Motif 84 (n=388)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0JNW5 | BLTP3B | S935 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A1L390 | PLEKHG3 | S640 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A7E2V4 | ZSWIM8 | S1042 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
B9A064 | IGLL5 | S194 | ochoa | Immunoglobulin lambda-like polypeptide 5 (G lambda-1) (Germline immunoglobulin lambda 1) | None |
E7EW31 | PROB1 | S472 | ochoa | Proline-rich basic protein 1 | None |
H7C1W4 | None | S345 | ochoa | Uncharacterized protein | None |
K7EN88 | hCG_2039718 | S159 | ochoa | HCG2039718, isoform CRA_g | None |
O00327 | BMAL1 | T44 | ochoa | Basic helix-loop-helix ARNT-like protein 1 (Aryl hydrocarbon receptor nuclear translocator-like protein 1) (Basic-helix-loop-helix-PAS protein MOP3) (Brain and muscle ARNT-like 1) (Class E basic helix-loop-helix protein 5) (bHLHe5) (Member of PAS protein 3) (PAS domain-containing protein 3) (bHLH-PAS protein JAP3) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). Essential for the rhythmic interaction of CLOCK with ASS1 and plays a critical role in positively regulating CLOCK-mediated acetylation of ASS1 (PubMed:28985504). Plays a role in protecting against lethal sepsis by limiting the expression of immune checkpoint protein CD274 in macrophages in a PKM2-dependent manner (By similarity). Regulates the diurnal rhythms of skeletal muscle metabolism via transcriptional activation of genes promoting triglyceride synthesis (DGAT2) and metabolic efficiency (COQ10B) (By similarity). {ECO:0000250|UniProtKB:Q9WTL8, ECO:0000269|PubMed:11441146, ECO:0000269|PubMed:12738229, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:23955654, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}.; FUNCTION: (Microbial infection) Regulates SARS coronavirus-2/SARS-CoV-2 entry and replication in lung epithelial cells probably through the post-transcriptional regulation of ACE2 and interferon-stimulated gene expression. {ECO:0000269|PubMed:34545347}. |
O14497 | ARID1A | S1184 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14668 | PRRG1 | S158 | ochoa | Transmembrane gamma-carboxyglutamic acid protein 1 (Proline-rich gamma-carboxyglutamic acid protein 1) (Proline-rich Gla protein 1) | None |
O14713 | ITGB1BP1 | S36 | ochoa | Integrin beta-1-binding protein 1 (Integrin cytoplasmic domain-associated protein 1) (ICAP-1) | Key regulator of the integrin-mediated cell-matrix interaction signaling by binding to the ITGB1 cytoplasmic tail and preventing the activation of integrin alpha-5/beta-1 (heterodimer of ITGA5 and ITGB1) by talin or FERMT1. Plays a role in cell proliferation, differentiation, spreading, adhesion and migration in the context of mineralization and bone development and angiogenesis. Stimulates cellular proliferation in a fibronectin-dependent manner. Involved in the regulation of beta-1 integrin-containing focal adhesion (FA) site dynamics by controlling its assembly rate during cell adhesion; inhibits beta-1 integrin clustering within FA by directly competing with talin TLN1, and hence stimulates osteoblast spreading and migration in a fibronectin- and/or collagen-dependent manner. Acts as a guanine nucleotide dissociation inhibitor (GDI) by regulating Rho family GTPases during integrin-mediated cell matrix adhesion; reduces the level of active GTP-bound form of both CDC42 and RAC1 GTPases upon cell adhesion to fibronectin. Stimulates the release of active CDC42 from the membranes to maintain it in an inactive cytoplasmic pool. Participates in the translocation of the Rho-associated protein kinase ROCK1 to membrane ruffles at cell leading edges of the cell membrane, leading to an increase of myoblast cell migration on laminin. Plays a role in bone mineralization at a late stage of osteoblast differentiation; modulates the dynamic formation of focal adhesions into fibrillar adhesions, which are adhesive structures responsible for fibronectin deposition and fibrillogenesis. Plays a role in blood vessel development; acts as a negative regulator of angiogenesis by attenuating endothelial cell proliferation and migration, lumen formation and sprouting angiogenesis by promoting AKT phosphorylation and inhibiting ERK1/2 phosphorylation through activation of the Notch signaling pathway. Promotes transcriptional activity of the MYC promoter. {ECO:0000269|PubMed:11741838, ECO:0000269|PubMed:11807099, ECO:0000269|PubMed:11919189, ECO:0000269|PubMed:12473654, ECO:0000269|PubMed:15703214, ECO:0000269|PubMed:17916086, ECO:0000269|PubMed:20616313, ECO:0000269|PubMed:21768292, ECO:0000269|Ref.19}. |
O14795 | UNC13B | S176 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O14924 | RGS12 | S876 | ochoa | Regulator of G-protein signaling 12 (RGS12) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. {ECO:0000250|UniProtKB:O08774}.; FUNCTION: [Isoform 5]: Behaves as a cell cycle-dependent transcriptional repressor, promoting inhibition of S-phase DNA synthesis. {ECO:0000269|PubMed:12024043}. |
O15042 | U2SURP | S26 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O43312 | MTSS1 | S316 | ochoa | Protein MTSS 1 (Metastasis suppressor YGL-1) (Metastasis suppressor protein 1) (Missing in metastasis protein) | May be related to cancer progression or tumor metastasis in a variety of organ sites, most likely through an interaction with the actin cytoskeleton. |
O43314 | PPIP5K2 | S1110 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43900 | PRICKLE3 | S383 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60307 | MAST3 | S711 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60307 | MAST3 | S1093 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60759 | CYTIP | S312 | ochoa | Cytohesin-interacting protein (Cytohesin binder and regulator) (CYBR) (Cytohesin-associated scaffolding protein) (CASP) (Cytohesin-binding protein HE) (Cbp HE) (Pleckstrin homology Sec7 and coiled-coil domains-binding protein) | By its binding to cytohesin-1 (CYTH1), it modifies activation of ARFs by CYTH1 and its precise function may be to sequester CYTH1 in the cytoplasm. |
O60934 | NBN | S343 | ochoa|psp | Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) | Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}. |
O75113 | N4BP1 | S258 | ochoa | NEDD4-binding protein 1 (N4BP1) (EC 3.1.-.-) | Potent suppressor of cytokine production that acts as a regulator of innate immune signaling and inflammation. Acts as a key negative regulator of select cytokine and chemokine responses elicited by TRIF-independent Toll-like receptors (TLRs), thereby limiting inflammatory cytokine responses to minor insults. In response to more threatening pathogens, cleaved by CASP8 downstream of TLR3 or TLR4, leading to its inactivation, thereby allowing production of inflammatory cytokines (By similarity). Acts as a restriction factor against some viruses, such as HIV-1: restricts HIV-1 replication by binding to HIV-1 mRNAs and mediating their degradation via its ribonuclease activity (PubMed:31133753). Also acts as an inhibitor of the E3 ubiquitin-protein ligase ITCH: acts by interacting with the second WW domain of ITCH, leading to compete with ITCH's substrates and impairing ubiquitination of substrates (By similarity). {ECO:0000250|UniProtKB:Q6A037, ECO:0000269|PubMed:31133753}. |
O75152 | ZC3H11A | S761 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75164 | KDM4A | S522 | ochoa | Lysine-specific demethylase 4A (EC 1.14.11.66) (EC 1.14.11.69) (JmjC domain-containing histone demethylation protein 3A) (Jumonji domain-containing protein 2A) ([histone H3]-trimethyl-L-lysine(36) demethylase 4A) ([histone H3]-trimethyl-L-lysine(9) demethylase 4A) | Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code (PubMed:26741168, PubMed:21768309). Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively. {ECO:0000269|PubMed:16024779, ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:21768309, ECO:0000269|PubMed:26741168}.; FUNCTION: [Isoform 2]: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain. {ECO:0000269|PubMed:21694756}. |
O75369 | FLNB | S1384 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75410 | TACC1 | S131 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75717 | WDHD1 | S127 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O94916 | NFAT5 | S109 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O95218 | ZRANB2 | S279 | ochoa | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
P01275 | GCG | S36 | ochoa | Pro-glucagon [Cleaved into: Glicentin; Glicentin-related polypeptide (GRPP); Oxyntomodulin (OXM) (OXY); Glucagon; Glucagon-like peptide 1 (GLP-1) (Incretin hormone); Glucagon-like peptide 1(7-37) (GLP-1(7-37)); Glucagon-like peptide 1(7-36) (GLP-1(7-36)); Glucagon-like peptide 2 (GLP-2)] | [Glucagon]: Plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12626323}.; FUNCTION: [Glucagon-like peptide 1]: Potent stimulator of glucose-dependent insulin release. Also stimulates insulin release in response to IL6 (PubMed:22037645). Plays important roles on gastric motility and the suppression of plasma glucagon levels. May be involved in the suppression of satiety and stimulation of glucose disposal in peripheral tissues, independent of the actions of insulin. Has growth-promoting activities on intestinal epithelium. May also regulate the hypothalamic pituitary axis (HPA) via effects on LH, TSH, CRH, oxytocin, and vasopressin secretion. Increases islet mass through stimulation of islet neogenesis and pancreatic beta cell proliferation. Inhibits beta cell apoptosis (Probable). {ECO:0000269|PubMed:22037645, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Glucagon-like peptide 2]: Stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, from the stomach to the colon is the principal target for GLP-2 action. Plays a key role in nutrient homeostasis, enhancing nutrient assimilation through enhanced gastrointestinal function, as well as increasing nutrient disposal. Stimulates intestinal glucose transport and decreases mucosal permeability. {ECO:0000305|PubMed:10322410, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Oxyntomodulin]: Significantly reduces food intake. Inhibits gastric emptying in humans. Suppression of gastric emptying may lead to increased gastric distension, which may contribute to satiety by causing a sensation of fullness. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}.; FUNCTION: [Glicentin]: May modulate gastric acid secretion and the gastro-pyloro-duodenal activity. May play an important role in intestinal mucosal growth in the early period of life. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}. |
P07196 | NEFL | S61 | ochoa | Neurofilament light polypeptide (NF-L) (68 kDa neurofilament protein) (Neurofilament triplet L protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08551}. |
P0CF74 | IGLC6 | S86 | ochoa | Immunoglobulin lambda constant 6 (Ig lambda-6 chain C region) | Constant region of immunoglobulin light chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268). {ECO:0000303|PubMed:17576170, ECO:0000303|PubMed:20176268, ECO:0000303|PubMed:22158414}. |
P0CG04 | IGLC1 | S86 | ochoa | Immunoglobulin lambda constant 1 (Ig lambda chain C region MGC) (Ig lambda-1 chain C region) | Constant region of immunoglobulin light chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268). {ECO:0000303|PubMed:17576170, ECO:0000303|PubMed:20176268, ECO:0000303|PubMed:22158414}. |
P0DOY2 | IGLC2 | S86 | ochoa | Immunoglobulin lambda constant 2 (Ig lambda chain C region Kern) (Ig lambda chain C region NIG-64) (Ig lambda chain C region SH) (Ig lambda chain C region X) (Ig lambda-2 chain C region) | Constant region of immunoglobulin light chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268). {ECO:0000303|PubMed:17576170, ECO:0000303|PubMed:20176268, ECO:0000303|PubMed:22158414}. |
P0DOY3 | IGLC3 | S86 | ochoa | Immunoglobulin lambda constant 3 (Ig lambda chain C region DOT) (Ig lambda chain C region NEWM) (Ig lambda-3 chain C regions) | Constant region of immunoglobulin light chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268). {ECO:0000303|PubMed:17576170, ECO:0000303|PubMed:20176268, ECO:0000303|PubMed:22158414}. |
P10109 | FDX1 | S63 | ochoa | Adrenodoxin, mitochondrial (Adrenal ferredoxin) (Ferredoxin-1) (Hepatoredoxin) | Essential for the synthesis of various steroid hormones (PubMed:20547883, PubMed:21636783). Participates in the reduction of mitochondrial cytochrome P450 for steroidogenesis (PubMed:20547883, PubMed:21636783). Transfers electrons from adrenodoxin reductase to CYP11A1, a cytochrome P450 that catalyzes cholesterol side-chain cleavage (PubMed:20547883, PubMed:21636783). Does not form a ternary complex with adrenodoxin reductase and CYP11A1 but shuttles between the two enzymes to transfer electrons (By similarity). {ECO:0000250|UniProtKB:P00257, ECO:0000269|PubMed:20547883, ECO:0000269|PubMed:21636783}. |
P12757 | SKIL | S492 | ochoa | Ski-like protein (Ski-related oncogene) (Ski-related protein) | May have regulatory role in cell division or differentiation in response to extracellular signals. |
P14866 | HNRNPL | S544 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein L (hnRNP L) | Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements (PubMed:11809897, PubMed:22570490, PubMed:24164894, PubMed:25623890, PubMed:26051023). Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts (PubMed:2687284). Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (PubMed:11809897). As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPK and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Regulates alternative splicing of a core group of genes involved in neuronal differentiation, likely by mediating H3K36me3-coupled transcription elongation and co-transcriptional RNA processing via interaction with CHD8. {ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:22570490, ECO:0000269|PubMed:25623890, ECO:0000269|PubMed:26051023, ECO:0000269|PubMed:2687284, ECO:0000269|PubMed:33174841, ECO:0000269|PubMed:36537238}. |
P15036 | ETS2 | S255 | ochoa|psp | Protein C-ets-2 | Transcription factor activating transcription. Binds specifically the DNA GGAA/T core motif (Ets-binding site or EBS) in gene promoters and stimulates transcription. {ECO:0000269|PubMed:11909962}. |
P15924 | DSP | S2585 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P18615 | NELFE | S51 | ochoa|psp | Negative elongation factor E (NELF-E) (RNA-binding protein RD) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
P23769 | GATA2 | S290 | ochoa|psp | Endothelial transcription factor GATA-2 (GATA-binding protein 2) | Transcriptional activator which regulates endothelin-1 gene expression in endothelial cells. Binds to the consensus sequence 5'-AGATAG-3'. |
P30414 | NKTR | S509 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P31629 | HIVEP2 | S565 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P32519 | ELF1 | S334 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P35408 | PTGER4 | S379 | psp | Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) | Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. |
P35968 | KDR | S984 | ochoa | Vascular endothelial growth factor receptor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver kinase 1) (FLK-1) (Kinase insert domain receptor) (KDR) (Protein-tyrosine kinase receptor flk-1) (CD antigen CD309) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC. {ECO:0000269|PubMed:10102632, ECO:0000269|PubMed:10368301, ECO:0000269|PubMed:10600473, ECO:0000269|PubMed:11387210, ECO:0000269|PubMed:12649282, ECO:0000269|PubMed:1417831, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15215251, ECO:0000269|PubMed:15962004, ECO:0000269|PubMed:16966330, ECO:0000269|PubMed:17303569, ECO:0000269|PubMed:18529047, ECO:0000269|PubMed:19668192, ECO:0000269|PubMed:19834490, ECO:0000269|PubMed:20080685, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20705758, ECO:0000269|PubMed:21893193, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:7929439, ECO:0000269|PubMed:9160888, ECO:0000269|PubMed:9804796, ECO:0000269|PubMed:9837777}. |
P36956 | SREBF1 | S455 | ochoa | Sterol regulatory element-binding protein 1 (SREBP-1) (Class D basic helix-loop-helix protein 1) (bHLHd1) (Sterol regulatory element-binding transcription factor 1) [Cleaved into: Processed sterol regulatory element-binding protein 1 (Transcription factor SREBF1)] | [Sterol regulatory element-binding protein 1]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 1), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis and lipid homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 1]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis and lipid homeostasis (PubMed:12177166, PubMed:32322062, PubMed:8402897). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:8402897). Regulates the promoters of genes involved in cholesterol biosynthesis and the LDL receptor (LDLR) pathway of sterol regulation (PubMed:12177166, PubMed:32322062, PubMed:8402897). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:8402897}.; FUNCTION: [Isoform SREBP-1A]: Isoform expressed only in select tissues, which has higher transcriptional activity compared to SREBP-1C (By similarity). Able to stimulate both lipogenic and cholesterogenic gene expression (PubMed:12177166, PubMed:32497488). Has a role in the nutritional regulation of fatty acids and triglycerides in lipogenic organs such as the liver (By similarity). Required for innate immune response in macrophages by regulating lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32497488}.; FUNCTION: [Isoform SREBP-1C]: Predominant isoform expressed in most tissues, which has weaker transcriptional activity compared to isoform SREBP-1A (By similarity). Primarily controls expression of lipogenic gene (PubMed:12177166). Strongly activates global lipid synthesis in rapidly growing cells (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166}.; FUNCTION: [Isoform SREBP-1aDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}.; FUNCTION: [Isoform SREBP-1cDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}. |
P41219 | PRPH | S54 | ochoa | Peripherin (Neurofilament 4) | Class-III neuronal intermediate filament protein (By similarity). May form an independent structural network without the involvement of other neurofilaments or may cooperate with the neuronal intermediate filament proteins NEFL, NEFH, NEFM and INA to form a filamentous network (PubMed:15322088, PubMed:15446584). Assembly of the neuronal intermediate filaments may be regulated by RAB7A (By similarity). Plays a role in the development of unmyelinated sensory neurons (By similarity). May be involved in axon elongation and axon regeneration after injury (By similarity). Inhibits neurite extension in type II spiral ganglion neurons in the cochlea (By similarity). {ECO:0000250|UniProtKB:P15331, ECO:0000250|UniProtKB:P21807, ECO:0000269|PubMed:15322088, ECO:0000269|PubMed:15446584}. |
P42166 | TMPO | S295 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P42166 | TMPO | S296 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P42574 | CASP3 | S26 | ochoa|psp | Caspase-3 (CASP-3) (EC 3.4.22.56) (Apopain) (Cysteine protease CPP32) (CPP-32) (Protein Yama) (SREBP cleavage activity 1) (SCA-1) [Cleaved into: Caspase-3 subunit p17; Caspase-3 subunit p12] | Thiol protease that acts as a major effector caspase involved in the execution phase of apoptosis (PubMed:18723680, PubMed:20566630, PubMed:23650375, PubMed:35338844, PubMed:35446120, PubMed:7596430). Following cleavage and activation by initiator caspases (CASP8, CASP9 and/or CASP10), mediates execution of apoptosis by catalyzing cleavage of many proteins (PubMed:18723680, PubMed:20566630, PubMed:23650375, PubMed:7596430). At the onset of apoptosis, it proteolytically cleaves poly(ADP-ribose) polymerase PARP1 at a '216-Asp-|-Gly-217' bond (PubMed:10497198, PubMed:16374543, PubMed:7596430, PubMed:7774019). Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain (By similarity). Cleaves and activates caspase-6, -7 and -9 (CASP6, CASP7 and CASP9, respectively) (PubMed:7596430). Cleaves and inactivates interleukin-18 (IL18) (PubMed:37993714, PubMed:9334240). Involved in the cleavage of huntingtin (PubMed:8696339). Triggers cell adhesion in sympathetic neurons through RET cleavage (PubMed:21357690). Cleaves and inhibits serine/threonine-protein kinase AKT1 in response to oxidative stress (PubMed:23152800). Acts as an inhibitor of type I interferon production during virus-induced apoptosis by mediating cleavage of antiviral proteins CGAS, IRF3 and MAVS, thereby preventing cytokine overproduction (PubMed:30878284). Also involved in pyroptosis by mediating cleavage and activation of gasdermin-E (GSDME) (PubMed:35338844, PubMed:35446120). Cleaves XRCC4 and phospholipid scramblase proteins XKR4, XKR8 and XKR9, leading to promote phosphatidylserine exposure on apoptotic cell surface (PubMed:23845944, PubMed:33725486). Cleaves BIRC6 following inhibition of BIRC6-caspase binding by DIABLO/SMAC (PubMed:36758104, PubMed:36758106). {ECO:0000250|UniProtKB:Q60431, ECO:0000269|PubMed:10497198, ECO:0000269|PubMed:16374543, ECO:0000269|PubMed:18723680, ECO:0000269|PubMed:20566630, ECO:0000269|PubMed:21357690, ECO:0000269|PubMed:23152800, ECO:0000269|PubMed:23650375, ECO:0000269|PubMed:23845944, ECO:0000269|PubMed:30878284, ECO:0000269|PubMed:33725486, ECO:0000269|PubMed:35338844, ECO:0000269|PubMed:35446120, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758106, ECO:0000269|PubMed:37993714, ECO:0000269|PubMed:7596430, ECO:0000269|PubMed:7774019, ECO:0000269|PubMed:8696339, ECO:0000269|PubMed:9334240}. |
P42684 | ABL2 | S202 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P43358 | MAGEA4 | S90 | ochoa | Melanoma-associated antigen 4 (Cancer/testis antigen 1.4) (CT1.4) (MAGE-4 antigen) (MAGE-41 antigen) (MAGE-X2 antigen) | Regulates cell proliferation through the inhibition of cell cycle arrest at the G1 phase (PubMed:22842486). Also negatively regulates p53-mediated apoptosis (PubMed:22842486). {ECO:0000269|PubMed:22842486}. |
P46100 | ATRX | S814 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | Y817 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1155 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46940 | IQGAP1 | S482 | ochoa | Ras GTPase-activating-like protein IQGAP1 (p195) | Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}. |
P47974 | ZFP36L2 | S474 | ochoa | mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}. |
P49790 | NUP153 | S518 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P51825 | AFF1 | S873 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P52701 | MSH6 | S254 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P54132 | BLM | S1381 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P55197 | MLLT10 | S366 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
P55197 | MLLT10 | S406 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
P78527 | PRKDC | S505 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
Q03001 | DST | S7518 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03111 | MLLT1 | S321 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q03111 | MLLT1 | S323 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q03164 | KMT2A | S483 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q05209 | PTPN12 | S641 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q08170 | SRSF4 | S422 | ochoa | Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) | Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}. |
Q12778 | FOXO1 | S303 | ochoa | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12791 | KCNMA1 | S1205 | ochoa | Calcium-activated potassium channel subunit alpha-1 (BK channel) (BKCA alpha) (Calcium-activated potassium channel, subfamily M subunit alpha-1) (K(VCA)alpha) (KCa1.1) (Maxi K channel) (MaxiK) (Slo-alpha) (Slo1) (Slowpoke homolog) (Slo homolog) (hSlo) | Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+) (PubMed:14523450, PubMed:29330545, PubMed:31152168). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in the cochlea, regulation of transmitter release, and innate immunity. In smooth muscles, its activation by high level of Ca(2+), caused by ryanodine receptors in the sarcoplasmic reticulum, regulates the membrane potential. In cochlea cells, its number and kinetic properties partly determine the characteristic frequency of each hair cell and thereby helps to establish a tonotopic map. Kinetics of KCNMA1 channels are determined by alternative splicing, phosphorylation status and its combination with modulating beta subunits. Highly sensitive to both iberiotoxin (IbTx) and charybdotoxin (CTX). Possibly induces sleep when activated by melatonin and through melatonin receptor MTNR1A-dependent dissociation of G-beta and G-gamma subunits, leading to increased sensitivity to Ca(2+) and reduced synaptic transmission (PubMed:32958651). {ECO:0000269|PubMed:14523450, ECO:0000269|PubMed:29330545, ECO:0000269|PubMed:31152168, ECO:0000269|PubMed:32958651}.; FUNCTION: [Isoform 5]: Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). {ECO:0000269|PubMed:7573516, ECO:0000269|PubMed:7877450}. |
Q12888 | TP53BP1 | S484 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12968 | NFATC3 | S95 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q12968 | NFATC3 | S186 | psp | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q13523 | PRP4K | S839 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13530 | SERINC3 | S369 | ochoa | Serine incorporator 3 (Tumor differentially expressed protein 1) | Restriction factor required to restrict infectivity of lentiviruses, such as HIV-1: acts by inhibiting an early step of viral infection. Impairs the penetration of the viral particle into the cytoplasm (PubMed:26416733, PubMed:26416734). Non-ATP-dependent, non-specific lipid transporter for phosphatidylserine, phosphatidylcholine, and phosphatidylethanolamine. Functions as a scramblase that flips lipids in both directions across the membrane. Phospholipid scrambling results in HIV-1 surface exposure of phosphatidylserine and loss of membrane asymmetry, which leads to changes in HIV-1 Env conformation and loss of infectivity (PubMed:37474505). {ECO:0000269|PubMed:26416733, ECO:0000269|PubMed:26416734, ECO:0000269|PubMed:37474505}. |
Q14123 | PDE1C | S488 | ochoa | Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C (Cam-PDE 1C) (EC 3.1.4.17) (Hcam3) | Calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:29860631, PubMed:8557689). Has a high affinity for both cAMP and cGMP (PubMed:8557689). Modulates the amplitude and duration of the cAMP signal in sensory cilia in response to odorant stimulation, hence contributing to the generation of action potentials. Regulates smooth muscle cell proliferation. Regulates the stability of growth factor receptors, including PDGFRB (Probable). {ECO:0000269|PubMed:29860631, ECO:0000269|PubMed:8557689, ECO:0000305|PubMed:29860631}. |
Q14157 | UBAP2L | S319 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14324 | MYBPC2 | S114 | ochoa | Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role. |
Q14517 | FAT1 | S1170 | ochoa | Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] | [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}. |
Q14671 | PUM1 | S799 | ochoa | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q14678 | KANK1 | S881 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q15047 | SETDB1 | S919 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15057 | ACAP2 | S581 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 (Centaurin-beta-2) (Cnt-b2) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6). Doesn't show GAP activity for RAB35 (PubMed:30905672). {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:30905672}. |
Q15283 | RASA2 | S555 | ochoa | Ras GTPase-activating protein 2 (GTPase-activating protein 1m) (GAP1m) | Inhibitory regulator of the Ras-cyclic AMP pathway. Binds inositol tetrakisphosphate (IP4). |
Q15286 | RAB35 | S36 | ochoa | Ras-related protein Rab-35 (EC 3.6.5.2) (GTP-binding protein RAY) (Ras-related protein Rab-1C) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:30905672). RAB35 is involved in the process of endocytosis and is an essential rate-limiting regulator of the fast recycling pathway back to the plasma membrane (PubMed:21951725). During cytokinesis, required for the postfurrowing terminal steps, namely for intercellular bridge stability and abscission, possibly by controlling phosphatidylinositol 4,5-bis phosphate (PIP2) and SEPT2 localization at the intercellular bridge (PubMed:16950109). May indirectly regulate neurite outgrowth. Together with TBC1D13 may be involved in regulation of insulin-induced glucose transporter SLC2A4/GLUT4 translocation to the plasma membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q6PHN9, ECO:0000269|PubMed:16950109, ECO:0000269|PubMed:21951725, ECO:0000269|PubMed:30905672}. |
Q16537 | PPP2R5E | S34 | ochoa | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit epsilon isoform (PP2A B subunit isoform B'-epsilon) (PP2A B subunit isoform B56-epsilon) (PP2A B subunit isoform PR61-epsilon) (PP2A B subunit isoform R5-epsilon) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q2KJY2 | KIF26B | S1042 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q2M2I3 | FAM83E | S386 | ochoa | Protein FAM83E | May play a role in MAPK signaling. {ECO:0000303|PubMed:24736947}. |
Q2TB10 | ZNF800 | S161 | ochoa | Zinc finger protein 800 | May be involved in transcriptional regulation. |
Q4ADV7 | RIC1 | S1017 | ochoa | Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) | The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}. |
Q53HC9 | EIPR1 | S306 | ochoa | EARP and GARP complex-interacting protein 1 (Endosome-associated recycling protein-interacting protein) (Golgi-associated retrograde protein-interacting protein) (Tumor-suppressing STF cDNA 1 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 1 protein) | Acts as a component of endosomal retrieval machinery that is involved in protein transport from early endosomes to either recycling endosomes or the trans-Golgi network (PubMed:27440922). Mediates the recruitment of Golgi-associated retrograde protein (GARP) complex to the trans-Golgi network and controls early endosome-to-Golgi transport of internalized protein (PubMed:27440922). Promotes the recycling of internalized transferrin receptor (TFRC) to the plasma membrane through interaction with endosome-associated recycling protein (EARP) complex (PubMed:27440922). Controls proper insulin distribution and secretion, and retention of cargo in mature dense core vesicles (By similarity). Required for the stability of the endosome-associated retrograde protein (EARP) complex subunits and for proper localization and association of EARP with membranes (By similarity). {ECO:0000250|UniProtKB:Q5PPK9, ECO:0000269|PubMed:27440922}. |
Q53QZ3 | ARHGAP15 | S212 | ochoa | Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}. |
Q5JQS6 | GCSAML | S64 | ochoa | Germinal center-associated signaling and motility-like protein | None |
Q5M775 | SPECC1 | S366 | ochoa | Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) | None |
Q5T1R4 | HIVEP3 | S933 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1R4 | HIVEP3 | S993 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T200 | ZC3H13 | S1210 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T481 | RBM20 | S660 | ochoa | RNA-binding protein 20 (RNA-binding motif protein 20) | RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}. |
Q5T5Y3 | CAMSAP1 | S1400 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T9C2 | EEIG1 | S253 | ochoa | Early estrogen-induced gene 1 protein (EEIG1) | Key component of TNFSF11/RANKL- and TNF-induced osteoclastogenesis pathways, thereby mediates bone resorption in pathological bone loss conditions (By similarity). Required for TNFSF11/RANKL-induced osteoclastogenesis via its interaction with TNFRSF11A/RANK, thereby facilitates the downsteam transcription of NFATC1 and activation of PLCG2 (By similarity). Facilitates recruitment of the transcriptional repressor PRDM1/BLIMP1 to the promoter of the anti-osteoclastogenesis gene IRF8, thereby resulting in transcription of osteoclast differentiation factors (By similarity). May play a role in estrogen action (PubMed:14605097). {ECO:0000250|UniProtKB:Q78T81, ECO:0000269|PubMed:14605097}. |
Q5TAQ9 | DCAF8 | S20 | ochoa | DDB1- and CUL4-associated factor 8 (WD repeat-containing protein 42A) | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240}. |
Q5VSY0 | GKAP1 | S27 | ochoa | G kinase-anchoring protein 1 (cGMP-dependent protein kinase-anchoring protein of 42 kDa) | Regulates insulin-dependent IRS1 tyrosine phosphorylation in adipocytes by modulating the availability of IRS1 to IR tyrosine kinase. Its association with IRS1 is required for insulin-induced translocation of SLC2A4 to the cell membrane. Involved in TNF-induced impairment of insulin-dependent IRS1 tyrosine phosphorylation. {ECO:0000250|UniProtKB:Q9JMB0}. |
Q5VT52 | RPRD2 | S716 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VWQ8 | DAB2IP | S876 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q684P5 | RAP1GAP2 | S700 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q68CZ2 | TNS3 | S944 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q69YH5 | CDCA2 | S981 | psp | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6AI08 | HEATR6 | S397 | ochoa | HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) | Amplification-dependent oncogene. |
Q6KC79 | NIPBL | S1154 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6NUP7 | PPP4R4 | S775 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 4 | Putative regulatory subunit of serine/threonine-protein phosphatase 4. |
Q6P0Q8 | MAST2 | S1091 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6PEV8 | FAM199X | S318 | ochoa | Protein FAM199X | None |
Q6PEV8 | FAM199X | S323 | ochoa | Protein FAM199X | None |
Q6R327 | RICTOR | S1030 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6R327 | RICTOR | S1280 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6ZN18 | AEBP2 | S141 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q6ZN28 | MACC1 | S74 | ochoa | Metastasis-associated in colon cancer protein 1 (SH3 domain-containing protein 7a5) | Acts as a transcription activator for MET and as a key regulator of HGF-MET signaling. Promotes cell motility, proliferation and hepatocyte growth factor (HGF)-dependent scattering in vitro and tumor growth and metastasis in vivo. {ECO:0000269|PubMed:19098908}. |
Q6ZVL6 | KIAA1549L | S1683 | ochoa | UPF0606 protein KIAA1549L | None |
Q709C8 | VPS13C | S2486 | ochoa | Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}. |
Q70CQ4 | USP31 | S1221 | ochoa | Ubiquitin carboxyl-terminal hydrolase 31 (EC 3.4.19.12) (Deubiquitinating enzyme 31) (Ubiquitin thioesterase 31) (Ubiquitin-specific-processing protease 31) | Deubiquitinase that recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. May play a role in the regulation of NF-kappa-B signaling pathway by deubiquitinating TRAF2. {ECO:0000269|PubMed:34184746}.; FUNCTION: (Microbial infection) Plays a positive role in foot-and-mouth disease and classical swine fever viral infection. Mechanistically, associates with internal ribosomal entry site (IRES) element within the 5'-untranslated region of viral genomes to promote translation of the virus-encoded polyprotein. {ECO:0000269|PubMed:35468926}. |
Q70E73 | RAPH1 | S541 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q76N89 | HECW1 | S939 | ochoa | E3 ubiquitin-protein ligase HECW1 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 1) (HECT-type E3 ubiquitin transferase HECW1) (NEDD4-like E3 ubiquitin-protein ligase 1) (hNEDL1) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent degradation of DVL1. Also targets the mutant SOD1 protein involved in familial amyotrophic lateral sclerosis (FALS). Forms cytotoxic aggregates with DVL1, SSR3 and mutant SOD1 that lead to motor neuron death in FALS. {ECO:0000269|PubMed:14684739}. |
Q7KZ85 | SUPT6H | S1668 | ochoa | Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) | Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}. |
Q7Z401 | DENND4A | S1533 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z401 | DENND4A | S1535 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z6J0 | SH3RF1 | S127 | ochoa | E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) | Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}. |
Q86SQ0 | PHLDB2 | S58 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86UE4 | MTDH | S534 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86Z02 | HIPK1 | S967 | ochoa | Homeodomain-interacting protein kinase 1 (EC 2.7.11.1) (Nuclear body-associated kinase 2) | Serine/threonine-protein kinase involved in transcription regulation and TNF-mediated cellular apoptosis. Plays a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX and MYB. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. Inactivates MYB transcription factor activity by phosphorylation. Prevents MAP3K5-JNK activation in the absence of TNF. TNF triggers its translocation to the cytoplasm in response to stress stimuli, thus activating nuclear MAP3K5-JNK by derepression and promoting apoptosis. May be involved in anti-oxidative stress responses. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. Promotes angiogenesis and to be involved in erythroid differentiation. May be involved in malignant squamous cell tumor formation. Phosphorylates PAGE4 at 'Thr-51' which is critical for the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:24559171). {ECO:0000269|PubMed:12702766, ECO:0000269|PubMed:12968034, ECO:0000269|PubMed:15701637, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:19646965, ECO:0000269|PubMed:24559171}. |
Q8IVL0 | NAV3 | S275 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IXT5 | RBM12B | S501 | ochoa | RNA-binding protein 12B (RNA-binding motif protein 12B) | None |
Q8IYD8 | FANCM | S1796 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IZ21 | PHACTR4 | S451 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZQ1 | WDFY3 | S3328 | ochoa | WD repeat and FYVE domain-containing protein 3 (Autophagy-linked FYVE protein) (Alfy) | Required for selective macroautophagy (aggrephagy). Acts as an adapter protein by linking specific proteins destined for degradation to the core autophagic machinery members, such as the ATG5-ATG12-ATG16L E3-like ligase, SQSTM1 and LC3 (PubMed:20417604). Along with p62/SQSTM1, involved in the formation and autophagic degradation of cytoplasmic ubiquitin-containing inclusions (p62 bodies, ALIS/aggresome-like induced structures). Along with SQSTM1, required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Important for normal brain development. Essential for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Involved in the ability of neural cells to respond to guidance cues. Required for cortical neurons to respond to the trophic effects of netrin-1/NTN1 (By similarity). Regulates Wnt signaling through the removal of DVL3 aggregates, likely in an autophagy-dependent manner. This process may be important for the determination of brain size during embryonic development (PubMed:27008544). May regulate osteoclastogenesis by acting on the TNFSF11/RANKL - TRAF6 pathway (By similarity). After cytokinetic abscission, involved in midbody remnant degradation (PubMed:24128730). In vitro strongly binds to phosphatidylinositol 3-phosphate (PtdIns3P) (PubMed:15292400). {ECO:0000250|UniProtKB:Q6VNB8, ECO:0000269|PubMed:15292400, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20417604, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:27008544}. |
Q8N3F9 | GPR137C | S357 | ochoa | Integral membrane protein GPR137C (Transmembrane 7 superfamily member 1-like 2 protein) | Lysosomal integral membrane protein that may regulate MTORC1 complex translocation to lysosomes. {ECO:0000269|PubMed:31036939}. |
Q8NAN2 | MIGA1 | S140 | ochoa | Mitoguardin 1 (Protein FAM73A) | Regulator of mitochondrial fusion: acts by forming homo- and heterodimers at the mitochondrial outer membrane and facilitating the formation of PLD6/MitoPLD dimers. May act by regulating phospholipid metabolism via PLD6/MitoPLD. {ECO:0000269|PubMed:26711011}. |
Q8NAN2 | MIGA1 | T142 | ochoa | Mitoguardin 1 (Protein FAM73A) | Regulator of mitochondrial fusion: acts by forming homo- and heterodimers at the mitochondrial outer membrane and facilitating the formation of PLD6/MitoPLD dimers. May act by regulating phospholipid metabolism via PLD6/MitoPLD. {ECO:0000269|PubMed:26711011}. |
Q8NB49 | ATP11C | S1110 | ochoa | Phospholipid-transporting ATPase IG (EC 7.6.2.1) (ATPase IQ) (ATPase class VI type 11C) (P4-ATPase flippase complex alpha subunit ATP11C) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids, phosphatidylserines (PS) and phosphatidylethanolamines (PE), from the outer to the inner leaflet of the plasma membrane (PubMed:24904167, PubMed:25315773, PubMed:26567335, PubMed:32493773). Major PS-flippase in immune cell subsets. In erythrocyte plasma membrane, it is required to maintain PS in the inner leaflet preventing its exposure on the surface. This asymmetric distribution is critical for the survival of erythrocytes in circulation since externalized PS is a phagocytic signal for erythrocyte clearance by splenic macrophages (PubMed:26944472). Required for B cell differentiation past the pro-B cell stage (By similarity). Seems to mediate PS flipping in pro-B cells (By similarity). May be involved in the transport of cholestatic bile acids (By similarity). {ECO:0000250|UniProtKB:Q9QZW0, ECO:0000269|PubMed:24904167, ECO:0000269|PubMed:25315773, ECO:0000269|PubMed:26944472, ECO:0000269|PubMed:32493773}. |
Q8NCE2 | MTMR14 | S626 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR14 (EC 3.1.3.95) (HCV NS5A-transactivated protein 4 splice variant A-binding protein 1) (NS5ATP4ABP1) (Myotubularin-related protein 14) (Phosphatidylinositol-3-phosphate phosphatase) (hJumpy) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate. {ECO:0000269|PubMed:17008356}. |
Q8NCN4 | RNF169 | S368 | ochoa | E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) | Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}. |
Q8NDX6 | ZNF740 | S72 | ochoa | Zinc finger protein 740 (OriLyt TD-element-binding protein 7) | May be involved in transcriptional regulation. |
Q8NF91 | SYNE1 | S8726 | ochoa | Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}. |
Q8NFC6 | BOD1L1 | S870 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NHY2 | COP1 | S110 | ochoa | E3 ubiquitin-protein ligase COP1 (EC 2.3.2.27) (Constitutive photomorphogenesis protein 1 homolog) (hCOP1) (RING finger and WD repeat domain protein 2) (RING finger protein 200) (RING-type E3 ubiquitin transferase RFWD2) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Involved in JUN ubiquitination and degradation. Directly involved in p53 (TP53) ubiquitination and degradation, thereby abolishing p53-dependent transcription and apoptosis. Ubiquitinates p53 independently of MDM2 or RCHY1. Probably mediates E3 ubiquitin ligase activity by functioning as the essential RING domain subunit of larger E3 complexes. In contrast, it does not constitute the catalytic RING subunit in the DCX DET1-COP1 complex that negatively regulates JUN, the ubiquitin ligase activity being mediated by RBX1. Involved in 14-3-3 protein sigma/SFN ubiquitination and proteasomal degradation, leading to AKT activation and promotion of cell survival. Ubiquitinates MTA1 leading to its proteasomal degradation. Upon binding to TRIB1, ubiquitinates CEBPA, which lacks a canonical COP1-binding motif (Probable). {ECO:0000269|PubMed:12466024, ECO:0000269|PubMed:12615916, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15103385, ECO:0000269|PubMed:19805145, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21625211, ECO:0000303|PubMed:27041596}. |
Q8NI36 | WDR36 | S863 | ochoa | WD repeat-containing protein 36 (T-cell activation WD repeat-containing protein) (TA-WDRP) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in the nucleolar processing of SSU 18S rRNA (PubMed:21051332, PubMed:34516797). Involved in T-cell activation and highly coregulated with IL2 (PubMed:15177553). {ECO:0000269|PubMed:15177553, ECO:0000269|PubMed:21051332, ECO:0000269|PubMed:34516797}. |
Q8TF40 | FNIP1 | S296 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF44 | C2CD4C | S264 | ochoa | C2 calcium-dependent domain-containing protein 4C (Nuclear-localized factor 3) (Protein FAM148C) | None |
Q8TF76 | HASPIN | S60 | ochoa | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WVJ9 | TWIST2 | S57 | ochoa | Twist-related protein 2 (Class A basic helix-loop-helix protein 39) (bHLHa39) (Dermis-expressed protein 1) (Dermo-1) | Binds to the E-box consensus sequence 5'-CANNTG-3' as a heterodimer and inhibits transcriptional activation by MYOD1, MYOG, MEF2A and MEF2C. Also represses expression of pro-inflammatory cytokines such as TNFA and IL1B. Involved in postnatal glycogen storage and energy metabolism (By similarity). Inhibits the premature or ectopic differentiation of preosteoblast cells during osteogenesis, possibly by changing the internal signal transduction response of osteoblasts to external growth factors. {ECO:0000250, ECO:0000269|PubMed:11062344}. |
Q8WWI1 | LMO7 | S1539 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WXI7 | MUC16 | S9553 | ochoa | Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) | Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}. |
Q8WY91 | THAP4 | S239 | ochoa | Peroxynitrite isomerase THAP4 (EC 5.99.-.-) (Ferric Homo sapiens nitrobindin) (Hs-Nb(III)) (THAP domain-containing protein 4) | Heme-binding protein able to scavenge peroxynitrite and to protect free L-tyrosine against peroxynitrite-mediated nitration, by acting as a peroxynitrite isomerase that converts peroxynitrite to nitrate. Therefore, this protein likely plays a role in peroxynitrite sensing and in the detoxification of reactive nitrogen and oxygen species (RNS and ROS, respectively). Is able to bind nitric oxide (NO) in vitro, but may act as a sensor of peroxynitrite levels in vivo, possibly modulating the transcriptional activity residing in the N-terminal region. {ECO:0000269|PubMed:30524950, ECO:0000269|PubMed:32295384}. |
Q8WYB5 | KAT6B | S523 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYB5 | KAT6B | S524 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q92574 | TSC1 | S1042 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S1043 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92609 | TBC1D5 | S48 | ochoa | TBC1 domain family member 5 | May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}. |
Q92609 | TBC1D5 | S732 | ochoa | TBC1 domain family member 5 | May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}. |
Q92613 | JADE3 | S674 | ochoa | Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}. |
Q92614 | MYO18A | S2007 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92628 | KIAA0232 | S1082 | ochoa | Uncharacterized protein KIAA0232 | None |
Q92841 | DDX17 | S676 | ochoa | Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72) | As an RNA helicase, unwinds RNA and alters RNA structures through ATP binding and hydrolysis. Involved in multiple cellular processes, including pre-mRNA splicing, alternative splicing, ribosomal RNA processing and miRNA processing, as well as transcription regulation. Regulates the alternative splicing of exons exhibiting specific features (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). For instance, promotes the inclusion of AC-rich alternative exons in CD44 transcripts (PubMed:12138182). This function requires the RNA helicase activity (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). Affects NFAT5 and histone macro-H2A.1/MACROH2A1 alternative splicing in a CDK9-dependent manner (PubMed:22266867, PubMed:26209609). In NFAT5, promotes the introduction of alternative exon 4, which contains 2 stop codons and may target NFAT5 exon 4-containing transcripts to nonsense-mediated mRNA decay, leading to the down-regulation of NFAT5 protein (PubMed:22266867). Affects splicing of mediators of steroid hormone signaling pathway, including kinases that phosphorylates ESR1, such as CDK2, MAPK1 and GSK3B, and transcriptional regulators, such as CREBBP, MED1, NCOR1 and NCOR2. By affecting GSK3B splicing, participates in ESR1 and AR stabilization (PubMed:24275493). In myoblasts and epithelial cells, cooperates with HNRNPH1 to control the splicing of specific subsets of exons (PubMed:24910439). In addition to binding mature mRNAs, also interacts with certain pri-microRNAs, including MIR663/miR-663a, MIR99B/miR-99b, and MIR6087/miR-6087 (PubMed:25126784). Binds pri-microRNAs on the 3' segment flanking the stem loop via the 5'-[ACG]CAUC[ACU]-3' consensus sequence (PubMed:24581491). Required for the production of subsets of microRNAs, including MIR21 and MIR125B1 (PubMed:24581491, PubMed:27478153). May be involved not only in microRNA primary transcript processing, but also stabilization (By similarity). Participates in MYC down-regulation at high cell density through the production of MYC-targeting microRNAs (PubMed:24581491). Along with DDX5, may be involved in the processing of the 32S intermediate into the mature 28S ribosomal RNA (PubMed:17485482). Promoter-specific transcription regulator, functioning as a coactivator or corepressor depending on the context of the promoter and the transcriptional complex in which it exists (PubMed:15298701). Enhances NFAT5 transcriptional activity (PubMed:22266867). Synergizes with TP53 in the activation of the MDM2 promoter; this activity requires acetylation on lysine residues (PubMed:17226766, PubMed:19995069, PubMed:20663877). May also coactivate MDM2 transcription through a TP53-independent pathway (PubMed:17226766). Coactivates MMP7 transcription (PubMed:17226766). Along with CTNNB1, coactivates MYC, JUN, FOSL1 and cyclin D1/CCND1 transcription (PubMed:17699760). Alone or in combination with DDX5 and/or SRA1 non-coding RNA, plays a critical role in promoting the assembly of proteins required for the formation of the transcription initiation complex and chromatin remodeling leading to coactivation of MYOD1-dependent transcription. This helicase-independent activity is required for skeletal muscle cells to properly differentiate into myotubes (PubMed:17011493, PubMed:24910439). During epithelial-to-mesenchymal transition, coregulates SMAD-dependent transcriptional activity, directly controlling key effectors of differentiation, including miRNAs which in turn directly repress its expression (PubMed:24910439). Plays a role in estrogen and testosterone signaling pathway at several levels. Mediates the use of alternative promoters in estrogen-responsive genes and regulates transcription and splicing of a large number of steroid hormone target genes (PubMed:19995069, PubMed:20406972, PubMed:20663877, PubMed:24275493). Contrary to splicing regulation activity, transcriptional coregulation of the estrogen receptor ESR1 is helicase-independent (PubMed:19718048, PubMed:24275493). Plays a role in innate immunity. Specifically restricts bunyavirus infection, including Rift Valley fever virus (RVFV) or La Crosse virus (LACV), but not vesicular stomatitis virus (VSV), in an interferon- and DROSHA-independent manner (PubMed:25126784). Binds to RVFV RNA, likely via structured viral RNA elements (PubMed:25126784). Promotes mRNA degradation mediated by the antiviral zinc-finger protein ZC3HAV1, in an ATPase-dependent manner (PubMed:18334637). {ECO:0000250|UniProtKB:Q501J6, ECO:0000269|PubMed:12138182, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766, ECO:0000269|PubMed:17485482, ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:18334637, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:19995069, ECO:0000269|PubMed:20406972, ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:23022728, ECO:0000269|PubMed:24275493, ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24910439, ECO:0000269|PubMed:25126784, ECO:0000269|PubMed:26209609, ECO:0000269|PubMed:27478153, ECO:0000305}. |
Q92900 | UPF1 | S1089 | psp | Regulator of nonsense transcripts 1 (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent helicase RENT1) (Nonsense mRNA reducing factor 1) (NORF1) (Up-frameshift suppressor 1 homolog) (hUpf1) | RNA-dependent helicase required for nonsense-mediated decay (NMD) of aberrant mRNAs containing premature stop codons and modulates the expression level of normal mRNAs (PubMed:11163187, PubMed:16086026, PubMed:18172165, PubMed:21145460, PubMed:21419344, PubMed:24726324). Is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD (PubMed:11544179, PubMed:25220460). Recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex (PubMed:19417104). In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) (located 50-55 or more nucleotides downstream from the termination codon) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD (PubMed:21419344). Phosphorylated UPF1 is recognized by EST1B/SMG5, SMG6 and SMG7 which are thought to provide a link to the mRNA degradation machinery involving exonucleolytic and endonucleolytic pathways, and to serve as adapters to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation and allowing the recycling of NMD factors (PubMed:12554878). UPF1 can also activate NMD without UPF2 or UPF3, and in the absence of the NMD-enhancing downstream EJC indicative for alternative NMD pathways (PubMed:18447585). Plays a role in replication-dependent histone mRNA degradation at the end of phase S; the function is independent of UPF2 (PubMed:16086026, PubMed:18172165). For the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585, PubMed:25220460). The ATPase activity of UPF1 is required for disassembly of mRNPs undergoing NMD (PubMed:21145460). Together with UPF2 and dependent on TDRD6, mediates the degradation of mRNA harboring long 3'UTR by inducing the NMD machinery (By similarity). Also capable of unwinding double-stranded DNA and translocating on single-stranded DNA (PubMed:30218034). {ECO:0000250|UniProtKB:Q9EPU0, ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:12554878, ECO:0000269|PubMed:16086026, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:19417104, ECO:0000269|PubMed:21145460, ECO:0000269|PubMed:21419344, ECO:0000269|PubMed:24726324, ECO:0000269|PubMed:25220460, ECO:0000269|PubMed:30218034}. |
Q93075 | TATDN2 | S402 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q96BR9 | ZBTB8A | S161 | ochoa | Zinc finger and BTB domain-containing protein 8A (BTB/POZ and zinc-finger domain-containing factor) (BTB/POZ and zinc-finger domains factor on chromosome 1) (BOZ-F1) | May be involved in transcriptional regulation. |
Q96CB8 | INTS12 | S431 | ochoa | Integrator complex subunit 12 (Int12) (PHD finger protein 22) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}. |
Q96D71 | REPS1 | S274 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96D71 | REPS1 | S518 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96JM2 | ZNF462 | S2141 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96QZ7 | MAGI1 | S763 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96RL7 | VPS13A | S835 | ochoa | Intermembrane lipid transfer protein VPS13A (Chorea-acanthocytosis protein) (Chorein) (Vacuolar protein sorting-associated protein 13A) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phospholipids (PubMed:34830155). Required for the formation or stabilization of ER-mitochondria contact sites which enable transfer of lipids between the ER and mitochondria (PubMed:30741634). Negatively regulates lipid droplet size and motility (PubMed:30741634). Required for efficient lysosomal protein degradation (PubMed:30709847). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:30709847, ECO:0000269|PubMed:30741634, ECO:0000269|PubMed:34830155}. |
Q96RT1 | ERBIN | S669 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RU2 | USP28 | S495 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) | Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}. |
Q96SD1 | DCLRE1C | S553 | psp | Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) | Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}. |
Q96T37 | RBM15 | S153 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T58 | SPEN | S1382 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T83 | SLC9A7 | S695 | ochoa | Sodium/hydrogen exchanger 7 (Na(+)/H(+) exchanger 7) (NHE-7) (Solute carrier family 9 member 7) | Golgi Na(+), K(+)/(H+) antiporter. Mediates the electoneutral influx of Na(+) or K(+) in exchange for H(+). May contribute to the regulation of Golgi apparatus volume and pH. {ECO:0000269|PubMed:11279194, ECO:0000269|PubMed:30335141}. |
Q99661 | KIF2C | S111 | ochoa|psp | Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) | In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}. |
Q99959 | PKP2 | S227 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q9BSF8 | BTBD10 | S139 | ochoa | BTB/POZ domain-containing protein 10 (Glucose metabolism-related protein 1) | Plays a major role as an activator of AKT family members by inhibiting PPP2CA-mediated dephosphorylation, thereby keeping AKTs activated. Plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. {ECO:0000250|UniProtKB:Q80X66}. |
Q9BSJ6 | PIMREG | S201 | ochoa | Protein PIMREG (CALM-interactor expressed in thymus and spleen) (PICALM-interacting mitotic regulator) (Regulator of chromosome segregation protein 1) | During mitosis, may play a role in the control of metaphase-to-anaphase transition. {ECO:0000269|PubMed:18757745}. |
Q9BV36 | MLPH | S339 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BW04 | SARG | Y40 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BX66 | SORBS1 | S282 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXB5 | OSBPL10 | S34 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BZ71 | PITPNM3 | T299 | ochoa | Membrane-associated phosphatidylinositol transfer protein 3 (Phosphatidylinositol transfer protein, membrane-associated 3) (PITPnm 3) (Pyk2 N-terminal domain-interacting receptor 1) (NIR-1) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro) (By similarity). Binds calcium ions. {ECO:0000250}. |
Q9BZ72 | PITPNM2 | S326 | ochoa | Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}. |
Q9BZE2 | PUS3 | S142 | ochoa | tRNA pseudouridine(38/39) synthase (EC 5.4.99.45) (tRNA pseudouridine synthase 3) (tRNA pseudouridylate synthase 3) (tRNA-uridine isomerase 3) | Formation of pseudouridine at position 39 in the anticodon stem and loop of transfer RNAs. {ECO:0000269|PubMed:27055666}. |
Q9BZK7 | TBL1XR1 | S204 | psp | F-box-like/WD repeat-containing protein TBL1XR1 (Nuclear receptor corepressor/HDAC3 complex subunit TBLR1) (TBL1-related protein 1) (Transducin beta-like 1X-related protein 1) | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of the N-Cor corepressor complex that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of N-Cor complex, thereby allowing cofactor exchange, and transcription activation. {ECO:0000269|PubMed:14980219}. |
Q9BZW8 | CD244 | S336 | ochoa | Natural killer cell receptor 2B4 (NK cell activation-inducing ligand) (NAIL) (NK cell type I receptor protein 2B4) (NKR2B4) (h2B4) (SLAM family member 4) (SLAMF4) (Signaling lymphocytic activation molecule 4) (CD antigen CD244) | Heterophilic receptor of the signaling lymphocytic activation molecule (SLAM) family; its ligand is CD48. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Acts as activating natural killer (NK) cell receptor (PubMed:10359122, PubMed:11714776, PubMed:8376943). Activating function implicates association with SH2D1A and FYN (PubMed:15713798). Downstreaming signaling involves predominantly VAV1, and, to a lesser degree, INPP5D/SHIP1 and CBL. Signal attenuation in the absence of SH2D1A is proposed to be dependent on INPP5D and to a lesser extent PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:10934222, PubMed:15713798). Stimulates NK cell cytotoxicity, production of IFN-gamma and granule exocytosis (PubMed:11714776, PubMed:8376943). Optimal expansion and activation of NK cells seems to be dependent on the engagement of CD244 with CD48 expressed on neighboring NK cells (By similarity). Acts as costimulator in NK activation by enhancing signals by other NK receptors such as NCR3 and NCR1 (PubMed:10741393). At early stages of NK cell differentiation may function as an inhibitory receptor possibly ensuring the self-tolerance of developing NK cells (PubMed:11917118). Involved in the regulation of CD8(+) T-cell proliferation; expression on activated T-cells and binding to CD48 provides costimulatory-like function for neighboring T-cells (By similarity). Inhibits inflammatory responses in dendritic cells (DCs) (By similarity). {ECO:0000250|UniProtKB:Q07763, ECO:0000269|PubMed:10359122, ECO:0000269|PubMed:10741393, ECO:0000269|PubMed:10934222, ECO:0000269|PubMed:11714776, ECO:0000269|PubMed:11917118, ECO:0000269|PubMed:8376943, ECO:0000305|PubMed:15713798}. |
Q9C0B0 | UNK | S598 | ochoa|psp | RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) | Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}. |
Q9C0H5 | ARHGAP39 | S689 | ochoa | Rho GTPase-activating protein 39 | None |
Q9H1H9 | KIF13A | S1700 | ochoa | Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) | Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}. |
Q9H2G2 | SLK | S781 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2P0 | ADNP | S413 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2Y7 | ZNF106 | S863 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H425 | C1orf198 | S175 | ochoa | Uncharacterized protein C1orf198 | None |
Q9H706 | GAREM1 | S702 | ochoa | GRB2-associated and regulator of MAPK protein 1 (GRB2-associated and regulator of MAPK1) | [Isoform 1]: Acts as an adapter protein that plays a role in intracellular signaling cascades triggered either by the cell surface activated epidermal growth factor receptor and/or cytoplasmic protein tyrosine kinases. Promotes activation of the MAPK/ERK signaling pathway. Plays a role in the regulation of cell proliferation. {ECO:0000269|PubMed:19509291}. |
Q9H792 | PEAK1 | S540 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H792 | PEAK1 | S1255 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H7U1 | CCSER2 | S223 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9HBE1 | PATZ1 | S417 | ochoa | POZ-, AT hook-, and zinc finger-containing protein 1 (BTB/POZ domain zinc finger transcription factor) (Protein kinase A RI subunit alpha-associated protein) (Zinc finger and BTB domain-containing protein 19) (Zinc finger protein 278) (Zinc finger sarcoma gene protein) | Transcriptional regulator that plays a role in many biological processes such as embryogenesis, senescence, T-cell development or neurogenesis (PubMed:10713105, PubMed:25755280, PubMed:31875552). Interacts with the TP53 protein to control genes that are important in proliferation and in the DNA-damage response. Mechanistically, the interaction inhibits the DNA binding and transcriptional activity of TP53/p53 (PubMed:25755280). Part of the transcriptional network modulating regulatory T-cell development and controls the generation of the regulatory T-cell pool under homeostatic conditions (PubMed:31875552). {ECO:0000269|PubMed:10713105, ECO:0000269|PubMed:25755280, ECO:0000269|PubMed:31875552}.; FUNCTION: (Microbial infection) Plays a positive role in viral cDNA synthesis. {ECO:0000269|PubMed:31060775}. |
Q9NP61 | ARFGAP3 | S367 | ochoa | ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}. |
Q9NR09 | BIRC6 | S3742 | ochoa | Dual E2 ubiquitin-conjugating enzyme/E3 ubiquitin-protein ligase BIRC6 (EC 2.3.2.24) (BIR repeat-containing ubiquitin-conjugating enzyme) (BRUCE) (Baculoviral IAP repeat-containing protein 6) (Ubiquitin-conjugating BIR domain enzyme apollon) (APOLLON) | Anti-apoptotic protein known as inhibitor of apoptosis (IAP) which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase (PubMed:14765125, PubMed:15200957, PubMed:18329369). Unlike most IAPs, does not contain a RING domain and it is not a RING-type E3 ligase (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Instead acts as a dual E2/E3 enzyme that combines ubiquitin conjugating (E2) and ubiquitin ligase (E3) activities in a single polypeptide (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitination is mediated by a non-canonical E1 ubiquitin activating enzyme UBA6 (PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates CASP3, CASP7 and CASP9 and inhibits their caspase activity; also ubiquitinates their procaspases but to a weaker extent (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates pro-apoptotic factors DIABLO/SMAC and HTRA2 (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). DIABLO/SMAC antagonizes the caspase inhibition activity of BIRC6 by competing for the same binding sites as the caspases (PubMed:18329369, PubMed:36758106). Ubiquitinates the autophagy protein MAP1LC3B; this activity is also inhibited by DIABLO/SMAC (PubMed:36758105). Important regulator for the final stages of cytokinesis (PubMed:18329369). Crucial for normal vesicle targeting to the site of abscission, but also for the integrity of the midbody and the midbody ring, and its striking ubiquitin modification (PubMed:18329369). {ECO:0000269|PubMed:14765125, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105, ECO:0000269|PubMed:36758106}. |
Q9NRA8 | EIF4ENIF1 | S351 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NTI5 | PDS5B | S1259 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NYB0 | TERF2IP | S30 | ochoa | Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) | Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}. |
Q9NZL6 | RGL1 | S629 | ochoa | Ral guanine nucleotide dissociation stimulator-like 1 (RalGDS-like 1) | Probable guanine nucleotide exchange factor. |
Q9NZM3 | ITSN2 | S1046 | ochoa | Intersectin-2 (SH3 domain-containing protein 1B) (SH3P18) (SH3P18-like WASP-associated protein) | Adapter protein that may provide indirect link between the endocytic membrane traffic and the actin assembly machinery. May regulate the formation of clathrin-coated vesicles (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:23999003}. |
Q9P0J7 | KCMF1 | Y188 | ochoa | E3 ubiquitin-protein ligase KCMF1 (EC 2.3.2.27) (FGF-induced in gastric cancer) (Potassium channel modulatory factor) (PCMF) (ZZ-type zinc finger-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme and then transfers it to targeted substrates, promoting their degradation by the proteasome (PubMed:15581609, PubMed:25582440, PubMed:34893540, PubMed:37891180, PubMed:38297121). Together with UBR4, component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR4, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). {ECO:0000269|PubMed:15581609, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38297121}. |
Q9P227 | ARHGAP23 | S585 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P227 | ARHGAP23 | S679 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P246 | STIM2 | S699 | ochoa | Stromal interaction molecule 2 | Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}. |
Q9P266 | JCAD | S313 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P2B4 | CTTNBP2NL | S443 | ochoa | CTTNBP2 N-terminal-like protein | Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}. |
Q9P2F8 | SIPA1L2 | S1244 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9UBP0 | SPAST | S270 | ochoa | Spastin (EC 5.6.1.1) (Spastic paraplegia 4 protein) | ATP-dependent microtubule severing protein that specifically recognizes and cuts microtubules that are polyglutamylated (PubMed:11809724, PubMed:15716377, PubMed:16219033, PubMed:17389232, PubMed:20530212, PubMed:22637577, PubMed:26875866). Preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold (PubMed:26875866). Severing activity is not dependent on tubulin acetylation or detyrosination (PubMed:26875866). Microtubule severing promotes reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. It is critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. SPAST is involved in abscission step of cytokinesis and nuclear envelope reassembly during anaphase in cooperation with the ESCRT-III complex (PubMed:19000169, PubMed:21310966, PubMed:26040712). Recruited at the midbody, probably by IST1, and participates in membrane fission during abscission together with the ESCRT-III complex (PubMed:21310966). Recruited to the nuclear membrane by IST1 and mediates microtubule severing, promoting nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Required for membrane traffic from the endoplasmic reticulum (ER) to the Golgi and endosome recycling (PubMed:23897888). Recruited by IST1 to endosomes and regulates early endosomal tubulation and recycling by mediating microtubule severing (PubMed:23897888). Probably plays a role in axon growth and the formation of axonal branches (PubMed:15716377). {ECO:0000255|HAMAP-Rule:MF_03021, ECO:0000269|PubMed:11809724, ECO:0000269|PubMed:15716377, ECO:0000269|PubMed:16219033, ECO:0000269|PubMed:17389232, ECO:0000269|PubMed:19000169, ECO:0000269|PubMed:20530212, ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:22637577, ECO:0000269|PubMed:23897888, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:26875866}.; FUNCTION: [Isoform 1]: Involved in lipid metabolism by regulating the size and distribution of lipid droplets. {ECO:0000269|PubMed:25875445}. |
Q9UBS3 | DNAJB9 | S105 | ochoa | DnaJ homolog subfamily B member 9 (Endoplasmic reticulum DNA J domain-containing protein 4) (ER-resident protein ERdj4) (ERdj4) (Microvascular endothelial differentiation gene 1 protein) (Mdg-1) | Co-chaperone for Hsp70 protein HSPA5/BiP that acts as a key repressor of the ERN1/IRE1-mediated unfolded protein response (UPR) (By similarity). J domain-containing co-chaperones stimulate the ATPase activity of Hsp70 proteins and are required for efficient substrate recognition by Hsp70 proteins (PubMed:18400946). In the unstressed endoplasmic reticulum, interacts with the luminal region of ERN1/IRE1 and selectively recruits HSPA5/BiP: HSPA5/BiP disrupts the dimerization of the active ERN1/IRE1 luminal region, thereby inactivating ERN1/IRE1 (By similarity). Also involved in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins. Required for survival of B-cell progenitors and normal antibody production (By similarity). {ECO:0000250|UniProtKB:G3H0N9, ECO:0000250|UniProtKB:Q9QYI6, ECO:0000269|PubMed:18400946}. |
Q9UHB7 | AFF4 | S555 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UJD0 | RIMS3 | S24 | ochoa | Regulating synaptic membrane exocytosis protein 3 (Nim3) (RIM3 gamma) (Rab-3-interacting molecule 3) (RIM 3) | Regulates synaptic membrane exocytosis. {ECO:0000250}. |
Q9UJM3 | ERRFI1 | S374 | ochoa | ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein) (MIG-6) | Negative regulator of EGFR signaling in skin morphogenesis. Acts as a negative regulator for several EGFR family members, including ERBB2, ERBB3 and ERBB4. Inhibits EGFR catalytic activity by interfering with its dimerization. Inhibits autophosphorylation of EGFR, ERBB2 and ERBB4. Important for normal keratinocyte proliferation and differentiation. Plays a role in modulating the response to steroid hormones in the uterus. Required for normal response to progesterone in the uterus and for fertility. Mediates epithelial estrogen responses in the uterus by regulating ESR1 levels and activation. Important for regulation of endometrium cell proliferation. Important for normal prenatal and perinatal lung development (By similarity). {ECO:0000250}. |
Q9UK59 | DBR1 | S479 | ochoa | Lariat debranching enzyme (EC 3.1.4.-) | Cleaves the 2'-5' phosphodiester linkage at the branch point of excised lariat intron RNA and converts them into linear molecules that can be subsequently degraded, thereby facilitating ribonucleotide turnover (PubMed:10982890, PubMed:16232320, PubMed:2435736). Linked to its role in pre-mRNA processing mechanism, may also participate in retrovirus replication via an RNA lariat intermediate in cDNA synthesis and have an antiviral cell-intrinsic defense function in the brainstem (PubMed:16232320, PubMed:29474921). {ECO:0000269|PubMed:10982890, ECO:0000269|PubMed:16232320, ECO:0000269|PubMed:2435736, ECO:0000269|PubMed:29474921}. |
Q9ULH7 | MRTFB | S543 | ochoa | Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) | Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}. |
Q9ULJ3 | ZBTB21 | S225 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULK2 | ATXN7L1 | S842 | ochoa | Ataxin-7-like protein 1 (Ataxin-7-like protein 4) | None |
Q9ULL8 | SHROOM4 | S1061 | ochoa | Protein Shroom4 (Second homolog of apical protein) | Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}. |
Q9ULM0 | PLEKHH1 | S568 | ochoa | Pleckstrin homology domain-containing family H member 1 (PH domain-containing family H member 1) | None |
Q9ULU4 | ZMYND8 | S1104 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9UN76 | SLC6A14 | S21 | ochoa | Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) (Amino acid transporter ATB0+) (Solute carrier family 6 member 14) | Amino acid transporter that plays an important role in the absorption of amino acids in the intestinal tract. Mediates the uptake of a broad range of neutral and cationic amino acids (with the exception of proline) in a Na(+)/Cl(-)-dependent manner (PubMed:10446133). Transports non-alpha-amino acids such as beta-alanine with low affinity, and has a higher affinity for dipolar and cationic amino acids such as leucine and lysine (PubMed:18599538). Can also transport carnitine, butirylcarnitine and propionylcarnitine coupled to the transmembrane gradients of Na(+) and Cl(-) (PubMed:17855766). {ECO:0000250|UniProtKB:Q9JMA9, ECO:0000269|PubMed:10446133, ECO:0000269|PubMed:17855766, ECO:0000269|PubMed:18599538}. |
Q9UNH7 | SNX6 | S316 | ochoa | Sorting nexin-6 (TRAF4-associated factor 2) [Cleaved into: Sorting nexin-6, N-terminally processed] | Involved in several stages of intracellular trafficking. Interacts with membranes phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 4,5-bisphosphate (Probable). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:19935774). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Does not have in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptor IGF2R (PubMed:17148574). May function as link between transport vesicles and dynactin (Probable). Negatively regulates retrograde transport of BACE1 from the cell surface to the trans-Golgi network (PubMed:20354142). Involved in E-cadherin sorting and degradation; inhibits PIP5K1C isoform 3-mediated E-cadherin degradation (PubMed:24610942). In association with GIT1 involved in EGFR degradation. Promotes lysosomal degradation of CDKN1B (By similarity). May contribute to transcription regulation (Probable). {ECO:0000250|UniProtKB:Q6P8X1, ECO:0000269|PubMed:17148574, ECO:0000269|PubMed:19935774, ECO:0000269|PubMed:20354142, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:24610942, ECO:0000303|PubMed:19935774, ECO:0000303|PubMed:20830743, ECO:0000305}. |
Q9UPA5 | BSN | S1011 | ochoa | Protein bassoon (Zinc finger protein 231) | Scaffold protein of the presynaptic cytomatrix at the active zone (CAZ) which is the place in the synapse where neurotransmitter is released (PubMed:12812759). After synthesis, participates in the formation of Golgi-derived membranous organelles termed Piccolo-Bassoon transport vesicles (PTVs) that are transported along axons to sites of nascent synaptic contacts (PubMed:19380881). At the presynaptic active zone, regulates the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis (By similarity). Also functions in processes other than assembly such as the regulation of specific presynaptic protein ubiquitination by interacting with SIAH1 or the regulation of presynaptic autophagy by associating with ATG5 (By similarity). Also mediates synapse to nucleus communication leading to reconfiguration of gene expression by associating with the transcriptional corepressor CTBP1 and by subsequently reducing the size of its pool available for nuclear import (By similarity). Inhibits the activity of the proportion of DAO enzyme that localizes to the presynaptic active zone, which may modulate synaptic transmission (By similarity). {ECO:0000250|UniProtKB:O35078, ECO:0000250|UniProtKB:O88778, ECO:0000269|PubMed:12812759, ECO:0000269|PubMed:19380881}. |
Q9UPP1 | PHF8 | S804 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPZ3 | HPS5 | S463 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ35 | SRRM2 | S1654 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y277 | VDAC3 | S55 | ochoa | Non-selective voltage-gated ion channel VDAC3 (VDAC-3) (hVDAC3) (Outer mitochondrial membrane protein porin 3) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:31935282). Forms a high-conducting channel with a stable open state and a voltage-induced closure with a mild preference for anions over cations (PubMed:31935282). Involved in male fertility and sperm mitochondrial sheath formation (By similarity). {ECO:0000250|UniProtKB:Q60931, ECO:0000269|PubMed:31935282}. |
Q9Y297 | BTRC | S129 | ochoa | F-box/WD repeat-containing protein 1A (E3RSIkappaB) (Epididymis tissue protein Li 2a) (F-box and WD repeats protein beta-TrCP) (pIkappaBalpha-E3 receptor subunit) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). Recognizes and binds to phosphorylated target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). SCF(BTRC) mediates the ubiquitination of CTNNB1 and participates in Wnt signaling (PubMed:12077367, PubMed:12820959). SCF(BTRC) mediates the ubiquitination of phosphorylated NFKB1, ATF4, CDC25A, DLG1, FBXO5, PER1, SMAD3, SMAD4, SNAI1 and probably NFKB2 (PubMed:10835356, PubMed:11238952, PubMed:14603323, PubMed:14681206). SCF(BTRC) mediates the ubiquitination of NFKBIA, NFKBIB and NFKBIE; the degradation frees the associated NFKB1 to translocate into the nucleus and to activate transcription (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:9859996). Ubiquitination of NFKBIA occurs at 'Lys-21' and 'Lys-22' (PubMed:10066435). The SCF(FBXW11) complex also regulates NF-kappa-B by mediating ubiquitination of phosphorylated NFKB1: specifically ubiquitinates the p105 form of NFKB1, leading to its degradation (PubMed:10835356, PubMed:11158290, PubMed:14673179). SCF(BTRC) mediates the ubiquitination of CEP68; this is required for centriole separation during mitosis (PubMed:25503564, PubMed:25704143). SCF(BTRC) mediates the ubiquitination and subsequent degradation of nuclear NFE2L1 (By similarity). Has an essential role in the control of the clock-dependent transcription via degradation of phosphorylated PER1 and PER2 (PubMed:15917222). May be involved in ubiquitination and subsequent proteasomal degradation through a DBB1-CUL4 E3 ubiquitin-protein ligase. Required for activation of NFKB-mediated transcription by IL1B, MAP3K14, MAP3K1, IKBKB and TNF. Required for proteolytic processing of GLI3 (PubMed:16371461). Mediates ubiquitination of REST, thereby leading to its proteasomal degradation (PubMed:18354482, PubMed:21258371). SCF(BTRC) mediates the ubiquitination and subsequent proteasomal degradation of KLF4; thereby negatively regulating cell pluripotency maintenance and embryogenesis (By similarity). SCF(BTRC) acts as a regulator of mTORC1 signaling pathway by catalyzing ubiquitination and subsequent proteasomal degradation of phosphorylated DEPTOR, TFE3 and MITF (PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:33110214, PubMed:36608670). SCF(BTRC) directs 'Lys-48'-linked ubiquitination of UBR2 in the T-cell receptor signaling pathway (PubMed:38225265). {ECO:0000250|UniProtKB:Q3ULA2, ECO:0000269|PubMed:10066435, ECO:0000269|PubMed:10497169, ECO:0000269|PubMed:10644755, ECO:0000269|PubMed:10835356, ECO:0000269|PubMed:11158290, ECO:0000269|PubMed:11238952, ECO:0000269|PubMed:11359933, ECO:0000269|PubMed:11994270, ECO:0000269|PubMed:12077367, ECO:0000269|PubMed:12791267, ECO:0000269|PubMed:12820959, ECO:0000269|PubMed:12902344, ECO:0000269|PubMed:14603323, ECO:0000269|PubMed:14673179, ECO:0000269|PubMed:14681206, ECO:0000269|PubMed:14988407, ECO:0000269|PubMed:15448698, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16371461, ECO:0000269|PubMed:18354482, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:22087322, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:38225265, ECO:0000269|PubMed:9859996, ECO:0000269|PubMed:9990852}. |
Q9Y2I7 | PIKFYVE | S257 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2L6 | FRMD4B | S994 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y2W1 | THRAP3 | S184 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y3S1 | WNK2 | S1846 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y485 | DMXL1 | S1258 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y4F3 | MARF1 | S953 | ochoa | Meiosis regulator and mRNA stability factor 1 (Limkain-b1) (Meiosis arrest female protein 1) | Essential regulator of oogenesis required for female meiotic progression to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Probably acts via some RNA metabolic process, equivalent to the piRNA system in males, which mediates the repression of transposable elements during meiosis by forming complexes composed of RNAs and governs the methylation and subsequent repression of transposons. Also required to protect from DNA double-strand breaks (By similarity). {ECO:0000250}. |
Q9Y520 | PRRC2C | S1502 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y5W7 | SNX14 | S487 | ochoa | Sorting nexin-14 | Plays a role in maintaining normal neuronal excitability and synaptic transmission. May be involved in several stages of intracellular trafficking (By similarity). Required for autophagosome clearance, possibly by mediating the fusion of lysosomes with autophagosomes (Probable). Binds phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a key component of late endosomes/lysosomes (PubMed:25848753). Does not bind phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:25148684, PubMed:25848753). {ECO:0000250|UniProtKB:Q8BHY8, ECO:0000269|PubMed:25148684, ECO:0000269|PubMed:25848753, ECO:0000305|PubMed:25848753}. |
Q9Y608 | LRRFIP2 | S102 | ochoa | Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) | May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}. |
Q9Y6A5 | TACC3 | S177 | ochoa | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9Y6D5 | ARFGEF2 | S348 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6N7 | ROBO1 | S1608 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
P41091 | EIF2S3 | S412 | Sugiyama | Eukaryotic translation initiation factor 2 subunit 3 (EC 3.6.5.3) (Eukaryotic translation initiation factor 2 subunit gamma X) (eIF2-gamma X) (eIF2gX) | Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC) (By similarity). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex (By similarity). In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF-2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}. |
Q2VIR3 | EIF2S3B | S412 | Sugiyama | Eukaryotic translation initiation factor 2 subunit 3B (EC 3.6.5.3) (Eukaryotic translation initiation factor 2 subunit gamma A) (eIF-2-gamma A) (eIF-2gA) | Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF-2B (By similarity). {ECO:0000250|UniProtKB:P05198}. |
P17948 | FLT1 | S1295 | Sugiyama | Vascular endothelial growth factor receptor 1 (VEGFR-1) (EC 2.7.10.1) (Fms-like tyrosine kinase 1) (FLT-1) (Tyrosine-protein kinase FRT) (Tyrosine-protein kinase receptor FLT) (FLT) (Vascular permeability factor receptor) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. Acts as a positive regulator of postnatal retinal hyaloid vessel regression (By similarity). May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1 (PubMed:16685275). {ECO:0000250|UniProtKB:P35969, ECO:0000269|PubMed:11141500, ECO:0000269|PubMed:11312102, ECO:0000269|PubMed:11811792, ECO:0000269|PubMed:12796773, ECO:0000269|PubMed:14633857, ECO:0000269|PubMed:15735759, ECO:0000269|PubMed:16685275, ECO:0000269|PubMed:18079407, ECO:0000269|PubMed:18515749, ECO:0000269|PubMed:18583712, ECO:0000269|PubMed:18593464, ECO:0000269|PubMed:20512933, ECO:0000269|PubMed:20551949, ECO:0000269|PubMed:21752276, ECO:0000269|PubMed:7824266, ECO:0000269|PubMed:8248162, ECO:0000269|PubMed:8605350, ECO:0000269|PubMed:9299537, ECO:0000269|Ref.11}.; FUNCTION: [Isoform 1]: Phosphorylates PLCG. {ECO:0000269|PubMed:9299537}.; FUNCTION: [Isoform 2]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 3]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 4]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 7]: Has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion. {ECO:0000269|PubMed:20512933}. |
Q5S007 | LRRK2 | S975 | Sugiyama | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5VT25 | CDC42BPA | S424 | Sugiyama | Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}. |
Q86TC9 | MYPN | S200 | Sugiyama | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q14004 | CDK13 | Y387 | Sugiyama | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
A0JNW5 | BLTP3B | S989 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A6NKT7 | RGPD3 | S980 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
O00338 | SULT1C2 | S254 | ochoa | Sulfotransferase 1C2 (ST1C2) (EC 2.8.2.1) (Sulfotransferase 1C1) (SULT1C#1) (humSULTC2) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the sulfate conjugation of phenolic compounds (PubMed:10481272, PubMed:10783263, PubMed:9852044). Does not transfer sulfate to steroids, dopamine, acetaminophen, or alpha-naphthol (PubMed:10481272, PubMed:9852044). Except in mitochondria, where it can add sulfate to cholesterol producing cholesterol sulfate, which alters mitochondrial membrane organization, and impacts protein complex mobility increasing state-III respiration, thereby modulating mitochondrial respiration (By similarity). Catalyzes the sulfation of the carcinogenic N-hydroxy-2-acetylaminofluorene leading to highly reactive intermediates capable of forming DNA adducts, potentially resulting in mutagenesis (PubMed:9852044). {ECO:0000250|UniProtKB:Q9WUW8, ECO:0000269|PubMed:10481272, ECO:0000269|PubMed:10783263, ECO:0000269|PubMed:9852044}. |
O14715 | RGPD8 | S979 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O15013 | ARHGEF10 | S1287 | ochoa | Rho guanine nucleotide exchange factor 10 | May play a role in developmental myelination of peripheral nerves. {ECO:0000269|PubMed:14508709}. |
O15117 | FYB1 | S388 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O15119 | TBX3 | S707 | ochoa | T-box transcription factor TBX3 (T-box protein 3) | Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}. |
O15151 | MDM4 | S344 | ochoa | Protein Mdm4 (Double minute 4 protein) (Mdm2-like p53-binding protein) (Protein Mdmx) (p53-binding protein Mdm4) | Along with MDM2, contributes to TP53 regulation (PubMed:32300648). Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions. {ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:32300648}. |
O15530 | PDPK1 | S398 | psp | 3-phosphoinositide-dependent protein kinase 1 (hPDK1) (EC 2.7.11.1) | Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of protein kinases (PubMed:10226025, PubMed:10480933, PubMed:10995762, PubMed:12167717, PubMed:14585963, PubMed:14604990, PubMed:16207722, PubMed:16251192, PubMed:17327236, PubMed:17371830, PubMed:18835241, PubMed:9094314, PubMed:9368760, PubMed:9445476, PubMed:9445477, PubMed:9707564, PubMed:9768361). Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), p70 ribosomal protein S6 kinase (RPS6KB1), p90 ribosomal protein S6 kinase (RPS6KA1, RPS6KA2 and RPS6KA3), cyclic AMP-dependent protein kinase (PRKACA), protein kinase C (PRKCD and PRKCZ), serum and glucocorticoid-inducible kinase (SGK1, SGK2 and SGK3), p21-activated kinase-1 (PAK1), TSSK3, protein kinase PKN (PKN1 and PKN2) (PubMed:10226025, PubMed:10480933, PubMed:10995762, PubMed:12167717, PubMed:14585963, PubMed:14604990, PubMed:16207722, PubMed:16251192, PubMed:17327236, PubMed:17371830, PubMed:18835241, PubMed:9094314, PubMed:9368760, PubMed:9445476, PubMed:9707564, PubMed:9768361). Plays a central role in the transduction of signals from insulin by providing the activating phosphorylation to PKB/AKT1, thus propagating the signal to downstream targets controlling cell proliferation and survival, as well as glucose and amino acid uptake and storage (PubMed:10226025, PubMed:12167717, PubMed:9094314). Negatively regulates the TGF-beta-induced signaling by: modulating the association of SMAD3 and SMAD7 with TGF-beta receptor, phosphorylating SMAD2, SMAD3, SMAD4 and SMAD7, preventing the nuclear translocation of SMAD3 and SMAD4 and the translocation of SMAD7 from the nucleus to the cytoplasm in response to TGF-beta (PubMed:17327236). Activates PPARG transcriptional activity and promotes adipocyte differentiation (By similarity). Activates the NF-kappa-B pathway via phosphorylation of IKKB (PubMed:16207722). The tyrosine phosphorylated form is crucial for the regulation of focal adhesions by angiotensin II (PubMed:14585963). Controls proliferation, survival, and growth of developing pancreatic cells (By similarity). Participates in the regulation of Ca(2+) entry and Ca(2+)-activated K(+) channels of mast cells (By similarity). Essential for the motility of vascular endothelial cells (ECs) and is involved in the regulation of their chemotaxis (PubMed:17371830). Plays a critical role in cardiac homeostasis by serving as a dual effector for cell survival and beta-adrenergic response (By similarity). Plays an important role during thymocyte development by regulating the expression of key nutrient receptors on the surface of pre-T cells and mediating Notch-induced cell growth and proliferative responses (By similarity). Provides negative feedback inhibition to toll-like receptor-mediated NF-kappa-B activation in macrophages (By similarity). {ECO:0000250|UniProtKB:Q9Z2A0, ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10480933, ECO:0000269|PubMed:10995762, ECO:0000269|PubMed:12167717, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:14604990, ECO:0000269|PubMed:16207722, ECO:0000269|PubMed:16251192, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:17371830, ECO:0000269|PubMed:18835241, ECO:0000269|PubMed:9094314, ECO:0000269|PubMed:9368760, ECO:0000269|PubMed:9445476, ECO:0000269|PubMed:9445477, ECO:0000269|PubMed:9707564, ECO:0000269|PubMed:9768361}.; FUNCTION: [Isoform 3]: Catalytically inactive. {ECO:0000269|PubMed:9445477}. |
O15533 | TAPBP | S363 | ochoa | Tapasin (TPN) (TPSN) (NGS-17) (TAP-associated protein) (TAP-binding protein) | Involved in the association of MHC class I with transporter associated with antigen processing (TAP) and in the assembly of MHC class I with peptide (peptide loading). {ECO:0000269|PubMed:10636848, ECO:0000269|PubMed:12582157, ECO:0000269|PubMed:21263072, ECO:0000269|PubMed:26611325}. |
O15534 | PER1 | S1104 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O43182 | ARHGAP6 | S115 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O60315 | ZEB2 | S805 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O75179 | ANKRD17 | S2457 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O94804 | STK10 | S516 | ochoa | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O95197 | RTN3 | S231 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
P00519 | ABL1 | S919 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P04049 | RAF1 | S259 | ochoa|psp | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P05121 | SERPINE1 | S218 | ochoa | Plasminogen activator inhibitor 1 (PAI) (PAI-1) (Endothelial plasminogen activator inhibitor) (Serpin E1) | Serine protease inhibitor. Inhibits TMPRSS7 (PubMed:15853774). Is a primary inhibitor of tissue-type plasminogen activator (PLAT) and urokinase-type plasminogen activator (PLAU). As PLAT inhibitor, it is required for fibrinolysis down-regulation and is responsible for the controlled degradation of blood clots (PubMed:17912461, PubMed:8481516, PubMed:9207454, PubMed:21925150). As PLAU inhibitor, it is involved in the regulation of cell adhesion and spreading (PubMed:9175705). Acts as a regulator of cell migration, independently of its role as protease inhibitor (PubMed:15001579, PubMed:9168821). It is required for stimulation of keratinocyte migration during cutaneous injury repair (PubMed:18386027). It is involved in cellular and replicative senescence (PubMed:16862142). Plays a role in alveolar type 2 cells senescence in the lung (By similarity). Is involved in the regulation of cementogenic differentiation of periodontal ligament stem cells, and regulates odontoblast differentiation and dentin formation during odontogenesis (PubMed:25808697, PubMed:27046084). {ECO:0000250|UniProtKB:P22777, ECO:0000269|PubMed:15001579, ECO:0000269|PubMed:15853774, ECO:0000269|PubMed:16862142, ECO:0000269|PubMed:17912461, ECO:0000269|PubMed:18386027, ECO:0000269|PubMed:21925150, ECO:0000269|PubMed:25808697, ECO:0000269|PubMed:27046084, ECO:0000269|PubMed:8481516, ECO:0000269|PubMed:9168821, ECO:0000269|PubMed:9175705, ECO:0000269|PubMed:9207454}. |
P07196 | NEFL | S63 | ochoa | Neurofilament light polypeptide (NF-L) (68 kDa neurofilament protein) (Neurofilament triplet L protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08551}. |
P08648 | ITGA5 | S128 | ochoa | Integrin alpha-5 (CD49 antigen-like family member E) (Fibronectin receptor subunit alpha) (Integrin alpha-F) (VLA-5) (CD antigen CD49e) [Cleaved into: Integrin alpha-5 heavy chain; Integrin alpha-5 light chain] | Integrin alpha-5/beta-1 (ITGA5:ITGB1) is a receptor for fibronectin and fibrinogen. It recognizes the sequence R-G-D in its ligands. ITGA5:ITGB1 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887, PubMed:17158881). ITGA5:ITGB1 acts as a receptor for fibronectin (FN1) and mediates R-G-D-dependent cell adhesion to FN1 (PubMed:33962943). ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling (PubMed:29030430). ITGA5:ITGB3 is a receptor for soluble CD40LG and is required for CD40/CD40LG signaling (PubMed:31331973). {ECO:0000269|PubMed:12807887, ECO:0000269|PubMed:17158881, ECO:0000269|PubMed:18635536, ECO:0000269|PubMed:25398877, ECO:0000269|PubMed:29030430, ECO:0000269|PubMed:31331973, ECO:0000269|PubMed:33962943}.; FUNCTION: (Microbial infection) Integrin ITGA5:ITGB1 acts as a receptor for Human metapneumovirus. {ECO:0000269|PubMed:12907437}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human parvovirus B19. {ECO:0000269|PubMed:24478423}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. {ECO:0000269|PubMed:10397733}. |
P0DJD0 | RGPD1 | S964 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD0 | RGPD1 | S1577 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD0 | RGPD1 | S1579 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S972 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DJD1 | RGPD2 | S1585 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DJD1 | RGPD2 | S1587 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P16070 | CD44 | S184 | ochoa | CD44 antigen (CDw44) (Epican) (Extracellular matrix receptor III) (ECMR-III) (GP90 lymphocyte homing/adhesion receptor) (HUTCH-I) (Heparan sulfate proteoglycan) (Hermes antigen) (Hyaluronate receptor) (Phagocytic glycoprotein 1) (PGP-1) (Phagocytic glycoprotein I) (PGP-I) (CD antigen CD44) | Cell-surface receptor that plays a role in cell-cell interactions, cell adhesion and migration, helping them to sense and respond to changes in the tissue microenvironment (PubMed:16541107, PubMed:19703720, PubMed:22726066). Participates thereby in a wide variety of cellular functions including the activation, recirculation and homing of T-lymphocytes, hematopoiesis, inflammation and response to bacterial infection (PubMed:7528188). Engages, through its ectodomain, extracellular matrix components such as hyaluronan/HA, collagen, growth factors, cytokines or proteases and serves as a platform for signal transduction by assembling, via its cytoplasmic domain, protein complexes containing receptor kinases and membrane proteases (PubMed:18757307, PubMed:23589287). Such effectors include PKN2, the RhoGTPases RAC1 and RHOA, Rho-kinases and phospholipase C that coordinate signaling pathways promoting calcium mobilization and actin-mediated cytoskeleton reorganization essential for cell migration and adhesion (PubMed:15123640). {ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:18757307, ECO:0000269|PubMed:19703720, ECO:0000269|PubMed:22726066, ECO:0000269|PubMed:23589287, ECO:0000269|PubMed:7528188}. |
P16383 | GCFC2 | S122 | ochoa | Intron Large complex component GCFC2 (GC-rich sequence DNA-binding factor) (GC-rich sequence DNA-binding factor 2) (Transcription factor 9) (TCF-9) | Involved in pre-mRNA splicing through regulating spliceosome C complex formation (PubMed:24304693). May play a role during late-stage splicing events and turnover of excised introns (PubMed:24304693). {ECO:0000269|PubMed:24304693}. |
P19447 | ERCC3 | S233 | ochoa | General transcription and DNA repair factor IIH helicase/translocase subunit XPB (TFIIH subunit XPB) (EC 5.6.2.4) (Basic transcription factor 2 89 kDa subunit) (BTF2 p89) (DNA 3'-5' helicase/translocase XPB) (DNA excision repair protein ERCC-3) (DNA repair protein complementing XP-B cells) (TFIIH basal transcription factor complex 89 kDa subunit) (TFIIH 89 kDa subunit) (TFIIH p89) (Xeroderma pigmentosum group B-complementing protein) | ATP-dependent 3'-5' DNA helicase/translocase (PubMed:17466626, PubMed:27193682, PubMed:33902107, PubMed:8465201, PubMed:8663148). Binds dsDNA rather than ssDNA, unzipping it in a translocase rather than classical helicase activity (PubMed:27193682, PubMed:33902107). Component of the general transcription and DNA repair factor IIH (TFIIH) core complex (PubMed:10024882, PubMed:17466626, PubMed:8157004, PubMed:8465201). When complexed to CDK-activating kinase (CAK), involved in RNA transcription by RNA polymerase II. The ATPase activity of XPB/ERCC3, but not its helicase activity, is required for DNA opening; it may wrap around the damaged DNA wedging it open, causing localized melting that allows XPD/ERCC2 helicase to anchor (PubMed:10024882, PubMed:17466626). In transcription, TFIIH has an essential role in transcription initiation (PubMed:30894545, PubMed:8157004). When the pre-initiation complex (PIC) has been established, TFIIH is required for promoter opening and promoter escape (PubMed:8157004). The ATP-dependent helicase activity of XPB/ERCC3 is required for promoter opening and promoter escape (PubMed:10024882). In transcription pre-initiation complexes induces and propagates a DNA twist to open DNA (PubMed:27193682, PubMed:33902107). Also involved in transcription-coupled nucleotide excision repair (NER) of damaged DNA (PubMed:17466626, PubMed:2111438, PubMed:8157004). In NER, TFIIH acts by opening DNA around the lesion to allow the excision of the damaged oligonucleotide and its replacement by a new DNA fragment. The structure of the TFIIH transcription complex differs from the NER-TFIIH complex; large movements by XPD/ERCC2 and XPB/ERCC3 are stabilized by XPA (PubMed:31253769, PubMed:33902107). XPA retains XPB/ERCC3 at the 5' end of a DNA bubble (mimicking DNA damage) (PubMed:31253769). {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:17466626, ECO:0000269|PubMed:30894545, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:33902107, ECO:0000269|PubMed:7724549, ECO:0000269|PubMed:8157004, ECO:0000269|PubMed:8663148, ECO:0000305|PubMed:8465201}. |
P41182 | BCL6 | S466 | ochoa | B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) | Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}. |
P41970 | ELK3 | S247 | ochoa | ETS domain-containing protein Elk-3 (ETS-related protein ERP) (ETS-related protein NET) (Serum response factor accessory protein 2) (SAP-2) (SRF accessory protein 2) | May be a negative regulator of transcription, but can activate transcription when coexpressed with Ras, Src or Mos. Forms a ternary complex with the serum response factor and the ETS and SRF motifs of the Fos serum response element. |
P43363 | MAGEA10 | S118 | ochoa | Melanoma-associated antigen 10 (Cancer/testis antigen 1.10) (CT1.10) (MAGE-10 antigen) | Not known, though may play a role in embryonal development and tumor transformation or aspects of tumor progression. |
P49023 | PXN | S85 | ochoa|psp | Paxillin | Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}. |
P49790 | NUP153 | S174 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49792 | RANBP2 | S1955 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49815 | TSC2 | S983 | ochoa | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P54277 | PMS1 | S507 | ochoa | PMS1 protein homolog 1 (DNA mismatch repair protein PMS1) | Probably involved in the repair of mismatches in DNA. {ECO:0000269|PubMed:10748105}. |
P98198 | ATP8B2 | S1183 | ochoa | Phospholipid-transporting ATPase ID (EC 7.6.2.1) (ATPase class I type 8B member 2) (P4-ATPase flippase complex alpha subunit ATP8B2) | Catalytic component of P4-ATPase flippase complex, which catalyzes the hydrolysis of ATP coupled to the transport of phosphatidylcholine (PC) from the outer to the inner leaflet of the plasma membrane. May contribute to the maintenance of membrane lipid asymmetry. {ECO:0000269|PubMed:25315773}. |
Q03001 | DST | S7424 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q09666 | AHNAK | S5782 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12959 | DLG1 | S102 | ochoa | Disks large homolog 1 (Synapse-associated protein 97) (SAP-97) (SAP97) (hDlg) | Essential multidomain scaffolding protein required for normal development (By similarity). Recruits channels, receptors and signaling molecules to discrete plasma membrane domains in polarized cells. Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). May also play a role in adherens junction assembly, signal transduction, cell proliferation, synaptogenesis and lymphocyte activation. Regulates the excitability of cardiac myocytes by modulating the functional expression of Kv4 channels. Functional regulator of Kv1.5 channel. During long-term depression in hippocampal neurons, it recruits ADAM10 to the plasma membrane (PubMed:23676497). {ECO:0000250|UniProtKB:A0A8C0TYJ0, ECO:0000250|UniProtKB:Q811D0, ECO:0000269|PubMed:10656683, ECO:0000269|PubMed:12445884, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15263016, ECO:0000269|PubMed:19213956, ECO:0000269|PubMed:20605917, ECO:0000269|PubMed:23676497}. |
Q12967 | RALGDS | S688 | ochoa | Ral guanine nucleotide dissociation stimulator (RalGDS) (Ral guanine nucleotide exchange factor) (RalGEF) | Functions as a guanine nucleotide exchange factor (GEF) activating either RalA or RalB GTPases and plays an important role in intracellular transport. Interacts and acts as an effector molecule for R-Ras, H-Ras, K-Ras, and Rap (By similarity). During bacterial clearance, recognizes 'Lys-33'-linked polyubiquitinated TRAF3 and subsequently mediates assembly of the exocyst complex (PubMed:27438768). {ECO:0000250|UniProtKB:Q03385, ECO:0000269|PubMed:27438768}. |
Q12968 | NFATC3 | S184 | psp | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q12986 | NFX1 | S980 | ochoa | Transcriptional repressor NF-X1 (EC 2.3.2.-) (Nuclear transcription factor, X box-binding protein 1) | Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination. {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:15371341, ECO:0000269|PubMed:17267499}. |
Q13428 | TCOF1 | S1232 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13439 | GOLGA4 | S122 | ochoa | Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) | Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}. |
Q13796 | SHROOM2 | S1114 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q14157 | UBAP2L | S609 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q15052 | ARHGEF6 | S565 | ochoa | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15424 | SAFB | S582 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15434 | RBMS2 | S39 | ochoa | RNA-binding motif, single-stranded-interacting protein 2 (Suppressor of CDC2 with RNA-binding motif 3) | None |
Q3V6T2 | CCDC88A | S1587 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q5SR56 | MFSD14B | S466 | ochoa | Hippocampus abundant transcript-like protein 1 (Major facilitator superfamily domain-containing 14B) | None |
Q5SR56 | MFSD14B | S468 | ochoa | Hippocampus abundant transcript-like protein 1 (Major facilitator superfamily domain-containing 14B) | None |
Q5T1M5 | FKBP15 | S348 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q6KC79 | NIPBL | S152 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6N043 | ZNF280D | S181 | ochoa | Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) | May function as a transcription factor. |
Q6P6C2 | ALKBH5 | S312 | ochoa | RNA demethylase ALKBH5 (EC 1.14.11.53) (Alkylated DNA repair protein alkB homolog 5) (Alpha-ketoglutarate-dependent dioxygenase alkB homolog 5) | Dioxygenase that specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178, PubMed:34048572, PubMed:36944332, PubMed:37257451, PubMed:37369679). Demethylates RNA by oxidative demethylation, which requires molecular oxygen, alpha-ketoglutarate and iron (PubMed:21264265, PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178). Demethylation of m6A mRNA affects mRNA processing, translation and export (PubMed:23177736, PubMed:34048572, PubMed:36944332, PubMed:37257451). Can also demethylate N(6)-methyladenosine in single-stranded DNA (in vitro) (PubMed:24616105). Required for the late meiotic and haploid phases of spermatogenesis by mediating m6A demethylation in spermatocytes and round spermatids: m6A demethylation of target transcripts is required for correct splicing and the production of longer 3'-UTR mRNAs in male germ cells (By similarity). Involved in paraspeckle assembly, a nuclear membraneless organelle, by undergoing liquid-liquid phase separation (PubMed:37369679, PubMed:37474102). Paraspeckle assembly is coupled with m6A demethylation of RNAs, such as NEAT1 non-coding RNA (PubMed:37474102). Also acts as a negative regulator of T-cell development: inhibits gamma-delta T-cell proliferation via demethylation of JAG1 and NOTCH2 transcripts (By similarity). Inhibits regulatory T-cell (Treg) recruitment by mediating demethylation and destabilization of CCL28 mRNAs (By similarity). {ECO:0000250|UniProtKB:Q3TSG4, ECO:0000269|PubMed:21264265, ECO:0000269|PubMed:23177736, ECO:0000269|PubMed:24489119, ECO:0000269|PubMed:24616105, ECO:0000269|PubMed:24778178, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:36944332, ECO:0000269|PubMed:37257451, ECO:0000269|PubMed:37369679, ECO:0000269|PubMed:37474102}. |
Q6PGN9 | PSRC1 | S225 | psp | Proline/serine-rich coiled-coil protein 1 | Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate, and for normal rate of chromosomal segregation during anaphase. Plays a role in the regulation of mitotic spindle dynamics. Increases the rate of turnover of microtubules on metaphase spindles, and contributes to the generation of normal tension across sister kinetochores. Recruits KIF2A and ANKRD53 to the mitotic spindle and spindle poles. May participate in p53/TP53-regulated growth suppression. {ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:19738423, ECO:0000269|PubMed:26820536}. |
Q6R327 | RICTOR | S1039 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6T4R5 | NHS | S999 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6WKZ4 | RAB11FIP1 | S236 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZRV2 | FAM83H | S1098 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZU65 | UBN2 | S1092 | ochoa | Ubinuclein-2 | None |
Q6ZVD8 | PHLPP2 | S1233 | ochoa | PH domain leucine-rich repeat-containing protein phosphatase 2 (EC 3.1.3.16) (PH domain leucine-rich repeat-containing protein phosphatase-like) (PHLPP-like) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT1, 'Ser-660' of PRKCB isoform beta-II and 'Ser-657' of PRKCA. Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and decreases cell proliferation. Also controls the phosphorylation of AKT3. Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation. Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). {ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:20513427, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
Q70CQ4 | USP31 | S879 | ochoa | Ubiquitin carboxyl-terminal hydrolase 31 (EC 3.4.19.12) (Deubiquitinating enzyme 31) (Ubiquitin thioesterase 31) (Ubiquitin-specific-processing protease 31) | Deubiquitinase that recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. May play a role in the regulation of NF-kappa-B signaling pathway by deubiquitinating TRAF2. {ECO:0000269|PubMed:34184746}.; FUNCTION: (Microbial infection) Plays a positive role in foot-and-mouth disease and classical swine fever viral infection. Mechanistically, associates with internal ribosomal entry site (IRES) element within the 5'-untranslated region of viral genomes to promote translation of the virus-encoded polyprotein. {ECO:0000269|PubMed:35468926}. |
Q7Z3J3 | RGPD4 | S980 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z7G8 | VPS13B | S1798 | ochoa | Intermembrane lipid transfer protein VPS13B (Cohen syndrome protein 1) (Vacuolar protein sorting-associated protein 13B) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phosphatidylinositol 3-phosphate (By similarity). Functions as a tethering factor in the slow endocytic recycling pathway, to assist traffic between early and recycling endosomes (PubMed:24334764, PubMed:30962439, PubMed:32375900). Involved in the transport of proacrosomal vesicles to the nuclear dense lamina (NDL) during spermatid development (By similarity). Plays a role in the assembly of the Golgi apparatus, possibly by mediating trafficking to the Golgi membrane (PubMed:21865173). Plays a role in the development of the nervous system, and may be required for neuron projection development (PubMed:25492866, PubMed:32560273). May also play a role during adipose tissue development (PubMed:26358774). Required for maintenance of the ocular lens (By similarity). {ECO:0000250|UniProtKB:Q07878, ECO:0000250|UniProtKB:Q80TY5, ECO:0000269|PubMed:21865173, ECO:0000269|PubMed:24334764, ECO:0000269|PubMed:26358774, ECO:0000269|PubMed:30962439, ECO:0000269|PubMed:32375900, ECO:0000269|PubMed:32560273, ECO:0000305|PubMed:25492866, ECO:0000305|PubMed:32560273}. |
Q86UU1 | PHLDB1 | S1004 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q8IVF2 | AHNAK2 | S282 | ochoa | Protein AHNAK2 | None |
Q8IVL1 | NAV2 | S1593 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IXZ2 | ZC3H3 | S881 | ochoa | Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) | Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}. |
Q8N488 | RYBP | S203 | ochoa | RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}. |
Q8N7R7 | CCNYL1 | S95 | ochoa | Cyclin-Y-like protein 1 | Key regulator of Wnt signaling implicated in various biological processes including male fertility, embryonic neurogenesis and cortex development. Activates the cyclin-dependent kinase CDK16, and promotes sperm maturation. {ECO:0000250|UniProtKB:D3YUJ3}. |
Q8ND76 | CCNY | S73 | ochoa|psp | Cyclin-Y (Cyc-Y) (Cyclin box protein 1) (Cyclin fold protein 1) (cyclin-X) | Positive regulatory subunit of the cyclin-dependent kinases CDK14/PFTK1 and CDK16. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by recruiting CDK14/PFTK1 to the plasma membrane and promoting phosphorylation of LRP6, leading to the activation of the Wnt signaling pathway. Recruits CDK16 to the plasma membrane. Isoform 3 might play a role in the activation of MYC-mediated transcription. {ECO:0000269|PubMed:18060517, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949, ECO:0000269|PubMed:22184064}. |
Q8ND83 | SLAIN1 | S431 | ochoa | SLAIN motif-containing protein 1 | Microtubule plus-end tracking protein that might be involved in the regulation of cytoplasmic microtubule dynamics, microtubule organization and microtubule elongation. {ECO:0000269|PubMed:21646404}. |
Q8NEF9 | SRFBP1 | S351 | ochoa | Serum response factor-binding protein 1 (SRF-dependent transcription regulation-associated protein) (p49/STRAP) | May be involved in regulating transcriptional activation of cardiac genes during the aging process. May play a role in biosynthesis and/or processing of SLC2A4 in adipose cells (By similarity). {ECO:0000250|UniProtKB:Q9CZ91}. |
Q8NG08 | HELB | S1050 | ochoa | DNA helicase B (hDHB) (EC 3.6.4.12) | 5'-3' DNA helicase involved in DNA damage response by acting as an inhibitor of DNA end resection (PubMed:25617833, PubMed:26774285). Recruitment to single-stranded DNA (ssDNA) following DNA damage leads to inhibit the nucleases catalyzing resection, such as EXO1, BLM and DNA2, possibly via the 5'-3' ssDNA translocase activity of HELB (PubMed:26774285). As cells approach S phase, DNA end resection is promoted by the nuclear export of HELB following phosphorylation (PubMed:26774285). Acts independently of TP53BP1 (PubMed:26774285). Unwinds duplex DNA with 5'-3' polarity. Has single-strand DNA-dependent ATPase and DNA helicase activities. Prefers ATP and dATP as substrates (PubMed:12181327). During S phase, may facilitate cellular recovery from replication stress (PubMed:22194613). {ECO:0000269|PubMed:12181327, ECO:0000269|PubMed:22194613, ECO:0000269|PubMed:25617833, ECO:0000269|PubMed:26774285}. |
Q8NHU6 | TDRD7 | S571 | ochoa | Tudor domain-containing protein 7 (PCTAIRE2-binding protein) (Tudor repeat associator with PCTAIRE-2) (Trap) | Component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. Required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. Also required during spermatogenesis. {ECO:0000269|PubMed:21436445}. |
Q8TB72 | PUM2 | S589 | ochoa | Pumilio homolog 2 (Pumilio-2) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}. |
Q8TDM6 | DLG5 | S1254 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TEQ0 | SNX29 | S330 | ochoa | Sorting nexin-29 (RUN domain-containing protein 2A) | None |
Q8WWI1 | LMO7 | S1565 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WX92 | NELFB | S191 | ochoa | Negative elongation factor B (NELF-B) (Cofactor of BRCA1) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:12612062). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:10199401). May be able to induce chromatin unfolding (PubMed:11739404). Essential for early embryogenesis; plays an important role in maintaining the undifferentiated state of embryonic stem cells (ESCs) by preventing unscheduled expression of developmental genes (By similarity). Plays a key role in establishing the responsiveness of stem cells to developmental cues; facilitates plasticity and cell fate commitment in ESCs by establishing the appropriate expression level of signaling molecules (By similarity). Supports the transcription of genes involved in energy metabolism in cardiomyocytes; facilitates the association of transcription initiation factors with the promoters of the metabolism-related genes (By similarity). {ECO:0000250|UniProtKB:Q8C4Y3, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11739404, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II (PubMed:23884411). In vitro, binds weakly to the HIV-1 TAR RNA which is located in the long terminal repeat (LTR) of HIV-1 (PubMed:23884411). {ECO:0000269|PubMed:23884411}. |
Q8WXE9 | STON2 | S358 | ochoa | Stonin-2 (Stoned B) | Adapter protein involved in endocytic machinery. Involved in the synaptic vesicle recycling. May facilitate clathrin-coated vesicle uncoating. {ECO:0000269|PubMed:11381094, ECO:0000269|PubMed:11454741, ECO:0000269|PubMed:21102408}. |
Q96D71 | REPS1 | S430 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96M96 | FGD4 | S392 | ochoa | FYVE, RhoGEF and PH domain-containing protein 4 (Actin filament-binding protein frabin) (FGD1-related F-actin-binding protein) (Zinc finger FYVE domain-containing protein 6) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. Activates MAPK8 (By similarity). {ECO:0000250, ECO:0000269|PubMed:15133042}. |
Q96MU7 | YTHDC1 | S419 | ochoa | YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) | Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}. |
Q96S90 | LYSMD1 | S168 | ochoa | LysM and putative peptidoglycan-binding domain-containing protein 1 | None |
Q96SK2 | TMEM209 | S176 | ochoa | Transmembrane protein 209 | Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}. |
Q96SU4 | OSBPL9 | S319 | ochoa | Oxysterol-binding protein-related protein 9 (ORP-9) (OSBP-related protein 9) | Interacts with OSBPL11 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:39106189}. |
Q99666 | RGPD5 | S979 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99708 | RBBP8 | S347 | ochoa|psp | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q9BSQ5 | CCM2 | S185 | ochoa | Cerebral cavernous malformations 2 protein (Malcavernin) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions (By similarity). May function as a scaffold protein for MAP2K3-MAP3K3 signaling. Seems to play a major role in the modulation of MAP3K3-dependent p38 activation induced by hyperosmotic shock (By similarity). {ECO:0000250}. |
Q9BUL5 | PHF23 | S64 | ochoa | PHD finger protein 23 (PDH-containing protein JUNE-1) | Acts as a negative regulator of autophagy, through promoting ubiquitination and degradation of LRSAM1, an E3 ubiquitin ligase that promotes autophagy in response to starvation or infecting bacteria. {ECO:0000269|PubMed:25484098}. |
Q9BV73 | CEP250 | S2394 | ochoa|psp | Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) | Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}. |
Q9BWT3 | PAPOLG | S648 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BZ23 | PANK2 | S191 | ochoa | Pantothenate kinase 2, mitochondrial (hPanK2) (EC 2.7.1.33) (Pantothenic acid kinase 2) [Cleaved into: Pantothenate kinase 2, mitochondrial intermediate form (iPanK2); Pantothenate kinase 2, mitochondrial mature form (mPanK2)] | [Isoform 1]: Mitochondrial isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis (PubMed:15659606, PubMed:16272150, PubMed:17242360, PubMed:17825826). Required for angiogenic activity of umbilical vein of endothelial cells (HUVEC) (PubMed:30221726). {ECO:0000269|PubMed:15659606, ECO:0000269|PubMed:16272150, ECO:0000269|PubMed:17242360, ECO:0000269|PubMed:17825826, ECO:0000269|PubMed:30221726}.; FUNCTION: [Isoform 4]: Cytoplasmic isoform that catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis. {ECO:0000269|PubMed:16272150}. |
Q9H165 | BCL11A | S627 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H4G0 | EPB41L1 | S650 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9H6Q3 | SLA2 | S19 | ochoa | Src-like-adapter 2 (Modulator of antigen receptor signaling) (MARS) (Src-like adapter protein 2) (SLAP-2) | Adapter protein, which negatively regulates T-cell receptor (TCR) signaling. Inhibits T-cell antigen-receptor induced activation of nuclear factor of activated T-cells. May act by linking signaling proteins such as ZAP70 with CBL, leading to a CBL dependent degradation of signaling proteins. {ECO:0000269|PubMed:11696592}. |
Q9H6U6 | BCAS3 | S898 | ochoa | BCAS3 microtubule associated cell migration factor (Breast carcinoma-amplified sequence 3) (GAOB1) | Plays a role in angiogenesis. Participates in the regulation of cell polarity and directional endothelial cell migration by mediating both the activation and recruitment of CDC42 and the reorganization of the actin cytoskeleton at the cell leading edge. Promotes filipodia formation (By similarity). Functions synergistically with PELP1 as a transcriptional coactivator of estrogen receptor-responsive genes. Stimulates histone acetyltransferase activity. Binds to chromatin. Plays a regulatory role in autophagic activity. In complex with PHAF1, associates with the preautophagosomal structure during both non-selective and selective autophagy (PubMed:33499712). Probably binds phosphatidylinositol 3-phosphate (PtdIns3P) which would mediate the recruitment preautophagosomal structures (PubMed:33499712). {ECO:0000250|UniProtKB:Q8CCN5, ECO:0000269|PubMed:17505058, ECO:0000269|PubMed:33499712}. |
Q9H7N4 | SCAF1 | S827 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7U1 | CCSER2 | S225 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9HB58 | SP110 | S175 | ochoa | Sp110 nuclear body protein (Interferon-induced protein 41/75) (Speckled 110 kDa) (Transcriptional coactivator Sp110) | Transcription factor. May be a nuclear hormone receptor coactivator. Enhances transcription of genes with retinoic acid response elements (RARE). |
Q9NPG1 | FZD3 | S561 | ochoa | Frizzled-3 (Fz-3) (hFz3) | Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. Activation by Wnt5A stimulates PKC activity via a G-protein-dependent mechanism. Involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Plays a role in controlling early axon growth and guidance processes necessary for the formation of a subset of central and peripheral major fiber tracts. Required for the development of major fiber tracts in the central nervous system, including: the anterior commissure, the corpus callosum, the thalamocortical, corticothalamic and nigrostriatal tracts, the corticospinal tract, the fasciculus retroflexus, the mammillothalamic tract, the medial lemniscus, and ascending fiber tracts from the spinal cord to the brain. In the peripheral nervous system, controls axon growth in distinct populations of cranial and spinal motor neurons, including the facial branchimotor nerve, the hypoglossal nerve, the phrenic nerve, and motor nerves innervating dorsal limbs. Involved in the migration of cranial neural crest cells. May also be implicated in the transmission of sensory information from the trunk and limbs to the brain. Controls commissural sensory axons guidance after midline crossing along the anterior-posterior axis in the developing spinal cord in a Wnt-dependent signaling pathway. Together with FZD6, is involved in the neural tube closure and plays a role in the regulation of the establishment of planar cell polarity (PCP), particularly in the orientation of asymmetric bundles of stereocilia on the apical faces of a subset of auditory and vestibular sensory cells located in the inner ear. Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle in a beta-catenin-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q61086}. |
Q9NPG3 | UBN1 | S323 | ochoa | Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) | Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}. |
Q9NQ75 | CASS4 | S289 | ochoa | Cas scaffolding protein family member 4 (HEF-like protein) (HEF1-EFS-p130Cas-like protein) (HEPL) | Docking protein that plays a role in tyrosine kinase-based signaling related to cell adhesion and cell spreading. Regulates PTK2/FAK1 activity, focal adhesion integrity, and cell spreading. {ECO:0000269|PubMed:18256281}. |
Q9NQW6 | ANLN | S252 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NRU3 | CNNM1 | S852 | ochoa | Metal transporter CNNM1 (Ancient conserved domain-containing protein 1) (Cyclin-M1) | Probable metal transporter. {ECO:0000250}. |
Q9NSI8 | SAMSN1 | S23 | ochoa|psp | SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) | Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}. |
Q9NV70 | EXOC1 | S491 | ochoa | Exocyst complex component 1 (Exocyst complex component Sec3) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane.; FUNCTION: (Microbial infection) Has an antiviral effect against flaviviruses by affecting viral RNA transcription and translation through the sequestration of elongation factor 1-alpha (EEF1A1). This results in decreased viral RNA synthesis and decreased viral protein translation. {ECO:0000269|PubMed:19889084}. |
Q9NX95 | SYBU | S73 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NY27 | PPP4R2 | S282 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9P0J7 | KCMF1 | S189 | ochoa | E3 ubiquitin-protein ligase KCMF1 (EC 2.3.2.27) (FGF-induced in gastric cancer) (Potassium channel modulatory factor) (PCMF) (ZZ-type zinc finger-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme and then transfers it to targeted substrates, promoting their degradation by the proteasome (PubMed:15581609, PubMed:25582440, PubMed:34893540, PubMed:37891180, PubMed:38297121). Together with UBR4, component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR4, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). {ECO:0000269|PubMed:15581609, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38297121}. |
Q9P0M6 | MACROH2A2 | S173 | ochoa | Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}. |
Q9P242 | NYAP2 | S438 | ochoa | Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 2 | Activates PI3K and concomitantly recruits the WAVE1 complex to the close vicinity of PI3K and regulates neuronal morphogenesis. {ECO:0000250}. |
Q9P266 | JCAD | S759 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9UGJ0 | PRKAG2 | S164 | ochoa | 5'-AMP-activated protein kinase subunit gamma-2 (AMPK gamma2) (AMPK subunit gamma-2) (H91620p) | AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:14722619, PubMed:24563466). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:14722619, PubMed:24563466). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:14722619, PubMed:24563466). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:14722619, PubMed:24563466). Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits (PubMed:14722619, PubMed:24563466). ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit (PubMed:14722619, PubMed:24563466). ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive (PubMed:14722619, PubMed:24563466). {ECO:0000269|PubMed:14722619, ECO:0000269|PubMed:24563466}. |
Q9UHF7 | TRPS1 | S391 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9ULJ3 | ZBTB21 | S324 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULT8 | HECTD1 | S1386 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9UPN3 | MACF1 | S35 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPV9 | TRAK1 | S202 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q99575 | POP1 | S129 | Sugiyama | Ribonucleases P/MRP protein subunit POP1 (hPOP1) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}. |
O60285 | NUAK1 | S325 | Sugiyama | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
P35869 | AHR | S489 | SIGNOR | Aryl hydrocarbon receptor (Ah receptor) (AhR) (Class E basic helix-loop-helix protein 76) (bHLHe76) | Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644, PubMed:33193710). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820). {ECO:0000269|PubMed:23275542, ECO:0000269|PubMed:28602820, ECO:0000269|PubMed:30373764, ECO:0000269|PubMed:32818467, ECO:0000269|PubMed:32866000, ECO:0000269|PubMed:33193710, ECO:0000269|PubMed:34521881, ECO:0000269|PubMed:7961644, ECO:0000303|PubMed:12213388, ECO:0000303|PubMed:18076143}. |
Q9Y5K5 | UCHL5 | S133 | Sugiyama | Ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCH-L5) (EC 3.4.19.12) (Ubiquitin C-terminal hydrolase UCH37) (Ubiquitin thioesterase L5) | Protease that specifically cleaves 'Lys-48'-linked polyubiquitin chains. Deubiquitinating enzyme associated with the 19S regulatory subunit of the 26S proteasome. Putative regulatory component of the INO80 complex; however is inactive in the INO80 complex and is activated by a transient interaction of the INO80 complex with the proteasome via ADRM1. {ECO:0000269|PubMed:16906146, ECO:0000269|PubMed:18922472}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 0.000019 | 4.723 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.000700 | 3.155 |
R-HSA-9909396 | Circadian clock | 0.000313 | 3.505 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.001180 | 2.928 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.001936 | 2.713 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.001807 | 2.743 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.002505 | 2.601 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.003655 | 2.437 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.003957 | 2.403 |
R-HSA-194306 | Neurophilin interactions with VEGF and VEGFR | 0.004347 | 2.362 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.005660 | 2.247 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.005981 | 2.223 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 0.006685 | 2.175 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.008916 | 2.050 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.009476 | 2.023 |
R-HSA-9675135 | Diseases of DNA repair | 0.010553 | 1.977 |
R-HSA-447038 | NrCAM interactions | 0.012695 | 1.896 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.015377 | 1.813 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.015438 | 1.811 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 0.016323 | 1.787 |
R-HSA-194313 | VEGF ligand-receptor interactions | 0.016323 | 1.787 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.015377 | 1.813 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.016323 | 1.787 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.047050 | 1.327 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.047050 | 1.327 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.047050 | 1.327 |
R-HSA-5632987 | Defective Mismatch Repair Associated With PMS2 | 0.047050 | 1.327 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.047050 | 1.327 |
R-HSA-5545483 | Defective Mismatch Repair Associated With MLH1 | 0.047050 | 1.327 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 0.047050 | 1.327 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.047050 | 1.327 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.091892 | 1.037 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.091892 | 1.037 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 0.091892 | 1.037 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.091892 | 1.037 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.091892 | 1.037 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.091892 | 1.037 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.091892 | 1.037 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.091892 | 1.037 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.091892 | 1.037 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.091892 | 1.037 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.091892 | 1.037 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.091892 | 1.037 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.024716 | 1.607 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.029442 | 1.531 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.034496 | 1.462 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.034496 | 1.462 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 0.134628 | 0.871 |
R-HSA-451308 | Activation of Ca-permeable Kainate Receptor | 0.039859 | 1.399 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.020924 | 1.679 |
R-HSA-111957 | Cam-PDE 1 activation | 0.175359 | 0.756 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 0.175359 | 0.756 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.175359 | 0.756 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.023242 | 1.634 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.023242 | 1.634 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.023242 | 1.634 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.023242 | 1.634 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.064063 | 1.193 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.028279 | 1.549 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.028279 | 1.549 |
R-HSA-5579026 | Defective CYP11A1 causes AICSR | 0.195001 | 0.710 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 0.214177 | 0.669 |
R-HSA-72731 | Recycling of eIF2:GDP | 0.214177 | 0.669 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.214177 | 0.669 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.018101 | 1.742 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.039941 | 1.399 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.232897 | 0.633 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.232897 | 0.633 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.053659 | 1.270 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.114699 | 0.940 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 0.251172 | 0.600 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.122581 | 0.912 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.269013 | 0.570 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.047870 | 1.320 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.146948 | 0.833 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.286430 | 0.543 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.286430 | 0.543 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.286430 | 0.543 |
R-HSA-428540 | Activation of RAC1 | 0.303433 | 0.518 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.303433 | 0.518 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.105944 | 0.975 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.320032 | 0.495 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.320032 | 0.495 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.320032 | 0.495 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.320032 | 0.495 |
R-HSA-5619094 | Variant SLC6A14 may confer susceptibility towards obesity | 0.320032 | 0.495 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.320032 | 0.495 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.189383 | 0.723 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.189383 | 0.723 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.189383 | 0.723 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.198066 | 0.703 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.198066 | 0.703 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.336237 | 0.473 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.066094 | 1.180 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.215565 | 0.666 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.224367 | 0.649 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.224367 | 0.649 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.367499 | 0.435 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.242045 | 0.616 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.242045 | 0.616 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.250908 | 0.600 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 0.382575 | 0.417 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 0.382575 | 0.417 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.133799 | 0.874 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.268656 | 0.571 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 0.397292 | 0.401 |
R-HSA-1989781 | PPARA activates gene expression | 0.060774 | 1.216 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.411660 | 0.385 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 0.411660 | 0.385 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.174043 | 0.759 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.304089 | 0.517 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.312907 | 0.505 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.312907 | 0.505 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.245444 | 0.610 |
R-HSA-173623 | Classical antibody-mediated complement activation | 0.207846 | 0.682 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.258261 | 0.588 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.330467 | 0.481 |
R-HSA-2029481 | FCGR activation | 0.238179 | 0.623 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.373754 | 0.427 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.349427 | 0.457 |
R-HSA-72187 | mRNA 3'-end processing | 0.424120 | 0.373 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.394844 | 0.404 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.394844 | 0.404 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.407377 | 0.390 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.064035 | 1.194 |
R-HSA-167172 | Transcription of the HIV genome | 0.277643 | 0.557 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.105944 | 0.975 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.304089 | 0.517 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.057399 | 1.241 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.373754 | 0.427 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.373754 | 0.427 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.116076 | 0.935 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.330467 | 0.481 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.330467 | 0.481 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.024473 | 1.611 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.388397 | 0.411 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.018740 | 1.727 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.175359 | 0.756 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.099361 | 1.003 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.101015 | 0.996 |
R-HSA-167169 | HIV Transcription Elongation | 0.105944 | 0.975 |
R-HSA-5693538 | Homology Directed Repair | 0.102355 | 0.990 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.452745 | 0.344 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.296910 | 0.527 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 0.303433 | 0.518 |
R-HSA-6802949 | Signaling by RAS mutants | 0.373754 | 0.427 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.109404 | 0.961 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.080401 | 1.095 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.086789 | 1.062 |
R-HSA-9614085 | FOXO-mediated transcription | 0.129132 | 0.889 |
R-HSA-9603505 | NTRK3 as a dependence receptor | 0.069740 | 1.157 |
R-HSA-9931529 | Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK | 0.155238 | 0.809 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 0.232897 | 0.633 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 0.251172 | 0.600 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 0.320032 | 0.495 |
R-HSA-5690714 | CD22 mediated BCR regulation | 0.098033 | 1.009 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.367499 | 0.435 |
R-HSA-5673000 | RAF activation | 0.259780 | 0.585 |
R-HSA-69541 | Stabilization of p53 | 0.304089 | 0.517 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.183358 | 0.737 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.233196 | 0.632 |
R-HSA-5358508 | Mismatch Repair | 0.106956 | 0.971 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.251172 | 0.600 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.073535 | 1.134 |
R-HSA-72172 | mRNA Splicing | 0.453873 | 0.343 |
R-HSA-9832991 | Formation of the posterior neural plate | 0.045513 | 1.342 |
R-HSA-165158 | Activation of AKT2 | 0.155238 | 0.809 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.195001 | 0.710 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.050042 | 1.301 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.251172 | 0.600 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.069329 | 1.159 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.286395 | 0.543 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.339202 | 0.470 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.057632 | 1.239 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.377099 | 0.424 |
R-HSA-194138 | Signaling by VEGF | 0.250357 | 0.601 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.409451 | 0.388 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.239074 | 0.621 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.155238 | 0.809 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.077596 | 1.110 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.050042 | 1.301 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.286430 | 0.543 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.352056 | 0.453 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.342753 | 0.465 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.271164 | 0.567 |
R-HSA-6794361 | Neurexins and neuroligins | 0.424120 | 0.373 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.476558 | 0.322 |
R-HSA-392517 | Rap1 signalling | 0.114699 | 0.940 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.077853 | 1.109 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.258947 | 0.587 |
R-HSA-75153 | Apoptotic execution phase | 0.373754 | 0.427 |
R-HSA-376176 | Signaling by ROBO receptors | 0.445468 | 0.351 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.303684 | 0.518 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 0.069740 | 1.157 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 0.091892 | 1.037 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.113517 | 0.945 |
R-HSA-451306 | Ionotropic activity of kainate receptors | 0.045513 | 1.342 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.155238 | 0.809 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.051443 | 1.289 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 0.175359 | 0.756 |
R-HSA-2395516 | Electron transport from NADPH to Ferredoxin | 0.214177 | 0.669 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.232897 | 0.633 |
R-HSA-425986 | Sodium/Proton exchangers | 0.232897 | 0.633 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 0.251172 | 0.600 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.269013 | 0.570 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.077853 | 1.109 |
R-HSA-4839744 | Signaling by APC mutants | 0.286430 | 0.543 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.303433 | 0.518 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.303433 | 0.518 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.206795 | 0.684 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.250908 | 0.600 |
R-HSA-1566977 | Fibronectin matrix formation | 0.397292 | 0.401 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.286395 | 0.543 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.425686 | 0.371 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.365180 | 0.437 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.399183 | 0.399 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.399183 | 0.399 |
R-HSA-9664417 | Leishmania phagocytosis | 0.328625 | 0.483 |
R-HSA-9664407 | Parasite infection | 0.328625 | 0.483 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.328625 | 0.483 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.268656 | 0.571 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.019569 | 1.708 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.086811 | 1.061 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.242045 | 0.616 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.339202 | 0.470 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.381935 | 0.418 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.441452 | 0.355 |
R-HSA-73894 | DNA Repair | 0.044718 | 1.350 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.189383 | 0.723 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.411660 | 0.385 |
R-HSA-9620244 | Long-term potentiation | 0.039941 | 1.399 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.118842 | 0.925 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.411660 | 0.385 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.425686 | 0.371 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.277643 | 0.557 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.238179 | 0.623 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.215565 | 0.666 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.377099 | 0.424 |
R-HSA-3214842 | HDMs demethylate histones | 0.172189 | 0.764 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 0.251172 | 0.600 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.096181 | 1.017 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.101015 | 0.996 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.101015 | 0.996 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.172189 | 0.764 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.172189 | 0.764 |
R-HSA-171007 | p38MAPK events | 0.367499 | 0.435 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.367499 | 0.435 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.242045 | 0.616 |
R-HSA-912446 | Meiotic recombination | 0.171486 | 0.766 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.250908 | 0.600 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.407553 | 0.390 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.252839 | 0.597 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.188294 | 0.725 |
R-HSA-162587 | HIV Life Cycle | 0.413629 | 0.383 |
R-HSA-9659379 | Sensory processing of sound | 0.349427 | 0.457 |
R-HSA-196108 | Pregnenolone biosynthesis | 0.452745 | 0.344 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.215655 | 0.666 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.245444 | 0.610 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.439378 | 0.357 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.202615 | 0.693 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.190168 | 0.721 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.147143 | 0.832 |
R-HSA-162906 | HIV Infection | 0.385834 | 0.414 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.235165 | 0.629 |
R-HSA-9960525 | CASP5-mediated substrate cleavage | 0.113517 | 0.945 |
R-HSA-205025 | NADE modulates death signalling | 0.134628 | 0.871 |
R-HSA-1483226 | Synthesis of PI | 0.045513 | 1.342 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 0.155238 | 0.809 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.175359 | 0.756 |
R-HSA-1296052 | Ca2+ activated K+ channels | 0.214177 | 0.669 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.057399 | 1.241 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.172189 | 0.764 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.320032 | 0.495 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.198066 | 0.703 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.352056 | 0.453 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.330467 | 0.481 |
R-HSA-1362409 | Mitochondrial iron-sulfur cluster biogenesis | 0.452745 | 0.344 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.465794 | 0.332 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.478107 | 0.320 |
R-HSA-389356 | Co-stimulation by CD28 | 0.154122 | 0.812 |
R-HSA-1500620 | Meiosis | 0.076415 | 1.117 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.139814 | 0.854 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.207711 | 0.683 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.116076 | 0.935 |
R-HSA-68886 | M Phase | 0.268977 | 0.570 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.138426 | 0.859 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 0.175359 | 0.756 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.142875 | 0.845 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.058899 | 1.230 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.330467 | 0.481 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.289726 | 0.538 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.333329 | 0.477 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 0.045513 | 1.342 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.077596 | 1.110 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.082279 | 1.085 |
R-HSA-180746 | Nuclear import of Rev protein | 0.259780 | 0.585 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.239074 | 0.621 |
R-HSA-165159 | MTOR signalling | 0.121274 | 0.916 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.110965 | 0.955 |
R-HSA-199991 | Membrane Trafficking | 0.350064 | 0.456 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.268656 | 0.571 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.425686 | 0.371 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.321702 | 0.493 |
R-HSA-4839726 | Chromatin organization | 0.119225 | 0.924 |
R-HSA-8953854 | Metabolism of RNA | 0.408935 | 0.388 |
R-HSA-5683057 | MAPK family signaling cascades | 0.273979 | 0.562 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 0.091892 | 1.037 |
R-HSA-9960519 | CASP4-mediated substrate cleavage | 0.113517 | 0.945 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 0.155238 | 0.809 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.018740 | 1.727 |
R-HSA-9667769 | Acetylcholine inhibits contraction of outer hair cells | 0.175359 | 0.756 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.064063 | 1.193 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.028279 | 1.549 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.084669 | 1.072 |
R-HSA-444257 | RSK activation | 0.232897 | 0.633 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.251172 | 0.600 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 0.269013 | 0.570 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.352056 | 0.453 |
R-HSA-418457 | cGMP effects | 0.352056 | 0.453 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.224367 | 0.649 |
R-HSA-9857492 | Protein lipoylation | 0.367499 | 0.435 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.138066 | 0.860 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.312907 | 0.505 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.312907 | 0.505 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.321702 | 0.493 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.339202 | 0.470 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.382281 | 0.418 |
R-HSA-166786 | Creation of C4 and C2 activators | 0.317557 | 0.498 |
R-HSA-445355 | Smooth Muscle Contraction | 0.432314 | 0.364 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.456512 | 0.341 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.432813 | 0.364 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.393307 | 0.405 |
R-HSA-5653656 | Vesicle-mediated transport | 0.351820 | 0.454 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.242312 | 0.616 |
R-HSA-438064 | Post NMDA receptor activation events | 0.084695 | 1.072 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.030464 | 1.516 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.355949 | 0.449 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.163799 | 0.786 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.251172 | 0.600 |
R-HSA-2559583 | Cellular Senescence | 0.207430 | 0.683 |
R-HSA-162909 | Host Interactions of HIV factors | 0.425507 | 0.371 |
R-HSA-74160 | Gene expression (Transcription) | 0.340979 | 0.467 |
R-HSA-1640170 | Cell Cycle | 0.116568 | 0.933 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.365180 | 0.437 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.039859 | 1.399 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.251172 | 0.600 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.215565 | 0.666 |
R-HSA-1170546 | Prolactin receptor signaling | 0.352056 | 0.453 |
R-HSA-1632852 | Macroautophagy | 0.333329 | 0.477 |
R-HSA-68875 | Mitotic Prophase | 0.107849 | 0.967 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.371687 | 0.430 |
R-HSA-212436 | Generic Transcription Pathway | 0.450231 | 0.347 |
R-HSA-9823739 | Formation of the anterior neural plate | 0.077596 | 1.110 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.077596 | 1.110 |
R-HSA-9613354 | Lipophagy | 0.251172 | 0.600 |
R-HSA-9930044 | Nuclear RNA decay | 0.069329 | 1.159 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.320032 | 0.495 |
R-HSA-9005895 | Pervasive developmental disorders | 0.320032 | 0.495 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.320032 | 0.495 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.367499 | 0.435 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.411660 | 0.385 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.295250 | 0.530 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.452745 | 0.344 |
R-HSA-167044 | Signalling to RAS | 0.465794 | 0.332 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.373754 | 0.427 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 0.415866 | 0.381 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.063222 | 1.199 |
R-HSA-166663 | Initial triggering of complement | 0.366272 | 0.436 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.233196 | 0.632 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.382575 | 0.417 |
R-HSA-9612973 | Autophagy | 0.408919 | 0.388 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.251172 | 0.600 |
R-HSA-5578768 | Physiological factors | 0.352056 | 0.453 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.397292 | 0.401 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.304089 | 0.517 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.425686 | 0.371 |
R-HSA-1221632 | Meiotic synapsis | 0.432314 | 0.364 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.426782 | 0.370 |
R-HSA-9707616 | Heme signaling | 0.239074 | 0.621 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.199108 | 0.701 |
R-HSA-75205 | Dissolution of Fibrin Clot | 0.286430 | 0.543 |
R-HSA-8854214 | TBC/RABGAPs | 0.126556 | 0.898 |
R-HSA-196783 | Coenzyme A biosynthesis | 0.397292 | 0.401 |
R-HSA-193648 | NRAGE signals death through JNK | 0.201553 | 0.696 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.425686 | 0.371 |
R-HSA-9007101 | Rab regulation of trafficking | 0.211062 | 0.676 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.394844 | 0.404 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.028448 | 1.546 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.201553 | 0.696 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.476558 | 0.322 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.290642 | 0.537 |
R-HSA-422085 | Synthesis, secretion, and deacylation of Ghrelin | 0.465794 | 0.332 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.323289 | 0.490 |
R-HSA-69481 | G2/M Checkpoints | 0.446738 | 0.350 |
R-HSA-9686114 | Non-canonical inflammasome activation | 0.352056 | 0.453 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.133799 | 0.874 |
R-HSA-1474165 | Reproduction | 0.277512 | 0.557 |
R-HSA-391908 | Prostanoid ligand receptors | 0.286430 | 0.543 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.320032 | 0.495 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.352056 | 0.453 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.242045 | 0.616 |
R-HSA-432142 | Platelet sensitization by LDL | 0.425686 | 0.371 |
R-HSA-216083 | Integrin cell surface interactions | 0.342899 | 0.465 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.146948 | 0.833 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.352056 | 0.453 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.151186 | 0.820 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.350016 | 0.456 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.472311 | 0.326 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.331528 | 0.479 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.101015 | 0.996 |
R-HSA-180292 | GAB1 signalosome | 0.425686 | 0.371 |
R-HSA-445144 | Signal transduction by L1 | 0.452745 | 0.344 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.264195 | 0.578 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.219620 | 0.658 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.028279 | 1.549 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 0.303433 | 0.518 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.286395 | 0.543 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.425686 | 0.371 |
R-HSA-2168880 | Scavenging of heme from plasma | 0.253720 | 0.596 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.221614 | 0.654 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 0.320032 | 0.495 |
R-HSA-373753 | Nephrin family interactions | 0.452745 | 0.344 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.281977 | 0.550 |
R-HSA-9008059 | Interleukin-37 signaling | 0.215565 | 0.666 |
R-HSA-977606 | Regulation of Complement cascade | 0.430835 | 0.366 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.399484 | 0.399 |
R-HSA-9607240 | FLT3 Signaling | 0.321702 | 0.493 |
R-HSA-2028269 | Signaling by Hippo | 0.411660 | 0.385 |
R-HSA-391903 | Eicosanoid ligand-binding receptors | 0.452745 | 0.344 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.342899 | 0.465 |
R-HSA-73942 | DNA Damage Reversal | 0.367499 | 0.435 |
R-HSA-449836 | Other interleukin signaling | 0.439378 | 0.357 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.439378 | 0.357 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.197996 | 0.703 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.322954 | 0.491 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.323929 | 0.490 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.274749 | 0.561 |
R-HSA-177929 | Signaling by EGFR | 0.456512 | 0.341 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.227949 | 0.642 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.322954 | 0.491 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.478532 | 0.320 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.478532 | 0.320 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.478532 | 0.320 |
R-HSA-977347 | Serine metabolism | 0.478532 | 0.320 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.478532 | 0.320 |
R-HSA-180786 | Extension of Telomeres | 0.480106 | 0.319 |
R-HSA-191859 | snRNP Assembly | 0.480106 | 0.319 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.480106 | 0.319 |
R-HSA-157579 | Telomere Maintenance | 0.482643 | 0.316 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.483285 | 0.316 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.487171 | 0.312 |
R-HSA-1227986 | Signaling by ERBB2 | 0.487830 | 0.312 |
R-HSA-983189 | Kinesins | 0.487830 | 0.312 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.487830 | 0.312 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.490968 | 0.309 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.490968 | 0.309 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.490968 | 0.309 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.490968 | 0.309 |
R-HSA-162582 | Signal Transduction | 0.492845 | 0.307 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.495482 | 0.305 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.495482 | 0.305 |
R-HSA-211976 | Endogenous sterols | 0.495482 | 0.305 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.496900 | 0.304 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.500692 | 0.300 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.503062 | 0.298 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 0.503108 | 0.298 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.503108 | 0.298 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 0.503108 | 0.298 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.503108 | 0.298 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.503108 | 0.298 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.503108 | 0.298 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 0.503108 | 0.298 |
R-HSA-200425 | Carnitine shuttle | 0.503108 | 0.298 |
R-HSA-68882 | Mitotic Anaphase | 0.503582 | 0.298 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.507656 | 0.294 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.510567 | 0.292 |
R-HSA-8848021 | Signaling by PTK6 | 0.510567 | 0.292 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.514959 | 0.288 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.514959 | 0.288 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.514959 | 0.288 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.517998 | 0.286 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.524248 | 0.280 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.526528 | 0.279 |
R-HSA-2160916 | Hyaluronan degradation | 0.526528 | 0.279 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.526528 | 0.279 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.526528 | 0.279 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.537821 | 0.269 |
R-HSA-525793 | Myogenesis | 0.537821 | 0.269 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.537821 | 0.269 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.537821 | 0.269 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.537821 | 0.269 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.543741 | 0.265 |
R-HSA-171306 | Packaging Of Telomere Ends | 0.548846 | 0.261 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.548846 | 0.261 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.548846 | 0.261 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.548846 | 0.261 |
R-HSA-264876 | Insulin processing | 0.548846 | 0.261 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.552935 | 0.257 |
R-HSA-166658 | Complement cascade | 0.553171 | 0.257 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.558405 | 0.253 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.559609 | 0.252 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.559609 | 0.252 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.559609 | 0.252 |
R-HSA-5620971 | Pyroptosis | 0.559609 | 0.252 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.559609 | 0.252 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.560981 | 0.251 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.560981 | 0.251 |
R-HSA-1500931 | Cell-Cell communication | 0.561936 | 0.250 |
R-HSA-202403 | TCR signaling | 0.563954 | 0.249 |
R-HSA-72086 | mRNA Capping | 0.570116 | 0.244 |
R-HSA-420092 | Glucagon-type ligand receptors | 0.570116 | 0.244 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.570116 | 0.244 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.570116 | 0.244 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.570116 | 0.244 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.570116 | 0.244 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.574688 | 0.241 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.574688 | 0.241 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.574922 | 0.240 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.576901 | 0.239 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.576901 | 0.239 |
R-HSA-68877 | Mitotic Prometaphase | 0.579529 | 0.237 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.580372 | 0.236 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.581424 | 0.236 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.585152 | 0.233 |
R-HSA-446652 | Interleukin-1 family signaling | 0.586191 | 0.232 |
R-HSA-182971 | EGFR downregulation | 0.590385 | 0.229 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.594660 | 0.226 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.595361 | 0.225 |
R-HSA-73887 | Death Receptor Signaling | 0.595361 | 0.225 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.600159 | 0.222 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.600159 | 0.222 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.600159 | 0.222 |
R-HSA-373760 | L1CAM interactions | 0.606778 | 0.217 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.609700 | 0.215 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.609700 | 0.215 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.609700 | 0.215 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.609700 | 0.215 |
R-HSA-354192 | Integrin signaling | 0.609700 | 0.215 |
R-HSA-2980736 | Peptide hormone metabolism | 0.611931 | 0.213 |
R-HSA-390522 | Striated Muscle Contraction | 0.619015 | 0.208 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.619015 | 0.208 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.619015 | 0.208 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.619015 | 0.208 |
R-HSA-9006936 | Signaling by TGFB family members | 0.622138 | 0.206 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.626371 | 0.203 |
R-HSA-9833482 | PKR-mediated signaling | 0.626371 | 0.203 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.628107 | 0.202 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.628107 | 0.202 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.628107 | 0.202 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.628107 | 0.202 |
R-HSA-5205647 | Mitophagy | 0.628107 | 0.202 |
R-HSA-2142845 | Hyaluronan metabolism | 0.628107 | 0.202 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.628107 | 0.202 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.628107 | 0.202 |
R-HSA-73886 | Chromosome Maintenance | 0.632087 | 0.199 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.636984 | 0.196 |
R-HSA-381042 | PERK regulates gene expression | 0.636984 | 0.196 |
R-HSA-187687 | Signalling to ERKs | 0.636984 | 0.196 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.639358 | 0.194 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.644458 | 0.191 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.645649 | 0.190 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.645649 | 0.190 |
R-HSA-9682385 | FLT3 signaling in disease | 0.645649 | 0.190 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.645649 | 0.190 |
R-HSA-111933 | Calmodulin induced events | 0.645649 | 0.190 |
R-HSA-111997 | CaM pathway | 0.645649 | 0.190 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.645649 | 0.190 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.650331 | 0.187 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.654107 | 0.184 |
R-HSA-4641258 | Degradation of DVL | 0.654107 | 0.184 |
R-HSA-110331 | Cleavage of the damaged purine | 0.654107 | 0.184 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.654107 | 0.184 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.654411 | 0.184 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.661847 | 0.179 |
R-HSA-73927 | Depurination | 0.662364 | 0.179 |
R-HSA-8875878 | MET promotes cell motility | 0.662364 | 0.179 |
R-HSA-1566948 | Elastic fibre formation | 0.662364 | 0.179 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.667489 | 0.176 |
R-HSA-72306 | tRNA processing | 0.668242 | 0.175 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.670425 | 0.174 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.673056 | 0.172 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.678294 | 0.169 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.678294 | 0.169 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.678294 | 0.169 |
R-HSA-202433 | Generation of second messenger molecules | 0.678294 | 0.169 |
R-HSA-9663891 | Selective autophagy | 0.678547 | 0.168 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.680126 | 0.167 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.680126 | 0.167 |
R-HSA-5689880 | Ub-specific processing proteases | 0.680126 | 0.167 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.685975 | 0.164 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.685975 | 0.164 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.687882 | 0.162 |
R-HSA-9843745 | Adipogenesis | 0.688126 | 0.162 |
R-HSA-202424 | Downstream TCR signaling | 0.689303 | 0.162 |
R-HSA-8951664 | Neddylation | 0.690202 | 0.161 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.693473 | 0.159 |
R-HSA-167161 | HIV Transcription Initiation | 0.693473 | 0.159 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.693473 | 0.159 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.693473 | 0.159 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.693473 | 0.159 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.693473 | 0.159 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.693473 | 0.159 |
R-HSA-6811438 | Intra-Golgi traffic | 0.693473 | 0.159 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.693473 | 0.159 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.700793 | 0.154 |
R-HSA-111996 | Ca-dependent events | 0.700793 | 0.154 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.700793 | 0.154 |
R-HSA-73928 | Depyrimidination | 0.700793 | 0.154 |
R-HSA-391251 | Protein folding | 0.704881 | 0.152 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.707938 | 0.150 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.707938 | 0.150 |
R-HSA-163685 | Integration of energy metabolism | 0.713649 | 0.147 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.714913 | 0.146 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.714913 | 0.146 |
R-HSA-69236 | G1 Phase | 0.714913 | 0.146 |
R-HSA-373752 | Netrin-1 signaling | 0.714913 | 0.146 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.720638 | 0.142 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.721722 | 0.142 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.721722 | 0.142 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.721722 | 0.142 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.721722 | 0.142 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.721722 | 0.142 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.721722 | 0.142 |
R-HSA-1489509 | DAG and IP3 signaling | 0.721722 | 0.142 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.721722 | 0.142 |
R-HSA-446728 | Cell junction organization | 0.724187 | 0.140 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.728369 | 0.138 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.728369 | 0.138 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.729397 | 0.137 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.734857 | 0.134 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.734857 | 0.134 |
R-HSA-983712 | Ion channel transport | 0.738444 | 0.132 |
R-HSA-422356 | Regulation of insulin secretion | 0.738710 | 0.132 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.738710 | 0.132 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.738710 | 0.132 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.738710 | 0.132 |
R-HSA-9634597 | GPER1 signaling | 0.741191 | 0.130 |
R-HSA-425410 | Metal ion SLC transporters | 0.741191 | 0.130 |
R-HSA-3214847 | HATs acetylate histones | 0.743263 | 0.129 |
R-HSA-109582 | Hemostasis | 0.743922 | 0.128 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.745136 | 0.128 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.747374 | 0.126 |
R-HSA-70171 | Glycolysis | 0.747748 | 0.126 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.748435 | 0.126 |
R-HSA-9020702 | Interleukin-1 signaling | 0.752166 | 0.124 |
R-HSA-109704 | PI3K Cascade | 0.753410 | 0.123 |
R-HSA-8953897 | Cellular responses to stimuli | 0.754902 | 0.122 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.756517 | 0.121 |
R-HSA-1483255 | PI Metabolism | 0.756517 | 0.121 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.756517 | 0.121 |
R-HSA-913531 | Interferon Signaling | 0.758270 | 0.120 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.759301 | 0.120 |
R-HSA-9864848 | Complex IV assembly | 0.759301 | 0.120 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.765053 | 0.116 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.765053 | 0.116 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.765053 | 0.116 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.765053 | 0.116 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.769828 | 0.114 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.770667 | 0.113 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.770960 | 0.113 |
R-HSA-1483257 | Phospholipid metabolism | 0.770960 | 0.113 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.773269 | 0.112 |
R-HSA-72649 | Translation initiation complex formation | 0.776147 | 0.110 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.776147 | 0.110 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.777197 | 0.109 |
R-HSA-418346 | Platelet homeostasis | 0.777297 | 0.109 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.777297 | 0.109 |
R-HSA-211000 | Gene Silencing by RNA | 0.781262 | 0.107 |
R-HSA-3214815 | HDACs deacetylate histones | 0.781497 | 0.107 |
R-HSA-9753281 | Paracetamol ADME | 0.781497 | 0.107 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.781497 | 0.107 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.782577 | 0.106 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.785165 | 0.105 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.785165 | 0.105 |
R-HSA-2672351 | Stimuli-sensing channels | 0.785165 | 0.105 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.786719 | 0.104 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.786719 | 0.104 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.786719 | 0.104 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.789007 | 0.103 |
R-HSA-112399 | IRS-mediated signalling | 0.791817 | 0.101 |
R-HSA-5621480 | Dectin-2 family | 0.791817 | 0.101 |
R-HSA-1483166 | Synthesis of PA | 0.791817 | 0.101 |
R-HSA-5688426 | Deubiquitination | 0.792493 | 0.101 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.792788 | 0.101 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.792788 | 0.101 |
R-HSA-6782135 | Dual incision in TC-NER | 0.796793 | 0.099 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.796793 | 0.099 |
R-HSA-877300 | Interferon gamma signaling | 0.799785 | 0.097 |
R-HSA-186712 | Regulation of beta-cell development | 0.801651 | 0.096 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.801651 | 0.096 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.801651 | 0.096 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.803776 | 0.095 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.806392 | 0.093 |
R-HSA-8873719 | RAB geranylgeranylation | 0.806392 | 0.093 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.806392 | 0.093 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.806392 | 0.093 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.806392 | 0.093 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.806392 | 0.093 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.806392 | 0.093 |
R-HSA-397014 | Muscle contraction | 0.810334 | 0.091 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.811021 | 0.091 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.811021 | 0.091 |
R-HSA-450294 | MAP kinase activation | 0.811021 | 0.091 |
R-HSA-112043 | PLC beta mediated events | 0.811021 | 0.091 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.814244 | 0.089 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.815539 | 0.089 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.815539 | 0.089 |
R-HSA-186797 | Signaling by PDGF | 0.815539 | 0.089 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.819950 | 0.086 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.819950 | 0.086 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.819950 | 0.086 |
R-HSA-5619102 | SLC transporter disorders | 0.823223 | 0.084 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.824211 | 0.084 |
R-HSA-70326 | Glucose metabolism | 0.824211 | 0.084 |
R-HSA-2428924 | IGF1R signaling cascade | 0.824255 | 0.084 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.824255 | 0.084 |
R-HSA-211981 | Xenobiotics | 0.824255 | 0.084 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.828458 | 0.082 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.830587 | 0.081 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.830587 | 0.081 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.832560 | 0.080 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.832560 | 0.080 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.832560 | 0.080 |
R-HSA-112316 | Neuronal System | 0.834280 | 0.079 |
R-HSA-196071 | Metabolism of steroid hormones | 0.836565 | 0.078 |
R-HSA-112040 | G-protein mediated events | 0.836565 | 0.078 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.836565 | 0.078 |
R-HSA-418555 | G alpha (s) signalling events | 0.836654 | 0.077 |
R-HSA-8957322 | Metabolism of steroids | 0.836699 | 0.077 |
R-HSA-3371556 | Cellular response to heat stress | 0.836754 | 0.077 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.839232 | 0.076 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.839761 | 0.076 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.839761 | 0.076 |
R-HSA-913709 | O-linked glycosylation of mucins | 0.840474 | 0.075 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.840474 | 0.075 |
R-HSA-5218859 | Regulated Necrosis | 0.840474 | 0.075 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.841775 | 0.075 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.841775 | 0.075 |
R-HSA-2132295 | MHC class II antigen presentation | 0.842717 | 0.074 |
R-HSA-6809371 | Formation of the cornified envelope | 0.845624 | 0.073 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.848014 | 0.072 |
R-HSA-448424 | Interleukin-17 signaling | 0.848014 | 0.072 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.848014 | 0.072 |
R-HSA-1474244 | Extracellular matrix organization | 0.850068 | 0.071 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.850843 | 0.070 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.851293 | 0.070 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.851293 | 0.070 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.851293 | 0.070 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.851325 | 0.070 |
R-HSA-9658195 | Leishmania infection | 0.851325 | 0.070 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.851650 | 0.070 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.851650 | 0.070 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.851650 | 0.070 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.851650 | 0.070 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.851650 | 0.070 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.851650 | 0.070 |
R-HSA-3000178 | ECM proteoglycans | 0.851650 | 0.070 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.853281 | 0.069 |
R-HSA-1280218 | Adaptive Immune System | 0.857430 | 0.067 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.858663 | 0.066 |
R-HSA-4086398 | Ca2+ pathway | 0.858663 | 0.066 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.862045 | 0.064 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.862045 | 0.064 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.864645 | 0.063 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.865346 | 0.063 |
R-HSA-380287 | Centrosome maturation | 0.865346 | 0.063 |
R-HSA-8852135 | Protein ubiquitination | 0.865346 | 0.063 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.865350 | 0.063 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.868568 | 0.061 |
R-HSA-5689603 | UCH proteinases | 0.868568 | 0.061 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.868568 | 0.061 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.872120 | 0.059 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.874784 | 0.058 |
R-HSA-4086400 | PCP/CE pathway | 0.874784 | 0.058 |
R-HSA-191273 | Cholesterol biosynthesis | 0.874784 | 0.058 |
R-HSA-2262752 | Cellular responses to stress | 0.876057 | 0.057 |
R-HSA-422475 | Axon guidance | 0.876734 | 0.057 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 0.877781 | 0.057 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.880706 | 0.055 |
R-HSA-6806834 | Signaling by MET | 0.880706 | 0.055 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.883562 | 0.054 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.889070 | 0.051 |
R-HSA-9609690 | HCMV Early Events | 0.891350 | 0.050 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.891350 | 0.050 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.891726 | 0.050 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.894318 | 0.049 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.898376 | 0.047 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.898395 | 0.047 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.900257 | 0.046 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.904083 | 0.044 |
R-HSA-1236974 | ER-Phagosome pathway | 0.906380 | 0.043 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.907761 | 0.042 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.908623 | 0.042 |
R-HSA-112310 | Neurotransmitter release cycle | 0.908623 | 0.042 |
R-HSA-73884 | Base Excision Repair | 0.908623 | 0.042 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.909538 | 0.041 |
R-HSA-166520 | Signaling by NTRKs | 0.909538 | 0.041 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.910811 | 0.041 |
R-HSA-9758941 | Gastrulation | 0.911283 | 0.040 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.912948 | 0.040 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.915033 | 0.039 |
R-HSA-74752 | Signaling by Insulin receptor | 0.915033 | 0.039 |
R-HSA-9675108 | Nervous system development | 0.917443 | 0.037 |
R-HSA-1474290 | Collagen formation | 0.919056 | 0.037 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.921109 | 0.036 |
R-HSA-9610379 | HCMV Late Events | 0.924150 | 0.034 |
R-HSA-1296071 | Potassium Channels | 0.924736 | 0.034 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.924740 | 0.034 |
R-HSA-9711097 | Cellular response to starvation | 0.925629 | 0.034 |
R-HSA-418990 | Adherens junctions interactions | 0.926554 | 0.033 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.930019 | 0.032 |
R-HSA-109581 | Apoptosis | 0.931278 | 0.031 |
R-HSA-5610787 | Hedgehog 'off' state | 0.931696 | 0.031 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.931696 | 0.031 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.933334 | 0.030 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.934932 | 0.029 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.937769 | 0.028 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.938014 | 0.028 |
R-HSA-111885 | Opioid Signalling | 0.938014 | 0.028 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.938319 | 0.028 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.940951 | 0.026 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.942202 | 0.026 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.945098 | 0.025 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.945098 | 0.025 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.945098 | 0.025 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.947701 | 0.023 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.948017 | 0.023 |
R-HSA-195721 | Signaling by WNT | 0.948485 | 0.023 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.949844 | 0.022 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.950180 | 0.022 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.950180 | 0.022 |
R-HSA-168255 | Influenza Infection | 0.952036 | 0.021 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.956018 | 0.020 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.956935 | 0.019 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.956935 | 0.019 |
R-HSA-9609646 | HCMV Infection | 0.958335 | 0.018 |
R-HSA-69275 | G2/M Transition | 0.958368 | 0.018 |
R-HSA-421270 | Cell-cell junction organization | 0.959082 | 0.018 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.960025 | 0.018 |
R-HSA-5617833 | Cilium Assembly | 0.961618 | 0.017 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.961861 | 0.017 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.962392 | 0.017 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.963670 | 0.016 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.963670 | 0.016 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.964190 | 0.016 |
R-HSA-114608 | Platelet degranulation | 0.967828 | 0.014 |
R-HSA-9679506 | SARS-CoV Infections | 0.968464 | 0.014 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.968600 | 0.014 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.969974 | 0.013 |
R-HSA-9711123 | Cellular response to chemical stress | 0.970005 | 0.013 |
R-HSA-5576891 | Cardiac conduction | 0.971510 | 0.013 |
R-HSA-5357801 | Programmed Cell Death | 0.972348 | 0.012 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.972863 | 0.012 |
R-HSA-6805567 | Keratinization | 0.972913 | 0.012 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.973155 | 0.012 |
R-HSA-6798695 | Neutrophil degranulation | 0.974182 | 0.011 |
R-HSA-449147 | Signaling by Interleukins | 0.974431 | 0.011 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.975379 | 0.011 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.975379 | 0.011 |
R-HSA-5173105 | O-linked glycosylation | 0.975970 | 0.011 |
R-HSA-5358351 | Signaling by Hedgehog | 0.976548 | 0.010 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.981161 | 0.008 |
R-HSA-69242 | S Phase | 0.982056 | 0.008 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.983320 | 0.007 |
R-HSA-8939211 | ESR-mediated signaling | 0.985813 | 0.006 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.986399 | 0.006 |
R-HSA-157118 | Signaling by NOTCH | 0.986683 | 0.006 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.989754 | 0.004 |
R-HSA-611105 | Respiratory electron transport | 0.991570 | 0.004 |
R-HSA-9734767 | Developmental Cell Lineages | 0.991831 | 0.004 |
R-HSA-3781865 | Diseases of glycosylation | 0.992718 | 0.003 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.993395 | 0.003 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.993622 | 0.003 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.994080 | 0.003 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.994154 | 0.003 |
R-HSA-372790 | Signaling by GPCR | 0.995204 | 0.002 |
R-HSA-9748784 | Drug ADME | 0.996903 | 0.001 |
R-HSA-168249 | Innate Immune System | 0.997025 | 0.001 |
R-HSA-388396 | GPCR downstream signalling | 0.997044 | 0.001 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.997691 | 0.001 |
R-HSA-72312 | rRNA processing | 0.997801 | 0.001 |
R-HSA-1266738 | Developmental Biology | 0.998350 | 0.001 |
R-HSA-9824446 | Viral Infection Pathways | 0.998858 | 0.000 |
R-HSA-168256 | Immune System | 0.998871 | 0.000 |
R-HSA-416476 | G alpha (q) signalling events | 0.998996 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999160 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999275 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999580 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999665 | 0.000 |
R-HSA-597592 | Post-translational protein modification | 0.999670 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.999761 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 0.999775 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999787 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 0.999838 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.999849 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999914 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999960 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999971 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999971 | 0.000 |
R-HSA-1643685 | Disease | 0.999983 | 0.000 |
R-HSA-72766 | Translation | 0.999983 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999999 | 0.000 |
R-HSA-5663205 | Infectious disease | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
GRK1 |
0.839 | 0.379 | -2 | 0.546 |
COT |
0.837 | 0.180 | 2 | 0.871 |
KIS |
0.834 | 0.238 | 1 | 0.736 |
MOS |
0.832 | 0.321 | 1 | 0.900 |
CDC7 |
0.824 | 0.082 | 1 | 0.889 |
PIM3 |
0.824 | 0.080 | -3 | 0.873 |
IKKB |
0.824 | 0.039 | -2 | 0.334 |
CLK3 |
0.822 | 0.105 | 1 | 0.879 |
NDR2 |
0.822 | 0.063 | -3 | 0.863 |
BMPR1B |
0.820 | 0.199 | 1 | 0.847 |
RAF1 |
0.815 | 0.025 | 1 | 0.834 |
PRPK |
0.815 | -0.007 | -1 | 0.852 |
NLK |
0.813 | 0.061 | 1 | 0.856 |
GRK7 |
0.813 | 0.234 | 1 | 0.792 |
MTOR |
0.813 | -0.001 | 1 | 0.802 |
CDKL1 |
0.813 | 0.065 | -3 | 0.840 |
CAMK1B |
0.813 | 0.020 | -3 | 0.870 |
PIM1 |
0.812 | 0.075 | -3 | 0.841 |
GRK4 |
0.812 | 0.198 | -2 | 0.480 |
CAMK2G |
0.812 | 0.033 | 2 | 0.839 |
RSK2 |
0.812 | 0.052 | -3 | 0.818 |
SKMLCK |
0.812 | 0.062 | -2 | 0.359 |
NDR1 |
0.812 | 0.024 | -3 | 0.860 |
DSTYK |
0.812 | 0.061 | 2 | 0.875 |
GRK5 |
0.811 | 0.061 | -3 | 0.838 |
TGFBR2 |
0.810 | 0.002 | -2 | 0.379 |
CK1E |
0.809 | 0.234 | -3 | 0.605 |
IKKA |
0.809 | 0.016 | -2 | 0.335 |
ATR |
0.809 | 0.005 | 1 | 0.829 |
PKACG |
0.808 | 0.014 | -2 | 0.298 |
NUAK2 |
0.808 | 0.034 | -3 | 0.869 |
GCN2 |
0.807 | -0.061 | 2 | 0.793 |
ERK5 |
0.807 | 0.011 | 1 | 0.810 |
GRK6 |
0.807 | 0.078 | 1 | 0.852 |
TGFBR1 |
0.807 | 0.088 | -2 | 0.396 |
PRKX |
0.807 | 0.064 | -3 | 0.760 |
BMPR2 |
0.807 | -0.055 | -2 | 0.368 |
GRK2 |
0.806 | 0.125 | -2 | 0.419 |
AURC |
0.806 | -0.008 | -2 | 0.258 |
TBK1 |
0.806 | -0.062 | 1 | 0.713 |
CDKL5 |
0.806 | 0.035 | -3 | 0.833 |
PKN3 |
0.806 | 0.019 | -3 | 0.852 |
PDHK4 |
0.805 | -0.154 | 1 | 0.847 |
HIPK4 |
0.805 | 0.026 | 1 | 0.807 |
CK1D |
0.805 | 0.244 | -3 | 0.558 |
SRPK1 |
0.805 | 0.068 | -3 | 0.809 |
CAMLCK |
0.805 | -0.005 | -2 | 0.330 |
P90RSK |
0.805 | 0.028 | -3 | 0.822 |
PKACB |
0.805 | 0.032 | -2 | 0.255 |
RIPK3 |
0.804 | 0.033 | 3 | 0.771 |
IKKE |
0.804 | -0.068 | 1 | 0.707 |
PRKD1 |
0.804 | -0.017 | -3 | 0.830 |
FAM20C |
0.804 | 0.077 | 2 | 0.664 |
P70S6KB |
0.804 | 0.031 | -3 | 0.831 |
DAPK2 |
0.804 | 0.003 | -3 | 0.869 |
CAMK2B |
0.803 | 0.052 | 2 | 0.829 |
ALK2 |
0.803 | 0.132 | -2 | 0.420 |
LATS2 |
0.803 | -0.000 | -5 | 0.760 |
RSK4 |
0.803 | 0.074 | -3 | 0.804 |
PRKD2 |
0.803 | 0.010 | -3 | 0.808 |
GRK3 |
0.803 | 0.152 | -2 | 0.446 |
ICK |
0.803 | 0.025 | -3 | 0.861 |
PKN2 |
0.802 | 0.021 | -3 | 0.854 |
BMPR1A |
0.802 | 0.127 | 1 | 0.834 |
ALK4 |
0.802 | 0.061 | -2 | 0.393 |
MARK4 |
0.802 | -0.028 | 4 | 0.865 |
HUNK |
0.802 | 0.030 | 2 | 0.796 |
NIK |
0.802 | -0.035 | -3 | 0.873 |
DYRK2 |
0.802 | 0.064 | 1 | 0.732 |
ACVR2B |
0.802 | 0.078 | -2 | 0.374 |
AMPKA1 |
0.802 | 0.006 | -3 | 0.868 |
MST4 |
0.802 | 0.011 | 2 | 0.815 |
ACVR2A |
0.801 | 0.052 | -2 | 0.360 |
RSK3 |
0.801 | 0.016 | -3 | 0.808 |
SRPK3 |
0.800 | 0.079 | -3 | 0.783 |
AURA |
0.800 | -0.007 | -2 | 0.255 |
MLK1 |
0.800 | -0.004 | 2 | 0.786 |
ATM |
0.800 | 0.044 | 1 | 0.775 |
WNK1 |
0.800 | -0.028 | -2 | 0.347 |
MAPKAPK2 |
0.800 | 0.031 | -3 | 0.784 |
CAMK2D |
0.799 | -0.034 | -3 | 0.843 |
MASTL |
0.799 | -0.094 | -2 | 0.342 |
MYLK4 |
0.799 | 0.029 | -2 | 0.318 |
MSK1 |
0.798 | 0.028 | -3 | 0.797 |
CLK2 |
0.798 | 0.098 | -3 | 0.813 |
AURB |
0.798 | -0.021 | -2 | 0.253 |
SRPK2 |
0.798 | 0.062 | -3 | 0.746 |
LATS1 |
0.798 | 0.034 | -3 | 0.865 |
PDHK1 |
0.797 | -0.209 | 1 | 0.821 |
CAMK2A |
0.797 | 0.039 | 2 | 0.835 |
BCKDK |
0.797 | -0.078 | -1 | 0.806 |
MSK2 |
0.797 | 0.008 | -3 | 0.794 |
CLK4 |
0.796 | 0.044 | -3 | 0.819 |
MAPKAPK3 |
0.796 | -0.025 | -3 | 0.806 |
AMPKA2 |
0.796 | -0.002 | -3 | 0.848 |
HIPK1 |
0.796 | 0.096 | 1 | 0.750 |
CAMK4 |
0.795 | -0.034 | -3 | 0.839 |
NEK7 |
0.795 | -0.101 | -3 | 0.802 |
ULK2 |
0.795 | -0.181 | 2 | 0.769 |
DLK |
0.795 | -0.025 | 1 | 0.822 |
TSSK2 |
0.795 | -0.061 | -5 | 0.820 |
HIPK2 |
0.795 | 0.091 | 1 | 0.658 |
PKG2 |
0.794 | -0.014 | -2 | 0.254 |
CHAK2 |
0.793 | -0.063 | -1 | 0.783 |
CDK8 |
0.793 | 0.010 | 1 | 0.717 |
TTBK2 |
0.793 | 0.064 | 2 | 0.663 |
RIPK1 |
0.793 | -0.011 | 1 | 0.793 |
PIM2 |
0.793 | 0.056 | -3 | 0.796 |
CK1A2 |
0.793 | 0.179 | -3 | 0.562 |
PAK1 |
0.793 | -0.036 | -2 | 0.303 |
PKCD |
0.792 | -0.031 | 2 | 0.763 |
NEK6 |
0.792 | -0.107 | -2 | 0.339 |
WNK3 |
0.792 | -0.123 | 1 | 0.797 |
PLK1 |
0.792 | -0.049 | -2 | 0.322 |
QSK |
0.792 | -0.010 | 4 | 0.845 |
JNK2 |
0.791 | 0.068 | 1 | 0.678 |
PKACA |
0.791 | 0.015 | -2 | 0.230 |
QIK |
0.791 | -0.045 | -3 | 0.836 |
AKT2 |
0.791 | 0.044 | -3 | 0.756 |
ANKRD3 |
0.791 | -0.048 | 1 | 0.836 |
TSSK1 |
0.791 | -0.049 | -3 | 0.879 |
CDK1 |
0.791 | 0.065 | 1 | 0.701 |
JNK3 |
0.790 | 0.067 | 1 | 0.711 |
SGK3 |
0.790 | 0.028 | -3 | 0.810 |
CDK7 |
0.790 | 0.013 | 1 | 0.734 |
NIM1 |
0.790 | -0.065 | 3 | 0.804 |
PRP4 |
0.789 | 0.093 | -3 | 0.813 |
DYRK4 |
0.789 | 0.071 | 1 | 0.676 |
SIK |
0.789 | -0.006 | -3 | 0.793 |
PRKD3 |
0.789 | -0.002 | -3 | 0.777 |
DYRK1A |
0.789 | 0.053 | 1 | 0.779 |
CK2A2 |
0.789 | 0.130 | 1 | 0.781 |
PASK |
0.788 | 0.130 | -3 | 0.878 |
NUAK1 |
0.788 | -0.037 | -3 | 0.823 |
PAK2 |
0.788 | -0.048 | -2 | 0.301 |
MEKK3 |
0.788 | 0.137 | 1 | 0.783 |
CDK18 |
0.787 | 0.046 | 1 | 0.671 |
CDK19 |
0.787 | 0.010 | 1 | 0.682 |
PAK3 |
0.787 | -0.074 | -2 | 0.290 |
MLK2 |
0.787 | -0.116 | 2 | 0.796 |
DYRK1B |
0.787 | 0.060 | 1 | 0.704 |
P38B |
0.787 | 0.039 | 1 | 0.680 |
CLK1 |
0.787 | 0.032 | -3 | 0.791 |
DNAPK |
0.786 | 0.016 | 1 | 0.709 |
MLK3 |
0.786 | -0.035 | 2 | 0.706 |
BRSK1 |
0.786 | -0.013 | -3 | 0.821 |
MEK1 |
0.786 | -0.072 | 2 | 0.830 |
MELK |
0.786 | -0.048 | -3 | 0.827 |
P38A |
0.786 | 0.019 | 1 | 0.745 |
ULK1 |
0.785 | -0.172 | -3 | 0.767 |
YSK4 |
0.785 | -0.075 | 1 | 0.757 |
MARK3 |
0.784 | -0.023 | 4 | 0.797 |
CAMK1G |
0.784 | 0.015 | -3 | 0.800 |
DYRK3 |
0.784 | 0.050 | 1 | 0.742 |
MARK2 |
0.784 | -0.030 | 4 | 0.770 |
PKCG |
0.784 | -0.029 | 2 | 0.698 |
P38G |
0.784 | 0.050 | 1 | 0.615 |
PKR |
0.783 | -0.046 | 1 | 0.825 |
IRE1 |
0.783 | -0.067 | 1 | 0.770 |
PKCB |
0.783 | -0.021 | 2 | 0.702 |
DRAK1 |
0.783 | -0.002 | 1 | 0.811 |
ERK1 |
0.782 | 0.036 | 1 | 0.673 |
NEK9 |
0.782 | -0.186 | 2 | 0.807 |
MNK2 |
0.782 | -0.078 | -2 | 0.275 |
CDK17 |
0.782 | 0.042 | 1 | 0.624 |
CK1G1 |
0.782 | 0.118 | -3 | 0.594 |
HIPK3 |
0.781 | 0.046 | 1 | 0.736 |
SMG1 |
0.781 | -0.042 | 1 | 0.776 |
MARK1 |
0.781 | -0.036 | 4 | 0.822 |
PLK3 |
0.781 | -0.065 | 2 | 0.779 |
CDK5 |
0.781 | 0.022 | 1 | 0.752 |
PAK6 |
0.781 | -0.062 | -2 | 0.244 |
PKCA |
0.780 | -0.038 | 2 | 0.693 |
DAPK3 |
0.780 | 0.038 | -3 | 0.840 |
CK2A1 |
0.780 | 0.120 | 1 | 0.762 |
MLK4 |
0.780 | -0.040 | 2 | 0.697 |
MNK1 |
0.780 | -0.057 | -2 | 0.290 |
AKT1 |
0.780 | 0.022 | -3 | 0.771 |
MPSK1 |
0.779 | 0.105 | 1 | 0.779 |
VRK2 |
0.779 | -0.161 | 1 | 0.855 |
CDK14 |
0.779 | 0.044 | 1 | 0.709 |
DAPK1 |
0.779 | 0.049 | -3 | 0.830 |
CDK13 |
0.779 | -0.004 | 1 | 0.707 |
SMMLCK |
0.779 | -0.009 | -3 | 0.839 |
ERK2 |
0.779 | 0.026 | 1 | 0.718 |
BRSK2 |
0.779 | -0.061 | -3 | 0.830 |
GAK |
0.779 | 0.144 | 1 | 0.855 |
PHKG1 |
0.778 | -0.058 | -3 | 0.849 |
CDK2 |
0.778 | 0.010 | 1 | 0.771 |
BRAF |
0.778 | -0.034 | -4 | 0.798 |
P70S6K |
0.778 | 0.018 | -3 | 0.756 |
TLK2 |
0.778 | -0.073 | 1 | 0.769 |
MST3 |
0.778 | 0.048 | 2 | 0.794 |
CHK1 |
0.777 | -0.095 | -3 | 0.831 |
IRE2 |
0.777 | -0.092 | 2 | 0.732 |
TLK1 |
0.777 | 0.010 | -2 | 0.407 |
PKCH |
0.777 | -0.050 | 2 | 0.690 |
PKCZ |
0.776 | -0.072 | 2 | 0.746 |
DCAMKL1 |
0.776 | -0.029 | -3 | 0.821 |
SNRK |
0.776 | -0.102 | 2 | 0.670 |
P38D |
0.775 | 0.034 | 1 | 0.630 |
MEK5 |
0.775 | -0.071 | 2 | 0.805 |
CDK10 |
0.775 | 0.051 | 1 | 0.698 |
CAMK1D |
0.774 | 0.010 | -3 | 0.746 |
CDK12 |
0.774 | 0.005 | 1 | 0.680 |
MAPKAPK5 |
0.774 | -0.057 | -3 | 0.761 |
SGK1 |
0.774 | 0.056 | -3 | 0.695 |
MAK |
0.773 | 0.059 | -2 | 0.283 |
MEKK2 |
0.773 | -0.010 | 2 | 0.783 |
CDK3 |
0.773 | 0.042 | 1 | 0.643 |
CDK16 |
0.773 | 0.039 | 1 | 0.640 |
SSTK |
0.773 | -0.054 | 4 | 0.848 |
PERK |
0.773 | -0.073 | -2 | 0.392 |
CDK9 |
0.773 | -0.012 | 1 | 0.713 |
TAO3 |
0.772 | 0.002 | 1 | 0.786 |
ZAK |
0.772 | -0.061 | 1 | 0.758 |
AKT3 |
0.771 | 0.034 | -3 | 0.708 |
PAK5 |
0.771 | -0.062 | -2 | 0.236 |
PLK4 |
0.771 | -0.089 | 2 | 0.620 |
GSK3A |
0.770 | 0.043 | 4 | 0.450 |
JNK1 |
0.770 | 0.054 | 1 | 0.677 |
CHAK1 |
0.770 | -0.145 | 2 | 0.734 |
WNK4 |
0.769 | -0.098 | -2 | 0.331 |
CK1A |
0.769 | 0.196 | -3 | 0.476 |
MEKK1 |
0.768 | -0.110 | 1 | 0.778 |
NEK2 |
0.767 | -0.182 | 2 | 0.776 |
PINK1 |
0.766 | -0.153 | 1 | 0.834 |
HRI |
0.766 | -0.163 | -2 | 0.349 |
GCK |
0.766 | 0.043 | 1 | 0.793 |
TAK1 |
0.766 | 0.065 | 1 | 0.813 |
MRCKA |
0.766 | 0.008 | -3 | 0.800 |
PAK4 |
0.766 | -0.060 | -2 | 0.240 |
NEK5 |
0.765 | -0.127 | 1 | 0.807 |
PKCT |
0.765 | -0.063 | 2 | 0.700 |
ROCK2 |
0.765 | 0.023 | -3 | 0.830 |
MRCKB |
0.764 | 0.007 | -3 | 0.786 |
GSK3B |
0.764 | 0.002 | 4 | 0.443 |
NEK11 |
0.764 | -0.020 | 1 | 0.781 |
DCAMKL2 |
0.764 | -0.061 | -3 | 0.831 |
IRAK4 |
0.763 | -0.118 | 1 | 0.772 |
CAMKK1 |
0.763 | -0.147 | -2 | 0.310 |
PDK1 |
0.762 | -0.039 | 1 | 0.796 |
HPK1 |
0.762 | 0.027 | 1 | 0.773 |
MOK |
0.762 | 0.044 | 1 | 0.745 |
TTBK1 |
0.762 | -0.043 | 2 | 0.586 |
DMPK1 |
0.762 | 0.038 | -3 | 0.808 |
NEK8 |
0.762 | -0.088 | 2 | 0.787 |
MST2 |
0.761 | -0.038 | 1 | 0.787 |
CHK2 |
0.761 | 0.021 | -3 | 0.704 |
PLK2 |
0.761 | -0.006 | -3 | 0.745 |
TAO2 |
0.761 | -0.083 | 2 | 0.820 |
PKCE |
0.761 | -0.020 | 2 | 0.680 |
LKB1 |
0.760 | -0.076 | -3 | 0.815 |
PKCI |
0.760 | -0.074 | 2 | 0.708 |
SBK |
0.760 | 0.033 | -3 | 0.652 |
CAMK1A |
0.759 | 0.001 | -3 | 0.715 |
PKG1 |
0.759 | -0.037 | -2 | 0.209 |
CAMKK2 |
0.759 | -0.157 | -2 | 0.297 |
IRAK1 |
0.759 | -0.142 | -1 | 0.724 |
PHKG2 |
0.757 | -0.105 | -3 | 0.815 |
ERK7 |
0.757 | -0.014 | 2 | 0.516 |
PKN1 |
0.756 | -0.025 | -3 | 0.769 |
MINK |
0.756 | -0.038 | 1 | 0.768 |
CDK6 |
0.754 | 0.004 | 1 | 0.689 |
LRRK2 |
0.754 | -0.106 | 2 | 0.818 |
EEF2K |
0.754 | -0.059 | 3 | 0.828 |
CDK4 |
0.753 | 0.001 | 1 | 0.669 |
MEKK6 |
0.753 | -0.094 | 1 | 0.764 |
TNIK |
0.753 | -0.056 | 3 | 0.855 |
KHS2 |
0.752 | 0.011 | 1 | 0.777 |
ROCK1 |
0.752 | 0.008 | -3 | 0.800 |
CRIK |
0.752 | 0.046 | -3 | 0.770 |
SLK |
0.752 | -0.086 | -2 | 0.298 |
MAP3K15 |
0.751 | -0.078 | 1 | 0.745 |
TTK |
0.751 | 0.005 | -2 | 0.372 |
HGK |
0.751 | -0.101 | 3 | 0.854 |
PDHK3_TYR |
0.750 | 0.084 | 4 | 0.915 |
VRK1 |
0.750 | -0.114 | 2 | 0.825 |
PBK |
0.750 | -0.022 | 1 | 0.773 |
MST1 |
0.749 | -0.076 | 1 | 0.767 |
PDHK4_TYR |
0.749 | 0.153 | 2 | 0.884 |
NEK4 |
0.749 | -0.159 | 1 | 0.762 |
LOK |
0.749 | -0.120 | -2 | 0.285 |
KHS1 |
0.749 | -0.041 | 1 | 0.756 |
BMPR2_TYR |
0.747 | 0.153 | -1 | 0.902 |
MAP2K6_TYR |
0.747 | 0.119 | -1 | 0.882 |
ALPHAK3 |
0.746 | 0.074 | -1 | 0.779 |
PDHK1_TYR |
0.746 | 0.144 | -1 | 0.894 |
RIPK2 |
0.745 | -0.152 | 1 | 0.714 |
MAP2K4_TYR |
0.745 | 0.054 | -1 | 0.878 |
NEK1 |
0.743 | -0.177 | 1 | 0.776 |
OSR1 |
0.742 | -0.034 | 2 | 0.774 |
BUB1 |
0.742 | -0.062 | -5 | 0.788 |
STK33 |
0.742 | -0.123 | 2 | 0.587 |
TESK1_TYR |
0.741 | -0.013 | 3 | 0.897 |
CK1G2 |
0.741 | 0.204 | -3 | 0.520 |
YSK1 |
0.741 | -0.112 | 2 | 0.771 |
CK1G3 |
0.741 | 0.154 | -3 | 0.434 |
MEK2 |
0.741 | -0.222 | 2 | 0.794 |
MAP2K7_TYR |
0.738 | -0.085 | 2 | 0.851 |
YANK3 |
0.737 | -0.019 | 2 | 0.381 |
PKMYT1_TYR |
0.737 | -0.029 | 3 | 0.873 |
TXK |
0.737 | 0.123 | 1 | 0.856 |
HASPIN |
0.737 | -0.018 | -1 | 0.626 |
EPHA6 |
0.734 | 0.047 | -1 | 0.890 |
PINK1_TYR |
0.734 | -0.087 | 1 | 0.837 |
BIKE |
0.733 | -0.022 | 1 | 0.736 |
FGR |
0.730 | 0.046 | 1 | 0.836 |
EPHB4 |
0.729 | -0.004 | -1 | 0.860 |
LIMK2_TYR |
0.729 | -0.105 | -3 | 0.863 |
NEK3 |
0.729 | -0.204 | 1 | 0.727 |
ASK1 |
0.729 | -0.122 | 1 | 0.734 |
YES1 |
0.728 | 0.015 | -1 | 0.846 |
MYO3A |
0.728 | -0.095 | 1 | 0.754 |
SYK |
0.728 | 0.245 | -1 | 0.847 |
MYO3B |
0.728 | -0.113 | 2 | 0.783 |
INSRR |
0.727 | 0.028 | 3 | 0.760 |
BLK |
0.727 | 0.109 | -1 | 0.871 |
FYN |
0.727 | 0.140 | -1 | 0.865 |
LCK |
0.727 | 0.087 | -1 | 0.871 |
FER |
0.725 | -0.009 | 1 | 0.868 |
RET |
0.725 | -0.120 | 1 | 0.779 |
TAO1 |
0.724 | -0.128 | 1 | 0.699 |
ABL2 |
0.724 | -0.015 | -1 | 0.811 |
SRMS |
0.724 | 0.022 | 1 | 0.848 |
LIMK1_TYR |
0.723 | -0.170 | 2 | 0.833 |
EPHA4 |
0.723 | 0.014 | 2 | 0.779 |
HCK |
0.723 | 0.022 | -1 | 0.865 |
JAK3 |
0.723 | -0.029 | 1 | 0.769 |
MST1R |
0.722 | -0.086 | 3 | 0.818 |
CSF1R |
0.721 | -0.057 | 3 | 0.800 |
TYRO3 |
0.721 | -0.109 | 3 | 0.807 |
ROS1 |
0.721 | -0.100 | 3 | 0.784 |
STLK3 |
0.721 | -0.125 | 1 | 0.718 |
ITK |
0.720 | -0.000 | -1 | 0.825 |
MET |
0.720 | 0.071 | 3 | 0.791 |
PTK2 |
0.720 | 0.142 | -1 | 0.861 |
EPHB2 |
0.719 | 0.005 | -1 | 0.846 |
ABL1 |
0.719 | -0.038 | -1 | 0.800 |
DDR1 |
0.719 | -0.140 | 4 | 0.851 |
TYK2 |
0.719 | -0.184 | 1 | 0.771 |
FLT1 |
0.718 | 0.043 | -1 | 0.863 |
EPHB1 |
0.718 | -0.038 | 1 | 0.830 |
JAK2 |
0.718 | -0.147 | 1 | 0.770 |
KIT |
0.717 | -0.029 | 3 | 0.802 |
KDR |
0.717 | -0.024 | 3 | 0.771 |
EPHB3 |
0.717 | -0.039 | -1 | 0.850 |
BMX |
0.717 | 0.014 | -1 | 0.757 |
FGFR2 |
0.716 | -0.064 | 3 | 0.809 |
AAK1 |
0.715 | -0.007 | 1 | 0.640 |
TNK2 |
0.714 | -0.057 | 3 | 0.772 |
TEC |
0.714 | -0.002 | -1 | 0.753 |
ERBB2 |
0.712 | 0.008 | 1 | 0.754 |
YANK2 |
0.712 | -0.017 | 2 | 0.401 |
MERTK |
0.712 | -0.056 | 3 | 0.788 |
SRC |
0.712 | 0.063 | -1 | 0.841 |
TEK |
0.711 | -0.093 | 3 | 0.748 |
FGFR3 |
0.711 | -0.022 | 3 | 0.779 |
FLT3 |
0.711 | -0.093 | 3 | 0.803 |
LYN |
0.710 | 0.011 | 3 | 0.735 |
PDGFRB |
0.709 | -0.138 | 3 | 0.814 |
EPHA7 |
0.709 | -0.032 | 2 | 0.775 |
EPHA3 |
0.708 | -0.048 | 2 | 0.751 |
BTK |
0.708 | -0.090 | -1 | 0.782 |
NEK10_TYR |
0.708 | -0.143 | 1 | 0.672 |
FGFR1 |
0.708 | -0.121 | 3 | 0.782 |
EPHA5 |
0.707 | 0.001 | 2 | 0.772 |
FRK |
0.707 | -0.012 | -1 | 0.868 |
AXL |
0.706 | -0.122 | 3 | 0.788 |
JAK1 |
0.706 | -0.113 | 1 | 0.714 |
EGFR |
0.705 | 0.004 | 1 | 0.662 |
ZAP70 |
0.705 | 0.147 | -1 | 0.756 |
EPHA8 |
0.704 | 0.001 | -1 | 0.853 |
WEE1_TYR |
0.704 | -0.071 | -1 | 0.744 |
NTRK1 |
0.704 | -0.124 | -1 | 0.828 |
ALK |
0.704 | -0.108 | 3 | 0.732 |
PTK2B |
0.703 | -0.025 | -1 | 0.772 |
ERBB4 |
0.703 | 0.075 | 1 | 0.685 |
DDR2 |
0.703 | -0.081 | 3 | 0.748 |
LTK |
0.702 | -0.118 | 3 | 0.758 |
TNNI3K_TYR |
0.702 | -0.138 | 1 | 0.763 |
FLT4 |
0.702 | -0.093 | 3 | 0.772 |
TNK1 |
0.702 | -0.178 | 3 | 0.791 |
PTK6 |
0.702 | -0.151 | -1 | 0.734 |
INSR |
0.700 | -0.095 | 3 | 0.735 |
EPHA1 |
0.700 | -0.107 | 3 | 0.764 |
PDGFRA |
0.700 | -0.197 | 3 | 0.809 |
FGFR4 |
0.699 | -0.027 | -1 | 0.783 |
NTRK3 |
0.699 | -0.088 | -1 | 0.787 |
MATK |
0.699 | -0.052 | -1 | 0.723 |
NTRK2 |
0.698 | -0.146 | 3 | 0.772 |
EPHA2 |
0.695 | -0.017 | -1 | 0.828 |
IGF1R |
0.692 | -0.055 | 3 | 0.680 |
CSK |
0.691 | -0.120 | 2 | 0.774 |
FES |
0.679 | -0.056 | -1 | 0.725 |
MUSK |
0.678 | -0.135 | 1 | 0.645 |