA-2142845 | Hyaluronan metabolism | 8.837087e-01 | 0.054 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 8.837087e-01 | 0.054 |
R-HSA-1980145 | Signaling by NOTCH2 | 8.837087e-01 | 0.054 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 8.837087e-01 | 0.054 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 8.862730e-01 | 0.052 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 8.862730e-01 | 0.052 |
R-HSA-917977 | Transferrin endocytosis and recycling | 8.896618e-01 | 0.051 |
R-HSA-2408508 | Metabolism of ingested SeMet, Sec, MeSec into H2Se | 8.896618e-01 | 0.051 |
R-HSA-2428924 | IGF1R signaling cascade | 8.909012e-01 | 0.050 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 8.925744e-01 | 0.049 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 8.949844e-01 | 0.048 |
R-HSA-74158 | RNA Polymerase III Transcription | 8.953105e-01 | 0.048 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 8.953105e-01 | 0.048 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 8.953540e-01 | 0.048 |
R-HSA-196757 | Metabolism of folate and pterines | 9.006703e-01 | 0.045 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 9.006703e-01 | 0.045 |
R-HSA-8875878 | MET promotes cell motility | 9.057560e-01 | 0.043 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 9.057560e-01 | 0.043 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 9.058061e-01 | 0.043 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 9.077174e-01 | 0.042 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 9.092526e-01 | 0.041 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 9.105817e-01 | 0.041 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 9.105817e-01 | 0.041 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 9.115254e-01 | 0.040 |
R-HSA-9664417 | Leishmania phagocytosis | 9.137903e-01 | 0.039 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 9.137903e-01 | 0.039 |
R-HSA-9664407 | Parasite infection | 9.137903e-01 | 0.039 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 9.147617e-01 | 0.039 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 9.151605e-01 | 0.039 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 9.151605e-01 | 0.039 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 9.151605e-01 | 0.039 |
R-HSA-5260271 | Diseases of Immune System | 9.151605e-01 | 0.039 |
R-HSA-8982491 | Glycogen metabolism | 9.151605e-01 | 0.039 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 9.151605e-01 | 0.039 |
R-HSA-204005 | COPII-mediated vesicle transport | 9.151858e-01 | 0.038 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 9.151858e-01 | 0.038 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 9.164178e-01 | 0.038 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 9.187036e-01 | 0.037 |
R-HSA-3000178 | ECM proteoglycans | 9.187036e-01 | 0.037 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 9.195051e-01 | 0.036 |
R-HSA-5619102 | SLC transporter disorders | 9.217040e-01 | 0.035 |
R-HSA-157579 | Telomere Maintenance | 9.217403e-01 | 0.035 |
R-HSA-167161 | HIV Transcription Initiation | 9.236275e-01 | 0.035 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 9.236275e-01 | 0.035 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 9.236275e-01 | 0.035 |
R-HSA-6811438 | Intra-Golgi traffic | 9.236275e-01 | 0.035 |
R-HSA-9683701 | Translation of Structural Proteins | 9.236275e-01 | 0.035 |
R-HSA-422356 | Regulation of insulin secretion | 9.246067e-01 | 0.034 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 9.275390e-01 | 0.033 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 9.275390e-01 | 0.033 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 9.275390e-01 | 0.033 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 9.312504e-01 | 0.031 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 9.312504e-01 | 0.031 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 9.312504e-01 | 0.031 |
R-HSA-8852135 | Protein ubiquitination | 9.314471e-01 | 0.031 |
R-HSA-917937 | Iron uptake and transport | 9.314471e-01 | 0.031 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 9.314471e-01 | 0.031 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 9.326380e-01 | 0.030 |
R-HSA-2172127 | DAP12 interactions | 9.347719e-01 | 0.029 |
R-HSA-375280 | Amine ligand-binding receptors | 9.347719e-01 | 0.029 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 9.351350e-01 | 0.029 |
R-HSA-9694635 | Translation of Structural Proteins | 9.370869e-01 | 0.028 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 9.381132e-01 | 0.028 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 9.381132e-01 | 0.028 |
R-HSA-77286 | mitochondrial fatty acid beta-oxidation of saturated fatty acids | 9.381132e-01 | 0.028 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.392845e-01 | 0.027 |
R-HSA-1643685 | Disease | 9.399523e-01 | 0.027 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 9.412836e-01 | 0.026 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 9.412836e-01 | 0.026 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 9.412836e-01 | 0.026 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 9.422847e-01 | 0.026 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 9.422847e-01 | 0.026 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 9.442917e-01 | 0.025 |
R-HSA-1483191 | Synthesis of PC | 9.442917e-01 | 0.025 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 9.447280e-01 | 0.025 |
R-HSA-5654738 | Signaling by FGFR2 | 9.447280e-01 | 0.025 |
R-HSA-9031628 | NGF-stimulated transcription | 9.471459e-01 | 0.024 |
R-HSA-425410 | Metal ion SLC transporters | 9.471459e-01 | 0.024 |
R-HSA-9864848 | Complex IV assembly | 9.548616e-01 | 0.020 |
R-HSA-70895 | Branched-chain amino acid catabolism | 9.548616e-01 | 0.020 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 9.571748e-01 | 0.019 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 9.574412e-01 | 0.019 |
R-HSA-2871796 | FCERI mediated MAPK activation | 9.574875e-01 | 0.019 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 9.593696e-01 | 0.018 |
R-HSA-8956320 | Nucleotide biosynthesis | 9.593696e-01 | 0.018 |
R-HSA-382551 | Transport of small molecules | 9.606539e-01 | 0.017 |
R-HSA-9753281 | Paracetamol ADME | 9.634279e-01 | 0.016 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.635234e-01 | 0.016 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 9.636501e-01 | 0.016 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 9.653026e-01 | 0.015 |
R-HSA-112310 | Neurotransmitter release cycle | 9.658482e-01 | 0.015 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.663459e-01 | 0.015 |
R-HSA-2980736 | Peptide hormone metabolism | 9.677095e-01 | 0.014 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 9.700999e-01 | 0.013 |
R-HSA-9033241 | Peroxisomal protein import | 9.703700e-01 | 0.013 |
R-HSA-418555 | G alpha (s) signalling events | 9.706304e-01 | 0.013 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 9.714002e-01 | 0.013 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 9.718892e-01 | 0.012 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 9.718892e-01 | 0.012 |
R-HSA-211976 | Endogenous sterols | 9.733306e-01 | 0.012 |
R-HSA-6809371 | Formation of the cornified envelope | 9.755791e-01 | 0.011 |
R-HSA-6799198 | Complex I biogenesis | 9.759957e-01 | 0.011 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.760766e-01 | 0.011 |
R-HSA-1474244 | Extracellular matrix organization | 9.762214e-01 | 0.010 |
R-HSA-611105 | Respiratory electron transport | 9.769324e-01 | 0.010 |
R-HSA-5690714 | CD22 mediated BCR regulation | 9.772267e-01 | 0.010 |
R-HSA-5368286 | Mitochondrial translation initiation | 9.781285e-01 | 0.010 |
R-HSA-190236 | Signaling by FGFR | 9.781285e-01 | 0.010 |
R-HSA-3214847 | HATs acetylate histones | 9.790895e-01 | 0.009 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 9.795029e-01 | 0.009 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 9.805543e-01 | 0.009 |
R-HSA-9830369 | Kidney development | 9.805543e-01 | 0.009 |
R-HSA-9734767 | Developmental Cell Lineages | 9.809594e-01 | 0.008 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 9.825403e-01 | 0.008 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 9.833961e-01 | 0.007 |
R-HSA-9840310 | Glycosphingolipid catabolism | 9.833961e-01 | 0.007 |
R-HSA-1474228 | Degradation of the extracellular matrix | 9.837256e-01 | 0.007 |
R-HSA-975634 | Retinoid metabolism and transport | 9.842480e-01 | 0.007 |
R-HSA-189445 | Metabolism of porphyrins | 9.842480e-01 | 0.007 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 9.850562e-01 | 0.007 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 9.858230e-01 | 0.006 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 9.865505e-01 | 0.006 |
R-HSA-8951664 | Neddylation | 9.868714e-01 | 0.006 |
R-HSA-5419276 | Mitochondrial translation termination | 9.872949e-01 | 0.006 |
R-HSA-418594 | G alpha (i) signalling events | 9.886607e-01 | 0.005 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 9.891062e-01 | 0.005 |
R-HSA-216083 | Integrin cell surface interactions | 9.891062e-01 | 0.005 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 9.896654e-01 | 0.005 |
R-HSA-6806834 | Signaling by MET | 9.901959e-01 | 0.004 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 9.906992e-01 | 0.004 |
R-HSA-977225 | Amyloid fiber formation | 9.906992e-01 | 0.004 |
R-HSA-390918 | Peroxisomal lipid metabolism | 9.920596e-01 | 0.003 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.924671e-01 | 0.003 |
R-HSA-1483257 | Phospholipid metabolism | 9.930661e-01 | 0.003 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.932211e-01 | 0.003 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 9.932211e-01 | 0.003 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 9.934967e-01 | 0.003 |
R-HSA-70268 | Pyruvate metabolism | 9.935693e-01 | 0.003 |
R-HSA-9609507 | Protein localization | 9.937668e-01 | 0.003 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 9.945102e-01 | 0.002 |
R-HSA-2029481 | FCGR activation | 9.955544e-01 | 0.002 |
R-HSA-9824443 | Parasitic Infection Pathways | 9.956353e-01 | 0.002 |
R-HSA-9658195 | Leishmania infection | 9.956353e-01 | 0.002 |
R-HSA-9837999 | Mitochondrial protein degradation | 9.957828e-01 | 0.002 |
R-HSA-77289 | Mitochondrial Fatty Acid Beta-Oxidation | 9.959995e-01 | 0.002 |
R-HSA-2168880 | Scavenging of heme from plasma | 9.962051e-01 | 0.002 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.962322e-01 | 0.002 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.969272e-01 | 0.001 |
R-HSA-416476 | G alpha (q) signalling events | 9.971557e-01 | 0.001 |
R-HSA-5368287 | Mitochondrial translation | 9.973779e-01 | 0.001 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.974731e-01 | 0.001 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.974731e-01 | 0.001 |
R-HSA-388396 | GPCR downstream signalling | 9.982483e-01 | 0.001 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.983692e-01 | 0.001 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 9.988733e-01 | 0.000 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.991794e-01 | 0.000 |
R-HSA-1660662 | Glycosphingolipid metabolism | 9.992618e-01 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 9.993780e-01 | 0.000 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.994025e-01 | 0.000 |
R-HSA-6805567 | Keratinization | 9.994388e-01 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 9.995068e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.996088e-01 | 0.000 |
R-HSA-375276 | Peptide ligand-binding receptors | 9.997609e-01 | 0.000 |
R-HSA-2187338 | Visual phototransduction | 9.998322e-01 | 0.000 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.998568e-01 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 9.998712e-01 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 9.998849e-01 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 9.999418e-01 | 0.000 |
R-HSA-9748784 | Drug ADME | 9.999524e-01 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.999737e-01 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 9.999776e-01 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 9.999804e-01 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.999844e-01 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 9.999851e-01 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.999861e-01 | 0.000 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.999918e-01 | 0.000 |
R-HSA-211859 | Biological oxidations | 9.999953e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.999962e-01 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.999995e-01 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.999997e-01 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.999999e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000e+00 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000e+00 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.917 | 0.186 | 2 | 0.915 |
CLK3 |
0.910 | 0.298 | 1 | 0.881 |
PIM3 |
0.909 | 0.202 | -3 | 0.879 |
CDC7 |
0.908 | 0.074 | 1 | 0.885 |
PRKD1 |
0.906 | 0.245 | -3 | 0.868 |
NDR2 |
0.905 | 0.135 | -3 | 0.877 |
MOS |
0.905 | 0.124 | 1 | 0.916 |
NLK |
0.905 | 0.152 | 1 | 0.884 |
PRPK |
0.904 | -0.096 | -1 | 0.888 |
CDKL1 |
0.903 | 0.176 | -3 | 0.853 |
CAMK1B |
0.903 | 0.119 | -3 | 0.898 |
RSK2 |
0.902 | 0.206 | -3 | 0.821 |
PRKD2 |
0.901 | 0.224 | -3 | 0.807 |
CDKL5 |
0.901 | 0.203 | -3 | 0.847 |
GCN2 |
0.900 | -0.135 | 2 | 0.847 |
RAF1 |
0.900 | -0.055 | 1 | 0.896 |
MTOR |
0.900 | -0.068 | 1 | 0.843 |
DSTYK |
0.900 | 0.017 | 2 | 0.924 |
PKN3 |
0.900 | 0.127 | -3 | 0.870 |
ERK5 |
0.899 | 0.131 | 1 | 0.866 |
TBK1 |
0.899 | -0.046 | 1 | 0.800 |
ULK2 |
0.899 | -0.070 | 2 | 0.839 |
WNK1 |
0.899 | 0.118 | -2 | 0.923 |
NDR1 |
0.899 | 0.119 | -3 | 0.873 |
SRPK1 |
0.899 | 0.218 | -3 | 0.808 |
NUAK2 |
0.898 | 0.138 | -3 | 0.878 |
HIPK4 |
0.898 | 0.184 | 1 | 0.836 |
P90RSK |
0.898 | 0.161 | -3 | 0.828 |
IKKB |
0.898 | -0.112 | -2 | 0.792 |
ATR |
0.897 | 0.035 | 1 | 0.883 |
BMPR2 |
0.897 | -0.090 | -2 | 0.928 |
SKMLCK |
0.897 | 0.167 | -2 | 0.909 |
RSK3 |
0.897 | 0.161 | -3 | 0.814 |
MST4 |
0.897 | 0.136 | 2 | 0.887 |
PIM1 |
0.896 | 0.211 | -3 | 0.825 |
PDHK4 |
0.896 | -0.288 | 1 | 0.907 |
NIK |
0.895 | 0.089 | -3 | 0.910 |
TGFBR2 |
0.895 | 0.035 | -2 | 0.836 |
CAMLCK |
0.895 | 0.126 | -2 | 0.910 |
AMPKA1 |
0.895 | 0.135 | -3 | 0.886 |
IKKE |
0.895 | -0.084 | 1 | 0.795 |
NEK6 |
0.895 | 0.012 | -2 | 0.894 |
PKN2 |
0.895 | 0.129 | -3 | 0.875 |
PKCD |
0.894 | 0.181 | 2 | 0.841 |
RIPK3 |
0.894 | -0.004 | 3 | 0.775 |
ICK |
0.894 | 0.166 | -3 | 0.886 |
DAPK2 |
0.894 | 0.125 | -3 | 0.906 |
MAPKAPK3 |
0.893 | 0.116 | -3 | 0.816 |
CAMK2G |
0.893 | -0.096 | 2 | 0.852 |
MARK4 |
0.893 | 0.064 | 4 | 0.890 |
TSSK2 |
0.893 | 0.163 | -5 | 0.885 |
PDHK1 |
0.893 | -0.214 | 1 | 0.898 |
LATS2 |
0.892 | 0.074 | -5 | 0.799 |
AURC |
0.892 | 0.196 | -2 | 0.725 |
TSSK1 |
0.892 | 0.175 | -3 | 0.903 |
CAMK2D |
0.892 | 0.067 | -3 | 0.877 |
PKACG |
0.891 | 0.137 | -2 | 0.807 |
NEK7 |
0.891 | -0.115 | -3 | 0.871 |
KIS |
0.891 | 0.109 | 1 | 0.745 |
MLK1 |
0.891 | -0.052 | 2 | 0.861 |
SRPK2 |
0.891 | 0.194 | -3 | 0.729 |
CHAK2 |
0.890 | 0.015 | -1 | 0.866 |
P70S6KB |
0.890 | 0.116 | -3 | 0.837 |
AMPKA2 |
0.889 | 0.129 | -3 | 0.855 |
MAPKAPK2 |
0.889 | 0.140 | -3 | 0.772 |
HUNK |
0.889 | -0.088 | 2 | 0.846 |
PRKD3 |
0.888 | 0.164 | -3 | 0.787 |
WNK3 |
0.887 | -0.170 | 1 | 0.870 |
IRE1 |
0.887 | 0.035 | 1 | 0.839 |
GRK5 |
0.886 | -0.188 | -3 | 0.883 |
NIM1 |
0.886 | 0.025 | 3 | 0.807 |
MNK2 |
0.886 | 0.136 | -2 | 0.857 |
ULK1 |
0.885 | -0.192 | -3 | 0.837 |
NEK9 |
0.885 | -0.085 | 2 | 0.880 |
GRK1 |
0.885 | 0.050 | -2 | 0.815 |
IKKA |
0.885 | -0.050 | -2 | 0.777 |
LATS1 |
0.885 | 0.163 | -3 | 0.894 |
DYRK2 |
0.884 | 0.149 | 1 | 0.745 |
SRPK3 |
0.884 | 0.152 | -3 | 0.778 |
MLK2 |
0.884 | -0.036 | 2 | 0.868 |
BCKDK |
0.884 | -0.178 | -1 | 0.823 |
RSK4 |
0.883 | 0.175 | -3 | 0.792 |
MELK |
0.883 | 0.089 | -3 | 0.841 |
PKCA |
0.883 | 0.146 | 2 | 0.782 |
CLK4 |
0.883 | 0.182 | -3 | 0.815 |
PAK1 |
0.883 | 0.078 | -2 | 0.844 |
NUAK1 |
0.883 | 0.066 | -3 | 0.824 |
MASTL |
0.883 | -0.279 | -2 | 0.858 |
GRK6 |
0.882 | -0.074 | 1 | 0.888 |
CDK8 |
0.882 | 0.050 | 1 | 0.717 |
RIPK1 |
0.882 | -0.135 | 1 | 0.862 |
PKCB |
0.882 | 0.126 | 2 | 0.788 |
PKR |
0.882 | 0.106 | 1 | 0.890 |
MSK2 |
0.882 | 0.074 | -3 | 0.795 |
PAK3 |
0.882 | 0.044 | -2 | 0.845 |
CAMK2B |
0.882 | 0.091 | 2 | 0.823 |
ANKRD3 |
0.882 | -0.110 | 1 | 0.911 |
FAM20C |
0.882 | 0.148 | 2 | 0.677 |
CLK1 |
0.882 | 0.196 | -3 | 0.789 |
AURB |
0.882 | 0.144 | -2 | 0.722 |
PKG2 |
0.882 | 0.173 | -2 | 0.744 |
CAMK4 |
0.882 | -0.015 | -3 | 0.852 |
MLK3 |
0.881 | 0.026 | 2 | 0.794 |
IRE2 |
0.881 | 0.041 | 2 | 0.813 |
BMPR1B |
0.881 | 0.139 | 1 | 0.834 |
PKACB |
0.881 | 0.191 | -2 | 0.741 |
PKCG |
0.881 | 0.095 | 2 | 0.788 |
DLK |
0.881 | -0.183 | 1 | 0.888 |
CDK7 |
0.881 | 0.063 | 1 | 0.723 |
PHKG1 |
0.880 | 0.046 | -3 | 0.862 |
CDK5 |
0.880 | 0.147 | 1 | 0.742 |
ALK4 |
0.880 | 0.020 | -2 | 0.870 |
TGFBR1 |
0.880 | 0.071 | -2 | 0.842 |
CAMK2A |
0.880 | 0.080 | 2 | 0.830 |
QSK |
0.879 | 0.066 | 4 | 0.870 |
SGK3 |
0.879 | 0.171 | -3 | 0.811 |
QIK |
0.879 | -0.016 | -3 | 0.870 |
AKT2 |
0.879 | 0.176 | -3 | 0.738 |
CDK18 |
0.878 | 0.136 | 1 | 0.651 |
MSK1 |
0.878 | 0.127 | -3 | 0.797 |
ATM |
0.878 | -0.017 | 1 | 0.817 |
MNK1 |
0.878 | 0.107 | -2 | 0.867 |
PIM2 |
0.878 | 0.177 | -3 | 0.792 |
CDK19 |
0.878 | 0.060 | 1 | 0.675 |
MYLK4 |
0.877 | 0.097 | -2 | 0.833 |
P38A |
0.877 | 0.123 | 1 | 0.759 |
PAK6 |
0.877 | 0.105 | -2 | 0.771 |
NEK2 |
0.877 | -0.021 | 2 | 0.857 |
PKCH |
0.876 | 0.068 | 2 | 0.777 |
PKCZ |
0.876 | 0.056 | 2 | 0.830 |
HIPK1 |
0.876 | 0.178 | 1 | 0.764 |
SIK |
0.876 | 0.055 | -3 | 0.796 |
CLK2 |
0.876 | 0.244 | -3 | 0.797 |
PLK1 |
0.876 | -0.071 | -2 | 0.852 |
VRK2 |
0.875 | -0.104 | 1 | 0.923 |
JNK2 |
0.875 | 0.126 | 1 | 0.665 |
TTBK2 |
0.875 | -0.233 | 2 | 0.747 |
MEK1 |
0.875 | -0.156 | 2 | 0.881 |
GRK4 |
0.875 | -0.204 | -2 | 0.852 |
CDK13 |
0.875 | 0.054 | 1 | 0.694 |
CDK1 |
0.875 | 0.104 | 1 | 0.677 |
CHK1 |
0.874 | 0.044 | -3 | 0.848 |
PRKX |
0.874 | 0.198 | -3 | 0.726 |
YSK4 |
0.873 | -0.105 | 1 | 0.833 |
SMG1 |
0.873 | -0.025 | 1 | 0.831 |
P38B |
0.873 | 0.125 | 1 | 0.686 |
PAK2 |
0.873 | 0.007 | -2 | 0.828 |
HIPK2 |
0.873 | 0.166 | 1 | 0.652 |
BRSK1 |
0.873 | 0.009 | -3 | 0.829 |
AURA |
0.873 | 0.104 | -2 | 0.692 |
DNAPK |
0.872 | 0.053 | 1 | 0.754 |
MLK4 |
0.872 | -0.050 | 2 | 0.778 |
DYRK1A |
0.872 | 0.136 | 1 | 0.787 |
DCAMKL1 |
0.872 | 0.090 | -3 | 0.821 |
MARK3 |
0.872 | 0.040 | 4 | 0.830 |
JNK3 |
0.872 | 0.081 | 1 | 0.702 |
BRSK2 |
0.872 | -0.035 | -3 | 0.849 |
MARK2 |
0.872 | 0.030 | 4 | 0.797 |
ACVR2A |
0.872 | 0.007 | -2 | 0.828 |
CHAK1 |
0.871 | -0.111 | 2 | 0.818 |
ALK2 |
0.871 | 0.029 | -2 | 0.848 |
PRP4 |
0.871 | 0.157 | -3 | 0.842 |
GRK7 |
0.871 | 0.028 | 1 | 0.821 |
CDK2 |
0.870 | 0.057 | 1 | 0.765 |
HIPK3 |
0.870 | 0.133 | 1 | 0.765 |
ACVR2B |
0.870 | 0.003 | -2 | 0.838 |
ERK1 |
0.870 | 0.081 | 1 | 0.674 |
TLK2 |
0.869 | -0.075 | 1 | 0.852 |
MAPKAPK5 |
0.869 | -0.046 | -3 | 0.770 |
SSTK |
0.869 | 0.102 | 4 | 0.872 |
CAMK1G |
0.869 | 0.039 | -3 | 0.801 |
CDK17 |
0.869 | 0.083 | 1 | 0.594 |
P38G |
0.868 | 0.096 | 1 | 0.588 |
AKT1 |
0.868 | 0.170 | -3 | 0.755 |
CDK14 |
0.868 | 0.125 | 1 | 0.697 |
CDK12 |
0.868 | 0.060 | 1 | 0.666 |
WNK4 |
0.868 | -0.037 | -2 | 0.908 |
CDK9 |
0.868 | 0.030 | 1 | 0.701 |
PKACA |
0.868 | 0.161 | -2 | 0.693 |
PERK |
0.867 | -0.107 | -2 | 0.874 |
MST3 |
0.867 | 0.093 | 2 | 0.872 |
PKCT |
0.867 | 0.089 | 2 | 0.787 |
IRAK4 |
0.867 | -0.006 | 1 | 0.848 |
CDK3 |
0.867 | 0.144 | 1 | 0.614 |
SNRK |
0.867 | -0.168 | 2 | 0.730 |
HRI |
0.866 | -0.148 | -2 | 0.890 |
ERK2 |
0.866 | 0.028 | 1 | 0.719 |
MPSK1 |
0.866 | 0.139 | 1 | 0.845 |
SMMLCK |
0.866 | 0.070 | -3 | 0.860 |
MARK1 |
0.866 | -0.016 | 4 | 0.849 |
PHKG2 |
0.865 | 0.035 | -3 | 0.830 |
PLK4 |
0.865 | -0.100 | 2 | 0.679 |
BRAF |
0.865 | -0.087 | -4 | 0.864 |
DYRK3 |
0.865 | 0.151 | 1 | 0.765 |
DRAK1 |
0.865 | -0.074 | 1 | 0.812 |
MEKK1 |
0.865 | -0.120 | 1 | 0.871 |
NEK5 |
0.865 | -0.029 | 1 | 0.884 |
PLK3 |
0.864 | -0.139 | 2 | 0.806 |
CDK16 |
0.864 | 0.134 | 1 | 0.614 |
MEKK2 |
0.864 | -0.058 | 2 | 0.855 |
MEK5 |
0.864 | -0.232 | 2 | 0.869 |
P70S6K |
0.864 | 0.062 | -3 | 0.754 |
ZAK |
0.864 | -0.114 | 1 | 0.841 |
DYRK1B |
0.863 | 0.109 | 1 | 0.699 |
CDK10 |
0.863 | 0.144 | 1 | 0.681 |
DYRK4 |
0.863 | 0.115 | 1 | 0.667 |
DCAMKL2 |
0.863 | 0.012 | -3 | 0.841 |
PKCI |
0.863 | 0.078 | 2 | 0.798 |
BMPR1A |
0.862 | 0.070 | 1 | 0.811 |
PINK1 |
0.862 | -0.169 | 1 | 0.879 |
TAO3 |
0.861 | 0.000 | 1 | 0.855 |
PASK |
0.861 | 0.037 | -3 | 0.897 |
CAMK1D |
0.861 | 0.089 | -3 | 0.726 |
PKCE |
0.861 | 0.138 | 2 | 0.774 |
MEKK3 |
0.860 | -0.210 | 1 | 0.861 |
P38D |
0.860 | 0.114 | 1 | 0.605 |
TLK1 |
0.859 | -0.147 | -2 | 0.859 |
CK1E |
0.859 | -0.022 | -3 | 0.585 |
GRK2 |
0.859 | -0.123 | -2 | 0.740 |
DAPK3 |
0.859 | 0.123 | -3 | 0.840 |
GAK |
0.858 | 0.089 | 1 | 0.901 |
MAK |
0.857 | 0.230 | -2 | 0.793 |
AKT3 |
0.857 | 0.174 | -3 | 0.680 |
PKN1 |
0.857 | 0.095 | -3 | 0.772 |
TAO2 |
0.857 | -0.022 | 2 | 0.892 |
ERK7 |
0.856 | 0.078 | 2 | 0.589 |
LKB1 |
0.856 | -0.010 | -3 | 0.873 |
PAK5 |
0.855 | 0.040 | -2 | 0.701 |
NEK8 |
0.855 | -0.137 | 2 | 0.864 |
CAMKK1 |
0.855 | -0.149 | -2 | 0.809 |
SGK1 |
0.854 | 0.163 | -3 | 0.663 |
ROCK2 |
0.854 | 0.191 | -3 | 0.831 |
TNIK |
0.854 | 0.110 | 3 | 0.905 |
MEKK6 |
0.854 | 0.001 | 1 | 0.854 |
GSK3B |
0.854 | -0.022 | 4 | 0.441 |
NEK4 |
0.853 | -0.046 | 1 | 0.848 |
PDK1 |
0.853 | -0.044 | 1 | 0.850 |
HGK |
0.853 | 0.054 | 3 | 0.902 |
EEF2K |
0.853 | 0.051 | 3 | 0.874 |
MRCKB |
0.853 | 0.155 | -3 | 0.779 |
GCK |
0.853 | 0.034 | 1 | 0.857 |
NEK11 |
0.853 | -0.183 | 1 | 0.851 |
BUB1 |
0.853 | 0.202 | -5 | 0.827 |
CHK2 |
0.853 | 0.096 | -3 | 0.683 |
MINK |
0.853 | 0.047 | 1 | 0.851 |
IRAK1 |
0.852 | -0.260 | -1 | 0.784 |
MRCKA |
0.852 | 0.142 | -3 | 0.795 |
GSK3A |
0.852 | 0.025 | 4 | 0.449 |
CAMKK2 |
0.852 | -0.121 | -2 | 0.809 |
MOK |
0.852 | 0.187 | 1 | 0.779 |
PAK4 |
0.851 | 0.041 | -2 | 0.710 |
CDK6 |
0.851 | 0.092 | 1 | 0.675 |
DAPK1 |
0.851 | 0.092 | -3 | 0.827 |
CK1G1 |
0.850 | -0.061 | -3 | 0.578 |
TTBK1 |
0.850 | -0.234 | 2 | 0.664 |
MAP3K15 |
0.850 | -0.047 | 1 | 0.826 |
NEK1 |
0.850 | 0.014 | 1 | 0.856 |
CDK4 |
0.850 | 0.083 | 1 | 0.653 |
MST2 |
0.849 | -0.075 | 1 | 0.866 |
HPK1 |
0.849 | 0.040 | 1 | 0.841 |
CK1D |
0.849 | -0.029 | -3 | 0.534 |
TAK1 |
0.849 | -0.054 | 1 | 0.882 |
LOK |
0.849 | 0.011 | -2 | 0.830 |
CAMK1A |
0.849 | 0.096 | -3 | 0.695 |
LRRK2 |
0.847 | -0.109 | 2 | 0.888 |
KHS1 |
0.847 | 0.097 | 1 | 0.838 |
CK1A2 |
0.847 | -0.031 | -3 | 0.534 |
KHS2 |
0.846 | 0.124 | 1 | 0.849 |
DMPK1 |
0.846 | 0.197 | -3 | 0.797 |
VRK1 |
0.846 | -0.085 | 2 | 0.886 |
PBK |
0.846 | 0.097 | 1 | 0.826 |
JNK1 |
0.845 | 0.024 | 1 | 0.652 |
SBK |
0.845 | 0.114 | -3 | 0.616 |
CK2A2 |
0.843 | 0.026 | 1 | 0.748 |
GRK3 |
0.843 | -0.120 | -2 | 0.688 |
YSK1 |
0.842 | -0.013 | 2 | 0.852 |
MST1 |
0.842 | -0.090 | 1 | 0.851 |
PKG1 |
0.840 | 0.087 | -2 | 0.664 |
ROCK1 |
0.840 | 0.147 | -3 | 0.794 |
MEK2 |
0.838 | -0.258 | 2 | 0.854 |
PDHK3_TYR |
0.838 | 0.240 | 4 | 0.922 |
SLK |
0.838 | -0.098 | -2 | 0.763 |
STK33 |
0.838 | -0.194 | 2 | 0.657 |
CRIK |
0.837 | 0.134 | -3 | 0.753 |
NEK3 |
0.837 | -0.087 | 1 | 0.818 |
RIPK2 |
0.836 | -0.301 | 1 | 0.801 |
PLK2 |
0.835 | -0.106 | -3 | 0.794 |
TTK |
0.834 | 0.006 | -2 | 0.859 |
CK2A1 |
0.833 | 0.002 | 1 | 0.726 |
BIKE |
0.832 | 0.100 | 1 | 0.778 |
MYO3B |
0.832 | 0.044 | 2 | 0.868 |
OSR1 |
0.831 | -0.055 | 2 | 0.846 |
HASPIN |
0.830 | -0.003 | -1 | 0.704 |
TESK1_TYR |
0.830 | 0.012 | 3 | 0.912 |
PKMYT1_TYR |
0.829 | 0.027 | 3 | 0.885 |
LIMK2_TYR |
0.827 | 0.117 | -3 | 0.918 |
MAP2K4_TYR |
0.827 | -0.054 | -1 | 0.902 |
ASK1 |
0.826 | -0.140 | 1 | 0.813 |
PDHK4_TYR |
0.826 | -0.012 | 2 | 0.914 |
TAO1 |
0.825 | -0.061 | 1 | 0.784 |
MYO3A |
0.825 | -0.036 | 1 | 0.833 |
MAP2K7_TYR |
0.824 | -0.223 | 2 | 0.899 |
MAP2K6_TYR |
0.824 | -0.075 | -1 | 0.901 |
BMPR2_TYR |
0.823 | -0.033 | -1 | 0.889 |
EPHA6 |
0.822 | 0.076 | -1 | 0.878 |
PINK1_TYR |
0.822 | -0.178 | 1 | 0.893 |
PDHK1_TYR |
0.820 | -0.132 | -1 | 0.910 |
RET |
0.820 | -0.061 | 1 | 0.863 |
ROS1 |
0.818 | -0.018 | 3 | 0.801 |
TYRO3 |
0.818 | -0.047 | 3 | 0.827 |
LIMK1_TYR |
0.818 | -0.146 | 2 | 0.899 |
EPHB4 |
0.817 | 0.010 | -1 | 0.861 |
YANK3 |
0.817 | -0.106 | 2 | 0.429 |
ALPHAK3 |
0.817 | -0.143 | -1 | 0.791 |
MST1R |
0.817 | -0.104 | 3 | 0.834 |
AAK1 |
0.817 | 0.155 | 1 | 0.671 |
ABL2 |
0.816 | 0.053 | -1 | 0.840 |
TYK2 |
0.816 | -0.134 | 1 | 0.862 |
JAK2 |
0.815 | -0.097 | 1 | 0.858 |
CSF1R |
0.814 | -0.075 | 3 | 0.815 |
FGR |
0.813 | -0.034 | 1 | 0.909 |
DDR1 |
0.813 | -0.132 | 4 | 0.863 |
TXK |
0.813 | 0.098 | 1 | 0.881 |
ABL1 |
0.813 | 0.033 | -1 | 0.835 |
YES1 |
0.813 | -0.012 | -1 | 0.879 |
TNNI3K_TYR |
0.812 | 0.092 | 1 | 0.872 |
TNK2 |
0.811 | -0.001 | 3 | 0.776 |
LCK |
0.811 | 0.074 | -1 | 0.865 |
HCK |
0.810 | -0.014 | -1 | 0.864 |
STLK3 |
0.809 | -0.242 | 1 | 0.811 |
JAK3 |
0.809 | -0.129 | 1 | 0.842 |
FER |
0.809 | -0.150 | 1 | 0.915 |
ITK |
0.808 | -0.013 | -1 | 0.836 |
BLK |
0.808 | 0.085 | -1 | 0.866 |
TNK1 |
0.808 | -0.029 | 3 | 0.808 |
INSRR |
0.806 | -0.131 | 3 | 0.769 |
JAK1 |
0.806 | -0.018 | 1 | 0.803 |
CK1A |
0.806 | -0.096 | -3 | 0.441 |
EPHB1 |
0.805 | -0.087 | 1 | 0.894 |
SRMS |
0.805 | -0.095 | 1 | 0.897 |
EPHB3 |
0.805 | -0.066 | -1 | 0.848 |
EPHA4 |
0.805 | -0.087 | 2 | 0.802 |
PDGFRB |
0.805 | -0.173 | 3 | 0.825 |
NEK10_TYR |
0.805 | -0.094 | 1 | 0.738 |
EPHB2 |
0.803 | -0.054 | -1 | 0.842 |
AXL |
0.803 | -0.109 | 3 | 0.791 |
FLT3 |
0.803 | -0.159 | 3 | 0.822 |
FGFR2 |
0.803 | -0.193 | 3 | 0.813 |
KDR |
0.802 | -0.126 | 3 | 0.773 |
MERTK |
0.802 | -0.069 | 3 | 0.792 |
KIT |
0.802 | -0.175 | 3 | 0.814 |
TEK |
0.801 | -0.186 | 3 | 0.759 |
BMX |
0.801 | -0.048 | -1 | 0.754 |
TEC |
0.800 | -0.072 | -1 | 0.778 |
FGFR1 |
0.800 | -0.197 | 3 | 0.782 |
BTK |
0.799 | -0.178 | -1 | 0.806 |
WEE1_TYR |
0.799 | -0.102 | -1 | 0.777 |
FYN |
0.799 | 0.016 | -1 | 0.840 |
PDGFRA |
0.798 | -0.244 | 3 | 0.826 |
ALK |
0.798 | -0.156 | 3 | 0.738 |
MET |
0.797 | -0.157 | 3 | 0.802 |
LTK |
0.797 | -0.144 | 3 | 0.761 |
EPHA7 |
0.796 | -0.094 | 2 | 0.810 |
EPHA1 |
0.796 | -0.099 | 3 | 0.777 |
DDR2 |
0.795 | -0.021 | 3 | 0.754 |
FRK |
0.795 | -0.098 | -1 | 0.871 |
LYN |
0.794 | -0.085 | 3 | 0.743 |
PTK6 |
0.793 | -0.264 | -1 | 0.766 |
PTK2B |
0.793 | -0.052 | -1 | 0.816 |
EPHA3 |
0.792 | -0.189 | 2 | 0.780 |
NTRK1 |
0.791 | -0.292 | -1 | 0.838 |
INSR |
0.791 | -0.210 | 3 | 0.751 |
FLT1 |
0.790 | -0.210 | -1 | 0.845 |
ERBB2 |
0.790 | -0.251 | 1 | 0.819 |
NTRK2 |
0.789 | -0.283 | 3 | 0.770 |
FGFR3 |
0.789 | -0.248 | 3 | 0.781 |
FLT4 |
0.788 | -0.273 | 3 | 0.772 |
SRC |
0.787 | -0.095 | -1 | 0.838 |
NTRK3 |
0.786 | -0.218 | -1 | 0.790 |
EPHA5 |
0.786 | -0.136 | 2 | 0.792 |
MATK |
0.785 | -0.194 | -1 | 0.759 |
CK1G3 |
0.785 | -0.107 | -3 | 0.393 |
EPHA8 |
0.784 | -0.142 | -1 | 0.825 |
EGFR |
0.781 | -0.154 | 1 | 0.730 |
YANK2 |
0.781 | -0.155 | 2 | 0.449 |
CSK |
0.781 | -0.230 | 2 | 0.811 |
PTK2 |
0.780 | -0.040 | -1 | 0.799 |
MUSK |
0.777 | -0.179 | 1 | 0.722 |
FGFR4 |
0.776 | -0.206 | -1 | 0.789 |
SYK |
0.774 | -0.089 | -1 | 0.787 |
EPHA2 |
0.773 | -0.157 | -1 | 0.788 |
IGF1R |
0.772 | -0.237 | 3 | 0.689 |
ERBB4 |
0.767 | -0.136 | 1 | 0.743 |
CK1G2 |
0.760 | -0.137 | -3 | 0.490 |
FES |
0.760 | -0.231 | -1 | 0.732 |
ZAP70 |
0.752 | -0.117 | -1 | 0.710 |