Motif 82 (n=282)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0JNW5 | BLTP3B | S1009 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A6NKT7 | RGPD3 | S1563 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NKT7 | RGPD3 | S1564 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A8CG34 | POM121C | S392 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
E7EW31 | PROB1 | S40 | ochoa | Proline-rich basic protein 1 | None |
H7C1W4 | None | S344 | ochoa | Uncharacterized protein | None |
O14649 | KCNK3 | S358 | psp | Potassium channel subfamily K member 3 (Acid-sensitive potassium channel protein TASK-1) (TWIK-related acid-sensitive K(+) channel 1) (Two pore potassium channel KT3.1) (Two pore K(+) channel KT3.1) | K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate (PubMed:23169818, PubMed:26919430, PubMed:32499642, PubMed:36195757, PubMed:9312005). Changes ion selectivity and becomes permeable to Na(+) ions in response to extracellular acidification. Protonation of the pH sensor His-98 stabilizes C-type inactivation conformation likely converting the channel from outward K(+)-conducting, to inward Na(+)-conducting to nonconductive state (PubMed:22948150). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:23169818, PubMed:32499642). Allows K(+) currents with fast-gating kinetics important for the repolarization and hyperpolarization phases of action potentials (By similarity). In cerebellar granule cells, heteromeric KCNK3:KCNK9 channel may hyperpolarize the resting membrane potential to limit intrinsic neuronal excitability, but once the action potential threshold is reached, it may support high-frequency action potential firing and increased neuronal excitability (By similarity). Dispensable for central chemosensory respiration i.e. breathing controlled by brainstem CO2/pH, it rather conducts pH-sensitive currents and controls the firing rate of serotonergic raphe neurons involved in potentiation of the respiratory chemoreflex. Additionally, imparts chemosensitivity to type 1 cells in carotid bodies which respond to a decrease in arterial oxygen pressure or an increase in carbon dioxide pressure or pH to initiate adaptive changes in pulmonary ventilation (By similarity). In adrenal gland, contributes to the maintenance of a hyperpolarized resting membrane potential of aldosterone-producing cells at zona glomerulosa and limits aldosterone release as part of a regulatory mechanism that controls arterial blood pressure and electrolyte homeostasis (By similarity). In brown adipocytes, mediates K(+) efflux that counteracts norepinephrine-induced membrane depolarization, limits Ca(2+) efflux and downstream cAMP and PKA signaling, ultimately attenuating lipid oxidation and adaptive thermogenesis (By similarity). {ECO:0000250|UniProtKB:O35111, ECO:0000250|UniProtKB:O54912, ECO:0000269|PubMed:22948150, ECO:0000269|PubMed:23169818, ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:32499642, ECO:0000269|PubMed:36195757, ECO:0000269|PubMed:9312005}. |
O14654 | IRS4 | S931 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14715 | RGPD8 | S1562 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14715 | RGPD8 | S1563 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14827 | RASGRF2 | S776 | ochoa | Ras-specific guanine nucleotide-releasing factor 2 (Ras-GRF2) (Ras guanine nucleotide exchange factor 2) | Functions as a calcium-regulated nucleotide exchange factor activating both Ras and RAC1 through the exchange of bound GDP for GTP. Preferentially activates HRAS in vivo compared to RRAS based on their different types of prenylation. Functions in synaptic plasticity by contributing to the induction of long term potentiation. {ECO:0000269|PubMed:15128856}. |
O15020 | SPTBN2 | S2161 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15042 | U2SURP | S174 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O15061 | SYNM | S384 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15117 | FYB1 | Y387 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O15117 | FYB1 | S388 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O15231 | ZNF185 | S601 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15350 | TP73 | S47 | psp | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15381 | NVL | S134 | ochoa | Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) | Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}. |
O15381 | NVL | S148 | ochoa | Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) | Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}. |
O15523 | DDX3Y | S70 | ochoa | ATP-dependent RNA helicase DDX3Y (EC 3.6.4.13) (DEAD box protein 3, Y-chromosomal) | Probable ATP-dependent RNA helicase. During immune response, may enhance IFNB1 expression via IRF3/IRF7 pathway (By similarity). {ECO:0000250|UniProtKB:Q62095}. |
O15550 | KDM6A | S775 | ochoa | Lysine-specific demethylase 6A (EC 1.14.11.68) (Histone demethylase UTX) (Ubiquitously-transcribed TPR protein on the X chromosome) (Ubiquitously-transcribed X chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase 6A) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17761849, PubMed:17851529). Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-27' (PubMed:17713478, PubMed:17761849, PubMed:17851529). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Demethylation of 'Lys-27' of histone H3 is concomitant with methylation of 'Lys-4' of histone H3, and regulates the recruitment of the PRC1 complex and monoubiquitination of histone H2A (PubMed:17761849). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression (By similarity). {ECO:0000250|UniProtKB:O70546, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17761849, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914}. |
O43182 | ARHGAP6 | S740 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43670 | ZNF207 | S346 | ochoa | BUB3-interacting and GLEBS motif-containing protein ZNF207 (BuGZ) (hBuGZ) (Zinc finger protein 207) | Kinetochore- and microtubule-binding protein that plays a key role in spindle assembly (PubMed:24462186, PubMed:24462187, PubMed:26388440). ZNF207/BuGZ is mainly composed of disordered low-complexity regions and undergoes phase transition or coacervation to form temperature-dependent liquid droplets. Coacervation promotes microtubule bundling and concentrates tubulin, promoting microtubule polymerization and assembly of spindle and spindle matrix by concentrating its building blocks (PubMed:26388440). Also acts as a regulator of mitotic chromosome alignment by mediating the stability and kinetochore loading of BUB3 (PubMed:24462186, PubMed:24462187). Mechanisms by which BUB3 is protected are unclear: according to a first report, ZNF207/BuGZ may act by blocking ubiquitination and proteasomal degradation of BUB3 (PubMed:24462186). According to another report, the stabilization is independent of the proteasome (PubMed:24462187). {ECO:0000269|PubMed:24462186, ECO:0000269|PubMed:24462187, ECO:0000269|PubMed:26388440}. |
O60271 | SPAG9 | S949 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60307 | MAST3 | S710 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60331 | PIP5K1C | S541 | ochoa | Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) (PtdIns(4)P-5-kinase 1 gamma) (EC 2.7.1.68) (Type I phosphatidylinositol 4-phosphate 5-kinase gamma) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:12422219, PubMed:22942276). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (PubMed:12847086). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) (PubMed:12847086). Required for clathrin-coated pits assembly at the synapse (PubMed:17261850). Participates in cell junction assembly (PubMed:17261850). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (PubMed:17261850). Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (PubMed:12422219). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (PubMed:12422219). Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor (PubMed:17635937). Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). {ECO:0000250|UniProtKB:O70161, ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:12422219, ECO:0000269|PubMed:12847086, ECO:0000269|PubMed:17261850, ECO:0000269|PubMed:17635937, ECO:0000269|PubMed:22942276, ECO:0000305|PubMed:19889969}. |
O60610 | DIAPH1 | S154 | psp | Protein diaphanous homolog 1 (Diaphanous-related formin-1) (DRF1) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers (By similarity). Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization (By similarity). Required for cytokinesis, and transcriptional activation of the serum response factor (By similarity). DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics (By similarity). Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration (By similarity). Has neurite outgrowth promoting activity. Acts in a Rho-dependent manner to recruit PFY1 to the membrane (By similarity). In hear cells, it may play a role in the regulation of actin polymerization in hair cells (PubMed:20937854, PubMed:21834987, PubMed:26912466). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854, PubMed:21834987). It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity (PubMed:20937854, PubMed:21834987). In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854, PubMed:21834987). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (PubMed:20937854, PubMed:21834987). Plays a role in brain development (PubMed:24781755). Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity (By similarity). {ECO:0000250|UniProtKB:O08808, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24781755, ECO:0000269|PubMed:26912466}. |
O60706 | ABCC9 | S630 | ochoa | ATP-binding cassette sub-family C member 9 (Sulfonylurea receptor 2) | Subunit of ATP-sensitive potassium channels (KATP). Can form cardiac and smooth muscle-type KATP channels with KCNJ11. KCNJ11 forms the channel pore while ABCC9 is required for activation and regulation (PubMed:9831708). Can form a sulfonylurea-sensitive but ATP-insensitive potassium channel with KCNJ8 (By similarity). {ECO:0000250|UniProtKB:P70170, ECO:0000269|PubMed:9831708}. |
O75061 | DNAJC6 | S616 | ochoa | Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) | May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}. |
O75128 | COBL | S566 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75157 | TSC22D2 | S205 | ochoa | TSC22 domain family protein 2 (TSC22-related-inducible leucine zipper protein 4) | Reduces the level of nuclear PKM isoform M2 which results in repression of cyclin CCND1 transcription and reduced cell growth. {ECO:0000269|PubMed:27573352}. |
O94915 | FRYL | S1482 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O94921 | CDK14 | S119 | ochoa | Cyclin-dependent kinase 14 (EC 2.7.11.22) (Cell division protein kinase 14) (Serine/threonine-protein kinase PFTAIRE-1) (hPFTAIRE1) | Serine/threonine-protein kinase involved in the control of the eukaryotic cell cycle, whose activity is controlled by an associated cyclin. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by mediating the phosphorylation of LRP6 at 'Ser-1490', leading to the activation of the Wnt signaling pathway. Acts as a regulator of cell cycle progression and cell proliferation via its interaction with CCDN3. Phosphorylates RB1 in vitro, however the relevance of such result remains to be confirmed in vivo. May also play a role in meiosis, neuron differentiation and may indirectly act as a negative regulator of insulin-responsive glucose transport. {ECO:0000269|PubMed:16461467, ECO:0000269|PubMed:17517622, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949}. |
O95182 | NDUFA7 | S84 | ochoa | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 (Complex I-B14.5a) (CI-B14.5a) (NADH-ubiquinone oxidoreductase subunit B14.5a) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
O95644 | NFATC1 | S335 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
P00519 | ABL1 | S708 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P00519 | ABL1 | S1011 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P00736 | C1R | S206 | psp | Complement C1r subcomponent (EC 3.4.21.41) (Complement component 1 subcomponent r) [Cleaved into: Complement C1r subcomponent heavy chain (Complement C1r subcomponent chain A); Complement C1r subcomponent light chain (Complement C1r subcomponent chain B)] | Serine protease component of the complement C1 complex, a multiprotein complex that initiates the classical pathway of the complement system, a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system (PubMed:17996945, PubMed:19473974, PubMed:29449492). C1R catalyzes the first enzymatic step in the classical complement pathway: it is activated by the C1Q subcomplex of the C1 complex, which associates with IgG or IgM immunoglobulins complexed with antigens to form antigen-antibody complexes on the surface of pathogens (PubMed:29449492, PubMed:34155115). Immunoglobulin-binding promotes the autocatalytic cleavage and activation of C1R (PubMed:11445589, PubMed:11673533, PubMed:17996945, PubMed:20178990, PubMed:6254570, PubMed:6271784). Activated C1R then cleaves and activates C1S, the second protease of the classical complement pathway (PubMed:11445589, PubMed:11673533, PubMed:6271784). It is unclear if C1R activates C1S within single, strained C1 complexes or between neighboring C1 complexes on surfaces (PubMed:28104818, PubMed:29311313, PubMed:29449492). {ECO:0000269|PubMed:11445589, ECO:0000269|PubMed:11673533, ECO:0000269|PubMed:17996945, ECO:0000269|PubMed:19473974, ECO:0000269|PubMed:20178990, ECO:0000269|PubMed:28104818, ECO:0000269|PubMed:29311313, ECO:0000269|PubMed:29449492, ECO:0000269|PubMed:34155115, ECO:0000269|PubMed:6254570, ECO:0000269|PubMed:6271784}. |
P05121 | SERPINE1 | S218 | ochoa | Plasminogen activator inhibitor 1 (PAI) (PAI-1) (Endothelial plasminogen activator inhibitor) (Serpin E1) | Serine protease inhibitor. Inhibits TMPRSS7 (PubMed:15853774). Is a primary inhibitor of tissue-type plasminogen activator (PLAT) and urokinase-type plasminogen activator (PLAU). As PLAT inhibitor, it is required for fibrinolysis down-regulation and is responsible for the controlled degradation of blood clots (PubMed:17912461, PubMed:8481516, PubMed:9207454, PubMed:21925150). As PLAU inhibitor, it is involved in the regulation of cell adhesion and spreading (PubMed:9175705). Acts as a regulator of cell migration, independently of its role as protease inhibitor (PubMed:15001579, PubMed:9168821). It is required for stimulation of keratinocyte migration during cutaneous injury repair (PubMed:18386027). It is involved in cellular and replicative senescence (PubMed:16862142). Plays a role in alveolar type 2 cells senescence in the lung (By similarity). Is involved in the regulation of cementogenic differentiation of periodontal ligament stem cells, and regulates odontoblast differentiation and dentin formation during odontogenesis (PubMed:25808697, PubMed:27046084). {ECO:0000250|UniProtKB:P22777, ECO:0000269|PubMed:15001579, ECO:0000269|PubMed:15853774, ECO:0000269|PubMed:16862142, ECO:0000269|PubMed:17912461, ECO:0000269|PubMed:18386027, ECO:0000269|PubMed:21925150, ECO:0000269|PubMed:25808697, ECO:0000269|PubMed:27046084, ECO:0000269|PubMed:8481516, ECO:0000269|PubMed:9168821, ECO:0000269|PubMed:9175705, ECO:0000269|PubMed:9207454}. |
P09769 | FGR | S57 | ochoa | Tyrosine-protein kinase Fgr (EC 2.7.10.2) (Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog) (Proto-oncogene c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as a negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity). {ECO:0000250|UniProtKB:P14234, ECO:0000269|PubMed:10739672, ECO:0000269|PubMed:17164290, ECO:0000269|PubMed:1737799, ECO:0000269|PubMed:7519620}. |
P10070 | GLI2 | S866 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10071 | GLI3 | S864 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10071 | GLI3 | S906 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P11171 | EPB41 | S510 | ochoa | Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) | Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
P12259 | F5 | S912 | ochoa | Coagulation factor V (Activated protein C cofactor) (Proaccelerin, labile factor) [Cleaved into: Coagulation factor V heavy chain; Coagulation factor V light chain] | Central regulator of hemostasis. It serves as a critical cofactor for the prothrombinase activity of factor Xa that results in the activation of prothrombin to thrombin. |
P15822 | HIVEP1 | S2303 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15884 | TCF4 | S317 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P15924 | DSP | S2583 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P15924 | DSP | S2584 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P18583 | SON | S910 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P21802 | FGFR2 | S452 | ochoa | Fibroblast growth factor receptor 2 (FGFR-2) (EC 2.7.10.1) (K-sam) (KGFR) (Keratinocyte growth factor receptor) (CD antigen CD332) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Required for normal embryonic patterning, trophoblast function, limb bud development, lung morphogenesis, osteogenesis and skin development. Plays an essential role in the regulation of osteoblast differentiation, proliferation and apoptosis, and is required for normal skeleton development. Promotes cell proliferation in keratinocytes and immature osteoblasts, but promotes apoptosis in differentiated osteoblasts. Phosphorylates PLCG1, FRS2 and PAK4. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. FGFR2 signaling is down-regulated by ubiquitination, internalization and degradation. Mutations that lead to constitutive kinase activation or impair normal FGFR2 maturation, internalization and degradation lead to aberrant signaling. Over-expressed FGFR2 promotes activation of STAT1. {ECO:0000269|PubMed:12529371, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:15629145, ECO:0000269|PubMed:16384934, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19103595, ECO:0000269|PubMed:19387476, ECO:0000269|PubMed:19410646, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:8663044}. |
P22314 | UBA1 | S293 | ochoa | Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) | Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}. |
P25054 | APC | S1234 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2307 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P27816 | MAP4 | S439 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27816 | MAP4 | S899 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P32519 | ELF1 | S318 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P35637 | FUS | S131 | psp | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P37275 | ZEB1 | S887 | ochoa | Zinc finger E-box-binding homeobox 1 (NIL-2-A zinc finger protein) (Negative regulator of IL2) (Transcription factor 8) (TCF-8) | Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). In the absence of TGFB1, acts as a repressor of COL1A2 transcription via binding to the E-box in the upstream enhancer region (By similarity). {ECO:0000250|UniProtKB:Q64318, ECO:0000269|PubMed:19935649, ECO:0000269|PubMed:20175752, ECO:0000269|PubMed:20418909}. |
P40189 | IL6ST | Y767 | psp | Interleukin-6 receptor subunit beta (IL-6 receptor subunit beta) (IL-6R subunit beta) (IL-6R-beta) (IL-6RB) (CDw130) (Interleukin-6 signal transducer) (Membrane glycoprotein 130) (gp130) (Oncostatin-M receptor subunit alpha) (CD antigen CD130) | Signal-transducing molecule (PubMed:2261637). The receptor systems for IL6, LIF, OSM, CNTF, IL11, CTF1 and BSF3 can utilize IL6ST for initiating signal transmission. Binding of IL6 to IL6R induces IL6ST homodimerization and formation of a high-affinity receptor complex, which activates the intracellular JAK-MAPK and JAK-STAT3 signaling pathways (PubMed:19915009, PubMed:2261637, PubMed:23294003). That causes phosphorylation of IL6ST tyrosine residues which in turn activates STAT3 (PubMed:19915009, PubMed:23294003, PubMed:25731159). In parallel, the IL6 signaling pathway induces the expression of two cytokine receptor signaling inhibitors, SOCS1 and SOCS3, which inhibit JAK and terminate the activity of the IL6 signaling pathway as a negative feedback loop (By similarity). Also activates the yes-associated protein 1 (YAP) and NOTCH pathways to control inflammation-induced epithelial regeneration, independently of STAT3 (By similarity). Acts as a receptor for the neuroprotective peptide humanin as part of a complex with IL27RA/WSX1 and CNTFR (PubMed:19386761). Mediates signals which regulate immune response, hematopoiesis, pain control and bone metabolism (By similarity). Has a role in embryonic development (By similarity). Essential for survival of motor and sensory neurons and for differentiation of astrocytes (By similarity). Required for expression of TRPA1 in nociceptive neurons (By similarity). Required for the maintenance of PTH1R expression in the osteoblast lineage and for the stimulation of PTH-induced osteoblast differentiation (By similarity). Required for normal trabecular bone mass and cortical bone composition (By similarity). {ECO:0000250|UniProtKB:Q00560, ECO:0000269|PubMed:19386761, ECO:0000269|PubMed:19915009, ECO:0000269|PubMed:2261637, ECO:0000269|PubMed:23294003, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:28747427, ECO:0000269|PubMed:30309848}.; FUNCTION: [Isoform 2]: Binds to the soluble IL6:sIL6R complex (hyper-IL6), thereby blocking IL6 trans-signaling. Inhibits sIL6R-dependent acute phase response (PubMed:11121117, PubMed:21990364, PubMed:30279168). Also blocks IL11 cluster signaling through IL11R (PubMed:30279168). {ECO:0000269|PubMed:11121117, ECO:0000269|PubMed:21990364, ECO:0000269|PubMed:30279168}. |
P43681 | CHRNA4 | S550 | psp | Neuronal acetylcholine receptor subunit alpha-4 | Component of neuronal acetylcholine receptors (nAChRs) that function as pentameric, ligand-gated cation channels with high calcium permeability among other activities. nAChRs are excitatory neurotrasnmitter receptors formed by a collection of nAChR subunits known to mediate synaptic transmission in the nervous system and the neuromuscular junction. Each nAchR subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, cation permeability, and binding to allosteric modulators (PubMed:22361591, PubMed:27698419, PubMed:29720657, PubMed:38454578). CHRNA4 forms heteropentameric neuronal acetylcholine receptors with CHRNB2 and CHRNB4, as well as CHRNA5 and CHRNB3 as accesory subunits. Is the most abundant nAChR subtype expressed in the central nervous system (PubMed:16835356, PubMed:22361591, PubMed:27698419, PubMed:29720657, PubMed:38454578). Found in two major stoichiometric forms,(CHRNA4)3:(CHRNB2)2 and (CHRNA4)2:(CHRNB2)3, the two stoichiometric forms differ in their unitary conductance, calcium permeability, ACh sensitivity and potentiation by divalent cation (PubMed:27698419, PubMed:29720657, PubMed:38454578). Involved in the modulation of calcium-dependent signaling pathways, influences the release of neurotransmitters, including dopamine, glutamate and GABA (By similarity). {ECO:0000250|UniProtKB:O70174, ECO:0000269|PubMed:16835356, ECO:0000269|PubMed:22361591, ECO:0000269|PubMed:27698419, ECO:0000269|PubMed:29720657, ECO:0000269|PubMed:38454578}. |
P48307 | TFPI2 | S168 | ochoa | Tissue factor pathway inhibitor 2 (TFPI-2) (Placental protein 5) (PP5) | May play a role in the regulation of plasmin-mediated matrix remodeling. Inhibits trypsin, plasmin, factor VIIa/tissue factor and weakly factor Xa. Has no effect on thrombin. {ECO:0000269|PubMed:7872799}. |
P48634 | PRRC2A | S204 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48751 | SLC4A3 | S170 | ochoa | Anion exchange protein 3 (AE 3) (Anion exchanger 3) (CAE3/BAE3) (Cardiac/brain band 3-like protein) (Neuronal band 3-like protein) (Solute carrier family 4 member 3) | Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane (PubMed:29167417, PubMed:7923606). May be involved in the regulation of intracellular pH, and the modulation of cardiac action potential (PubMed:29167417). {ECO:0000269|PubMed:29167417, ECO:0000269|PubMed:7923606}. |
P49792 | RANBP2 | S2539 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P50552 | VASP | S46 | ochoa | Vasodilator-stimulated phosphoprotein (VASP) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance, lamellipodial and filopodial dynamics, platelet activation and cell migration. VASP promotes actin filament elongation. It protects the barbed end of growing actin filaments against capping and increases the rate of actin polymerization in the presence of capping protein. VASP stimulates actin filament elongation by promoting the transfer of profilin-bound actin monomers onto the barbed end of growing actin filaments. Plays a role in actin-based mobility of Listeria monocytogenes in host cells. Regulates actin dynamics in platelets and plays an important role in regulating platelet aggregation. {ECO:0000269|PubMed:10087267, ECO:0000269|PubMed:10438535, ECO:0000269|PubMed:15939738, ECO:0000269|PubMed:17082196, ECO:0000269|PubMed:18559661}. |
P53350 | PLK1 | S99 | psp | Serine/threonine-protein kinase PLK1 (EC 2.7.11.21) (Polo-like kinase 1) (PLK-1) (Serine/threonine-protein kinase 13) (STPK13) | Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Polo-like kinase proteins act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, MRE11, PPP1R12A/MYPT1, POLQ, PRC1, RACGAP1/CYK4, RAD51, RHNO1, SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1, WEE1 and HNRNPU (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17218258, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:22325354, PubMed:23455478, PubMed:23509069, PubMed:25986610, PubMed:26811421, PubMed:28512243, PubMed:37440612, PubMed:37674080, PubMed:8991084). Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL (PubMed:16980960, PubMed:19509060). NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins (PubMed:12852856). Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1 (PubMed:12939256, PubMed:16247472, PubMed:17351640, PubMed:19468300, PubMed:19468302). Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains (PubMed:12939256, PubMed:17351640). Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation (PubMed:19468300, PubMed:19468302). Promotes the central spindle recruitment of ECT2 (PubMed:16247472). Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1 (PubMed:11202906, PubMed:12447691, PubMed:12524548, PubMed:19160488). Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1 (PubMed:11202906). Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase (PubMed:12447691, PubMed:12524548). Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity (PubMed:19160488). Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2 (PubMed:15148369, PubMed:15469984, PubMed:17376779, PubMed:18331714). PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation (PubMed:17617734). Required for kinetochore localization of BUB1B (PubMed:17376779). Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2 (By similarity). Phosphorylates SGO1: required for spindle pole localization of isoform 3 of SGO1 and plays a role in regulating its centriole cohesion function (PubMed:18331714). Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome (PubMed:15148369, PubMed:15469984). Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53 (PubMed:19473992). Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA (PubMed:18521620). Contributes to the regulation of AURKA function (PubMed:18615013, PubMed:18662541). Also required for recovery after DNA damage checkpoint and entry into mitosis (PubMed:18615013, PubMed:18662541). Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning (PubMed:23509069). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase-mediated cleavage (By similarity). Phosphorylates CEP68 and is required for its degradation (PubMed:25503564). Regulates nuclear envelope breakdown during prophase by phosphorylating DCTN1 resulting in its localization in the nuclear envelope (PubMed:20679239). Phosphorylates the heat shock transcription factor HSF1, promoting HSF1 nuclear translocation upon heat shock (PubMed:15661742). Phosphorylates HSF1 also in the early mitotic period; this phosphorylation regulates HSF1 localization to the spindle pole, the recruitment of the SCF(BTRC) ubiquitin ligase complex induicing HSF1 degradation, and hence mitotic progression (PubMed:18794143). Regulates mitotic progression by phosphorylating RIOK2 (PubMed:21880710). Through the phosphorylation of DZIP1 regulates the localization during mitosis of the BBSome, a ciliary protein complex involved in cilium biogenesis (PubMed:27979967). Regulates DNA repair during mitosis by mediating phosphorylation of POLQ and RHNO1, thereby promoting POLQ recruitment to DNA damage sites (PubMed:37440612, PubMed:37674080). Phosphorylates ATXN10 which may play a role in the regulation of cytokinesis and may stimulate the proteasome-mediated degradation of ATXN10 (PubMed:21857149). {ECO:0000250|UniProtKB:P70032, ECO:0000250|UniProtKB:Q5F2C3, ECO:0000269|PubMed:11202906, ECO:0000269|PubMed:12207013, ECO:0000269|PubMed:12447691, ECO:0000269|PubMed:12524548, ECO:0000269|PubMed:12738781, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:12939256, ECO:0000269|PubMed:14532005, ECO:0000269|PubMed:14734534, ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:15148369, ECO:0000269|PubMed:15469984, ECO:0000269|PubMed:15661742, ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:16247472, ECO:0000269|PubMed:16980960, ECO:0000269|PubMed:17081991, ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:17351640, ECO:0000269|PubMed:17376779, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:18418051, ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:18521620, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19597481, ECO:0000269|PubMed:20679239, ECO:0000269|PubMed:21857149, ECO:0000269|PubMed:21880710, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080, ECO:0000269|PubMed:8991084}. |
P54132 | BLM | S1380 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54252 | ATXN3 | S335 | psp | Ataxin-3 (EC 3.4.19.12) (Machado-Joseph disease protein 1) (Spinocerebellar ataxia type 3 protein) | Deubiquitinating enzyme involved in protein homeostasis maintenance, transcription, cytoskeleton regulation, myogenesis and degradation of misfolded chaperone substrates (PubMed:12297501, PubMed:16118278, PubMed:17696782, PubMed:23625928, PubMed:28445460, PubMed:33157014). Binds long polyubiquitin chains and trims them, while it has weak or no activity against chains of 4 or less ubiquitins (PubMed:17696782). Involved in degradation of misfolded chaperone substrates via its interaction with STUB1/CHIP: recruited to monoubiquitinated STUB1/CHIP, and restricts the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (By similarity). Interacts with key regulators of transcription and represses transcription: acts as a histone-binding protein that regulates transcription (PubMed:12297501). Acts as a negative regulator of mTORC1 signaling in response to amino acid deprivation by mediating deubiquitination of RHEB, thereby promoting RHEB inactivation by the TSC-TBC complex (PubMed:33157014). Regulates autophagy via the deubiquitination of 'Lys-402' of BECN1 leading to the stabilization of BECN1 (PubMed:28445460). {ECO:0000250|UniProtKB:Q9CVD2, ECO:0000269|PubMed:12297501, ECO:0000269|PubMed:16118278, ECO:0000269|PubMed:17696782, ECO:0000269|PubMed:23625928, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:33157014}. |
P54284 | CACNB3 | S138 | ochoa | Voltage-dependent L-type calcium channel subunit beta-3 (CAB3) (Calcium channel voltage-dependent subunit beta 3) | Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents (PubMed:8119293). Increases CACNA1B peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). Increases CACNA1C peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). {ECO:0000250|UniProtKB:P54287, ECO:0000250|UniProtKB:Q9MZL3, ECO:0000269|PubMed:8119293}. |
P54284 | CACNB3 | S422 | ochoa | Voltage-dependent L-type calcium channel subunit beta-3 (CAB3) (Calcium channel voltage-dependent subunit beta 3) | Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents (PubMed:8119293). Increases CACNA1B peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). Increases CACNA1C peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). {ECO:0000250|UniProtKB:P54287, ECO:0000250|UniProtKB:Q9MZL3, ECO:0000269|PubMed:8119293}. |
P54760 | EPHB4 | S769 | ochoa | Ephrin type-B receptor 4 (EC 2.7.10.1) (Hepatoma transmembrane kinase) (Tyrosine-protein kinase TYRO11) | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Together with its cognate ligand/functional ligand EFNB2 it is involved in the regulation of cell adhesion and migration, and plays a central role in heart morphogenesis, angiogenesis and blood vessel remodeling and permeability. EPHB4-mediated forward signaling controls cellular repulsion and segregation from EFNB2-expressing cells. {ECO:0000269|PubMed:12734395, ECO:0000269|PubMed:16424904, ECO:0000269|PubMed:27400125, ECO:0000269|PubMed:30578106}. |
P55198 | MLLT6 | Y427 | ochoa | Protein AF-17 (ALL1-fused gene from chromosome 17 protein) | None |
P55265 | ADAR | S593 | ochoa | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P57682 | KLF3 | S99 | ochoa | Krueppel-like factor 3 (Basic krueppel-like factor) (CACCC-box-binding protein BKLF) (TEF-2) | Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis (By similarity). {ECO:0000250}. |
P63244 | RACK1 | S160 | ochoa | Small ribosomal subunit protein RACK1 (Cell proliferation-inducing gene 21 protein) (Guanine nucleotide-binding protein subunit beta-2-like 1) (Guanine nucleotide-binding protein subunit beta-like protein 12.3) (Human lung cancer oncogene 7 protein) (HLC-7) (Receptor for activated C kinase) (Receptor of activated protein C kinase 1) [Cleaved into: Small ribosomal subunit protein RACK1, N-terminally processed (Guanine nucleotide-binding protein subunit beta-2-like 1, N-terminally processed) (Receptor of activated protein C kinase 1, N-terminally processed)] | Scaffolding protein involved in the recruitment, assembly and/or regulation of a variety of signaling molecules. Interacts with a wide variety of proteins and plays a role in many cellular processes. Component of the 40S ribosomal subunit involved in translational repression (PubMed:23636399). Involved in the initiation of the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, by promoting ubiquitination of a subset of 40S ribosomal subunits (PubMed:28132843). Binds to and stabilizes activated protein kinase C (PKC), increasing PKC-mediated phosphorylation. May recruit activated PKC to the ribosome, leading to phosphorylation of EIF6. Inhibits the activity of SRC kinases including SRC, LCK and YES1. Inhibits cell growth by prolonging the G0/G1 phase of the cell cycle. Enhances phosphorylation of BMAL1 by PRKCA and inhibits transcriptional activity of the BMAL1-CLOCK heterodimer. Facilitates ligand-independent nuclear translocation of AR following PKC activation, represses AR transactivation activity and is required for phosphorylation of AR by SRC. Modulates IGF1R-dependent integrin signaling and promotes cell spreading and contact with the extracellular matrix. Involved in PKC-dependent translocation of ADAM12 to the cell membrane. Promotes the ubiquitination and proteasome-mediated degradation of proteins such as CLEC1B and HIF1A. Required for VANGL2 membrane localization, inhibits Wnt signaling, and regulates cellular polarization and oriented cell division during gastrulation. Required for PTK2/FAK1 phosphorylation and dephosphorylation. Regulates internalization of the muscarinic receptor CHRM2. Promotes apoptosis by increasing oligomerization of BAX and disrupting the interaction of BAX with the anti-apoptotic factor BCL2L. Inhibits TRPM6 channel activity. Regulates cell surface expression of some GPCRs such as TBXA2R. Plays a role in regulation of FLT1-mediated cell migration. Involved in the transport of ABCB4 from the Golgi to the apical bile canalicular membrane (PubMed:19674157). Promotes migration of breast carcinoma cells by binding to and activating RHOA (PubMed:20499158). Acts as an adapter for the dephosphorylation and inactivation of AKT1 by promoting recruitment of PP2A phosphatase to AKT1 (By similarity). {ECO:0000250|UniProtKB:P68040, ECO:0000269|PubMed:11884618, ECO:0000269|PubMed:12589061, ECO:0000269|PubMed:12958311, ECO:0000269|PubMed:17108144, ECO:0000269|PubMed:17244529, ECO:0000269|PubMed:17956333, ECO:0000269|PubMed:18088317, ECO:0000269|PubMed:18258429, ECO:0000269|PubMed:18621736, ECO:0000269|PubMed:19423701, ECO:0000269|PubMed:19674157, ECO:0000269|PubMed:19785988, ECO:0000269|PubMed:20499158, ECO:0000269|PubMed:20541605, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:20976005, ECO:0000269|PubMed:21212275, ECO:0000269|PubMed:21347310, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:9584165}.; FUNCTION: (Microbial infection) Binds to Y.pseudotuberculosis yopK which leads to inhibition of phagocytosis and survival of bacteria following infection of host cells. {ECO:0000269|PubMed:21347310}.; FUNCTION: (Microbial infection) Enhances phosphorylation of HIV-1 Nef by PKCs. {ECO:0000269|PubMed:11312657}.; FUNCTION: (Microbial infection) In case of poxvirus infection, remodels the ribosomes so that they become optimal for the viral mRNAs (containing poly-A leaders) translation but not for host mRNAs. {ECO:0000269|PubMed:28636603}.; FUNCTION: (Microbial infection) Contributes to the cap-independent internal ribosome entry site (IRES)-mediated translation by some RNA viruses. {ECO:0000269|PubMed:25416947}. |
Q00059 | TFAM | S56 | psp | Transcription factor A, mitochondrial (mtTFA) (Mitochondrial transcription factor 1) (MtTF1) (Transcription factor 6) (TCF-6) (Transcription factor 6-like 2) | Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation (PubMed:29445193, PubMed:32183942). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA (PubMed:29149603). In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand (PubMed:20410300). Required for accurate and efficient promoter recognition by the mitochondrial RNA polymerase (PubMed:22037172). Promotes transcription initiation from the HSP1 and the light strand promoter by binding immediately upstream of transcriptional start sites (PubMed:22037172). Is able to unwind DNA (PubMed:22037172). Bends the mitochondrial light strand promoter DNA into a U-turn shape via its HMG boxes (PubMed:1737790). Required for maintenance of normal levels of mitochondrial DNA (PubMed:19304746, PubMed:22841477). May play a role in organizing and compacting mitochondrial DNA (PubMed:22037171). {ECO:0000269|PubMed:1737790, ECO:0000269|PubMed:19304746, ECO:0000269|PubMed:20410300, ECO:0000269|PubMed:22037171, ECO:0000269|PubMed:22037172, ECO:0000269|PubMed:22841477, ECO:0000269|PubMed:29149603, ECO:0000269|PubMed:29445193, ECO:0000269|PubMed:32183942}. |
Q03001 | DST | S7424 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03164 | KMT2A | S1119 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q04695 | KRT17 | S24 | psp | Keratin, type I cytoskeletal 17 (39.1) (Cytokeratin-17) (CK-17) (Keratin-17) (K17) | Type I keratin involved in the formation and maintenance of various skin appendages, specifically in determining shape and orientation of hair (By similarity). Required for the correct growth of hair follicles, in particular for the persistence of the anagen (growth) state (By similarity). Modulates the function of TNF-alpha in the specific context of hair cycling. Regulates protein synthesis and epithelial cell growth through binding to the adapter protein SFN and by stimulating Akt/mTOR pathway (By similarity). Involved in tissue repair. May be a marker of basal cell differentiation in complex epithelia and therefore indicative of a certain type of epithelial 'stem cells'. Acts as a promoter of epithelial proliferation by acting a regulator of immune response in skin: promotes Th1/Th17-dominated immune environment contributing to the development of basaloid skin tumors (By similarity). May act as an autoantigen in the immunopathogenesis of psoriasis, with certain peptide regions being a major target for autoreactive T-cells and hence causing their proliferation. {ECO:0000250|UniProtKB:Q9QWL7, ECO:0000269|PubMed:10844551, ECO:0000269|PubMed:15795121, ECO:0000269|PubMed:16713453}. |
Q07157 | TJP1 | S178 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q07157 | TJP1 | S622 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08289 | CACNB2 | S73 | ochoa | Voltage-dependent L-type calcium channel subunit beta-2 (CAB2) (Calcium channel voltage-dependent subunit beta 2) (Lambert-Eaton myasthenic syndrome antigen B) (MYSB) | Beta subunit of voltage-dependent calcium channels which contributes to the function of the calcium channel by increasing peak calcium current (By similarity). Plays a role in shifting voltage dependencies of activation and inactivation of the channel (By similarity). May modulate G protein inhibition (By similarity). May contribute to beta-adrenergic augmentation of Ca(2+) influx in cardiomyocytes, thereby regulating increases in heart rate and contractile force (PubMed:36424916). Involved in membrane targeting of the alpha-1 subunit CACNA1C (PubMed:17525370). {ECO:0000250|UniProtKB:Q8CC27, ECO:0000250|UniProtKB:Q8VGC3, ECO:0000269|PubMed:17525370, ECO:0000269|PubMed:36424916}. |
Q08AE8 | SPIRE1 | S507 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q10571 | MN1 | S1073 | ochoa | Transcriptional activator MN1 (Probable tumor suppressor protein MN1) | Transcriptional activator which specifically regulates expression of TBX22 in the posterior region of the developing palate. Required during later stages of palate development for growth and medial fusion of the palatal shelves. Promotes maturation and normal function of calvarial osteoblasts, including expression of the osteoclastogenic cytokine TNFSF11/RANKL. Necessary for normal development of the membranous bones of the skull (By similarity). May play a role in tumor suppression (Probable). {ECO:0000250|UniProtKB:D3YWE6, ECO:0000305|PubMed:7731706}. |
Q12767 | TMEM94 | S367 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12767 | TMEM94 | S368 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12791 | KCNMA1 | S978 | psp | Calcium-activated potassium channel subunit alpha-1 (BK channel) (BKCA alpha) (Calcium-activated potassium channel, subfamily M subunit alpha-1) (K(VCA)alpha) (KCa1.1) (Maxi K channel) (MaxiK) (Slo-alpha) (Slo1) (Slowpoke homolog) (Slo homolog) (hSlo) | Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+) (PubMed:14523450, PubMed:29330545, PubMed:31152168). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in the cochlea, regulation of transmitter release, and innate immunity. In smooth muscles, its activation by high level of Ca(2+), caused by ryanodine receptors in the sarcoplasmic reticulum, regulates the membrane potential. In cochlea cells, its number and kinetic properties partly determine the characteristic frequency of each hair cell and thereby helps to establish a tonotopic map. Kinetics of KCNMA1 channels are determined by alternative splicing, phosphorylation status and its combination with modulating beta subunits. Highly sensitive to both iberiotoxin (IbTx) and charybdotoxin (CTX). Possibly induces sleep when activated by melatonin and through melatonin receptor MTNR1A-dependent dissociation of G-beta and G-gamma subunits, leading to increased sensitivity to Ca(2+) and reduced synaptic transmission (PubMed:32958651). {ECO:0000269|PubMed:14523450, ECO:0000269|PubMed:29330545, ECO:0000269|PubMed:31152168, ECO:0000269|PubMed:32958651}.; FUNCTION: [Isoform 5]: Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). {ECO:0000269|PubMed:7573516, ECO:0000269|PubMed:7877450}. |
Q12888 | TP53BP1 | S1316 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12923 | PTPN13 | S1215 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12968 | NFATC3 | S248 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q12981 | BNIP1 | S179 | ochoa | Vesicle transport protein SEC20 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 1) (Transformation-related gene 8 protein) (TRG-8) | As part of a SNARE complex may be involved in endoplasmic reticulum membranes fusion and be required for the maintenance of endoplasmic reticulum organization (PubMed:15272311). Also plays a role in apoptosis (PubMed:15272311, PubMed:23896122, PubMed:7954800). It is for instance required for endoplasmic reticulum stress-induced apoptosis (PubMed:23896122). As a substrate of RNF185 interacting with SQSTM1, might also be involved in mitochondrial autophagy (Probable). {ECO:0000269|PubMed:15272311, ECO:0000269|PubMed:23896122, ECO:0000269|PubMed:7954800, ECO:0000305|PubMed:21931693}. |
Q13085 | ACACA | S77 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13137 | CALCOCO2 | S355 | ochoa | Calcium-binding and coiled-coil domain-containing protein 2 (Antigen nuclear dot 52 kDa protein) (Nuclear domain 10 protein NDP52) (Nuclear domain 10 protein 52) (Nuclear dot protein 52) | Xenophagy-specific receptor required for autophagy-mediated intracellular bacteria degradation. Acts as an effector protein of galectin-sensed membrane damage that restricts the proliferation of infecting pathogens such as Salmonella typhimurium upon entry into the cytosol by targeting LGALS8-associated bacteria for autophagy (PubMed:22246324). Initially orchestrates bacteria targeting to autophagosomes and subsequently ensures pathogen degradation by regulating pathogen-containing autophagosome maturation (PubMed:23022382, PubMed:25771791). Bacteria targeting to autophagosomes relies on its interaction with MAP1LC3A, MAP1LC3B and/or GABARAPL2, whereas regulation of pathogen-containing autophagosome maturation requires the interaction with MAP3LC3C (PubMed:23022382, PubMed:25771791). May play a role in ruffle formation and actin cytoskeleton organization and seems to negatively regulate constitutive secretion (PubMed:17635994). {ECO:0000269|PubMed:17635994, ECO:0000269|PubMed:22246324, ECO:0000269|PubMed:23022382, ECO:0000269|PubMed:23386746, ECO:0000269|PubMed:25771791}. |
Q13409 | DYNC1I2 | S101 | ochoa | Cytoplasmic dynein 1 intermediate chain 2 (Cytoplasmic dynein intermediate chain 2) (Dynein intermediate chain 2, cytosolic) (DH IC-2) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function (PubMed:31079899). Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules (PubMed:31079899). The intermediate chains mediate the binding of dynein to dynactin via its 150 kDa component (p150-glued) DCTN1 (By similarity). Involved in membrane-transport, such as Golgi apparatus, late endosomes and lysosomes (By similarity). {ECO:0000250|UniProtKB:Q62871, ECO:0000269|PubMed:31079899}. |
Q13480 | GAB1 | Y307 | ochoa|psp | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13671 | RIN1 | S333 | ochoa | Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) | Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}. |
Q14157 | UBAP2L | S400 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14671 | PUM1 | S75 | ochoa | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q14676 | MDC1 | S598 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14938 | NFIX | S231 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q14938 | NFIX | S322 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q14966 | ZNF638 | S1401 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q15032 | R3HDM1 | S380 | ochoa | R3H domain-containing protein 1 | None |
Q15286 | RAB35 | S34 | ochoa | Ras-related protein Rab-35 (EC 3.6.5.2) (GTP-binding protein RAY) (Ras-related protein Rab-1C) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:30905672). RAB35 is involved in the process of endocytosis and is an essential rate-limiting regulator of the fast recycling pathway back to the plasma membrane (PubMed:21951725). During cytokinesis, required for the postfurrowing terminal steps, namely for intercellular bridge stability and abscission, possibly by controlling phosphatidylinositol 4,5-bis phosphate (PIP2) and SEPT2 localization at the intercellular bridge (PubMed:16950109). May indirectly regulate neurite outgrowth. Together with TBC1D13 may be involved in regulation of insulin-induced glucose transporter SLC2A4/GLUT4 translocation to the plasma membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q6PHN9, ECO:0000269|PubMed:16950109, ECO:0000269|PubMed:21951725, ECO:0000269|PubMed:30905672}. |
Q15464 | SHB | S164 | ochoa | SH2 domain-containing adapter protein B | Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}. |
Q15648 | MED1 | S1302 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q2KHM9 | KIAA0753 | S190 | ochoa | Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) | Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}. |
Q2KHR3 | QSER1 | S1257 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2M1Z3 | ARHGAP31 | S1080 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2TB10 | ZNF800 | S403 | ochoa | Zinc finger protein 800 | May be involved in transcriptional regulation. |
Q4ZG55 | GREB1 | S1146 | ochoa | Protein GREB1 (Gene regulated in breast cancer 1 protein) | May play a role in estrogen-stimulated cell proliferation. Acts as a regulator of hormone-dependent cancer growth in breast and prostate cancers. |
Q58EX2 | SDK2 | S2107 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q5JRC9 | FAM47A | S541 | ochoa | Protein FAM47A | None |
Q5JSZ5 | PRRC2B | S248 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JSZ5 | PRRC2B | S1666 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5S007 | LRRK2 | S910 | ochoa|psp | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5SNT2 | TMEM201 | S529 | ochoa | Transmembrane protein 201 (Spindle-associated membrane protein 1) | Critical regulator of angiogenesis and endothelial cell (EC) migration (PubMed:35311970). Promotes the migration of endothelial cells, which is essential for angiogenesis (PubMed:35311970). Interacts with the linker of nucleoskeleton and cytoskeleton (LINC) complex, which plays a vital role in connecting the cell's cytoskeleton to the nuclear envelope (PubMed:35311970). This interaction is essential for maintaining cellular structure and facilitating the movement of endothelial cells, which is critical for proper vascular development (PubMed:35311970). Involved in nuclear movement during fibroblast polarization and migration (By similarity). Overexpression can recruit Ran GTPase to the nuclear periphery (PubMed:27541860). {ECO:0000250|UniProtKB:A2A8U2, ECO:0000269|PubMed:35311970, ECO:0000305|PubMed:27541860}.; FUNCTION: [Isoform 2]: May define a distinct membrane domain in the vicinity of the mitotic spindle (PubMed:19494128). Involved in the organization of the nuclear envelope implicating EMD, SUN1 and A-type lamina (PubMed:21610090). {ECO:0000269|PubMed:19494128, ECO:0000269|PubMed:21610090}. |
Q5SW79 | CEP170 | S1041 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S1042 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T6F2 | UBAP2 | Y628 | ochoa | Ubiquitin-associated protein 2 (UBAP-2) (RNA polymerase II degradation factor UBAP2) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). May promote the degradation of ANXA2 (PubMed:27121050). {ECO:0000269|PubMed:27121050, ECO:0000269|PubMed:35633597}. |
Q5VT52 | RPRD2 | S663 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VWQ0 | RSBN1 | S104 | ochoa | Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) | Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}. |
Q5VY43 | PEAR1 | S933 | ochoa | Platelet endothelial aggregation receptor 1 (hPEAR1) (Multiple epidermal growth factor-like domains protein 12) (Multiple EGF-like domains protein 12) | Required for SVEP1-mediated platelet activation, via its interaction with SVEP1 and subsequent activation of AKT/mTOR signaling (PubMed:36792666). May be involved in the early stages of hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8VIK5, ECO:0000269|PubMed:36792666}. |
Q63ZY3 | KANK2 | S522 | ochoa | KN motif and ankyrin repeat domain-containing protein 2 (Ankyrin repeat domain-containing protein 25) (Matrix-remodeling-associated protein 3) (SRC-1-interacting protein) (SIP) (SRC-interacting protein) (SRC1-interacting protein) | Involved in transcription regulation by sequestering in the cytoplasm nuclear receptor coactivators such as NCOA1, NCOA2 and NCOA3 (PubMed:17476305). Involved in regulation of caspase-independent apoptosis by sequestering the proapoptotic factor AIFM1 in mitochondria (PubMed:22371500). Pro-apoptotic stimuli can induce its proteasomal degradation allowing the translocation of AIFM1 to the nucleus to induce apoptosis (PubMed:22371500). Involved in the negative control of vitamin D receptor signaling pathway (PubMed:24671081). Involved in actin stress fibers formation through its interaction with ARHGDIA and the regulation of the Rho signaling pathway (PubMed:17996375, PubMed:25961457). May thereby play a role in cell adhesion and migration, regulating for instance podocytes migration during development of the kidney (PubMed:25961457). Through the Rho signaling pathway may also regulate cell proliferation (By similarity). {ECO:0000250|UniProtKB:Q8BX02, ECO:0000269|PubMed:17476305, ECO:0000269|PubMed:17996375, ECO:0000269|PubMed:22371500, ECO:0000269|PubMed:24671081, ECO:0000269|PubMed:25961457}. |
Q66K74 | MAP1S | S546 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q684P5 | RAP1GAP2 | S35 | ochoa | Rap1 GTPase-activating protein 2 (Rap1GAP2) (GTPase-activating Rap/Ran-GAP domain-like protein 4) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15632203}. |
Q68CP9 | ARID2 | S1725 | ochoa | AT-rich interactive domain-containing protein 2 (ARID domain-containing protein 2) (BRG1-associated factor 200) (BAF200) (Zinc finger protein with activation potential) (Zipzap/p200) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). May be involved in targeting the complex to different genes. May be involved in regulating transcriptional activation of cardiac genes. {ECO:0000269|PubMed:16782067, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q6EMB2 | TTLL5 | S1103 | ochoa | Tubulin polyglutamylase TTLL5 (EC 6.3.2.-) (SRC1 and TIF2-associated modulatory protein) (STAMP protein) (Tubulin--tyrosine ligase-like protein 5) | Polyglutamylase which modifies tubulin, generating polyglutamate side chains on the gamma-carboxyl group of specific glutamate residues within the C-terminal tail of tubulin. Preferentially mediates ATP-dependent initiation step of the polyglutamylation reaction over the elongation step. Preferentially modifies the alpha-tubulin tail over a beta-tail (By similarity). Required for CCSAP localization to both polyglutamylated spindle and cilia microtubules (PubMed:22493317). Increases the effects of transcriptional coactivator NCOA2/TIF2 in glucocorticoid receptor-mediated repression and induction and in androgen receptor-mediated induction (PubMed:17116691). {ECO:0000250|UniProtKB:Q8CHB8, ECO:0000269|PubMed:17116691, ECO:0000269|PubMed:22493317}. |
Q6P0N0 | MIS18BP1 | S191 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P4R8 | NFRKB | S799 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6WKZ4 | RAB11FIP1 | S389 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZS17 | RIPOR1 | S333 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q6ZSR9 | None | S258 | ochoa | Uncharacterized protein FLJ45252 | None |
Q6ZU35 | CRACD | S697 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q709C8 | VPS13C | S2485 | ochoa | Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}. |
Q70E73 | RAPH1 | S996 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70EL1 | USP54 | S958 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q70EL1 | USP54 | S1588 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q71RC2 | LARP4 | S568 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q7Z2K8 | GPRIN1 | S734 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2Z1 | TICRR | S1125 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z309 | PABIR2 | S222 | ochoa | PABIR family member 2 | None |
Q7Z3K3 | POGZ | S251 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z3K3 | POGZ | S256 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z401 | DENND4A | S1531 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z6B0 | CCDC91 | S69 | ochoa | Coiled-coil domain-containing protein 91 (GGA-binding partner) (p56 accessory protein) | Involved in the regulation of membrane traffic through the trans-Golgi network (TGN). Functions in close cooperation with the GGAs in the sorting of hydrolases to lysosomes. {ECO:0000269|PubMed:17596511}. |
Q7Z6B7 | SRGAP1 | S819 | ochoa | SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) | GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}. |
Q7Z7G8 | VPS13B | S1798 | ochoa | Intermembrane lipid transfer protein VPS13B (Cohen syndrome protein 1) (Vacuolar protein sorting-associated protein 13B) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phosphatidylinositol 3-phosphate (By similarity). Functions as a tethering factor in the slow endocytic recycling pathway, to assist traffic between early and recycling endosomes (PubMed:24334764, PubMed:30962439, PubMed:32375900). Involved in the transport of proacrosomal vesicles to the nuclear dense lamina (NDL) during spermatid development (By similarity). Plays a role in the assembly of the Golgi apparatus, possibly by mediating trafficking to the Golgi membrane (PubMed:21865173). Plays a role in the development of the nervous system, and may be required for neuron projection development (PubMed:25492866, PubMed:32560273). May also play a role during adipose tissue development (PubMed:26358774). Required for maintenance of the ocular lens (By similarity). {ECO:0000250|UniProtKB:Q07878, ECO:0000250|UniProtKB:Q80TY5, ECO:0000269|PubMed:21865173, ECO:0000269|PubMed:24334764, ECO:0000269|PubMed:26358774, ECO:0000269|PubMed:30962439, ECO:0000269|PubMed:32375900, ECO:0000269|PubMed:32560273, ECO:0000305|PubMed:25492866, ECO:0000305|PubMed:32560273}. |
Q86TC9 | MYPN | S719 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86UE4 | MTDH | S533 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86UU1 | PHLDB1 | S1002 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86UY5 | FAM83A | S110 | ochoa | Protein FAM83A (Tumor antigen BJ-TSA-9) (Tumor-specific gene expressed in prostate protein) | Involved in mitochondrial maintenance during adipogenesis. May be acting by playing a role in the maintenance of normal mitochondrial function. {ECO:0000250|UniProtKB:Q8K2P2}. |
Q86WB0 | ZC3HC1 | S302 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86XJ1 | GAS2L3 | S417 | ochoa | GAS2-like protein 3 (Growth arrest-specific protein 2-like 3) | Cytoskeletal linker protein. May promote and stabilize the formation of the actin and microtubule network. {ECO:0000269|PubMed:21561867}. |
Q8IU85 | CAMK1D | S355 | ochoa | Calcium/calmodulin-dependent protein kinase type 1D (EC 2.7.11.17) (CaM kinase I delta) (CaM kinase ID) (CaM-KI delta) (CaMKI delta) (CaMKID) (CaMKI-like protein kinase) (CKLiK) | Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1 signaling cascade and, upon calcium influx, activates CREB-dependent gene transcription, regulates calcium-mediated granulocyte function and respiratory burst and promotes basal dendritic growth of hippocampal neurons. In neutrophil cells, required for cytokine-induced proliferative responses and activation of the respiratory burst. Activates the transcription factor CREB1 in hippocampal neuron nuclei. May play a role in apoptosis of erythroleukemia cells. In vitro, phosphorylates transcription factor CREM isoform Beta. {ECO:0000269|PubMed:11050006, ECO:0000269|PubMed:15840691, ECO:0000269|PubMed:16324104, ECO:0000269|PubMed:17056143}. |
Q8IV63 | VRK3 | S55 | ochoa | Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) | Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}. |
Q8IVL1 | NAV2 | S1120 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S1190 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IYD8 | FANCM | S948 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8N3K9 | CMYA5 | S1157 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3K9 | CMYA5 | S1981 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N5G2 | MACO1 | S331 | ochoa | Macoilin (Macoilin-1) (Transmembrane protein 57) | Plays a role in the regulation of neuronal activity. {ECO:0000269|PubMed:21589894}. |
Q8NCG7 | DAGLB | S179 | ochoa | Diacylglycerol lipase-beta (DAGL-beta) (DGL-beta) (EC 3.1.1.116) (KCCR13L) (PUFA-specific triacylglycerol lipase) (EC 3.1.1.3) (Sn1-specific diacylglycerol lipase beta) | Lipase that catalyzes the hydrolysis of arachidonic acid (AA)-esterified diacylglycerols (DAGs) to produce the principal endocannabinoid, 2-arachidonoylglycerol (2-AG) which can be further cleaved by downstream enzymes to release arachidonic acid (AA) for cyclooxygenase (COX)-mediated eicosanoid production (PubMed:14610053). Preferentially hydrolyzes DAGs at the sn-1 position in a calcium-dependent manner and has negligible activity against other lipids including monoacylglycerols and phospholipids (PubMed:14610053). Plays a key role in the regulation of 2-AG and AA pools utilized by COX1/2 to generate lipid mediators of macrophage and microglia inflammatory responses. Also functions as a polyunsaturated fatty acids-specific triacylglycerol lipase in macrophages. Plays an important role to support the metabolic and signaling demands of macrophages (By similarity). {ECO:0000250|UniProtKB:Q91WC9, ECO:0000269|PubMed:14610053}. |
Q8NDX5 | PHC3 | S286 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8TDY4 | ASAP3 | S862 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 3 (Development and differentiation-enhancing factor-like 1) (Protein up-regulated in liver cancer 1) | Promotes cell proliferation. {ECO:0000269|PubMed:14654939}. |
Q8TEK3 | DOT1L | S982 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEQ6 | GEMIN5 | S1311 | ochoa | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q8TEW0 | PARD3 | S174 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TF72 | SHROOM3 | S499 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8TF76 | HASPIN | S58 | ochoa | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8TF76 | HASPIN | S430 | psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WUM0 | NUP133 | S480 | ochoa | Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) | Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}. |
Q8WWI1 | LMO7 | S1564 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWM7 | ATXN2L | S937 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q93073 | SECISBP2L | S270 | ochoa | Selenocysteine insertion sequence-binding protein 2-like (SECIS-binding protein 2-like) | Binds SECIS (Sec insertion sequence) elements present on selenocysteine (Sec) protein mRNAs, but does not promote Sec incorporation into selenoproteins in vitro. |
Q93074 | MED12 | S665 | ochoa | Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}. |
Q93075 | TATDN2 | S401 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q96D71 | REPS1 | S429 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96DN5 | TBC1D31 | S1014 | ochoa | TBC1 domain family member 31 (WD repeat-containing protein 67) | Molecular adapter which is involved in cilium biogenesis. Part of a functional complex including OFD1 a centriolar protein involved in cilium assembly. Could regulate the cAMP-dependent phosphorylation of OFD1, and its subsequent ubiquitination by PJA2 which ultimately leads to its proteasomal degradation. {ECO:0000269|PubMed:33934390}. |
Q96E09 | PABIR1 | S262 | ochoa | PPP2R1A-PPP2R2A-interacting phosphatase regulator 1 (PABIR family member 1) | Acts as an inhibitor of serine/threonine-protein phosphatase 2A (PP2A) activity (PubMed:27588481, PubMed:33108758, PubMed:38123684). Inhibits PP2A activity by blocking the substrate binding site on PPP2R2A and the active site of PPP2CA (PubMed:38123684). Potentiates ubiquitin-mediated proteasomal degradation of serine/threonine-protein phosphatase 2A catalytic subunit alpha (PPP2CA) (PubMed:27588481). Inhibits PP2A-mediated dephosphorylation of WEE1, promoting ubiquitin-mediated proteolysis of WEE1, thereby releasing G2/M checkpoint (PubMed:33108758). {ECO:0000269|PubMed:27588481, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:38123684}. |
Q96EP0 | RNF31 | S436 | ochoa | E3 ubiquitin-protein ligase RNF31 (EC 2.3.2.31) (HOIL-1-interacting protein) (HOIP) (RING finger protein 31) (RING-type E3 ubiquitin transferase RNF31) (Zinc in-between-RING-finger ubiquitin-associated domain protein) | E3 ubiquitin-protein ligase component of the LUBAC complex which conjugates linear ('Met-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation (PubMed:17006537, PubMed:19136968, PubMed:20005846, PubMed:21455173, PubMed:21455180, PubMed:21455181, PubMed:22863777, PubMed:28189684, PubMed:28481331). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways (PubMed:17006537, PubMed:19136968, PubMed:20005846, PubMed:21455173, PubMed:21455180, PubMed:21455181, PubMed:22863777, PubMed:28189684). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation (PubMed:21455173, PubMed:28189684). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex (PubMed:20005846, PubMed:27458237). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria (PubMed:28481331, PubMed:34012115). LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin (PubMed:28481331). Recruited to the surface of bacteria by RNF213, which initiates the bacterial ubiquitin coat (PubMed:34012115). The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation (PubMed:28481331, PubMed:34012115). Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis (PubMed:23708998). RNF31 is required for linear ubiquitination of BCL10, thereby promoting TCR-induced NF-kappa-B activation (PubMed:27777308). Binds polyubiquitin of different linkage types (PubMed:23708998). {ECO:0000269|PubMed:17006537, ECO:0000269|PubMed:19136968, ECO:0000269|PubMed:20005846, ECO:0000269|PubMed:21455173, ECO:0000269|PubMed:21455180, ECO:0000269|PubMed:21455181, ECO:0000269|PubMed:22863777, ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:27458237, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28189684, ECO:0000269|PubMed:28481331, ECO:0000269|PubMed:34012115}. |
Q96EY5 | MVB12A | S207 | ochoa|psp | Multivesicular body subunit 12A (CIN85/CD2AP family-binding protein) (ESCRT-I complex subunit MVB12A) (Protein FAM125A) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in the ligand-mediated internalization and down-regulation of EGF receptor. {ECO:0000269|PubMed:16895919}. |
Q96F07 | CYFIP2 | S927 | ochoa | Cytoplasmic FMR1-interacting protein 2 (p53-inducible protein 121) | Involved in T-cell adhesion and p53/TP53-dependent induction of apoptosis. Does not bind RNA. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). {ECO:0000250|UniProtKB:Q5SQX6, ECO:0000269|PubMed:10449408, ECO:0000269|PubMed:15048733, ECO:0000269|PubMed:17245118}. |
Q96GX5 | MASTL | S277 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96HA1 | POM121 | S415 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96II8 | LRCH3 | S462 | ochoa | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96JK2 | DCAF5 | S873 | ochoa | DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) | Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96JZ2 | HSH2D | S251 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96LB3 | IFT74 | S26 | ochoa | Intraflagellar transport protein 74 homolog (Capillary morphogenesis gene 1 protein) (CMG-1) (Coiled-coil domain-containing protein 2) | Component of the intraflagellar transport (IFT) complex B: together with IFT81, forms a tubulin-binding module that specifically mediates transport of tubulin within the cilium (PubMed:23990561). Binds beta-tubulin via its basic region (PubMed:23990561). Required for ciliogenesis (PubMed:23990561). Essential for flagellogenesis during spermatogenesis (PubMed:33689014). {ECO:0000269|PubMed:23990561, ECO:0000269|PubMed:33689014}. |
Q96M96 | FGD4 | S37 | ochoa | FYVE, RhoGEF and PH domain-containing protein 4 (Actin filament-binding protein frabin) (FGD1-related F-actin-binding protein) (Zinc finger FYVE domain-containing protein 6) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. Activates MAPK8 (By similarity). {ECO:0000250, ECO:0000269|PubMed:15133042}. |
Q96MY1 | NOL4L | S146 | ochoa | Nucleolar protein 4-like | None |
Q96P20 | NLRP3 | S735 | psp | NACHT, LRR and PYD domains-containing protein 3 (EC 3.6.4.-) (Angiotensin/vasopressin receptor AII/AVP-like) (Caterpiller protein 1.1) (CLR1.1) (Cold-induced autoinflammatory syndrome 1 protein) (Cryopyrin) (PYRIN-containing APAF1-like protein 1) | Sensor component of the NLRP3 inflammasome, which mediates inflammasome activation in response to defects in membrane integrity, leading to secretion of inflammatory cytokines IL1B and IL18 and pyroptosis (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:23582325, PubMed:25686105, PubMed:27929086, PubMed:28656979, PubMed:28847925, PubMed:30487600, PubMed:30612879, PubMed:31086327, PubMed:31086329, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:34512673, PubMed:36442502). In response to pathogens and other damage-associated signals that affect the integrity of membranes, initiates the formation of the inflammasome polymeric complex composed of NLRP3, CASP1 and PYCARD/ASC (PubMed:16407889, PubMed:18403674, PubMed:27432880, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:36142182, PubMed:36442502). Recruitment of pro-caspase-1 (proCASP1) to the NLRP3 inflammasome promotes caspase-1 (CASP1) activation, which subsequently cleaves and activates inflammatory cytokines IL1B and IL18 and gasdermin-D (GSDMD), promoting cytokine secretion and pyroptosis (PubMed:23582325, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353). Activation of NLRP3 inflammasome is also required for HMGB1 secretion; stimulating inflammatory responses (PubMed:22801494). Under resting conditions, ADP-bound NLRP3 is autoinhibited (PubMed:35114687). NLRP3 activation stimuli include extracellular ATP, nigericin, reactive oxygen species, crystals of monosodium urate or cholesterol, amyloid-beta fibers, environmental or industrial particles and nanoparticles, such as asbestos, silica, aluminum salts, cytosolic dsRNA, etc (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:19414800, PubMed:23871209). Almost all stimuli trigger intracellular K(+) efflux (By similarity). These stimuli lead to membrane perturbation and activation of NLRP3 (By similarity). Upon activation, NLRP3 is transported to microtubule organizing center (MTOC), where it is unlocked by NEK7, leading to its relocalization to dispersed trans-Golgi network (dTGN) vesicle membranes and formation of an active inflammasome complex (PubMed:36442502, PubMed:39173637). Associates with dTGN vesicle membranes by binding to phosphatidylinositol 4-phosphate (PtdIns4P) (PubMed:30487600, PubMed:34554188). Shows ATPase activity (PubMed:17483456). {ECO:0000250|UniProtKB:Q8R4B8, ECO:0000269|PubMed:16407889, ECO:0000269|PubMed:17483456, ECO:0000269|PubMed:18403674, ECO:0000269|PubMed:18604214, ECO:0000269|PubMed:19414800, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:23871209, ECO:0000269|PubMed:25686105, ECO:0000269|PubMed:27432880, ECO:0000269|PubMed:27929086, ECO:0000269|PubMed:28656979, ECO:0000269|PubMed:28847925, ECO:0000269|PubMed:30487600, ECO:0000269|PubMed:30612879, ECO:0000269|PubMed:31086327, ECO:0000269|PubMed:31086329, ECO:0000269|PubMed:31189953, ECO:0000269|PubMed:33231615, ECO:0000269|PubMed:34133077, ECO:0000269|PubMed:34341353, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:35114687, ECO:0000269|PubMed:36142182, ECO:0000269|PubMed:36442502, ECO:0000269|PubMed:39173637}.; FUNCTION: Independently of inflammasome activation, regulates the differentiation of T helper 2 (Th2) cells and has a role in Th2 cell-dependent asthma and tumor growth (By similarity). During Th2 differentiation, required for optimal IRF4 binding to IL4 promoter and for IRF4-dependent IL4 transcription (By similarity). Binds to the consensus DNA sequence 5'-GRRGGNRGAG-3' (By similarity). May also participate in the transcription of IL5, IL13, GATA3, CCR3, CCR4 and MAF (By similarity). {ECO:0000250|UniProtKB:Q8R4B8}. |
Q96RF0 | SNX18 | S196 | ochoa | Sorting nexin-18 (SH3 and PX domain-containing protein 3B) | Involved in endocytosis and intracellular vesicle trafficking, both during interphase and at the end of mitosis (PubMed:18411244, PubMed:20427313, PubMed:21048941, PubMed:22718350). Required for efficient progress through mitosis and cytokinesis (PubMed:22718350). Required for normal formation of the cleavage furrow at the end of mitosis (PubMed:22718350). Plays a role in endocytosis via clathrin-coated pits, but also clathrin-independent, actin-dependent fluid-phase endocytosis (PubMed:20427313). Plays a role in macropinocytosis (PubMed:21048941). Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate and promotes membrane tubulation (PubMed:18411244). Stimulates the GTPase activity of DNM2 (PubMed:20427313). Promotes DNM2 location at the plasma membrane (PubMed:20427313). Together with DNM2, involved in autophagosome assembly by regulating trafficking from recycling endosomes of phospholipid scramblase ATG9A (PubMed:29437695). {ECO:0000269|PubMed:18411244, ECO:0000269|PubMed:20427313, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:22718350, ECO:0000269|PubMed:29437695}. |
Q96SB4 | SRPK1 | S408 | psp | SRSF protein kinase 1 (EC 2.7.11.1) (SFRS protein kinase 1) (Serine/arginine-rich protein-specific kinase 1) (SR-protein-specific kinase 1) | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activities, such as chromatin reorganization in somatic and sperm cells and cell cycle progression. Isoform 2 phosphorylates SFRS2, ZRSR2, LBR and PRM1. Isoform 2 phosphorylates SRSF1 using a directional (C-terminal to N-terminal) and a dual-track mechanism incorporating both processive phosphorylation (in which the kinase stays attached to the substrate after each round of phosphorylation) and distributive phosphorylation steps (in which the kinase and substrate dissociate after each phosphorylation event). The RS domain of SRSF1 binds first to a docking groove in the large lobe of the kinase domain of SRPK1. This induces certain structural changes in SRPK1 and/or RRM2 domain of SRSF1, allowing RRM2 to bind the kinase and initiate phosphorylation. The cycles continue for several phosphorylation steps in a processive manner (steps 1-8) until the last few phosphorylation steps (approximately steps 9-12). During that time, a mechanical stress induces the unfolding of the beta-4 motif in RRM2, which then docks at the docking groove of SRPK1. This also signals RRM2 to begin to dissociate, which facilitates SRSF1 dissociation after phosphorylation is completed. Isoform 2 can mediate hepatitis B virus (HBV) core protein phosphorylation. It plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles. Isoform 1 and isoform 2 can induce splicing of exon 10 in MAPT/TAU. The ratio of isoform 1/isoform 2 plays a decisive role in determining cell fate in K-562 leukaemic cell line: isoform 2 favors proliferation where as isoform 1 favors differentiation. {ECO:0000269|PubMed:10049757, ECO:0000269|PubMed:10390541, ECO:0000269|PubMed:11509566, ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:14555757, ECO:0000269|PubMed:15034300, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:16209947, ECO:0000269|PubMed:18155240, ECO:0000269|PubMed:18687337, ECO:0000269|PubMed:19240134, ECO:0000269|PubMed:19477182, ECO:0000269|PubMed:19886675, ECO:0000269|PubMed:20708644, ECO:0000269|PubMed:8208298, ECO:0000269|PubMed:9237760}. |
Q96T58 | SPEN | S2412 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99081 | TCF12 | S160 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99081 | TCF12 | S332 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99459 | CDC5L | S339 | ochoa | Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) | DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}. |
Q99698 | LYST | S2088 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q9BRK4 | LZTS2 | S226 | ochoa | Leucine zipper putative tumor suppressor 2 (hLZTS2) (Protein LAPSER1) | Negative regulator of katanin-mediated microtubule severing and release from the centrosome. Required for central spindle formation and the completion of cytokinesis. May negatively regulate axonal outgrowth by preventing the formation of microtubule bundles that are necessary for transport within the elongating axon. Negative regulator of the Wnt signaling pathway. Represses beta-catenin-mediated transcriptional activation by promoting the nuclear exclusion of beta-catenin. {ECO:0000255|HAMAP-Rule:MF_03026, ECO:0000269|PubMed:17000760, ECO:0000269|PubMed:17351128, ECO:0000269|PubMed:17950943, ECO:0000269|PubMed:18490357}. |
Q9BSF8 | BTBD10 | S138 | ochoa | BTB/POZ domain-containing protein 10 (Glucose metabolism-related protein 1) | Plays a major role as an activator of AKT family members by inhibiting PPP2CA-mediated dephosphorylation, thereby keeping AKTs activated. Plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. {ECO:0000250|UniProtKB:Q80X66}. |
Q9BTA9 | WAC | S222 | ochoa | WW domain-containing adapter protein with coiled-coil | Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}. |
Q9BTA9 | WAC | S225 | ochoa | WW domain-containing adapter protein with coiled-coil | Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}. |
Q9BTE7 | DCUN1D5 | S41 | ochoa | DCN1-like protein 5 (DCNL5) (DCUN1 domain-containing protein 5) (Defective in cullin neddylation protein 1-like protein 5) (Squamous cell carcinoma-related oncogene 5) | Contributes to the neddylation of all cullins by transferring NEDD8 from N-terminally acetylated NEDD8-conjugating E2s enzyme to different cullin C-terminal domain-RBX complexes which is necessary for the activation of cullin-RING E3 ubiquitin ligases (CRLs) (PubMed:19617556, PubMed:23201271, PubMed:26906416). May play a role in DNA damage response and may participate in cell proliferation and anchorage-independent cell growth (PubMed:23098533, PubMed:24192928). {ECO:0000269|PubMed:19617556, ECO:0000269|PubMed:23098533, ECO:0000269|PubMed:23201271, ECO:0000269|PubMed:24192928, ECO:0000269|PubMed:26906416}. |
Q9BU23 | LMF2 | S682 | ochoa | Lipase maturation factor 2 (Transmembrane protein 112B) (Transmembrane protein 153) | Involved in the maturation of specific proteins in the endoplasmic reticulum. May be required for maturation and transport of active lipoprotein lipase (LPL) through the secretory pathway (By similarity). {ECO:0000250}. |
Q9BX66 | SORBS1 | S280 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BYI3 | HYCC1 | S321 | ochoa | Hyccin (Down-regulated by CTNNB1 protein A) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (PubMed:26571211). HYCC1 plays a key role in oligodendrocytes formation, a cell type with expanded plasma membrane that requires generation of PtdIns(4)P (PubMed:26571211). Its role in oligodendrocytes formation probably explains its importance in myelination of the central and peripheral nervous system (PubMed:16951682, PubMed:26571211). May also have a role in the beta-catenin/Lef signaling pathway (Probable). {ECO:0000269|PubMed:16951682, ECO:0000269|PubMed:26571211, ECO:0000305|PubMed:10910037}. |
Q9BYI3 | HYCC1 | S451 | ochoa | Hyccin (Down-regulated by CTNNB1 protein A) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (PubMed:26571211). HYCC1 plays a key role in oligodendrocytes formation, a cell type with expanded plasma membrane that requires generation of PtdIns(4)P (PubMed:26571211). Its role in oligodendrocytes formation probably explains its importance in myelination of the central and peripheral nervous system (PubMed:16951682, PubMed:26571211). May also have a role in the beta-catenin/Lef signaling pathway (Probable). {ECO:0000269|PubMed:16951682, ECO:0000269|PubMed:26571211, ECO:0000305|PubMed:10910037}. |
Q9BYV8 | CEP41 | S344 | ochoa | Centrosomal protein of 41 kDa (Cep41) (Testis-specific gene A14 protein) | Required during ciliogenesis for tubulin glutamylation in cilium. Probably acts by participating in the transport of TTLL6, a tubulin polyglutamylase, between the basal body and the cilium. {ECO:0000269|PubMed:22246503}. |
Q9BYW2 | SETD2 | S344 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | S1068 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYX4 | IFIH1 | S301 | ochoa | Interferon-induced helicase C domain-containing protein 1 (EC 3.6.4.13) (Clinically amyopathic dermatomyositis autoantigen 140 kDa) (CADM-140 autoantigen) (Helicase with 2 CARD domains) (Helicard) (Interferon-induced with helicase C domain protein 1) (Melanoma differentiation-associated protein 5) (MDA-5) (Murabutide down-regulated protein) (RIG-I-like receptor 2) (RLR-2) (RNA helicase-DEAD box protein 116) | Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and pro-inflammatory cytokines (PubMed:28594402, PubMed:32169843, PubMed:33727702). Its ligands include mRNA lacking 2'-O-methylation at their 5' cap and long-dsRNA (>1 kb in length) (PubMed:22160685). Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases: TBK1 and IKBKE which phosphorylate interferon regulatory factors: IRF3 and IRF7 which in turn activate transcription of antiviral immunological genes, including interferons (IFNs); IFN-alpha and IFN-beta. Responsible for detecting the Picornaviridae family members such as encephalomyocarditis virus (EMCV), mengo encephalomyocarditis virus (ENMG), and rhinovirus (PubMed:28606988). Detects coronavirus SARS-CoV-2 (PubMed:33440148, PubMed:33514628). Can also detect other viruses such as dengue virus (DENV), west Nile virus (WNV), and reovirus. Also involved in antiviral signaling in response to viruses containing a dsDNA genome, such as vaccinia virus. Plays an important role in amplifying innate immune signaling through recognition of RNA metabolites that are produced during virus infection by ribonuclease L (RNase L). May play an important role in enhancing natural killer cell function and may be involved in growth inhibition and apoptosis in several tumor cell lines. {ECO:0000269|PubMed:14645903, ECO:0000269|PubMed:19211564, ECO:0000269|PubMed:19656871, ECO:0000269|PubMed:21217758, ECO:0000269|PubMed:21742966, ECO:0000269|PubMed:22160685, ECO:0000269|PubMed:28594402, ECO:0000269|PubMed:28606988, ECO:0000269|PubMed:29117565, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:33514628, ECO:0000269|PubMed:33727702}. |
Q9C0A6 | SETD5 | S590 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0D5 | TANC1 | S303 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D6 | FHDC1 | S570 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9C0I1 | MTMR12 | S715 | ochoa | Myotubularin-related protein 12 (Inactive phosphatidylinositol 3-phosphatase 12) (Phosphatidylinositol 3 phosphate 3-phosphatase adapter subunit) (3-PAP) (3-phosphatase adapter protein) | Acts as an adapter for the myotubularin-related phosphatases (PubMed:11504939, PubMed:12847286, PubMed:23818870). Regulates phosphatase MTM1 protein stability and possibly its intracellular location (PubMed:23818870). By stabilizing MTM1 protein levels, required for skeletal muscle maintenance but not for myogenesis (By similarity). {ECO:0000250|UniProtKB:Q80TA6, ECO:0000269|PubMed:11504939, ECO:0000269|PubMed:12847286, ECO:0000269|PubMed:23818870}. |
Q9C0K0 | BCL11B | S753 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9C0K7 | STRADB | S327 | ochoa | STE20-related kinase adapter protein beta (STRAD beta) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 2 protein) (CALS-21) (ILP-interacting protein) (Pseudokinase ALS2CR2) | Pseudokinase which, in complex with CAB39/MO25 (CAB39/MO25alpha or CAB39L/MO25beta), binds to and activates STK11/LKB1. Adopts a closed conformation typical of active protein kinases and binds STK11/LKB1 as a pseudosubstrate, promoting conformational change of STK11/LKB1 in an active conformation (By similarity). {ECO:0000250, ECO:0000269|PubMed:14517248}. |
Q9H165 | BCL11A | S700 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H3F6 | KCTD10 | S23 | ochoa | BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation protein 3 (hBACURD3) (BTB/POZ domain-containing protein KCTD10) (Potassium channel tetramerization domain-containing protein 10) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex. The BCR(BACURD3) E3 ubiquitin ligase complex mediates the ubiquitination of target proteins, leading to their degradation by the proteasome (By similarity). {ECO:0000250|UniProtKB:Q8WZ19}. |
Q9H967 | WDR76 | S114 | ochoa | WD repeat-containing protein 76 | Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000250}. |
Q9HA65 | TBC1D17 | S225 | ochoa | TBC1 domain family member 17 | Probable RAB GTPase-activating protein that inhibits RAB8A/B function. Reduces Rab8 recruitment to tubules emanating from the endocytic recycling compartment (ERC) and inhibits Rab8-mediated endocytic trafficking, such as that of transferrin receptor (TfR) (PubMed:22854040). Involved in regulation of autophagy. {ECO:0000269|PubMed:22854040, ECO:0000269|PubMed:24752605}. |
Q9HAP2 | MLXIP | S639 | ochoa | MLX-interacting protein (Class E basic helix-loop-helix protein 36) (bHLHe36) (Transcriptional activator MondoA) | Binds DNA as a heterodimer with MLX and activates transcription. Binds to the canonical E box sequence 5'-CACGTG-3'. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. {ECO:0000250|UniProtKB:Q2VPU4, ECO:0000269|PubMed:12446771, ECO:0000269|PubMed:16782875}. |
Q9HAW4 | CLSPN | S833 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HBL0 | TNS1 | S1413 | psp | Tensin-1 (EC 3.1.3.-) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in fibrillar adhesion formation (PubMed:21768292, PubMed:28005397). Essential for myofibroblast differentiation and myofibroblast-mediated extracellular matrix deposition (PubMed:28005397). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in cell polarization and migration (PubMed:19826001). May be involved in cartilage development and in linking signal transduction pathways to the cytoskeleton (PubMed:21768292). {ECO:0000269|PubMed:19826001, ECO:0000269|PubMed:21768292, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28005397, ECO:0000305}. |
Q9HCD5 | NCOA5 | S416 | ochoa | Nuclear receptor coactivator 5 (NCoA-5) (Coactivator independent of AF-2) (CIA) | Nuclear receptor coregulator that can have both coactivator and corepressor functions. Interacts with nuclear receptors for steroids (ESR1 and ESR2) independently of the steroid binding domain (AF-2) of the ESR receptors, and with the orphan nuclear receptor NR1D2. Involved in the coactivation of nuclear steroid receptors (ER) as well as the corepression of MYC in response to 17-beta-estradiol (E2). {ECO:0000269|PubMed:15073177}. |
Q9HCE3 | ZNF532 | S417 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9HCH5 | SYTL2 | S460 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9NP66 | HMG20A | S20 | ochoa | High mobility group protein 20A (HMG box-containing protein 20A) (HMG domain-containing protein 1) (HMG domain-containing protein HMGX1) | Plays a role in neuronal differentiation as chromatin-associated protein. Acts as inhibitor of HMG20B. Overcomes the repressive effects of the neuronal silencer REST and induces the activation of neuronal-specific genes. Involved in the recruitment of the histone methyltransferase KMT2A/MLL1 and consequent increased methylation of histone H3 lysine 4 (By similarity). {ECO:0000250}. |
Q9NQB0 | TCF7L2 | S59 | ochoa | Transcription factor 7-like 2 (HMG box transcription factor 4) (T-cell-specific transcription factor 4) (T-cell factor 4) (TCF-4) (hTCF-4) | Participates in the Wnt signaling pathway and modulates MYC expression by binding to its promoter in a sequence-specific manner. Acts as a repressor in the absence of CTNNB1, and as activator in its presence. Activates transcription from promoters with several copies of the Tcf motif 5'-CCTTTGATC-3' in the presence of CTNNB1. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7L2/TCF4 and CTNNB1. Expression of dominant-negative mutants results in cell-cycle arrest in G1. Necessary for the maintenance of the epithelial stem-cell compartment of the small intestine. {ECO:0000269|PubMed:12408868, ECO:0000269|PubMed:12727872, ECO:0000269|PubMed:19443654, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:9727977}. |
Q9NQX3 | GPHN | S303 | ochoa | Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] | Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}. |
Q9NR99 | MXRA5 | S1304 | ochoa | Matrix-remodeling-associated protein 5 (Adhesion protein with leucine-rich repeats and immunoglobulin domains related to perlecan) (Adlican) | In kidney, has anti-inflammatory and anti-fibrotic properties by limiting the induction of chemokines, fibronectin and collagen expression in response to TGB1 and pro-inflammatory stimuli. {ECO:0000269|PubMed:27599751}. |
Q9NRL2 | BAZ1A | S1320 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NX95 | SYBU | S73 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NYL2 | MAP3K20 | S718 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9P0L2 | MARK1 | S46 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P244 | LRFN1 | S580 | ochoa | Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) | Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}. |
Q9UBC3 | DNMT3B | S195 | ochoa | DNA (cytosine-5)-methyltransferase 3B (Dnmt3b) (EC 2.1.1.37) (DNA methyltransferase HsaIIIB) (DNA MTase HsaIIIB) (M.HsaIIIB) | Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Isoforms 4 and 5 are probably not functional due to the deletion of two conserved methyltransferase motifs. Functions as a transcriptional corepressor by associating with ZHX1. Required for DUX4 silencing in somatic cells (PubMed:27153398). {ECO:0000250, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:17303076, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18567530, ECO:0000269|PubMed:27153398}. |
Q9UBL0 | ARPP21 | S410 | ochoa | cAMP-regulated phosphoprotein 21 (ARPP-21) (Thymocyte cAMP-regulated phosphoprotein) | Isoform 2 may act as a competitive inhibitor of calmodulin-dependent enzymes such as calcineurin in neurons. {ECO:0000250}. |
Q9UBL0 | ARPP21 | S413 | ochoa | cAMP-regulated phosphoprotein 21 (ARPP-21) (Thymocyte cAMP-regulated phosphoprotein) | Isoform 2 may act as a competitive inhibitor of calmodulin-dependent enzymes such as calcineurin in neurons. {ECO:0000250}. |
Q9UBU9 | NXF1 | S62 | ochoa | Nuclear RNA export factor 1 (Tip-associated protein) (Tip-associating protein) (mRNA export factor TAP) | Involved in the nuclear export of mRNA species bearing retroviral constitutive transport elements (CTE) and in the export of mRNA from the nucleus to the cytoplasm (TAP/NFX1 pathway) (PubMed:10924507). The NXF1-NXT1 heterodimer is involved in the export of HSP70 mRNA in conjunction with ALYREF/THOC4 and THOC5 components of the TREX complex (PubMed:18364396, PubMed:19165146, PubMed:9660949). ALYREF/THOC4-bound mRNA is thought to be transferred to the NXF1-NXT1 heterodimer for export (PubMed:18364396, PubMed:19165146, PubMed:9660949). Also involved in nuclear export of m6A-containing mRNAs: interaction between SRSF3 and YTHDC1 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). {ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:18364396, ECO:0000269|PubMed:19165146, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:9660949}. |
Q9UBW5 | BIN2 | S90 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UGU0 | TCF20 | S504 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU5 | HMGXB4 | S102 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UHF7 | TRPS1 | S1066 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHI6 | DDX20 | S672 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHI6 | DDX20 | S677 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UID3 | VPS51 | S653 | ochoa | Vacuolar protein sorting-associated protein 51 homolog (Another new gene 2 protein) (Protein fat-free homolog) | Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of protein retrieval from endosomes to the TGN, acid hydrolase sorting, lysosome function, endosomal cholesterol traffic and autophagy. VPS51 participates in retrograde transport of acid hydrolase receptors, likely by promoting tethering and SNARE-dependent fusion of endosome-derived carriers to the TGN (PubMed:20685960). Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane (PubMed:25799061). {ECO:0000269|PubMed:20685960, ECO:0000269|PubMed:25799061}. |
Q9UIF8 | BAZ2B | S540 | ochoa | Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) | Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}. |
Q9UKV3 | ACIN1 | S714 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9ULC0 | EMCN | S121 | ochoa | Endomucin (Endomucin-2) (Gastric cancer antigen Ga34) (Mucin-14) (MUC-14) | Endothelial sialomucin, also called endomucin or mucin-like sialoglycoprotein, which interferes with the assembly of focal adhesion complexes and inhibits interaction between cells and the extracellular matrix. |
Q9ULG1 | INO80 | S1402 | ochoa | Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) | ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}. |
Q9ULJ7 | ANKRD50 | S1137 | ochoa | Ankyrin repeat domain-containing protein 50 | Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). |
Q9UMS6 | SYNPO2 | S675 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UNF1 | MAGED2 | S70 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UPP1 | PHF8 | S802 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPT6 | MAPK8IP3 | S273 | ochoa | C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}. |
Q9UQB8 | BAIAP2 | S452 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9Y2H9 | MAST1 | S1241 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y3X0 | CCDC9 | S362 | ochoa | Coiled-coil domain-containing protein 9 | Probable component of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. {ECO:0000305|PubMed:33973408}. |
Q9Y485 | DMXL1 | S1285 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y4H2 | IRS2 | S518 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y608 | LRRFIP2 | S186 | ochoa | Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) | May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}. |
Q9Y6W5 | WASF2 | S102 | ochoa | Actin-binding protein WASF2 (Protein WAVE-2) (Verprolin homology domain-containing protein 2) (Wiskott-Aldrich syndrome protein family member 2) (WASP family protein member 2) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation. The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex. {ECO:0000269|PubMed:10381382, ECO:0000269|PubMed:16275905}. |
Q9HAW4 | CLSPN | S744 | EPSD|PSP | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
P50395 | GDI2 | S396 | Sugiyama | Rab GDP dissociation inhibitor beta (Rab GDI beta) (Guanosine diphosphate dissociation inhibitor 2) (GDI-2) | GDP-dissociation inhibitor preventing the GDP to GTP exchange of most Rab proteins. By keeping these small GTPases in their inactive GDP-bound form regulates intracellular membrane trafficking (PubMed:25860027). Negatively regulates protein transport to the cilium and ciliogenesis through the inhibition of RAB8A (PubMed:25860027). {ECO:0000269|PubMed:25860027}. |
P14866 | HNRNPL | S543 | Sugiyama | Heterogeneous nuclear ribonucleoprotein L (hnRNP L) | Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements (PubMed:11809897, PubMed:22570490, PubMed:24164894, PubMed:25623890, PubMed:26051023). Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts (PubMed:2687284). Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (PubMed:11809897). As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPK and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Regulates alternative splicing of a core group of genes involved in neuronal differentiation, likely by mediating H3K36me3-coupled transcription elongation and co-transcriptional RNA processing via interaction with CHD8. {ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:22570490, ECO:0000269|PubMed:25623890, ECO:0000269|PubMed:26051023, ECO:0000269|PubMed:2687284, ECO:0000269|PubMed:33174841, ECO:0000269|PubMed:36537238}. |
P41091 | EIF2S3 | S107 | Sugiyama | Eukaryotic translation initiation factor 2 subunit 3 (EC 3.6.5.3) (Eukaryotic translation initiation factor 2 subunit gamma X) (eIF2-gamma X) (eIF2gX) | Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC) (By similarity). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex (By similarity). In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF-2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}. |
Q9P2D1 | CHD7 | S2471 | EPSD | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9Y2I6 | NINL | S87 | GPS6|SIGNOR|ELM|iPTMNet|EPSD|PSP | Ninein-like protein | Involved in the microtubule organization in interphase cells. Overexpression induces the fragmentation of the Golgi, and causes lysosomes to disperse toward the cell periphery; it also interferes with mitotic spindle assembly. Involved in vesicle transport in photoreceptor cells (By similarity). May play a role in ovarian carcinogenesis. {ECO:0000250|UniProtKB:G9G127, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:16254247, ECO:0000269|PubMed:18538832}. |
Q9Y2I6 | NINL | S88 | GPS6|SIGNOR|ELM|iPTMNet|EPSD|PSP | Ninein-like protein | Involved in the microtubule organization in interphase cells. Overexpression induces the fragmentation of the Golgi, and causes lysosomes to disperse toward the cell periphery; it also interferes with mitotic spindle assembly. Involved in vesicle transport in photoreceptor cells (By similarity). May play a role in ovarian carcinogenesis. {ECO:0000250|UniProtKB:G9G127, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:16254247, ECO:0000269|PubMed:18538832}. |
P18848 | ATF4 | S184 | PSP | Cyclic AMP-dependent transcription factor ATF-4 (cAMP-dependent transcription factor ATF-4) (Activating transcription factor 4) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (Tax-responsive enhancer element-binding protein 67) (TaxREB67) | Transcription factor that binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3') and displays two biological functions, as regulator of metabolic and redox processes under normal cellular conditions, and as master transcription factor during integrated stress response (ISR) (PubMed:16682973, PubMed:17684156, PubMed:31023583, PubMed:31444471, PubMed:32132707). Binds to asymmetric CRE's as a heterodimer and to palindromic CRE's as a homodimer (By similarity). Core effector of the ISR, which is required for adaptation to various stress such as endoplasmic reticulum (ER) stress, amino acid starvation, mitochondrial stress or oxidative stress (PubMed:31023583, PubMed:32132707). During ISR, ATF4 translation is induced via an alternative ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced ATF4 acts as a master transcription factor of stress-responsive genes in order to promote cell recovery (PubMed:31023583, PubMed:32132706, PubMed:32132707). Promotes the transcription of genes linked to amino acid sufficiency and resistance to oxidative stress to protect cells against metabolic consequences of ER oxidation (By similarity). Activates the transcription of NLRP1, possibly in concert with other factors in response to ER stress (PubMed:26086088). Activates the transcription of asparagine synthetase (ASNS) in response to amino acid deprivation or ER stress (PubMed:11960987). However, when associated with DDIT3/CHOP, the transcriptional activation of the ASNS gene is inhibited in response to amino acid deprivation (PubMed:18940792). Together with DDIT3/CHOP, mediates programmed cell death by promoting the expression of genes involved in cellular amino acid metabolic processes, mRNA translation and the terminal unfolded protein response (terminal UPR), a cellular response that elicits programmed cell death when ER stress is prolonged and unresolved (By similarity). Activates the expression of COX7A2L/SCAF1 downstream of the EIF2AK3/PERK-mediated unfolded protein response, thereby promoting formation of respiratory chain supercomplexes and increasing mitochondrial oxidative phosphorylation (PubMed:31023583). Together with DDIT3/CHOP, activates the transcription of the IRS-regulator TRIB3 and promotes ER stress-induced neuronal cell death by regulating the expression of BBC3/PUMA in response to ER stress (PubMed:15775988). May cooperate with the UPR transcriptional regulator QRICH1 to regulate ER protein homeostasis which is critical for cell viability in response to ER stress (PubMed:33384352). In the absence of stress, ATF4 translation is at low levels and it is required for normal metabolic processes such as embryonic lens formation, fetal liver hematopoiesis, bone development and synaptic plasticity (By similarity). Acts as a regulator of osteoblast differentiation in response to phosphorylation by RPS6KA3/RSK2: phosphorylation in osteoblasts enhances transactivation activity and promotes expression of osteoblast-specific genes and post-transcriptionally regulates the synthesis of Type I collagen, the main constituent of the bone matrix (PubMed:15109498). Cooperates with FOXO1 in osteoblasts to regulate glucose homeostasis through suppression of beta-cell production and decrease in insulin production (By similarity). Activates transcription of SIRT4 (By similarity). Regulates the circadian expression of the core clock component PER2 and the serotonin transporter SLC6A4 (By similarity). Binds in a circadian time-dependent manner to the cAMP response elements (CRE) in the SLC6A4 and PER2 promoters and periodically activates the transcription of these genes (By similarity). Mainly acts as a transcriptional activator in cellular stress adaptation, but it can also act as a transcriptional repressor: acts as a regulator of synaptic plasticity by repressing transcription, thereby inhibiting induction and maintenance of long-term memory (By similarity). Regulates synaptic functions via interaction with DISC1 in neurons, which inhibits ATF4 transcription factor activity by disrupting ATF4 dimerization and DNA-binding (PubMed:31444471). {ECO:0000250|UniProtKB:Q06507, ECO:0000269|PubMed:11960987, ECO:0000269|PubMed:15109498, ECO:0000269|PubMed:15775988, ECO:0000269|PubMed:16682973, ECO:0000269|PubMed:17684156, ECO:0000269|PubMed:18940792, ECO:0000269|PubMed:26086088, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:31444471, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:33384352}.; FUNCTION: (Microbial infection) Binds to a Tax-responsive enhancer element in the long terminal repeat of HTLV-I. {ECO:0000269|PubMed:1847461}. |
Q06210 | GFPT1 | S353 | Sugiyama | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}. |
P08151 | GLI1 | S550 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
P08151 | GLI1 | S559 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
Q15118 | PDK1 | S67 | Sugiyama | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 1, mitochondrial (EC 2.7.11.2) (Pyruvate dehydrogenase kinase isoform 1) (PDH kinase 1) | Kinase that plays a key role in regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2 (PubMed:7499431, PubMed:18541534, PubMed:22195962, PubMed:26942675, PubMed:17683942). This inhibits pyruvate dehydrogenase activity, and thereby regulates metabolite flux through the tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate (PubMed:18541534, PubMed:22195962, PubMed:26942675). Plays an important role in cellular responses to hypoxia and is important for cell proliferation under hypoxia (PubMed:18541534, PubMed:22195962, PubMed:26942675). {ECO:0000269|PubMed:17683942, ECO:0000269|PubMed:18541534, ECO:0000269|PubMed:22195962, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:7499431}. |
Q15119 | PDK2 | S41 | Sugiyama | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 2, mitochondrial (EC 2.7.11.2) (Pyruvate dehydrogenase kinase isoform 2) (PDH kinase 2) (PDKII) | Kinase that plays a key role in the regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2. This inhibits pyruvate dehydrogenase activity, and thereby regulates metabolite flux through the tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate. Inhibition of pyruvate dehydrogenase decreases glucose utilization and increases fat metabolism. Mediates cellular responses to insulin. Plays an important role in maintaining normal blood glucose levels and in metabolic adaptation to nutrient availability. Via its regulation of pyruvate dehydrogenase activity, plays an important role in maintaining normal blood pH and in preventing the accumulation of ketone bodies under starvation. Plays a role in the regulation of cell proliferation and in resistance to apoptosis under oxidative stress. Plays a role in p53/TP53-mediated apoptosis. {ECO:0000269|PubMed:17222789, ECO:0000269|PubMed:19833728, ECO:0000269|PubMed:21283817, ECO:0000269|PubMed:22123926, ECO:0000269|PubMed:7499431, ECO:0000269|PubMed:9787110}. |
Q9BVC4 | MLST8 | S43 | Sugiyama | Target of rapamycin complex subunit LST8 (TORC subunit LST8) (G protein beta subunit-like) (Gable) (Protein GbetaL) (Mammalian lethal with SEC13 protein 8) (mLST8) | Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals (PubMed:12718876, PubMed:15268862, PubMed:15467718, PubMed:24403073, PubMed:28489822). mTORC1 is activated in response to growth factors or amino acids (PubMed:12718876, PubMed:15268862, PubMed:15467718, PubMed:24403073). In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12718876, PubMed:15268862, PubMed:15467718, PubMed:24403073). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:24403073). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:24403073). Within mTORC1, MLST8 interacts directly with MTOR and enhances its kinase activity (PubMed:12718876). In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity (PubMed:12718876). As part of the mTORC2 complex, transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:35926713). mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive (PubMed:15467718, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:15467718, PubMed:35926713). mTORC2 functions upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15467718). mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:15467718). mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657' (PubMed:15467718). Within mTORC2, MLST8 acts as a bridge between MAPKAP1/SIN1 and MTOR (PubMed:31085701). {ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:28489822, ECO:0000269|PubMed:31085701, ECO:0000269|PubMed:35926713}. |
Q16654 | PDK4 | S45 | Sugiyama | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 4, mitochondrial (EC 2.7.11.2) (Pyruvate dehydrogenase kinase isoform 4) | Kinase that plays a key role in regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2. This inhibits pyruvate dehydrogenase activity, and thereby regulates metabolite flux through the tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate. Inhibition of pyruvate dehydrogenase decreases glucose utilization and increases fat metabolism in response to prolonged fasting and starvation. Plays an important role in maintaining normal blood glucose levels under starvation, and is involved in the insulin signaling cascade. Via its regulation of pyruvate dehydrogenase activity, plays an important role in maintaining normal blood pH and in preventing the accumulation of ketone bodies under starvation. In the fed state, mediates cellular responses to glucose levels and to a high-fat diet. Regulates both fatty acid oxidation and de novo fatty acid biosynthesis. Plays a role in the generation of reactive oxygen species. Protects detached epithelial cells against anoikis. Plays a role in cell proliferation via its role in regulating carbohydrate and fatty acid metabolism. {ECO:0000269|PubMed:15955060, ECO:0000269|PubMed:18658136, ECO:0000269|PubMed:21816445, ECO:0000269|PubMed:21852536}. |
O60245 | PCDH7 | S241 | Sugiyama | Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) | None |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.000017 | 4.764 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 0.000095 | 4.020 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.000119 | 3.923 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.000052 | 4.285 |
R-HSA-2428924 | IGF1R signaling cascade | 0.000070 | 4.157 |
R-HSA-109704 | PI3K Cascade | 0.000119 | 3.923 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.000077 | 4.116 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.000169 | 3.771 |
R-HSA-112399 | IRS-mediated signalling | 0.000238 | 3.624 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 0.000309 | 3.510 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.000436 | 3.360 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.000864 | 3.063 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.000967 | 3.015 |
R-HSA-68875 | Mitotic Prophase | 0.000988 | 3.005 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.000929 | 3.032 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.000948 | 3.023 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.000771 | 3.113 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.001198 | 2.922 |
R-HSA-5654221 | Phospholipase C-mediated cascade; FGFR2 | 0.001286 | 2.891 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.001297 | 2.887 |
R-HSA-190241 | FGFR2 ligand binding and activation | 0.001483 | 2.829 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.001682 | 2.774 |
R-HSA-191859 | snRNP Assembly | 0.001682 | 2.774 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.001779 | 2.750 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.001951 | 2.710 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.002348 | 2.629 |
R-HSA-525793 | Myogenesis | 0.003123 | 2.505 |
R-HSA-74752 | Signaling by Insulin receptor | 0.003145 | 2.502 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 0.003482 | 2.458 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.003470 | 2.460 |
R-HSA-75153 | Apoptotic execution phase | 0.003522 | 2.453 |
R-HSA-2023837 | Signaling by FGFR2 amplification mutants | 0.003988 | 2.399 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 0.003868 | 2.413 |
R-HSA-1059683 | Interleukin-6 signaling | 0.004037 | 2.394 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.004725 | 2.326 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.005197 | 2.284 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.005197 | 2.284 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.005673 | 2.246 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.006236 | 2.205 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.006803 | 2.167 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 0.007629 | 2.118 |
R-HSA-180746 | Nuclear import of Rev protein | 0.007403 | 2.131 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.007569 | 2.121 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.007403 | 2.131 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.008037 | 2.095 |
R-HSA-2033519 | Activated point mutants of FGFR2 | 0.009221 | 2.035 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.009411 | 2.026 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.009845 | 2.007 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.010778 | 1.967 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.010778 | 1.967 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.010151 | 1.993 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.011742 | 1.930 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.011742 | 1.930 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.010928 | 1.961 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.011505 | 1.939 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.012223 | 1.913 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.012687 | 1.897 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.013472 | 1.871 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.012595 | 1.900 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.014140 | 1.850 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.014521 | 1.838 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.015016 | 1.823 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.018275 | 1.738 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.017999 | 1.745 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.017999 | 1.745 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.017059 | 1.768 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.018537 | 1.732 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.018636 | 1.730 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.017446 | 1.758 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.017953 | 1.746 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.018537 | 1.732 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.019132 | 1.718 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.018026 | 1.744 |
R-HSA-380287 | Centrosome maturation | 0.019750 | 1.704 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.020290 | 1.693 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.020290 | 1.693 |
R-HSA-3214842 | HDMs demethylate histones | 0.020290 | 1.693 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.021110 | 1.676 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.026743 | 1.573 |
R-HSA-5689877 | Josephin domain DUBs | 0.024480 | 1.611 |
R-HSA-5654738 | Signaling by FGFR2 | 0.024604 | 1.609 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.027023 | 1.568 |
R-HSA-204174 | Regulation of pyruvate dehydrogenase (PDH) complex | 0.027691 | 1.558 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 0.028053 | 1.552 |
R-HSA-190377 | FGFR2b ligand binding and activation | 0.028053 | 1.552 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.028996 | 1.538 |
R-HSA-1640170 | Cell Cycle | 0.030572 | 1.515 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.030700 | 1.513 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.035777 | 1.446 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.031367 | 1.504 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.031367 | 1.504 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.035144 | 1.454 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.033818 | 1.471 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 0.036218 | 1.441 |
R-HSA-373756 | SDK interactions | 0.036218 | 1.441 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.036337 | 1.440 |
R-HSA-190375 | FGFR2c ligand binding and activation | 0.039910 | 1.399 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.037812 | 1.422 |
R-HSA-381042 | PERK regulates gene expression | 0.043624 | 1.360 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.042059 | 1.376 |
R-HSA-68886 | M Phase | 0.038244 | 1.417 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.040055 | 1.397 |
R-HSA-69275 | G2/M Transition | 0.038122 | 1.419 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.039963 | 1.398 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.040739 | 1.390 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.041120 | 1.386 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.041842 | 1.378 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.042059 | 1.376 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.043673 | 1.360 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.044215 | 1.354 |
R-HSA-163282 | Mitochondrial transcription initiation | 0.053833 | 1.269 |
R-HSA-8853333 | Signaling by FGFR2 fusions | 0.053833 | 1.269 |
R-HSA-4085023 | Defective GFPT1 causes CMSTA1 | 0.053833 | 1.269 |
R-HSA-1299316 | TWIK-releated acid-sensitive K+ channel (TASK) | 0.053833 | 1.269 |
R-HSA-5678420 | Defective ABCC9 causes CMD10, ATFB12 and Cantu syndrome | 0.053833 | 1.269 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.053833 | 1.269 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.046971 | 1.328 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.046971 | 1.328 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.046971 | 1.328 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.052838 | 1.277 |
R-HSA-190236 | Signaling by FGFR | 0.052978 | 1.276 |
R-HSA-194138 | Signaling by VEGF | 0.046971 | 1.328 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.048683 | 1.313 |
R-HSA-196780 | Biotin transport and metabolism | 0.048683 | 1.313 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.046594 | 1.332 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.048683 | 1.313 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.046203 | 1.335 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.055589 | 1.255 |
R-HSA-5610787 | Hedgehog 'off' state | 0.056379 | 1.249 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.056379 | 1.249 |
R-HSA-5632684 | Hedgehog 'on' state | 0.059913 | 1.222 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.060189 | 1.220 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.062140 | 1.207 |
R-HSA-4839726 | Chromatin organization | 0.063971 | 1.194 |
R-HSA-156711 | Polo-like kinase mediated events | 0.068043 | 1.167 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.069080 | 1.161 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.069491 | 1.158 |
R-HSA-68881 | Mitotic Metaphase/Anaphase Transition | 0.071128 | 1.148 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.078522 | 1.105 |
R-HSA-75944 | Transcription from mitochondrial promoters | 0.071128 | 1.148 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.085787 | 1.067 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.084098 | 1.075 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 0.071128 | 1.148 |
R-HSA-75102 | C6 deamination of adenosine | 0.071128 | 1.148 |
R-HSA-844456 | The NLRP3 inflammasome | 0.073222 | 1.135 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.075228 | 1.124 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.079251 | 1.101 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.081286 | 1.090 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.078061 | 1.108 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.074969 | 1.125 |
R-HSA-162582 | Signal Transduction | 0.086900 | 1.061 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.078926 | 1.103 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.073222 | 1.135 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.082900 | 1.081 |
R-HSA-8865999 | MET activates PTPN11 | 0.088107 | 1.055 |
R-HSA-74713 | IRS activation | 0.121144 | 0.917 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.121144 | 0.917 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.152988 | 0.815 |
R-HSA-629587 | Highly sodium permeable postsynaptic acetylcholine nicotinic receptors | 0.152988 | 0.815 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.152988 | 0.815 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 0.168476 | 0.773 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.168476 | 0.773 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.168476 | 0.773 |
R-HSA-112412 | SOS-mediated signalling | 0.168476 | 0.773 |
R-HSA-72731 | Recycling of eIF2:GDP | 0.168476 | 0.773 |
R-HSA-9028335 | Activated NTRK2 signals through PI3K | 0.183682 | 0.736 |
R-HSA-8875656 | MET receptor recycling | 0.183682 | 0.736 |
R-HSA-629597 | Highly calcium permeable nicotinic acetylcholine receptors | 0.183682 | 0.736 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 0.198610 | 0.702 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.198610 | 0.702 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.213267 | 0.671 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.213267 | 0.671 |
R-HSA-629594 | Highly calcium permeable postsynaptic nicotinic acetylcholine receptors | 0.213267 | 0.671 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.227656 | 0.643 |
R-HSA-4839744 | Signaling by APC mutants | 0.227656 | 0.643 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.227656 | 0.643 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.227656 | 0.643 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.227656 | 0.643 |
R-HSA-622323 | Presynaptic nicotinic acetylcholine receptors | 0.241783 | 0.617 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.241783 | 0.617 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.241783 | 0.617 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.255652 | 0.592 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.255652 | 0.592 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.255652 | 0.592 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.255652 | 0.592 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.255652 | 0.592 |
R-HSA-181431 | Acetylcholine binding and downstream events | 0.269269 | 0.570 |
R-HSA-622327 | Postsynaptic nicotinic acetylcholine receptors | 0.269269 | 0.570 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.136979 | 0.863 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.295762 | 0.529 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.295762 | 0.529 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.295762 | 0.529 |
R-HSA-180292 | GAB1 signalosome | 0.345910 | 0.461 |
R-HSA-3928664 | Ephrin signaling | 0.345910 | 0.461 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 0.357880 | 0.446 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.357880 | 0.446 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.269550 | 0.569 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.343773 | 0.464 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.357106 | 0.447 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.092157 | 1.035 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.097728 | 1.010 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.162424 | 0.789 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.356161 | 0.448 |
R-HSA-198203 | PI3K/AKT activation | 0.213267 | 0.671 |
R-HSA-191650 | Regulation of gap junction activity | 0.104778 | 0.980 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 0.198610 | 0.702 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.321297 | 0.493 |
R-HSA-4641265 | Repression of WNT target genes | 0.255652 | 0.592 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.106632 | 0.972 |
R-HSA-5626978 | TNFR1-mediated ceramide production | 0.104778 | 0.980 |
R-HSA-165158 | Activation of AKT2 | 0.121144 | 0.917 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.152988 | 0.815 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.282637 | 0.549 |
R-HSA-5576893 | Phase 2 - plateau phase | 0.321297 | 0.493 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.155982 | 0.807 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.127998 | 0.893 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.121144 | 0.917 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.118552 | 0.926 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.124623 | 0.904 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.316122 | 0.500 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.143256 | 0.844 |
R-HSA-9007101 | Rab regulation of trafficking | 0.097081 | 1.013 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.345887 | 0.461 |
R-HSA-68877 | Mitotic Prometaphase | 0.100137 | 0.999 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.321297 | 0.493 |
R-HSA-5693538 | Homology Directed Repair | 0.099427 | 1.002 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.104778 | 0.980 |
R-HSA-1296025 | ATP sensitive Potassium channels | 0.104778 | 0.980 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.121144 | 0.917 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.137212 | 0.863 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.183682 | 0.736 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 0.198610 | 0.702 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.241783 | 0.617 |
R-HSA-202670 | ERKs are inactivated | 0.241783 | 0.617 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.241783 | 0.617 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.241783 | 0.617 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.269269 | 0.570 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 0.269269 | 0.570 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.295762 | 0.529 |
R-HSA-5576886 | Phase 4 - resting membrane potential | 0.308647 | 0.511 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.308647 | 0.511 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.345910 | 0.461 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.345910 | 0.461 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.162131 | 0.790 |
R-HSA-5358351 | Signaling by Hedgehog | 0.160709 | 0.794 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.210424 | 0.677 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.124623 | 0.904 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.300963 | 0.521 |
R-HSA-74749 | Signal attenuation | 0.213267 | 0.671 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.162424 | 0.789 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.333717 | 0.477 |
R-HSA-392517 | Rap1 signalling | 0.357880 | 0.446 |
R-HSA-165159 | MTOR signalling | 0.235601 | 0.628 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.168476 | 0.773 |
R-HSA-9020956 | Interleukin-27 signaling | 0.213267 | 0.671 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 0.241783 | 0.617 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 0.282637 | 0.549 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.295762 | 0.529 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.162424 | 0.789 |
R-HSA-8984722 | Interleukin-35 Signalling | 0.255652 | 0.592 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.262753 | 0.580 |
R-HSA-75893 | TNF signaling | 0.330408 | 0.481 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.140480 | 0.852 |
R-HSA-199991 | Membrane Trafficking | 0.116024 | 0.935 |
R-HSA-1296052 | Ca2+ activated K+ channels | 0.168476 | 0.773 |
R-HSA-75072 | mRNA Editing | 0.198610 | 0.702 |
R-HSA-112411 | MAPK1 (ERK2) activation | 0.198610 | 0.702 |
R-HSA-426048 | Arachidonate production from DAG | 0.213267 | 0.671 |
R-HSA-432142 | Platelet sensitization by LDL | 0.345910 | 0.461 |
R-HSA-6809371 | Formation of the cornified envelope | 0.251712 | 0.599 |
R-HSA-9909396 | Circadian clock | 0.292183 | 0.534 |
R-HSA-5617833 | Cilium Assembly | 0.191470 | 0.718 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.276345 | 0.559 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.182016 | 0.740 |
R-HSA-9664407 | Parasite infection | 0.166643 | 0.778 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.166643 | 0.778 |
R-HSA-9664417 | Leishmania phagocytosis | 0.166643 | 0.778 |
R-HSA-622312 | Inflammasomes | 0.130767 | 0.884 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 0.269269 | 0.570 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.282637 | 0.549 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.310225 | 0.508 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.274445 | 0.562 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.222081 | 0.653 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.357051 | 0.447 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.262753 | 0.580 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.262753 | 0.580 |
R-HSA-177929 | Signaling by EGFR | 0.330408 | 0.481 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.121144 | 0.917 |
R-HSA-9667769 | Acetylcholine inhibits contraction of outer hair cells | 0.137212 | 0.863 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.152988 | 0.815 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.168476 | 0.773 |
R-HSA-444257 | RSK activation | 0.183682 | 0.736 |
R-HSA-110056 | MAPK3 (ERK1) activation | 0.213267 | 0.671 |
R-HSA-425381 | Bicarbonate transporters | 0.227656 | 0.643 |
R-HSA-9839394 | TGFBR3 expression | 0.112558 | 0.949 |
R-HSA-418457 | cGMP effects | 0.282637 | 0.549 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.308647 | 0.511 |
R-HSA-9945266 | Differentiation of T cells | 0.308647 | 0.511 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.193955 | 0.712 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.247138 | 0.607 |
R-HSA-68882 | Mitotic Anaphase | 0.271332 | 0.566 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.333438 | 0.477 |
R-HSA-422475 | Axon guidance | 0.352905 | 0.452 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.179875 | 0.745 |
R-HSA-73894 | DNA Repair | 0.270474 | 0.568 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.195264 | 0.709 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.357051 | 0.447 |
R-HSA-389356 | Co-stimulation by CD28 | 0.276345 | 0.559 |
R-HSA-9610379 | HCMV Late Events | 0.223570 | 0.651 |
R-HSA-8853659 | RET signaling | 0.188624 | 0.724 |
R-HSA-69481 | G2/M Checkpoints | 0.267771 | 0.572 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.269269 | 0.570 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 0.269269 | 0.570 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.282637 | 0.549 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.168913 | 0.772 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.345910 | 0.461 |
R-HSA-114608 | Platelet degranulation | 0.267771 | 0.572 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.212786 | 0.672 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.191893 | 0.717 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.198610 | 0.702 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.198610 | 0.702 |
R-HSA-1296346 | Tandem pore domain potassium channels | 0.213267 | 0.671 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.100825 | 0.996 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 0.118552 | 0.926 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.333717 | 0.477 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.333717 | 0.477 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.333717 | 0.477 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.316969 | 0.499 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.285354 | 0.545 |
R-HSA-1266738 | Developmental Biology | 0.341268 | 0.467 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.227158 | 0.644 |
R-HSA-1296071 | Potassium Channels | 0.316122 | 0.500 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.321410 | 0.493 |
R-HSA-9658195 | Leishmania infection | 0.321410 | 0.493 |
R-HSA-75205 | Dissolution of Fibrin Clot | 0.227656 | 0.643 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.195264 | 0.709 |
R-HSA-8854214 | TBC/RABGAPs | 0.242379 | 0.616 |
R-HSA-193648 | NRAGE signals death through JNK | 0.330408 | 0.481 |
R-HSA-5688426 | Deubiquitination | 0.139213 | 0.856 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.296282 | 0.528 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.312746 | 0.505 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.182016 | 0.740 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.197460 | 0.705 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.168476 | 0.773 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.308647 | 0.511 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.308647 | 0.511 |
R-HSA-202433 | Generation of second messenger molecules | 0.215344 | 0.667 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.164748 | 0.783 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.135856 | 0.867 |
R-HSA-446728 | Cell junction organization | 0.188309 | 0.725 |
R-HSA-2586552 | Signaling by Leptin | 0.213267 | 0.671 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.175428 | 0.756 |
R-HSA-1500931 | Cell-Cell communication | 0.171670 | 0.765 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.282637 | 0.549 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.295762 | 0.529 |
R-HSA-419037 | NCAM1 interactions | 0.195264 | 0.709 |
R-HSA-9833482 | PKR-mediated signaling | 0.222346 | 0.653 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.303469 | 0.518 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.133444 | 0.875 |
R-HSA-162909 | Host Interactions of HIV factors | 0.251712 | 0.599 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.321130 | 0.493 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.262753 | 0.580 |
R-HSA-70171 | Glycolysis | 0.150893 | 0.821 |
R-HSA-1227986 | Signaling by ERBB2 | 0.357051 | 0.447 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.130767 | 0.884 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.195264 | 0.709 |
R-HSA-163685 | Integration of energy metabolism | 0.154863 | 0.810 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.214091 | 0.669 |
R-HSA-1483255 | PI Metabolism | 0.346165 | 0.461 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.118552 | 0.926 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.175703 | 0.755 |
R-HSA-9006936 | Signaling by TGFB family members | 0.233588 | 0.632 |
R-HSA-9008059 | Interleukin-37 signaling | 0.143256 | 0.844 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.357880 | 0.446 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.157764 | 0.802 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.179039 | 0.747 |
R-HSA-3371556 | Cellular response to heat stress | 0.106632 | 0.972 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.188624 | 0.724 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.316122 | 0.500 |
R-HSA-5683057 | MAPK family signaling cascades | 0.239512 | 0.621 |
R-HSA-70268 | Pyruvate metabolism | 0.261336 | 0.583 |
R-HSA-913531 | Interferon Signaling | 0.330386 | 0.481 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.179039 | 0.747 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.330408 | 0.481 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.208627 | 0.681 |
R-HSA-162587 | HIV Life Cycle | 0.223570 | 0.651 |
R-HSA-70326 | Glucose metabolism | 0.224153 | 0.649 |
R-HSA-109581 | Apoptosis | 0.118376 | 0.927 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.132113 | 0.879 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.100571 | 0.998 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.118410 | 0.927 |
R-HSA-5357801 | Programmed Cell Death | 0.237733 | 0.624 |
R-HSA-2028269 | Signaling by Hippo | 0.333717 | 0.477 |
R-HSA-211000 | Gene Silencing by RNA | 0.179039 | 0.747 |
R-HSA-9833110 | RSV-host interactions | 0.361152 | 0.442 |
R-HSA-5653656 | Vesicle-mediated transport | 0.362079 | 0.441 |
R-HSA-9609690 | HCMV Early Events | 0.364357 | 0.438 |
R-HSA-166520 | Signaling by NTRKs | 0.366651 | 0.436 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 0.369633 | 0.432 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.369633 | 0.432 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.369633 | 0.432 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.369633 | 0.432 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.369633 | 0.432 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 0.369633 | 0.432 |
R-HSA-9823730 | Formation of definitive endoderm | 0.369633 | 0.432 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.370232 | 0.432 |
R-HSA-9679506 | SARS-CoV Infections | 0.375065 | 0.426 |
R-HSA-9609646 | HCMV Infection | 0.380464 | 0.420 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.381171 | 0.419 |
R-HSA-198753 | ERK/MAPK targets | 0.381171 | 0.419 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.381171 | 0.419 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.381171 | 0.419 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.383241 | 0.417 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.383306 | 0.416 |
R-HSA-421270 | Cell-cell junction organization | 0.383727 | 0.416 |
R-HSA-202403 | TCR signaling | 0.390951 | 0.408 |
R-HSA-73887 | Death Receptor Signaling | 0.391520 | 0.407 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.392498 | 0.406 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 0.392498 | 0.406 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.392498 | 0.406 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.392498 | 0.406 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.395653 | 0.403 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.396261 | 0.402 |
R-HSA-72172 | mRNA Splicing | 0.396994 | 0.401 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 0.403619 | 0.394 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.403619 | 0.394 |
R-HSA-166208 | mTORC1-mediated signalling | 0.403619 | 0.394 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.403619 | 0.394 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.403619 | 0.394 |
R-HSA-9711097 | Cellular response to starvation | 0.408027 | 0.389 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.409091 | 0.388 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.410924 | 0.386 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.414537 | 0.382 |
R-HSA-446210 | Synthesis of UDP-N-acetyl-glucosamine | 0.414537 | 0.382 |
R-HSA-200425 | Carnitine shuttle | 0.414537 | 0.382 |
R-HSA-982772 | Growth hormone receptor signaling | 0.414537 | 0.382 |
R-HSA-112316 | Neuronal System | 0.415124 | 0.382 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.416248 | 0.381 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.421787 | 0.375 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.421787 | 0.375 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.421787 | 0.375 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.425255 | 0.371 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 0.425255 | 0.371 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 0.425255 | 0.371 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.434341 | 0.362 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.434341 | 0.362 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.434943 | 0.362 |
R-HSA-9675108 | Nervous system development | 0.435511 | 0.361 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.435778 | 0.361 |
R-HSA-420029 | Tight junction interactions | 0.435778 | 0.361 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.435778 | 0.361 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.435778 | 0.361 |
R-HSA-1266695 | Interleukin-7 signaling | 0.435778 | 0.361 |
R-HSA-4086398 | Ca2+ pathway | 0.440564 | 0.356 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.440564 | 0.356 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.444567 | 0.352 |
R-HSA-5619102 | SLC transporter disorders | 0.444805 | 0.352 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.446109 | 0.351 |
R-HSA-5689901 | Metalloprotease DUBs | 0.446109 | 0.351 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.446109 | 0.351 |
R-HSA-8852135 | Protein ubiquitination | 0.452895 | 0.344 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.456252 | 0.341 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.456252 | 0.341 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.456252 | 0.341 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.456252 | 0.341 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.456252 | 0.341 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.456252 | 0.341 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.456252 | 0.341 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.456252 | 0.341 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.458417 | 0.339 |
R-HSA-5689603 | UCH proteinases | 0.459002 | 0.338 |
R-HSA-72306 | tRNA processing | 0.460935 | 0.336 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.466209 | 0.331 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.466209 | 0.331 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.471098 | 0.327 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.472928 | 0.325 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.472928 | 0.325 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.475985 | 0.322 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.475985 | 0.322 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.475985 | 0.322 |
R-HSA-9615710 | Late endosomal microautophagy | 0.475985 | 0.322 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.475985 | 0.322 |
R-HSA-5334118 | DNA methylation | 0.475985 | 0.322 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.475985 | 0.322 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.475985 | 0.322 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.475985 | 0.322 |
R-HSA-9659379 | Sensory processing of sound | 0.477084 | 0.321 |
R-HSA-162906 | HIV Infection | 0.479227 | 0.319 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.480867 | 0.318 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.483030 | 0.316 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.483030 | 0.316 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.485582 | 0.314 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.485582 | 0.314 |
R-HSA-114452 | Activation of BH3-only proteins | 0.485582 | 0.314 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.485582 | 0.314 |
R-HSA-8953897 | Cellular responses to stimuli | 0.487682 | 0.312 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.491641 | 0.308 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.495004 | 0.305 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.495004 | 0.305 |
R-HSA-5694530 | Cargo concentration in the ER | 0.495004 | 0.305 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.495004 | 0.305 |
R-HSA-168255 | Influenza Infection | 0.496604 | 0.304 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.500614 | 0.300 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 0.504254 | 0.297 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.504254 | 0.297 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.506389 | 0.296 |
R-HSA-9843745 | Adipogenesis | 0.509920 | 0.292 |
R-HSA-5576891 | Cardiac conduction | 0.509920 | 0.292 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.512121 | 0.291 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.513335 | 0.290 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.513335 | 0.290 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.513335 | 0.290 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 0.513335 | 0.290 |
R-HSA-354192 | Integrin signaling | 0.513335 | 0.290 |
R-HSA-8939211 | ESR-mediated signaling | 0.513869 | 0.289 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.522250 | 0.282 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.522250 | 0.282 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.522250 | 0.282 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.522250 | 0.282 |
R-HSA-438064 | Post NMDA receptor activation events | 0.529053 | 0.277 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.531003 | 0.275 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.531003 | 0.275 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.531003 | 0.275 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.539596 | 0.268 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.539596 | 0.268 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.539596 | 0.268 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.541058 | 0.267 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.547535 | 0.262 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.548032 | 0.261 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.548032 | 0.261 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.548032 | 0.261 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 0.548032 | 0.261 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.548032 | 0.261 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.548032 | 0.261 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.551003 | 0.259 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.556313 | 0.255 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.561022 | 0.251 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.561706 | 0.250 |
R-HSA-8875878 | MET promotes cell motility | 0.564444 | 0.248 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.564444 | 0.248 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.564444 | 0.248 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.572225 | 0.242 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.572426 | 0.242 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.572426 | 0.242 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.572426 | 0.242 |
R-HSA-74160 | Gene expression (Transcription) | 0.575645 | 0.240 |
R-HSA-9646399 | Aggrephagy | 0.580262 | 0.236 |
R-HSA-376176 | Signaling by ROBO receptors | 0.586223 | 0.232 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.587610 | 0.231 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.587659 | 0.231 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.587955 | 0.231 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.587955 | 0.231 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.587955 | 0.231 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.595508 | 0.225 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.595508 | 0.225 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.595508 | 0.225 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.595508 | 0.225 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.595508 | 0.225 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.595508 | 0.225 |
R-HSA-422356 | Regulation of insulin secretion | 0.597718 | 0.224 |
R-HSA-6805567 | Keratinization | 0.600242 | 0.222 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.602678 | 0.220 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.602922 | 0.220 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.602922 | 0.220 |
R-HSA-73928 | Depyrimidination | 0.602922 | 0.220 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.602922 | 0.220 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.607592 | 0.216 |
R-HSA-9710421 | Defective pyroptosis | 0.610201 | 0.215 |
R-HSA-5654743 | Signaling by FGFR4 | 0.610201 | 0.215 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.617281 | 0.210 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.617347 | 0.209 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.617347 | 0.209 |
R-HSA-69236 | G1 Phase | 0.617347 | 0.209 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.617347 | 0.209 |
R-HSA-397014 | Muscle contraction | 0.620730 | 0.207 |
R-HSA-9612973 | Autophagy | 0.623383 | 0.205 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.624363 | 0.205 |
R-HSA-774815 | Nucleosome assembly | 0.624363 | 0.205 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.624363 | 0.205 |
R-HSA-5654741 | Signaling by FGFR3 | 0.624363 | 0.205 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.624363 | 0.205 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.624363 | 0.205 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.631250 | 0.200 |
R-HSA-9675135 | Diseases of DNA repair | 0.631250 | 0.200 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.636107 | 0.196 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.638012 | 0.195 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 0.638012 | 0.195 |
R-HSA-418990 | Adherens junctions interactions | 0.640550 | 0.193 |
R-HSA-418346 | Platelet homeostasis | 0.640699 | 0.193 |
R-HSA-5620924 | Intraflagellar transport | 0.644650 | 0.191 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.644650 | 0.191 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.644650 | 0.191 |
R-HSA-9031628 | NGF-stimulated transcription | 0.644650 | 0.191 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.651166 | 0.186 |
R-HSA-9766229 | Degradation of CDH1 | 0.651166 | 0.186 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.657564 | 0.182 |
R-HSA-912446 | Meiotic recombination | 0.663844 | 0.178 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.663844 | 0.178 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.670010 | 0.174 |
R-HSA-6794361 | Neurexins and neuroligins | 0.670010 | 0.174 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.676063 | 0.170 |
R-HSA-445355 | Smooth Muscle Contraction | 0.676063 | 0.170 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.676063 | 0.170 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.681598 | 0.166 |
R-HSA-72649 | Translation initiation complex formation | 0.682005 | 0.166 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.682005 | 0.166 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.687839 | 0.163 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.688235 | 0.162 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.688235 | 0.162 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.693566 | 0.159 |
R-HSA-5654736 | Signaling by FGFR1 | 0.693566 | 0.159 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.693566 | 0.159 |
R-HSA-5578775 | Ion homeostasis | 0.693566 | 0.159 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.693566 | 0.159 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.693566 | 0.159 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.699188 | 0.155 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.704708 | 0.152 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.710126 | 0.149 |
R-HSA-180786 | Extension of Telomeres | 0.710126 | 0.149 |
R-HSA-73886 | Chromosome Maintenance | 0.711919 | 0.148 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.711919 | 0.148 |
R-HSA-8873719 | RAB geranylgeranylation | 0.715446 | 0.145 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.719474 | 0.143 |
R-HSA-2132295 | MHC class II antigen presentation | 0.719474 | 0.143 |
R-HSA-450294 | MAP kinase activation | 0.720668 | 0.142 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.720701 | 0.142 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.725795 | 0.139 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.725795 | 0.139 |
R-HSA-9707616 | Heme signaling | 0.725795 | 0.139 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.725795 | 0.139 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.725963 | 0.139 |
R-HSA-2262752 | Cellular responses to stress | 0.728366 | 0.138 |
R-HSA-6799198 | Complex I biogenesis | 0.730828 | 0.136 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.730828 | 0.136 |
R-HSA-8848021 | Signaling by PTK6 | 0.730828 | 0.136 |
R-HSA-373755 | Semaphorin interactions | 0.730828 | 0.136 |
R-HSA-597592 | Post-translational protein modification | 0.741304 | 0.130 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.749889 | 0.125 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.750055 | 0.125 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.754644 | 0.122 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.754644 | 0.122 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.758095 | 0.120 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.759227 | 0.120 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.763571 | 0.117 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.763571 | 0.117 |
R-HSA-448424 | Interleukin-17 signaling | 0.763571 | 0.117 |
R-HSA-9734767 | Developmental Cell Lineages | 0.766976 | 0.115 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.767913 | 0.115 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.767913 | 0.115 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.767913 | 0.115 |
R-HSA-3000178 | ECM proteoglycans | 0.767913 | 0.115 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.769586 | 0.114 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.772175 | 0.112 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.774082 | 0.111 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.774853 | 0.111 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.777449 | 0.109 |
R-HSA-9711123 | Cellular response to chemical stress | 0.778616 | 0.109 |
R-HSA-6807070 | PTEN Regulation | 0.783226 | 0.106 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.784499 | 0.105 |
R-HSA-1632852 | Macroautophagy | 0.789141 | 0.103 |
R-HSA-9694635 | Translation of Structural Proteins | 0.792344 | 0.101 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.794069 | 0.100 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.796159 | 0.099 |
R-HSA-5619084 | ABC transporter disorders | 0.796159 | 0.099 |
R-HSA-8953854 | Metabolism of RNA | 0.799670 | 0.097 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.802084 | 0.096 |
R-HSA-6806834 | Signaling by MET | 0.803581 | 0.095 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.803581 | 0.095 |
R-HSA-212436 | Generic Transcription Pathway | 0.809617 | 0.092 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.819197 | 0.087 |
R-HSA-1500620 | Meiosis | 0.820977 | 0.086 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.820977 | 0.086 |
R-HSA-446652 | Interleukin-1 family signaling | 0.821730 | 0.085 |
R-HSA-8951664 | Neddylation | 0.822267 | 0.085 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.827498 | 0.082 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.827498 | 0.082 |
R-HSA-1989781 | PPARA activates gene expression | 0.829141 | 0.081 |
R-HSA-447115 | Interleukin-12 family signaling | 0.830669 | 0.081 |
R-HSA-173623 | Classical antibody-mediated complement activation | 0.833782 | 0.079 |
R-HSA-9663891 | Selective autophagy | 0.833782 | 0.079 |
R-HSA-9645723 | Diseases of programmed cell death | 0.833782 | 0.079 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.833926 | 0.079 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.836274 | 0.078 |
R-HSA-195721 | Signaling by WNT | 0.839064 | 0.076 |
R-HSA-202424 | Downstream TCR signaling | 0.839838 | 0.076 |
R-HSA-73884 | Base Excision Repair | 0.839838 | 0.076 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.840674 | 0.075 |
R-HSA-449147 | Signaling by Interleukins | 0.844674 | 0.073 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.848512 | 0.071 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.848512 | 0.071 |
R-HSA-2029481 | FCGR activation | 0.851298 | 0.070 |
R-HSA-1474290 | Collagen formation | 0.854033 | 0.069 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.856717 | 0.067 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.861940 | 0.065 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.861940 | 0.065 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.864480 | 0.063 |
R-HSA-157579 | Telomere Maintenance | 0.864480 | 0.063 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.866973 | 0.062 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.866973 | 0.062 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.866973 | 0.062 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.866973 | 0.062 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.868058 | 0.061 |
R-HSA-9614085 | FOXO-mediated transcription | 0.869421 | 0.061 |
R-HSA-5689880 | Ub-specific processing proteases | 0.869962 | 0.060 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.874182 | 0.058 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.876497 | 0.057 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.877639 | 0.057 |
R-HSA-8957322 | Metabolism of steroids | 0.879688 | 0.056 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.881001 | 0.055 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.883192 | 0.054 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.883192 | 0.054 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.885342 | 0.053 |
R-HSA-166786 | Creation of C4 and C2 activators | 0.887452 | 0.052 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.891558 | 0.050 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.891558 | 0.050 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.891558 | 0.050 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.891558 | 0.050 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.893555 | 0.049 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.895514 | 0.048 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.895514 | 0.048 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.901181 | 0.045 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.901182 | 0.045 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.901660 | 0.045 |
R-HSA-9824446 | Viral Infection Pathways | 0.904028 | 0.044 |
R-HSA-166663 | Initial triggering of complement | 0.904788 | 0.043 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.904788 | 0.043 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.906541 | 0.043 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.906541 | 0.043 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.909953 | 0.041 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.909953 | 0.041 |
R-HSA-373760 | L1CAM interactions | 0.909953 | 0.041 |
R-HSA-2980736 | Peptide hormone metabolism | 0.911612 | 0.040 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.912723 | 0.040 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.914839 | 0.039 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.914839 | 0.039 |
R-HSA-168256 | Immune System | 0.919008 | 0.037 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.919460 | 0.036 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.919460 | 0.036 |
R-HSA-977606 | Regulation of Complement cascade | 0.923832 | 0.034 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.926614 | 0.033 |
R-HSA-1483257 | Phospholipid metabolism | 0.930873 | 0.031 |
R-HSA-1474165 | Reproduction | 0.933134 | 0.030 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 0.934368 | 0.029 |
R-HSA-6798695 | Neutrophil degranulation | 0.941178 | 0.026 |
R-HSA-1643685 | Disease | 0.941319 | 0.026 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.950363 | 0.022 |
R-HSA-166658 | Complement cascade | 0.951279 | 0.022 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.952179 | 0.021 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.953928 | 0.020 |
R-HSA-9758941 | Gastrulation | 0.954779 | 0.020 |
R-HSA-1280218 | Adaptive Immune System | 0.960034 | 0.018 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 0.961044 | 0.017 |
R-HSA-109582 | Hemostasis | 0.963029 | 0.016 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.964073 | 0.016 |
R-HSA-168249 | Innate Immune System | 0.966588 | 0.015 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.971632 | 0.012 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.971632 | 0.012 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.972671 | 0.012 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.973421 | 0.012 |
R-HSA-611105 | Respiratory electron transport | 0.974160 | 0.011 |
R-HSA-2559583 | Cellular Senescence | 0.975107 | 0.011 |
R-HSA-5663205 | Infectious disease | 0.975801 | 0.011 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.975871 | 0.011 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.976679 | 0.010 |
R-HSA-3781865 | Diseases of glycosylation | 0.976899 | 0.010 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.979731 | 0.009 |
R-HSA-392499 | Metabolism of proteins | 0.987471 | 0.005 |
R-HSA-1474244 | Extracellular matrix organization | 0.989055 | 0.005 |
R-HSA-416476 | G alpha (q) signalling events | 0.994932 | 0.002 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.995436 | 0.002 |
R-HSA-5668914 | Diseases of metabolism | 0.997821 | 0.001 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999595 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999665 | 0.000 |
R-HSA-72766 | Translation | 0.999779 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 0.999782 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999942 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999992 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 0.999999 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.888 | 0.190 | 2 | 0.905 |
CLK3 |
0.885 | 0.267 | 1 | 0.776 |
CDC7 |
0.882 | 0.163 | 1 | 0.841 |
MOS |
0.876 | 0.160 | 1 | 0.823 |
PIM3 |
0.876 | 0.116 | -3 | 0.828 |
RSK2 |
0.874 | 0.183 | -3 | 0.753 |
NDR2 |
0.873 | 0.094 | -3 | 0.832 |
PRKD1 |
0.872 | 0.149 | -3 | 0.810 |
CAMK1B |
0.871 | 0.113 | -3 | 0.835 |
SKMLCK |
0.871 | 0.233 | -2 | 0.911 |
MTOR |
0.871 | -0.019 | 1 | 0.716 |
PRPK |
0.870 | -0.066 | -1 | 0.900 |
PRKD2 |
0.870 | 0.158 | -3 | 0.748 |
P90RSK |
0.867 | 0.119 | -3 | 0.757 |
RAF1 |
0.867 | -0.035 | 1 | 0.769 |
HIPK4 |
0.866 | 0.140 | 1 | 0.718 |
NLK |
0.866 | 0.036 | 1 | 0.771 |
IKKB |
0.866 | -0.099 | -2 | 0.771 |
AURC |
0.866 | 0.253 | -2 | 0.778 |
ATR |
0.865 | 0.035 | 1 | 0.780 |
CAMK2G |
0.865 | -0.014 | 2 | 0.847 |
DAPK2 |
0.865 | 0.206 | -3 | 0.843 |
CAMLCK |
0.865 | 0.165 | -2 | 0.919 |
GCN2 |
0.865 | -0.115 | 2 | 0.813 |
CDKL1 |
0.864 | 0.044 | -3 | 0.779 |
MAPKAPK3 |
0.864 | 0.082 | -3 | 0.759 |
SRPK1 |
0.864 | 0.102 | -3 | 0.734 |
PDHK4 |
0.863 | -0.216 | 1 | 0.776 |
NDR1 |
0.863 | 0.060 | -3 | 0.820 |
RSK3 |
0.863 | 0.105 | -3 | 0.747 |
PIM1 |
0.863 | 0.107 | -3 | 0.765 |
CLK2 |
0.863 | 0.268 | -3 | 0.738 |
BMPR2 |
0.863 | -0.089 | -2 | 0.878 |
MAPKAPK2 |
0.863 | 0.102 | -3 | 0.716 |
ERK5 |
0.863 | 0.024 | 1 | 0.747 |
KIS |
0.862 | 0.119 | 1 | 0.642 |
CAMK2D |
0.862 | 0.048 | -3 | 0.816 |
TBK1 |
0.862 | -0.126 | 1 | 0.652 |
BMPR1B |
0.861 | 0.275 | 1 | 0.856 |
PKN3 |
0.861 | 0.022 | -3 | 0.804 |
DSTYK |
0.861 | -0.058 | 2 | 0.914 |
GRK1 |
0.861 | 0.104 | -2 | 0.776 |
PKACG |
0.861 | 0.137 | -2 | 0.831 |
NIK |
0.861 | 0.034 | -3 | 0.860 |
DYRK2 |
0.860 | 0.141 | 1 | 0.653 |
GRK6 |
0.860 | 0.098 | 1 | 0.825 |
GRK5 |
0.860 | -0.020 | -3 | 0.841 |
IKKE |
0.860 | -0.130 | 1 | 0.647 |
CLK4 |
0.860 | 0.200 | -3 | 0.741 |
CAMK2B |
0.859 | 0.121 | 2 | 0.829 |
PKN2 |
0.859 | 0.060 | -3 | 0.813 |
NUAK2 |
0.859 | 0.025 | -3 | 0.813 |
WNK1 |
0.859 | 0.000 | -2 | 0.906 |
P70S6KB |
0.859 | 0.095 | -3 | 0.772 |
MSK1 |
0.859 | 0.195 | -3 | 0.729 |
LATS2 |
0.859 | 0.026 | -5 | 0.777 |
RIPK3 |
0.858 | -0.045 | 3 | 0.714 |
CDKL5 |
0.858 | 0.036 | -3 | 0.772 |
CAMK2A |
0.858 | 0.123 | 2 | 0.844 |
MST4 |
0.858 | 0.020 | 2 | 0.846 |
ULK2 |
0.858 | -0.179 | 2 | 0.795 |
RSK4 |
0.857 | 0.172 | -3 | 0.725 |
MSK2 |
0.857 | 0.109 | -3 | 0.720 |
PKACB |
0.857 | 0.217 | -2 | 0.786 |
PKCD |
0.857 | 0.076 | 2 | 0.803 |
ICK |
0.857 | 0.062 | -3 | 0.815 |
IKKA |
0.857 | -0.031 | -2 | 0.746 |
TGFBR2 |
0.857 | -0.019 | -2 | 0.773 |
TGFBR1 |
0.856 | 0.172 | -2 | 0.777 |
HUNK |
0.855 | -0.062 | 2 | 0.833 |
MARK4 |
0.855 | -0.026 | 4 | 0.818 |
CLK1 |
0.855 | 0.169 | -3 | 0.713 |
LATS1 |
0.855 | 0.130 | -3 | 0.852 |
PDHK1 |
0.855 | -0.261 | 1 | 0.744 |
PAK1 |
0.854 | 0.128 | -2 | 0.875 |
MNK2 |
0.854 | 0.143 | -2 | 0.890 |
CHAK2 |
0.854 | -0.034 | -1 | 0.883 |
AMPKA1 |
0.854 | -0.002 | -3 | 0.834 |
TSSK2 |
0.854 | 0.038 | -5 | 0.871 |
DLK |
0.853 | -0.024 | 1 | 0.788 |
SRPK2 |
0.853 | 0.069 | -3 | 0.653 |
NEK6 |
0.852 | -0.099 | -2 | 0.842 |
PRKX |
0.852 | 0.210 | -3 | 0.662 |
AURB |
0.852 | 0.199 | -2 | 0.778 |
CDK8 |
0.852 | 0.029 | 1 | 0.631 |
ALK4 |
0.852 | 0.101 | -2 | 0.814 |
CAMK4 |
0.852 | 0.022 | -3 | 0.791 |
AURA |
0.851 | 0.216 | -2 | 0.754 |
MYLK4 |
0.851 | 0.164 | -2 | 0.863 |
FAM20C |
0.851 | 0.083 | 2 | 0.671 |
CDK7 |
0.851 | 0.037 | 1 | 0.640 |
MLK1 |
0.851 | -0.147 | 2 | 0.823 |
PAK3 |
0.851 | 0.080 | -2 | 0.878 |
MASTL |
0.850 | -0.205 | -2 | 0.834 |
ATM |
0.850 | 0.005 | 1 | 0.731 |
BCKDK |
0.850 | -0.160 | -1 | 0.862 |
CDK19 |
0.849 | 0.047 | 1 | 0.597 |
PLK1 |
0.849 | 0.050 | -2 | 0.807 |
AMPKA2 |
0.849 | 0.003 | -3 | 0.801 |
PRKD3 |
0.849 | 0.057 | -3 | 0.711 |
DRAK1 |
0.849 | 0.203 | 1 | 0.831 |
TSSK1 |
0.849 | 0.017 | -3 | 0.859 |
JNK2 |
0.848 | 0.089 | 1 | 0.595 |
DYRK4 |
0.848 | 0.150 | 1 | 0.593 |
HIPK2 |
0.848 | 0.138 | 1 | 0.573 |
ACVR2B |
0.848 | 0.154 | -2 | 0.769 |
NIM1 |
0.848 | -0.053 | 3 | 0.761 |
CDK18 |
0.848 | 0.087 | 1 | 0.576 |
MNK1 |
0.848 | 0.115 | -2 | 0.897 |
NEK7 |
0.847 | -0.232 | -3 | 0.810 |
PKG2 |
0.847 | 0.153 | -2 | 0.783 |
DNAPK |
0.847 | 0.061 | 1 | 0.649 |
MLK2 |
0.847 | -0.109 | 2 | 0.827 |
RIPK1 |
0.847 | -0.138 | 1 | 0.734 |
ULK1 |
0.847 | -0.207 | -3 | 0.782 |
CDK13 |
0.846 | 0.036 | 1 | 0.610 |
ACVR2A |
0.846 | 0.132 | -2 | 0.760 |
CDK1 |
0.846 | 0.063 | 1 | 0.625 |
PAK6 |
0.846 | 0.137 | -2 | 0.834 |
HIPK1 |
0.846 | 0.130 | 1 | 0.662 |
SRPK3 |
0.845 | 0.033 | -3 | 0.699 |
PKCA |
0.845 | 0.055 | 2 | 0.739 |
NEK9 |
0.845 | -0.174 | 2 | 0.836 |
PKCB |
0.845 | 0.036 | 2 | 0.748 |
PKCG |
0.845 | 0.033 | 2 | 0.751 |
AKT2 |
0.845 | 0.114 | -3 | 0.660 |
PKR |
0.844 | -0.014 | 1 | 0.748 |
ALK2 |
0.844 | 0.099 | -2 | 0.781 |
GRK4 |
0.844 | -0.123 | -2 | 0.793 |
WNK3 |
0.844 | -0.266 | 1 | 0.724 |
SGK3 |
0.844 | 0.106 | -3 | 0.743 |
ANKRD3 |
0.844 | -0.166 | 1 | 0.778 |
CHK1 |
0.843 | 0.015 | -3 | 0.819 |
MELK |
0.843 | -0.033 | -3 | 0.784 |
PAK2 |
0.843 | 0.074 | -2 | 0.866 |
PRP4 |
0.843 | 0.158 | -3 | 0.818 |
MEK1 |
0.843 | -0.075 | 2 | 0.857 |
P38A |
0.842 | 0.058 | 1 | 0.658 |
BMPR1A |
0.842 | 0.192 | 1 | 0.829 |
JNK3 |
0.842 | 0.046 | 1 | 0.621 |
CDK5 |
0.842 | 0.045 | 1 | 0.655 |
GRK7 |
0.842 | 0.050 | 1 | 0.746 |
P38B |
0.842 | 0.073 | 1 | 0.604 |
YSK4 |
0.842 | -0.081 | 1 | 0.697 |
QSK |
0.842 | -0.004 | 4 | 0.786 |
MLK3 |
0.842 | -0.068 | 2 | 0.753 |
PIM2 |
0.841 | 0.075 | -3 | 0.718 |
PKACA |
0.841 | 0.177 | -2 | 0.741 |
CDK12 |
0.841 | 0.044 | 1 | 0.587 |
PKCZ |
0.841 | -0.000 | 2 | 0.787 |
GRK2 |
0.840 | 0.093 | -2 | 0.687 |
QIK |
0.840 | -0.083 | -3 | 0.800 |
BRSK1 |
0.840 | -0.012 | -3 | 0.769 |
CDK17 |
0.840 | 0.054 | 1 | 0.538 |
NUAK1 |
0.840 | -0.049 | -3 | 0.764 |
DYRK3 |
0.840 | 0.146 | 1 | 0.659 |
IRE1 |
0.839 | -0.142 | 1 | 0.694 |
PLK3 |
0.839 | -0.039 | 2 | 0.813 |
SMG1 |
0.839 | -0.055 | 1 | 0.726 |
P38G |
0.839 | 0.059 | 1 | 0.535 |
PASK |
0.839 | 0.154 | -3 | 0.835 |
CDK9 |
0.839 | 0.017 | 1 | 0.614 |
DYRK1B |
0.838 | 0.100 | 1 | 0.617 |
PKCH |
0.838 | -0.001 | 2 | 0.733 |
SMMLCK |
0.838 | 0.126 | -3 | 0.787 |
NEK2 |
0.838 | -0.084 | 2 | 0.811 |
VRK2 |
0.838 | -0.218 | 1 | 0.786 |
PHKG1 |
0.838 | -0.075 | -3 | 0.808 |
DYRK1A |
0.837 | 0.064 | 1 | 0.679 |
HIPK3 |
0.837 | 0.090 | 1 | 0.648 |
MARK3 |
0.837 | -0.005 | 4 | 0.743 |
CDK2 |
0.837 | 0.007 | 1 | 0.700 |
SIK |
0.836 | -0.036 | -3 | 0.729 |
ERK1 |
0.835 | 0.027 | 1 | 0.589 |
CDK3 |
0.835 | 0.063 | 1 | 0.556 |
CDK14 |
0.835 | 0.070 | 1 | 0.614 |
MAPKAPK5 |
0.835 | -0.077 | -3 | 0.694 |
DCAMKL1 |
0.835 | 0.006 | -3 | 0.766 |
CAMK1G |
0.834 | -0.001 | -3 | 0.726 |
TTBK2 |
0.834 | -0.266 | 2 | 0.705 |
CK2A2 |
0.834 | 0.161 | 1 | 0.780 |
MARK2 |
0.834 | -0.040 | 4 | 0.709 |
IRE2 |
0.834 | -0.133 | 2 | 0.759 |
MLK4 |
0.834 | -0.112 | 2 | 0.732 |
CDK10 |
0.834 | 0.086 | 1 | 0.604 |
BRSK2 |
0.833 | -0.099 | -3 | 0.791 |
TLK2 |
0.833 | -0.100 | 1 | 0.722 |
DAPK3 |
0.833 | 0.178 | -3 | 0.776 |
MST3 |
0.832 | 0.035 | 2 | 0.844 |
AKT1 |
0.832 | 0.110 | -3 | 0.681 |
GSK3B |
0.832 | 0.061 | 4 | 0.510 |
P38D |
0.832 | 0.076 | 1 | 0.534 |
ERK2 |
0.832 | -0.012 | 1 | 0.631 |
DAPK1 |
0.831 | 0.199 | -3 | 0.754 |
GSK3A |
0.831 | 0.089 | 4 | 0.519 |
BRAF |
0.831 | -0.088 | -4 | 0.826 |
MARK1 |
0.830 | -0.044 | 4 | 0.767 |
CDK16 |
0.830 | 0.063 | 1 | 0.548 |
CHAK1 |
0.830 | -0.188 | 2 | 0.777 |
CAMK1D |
0.830 | 0.050 | -3 | 0.659 |
SNRK |
0.829 | -0.177 | 2 | 0.698 |
P70S6K |
0.828 | 0.015 | -3 | 0.676 |
PKCT |
0.828 | 0.005 | 2 | 0.738 |
DCAMKL2 |
0.828 | -0.035 | -3 | 0.783 |
MEK5 |
0.827 | -0.232 | 2 | 0.836 |
TAO3 |
0.827 | -0.030 | 1 | 0.724 |
MEKK3 |
0.827 | -0.166 | 1 | 0.742 |
CK2A1 |
0.826 | 0.165 | 1 | 0.774 |
WNK4 |
0.826 | -0.132 | -2 | 0.892 |
MEKK1 |
0.826 | -0.184 | 1 | 0.724 |
ZAK |
0.826 | -0.162 | 1 | 0.713 |
NEK5 |
0.826 | -0.120 | 1 | 0.739 |
CK1E |
0.826 | -0.034 | -3 | 0.528 |
PAK5 |
0.826 | 0.096 | -2 | 0.770 |
PLK4 |
0.825 | -0.156 | 2 | 0.639 |
GAK |
0.825 | 0.023 | 1 | 0.766 |
PERK |
0.825 | -0.194 | -2 | 0.811 |
GCK |
0.825 | 0.080 | 1 | 0.751 |
PKCI |
0.824 | 0.016 | 2 | 0.748 |
GRK3 |
0.824 | 0.051 | -2 | 0.633 |
SSTK |
0.824 | -0.031 | 4 | 0.773 |
PAK4 |
0.823 | 0.103 | -2 | 0.778 |
LKB1 |
0.823 | -0.012 | -3 | 0.825 |
IRAK4 |
0.823 | -0.155 | 1 | 0.695 |
MPSK1 |
0.822 | -0.032 | 1 | 0.678 |
MEKK2 |
0.822 | -0.183 | 2 | 0.811 |
PKCE |
0.822 | 0.056 | 2 | 0.733 |
HRI |
0.822 | -0.261 | -2 | 0.832 |
SGK1 |
0.822 | 0.101 | -3 | 0.588 |
NEK11 |
0.821 | -0.121 | 1 | 0.729 |
PHKG2 |
0.820 | -0.086 | -3 | 0.764 |
CAMKK1 |
0.820 | -0.130 | -2 | 0.790 |
PINK1 |
0.820 | -0.229 | 1 | 0.733 |
HPK1 |
0.820 | 0.052 | 1 | 0.730 |
AKT3 |
0.820 | 0.102 | -3 | 0.602 |
TLK1 |
0.819 | -0.180 | -2 | 0.786 |
MAK |
0.819 | 0.099 | -2 | 0.772 |
TAO2 |
0.819 | -0.102 | 2 | 0.858 |
JNK1 |
0.818 | 0.016 | 1 | 0.591 |
ROCK2 |
0.818 | 0.128 | -3 | 0.770 |
CAMKK2 |
0.818 | -0.092 | -2 | 0.793 |
BUB1 |
0.818 | 0.154 | -5 | 0.821 |
CHK2 |
0.817 | 0.023 | -3 | 0.603 |
CK1D |
0.817 | -0.037 | -3 | 0.474 |
MST2 |
0.817 | -0.062 | 1 | 0.742 |
ERK7 |
0.817 | 0.003 | 2 | 0.551 |
MRCKA |
0.817 | 0.094 | -3 | 0.729 |
CK1A2 |
0.816 | -0.025 | -3 | 0.473 |
MRCKB |
0.816 | 0.096 | -3 | 0.708 |
SBK |
0.816 | 0.053 | -3 | 0.540 |
PDK1 |
0.816 | -0.113 | 1 | 0.710 |
PKN1 |
0.816 | -0.013 | -3 | 0.692 |
TNIK |
0.815 | -0.010 | 3 | 0.851 |
MEKK6 |
0.815 | -0.078 | 1 | 0.718 |
CDK4 |
0.815 | 0.020 | 1 | 0.573 |
PDHK3_TYR |
0.815 | 0.278 | 4 | 0.914 |
PLK2 |
0.815 | -0.003 | -3 | 0.797 |
TAK1 |
0.814 | -0.087 | 1 | 0.754 |
MINK |
0.814 | -0.065 | 1 | 0.709 |
IRAK1 |
0.814 | -0.271 | -1 | 0.819 |
NEK8 |
0.814 | -0.199 | 2 | 0.827 |
CAMK1A |
0.814 | 0.034 | -3 | 0.620 |
HGK |
0.814 | -0.072 | 3 | 0.847 |
MOK |
0.813 | 0.063 | 1 | 0.669 |
CDK6 |
0.813 | 0.009 | 1 | 0.586 |
NEK4 |
0.813 | -0.144 | 1 | 0.695 |
DMPK1 |
0.813 | 0.150 | -3 | 0.729 |
MAP3K15 |
0.813 | -0.104 | 1 | 0.686 |
KHS1 |
0.812 | 0.012 | 1 | 0.693 |
EEF2K |
0.812 | -0.085 | 3 | 0.799 |
LRRK2 |
0.812 | -0.142 | 2 | 0.855 |
LOK |
0.811 | -0.044 | -2 | 0.831 |
KHS2 |
0.811 | 0.041 | 1 | 0.720 |
NEK1 |
0.811 | -0.081 | 1 | 0.705 |
CK1G1 |
0.810 | -0.115 | -3 | 0.529 |
VRK1 |
0.809 | -0.146 | 2 | 0.849 |
SLK |
0.808 | -0.062 | -2 | 0.759 |
MST1 |
0.808 | -0.100 | 1 | 0.713 |
PDHK4_TYR |
0.807 | 0.169 | 2 | 0.916 |
TTBK1 |
0.807 | -0.259 | 2 | 0.631 |
PBK |
0.807 | -0.024 | 1 | 0.674 |
BMPR2_TYR |
0.804 | 0.166 | -1 | 0.918 |
PKG1 |
0.804 | 0.070 | -2 | 0.713 |
TESK1_TYR |
0.804 | 0.039 | 3 | 0.877 |
ROCK1 |
0.804 | 0.102 | -3 | 0.730 |
MAP2K4_TYR |
0.804 | 0.057 | -1 | 0.914 |
MAP2K6_TYR |
0.803 | 0.106 | -1 | 0.916 |
YSK1 |
0.803 | -0.102 | 2 | 0.803 |
CRIK |
0.803 | 0.075 | -3 | 0.678 |
STK33 |
0.802 | -0.166 | 2 | 0.639 |
PKMYT1_TYR |
0.801 | -0.004 | 3 | 0.850 |
MEK2 |
0.800 | -0.246 | 2 | 0.811 |
LIMK2_TYR |
0.800 | 0.053 | -3 | 0.880 |
MAP2K7_TYR |
0.799 | -0.132 | 2 | 0.881 |
RIPK2 |
0.798 | -0.288 | 1 | 0.661 |
TXK |
0.798 | 0.237 | 1 | 0.863 |
PDHK1_TYR |
0.798 | 0.012 | -1 | 0.922 |
EPHB4 |
0.797 | 0.103 | -1 | 0.879 |
EPHA6 |
0.797 | 0.094 | -1 | 0.900 |
OSR1 |
0.796 | -0.073 | 2 | 0.803 |
NEK3 |
0.795 | -0.171 | 1 | 0.659 |
HASPIN |
0.794 | -0.005 | -1 | 0.768 |
PINK1_TYR |
0.794 | -0.160 | 1 | 0.767 |
TTK |
0.793 | -0.092 | -2 | 0.797 |
BIKE |
0.793 | -0.027 | 1 | 0.637 |
MYO3B |
0.793 | -0.044 | 2 | 0.820 |
RET |
0.791 | -0.102 | 1 | 0.712 |
ASK1 |
0.790 | -0.152 | 1 | 0.673 |
ABL2 |
0.790 | 0.067 | -1 | 0.841 |
EPHA4 |
0.789 | 0.063 | 2 | 0.822 |
ITK |
0.789 | 0.093 | -1 | 0.847 |
LIMK1_TYR |
0.789 | -0.157 | 2 | 0.861 |
SRMS |
0.788 | 0.079 | 1 | 0.829 |
TYRO3 |
0.788 | -0.090 | 3 | 0.781 |
TAO1 |
0.787 | -0.126 | 1 | 0.634 |
YANK3 |
0.786 | -0.079 | 2 | 0.430 |
EPHB1 |
0.786 | 0.035 | 1 | 0.814 |
ABL1 |
0.786 | 0.038 | -1 | 0.835 |
MST1R |
0.786 | -0.149 | 3 | 0.801 |
DDR1 |
0.785 | -0.133 | 4 | 0.813 |
FGR |
0.785 | -0.051 | 1 | 0.802 |
CSF1R |
0.785 | -0.095 | 3 | 0.778 |
FER |
0.785 | -0.062 | 1 | 0.829 |
MYO3A |
0.785 | -0.128 | 1 | 0.689 |
TNK2 |
0.784 | -0.031 | 3 | 0.744 |
YES1 |
0.784 | -0.043 | -1 | 0.879 |
EPHB2 |
0.784 | 0.050 | -1 | 0.857 |
EPHB3 |
0.784 | 0.018 | -1 | 0.866 |
ALPHAK3 |
0.784 | -0.127 | -1 | 0.808 |
ROS1 |
0.783 | -0.150 | 3 | 0.742 |
INSRR |
0.782 | -0.056 | 3 | 0.713 |
JAK2 |
0.782 | -0.197 | 1 | 0.701 |
JAK3 |
0.782 | -0.117 | 1 | 0.709 |
TYK2 |
0.781 | -0.280 | 1 | 0.700 |
CK1A |
0.781 | -0.039 | -3 | 0.389 |
MERTK |
0.780 | 0.009 | 3 | 0.758 |
PTK2B |
0.780 | 0.146 | -1 | 0.814 |
HCK |
0.779 | -0.077 | -1 | 0.869 |
BMX |
0.779 | 0.033 | -1 | 0.760 |
LCK |
0.779 | -0.019 | -1 | 0.872 |
AXL |
0.778 | -0.078 | 3 | 0.753 |
AAK1 |
0.778 | 0.011 | 1 | 0.536 |
BLK |
0.777 | -0.003 | -1 | 0.873 |
EPHA7 |
0.777 | 0.007 | 2 | 0.820 |
KIT |
0.776 | -0.119 | 3 | 0.782 |
TNK1 |
0.776 | -0.089 | 3 | 0.769 |
FGFR2 |
0.775 | -0.173 | 3 | 0.768 |
NEK10_TYR |
0.775 | -0.142 | 1 | 0.591 |
PDGFRB |
0.774 | -0.183 | 3 | 0.785 |
TEC |
0.774 | -0.031 | -1 | 0.775 |
FYN |
0.773 | 0.024 | -1 | 0.853 |
EPHA3 |
0.772 | -0.056 | 2 | 0.790 |
MET |
0.772 | -0.087 | 3 | 0.779 |
STLK3 |
0.772 | -0.245 | 1 | 0.675 |
PTK2 |
0.772 | 0.157 | -1 | 0.833 |
TNNI3K_TYR |
0.772 | -0.106 | 1 | 0.716 |
KDR |
0.772 | -0.153 | 3 | 0.729 |
TEK |
0.771 | -0.189 | 3 | 0.708 |
DDR2 |
0.771 | -0.009 | 3 | 0.702 |
JAK1 |
0.770 | -0.143 | 1 | 0.649 |
EPHA5 |
0.770 | 0.013 | 2 | 0.813 |
EPHA1 |
0.769 | -0.079 | 3 | 0.749 |
FGFR1 |
0.768 | -0.231 | 3 | 0.738 |
BTK |
0.768 | -0.198 | -1 | 0.809 |
NTRK1 |
0.768 | -0.161 | -1 | 0.853 |
FLT1 |
0.768 | -0.117 | -1 | 0.869 |
FLT3 |
0.768 | -0.242 | 3 | 0.778 |
WEE1_TYR |
0.767 | -0.132 | -1 | 0.804 |
LTK |
0.766 | -0.154 | 3 | 0.722 |
ALK |
0.766 | -0.168 | 3 | 0.693 |
EPHA8 |
0.765 | -0.027 | -1 | 0.855 |
LYN |
0.764 | -0.103 | 3 | 0.702 |
PDGFRA |
0.764 | -0.292 | 3 | 0.783 |
FRK |
0.764 | -0.122 | -1 | 0.866 |
FGFR3 |
0.763 | -0.188 | 3 | 0.735 |
ERBB2 |
0.763 | -0.200 | 1 | 0.698 |
PTK6 |
0.762 | -0.253 | -1 | 0.780 |
INSR |
0.762 | -0.171 | 3 | 0.697 |
NTRK3 |
0.762 | -0.130 | -1 | 0.804 |
SYK |
0.761 | 0.059 | -1 | 0.812 |
SRC |
0.760 | -0.078 | -1 | 0.847 |
NTRK2 |
0.760 | -0.237 | 3 | 0.728 |
EPHA2 |
0.760 | 0.004 | -1 | 0.816 |
FLT4 |
0.759 | -0.231 | 3 | 0.722 |
CSK |
0.759 | -0.134 | 2 | 0.814 |
MATK |
0.759 | -0.130 | -1 | 0.770 |
EGFR |
0.758 | -0.109 | 1 | 0.625 |
FGFR4 |
0.751 | -0.151 | -1 | 0.804 |
YANK2 |
0.748 | -0.129 | 2 | 0.450 |
CK1G3 |
0.748 | -0.121 | -3 | 0.341 |
ERBB4 |
0.748 | -0.064 | 1 | 0.676 |
IGF1R |
0.748 | -0.146 | 3 | 0.640 |
MUSK |
0.747 | -0.169 | 1 | 0.604 |
FES |
0.739 | -0.092 | -1 | 0.744 |
ZAP70 |
0.736 | -0.032 | -1 | 0.740 |
CK1G2 |
0.730 | -0.114 | -3 | 0.438 |