Motif 817 (n=483)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0JLT2 | MED19 | S226 | ochoa | Mediator of RNA polymerase II transcription subunit 19 (Lung cancer metastasis-related protein 1) (Mediator complex subunit 19) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. |
A8MW92 | PHF20L1 | Y583 | ochoa | PHD finger protein 20-like protein 1 | Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}. |
E9PAV3 | NACA | S1713 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
I3L4J1 | None | S114 | ochoa | vesicle-fusing ATPase (EC 3.6.4.6) | (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}. |
M0QYT0 | None | S161 | ochoa | RRM domain-containing protein | None |
O00567 | NOP56 | S520 | ochoa | Nucleolar protein 56 (Nucleolar protein 5A) | Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
O00571 | DDX3X | S61 | ochoa | ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) | Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}. |
O14646 | CHD1 | S215 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14647 | CHD2 | S207 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O14893 | GEMIN2 | S85 | ochoa | Gem-associated protein 2 (Gemin-2) (Component of gems 2) (Survival of motor neuron protein-interacting protein 1) (SMN-interacting protein 1) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9323129). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG (5Sm) are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A (PubMed:18984161, PubMed:9323129). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Within the SMN complex, GEMIN2 constrains the conformation of 5Sm, thereby promoting 5Sm binding to snRNA containing the snRNP code (a nonameric Sm site and a 3'-adjacent stem-loop), thus preventing progression of assembly until a cognate substrate is bound (PubMed:16314521, PubMed:21816274, PubMed:31799625). {ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9323129}. |
O15265 | ATXN7 | S842 | ochoa | Ataxin-7 (Spinocerebellar ataxia type 7 protein) | Acts as a component of the SAGA (aka STAGA) transcription coactivator-HAT complex (PubMed:15932940, PubMed:18206972). Mediates the interaction of SAGA complex with the CRX and is involved in CRX-dependent gene activation (PubMed:15932940, PubMed:18206972). Probably involved in tethering the deubiquitination module within the SAGA complex (PubMed:24493646). Necessary for microtubule cytoskeleton stabilization (PubMed:22100762). Involved in neurodegeneration (PubMed:9288099). {ECO:0000269|PubMed:15932940, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:22100762, ECO:0000269|PubMed:24493646, ECO:0000269|PubMed:9288099}. |
O43159 | RRP8 | S104 | ochoa | Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) | Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}. |
O43159 | RRP8 | S124 | ochoa | Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) | Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}. |
O43707 | ACTN4 | S461 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O60285 | NUAK1 | S476 | psp | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
O60293 | ZFC3H1 | S1298 | ochoa | Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) | Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}. |
O60307 | MAST3 | S1084 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60551 | NMT2 | S61 | ochoa | Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) | Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}. |
O60583 | CCNT2 | S424 | ochoa | Cyclin-T2 (CycT2) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin T) complex, also called positive transcription elongation factor B (P-TEFB), which is proposed to facilitate the transition from abortive to production elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNAP II) (PubMed:15563843, PubMed:9499409). The activity of this complex is regulated by binding with 7SK snRNA (PubMed:11713533). Plays a role during muscle differentiation; P-TEFB complex interacts with MYOD1; this tripartite complex promotes the transcriptional activity of MYOD1 through its CDK9-mediated phosphorylation and binds the chromatin of promoters and enhancers of muscle-specific genes; this event correlates with hyperphosphorylation of the CTD domain of RNA pol II (By similarity). In addition, enhances MYOD1-dependent transcription through interaction with PKN1 (PubMed:16331689). Involved in early embryo development (By similarity). {ECO:0000250|UniProtKB:Q7TQK0, ECO:0000269|PubMed:11713533, ECO:0000269|PubMed:15563843, ECO:0000269|PubMed:16331689, ECO:0000269|PubMed:9499409}.; FUNCTION: (Microbial infection) Promotes transcriptional activation of early and late herpes simplex virus 1/HHV-1 promoters. {ECO:0000269|PubMed:21509660}. |
O60662 | KLHL41 | S244 | ochoa | Kelch-like protein 41 (Kel-like protein 23) (Kelch repeat and BTB domain-containing protein 10) (Kelch-related protein 1) (Sarcosin) | Involved in skeletal muscle development and differentiation. Regulates proliferation and differentiation of myoblasts and plays a role in myofibril assembly by promoting lateral fusion of adjacent thin fibrils into mature, wide myofibrils. Required for pseudopod elongation in transformed cells. {ECO:0000250|UniProtKB:A2AUC9}. |
O60841 | EIF5B | S135 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60841 | EIF5B | S588 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60927 | PPP1R11 | S45 | ochoa | E3 ubiquitin-protein ligase PPP1R11 (EC 2.3.2.27) (Hemochromatosis candidate gene V protein) (HCG V) (Protein phosphatase 1 regulatory subunit 11) (Protein phosphatase inhibitor 3) | Atypical E3 ubiquitin-protein ligase which ubiquitinates TLR2 at 'Lys-754' leading to its degradation by the proteasome. Plays a role in regulating inflammatory cytokine release and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2 (PubMed:27805901). Inhibitor of protein phosphatase 1 (PubMed:9843442). {ECO:0000269|PubMed:27805901, ECO:0000269|PubMed:9843442}. |
O60939 | SCN2B | S192 | ochoa | Sodium channel regulatory subunit beta-2 | Regulatory subunit of multiple voltage-gated sodium (Nav) channels directly mediating the depolarization of excitable membranes (PubMed:19808477, PubMed:23559163, PubMed:26894959, PubMed:30765605, PubMed:30765606, PubMed:35277491, PubMed:36823201). Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na+ ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:19808477, PubMed:23559163, PubMed:26894959). The accessory beta subunits participate in localization and functional modulation of the Nav channels (PubMed:19808477, PubMed:23559163). Modulates the activity of SCN1A/Nav1.1, SCN2A/Nav1.2, SCN2A/Nav1.3, SCN5A/Nav1.5, SCN8A/Nav1.6, SCN9A/Nav1.7 and SCN10A/Nav1.8 (PubMed:19808477, PubMed:23559163, PubMed:26894959, PubMed:30765605, PubMed:30765606, PubMed:35277491, PubMed:36823201). {ECO:0000269|PubMed:19808477, ECO:0000269|PubMed:23559163, ECO:0000269|PubMed:26894959, ECO:0000269|PubMed:30765605, ECO:0000269|PubMed:30765606, ECO:0000269|PubMed:35277491, ECO:0000269|PubMed:36823201}. |
O75038 | PLCH2 | S595 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-2) (Phosphoinositide phospholipase C-like 4) (PLC-L4) (Phospholipase C-like protein 4) (Phospholipase C-eta-2) (PLC-eta2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes (PubMed:18361507). This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity). {ECO:0000250|UniProtKB:A2AP18, ECO:0000269|PubMed:18361507}. |
O75145 | PPFIA3 | S766 | ochoa | Liprin-alpha-3 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-3) (PTPRF-interacting protein alpha-3) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:9624153}. |
O75151 | PHF2 | S539 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75362 | ZNF217 | S247 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75363 | BCAS1 | S386 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75400 | PRPF40A | S883 | ochoa | Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) | Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O75410 | TACC1 | S568 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75534 | CSDE1 | S584 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O75899 | GABBR2 | S779 | ochoa | Gamma-aminobutyric acid type B receptor subunit 2 (GABA-B receptor 2) (GABA-B-R2) (GABA-BR2) (GABABR2) (Gb2) (G-protein coupled receptor 51) (HG20) | Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2 (PubMed:15617512, PubMed:18165688, PubMed:22660477, PubMed:24305054, PubMed:9872316, PubMed:9872744). Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins (PubMed:18165688). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase (PubMed:10075644, PubMed:10773016, PubMed:24305054). Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis (PubMed:10075644, PubMed:10773016, PubMed:10906333, PubMed:9872744). Plays a critical role in the fine-tuning of inhibitory synaptic transmission (PubMed:22660477, PubMed:9872744). Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials (PubMed:10075644, PubMed:22660477, PubMed:9872316, PubMed:9872744). Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception (Probable). {ECO:0000269|PubMed:10075644, ECO:0000269|PubMed:10328880, ECO:0000269|PubMed:15617512, ECO:0000269|PubMed:18165688, ECO:0000269|PubMed:22660477, ECO:0000269|PubMed:24305054, ECO:0000269|PubMed:9872316, ECO:0000269|PubMed:9872744, ECO:0000305}. |
O75940 | SMNDC1 | S201 | ochoa | Survival of motor neuron-related-splicing factor 30 (30 kDa splicing factor SMNrp) (SMN-related protein) (Survival motor neuron domain-containing protein 1) | Involved in spliceosome assembly. {ECO:0000269|PubMed:11331295, ECO:0000269|PubMed:11331595, ECO:0000269|PubMed:9817934}. |
O94763 | URI1 | S372 | ochoa|psp | Unconventional prefoldin RPB5 interactor 1 (Protein NNX3) (Protein phosphatase 1 regulatory subunit 19) (RNA polymerase II subunit 5-mediating protein) (RPB5-mediating protein) | Involved in gene transcription regulation. Acts as a transcriptional repressor in concert with the corepressor UXT to regulate androgen receptor (AR) transcription. May act as a tumor suppressor to repress AR-mediated gene transcription and to inhibit anchorage-independent growth in prostate cancer cells. Required for cell survival in ovarian cancer cells. Together with UXT, associates with chromatin to the NKX3-1 promoter region. Antagonizes transcriptional modulation via hepatitis B virus X protein.; FUNCTION: Plays a central role in maintaining S6K1 signaling and BAD phosphorylation under normal growth conditions thereby protecting cells from potential deleterious effects of sustained S6K1 signaling. The URI1-PPP1CC complex acts as a central component of a negative feedback mechanism that counteracts excessive S6K1 survival signaling to BAD in response to growth factors. Mediates inhibition of PPP1CC phosphatase activity in mitochondria. Coordinates the regulation of nutrient-sensitive gene expression availability in a mTOR-dependent manner. Seems to be a scaffolding protein able to assemble a prefoldin-like complex that contains PFDs and proteins with roles in transcription and ubiquitination. |
O94880 | PHF14 | S280 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94955 | RHOBTB3 | S215 | ochoa | Rho-related BTB domain-containing protein 3 (EC 3.6.1.-) | Rab9-regulated ATPase required for endosome to Golgi transport. Involved in transport vesicle docking at the Golgi complex, possibly by participating in release M6PRBP1/TIP47 from vesicles to permit their efficient docking and fusion at the Golgi. Specifically binds Rab9, but not other Rab proteins. Has low intrinsic ATPase activity due to autoinhibition, which is relieved by Rab9. {ECO:0000269|PubMed:19490898}. |
O94986 | CEP152 | S526 | ochoa | Centrosomal protein of 152 kDa (Cep152) | Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}. |
O95218 | ZRANB2 | S65 | ochoa | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
O95433 | AHSA1 | S193 | ochoa | Activator of 90 kDa heat shock protein ATPase homolog 1 (AHA1) (p38) | Acts as a co-chaperone of HSP90AA1 (PubMed:29127155). Activates the ATPase activity of HSP90AA1 leading to increase in its chaperone activity (PubMed:29127155). Competes with the inhibitory co-chaperone FNIP1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Competes with the inhibitory co-chaperone TSC1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). {ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155}. |
O95573 | ACSL3 | S62 | ochoa | Fatty acid CoA ligase Acsl3 (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 3) (LACS 3) (Long-chain-fatty-acid--CoA ligase 3) (EC 6.2.1.3) (Medium-chain acyl-CoA ligase Acsl3) (EC 6.2.1.2) | Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:22633490). Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (PubMed:18003621). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). {ECO:0000250|UniProtKB:Q63151, ECO:0000269|PubMed:18003621, ECO:0000269|PubMed:22633490}. |
O95831 | AIFM1 | S100 | ochoa | Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) | Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}. |
P02042 | HBD | S73 | ochoa | Hemoglobin subunit delta (Delta-globin) (Hemoglobin delta chain) | Involved in oxygen transport from the lung to the various peripheral tissues. |
P05455 | SSB | S350 | ochoa | Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) | Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}. |
P11055 | MYH3 | T647 | ochoa | Myosin-3 (Muscle embryonic myosin heavy chain) (Myosin heavy chain 3) (Myosin heavy chain, fast skeletal muscle, embryonic) (SMHCE) | Muscle contraction. |
P11142 | HSPA8 | S537 | ochoa | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
P11387 | TOP1 | S112 | ochoa|psp | DNA topoisomerase 1 (EC 5.6.2.1) (DNA topoisomerase I) | Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the BMAL1 promoter. {ECO:0000250|UniProtKB:Q13472, ECO:0000269|PubMed:14594810, ECO:0000269|PubMed:16033260, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:22904072, ECO:0000269|PubMed:2833744}. |
P11388 | TOP2A | T1244 | ochoa|psp | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P11388 | TOP2A | S1297 | ochoa | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P11388 | TOP2A | S1495 | ochoa | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P12814 | ACTN1 | S442 | ochoa | Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}. |
P12883 | MYH7 | T646 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13533 | MYH6 | T648 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13535 | MYH8 | T649 | ochoa | Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) | Muscle contraction. |
P13861 | PRKAR2A | S254 | ochoa | cAMP-dependent protein kinase type II-alpha regulatory subunit | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase. |
P17174 | GOT1 | S66 | ochoa | Aspartate aminotransferase, cytoplasmic (cAspAT) (EC 2.6.1.1) (EC 2.6.1.3) (Cysteine aminotransferase, cytoplasmic) (Cysteine transaminase, cytoplasmic) (cCAT) (Glutamate oxaloacetate transaminase 1) (Transaminase A) | Biosynthesis of L-glutamate from L-aspartate or L-cysteine (PubMed:21900944). Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. In addition, catalyzes (2S)-2-aminobutanoate, a by-product in the cysteine biosynthesis pathway (PubMed:27827456). {ECO:0000269|PubMed:16039064, ECO:0000269|PubMed:21900944, ECO:0000269|PubMed:27827456}. |
P20929 | NEB | S1275 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P20929 | NEB | S2358 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P25440 | BRD2 | S744 | ochoa | Bromodomain-containing protein 2 (O27.1.1) | Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}. |
P26639 | TARS1 | S39 | ochoa | Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) | Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}. |
P27816 | MAP4 | S853 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28290 | ITPRID2 | S354 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P29966 | MARCKS | S167 | ochoa|psp | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P30419 | NMT1 | S69 | ochoa | Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) | Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}. |
P35232 | PHB1 | S213 | ochoa | Prohibitin 1 | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors in the nucleus (PubMed:11302691, PubMed:20959514, PubMed:28017329, PubMed:31522117). Plays a role in adipose tissue and glucose homeostasis in a sex-specific manner (By similarity). Contributes to pulmonary vascular remodeling by accelerating proliferation of pulmonary arterial smooth muscle cells (By similarity). {ECO:0000250|UniProtKB:P67778, ECO:0000250|UniProtKB:P67779, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB2, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Regulates mitochondrial respiration activity playing a role in cellular aging (PubMed:11302691). The prohibitin complex plays a role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:P67778, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305}.; FUNCTION: In the nucleus, acts as a transcription coregulator, enhances promoter binding by TP53, a transcription factor it activates, but reduces the promoter binding by E2F1, a transcription factor it represses (PubMed:14500729). Interacts with STAT3 to affect IL17 secretion in T-helper Th17 cells (PubMed:31899195). {ECO:0000269|PubMed:14500729, ECO:0000269|PubMed:31899195}.; FUNCTION: In the plasma membrane, cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates (By similarity). Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:P67778}. |
P35269 | GTF2F1 | S377 | ochoa | General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}. |
P35659 | DEK | S227 | ochoa | Protein DEK | Involved in chromatin organization. {ECO:0000269|PubMed:17524367}. |
P36952 | SERPINB5 | S135 | ochoa | Serpin B5 (Maspin) (Peptidase inhibitor 5) (PI-5) | Tumor suppressor. It blocks the growth, invasion, and metastatic properties of mammary tumors. As it does not undergo the S (stressed) to R (relaxed) conformational transition characteristic of active serpins, it exhibits no serine protease inhibitory activity. |
P42285 | MTREX | S40 | ochoa | Exosome RNA helicase MTR4 (EC 3.6.4.13) (ATP-dependent RNA helicase DOB1) (ATP-dependent RNA helicase SKIV2L2) (Superkiller viralicidic activity 2-like 2) (TRAMP-like complex helicase) | Catalyzes the ATP-dependent unwinding of RNA duplexes with a single-stranded 3' RNA extension (PubMed:27871484, PubMed:29844170, PubMed:29906447). Central subunit of many protein complexes, namely TRAMP-like, nuclear exosome targeting (NEXT) and poly(A) tail exosome targeting (PAXT) (PubMed:21855801, PubMed:27871484, PubMed:29844170). NEXT functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation. NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:27871484, PubMed:29844170). PAXT directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor ZCCHC8, which links to RNA-binding protein adapters (PubMed:27871484). Associated with the RNA exosome complex and involved in the 3'-processing of the 7S pre-RNA to the mature 5.8S rRNA (PubMed:17412707, PubMed:29107693). May be involved in pre-mRNA splicing. In the context of NEXT complex can also in vitro unwind DNA:RNA heteroduplexes with a 3' poly (A) RNA tracking strand (PubMed:29844170). Can promote unwinding and degradation of structured RNA substrates when associated with the nuclear exosome and its cofactors. Can displace a DNA strand while translocating on RNA to ultimately degrade the RNA within a DNA/RNA heteroduplex (PubMed:29906447). Plays a role in DNA damage response (PubMed:29902117). {ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:21855801, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:29107693, ECO:0000269|PubMed:29844170, ECO:0000269|PubMed:29902117, ECO:0000269|PubMed:29906447}. |
P42331 | ARHGAP25 | S378 | ochoa | Rho GTPase-activating protein 25 (Rho-type GTPase-activating protein 25) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
P42677 | RPS27 | S27 | ochoa|psp | Small ribosomal subunit protein eS27 (40S ribosomal protein S27) (Metallopan-stimulin 1) (MPS-1) | Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for proper rRNA processing and maturation of 18S rRNAs (PubMed:25424902). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25424902, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}. |
P43307 | SSR1 | S246 | ochoa | Translocon-associated protein subunit alpha (TRAP-alpha) (Signal sequence receptor subunit alpha) (SSR-alpha) | TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins. May be involved in the recycling of the translocation apparatus after completion of the translocation process or may function as a membrane-bound chaperone facilitating folding of translocated proteins. |
P45973 | CBX5 | S95 | ochoa | Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) | Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}. |
P46100 | ATRX | S784 | ochoa|psp | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S812 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1942 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1943 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1944 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46531 | NOTCH1 | S1791 | psp | Neurogenic locus notch homolog protein 1 (Notch 1) (hN1) (Translocation-associated notch protein TAN-1) [Cleaved into: Notch 1 extracellular truncation (NEXT); Notch 1 intracellular domain (NICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4(+) and CD8(+) cells in the thymus. Important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, functions as a receptor for neuronal DNER and is involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May play an essential role in postimplantation development, probably in some aspect of cell specification and/or differentiation. May be involved in mesoderm development, somite formation and neurogenesis. May enhance HIF1A function by sequestering HIF1AN away from HIF1A. Required for the THBS4 function in regulating protective astrogenesis from the subventricular zone (SVZ) niche after injury. Involved in determination of left/right symmetry by modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO). {ECO:0000269|PubMed:20616313}. |
P46821 | MAP1B | S601 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46940 | IQGAP1 | S1448 | ochoa | Ras GTPase-activating-like protein IQGAP1 (p195) | Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}. |
P49006 | MARCKSL1 | S101 | ochoa | MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) | Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}. |
P50579 | METAP2 | S49 | ochoa | Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18) (Initiation factor 2-associated 67 kDa glycoprotein) (p67) (p67eIF2) (Peptidase M) | Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). The catalytic activity of human METAP2 toward Met-Val peptides is consistently two orders of magnitude higher than that of METAP1, suggesting that it is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo.; FUNCTION: Protects eukaryotic initiation factor EIF2S1 from translation-inhibiting phosphorylation by inhibitory kinases such as EIF2AK2/PKR and EIF2AK1/HCR. Plays a critical role in the regulation of protein synthesis. |
P54278 | PMS2 | S587 | ochoa | Mismatch repair endonuclease PMS2 (EC 3.1.-.-) (DNA mismatch repair protein PMS2) (PMS1 protein homolog 2) | Component of the post-replicative DNA mismatch repair system (MMR) (PubMed:30653781, PubMed:35189042). Heterodimerizes with MLH1 to form MutL alpha. DNA repair is initiated by MutS alpha (MSH2-MSH6) or MutS beta (MSH2-MSH3) binding to a dsDNA mismatch, then MutL alpha is recruited to the heteroduplex. Assembly of the MutL-MutS-heteroduplex ternary complex in presence of RFC and PCNA is sufficient to activate endonuclease activity of PMS2. It introduces single-strand breaks near the mismatch and thus generates new entry points for the exonuclease EXO1 to degrade the strand containing the mismatch. DNA methylation would prevent cleavage and therefore assure that only the newly mutated DNA strand is going to be corrected. MutL alpha (MLH1-PMS2) interacts physically with the clamp loader subunits of DNA polymerase III, suggesting that it may play a role to recruit the DNA polymerase III to the site of the MMR. Also implicated in DNA damage signaling, a process which induces cell cycle arrest and can lead to apoptosis in case of major DNA damages. Possesses an ATPase activity, but in the absence of gross structural changes, ATP hydrolysis may not be necessary for proficient mismatch repair (PubMed:35189042). {ECO:0000269|PubMed:16873062, ECO:0000269|PubMed:18206974, ECO:0000269|PubMed:23709753, ECO:0000269|PubMed:30653781, ECO:0000269|PubMed:35189042}. |
P61006 | RAB8A | S181 | ochoa | Ras-related protein Rab-8A (EC 3.6.5.2) (Oncogene c-mel) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB8A is involved in polarized vesicular trafficking and neurotransmitter release. Together with RAB11A, RAB3IP, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Regulates the compacted morphology of the Golgi (PubMed:26209634). Together with MYO5B and RAB11A participates in epithelial cell polarization (PubMed:21282656). Also involved in membrane trafficking to the cilium and ciliogenesis (PubMed:21844891, PubMed:30398148, PubMed:20631154). Together with MICALL2, may also regulate adherens junction assembly (By similarity). May play a role in insulin-induced transport to the plasma membrane of the glucose transporter GLUT4 and therefore play a role in glucose homeostasis (By similarity). Involved in autophagy (PubMed:27103069). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation (PubMed:30209220). Suppresses stress-induced lysosomal enlargement through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P35280, ECO:0000250|UniProtKB:P55258, ECO:0000269|PubMed:20631154, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:21844891, ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}. |
P68871 | HBB | S73 | ochoa | Hemoglobin subunit beta (Beta-globin) (Hemoglobin beta chain) [Cleaved into: LVV-hemorphin-7; Spinorphin] | Involved in oxygen transport from the lung to the various peripheral tissues. {ECO:0000269|PubMed:28066926}.; FUNCTION: LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.; FUNCTION: [Spinorphin]: Functions as an endogenous inhibitor of enkephalin-degrading enzymes such as DPP3, and as a selective antagonist of the P2RX3 receptor which is involved in pain signaling, these properties implicate it as a regulator of pain and inflammation. |
P82094 | TMF1 | S928 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
Q00013 | MPP1 | S260 | ochoa | 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) | Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}. |
Q00013 | MPP1 | S261 | ochoa | 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) | Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}. |
Q01105 | SET | S183 | ochoa | Protein SET (HLA-DR-associated protein II) (Inhibitor of granzyme A-activated DNase) (IGAAD) (PHAPII) (Phosphatase 2A inhibitor I2PP2A) (I-2PP2A) (Template-activating factor I) (TAF-I) | Multitasking protein, involved in apoptosis, transcription, nucleosome assembly and histone chaperoning. Isoform 2 anti-apoptotic activity is mediated by inhibition of the GZMA-activated DNase, NME1. In the course of cytotoxic T-lymphocyte (CTL)-induced apoptosis, GZMA cleaves SET, disrupting its binding to NME1 and releasing NME1 inhibition. Isoform 1 and isoform 2 are potent inhibitors of protein phosphatase 2A. Isoform 1 and isoform 2 inhibit EP300/CREBBP and PCAF-mediated acetylation of histones (HAT) and nucleosomes, most probably by masking the accessibility of lysines of histones to the acetylases. The predominant target for inhibition is histone H4. HAT inhibition leads to silencing of HAT-dependent transcription and prevents active demethylation of DNA. Both isoforms stimulate DNA replication of the adenovirus genome complexed with viral core proteins; however, isoform 2 specific activity is higher. {ECO:0000269|PubMed:11555662, ECO:0000269|PubMed:12628186}. |
Q01484 | ANK2 | S1736 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01831 | XPC | S398 | ochoa | DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) | Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}. |
Q01995 | TAGLN | S166 | ochoa | Transgelin (22 kDa actin-binding protein) (Protein WS3-10) (Smooth muscle protein 22-alpha) (SM22-alpha) | Actin cross-linking/gelling protein (By similarity). Involved in calcium interactions and contractile properties of the cell that may contribute to replicative senescence. {ECO:0000250}. |
Q05084 | ICA1 | S291 | ochoa | Islet cell autoantigen 1 (69 kDa islet cell autoantigen) (ICA69) (Islet cell autoantigen p69) (ICAp69) (p69) | May play a role in neurotransmitter secretion. {ECO:0000250}. |
Q05519 | SRSF11 | S449 | ochoa | Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) | May function in pre-mRNA splicing. |
Q08945 | SSRP1 | S437 | ochoa | FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}. |
Q09666 | AHNAK | S1344 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S1802 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S2138 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S3112 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S3240 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5573 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12872 | SFSWAP | S283 | ochoa | Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) | Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}. |
Q12904 | AIMP1 | S140 | ochoa|psp | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] | Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}. |
Q13185 | CBX3 | S97 | ochoa | Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) | Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}. |
Q13224 | GRIN2B | S1303 | psp | Glutamate receptor ionotropic, NMDA 2B (GluN2B) (Glutamate [NMDA] receptor subunit epsilon-2) (N-methyl D-aspartate receptor subtype 2B) (NMDAR2B) (NR2B) (N-methyl-D-aspartate receptor subunit 3) (NR3) (hNR3) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). Participates in synaptic plasticity for learning and memory formation by contributing to the long-term depression (LTD) of hippocampus membrane currents (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). {ECO:0000250|UniProtKB:P35438, ECO:0000250|UniProtKB:Q01097, ECO:0000269|PubMed:24272827, ECO:0000269|PubMed:24863970, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27839871, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}. |
Q13352 | ITGB3BP | S33 | ochoa|psp | Centromere protein R (CENP-R) (Beta-3-endonexin) (Integrin beta-3-binding protein) (Nuclear receptor-interacting factor 3) | Transcription coregulator that can have both coactivator and corepressor functions. Isoform 1, but not other isoforms, is involved in the coactivation of nuclear receptors for retinoid X (RXRs) and thyroid hormone (TRs) in a ligand-dependent fashion. In contrast, it does not coactivate nuclear receptors for retinoic acid, vitamin D, progesterone receptor, nor glucocorticoid. Acts as a coactivator for estrogen receptor alpha. Acts as a transcriptional corepressor via its interaction with the NFKB1 NF-kappa-B subunit, possibly by interfering with the transactivation domain of NFKB1. Induces apoptosis in breast cancer cells, but not in other cancer cells, via a caspase-2 mediated pathway that involves mitochondrial membrane permeabilization but does not require other caspases. May also act as an inhibitor of cyclin A-associated kinase. Also acts a component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. {ECO:0000269|PubMed:11713274, ECO:0000269|PubMed:12244126, ECO:0000269|PubMed:15082778, ECO:0000269|PubMed:15254226, ECO:0000269|PubMed:16622420}. |
Q13427 | PPIG | S256 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13427 | PPIG | S257 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13433 | SLC39A6 | S478 | ochoa | Zinc transporter ZIP6 (Estrogen-regulated protein LIV-1) (Solute carrier family 39 member 6) (Zrt- and Irt-like protein 6) (ZIP-6) | Zinc-influx transporter which plays a role in zinc homeostasis and in the induction of epithelial-to-mesenchymal transition (EMT) (PubMed:12839489, PubMed:18272141, PubMed:21422171, PubMed:23919497, PubMed:27274087, PubMed:34394081). When associated with SLC39A10, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial- to-mesenchymal transition (EMT) (PubMed:27274087). The SLC39A10-SLC39A6 heterodimer also controls NCAM1 phosphorylation and its integration into focal adhesion complexes during EMT (By similarity). Zinc influx inactivates GSK3B, enabling unphosphorylated SNAI1 in the nucleus to down-regulate adherence genes such as CDH1, causing loss of cell adherence (PubMed:23919497). In addition, the SLC39A10-SLC39A6 heterodimer plays an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Participates in the T-cell receptor signaling regulation by mediating cellular zinc uptake into activated lymphocytes (PubMed:21422171, PubMed:30552163, PubMed:34394081). Regulates the zinc influx necessary for proper meiotic progression to metaphase II (MII) that allows the oocyte-to-egg transition (PubMed:25143461). {ECO:0000250|UniProtKB:Q8C145, ECO:0000269|PubMed:12839489, ECO:0000269|PubMed:18272141, ECO:0000269|PubMed:21422171, ECO:0000269|PubMed:23919497, ECO:0000269|PubMed:25143461, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30552163, ECO:0000269|PubMed:32797246, ECO:0000269|PubMed:34394081}. |
Q13546 | RIPK1 | S610 | ochoa | Receptor-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (Cell death protein RIP) (Receptor-interacting protein 1) (RIP-1) | Serine-threonine kinase which is a key regulator of TNF-mediated apoptosis, necroptosis and inflammatory pathways (PubMed:17703191, PubMed:24144979, PubMed:31827280, PubMed:31827281, PubMed:32657447, PubMed:35831301). Exhibits kinase activity-dependent functions that regulate cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival (PubMed:11101870, PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Has kinase-independent scaffold functions: upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, in part, by activating the canonical NF-kappa-B pathway (By similarity). Kinase activity is essential to regulate necroptosis and apoptosis, two parallel forms of cell death: upon activation of its protein kinase activity, regulates assembly of two death-inducing complexes, namely complex IIa (RIPK1-FADD-CASP8), which drives apoptosis, and the complex IIb (RIPK1-RIPK3-MLKL), which drives necroptosis (By similarity). RIPK1 is required to limit CASP8-dependent TNFR1-induced apoptosis (By similarity). In normal conditions, RIPK1 acts as an inhibitor of RIPK3-dependent necroptosis, a process mediated by RIPK3 component of complex IIb, which catalyzes phosphorylation of MLKL upon induction by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Inhibits RIPK3-mediated necroptosis via FADD-mediated recruitment of CASP8, which cleaves RIPK1 and limits TNF-induced necroptosis (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Required to inhibit apoptosis and necroptosis during embryonic development: acts by preventing the interaction of TRADD with FADD thereby limiting aberrant activation of CASP8 (By similarity). In addition to apoptosis and necroptosis, also involved in inflammatory response by promoting transcriptional production of pro-inflammatory cytokines, such as interleukin-6 (IL6) (PubMed:31827280, PubMed:31827281). Phosphorylates RIPK3: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade (PubMed:15310755, PubMed:17389591). Required for ZBP1-induced NF-kappa-B activation in response to DNA damage (By similarity). {ECO:0000250|UniProtKB:Q60855, ECO:0000269|PubMed:11101870, ECO:0000269|PubMed:15310755, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:19524512, ECO:0000269|PubMed:19524513, ECO:0000269|PubMed:24144979, ECO:0000269|PubMed:29440439, ECO:0000269|PubMed:30988283, ECO:0000269|PubMed:31827280, ECO:0000269|PubMed:31827281, ECO:0000269|PubMed:32657447, ECO:0000269|PubMed:35831301}. |
Q13557 | CAMK2D | S334 | ochoa|psp | Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}. |
Q14254 | FLOT2 | S166 | ochoa | Flotillin-2 (Epidermal surface antigen) (ESA) (Membrane component chromosome 17 surface marker 1) | May act as a scaffolding protein within caveolar membranes, functionally participating in formation of caveolae or caveolae-like vesicles. May be involved in epidermal cell adhesion and epidermal structure and function. |
Q14677 | CLINT1 | S164 | ochoa | Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}. |
Q14699 | RFTN1 | S450 | ochoa | Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) | Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}. |
Q14978 | NOLC1 | S87 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q14978 | NOLC1 | S291 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q14DG7 | TMEM132B | S793 | ochoa | Transmembrane protein 132B | None |
Q15111 | PLCL1 | S97 | ochoa | Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP) | Involved in an inositol phospholipid-based intracellular signaling cascade. Shows no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. Component in the phospho-dependent endocytosis process of GABA A receptor (By similarity). Regulates the turnover of receptors and thus contributes to the maintenance of GABA-mediated synaptic inhibition. Its aberrant expression could contribute to the genesis and progression of lung carcinoma. Acts as an inhibitor of PPP1C. {ECO:0000250, ECO:0000269|PubMed:17254016}. |
Q15172 | PPP2R5A | S42 | ochoa | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform (PP2A B subunit isoform B'-alpha) (PP2A B subunit isoform B56-alpha) (PP2A B subunit isoform PR61-alpha) (PR61alpha) (PP2A B subunit isoform R5-alpha) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q15361 | TTF1 | S227 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q15365 | PCBP1 | S43 | psp | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15468 | STIL | S1131 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15723 | ELF2 | S185 | ochoa | ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) | Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation. |
Q16637 | SMN1 | S88 | ochoa|psp | Survival motor neuron protein (Component of gems 1) (Gemin-1) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}. |
Q32MZ4 | LRRFIP1 | S581 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q3YEC7 | RABL6 | S425 | ochoa | Rab-like protein 6 (GTP-binding protein Parf) (Partner of ARF) (Rab-like protein 1) (RBEL1) | May enhance cellular proliferation. May reduce growth inhibitory activity of CDKN2A. {ECO:0000269|PubMed:16582619}. |
Q4G0J3 | LARP7 | S286 | ochoa | La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) | RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}. |
Q4KWH8 | PLCH1 | S1250 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-1) (Phospholipase C-eta-1) (PLC-eta-1) (Phospholipase C-like protein 3) (PLC-L3) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes. {ECO:0000269|PubMed:15702972}. |
Q562F6 | SGO2 | S1089 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q5HYJ3 | FAM76B | S227 | ochoa | Protein FAM76B | Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}. |
Q5T200 | ZC3H13 | S1010 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T2D3 | OTUD3 | S224 | ochoa | OTU domain-containing protein 3 (EC 3.4.19.12) | Deubiquitinating enzyme that hydrolyzes 'Lys-6'- and 'Lys-11'-linked polyubiquitin. Also hydrolyzes heterotypic (mixed and branched) and homotypic chains (PubMed:23827681, PubMed:32011234, PubMed:35675826). Important regulator of energy metabolism (PubMed:35675826). Glucose and fatty acids trigger its nuclear translocation by CBP-dependent acetylation (PubMed:35675826). In the nucleus, deubiquitinates and stabilizes the nuclear receptor PPARD regulating the expression of various genes involved in glucose and lipid metabolism and oxidative phosphorylation (PubMed:35675826). Also acts as a negative regulator of the ribosome quality control (RQC) by mediating deubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS20/uS10, thereby antagonizing ZNF598-mediated 40S ubiquitination (PubMed:32011234). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32011234, ECO:0000269|PubMed:35675826}. |
Q5T7W7 | TSTD2 | S283 | ochoa | Thiosulfate sulfurtransferase/rhodanese-like domain-containing protein 2 (Rhodanese domain-containing protein 2) | None |
Q5VV41 | ARHGEF16 | S208 | ochoa | Rho guanine nucleotide exchange factor 16 (Ephexin-4) | Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}. |
Q5W0Q7 | USPL1 | S908 | ochoa | SUMO-specific isopeptidase USPL1 (EC 3.4.22.-) (Ubiquitin-specific peptidase-like protein 1) (USP-like 1) | SUMO-specific isopeptidase involved in protein desumoylation. Specifically binds SUMO proteins with a higher affinity for SUMO2 and SUMO3 which it cleaves more efficiently. Also able to process full-length SUMO proteins to their mature forms (PubMed:22878415). Plays a key role in RNA polymerase-II-mediated snRNA transcription in the Cajal bodies (PubMed:24413172). Is a component of complexes that can bind to U snRNA genes (PubMed:24413172). {ECO:0000269|PubMed:22878415, ECO:0000269|PubMed:24413172}. |
Q641Q2 | WASHC2A | S912 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q68EM7 | ARHGAP17 | S306 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6P995 | FAM171B | S405 | ochoa | Protein FAM171B | None |
Q6PD62 | CTR9 | S1016 | ochoa | RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6SJ93 | FAM111B | S288 | ochoa | Serine protease FAM111B (EC 3.4.21.-) (Cancer-associated nucleoprotein) | Serine protease. {ECO:0000250|UniProtKB:Q96PZ2}. |
Q6UB99 | ANKRD11 | S379 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UB99 | ANKRD11 | S812 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6WKZ4 | RAB11FIP1 | S222 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6WKZ4 | RAB11FIP1 | S234 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZU35 | CRACD | S874 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZU80 | CEP128 | S855 | ochoa | Centrosomal protein of 128 kDa (Cep128) | None |
Q6ZV73 | FGD6 | S652 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q70Z53 | FRA10AC1 | S273 | ochoa | Protein FRA10AC1 | May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:34694367}. |
Q71UM5 | RPS27L | S27 | ochoa|psp | Ribosomal protein eS27-like (40S ribosomal protein S27-like) (Small ribosomal subunit protein eS27-like) | None |
Q7KZ85 | SUPT6H | S267 | ochoa | Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) | Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}. |
Q7RTP6 | MICAL3 | S1759 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z2W7 | TRPM8 | S1041 | psp | Transient receptor potential cation channel subfamily M member 8 (Long transient receptor potential channel 6) (LTrpC-6) (LTrpC6) (Transient receptor potential p8) (Trp-p8) | Non-selective ion channel permeable to monovalent and divalent cations, including Na(+), K(+), and Ca(2+), with higher permeability for Ca(2+). Activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. Activated by cool temperatures (<23-28 degrees Celsius) and by chemical ligands evoking a sensation of coolness, such as menthol and icilin therefore plays a central role in the detection of environmental cold temperatures (PubMed:15306801, PubMed:15852009, PubMed:16174775, PubMed:25559186, PubMed:37857704). TRPM8 is a voltage-dependent channel; its activation by cold or chemical ligands shifts its voltage thresholds towards physiological membrane potentials, leading to the opening of the channel (PubMed:15306801). In addition to its critical role in temperature sensing, regulates basal tear secretion by sensing evaporation-induced cooling and changes in osmolality (By similarity). May plays a role in prostate cancer cell migration (PubMed:16174775, PubMed:25559186). {ECO:0000250|UniProtKB:Q8R4D5, ECO:0000269|PubMed:15306801, ECO:0000269|PubMed:15852009, ECO:0000269|PubMed:16174775, ECO:0000269|PubMed:25559186, ECO:0000269|PubMed:37857704}.; FUNCTION: [Isoform 2]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}.; FUNCTION: [Isoform 3]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}. |
Q7Z3T8 | ZFYVE16 | S216 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z6E9 | RBBP6 | S945 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6J0 | SH3RF1 | S727 | ochoa | E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) | Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}. |
Q86SJ2 | AMIGO2 | S438 | ochoa | Amphoterin-induced protein 2 (AMIGO-2) (Alivin-1) (Differentially expressed in gastric adenocarcinomas) (DEGA) | Required for depolarization-dependent survival of cultured cerebellar granule neurons. May mediate homophilic as well as heterophilic cell-cell interaction with AMIGO1 or AMIGO3. May contribute to signal transduction through its intracellular domain. May be required for tumorigenesis of a subset of gastric adenocarcinomas. |
Q86UE4 | MTDH | S457 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86UP2 | KTN1 | S1084 | ochoa | Kinectin (CG-1 antigen) (Kinesin receptor) | Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin. |
Q86V48 | LUZP1 | S512 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86W34 | AMZ2 | S226 | ochoa | Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) | Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}. |
Q86W34 | AMZ2 | S230 | ochoa | Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) | Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}. |
Q8IUC4 | RHPN2 | S642 | ochoa | Rhophilin-2 (76 kDa RhoB effector protein) (GTP-Rho-binding protein 2) (p76RBE) | Binds specifically to GTP-Rho. May function in a Rho pathway to limit stress fiber formation and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity. {ECO:0000269|PubMed:12221077}. |
Q8IVL0 | NAV3 | S1730 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVL1 | NAV2 | S1851 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S1856 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IWE5 | PLEKHM2 | S329 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8IYW5 | RNF168 | S394 | ochoa | E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) | E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}. |
Q8IZT6 | ASPM | S565 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8N0X7 | SPART | S393 | ochoa | Spartin (Spastic paraplegia 20 protein) (Trans-activated by hepatitis C virus core protein 1) | Lipophagy receptor that plays an important role in lipid droplet (LD) turnover in motor neurons (PubMed:37443287). Localizes to LDs and interacts with components of the autophagy machinery, such as MAP1LC3A/C proteins to deliver LDs to autophagosomes for degradation via lipophagy (PubMed:37443287). Lipid transfer protein required for lipid droplet degradation, including by lipophagy (PubMed:38190532). Can bind and transfer all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters but the direction of lipid transfer by spartin and its cargos are unknown (PubMed:38190532). May be implicated in endosomal trafficking, or microtubule dynamics, or both. Participates in cytokinesis (PubMed:20719964). {ECO:0000269|PubMed:20719964, ECO:0000269|PubMed:37443287, ECO:0000269|PubMed:38190532}. |
Q8N488 | RYBP | S115 | ochoa | RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}. |
Q8N5H7 | SH2D3C | S22 | ochoa | SH2 domain-containing protein 3C (Cas/HEF1-associated signal transducer) (Chat-H) (Novel SH2-containing protein 3) (SH2 domain-containing Eph receptor-binding protein 1) (SHEP1) | Acts as an adapter protein that mediates cell signaling pathways involved in cellular functions such as cell adhesion and migration, tissue organization, and the regulation of the immune response (PubMed:12432078, PubMed:20881139). Plays a role in integrin-mediated cell adhesion through BCAR1-CRK-RAPGEF1 signaling and activation of the small GTPase RAP1 (PubMed:12432078). Promotes cell migration and invasion through the extracellular matrix (PubMed:20881139). Required for marginal zone B-cell development and thymus-independent type 2 immune responses (By similarity). Mediates migration and adhesion of B cells in the splenic marginal zone via promoting hyperphosphorylation of NEDD9/CASL (By similarity). Plays a role in CXCL13-induced chemotaxis of B-cells (By similarity). Plays a role in the migration of olfactory sensory neurons (OSNs) into the forebrain and the innervation of the olfactory bulb by the OSN axons during development (By similarity). Required for the efficient tyrosine phosphorylation of BCAR1 in OSN axons (By similarity). {ECO:0000250|UniProtKB:Q9QZS8, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:20881139}.; FUNCTION: [Isoform 1]: Important regulator of chemokine-induced, integrin-mediated T lymphocyte adhesion and migration, acting upstream of RAP1 (By similarity). Required for tissue-specific adhesion of T lymphocytes to peripheral tissues (By similarity). Required for basal and CXCL2 stimulated serine-threonine phosphorylation of NEDD9 (By similarity). May be involved in the regulation of T-cell receptor-mediated IL2 production through the activation of the JNK pathway in T-cells (By similarity). {ECO:0000250|UniProtKB:Q9QZS8}.; FUNCTION: [Isoform 2]: May be involved in the BCAR1/CAS-mediated JNK activation pathway. {ECO:0000250|UniProtKB:Q9QZS8}. |
Q8NB12 | SMYD1 | S321 | ochoa | Histone-lysine N-methyltransferase SMYD1 (EC 2.1.1.354) (SET and MYND domain-containing protein 1) | Methylates histone H3 at 'Lys-4' (H3K4me), seems able to perform both mono-, di-, and trimethylation. Acts as a transcriptional repressor. Essential for cardiomyocyte differentiation and cardiac morphogenesis. {ECO:0000250|UniProtKB:P97443}. |
Q8ND30 | PPFIBP2 | S512 | ochoa | Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q8NHV4 | NEDD1 | S496 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8NI27 | THOC2 | T1288 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8TC44 | POC1B | S414 | ochoa | POC1 centriolar protein homolog B (Pix1) (Proteome of centriole protein 1B) (WD repeat-containing protein 51B) | Plays an important role in centriole assembly and/or stability and ciliogenesis (PubMed:20008567, PubMed:32060285). Involved in early steps of centriole duplication, as well as in the later steps of centriole length control (PubMed:19109428). Acts in concert with POC1A to ensure centriole integrity and proper mitotic spindle formation (PubMed:32060285). Required for primary cilia formation, ciliary length and also cell proliferation (PubMed:23015594). Required for retinal integrity (PubMed:25044745). Acts as a positive regulator of centriole elongation (PubMed:37934472). {ECO:0000269|PubMed:19109428, ECO:0000269|PubMed:20008567, ECO:0000269|PubMed:23015594, ECO:0000269|PubMed:25044745, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:37934472}. |
Q8TDD1 | DDX54 | S34 | ochoa | ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) | Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}. |
Q8TEQ0 | SNX29 | S268 | ochoa | Sorting nexin-29 (RUN domain-containing protein 2A) | None |
Q8TF01 | PNISR | S672 | ochoa | Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) | None |
Q8WXE9 | STON2 | S762 | ochoa | Stonin-2 (Stoned B) | Adapter protein involved in endocytic machinery. Involved in the synaptic vesicle recycling. May facilitate clathrin-coated vesicle uncoating. {ECO:0000269|PubMed:11381094, ECO:0000269|PubMed:11454741, ECO:0000269|PubMed:21102408}. |
Q8WXI2 | CNKSR2 | S505 | ochoa | Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) | May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}. |
Q8WY36 | BBX | S481 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q92608 | DOCK2 | S1705 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q96AQ6 | PBXIP1 | S469 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96AQ6 | PBXIP1 | S550 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96JB2 | COG3 | S514 | ochoa | Conserved oligomeric Golgi complex subunit 3 (COG complex subunit 3) (Component of oligomeric Golgi complex 3) (Vesicle-docking protein SEC34 homolog) (p94) | Involved in ER-Golgi transport (PubMed:11929878). Also involved in retrograde (Golgi to ER) transport (PubMed:37711075). {ECO:0000269|PubMed:11929878, ECO:0000269|PubMed:37711075}. |
Q96JB3 | HIC2 | S348 | ochoa | Hypermethylated in cancer 2 protein (Hic-2) (HIC1-related gene on chromosome 22 protein) (Hic-3) (Zinc finger and BTB domain-containing protein 30) | Transcriptional repressor. |
Q96JN0 | LCOR | S249 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96JZ2 | HSH2D | S298 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96KB5 | PBK | S23 | ochoa | Lymphokine-activated killer T-cell-originated protein kinase (EC 2.7.12.2) (Cancer/testis antigen 84) (CT84) (MAPKK-like protein kinase) (Nori-3) (PDZ-binding kinase) (Spermatogenesis-related protein kinase) (SPK) (T-LAK cell-originated protein kinase) | Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play a role in the activation of lymphoid cells. When phosphorylated, forms a complex with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint during doxorubicin-induced DNA damage. {ECO:0000269|PubMed:10781613, ECO:0000269|PubMed:17482142}. |
Q96LC7 | SIGLEC10 | S645 | ochoa | Sialic acid-binding Ig-like lectin 10 (Siglec-10) (Siglec-like protein 2) | Putative adhesion molecule that mediates sialic-acid dependent binding to cells. Preferentially binds to alpha-2,3- or alpha-2,6-linked sialic acid (By similarity). The sialic acid recognition site may be masked by cis interactions with sialic acids on the same cell surface. In the immune response, seems to act as an inhibitory receptor upon ligand induced tyrosine phosphorylation by recruiting cytoplasmic phosphatase(s) via their SH2 domain(s) that block signal transduction through dephosphorylation of signaling molecules (PubMed:11284738, PubMed:12163025). Involved in negative regulation of B-cell antigen receptor signaling. The inhibition of B cell activation is dependent on PTPN6/SHP-1 (By similarity). In association with CD24 may be involved in the selective suppression of the immune response to danger-associated molecular patterns (DAMPs) such as HMGB1, HSP70 and HSP90 (By similarity). In association with CD24 may regulate the immune repsonse of natural killer (NK) cells (PubMed:25450598). Plays a role in the control of autoimmunity (By similarity). During initiation of adaptive immune responses by CD8-alpha(+) dendritic cells inhibits cross-presentation by impairing the formation of MHC class I-peptide complexes. The function seems to implicate recruitment of PTPN6/SHP-1, which dephosphorylates NCF1 of the NADPH oxidase complex consequently promoting phagosomal acidification (By similarity). {ECO:0000250|UniProtKB:Q80ZE3, ECO:0000269|PubMed:11284738, ECO:0000269|PubMed:25450598, ECO:0000305|PubMed:12163025}. |
Q96MU7 | YTHDC1 | S308 | ochoa | YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) | Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}. |
Q96RT1 | ERBIN | S644 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96T17 | MAP7D2 | S233 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T23 | RSF1 | S392 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T58 | SPEN | S1005 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T88 | UHRF1 | S393 | ochoa | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q99590 | SCAF11 | S393 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99607 | ELF4 | S186 | ochoa | ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) | Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}. |
Q99698 | LYST | S1017 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99698 | LYST | S1509 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99755 | PIP5K1A | S467 | ochoa | Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha (PIP5K1-alpha) (PtdIns(4)P-5-kinase 1 alpha) (EC 2.7.1.68) (68 kDa type I phosphatidylinositol 4-phosphate 5-kinase alpha) (Phosphatidylinositol 4-phosphate 5-kinase type I alpha) (PIP5KIalpha) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:21477596, PubMed:22942276, PubMed:8955136). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (PubMed:19158393, PubMed:20660631). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Can also use phosphatidylinositol (PtdIns) as substrate in vitro (PubMed:22942276). Together with PIP5K1C, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle ingestion by activating the WAS GTPase-binding protein that induces Arp2/3 dependent actin polymerization at the nascent phagocytic cup (By similarity). Together with PIP5K1B, is required, after stimulation by G-protein coupled receptors, for the synthesis of IP3 that will induce stable platelet adhesion (By similarity). Recruited to the plasma membrane by the E-cadherin/beta-catenin complex where it provides the substrate PtdIns(4,5)P2 for the production of PtdIns(3,4,5)P3, IP3 and DAG, that will mobilize internal calcium and drive keratinocyte differentiation (PubMed:19158393). Positively regulates insulin-induced translocation of SLC2A4 to the cell membrane in adipocytes (By similarity). Together with PIP5K1C has a role during embryogenesis (By similarity). Independently of its catalytic activity, is required for membrane ruffling formation, actin organization and focal adhesion formation during directional cell migration by controlling integrin-induced translocation of the small GTPase RAC1 to the plasma membrane (PubMed:20660631). Also functions in the nucleus where it acts as an activator of TUT1 adenylyltransferase activity in nuclear speckles, thereby regulating mRNA polyadenylation of a select set of mRNAs (PubMed:18288197). {ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:19158393, ECO:0000269|PubMed:20660631, ECO:0000269|PubMed:21477596, ECO:0000269|PubMed:22942276, ECO:0000269|PubMed:8955136}. |
Q99848 | EBNA1BP2 | S264 | ochoa | Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) | Required for the processing of the 27S pre-rRNA. {ECO:0000250}. |
Q9BQ70 | TCF25 | T139 | ochoa | Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) | Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}. |
Q9BQE4 | SELENOS | S140 | ochoa | Selenoprotein S (SelS) (VCP-interacting membrane protein) | Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination. {ECO:0000269|PubMed:15215856}. |
Q9BTC0 | DIDO1 | S890 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BV44 | THUMPD3 | S154 | ochoa | tRNA (guanine(6)-N(2))-methyltransferase THUMP3 (EC 2.1.1.256) (THUMP domain-containing protein 3) (tRNA(Trp) (guanine(7)-N(2))-methyltransferase THUMP3) (EC 2.1.1.-) | Catalytic subunit of the THUMPD3-TRM112 methyltransferase complex, that specifically mediates the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 6 (m2G6) in tRNAs (PubMed:34669960, PubMed:37283053). This is one of the major tRNA (guanine-N(2))-methyltransferases (PubMed:37283053). Also catalyzes the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 7 of tRNA(Trp) (PubMed:34669960). {ECO:0000269|PubMed:34669960, ECO:0000269|PubMed:37283053}. |
Q9BXF6 | RAB11FIP5 | S207 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BXS6 | NUSAP1 | S305 | ochoa | Nucleolar and spindle-associated protein 1 (NuSAP) | Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}. |
Q9BYW2 | SETD2 | S314 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9GZR1 | SENP6 | S869 | ochoa | Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) | Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}. |
Q9H1J1 | UPF3A | S170 | ochoa | Regulator of nonsense transcripts 3A (Nonsense mRNA reducing factor 3A) (Up-frameshift suppressor 3 homolog A) (hUpf3) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. However, UPF3A is shown to be only marginally active in NMD as compared to UPF3B. Binds spliced mRNA upstream of exon-exon junctions. In vitro, weakly stimulates translation. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:16601204}. |
Q9H2F5 | EPC1 | S347 | ochoa | Enhancer of polycomb homolog 1 | Component of the NuA4 histone acetyltransferase (HAT) complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR) (PubMed:27153538). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone acetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). In the NuA4 complex, EPC1 is required to recruit MBTD1 into the complex (PubMed:32209463). {ECO:0000250|UniProtKB:Q8C9X6, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:32209463}. |
Q9H6R7 | WDCP | S468 | ochoa | WD repeat and coiled-coil-containing protein | None |
Q9H7D7 | WDR26 | S123 | ochoa | WD repeat-containing protein 26 (CUL4- and DDB1-associated WDR protein 2) (Myocardial ischemic preconditioning up-regulated protein 2) | G-beta-like protein involved in cell signal transduction (PubMed:15378603, PubMed:19446606, PubMed:22065575, PubMed:23625927, PubMed:26895380, PubMed:27098453). Acts as a negative regulator in MAPK signaling pathway (PubMed:15378603). Functions as a scaffolding protein to promote G beta:gamma-mediated PLCB2 plasma membrane translocation and subsequent activation in leukocytes (PubMed:22065575, PubMed:23625927). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). Acts as a negative regulator of the canonical Wnt signaling pathway through preventing ubiquitination of beta-catenin CTNNB1 by the beta-catenin destruction complex, thus negatively regulating CTNNB1 degradation (PubMed:27098453). Serves as a scaffold to coordinate PI3K/AKT pathway-driven cell growth and migration (PubMed:26895380). Protects cells from oxidative stress-induced apoptosis via the down-regulation of AP-1 transcriptional activity as well as by inhibiting cytochrome c release from mitochondria (PubMed:19446606). Also protects cells by promoting hypoxia-mediated autophagy and mitophagy (By similarity). {ECO:0000250|UniProtKB:F1LTR1, ECO:0000269|PubMed:15378603, ECO:0000269|PubMed:19446606, ECO:0000269|PubMed:23625927, ECO:0000269|PubMed:26895380, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:29911972}. |
Q9H8V3 | ECT2 | S842 | ochoa | Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) | Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}. |
Q9H9J4 | USP42 | S1247 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9HB19 | PLEKHA2 | S352 | ochoa | Pleckstrin homology domain-containing family A member 2 (PH domain-containing family A member 2) (Tandem PH domain-containing protein 2) (TAPP-2) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane (By similarity). {ECO:0000250}. |
Q9HBH9 | MKNK2 | T72 | ochoa | MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) | Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}. |
Q9NP66 | HMG20A | S100 | ochoa | High mobility group protein 20A (HMG box-containing protein 20A) (HMG domain-containing protein 1) (HMG domain-containing protein HMGX1) | Plays a role in neuronal differentiation as chromatin-associated protein. Acts as inhibitor of HMG20B. Overcomes the repressive effects of the neuronal silencer REST and induces the activation of neuronal-specific genes. Involved in the recruitment of the histone methyltransferase KMT2A/MLL1 and consequent increased methylation of histone H3 lysine 4 (By similarity). {ECO:0000250}. |
Q9NQ66 | PLCB1 | S982 | ochoa|psp | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) | Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}. |
Q9NRZ9 | HELLS | S119 | ochoa | Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) | Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}. |
Q9NSI6 | BRWD1 | S1607 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NSI8 | SAMSN1 | S23 | ochoa|psp | SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) | Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}. |
Q9NSI8 | SAMSN1 | S90 | ochoa | SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) | Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}. |
Q9NWH9 | SLTM | S553 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9P0W2 | HMG20B | S160 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1-related (SMARCE1-related protein) (BRCA2-associated factor 35) (HMG box-containing protein 20B) (HMG domain-containing protein 2) (HMG domain-containing protein HMGX2) (Sox-like transcriptional factor) (Structural DNA-binding protein BRAF35) | Required for correct progression through G2 phase of the cell cycle and entry into mitosis. Required for RCOR1/CoREST mediated repression of neuronal specific gene promoters. |
Q9P265 | DIP2B | S50 | ochoa | Disco-interacting protein 2 homolog B (DIP2 homolog B) | Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}. |
Q9P2D0 | IBTK | S990 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2D0 | IBTK | S992 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2D1 | CHD7 | S708 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2E9 | RRBP1 | S155 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2R6 | RERE | S641 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UBN7 | HDAC6 | S43 | ochoa|psp | Protein deacetylase HDAC6 (EC 3.5.1.-) (E3 ubiquitin-protein ligase HDAC6) (EC 2.3.2.-) (Tubulin-lysine deacetylase HDAC6) (EC 3.5.1.-) | Deacetylates a wide range of non-histone substrates (PubMed:12024216, PubMed:18606987, PubMed:20308065, PubMed:24882211, PubMed:26246421, PubMed:30538141, PubMed:31857589, PubMed:30770470, PubMed:38534334, PubMed:39567688). Plays a central role in microtubule-dependent cell motility by mediating deacetylation of tubulin (PubMed:12024216, PubMed:20308065, PubMed:26246421). Required for cilia disassembly via deacetylation of alpha-tubulin (PubMed:17604723, PubMed:26246421). Alpha-tubulin deacetylation results in destabilization of dynamic microtubules (By similarity). Promotes deacetylation of CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy (PubMed:30538141). Deacetylates SQSTM1 (PubMed:31857589). Deacetylates peroxiredoxins PRDX1 and PRDX2, decreasing their reducing activity (PubMed:18606987). Deacetylates antiviral protein RIGI in the presence of viral mRNAs which is required for viral RNA detection by RIGI (By similarity). Sequentially deacetylates and polyubiquitinates DNA mismatch repair protein MSH2 which leads to MSH2 degradation, reducing cellular sensitivity to DNA-damaging agents and decreasing cellular DNA mismatch repair activities (PubMed:24882211). Deacetylates DNA mismatch repair protein MLH1 which prevents recruitment of the MutL alpha complex (formed by the MLH1-PMS2 heterodimer) to the MutS alpha complex (formed by the MSH2-MSH6 heterodimer), leading to tolerance of DNA damage (PubMed:30770470). Deacetylates RHOT1/MIRO1 which blocks mitochondrial transport and mediates axon growth inhibition (By similarity). Deacetylates transcription factor SP1 which leads to increased expression of ENG, positively regulating angiogenesis (PubMed:38534334). Deacetylates KHDRBS1/SAM68 which regulates alternative splicing by inhibiting the inclusion of CD44 alternate exons (PubMed:26080397). Acts as a valine sensor by binding to valine through the primate-specific SE14 repeat region (PubMed:39567688). In valine deprivation conditions, translocates from the cytoplasm to the nucleus where it deacetylates TET2 which promotes TET2-dependent DNA demethylation, leading to DNA damage (PubMed:39567688). Promotes odontoblast differentiation following IPO7-mediated nuclear import and subsequent repression of RUNX2 expression (By similarity). In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome (PubMed:17846173). Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and targets them to the aggresome, facilitating their clearance by autophagy (PubMed:17846173). Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer (PubMed:24413532). {ECO:0000250|UniProtKB:D3ZVD8, ECO:0000250|UniProtKB:Q9Z2V5, ECO:0000269|PubMed:12024216, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18606987, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:24882211, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26246421, ECO:0000269|PubMed:30538141, ECO:0000269|PubMed:30770470, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:38534334, ECO:0000269|PubMed:39567688}.; FUNCTION: (Microbial infection) Deacetylates the SARS-CoV-2 N protein which promotes association of the viral N protein with human G3BP1, leading to disruption of cellular stress granule formation and facilitating viral replication. {ECO:0000269|PubMed:39135075}. |
Q9UBU7 | DBF4 | S354 | ochoa | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UBU8 | MORF4L1 | S47 | ochoa | Mortality factor 4-like protein 1 (MORF-related gene 15 protein) (MRG15) (Protein MSL3-1) (Transcription factor-like protein MRG15) | Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:12391155, PubMed:14966270, PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Required for homologous recombination repair (HRR) and resistance to mitomycin C (MMC). Involved in the localization of PALB2, BRCA2 and RAD51, but not BRCA1, to DNA-damage foci. {ECO:0000269|PubMed:12391155, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:20332121, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q9UER7 | DAXX | S641 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UGU5 | HMGXB4 | S105 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UGU5 | HMGXB4 | S156 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UKI2 | CDC42EP3 | S27 | ochoa | Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
Q9UKJ3 | GPATCH8 | S721 | ochoa | G patch domain-containing protein 8 | None |
Q9UKJ3 | GPATCH8 | S1107 | ochoa | G patch domain-containing protein 8 | None |
Q9UKX2 | MYH2 | S1094 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9ULH0 | KIDINS220 | S1741 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULU8 | CADPS | S377 | ochoa | Calcium-dependent secretion activator 1 (Calcium-dependent activator protein for secretion 1) (CAPS-1) | Calcium-binding protein involved in exocytosis of vesicles filled with neurotransmitters and neuropeptides. Probably acts upstream of fusion in the biogenesis or maintenance of mature secretory vesicles. Regulates catecholamine loading of DCVs. May specifically mediate the Ca(2+)-dependent exocytosis of large dense-core vesicles (DCVs) and other dense-core vesicles by acting as a PtdIns(4,5)P2-binding protein that acts at prefusion step following ATP-dependent priming and participates in DCVs-membrane fusion. However, it may also participate in small clear synaptic vesicles (SVs) exocytosis and it is unclear whether its function is related to Ca(2+) triggering (By similarity). {ECO:0000250}. |
Q9ULW2 | FZD10 | S553 | ochoa | Frizzled-10 (Fz-10) (hFz10) (FzE7) (CD antigen CD350) | Receptor for Wnt proteins. Functions in the canonical Wnt/beta-catenin signaling pathway (By similarity). The canonical Wnt/beta-catenin signaling pathway leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues (Probable). {ECO:0000250|UniProtKB:Q8BKG4, ECO:0000305}. |
Q9UN37 | VPS4A | S90 | ochoa | Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) | Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}. |
Q9UQR1 | ZNF148 | S400 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9Y250 | LZTS1 | S38 | ochoa | Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) | Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}. |
Q9Y2H5 | PLEKHA6 | S961 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2K5 | R3HDM2 | S139 | ochoa | R3H domain-containing protein 2 | None |
Q9Y2L6 | FRMD4B | S372 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y314 | NOSIP | S26 | ochoa | Nitric oxide synthase-interacting protein (E3 ubiquitin-protein ligase NOSIP) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase NOSIP) (eNOS-interacting protein) | E3 ubiquitin-protein ligase that is essential for proper development of the forebrain, the eye, and the face. Catalyzes monoubiquitination of serine/threonine-protein phosphatase 2A (PP2A) catalytic subunit PPP2CA/PPP2CB (By similarity). Negatively regulates nitric oxide production by inducing NOS1 and NOS3 translocation to actin cytoskeleton and inhibiting their enzymatic activity (PubMed:11149895, PubMed:15548660, PubMed:16135813). {ECO:0000250|UniProtKB:Q9D6T0, ECO:0000269|PubMed:11149895, ECO:0000269|PubMed:15548660, ECO:0000269|PubMed:16135813}. |
Q9Y3B9 | RRP15 | S240 | ochoa | RRP15-like protein (Ribosomal RNA-processing protein 15) | None |
Q9Y426 | C2CD2 | S516 | ochoa | C2 domain-containing protein 2 (Transmembrane protein 24-like) | None |
Q9Y4G8 | RAPGEF2 | S501 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y520 | PRRC2C | S21 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y5K6 | CD2AP | S542 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y5S9 | RBM8A | S42 | ochoa | RNA-binding protein 8A (Binder of OVCA1-1) (BOV-1) (RNA-binding motif protein 8A) (RNA-binding protein Y14) (Ribonucleoprotein RBM8A) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The MAGOH-RBM8A heterodimer interacts with the EJC key regulator PYM1 leading to EJC disassembly in the cytoplasm and translation enhancement of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Its removal from cytoplasmic mRNAs requires translation initiation from EJC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. The MAGOH-RBM8A heterodimer is a component of the nonsense mediated decay (NMD) pathway. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly. {ECO:0000269|PubMed:12121612, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:12730685, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
Q9Y6J0 | CABIN1 | S386 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6R1 | SLC4A4 | S1029 | ochoa | Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) | Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}. |
O95625 | ZBTB11 | S537 | EPSD|PSP | Zinc finger and BTB domain-containing protein 11 | May be involved in transcriptional regulation. {ECO:0000305}. |
Q53F19 | NCBP3 | S100 | EPSD|PSP | Nuclear cap-binding protein subunit 3 (Protein ELG) | Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}. |
Q9BRS2 | RIOK1 | S130 | Sugiyama | Serine/threonine-protein kinase RIO1 (EC 2.7.11.1) (EC 3.6.1.-) (RIO kinase 1) | Involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in processing of 18S-E pre-rRNA to the mature 18S rRNA. Required for the recycling of NOB1 and PNO1 from the late 40S precursor (PubMed:22072790). The association with the very late 40S subunit intermediate may involve a translation-like checkpoint point cycle preceeding the binding to the 60S ribosomal subunit (By similarity). Despite the protein kinase domain is proposed to act predominantly as an ATPase (By similarity). The catalytic activity regulates its dynamic association with the 40S subunit (By similarity). In addition to its role in ribosomal biogenesis acts as an adapter protein by recruiting NCL/nucleolin the to PRMT5 complex for its symmetrical methylation (PubMed:21081503). {ECO:0000250|UniProtKB:G0S3J5, ECO:0000250|UniProtKB:Q12196, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:22072790}. |
P43490 | NAMPT | S180 | Sugiyama | Nicotinamide phosphoribosyltransferase (NAmPRTase) (Nampt) (EC 2.4.2.12) (Pre-B-cell colony-enhancing factor 1) (Pre-B cell-enhancing factor) (Visfatin) | Catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. It is the rate limiting component in the mammalian NAD biosynthesis pathway. The secreted form behaves both as a cytokine with immunomodulating properties and an adipokine with anti-diabetic properties, it has no enzymatic activity, partly because of lack of activation by ATP, which has a low level in extracellular space and plasma. Plays a role in the modulation of circadian clock function. NAMPT-dependent oscillatory production of NAD regulates oscillation of clock target gene expression by releasing the core clock component: CLOCK-BMAL1 heterodimer from NAD-dependent SIRT1-mediated suppression (By similarity). {ECO:0000250|UniProtKB:Q99KQ4, ECO:0000269|PubMed:24130902}. |
O15446 | POLR1G | T433 | Sugiyama | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
P26639 | TARS1 | S282 | Sugiyama | Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) | Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}. |
Q9H4F8 | SMOC1 | T405 | Sugiyama | SPARC-related modular calcium-binding protein 1 (Secreted modular calcium-binding protein 1) (SMOC-1) | Plays essential roles in both eye and limb development. Probable regulator of osteoblast differentiation. {ECO:0000269|PubMed:20359165, ECO:0000269|PubMed:21194678, ECO:0000269|PubMed:21194680}. |
O75400 | PRPF40A | S927 | Sugiyama | Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) | Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
P08238 | HSP90AB1 | S417 | Sugiyama | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
Q7Z460 | CLASP1 | S1216 | Sugiyama | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
P18859 | ATP5PF | S57 | Sugiyama | ATP synthase peripheral stalk subunit F6, mitochondrial (ATPase subunit F6) (ATP synthase peripheral stalk subunit F6) | Subunit F6, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). Part of the complex F(0) domain (PubMed:37244256). Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements (By similarity). {ECO:0000250|UniProtKB:P02721, ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
O15169 | AXIN1 | S614 | iPTMNet|EPSD | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
Q02878 | RPL6 | T93 | Sugiyama | Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}. |
Q9GZR7 | DDX24 | S166 | Sugiyama | ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) | ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}. |
P62495 | ETF1 | Y290 | Sugiyama | Eukaryotic peptide chain release factor subunit 1 (Eukaryotic release factor 1) (eRF1) (Protein Cl1) (TB3-1) | Component of the eRF1-eRF3-GTP ternary complex, a ternary complex that mediates translation termination in response to the termination codons (PubMed:10676813, PubMed:16777602, PubMed:24486019, PubMed:26245381, PubMed:27863242, PubMed:36638793, PubMed:7990965). The eRF1-eRF3-GTP complex binds to a stop codon in the ribosomal A-site (PubMed:26245381, PubMed:27863242, PubMed:36638793). ETF1/ERF1 is responsible for stop codon recognition and inducing hydrolysis of peptidyl-tRNA (PubMed:26245381, PubMed:27863242, PubMed:36638793). Following GTP hydrolysis, eRF3 (GSPT1/ERF3A or GSPT2/ERF3B) dissociates, permitting ETF1/eRF1 to accommodate fully in the A-site and mediate hydrolysis of peptidyl-tRNA (PubMed:10676813, PubMed:16777602, PubMed:26245381, PubMed:27863242). Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:19417104). Required for SHFL-mediated translation termination which inhibits programmed ribosomal frameshifting (-1PRF) of mRNA from viruses and cellular genes (PubMed:30682371). {ECO:0000269|PubMed:10676813, ECO:0000269|PubMed:16777602, ECO:0000269|PubMed:19417104, ECO:0000269|PubMed:24486019, ECO:0000269|PubMed:26245381, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:30682371, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:7990965}. |
Q9UPT8 | ZC3H4 | S131 | Sugiyama | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
P24666 | ACP1 | S119 | Sugiyama | Low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) (LMW-PTPase) (EC 3.1.3.48) (Adipocyte acid phosphatase) (Low molecular weight cytosolic acid phosphatase) (EC 3.1.3.2) (Red cell acid phosphatase 1) | Acts on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates with differences in substrate specificity between isoform 1 and isoform 2. {ECO:0000269|PubMed:10336608, ECO:0000269|PubMed:9705307}.; FUNCTION: [Isoform 3]: Does not possess phosphatase activity. {ECO:0000269|PubMed:10336608}. |
Q14203 | DCTN1 | S967 | Sugiyama | Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (DAP-150) (DP-150) (p135) (p150-glued) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule (PubMed:25185702). Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon (PubMed:23874158). Plays a role in metaphase spindle orientation (PubMed:22327364). Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole (PubMed:23386061). Plays a role in primary cilia formation (PubMed:25774020). {ECO:0000250|UniProtKB:A0A287B8J2, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23386061, ECO:0000269|PubMed:23874158, ECO:0000269|PubMed:25185702, ECO:0000269|PubMed:25774020}. |
P07305 | H1-0 | S66 | Sugiyama | Histone H1.0 (Histone H1') (Histone H1(0)) [Cleaved into: Histone H1.0, N-terminally processed] | Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures. The histones H1.0 are found in cells that are in terminal stages of differentiation or that have low rates of cell division. |
Q12904 | AIMP1 | S144 | Sugiyama | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] | Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}. |
Q9H0H5 | RACGAP1 | S410 | ELM|iPTMNet|EPSD | Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}. |
Q9UHF7 | TRPS1 | S784 | Sugiyama | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9H1R3 | MYLK2 | S577 | Sugiyama | Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) | Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}. |
Q9NR50 | EIF2B3 | S260 | Sugiyama | Translation initiation factor eIF2B subunit gamma (eIF2B GDP-GTP exchange factor subunit gamma) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on the eukaryotic initiation factor 2 (eIF2) complex gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
Q9NR50 | EIF2B3 | S265 | Sugiyama | Translation initiation factor eIF2B subunit gamma (eIF2B GDP-GTP exchange factor subunit gamma) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on the eukaryotic initiation factor 2 (eIF2) complex gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
Q9UHD2 | TBK1 | S247 | Sugiyama | Serine/threonine-protein kinase TBK1 (EC 2.7.11.1) (NF-kappa-B-activating kinase) (T2K) (TANK-binding kinase 1) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents (PubMed:10581243, PubMed:11839743, PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:15485837, PubMed:18583960, PubMed:21138416, PubMed:23453971, PubMed:23453972, PubMed:23746807, PubMed:25636800, PubMed:26611359, PubMed:32404352, PubMed:34363755, PubMed:32298923). Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X (PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:18583960, PubMed:25636800). This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB (PubMed:12702806, PubMed:15367631, PubMed:25636800, PubMed:32972995). In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli (PubMed:23453971, PubMed:23453972, PubMed:23746807). Plays a key role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1 (PubMed:25636800, PubMed:30842653, PubMed:37926288). Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce expression of interferons (PubMed:25636800). Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing-complexes (PubMed:21931631). Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed:10783893, PubMed:15489227). Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed:21617041). Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome maturation (PubMed:27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, which leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed:16155125). Plays an essential role in the TLR3- and IFN-dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1-mediated cell death, probably acting via CYLD phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Also participates in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed:27135603). {ECO:0000250|UniProtKB:Q9WUN2, ECO:0000269|PubMed:10581243, ECO:0000269|PubMed:10783893, ECO:0000269|PubMed:11839743, ECO:0000269|PubMed:12692549, ECO:0000269|PubMed:12702806, ECO:0000269|PubMed:14703513, ECO:0000269|PubMed:15367631, ECO:0000269|PubMed:15485837, ECO:0000269|PubMed:15489227, ECO:0000269|PubMed:16155125, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21270402, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:22851595, ECO:0000269|PubMed:23453971, ECO:0000269|PubMed:23453972, ECO:0000269|PubMed:23746807, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:26611359, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27135603, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:31530866, ECO:0000269|PubMed:31709703, ECO:0000269|PubMed:32298923, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:34363755, ECO:0000269|PubMed:37926288}. |
P24928 | POLR2A | Y145 | Sugiyama | DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) | Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}. |
A0A0A6YYK5 | None | S141 | ochoa | Uncharacterized protein | None |
A3KN83 | SBNO1 | S794 | ochoa | Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) | Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}. |
A3KN83 | SBNO1 | S799 | ochoa | Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) | Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}. |
A8MW92 | PHF20L1 | S584 | ochoa | PHD finger protein 20-like protein 1 | Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}. |
O15014 | ZNF609 | S743 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15042 | U2SURP | S202 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O43719 | HTATSF1 | S122 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O60245 | PCDH7 | Y948 | ochoa | Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) | None |
O60245 | PCDH7 | S949 | ochoa | Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) | None |
O60832 | DKC1 | S21 | ochoa | H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) | [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}. |
O60841 | EIF5B | S107 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60841 | EIF5B | S164 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O75151 | PHF2 | S537 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75264 | SMIM24 | S108 | ochoa | Small integral membrane protein 24 | None |
O75475 | PSIP1 | S347 | ochoa | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O75554 | WBP4 | S262 | ochoa | WW domain-binding protein 4 (WBP-4) (Formin-binding protein 21) (WW domain-containing-binding protein 4) | Involved in pre-mRNA splicing as a component of the spliceosome (PubMed:19592703, PubMed:28781166, PubMed:9724750). May play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex (PubMed:9724750). {ECO:0000269|PubMed:19592703, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:9724750}. |
O75962 | TRIO | S1809 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O95149 | SNUPN | S329 | ochoa | Snurportin-1 (RNA U transporter 1) | Functions as an U snRNP-specific nuclear import adapter. Involved in the trimethylguanosine (m3G)-cap-dependent nuclear import of U snRNPs. Binds specifically to the terminal m3G-cap U snRNAs. {ECO:0000269|PubMed:10209022, ECO:0000269|PubMed:15920472, ECO:0000269|PubMed:16030253, ECO:0000269|PubMed:38413582, ECO:0000269|PubMed:9670026}. |
O95243 | MBD4 | S253 | ochoa | Methyl-CpG-binding domain protein 4 (EC 3.2.2.-) (Methyl-CpG-binding endonuclease 1) (Methyl-CpG-binding protein MBD4) (Mismatch-specific DNA N-glycosylase) | Mismatch-specific DNA N-glycosylase involved in DNA repair. Has thymine glycosylase activity and is specific for G:T mismatches within methylated and unmethylated CpG sites. Can also remove uracil or 5-fluorouracil in G:U mismatches. Has no lyase activity. Was first identified as methyl-CpG-binding protein. {ECO:0000269|PubMed:10097147, ECO:0000269|PubMed:10930409}. |
O95453 | PARN | S619 | ochoa | Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) | 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}. |
O95684 | CEP43 | S202 | ochoa | Centrosomal protein 43 (FGFR1 oncogene partner) | Required for anchoring microtubules to the centrosomes (PubMed:16314388, PubMed:28659385). Required for ciliation (PubMed:28625565, PubMed:28659385). {ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:28625565, ECO:0000269|PubMed:28659385}. |
P02795 | MT2A | S35 | ochoa | Metallothionein-2 (MT-2) (Metallothionein-2A) (Metallothionein-II) (MT-II) | Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids. |
P04732 | MT1E | S35 | ochoa | Metallothionein-1E (MT-1E) (Metallothionein-IE) (MT-IE) | Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids. |
P06748 | NPM1 | S242 | ochoa | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P07900 | HSP90AA1 | Y284 | ochoa | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P08238 | HSP90AB1 | Y276 | ochoa | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P11055 | MYH3 | S644 | ochoa | Myosin-3 (Muscle embryonic myosin heavy chain) (Myosin heavy chain 3) (Myosin heavy chain, fast skeletal muscle, embryonic) (SMHCE) | Muscle contraction. |
P11388 | TOP2A | S1469 | ochoa|psp | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P12882 | MYH1 | S647 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P12883 | MYH7 | S643 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P12883 | MYH7 | S648 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13533 | MYH6 | S645 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13533 | MYH6 | S650 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13535 | MYH8 | S646 | ochoa | Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) | Muscle contraction. |
P13640 | MT1G | S36 | ochoa | Metallothionein-1G (MT-1G) (Metallothionein-1K) (MT-1K) (Metallothionein-IG) (MT-IG) | Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids. |
P13804 | ETFA | S172 | ochoa | Electron transfer flavoprotein subunit alpha, mitochondrial (Alpha-ETF) | Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase (PubMed:10356313, PubMed:15159392, PubMed:15975918, PubMed:27499296, PubMed:9334218). It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (PubMed:9334218). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism (PubMed:12815589, PubMed:1430199, PubMed:1882842). {ECO:0000269|PubMed:10356313, ECO:0000269|PubMed:12815589, ECO:0000269|PubMed:1430199, ECO:0000269|PubMed:15159392, ECO:0000269|PubMed:15975918, ECO:0000269|PubMed:27499296, ECO:0000269|PubMed:9334218, ECO:0000303|PubMed:17941859, ECO:0000305|PubMed:1882842}. |
P15884 | TCF4 | S546 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P16403 | H1-2 | S36 | ochoa | Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
P16871 | IL7R | S297 | ochoa | Interleukin-7 receptor subunit alpha (IL-7 receptor subunit alpha) (IL-7R subunit alpha) (IL-7R-alpha) (IL-7RA) (CDw127) (CD antigen CD127) | Receptor for interleukin-7. Also acts as a receptor for thymic stromal lymphopoietin (TSLP). |
P19338 | NCL | S60 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P20929 | NEB | S1104 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P20929 | NEB | S1348 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P26358 | DNMT1 | S732 | ochoa | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P29966 | MARCKS | S163 | ochoa|psp | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P30101 | PDIA3 | S474 | ochoa | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
P30419 | NMT1 | T71 | ochoa | Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) | Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}. |
P30419 | NMT1 | S73 | ochoa | Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) | Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}. |
P35251 | RFC1 | Y67 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35251 | RFC1 | S366 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35659 | DEK | S210 | ochoa | Protein DEK | Involved in chromatin organization. {ECO:0000269|PubMed:17524367}. |
P39880 | CUX1 | S1216 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P42568 | MLLT3 | S309 | ochoa | Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}. |
P42677 | RPS27 | S30 | ochoa | Small ribosomal subunit protein eS27 (40S ribosomal protein S27) (Metallopan-stimulin 1) (MPS-1) | Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for proper rRNA processing and maturation of 18S rRNAs (PubMed:25424902). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25424902, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}. |
P46063 | RECQL | S53 | ochoa | ATP-dependent DNA helicase Q1 (EC 5.6.2.4) (DNA 3'-5' helicase Q1) (DNA helicase, RecQ-like type 1) (RecQ1) (DNA-dependent ATPase Q1) (RecQ protein-like 1) | DNA helicase that plays a role in DNA damage repair and genome stability (PubMed:15886194, PubMed:35025765, PubMed:7527136, PubMed:7961977, PubMed:8056767). Exhibits a Mg(2+)- and ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction (PubMed:19151156, PubMed:35025765, PubMed:7527136, PubMed:8056767). Full-length protein unwinds forked DNA substrates, resolves Holliday junctions, and has DNA strand annealing activity (PubMed:19151156, PubMed:25831490). Plays a role in restoring regressed replication forks (PubMed:35025765). Required to restart stalled replication forks induced by abortive topoisomerase 1 and 2 lesions (PubMed:35025765). Does not unwind G-quadruplex DNA (PubMed:18426915). May play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens (PubMed:15886194, PubMed:7961977). {ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:19151156, ECO:0000269|PubMed:25831490, ECO:0000269|PubMed:35025765, ECO:0000269|PubMed:7527136, ECO:0000269|PubMed:7961977, ECO:0000269|PubMed:8056767}. |
P46100 | ATRX | S788 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S815 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | Y1009 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1061 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1941 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1946 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46939 | UTRN | S825 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P49792 | RANBP2 | S2626 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S2628 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P51858 | HDGF | S83 | ochoa | Hepatoma-derived growth factor (HDGF) (High mobility group protein 1-like 2) (HMG-1L2) | [Isoform 1]: Acts as a transcriptional repressor (PubMed:17974029). Has mitogenic activity for fibroblasts (PubMed:11751870, PubMed:26845719). Heparin-binding protein (PubMed:15491618). {ECO:0000269|PubMed:11751870, ECO:0000269|PubMed:15491618, ECO:0000269|PubMed:17974029, ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 2]: Does not have mitogenic activity for fibroblasts (PubMed:26845719). Does not bind heparin (PubMed:26845719). {ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 3]: Has mitogenic activity for fibroblasts (PubMed:26845719). Heparin-binding protein (PubMed:26845719). {ECO:0000269|PubMed:26845719}. |
P54132 | BLM | S48 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P80297 | MT1X | S35 | ochoa | Metallothionein-1X (MT-1X) (Metallothionein-IX) (MT-IX) | Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids. May be involved in FAM168A anti-apoptotic signaling (PubMed:23251525). {ECO:0000269|PubMed:23251525}. |
Q02880 | TOP2B | S1336 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02880 | TOP2B | S1522 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02880 | TOP2B | S1576 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02952 | AKAP12 | S783 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q08174 | PCDH1 | S918 | ochoa | Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) | May be involved in cell-cell interaction processes and in cell adhesion. |
Q08499 | PDE4D | S362 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q09666 | AHNAK | S1010 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S1138 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12913 | PTPRJ | S1009 | ochoa | Receptor-type tyrosine-protein phosphatase eta (Protein-tyrosine phosphatase eta) (R-PTP-eta) (EC 3.1.3.48) (Density-enhanced phosphatase 1) (DEP-1) (HPTP eta) (Protein-tyrosine phosphatase receptor type J) (R-PTP-J) (CD antigen CD148) | Tyrosine phosphatase which dephosphorylates or contributes to the dephosphorylation of CTNND1, FLT3, PDGFRB, MET, KDR, LYN, SRC, MAPK1, MAPK3, EGFR, TJP1, OCLN, PIK3R1 and PIK3R2 (PubMed:10821867, PubMed:12062403, PubMed:12370829, PubMed:12475979, PubMed:18348712, PubMed:19494114, PubMed:19922411, PubMed:21262971). Plays a role in cell adhesion, migration, proliferation and differentiation (PubMed:12370829, PubMed:14709717, PubMed:16682945, PubMed:19836242). Has a role in megakaryocytes and platelet formation (PubMed:30591527). Involved in vascular development (By similarity). Regulator of macrophage adhesion and spreading (By similarity). Positively affects cell-matrix adhesion (By similarity). Positive regulator of platelet activation and thrombosis. Negative regulator of cell proliferation (PubMed:16682945). Negative regulator of PDGF-stimulated cell migration; through dephosphorylation of PDGFR (PubMed:21091576). Positive regulator of endothelial cell survival, as well as of VEGF-induced SRC and AKT activation; through KDR dephosphorylation (PubMed:18936167). Negative regulator of EGFR signaling pathway; through EGFR dephosphorylation (PubMed:19836242). Enhances the barrier function of epithelial junctions during reassembly (PubMed:19332538). Negatively regulates T-cell receptor (TCR) signaling (PubMed:11259588, PubMed:9531590, PubMed:9780142). Upon T-cell TCR activation, it is up-regulated and excluded from the immunological synapses, while upon T-cell-antigen presenting cells (APC) disengagement, it is no longer excluded and can dephosphorylate PLCG1 and LAT to down-regulate prolongation of signaling (PubMed:11259588, PubMed:12913111). {ECO:0000250|UniProtKB:Q64455, ECO:0000269|PubMed:10821867, ECO:0000269|PubMed:11259588, ECO:0000269|PubMed:12062403, ECO:0000269|PubMed:12370829, ECO:0000269|PubMed:12475979, ECO:0000269|PubMed:12913111, ECO:0000269|PubMed:14709717, ECO:0000269|PubMed:16682945, ECO:0000269|PubMed:18348712, ECO:0000269|PubMed:18936167, ECO:0000269|PubMed:19332538, ECO:0000269|PubMed:19494114, ECO:0000269|PubMed:19836242, ECO:0000269|PubMed:19922411, ECO:0000269|PubMed:21091576, ECO:0000269|PubMed:21262971, ECO:0000269|PubMed:30591527, ECO:0000269|PubMed:9531590, ECO:0000269|PubMed:9780142}.; FUNCTION: [Isoform 2]: Activates angiogenesis and cell migration (PubMed:28052032). Downregulates the expression of the endothelial adhesion molecules ICAM1 and VCAM1 (PubMed:28052032). {ECO:0000269|PubMed:28052032}. |
Q13177 | PAK2 | S75 | ochoa | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13206 | DDX10 | S831 | ochoa | Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) | Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}. |
Q13416 | ORC2 | S237 | ochoa | Origin recognition complex subunit 2 | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin-mediated proteasomal degradation. Also stabilizes ORC3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22935713}. |
Q13427 | PPIG | S254 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13435 | SF3B2 | S343 | ochoa | Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
Q13523 | PRP4K | S87 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13523 | PRP4K | S232 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13610 | PWP1 | S249 | ochoa | Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) | Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}. |
Q13610 | PWP1 | S250 | ochoa | Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) | Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}. |
Q14185 | DOCK1 | S1704 | ochoa | Dedicator of cytokinesis protein 1 (180 kDa protein downstream of CRK) (DOCK180) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). Functions as a guanine nucleotide exchange factor (GEF), which activates Rac Rho small GTPases by exchanging bound GDP for free GTP. Its GEF activity may be enhanced by ELMO1 (PubMed:8657152). {ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:8657152}. |
Q14568 | HSP90AA2P | Y283 | ochoa | Heat shock protein HSP 90-alpha A2 (Heat shock 90 kDa protein 1 alpha-like 3) (Heat shock protein HSP 90-alpha A2 pseudogene) (Heat shock protein family C member 2) | Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}. |
Q14644 | RASA3 | S809 | ochoa | Ras GTPase-activating protein 3 (GAP1(IP4BP)) (Ins P4-binding protein) | Inhibitory regulator of the Ras-cyclic AMP pathway. Binds inositol tetrakisphosphate (IP4) with high affinity. Might be a specific IP4 receptor. |
Q14677 | CLINT1 | S163 | ochoa | Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}. |
Q14677 | CLINT1 | S166 | ochoa | Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}. |
Q14686 | NCOA6 | S926 | ochoa | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q14807 | KIF22 | S562 | ochoa | Kinesin-like protein KIF22 (Kinesin-like DNA-binding protein) (Kinesin-like protein 4) | Kinesin family member that is involved in spindle formation and the movements of chromosomes during mitosis and meiosis. Binds to microtubules and to DNA (By similarity). Plays a role in congression of laterally attached chromosomes in NDC80-depleted cells (PubMed:25743205). {ECO:0000250|UniProtKB:Q9I869, ECO:0000269|PubMed:25743205}. |
Q14839 | CHD4 | T360 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q15361 | TTF1 | S226 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q1ED39 | KNOP1 | S297 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q3B726 | POLR1F | S316 | ochoa | DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}. |
Q3L8U1 | CHD9 | S612 | ochoa | Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) | Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}. |
Q4G0J3 | LARP7 | S285 | ochoa | La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) | RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}. |
Q52LW3 | ARHGAP29 | S21 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q562F6 | SGO2 | S1208 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q58EX2 | SDK2 | S1972 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q58FF8 | HSP90AB2P | Y198 | ochoa | Putative heat shock protein HSP 90-beta 2 (Heat shock protein 90-beta b) (Heat shock protein 90Bb) | Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}. |
Q5BKY9 | FAM133B | S185 | ochoa | Protein FAM133B | None |
Q5F1R6 | DNAJC21 | Y397 | ochoa | DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) | May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}. |
Q5QJE6 | DNTTIP2 | S563 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5T200 | ZC3H13 | S1014 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T3I0 | GPATCH4 | S253 | ochoa | G patch domain-containing protein 4 | None |
Q5T5C0 | STXBP5 | S900 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5T5Y3 | CAMSAP1 | S1372 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5UIP0 | RIF1 | S1513 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S1579 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VZK9 | CARMIL1 | S1049 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q674X7 | KAZN | S387 | ochoa | Kazrin | Component of the cornified envelope of keratinocytes. May be involved in the interplay between adherens junctions and desmosomes. The function in the nucleus is not known. {ECO:0000269|PubMed:15337775}. |
Q69YN4 | VIRMA | S1603 | ochoa | Protein virilizer homolog | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q6KC79 | NIPBL | S1042 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6P1L5 | FAM117B | S273 | ochoa | Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) | None |
Q6P4R8 | NFRKB | S328 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6P5Q4 | LMOD2 | S491 | ochoa | Leiomodin-2 (Cardiac leiomodin) (C-LMOD) (Leiomodin) | Mediates nucleation of actin filaments and thereby promotes actin polymerization (PubMed:18403713, PubMed:25250574, PubMed:26370058, PubMed:26417072). Plays a role in the regulation of actin filament length (By similarity). Required for normal sarcomere organization in the heart, and for normal heart function (PubMed:18403713). {ECO:0000250|UniProtKB:Q3UHZ5, ECO:0000269|PubMed:18403713, ECO:0000269|PubMed:25250574, ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:26417072}. |
Q6P9G4 | TMEM154 | S112 | ochoa | Transmembrane protein 154 | None |
Q6PD62 | CTR9 | S943 | ochoa | RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6UB98 | ANKRD12 | S425 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UXV4 | APOOL | S204 | ochoa | MICOS complex subunit MIC27 (Apolipoprotein O-like) (Protein FAM121A) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane. Specifically binds to cardiolipin (in vitro) but not to the precursor lipid phosphatidylglycerol. Plays a crucial role in crista junction formation and mitochondrial function (PubMed:23704930), (PubMed:25764979). {ECO:0000269|PubMed:23704930, ECO:0000269|PubMed:25764979}. |
Q6WKZ4 | RAB11FIP1 | S184 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6WKZ4 | RAB11FIP1 | S186 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZU35 | CRACD | S878 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZUT1 | NKAPD1 | S261 | ochoa | Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) | None |
Q71F23 | CENPU | S136 | ochoa | Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}. |
Q71UM5 | RPS27L | S30 | ochoa | Ribosomal protein eS27-like (40S ribosomal protein S27-like) (Small ribosomal subunit protein eS27-like) | None |
Q86UE4 | MTDH | T458 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86W34 | AMZ2 | S225 | ochoa | Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) | Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}. |
Q86W34 | AMZ2 | S227 | ochoa | Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) | Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}. |
Q86YC2 | PALB2 | S157 | ochoa|psp | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q8IUD2 | ERC1 | S807 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IUI4 | SNX29P2 | S115 | ochoa | Putative protein SNX29P2 (RUN domain-containing protein 2C) (Sorting nexin 29 protein pseudogene 2) | None |
Q8IVF2 | AHNAK2 | S4710 | ochoa | Protein AHNAK2 | None |
Q8IVL0 | NAV3 | S1728 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IWE5 | PLEKHM2 | S327 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8IWE5 | PLEKHM2 | S334 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8N157 | AHI1 | S45 | ochoa | Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) | Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}. |
Q8N587 | ZNF561 | S261 | ochoa | Zinc finger protein 561 | May be involved in transcriptional regulation. |
Q8N8Z6 | DCBLD1 | S492 | ochoa | Discoidin, CUB and LCCL domain-containing protein 1 | None |
Q8WU90 | ZC3H15 | S231 | ochoa | Zinc finger CCCH domain-containing protein 15 (DRG family-regulatory protein 1) (Likely ortholog of mouse immediate early response erythropoietin 4) | Protects DRG1 from proteolytic degradation (PubMed:19819225). Stimulates DRG1 GTPase activity likely by increasing the affinity for the potassium ions (PubMed:23711155). {ECO:0000269|PubMed:19819225, ECO:0000269|PubMed:23711155}. |
Q8WUA2 | PPIL4 | S393 | ochoa | Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) | PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}. |
Q8WUB8 | PHF10 | S322 | ochoa | PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) | Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}. |
Q8WXI2 | CNKSR2 | S503 | ochoa | Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) | May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}. |
Q8WY36 | BBX | S479 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q8WYP5 | AHCTF1 | S2060 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q96AC1 | FERMT2 | S159 | ochoa|psp | Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) | Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}. |
Q96C57 | CUSTOS | S202 | ochoa | Protein CUSTOS | Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}. |
Q96HH4 | TMEM169 | S51 | ochoa | Transmembrane protein 169 | None |
Q96IQ7 | VSIG2 | S281 | ochoa | V-set and immunoglobulin domain-containing protein 2 (Cortical thymocyte-like protein) (CT-like protein) | None |
Q96JM3 | CHAMP1 | S626 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96QE3 | ATAD5 | S217 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96RL7 | VPS13A | S1817 | ochoa | Intermembrane lipid transfer protein VPS13A (Chorea-acanthocytosis protein) (Chorein) (Vacuolar protein sorting-associated protein 13A) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phospholipids (PubMed:34830155). Required for the formation or stabilization of ER-mitochondria contact sites which enable transfer of lipids between the ER and mitochondria (PubMed:30741634). Negatively regulates lipid droplet size and motility (PubMed:30741634). Required for efficient lysosomal protein degradation (PubMed:30709847). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:30709847, ECO:0000269|PubMed:30741634, ECO:0000269|PubMed:34830155}. |
Q99549 | MPHOSPH8 | S164 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99549 | MPHOSPH8 | S182 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99698 | LYST | S1503 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q9BQ70 | TCF25 | S137 | ochoa | Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) | Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}. |
Q9BRJ6 | C7orf50 | S23 | ochoa | Protein cholesin | Hormone secreted from the intestine in response to cholesterol, where it acts to inhibit cholesterol synthesis in the liver and VLDL secretion,leading to a reduction in circulating cholesterol levels. Acts through binding to its receptor, GPR146. {ECO:0000269|PubMed:38503280}. |
Q9BXW9 | FANCD2 | S881 | ochoa | Fanconi anemia group D2 protein (Protein FACD2) | Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}. |
Q9BY42 | RTF2 | S207 | ochoa | Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) | Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}. |
Q9GZR2 | REXO4 | S111 | ochoa | RNA exonuclease 4 (EC 3.1.-.-) (Exonuclease XPMC2) (Prevents mitotic catastrophe 2 protein homolog) (hPMC2) | None |
Q9H2Y9 | SLCO5A1 | S385 | ochoa | Solute carrier organic anion transporter family member 5A1 (Organic anion transporter polypeptide-related protein 4) (OATP-RP4) (OATPRP4) (Solute carrier family 21 member 15) | None |
Q9H501 | ESF1 | S179 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H7B2 | RPF2 | S255 | ochoa | Ribosome production factor 2 homolog (Brix domain-containing protein 1) (Ribosome biogenesis protein RPF2 homolog) | Involved in ribosomal large subunit assembly. May regulate the localization of the 5S RNP/5S ribonucleoprotein particle to the nucleolus. {ECO:0000269|PubMed:24120868}. |
Q9HBH9 | MKNK2 | S74 | ochoa|psp | MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) | Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}. |
Q9HBH9 | MKNK2 | S76 | ochoa | MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) | Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}. |
Q9HCK8 | CHD8 | S1542 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NQ66 | PLCB1 | S981 | ochoa|psp | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) | Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}. |
Q9NWH9 | SLTM | S93 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWH9 | SLTM | S533 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9P0M6 | MACROH2A2 | S171 | ochoa | Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}. |
Q9P212 | PLCE1 | S1096 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 (EC 3.1.4.11) (Pancreas-enriched phospholipase C) (Phosphoinositide phospholipase C-epsilon-1) (Phospholipase C-epsilon-1) (PLC-epsilon-1) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation. In podocytes, is involved in the regulation of lamellipodia formation. Acts downstream of AVIL to allow ARP2/3 complex assembly (PubMed:29058690). {ECO:0000269|PubMed:11022047, ECO:0000269|PubMed:11395506, ECO:0000269|PubMed:11715024, ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:12721365, ECO:0000269|PubMed:16537651, ECO:0000269|PubMed:17086182, ECO:0000269|PubMed:29058690}. |
Q9P2B7 | CFAP97 | S288 | ochoa | Cilia- and flagella-associated protein 97 | None |
Q9P2D0 | IBTK | S993 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2E9 | RRBP1 | S154 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9UBT6 | POLK | S578 | ochoa | DNA polymerase kappa (EC 2.7.7.7) (DINB protein) (DINP) | DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Depending on the context, it inserts the correct base, but causes frequent base transitions, transversions and frameshifts. Lacks 3'-5' proofreading exonuclease activity. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have lyase activity. {ECO:0000269|PubMed:10620008, ECO:0000269|PubMed:11024016, ECO:0000269|PubMed:12145297, ECO:0000269|PubMed:12444249, ECO:0000269|PubMed:12952891, ECO:0000269|PubMed:14630940, ECO:0000269|PubMed:15533436, ECO:0000269|PubMed:28297716}. |
Q9UBU7 | DBF4 | S357 | ochoa | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UBW7 | ZMYM2 | S1052 | ochoa | Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) | Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}. |
Q9UID6 | ZNF639 | S19 | ochoa | Zinc finger protein 639 (Zinc finger protein ANC_2H01) (Zinc finger protein ZASC1) | Binds DNA and may function as a transcriptional repressor. {ECO:0000269|PubMed:16182284}. |
Q9UKJ3 | GPATCH8 | S722 | ochoa | G patch domain-containing protein 8 | None |
Q9UKX2 | MYH2 | S649 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9ULU4 | ZMYND8 | S53 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULW0 | TPX2 | S652 | ochoa | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9ULX6 | AKAP8L | S283 | ochoa | A-kinase anchor protein 8-like (AKAP8-like protein) (Helicase A-binding protein 95) (HAP95) (Homologous to AKAP95 protein) (HA95) (Neighbor of A-kinase-anchoring protein 95) (Neighbor of AKAP95) | Could play a role in constitutive transport element (CTE)-mediated gene expression by association with DHX9. Increases CTE-dependent nuclear unspliced mRNA export (PubMed:10748171, PubMed:11402034). Proposed to target PRKACA to the nucleus but does not seem to be implicated in the binding of regulatory subunit II of PKA (PubMed:10761695, PubMed:11884601). May be involved in nuclear envelope breakdown and chromatin condensation. May be involved in anchoring nuclear membranes to chromatin in interphase and in releasing membranes from chromating at mitosis (PubMed:11034899). May regulate the initiation phase of DNA replication when associated with TMPO isoform Beta (PubMed:12538639). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function seems to act redundantly with AKAP8 (PubMed:16980585). May be involved in regulation of pre-mRNA splicing (PubMed:17594903). {ECO:0000269|PubMed:10748171, ECO:0000269|PubMed:11034899, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11884601, ECO:0000269|PubMed:12538639, ECO:0000269|PubMed:16980585, ECO:0000305|PubMed:10761695}.; FUNCTION: (Microbial infection) In case of EBV infection, may target PRKACA to EBNA-LP-containing nuclear sites to modulate transcription from specific promoters. {ECO:0000269|PubMed:11884601}.; FUNCTION: (Microbial infection) Can synergize with DHX9 to activate the CTE-mediated gene expression of type D retroviruses. {ECO:0000269|PubMed:11402034}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, involved in the DHX9-promoted annealing of host tRNA(Lys3) to viral genomic RNA as a primer in reverse transcription; in vitro negatively regulates DHX9 annealing activity. {ECO:0000269|PubMed:25034436}. |
Q9UPS6 | SETD1B | S1766 | ochoa | Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.364) (Lysine N-methyltransferase 2G) (SET domain-containing protein 1B) (hSET1B) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:17355966, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17355966, PubMed:25561738). Plays an essential role in regulating the transcriptional programming of multipotent hematopoietic progenitor cells and lymphoid lineage specification during hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CFT2, ECO:0000269|PubMed:17355966, ECO:0000269|PubMed:25561738}. |
Q9UPV0 | CEP164 | S379 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UQM7 | CAMK2A | S331 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit alpha (CaM kinase II subunit alpha) (CaMK-II subunit alpha) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in various processes, such as synaptic plasticity, neurotransmitter release and long-term potentiation (PubMed:14722083). Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development (PubMed:28130356). Also regulates the migration of developing neurons (PubMed:29100089). Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity (PubMed:23805378). Phosphorylates the transcription factor ETS1 in response to calcium signaling, thereby decreasing ETS1 affinity for DNA (By similarity). In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (PubMed:11972023). In response to interferon-beta (IFN-beta) stimulation, stimulates the JAK-STAT signaling pathway (PubMed:35568036). Acts as a negative regulator of 2-arachidonoylglycerol (2-AG)-mediated synaptic signaling via modulation of DAGLA activity (By similarity). {ECO:0000250|UniProtKB:P11275, ECO:0000250|UniProtKB:P11798, ECO:0000269|PubMed:11972023, ECO:0000269|PubMed:23805378, ECO:0000269|PubMed:28130356, ECO:0000269|PubMed:29100089}. |
Q9Y2W1 | THRAP3 | S379 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y3E1 | HDGFL3 | S162 | ochoa | Hepatoma-derived growth factor-related protein 3 (HRP-3) (Hepatoma-derived growth factor 2) (HDGF-2) | Enhances DNA synthesis and may play a role in cell proliferation. {ECO:0000269|PubMed:10581169}. |
Q9Y5B6 | PAXBP1 | S155 | ochoa | PAX3- and PAX7-binding protein 1 (GC-rich sequence DNA-binding factor 1) | Adapter protein linking the transcription factors PAX3 and PAX7 to the histone methylation machinery and involved in myogenesis. Associates with a histone methyltransferase complex that specifically mediates dimethylation and trimethylation of 'Lys-4' of histone H3. Mediates the recruitment of that complex to the transcription factors PAX3 and PAX7 on chromatin to regulate the expression of genes involved in muscle progenitor cells proliferation including ID3 and CDC20. {ECO:0000250|UniProtKB:P58501}. |
Q9Y623 | MYH4 | S647 | ochoa | Myosin-4 (Myosin heavy chain 2b) (MyHC-2b) (Myosin heavy chain 4) (Myosin heavy chain IIb) (MyHC-IIb) (Myosin heavy chain, skeletal muscle, fetal) | Muscle contraction. |
Q9Y6R1 | SLC4A4 | S1026 | ochoa|psp | Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) | Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}. |
P62906 | RPL10A | Y107 | Sugiyama | Large ribosomal subunit protein uL1 (60S ribosomal protein L10a) (CSA-19) (Neural precursor cell expressed developmentally down-regulated protein 6) (NEDD-6) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P46777 | RPL5 | S272 | Sugiyama | Large ribosomal subunit protein uL18 (60S ribosomal protein L5) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel. As part of the 5S RNP/5S ribonucleoprotein particle it is an essential component of the LSU, required for its formation and the maturation of rRNAs (PubMed:12962325, PubMed:19061985, PubMed:23636399, PubMed:24120868). It also couples ribosome biogenesis to p53/TP53 activation. As part of the 5S RNP it accumulates in the nucleoplasm and inhibits MDM2, when ribosome biogenesis is perturbed, mediating the stabilization and the activation of TP53 (PubMed:24120868). {ECO:0000269|PubMed:12962325, ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:24120868}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.000225 | 3.648 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000269 | 3.570 |
R-HSA-72172 | mRNA Splicing | 0.000388 | 3.411 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.000408 | 3.389 |
R-HSA-8953854 | Metabolism of RNA | 0.000401 | 3.396 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.000558 | 3.254 |
R-HSA-1640170 | Cell Cycle | 0.000578 | 3.238 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.001342 | 2.872 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.001342 | 2.872 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.001342 | 2.872 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.001342 | 2.872 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.001342 | 2.872 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.001223 | 2.912 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.001343 | 2.872 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.000910 | 3.041 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.001224 | 2.912 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.001472 | 2.832 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.001464 | 2.834 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.001464 | 2.834 |
R-HSA-73886 | Chromosome Maintenance | 0.001104 | 2.957 |
R-HSA-5661231 | Metallothioneins bind metals | 0.000937 | 3.028 |
R-HSA-68877 | Mitotic Prometaphase | 0.001816 | 2.741 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.001971 | 2.705 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.001971 | 2.705 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.002303 | 2.638 |
R-HSA-5660526 | Response to metal ions | 0.002508 | 2.601 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.002890 | 2.539 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.003114 | 2.507 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.003114 | 2.507 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.005185 | 2.285 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.005185 | 2.285 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.005185 | 2.285 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.005185 | 2.285 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.005185 | 2.285 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.005185 | 2.285 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.005185 | 2.285 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.005185 | 2.285 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.005185 | 2.285 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.005185 | 2.285 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.005185 | 2.285 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.003934 | 2.405 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.003934 | 2.405 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.005128 | 2.290 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.004071 | 2.390 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.003464 | 2.460 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.003464 | 2.460 |
R-HSA-373753 | Nephrin family interactions | 0.004642 | 2.333 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 0.005188 | 2.285 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.005511 | 2.259 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.005531 | 2.257 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.006062 | 2.217 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.006062 | 2.217 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.006062 | 2.217 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.006282 | 2.202 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.006696 | 2.174 |
R-HSA-380287 | Centrosome maturation | 0.007130 | 2.147 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.007668 | 2.115 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.008478 | 2.072 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.008478 | 2.072 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.008011 | 2.096 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.007919 | 2.101 |
R-HSA-9620244 | Long-term potentiation | 0.009710 | 2.013 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.009988 | 2.001 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.010179 | 1.992 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.010741 | 1.969 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.010802 | 1.966 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.013219 | 1.879 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.013219 | 1.879 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.012958 | 1.887 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.014038 | 1.853 |
R-HSA-774815 | Nucleosome assembly | 0.014038 | 1.853 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.015618 | 1.806 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.015553 | 1.808 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.015093 | 1.821 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.015093 | 1.821 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.015093 | 1.821 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.014431 | 1.841 |
R-HSA-6802949 | Signaling by RAS mutants | 0.015093 | 1.821 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.016256 | 1.789 |
R-HSA-376176 | Signaling by ROBO receptors | 0.016396 | 1.785 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.018083 | 1.743 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.018991 | 1.721 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.019022 | 1.721 |
R-HSA-390522 | Striated Muscle Contraction | 0.022431 | 1.649 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.021165 | 1.674 |
R-HSA-9930044 | Nuclear RNA decay | 0.020683 | 1.684 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.020683 | 1.684 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.020683 | 1.684 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.020683 | 1.684 |
R-HSA-68886 | M Phase | 0.022852 | 1.641 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.022916 | 1.640 |
R-HSA-5467345 | Deletions in the AXIN1 gene destabilize the destruction complex | 0.026048 | 1.584 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.023886 | 1.622 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.023886 | 1.622 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.025373 | 1.596 |
R-HSA-157579 | Telomere Maintenance | 0.026066 | 1.584 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.024078 | 1.618 |
R-HSA-164944 | Nef and signal transduction | 0.024078 | 1.618 |
R-HSA-5673000 | RAF activation | 0.024265 | 1.615 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.024265 | 1.615 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.028000 | 1.553 |
R-HSA-111933 | Calmodulin induced events | 0.028200 | 1.550 |
R-HSA-111997 | CaM pathway | 0.028200 | 1.550 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.028653 | 1.543 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.029220 | 1.534 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 0.029220 | 1.534 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.030800 | 1.511 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.032493 | 1.488 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.037148 | 1.430 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.037148 | 1.430 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.037148 | 1.430 |
R-HSA-162906 | HIV Infection | 0.033360 | 1.477 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.035662 | 1.448 |
R-HSA-112043 | PLC beta mediated events | 0.037604 | 1.425 |
R-HSA-72312 | rRNA processing | 0.037874 | 1.422 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.038794 | 1.411 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.040498 | 1.393 |
R-HSA-156902 | Peptide chain elongation | 0.045634 | 1.341 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.042166 | 1.375 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.044812 | 1.349 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.042024 | 1.377 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.042166 | 1.375 |
R-HSA-162587 | HIV Life Cycle | 0.045079 | 1.346 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.042166 | 1.375 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 0.040663 | 1.391 |
R-HSA-111996 | Ca-dependent events | 0.044812 | 1.349 |
R-HSA-168255 | Influenza Infection | 0.039771 | 1.400 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.042014 | 1.377 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 0.046917 | 1.329 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 0.046917 | 1.329 |
R-HSA-69275 | G2/M Transition | 0.048144 | 1.317 |
R-HSA-422475 | Axon guidance | 0.048159 | 1.317 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 0.051419 | 1.289 |
R-HSA-5632987 | Defective Mismatch Repair Associated With PMS2 | 0.051419 | 1.289 |
R-HSA-5545483 | Defective Mismatch Repair Associated With MLH1 | 0.051419 | 1.289 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.053495 | 1.272 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.053495 | 1.272 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.053495 | 1.272 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.057976 | 1.237 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.057976 | 1.237 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.057976 | 1.237 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.052753 | 1.278 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.051417 | 1.289 |
R-HSA-1266695 | Interleukin-7 signaling | 0.049902 | 1.302 |
R-HSA-373756 | SDK interactions | 0.051419 | 1.289 |
R-HSA-4839744 | Signaling by APC mutants | 0.053495 | 1.272 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.055509 | 1.256 |
R-HSA-5617833 | Cilium Assembly | 0.053425 | 1.272 |
R-HSA-112040 | G-protein mediated events | 0.050401 | 1.298 |
R-HSA-1489509 | DAG and IP3 signaling | 0.053294 | 1.273 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.050738 | 1.295 |
R-HSA-9675108 | Nervous system development | 0.052193 | 1.282 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.051417 | 1.289 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.053439 | 1.272 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.060188 | 1.220 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.060378 | 1.219 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.060378 | 1.219 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.062007 | 1.208 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.062230 | 1.206 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.064555 | 1.190 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.065459 | 1.184 |
R-HSA-5334118 | DNA methylation | 0.066624 | 1.176 |
R-HSA-9615710 | Late endosomal microautophagy | 0.066624 | 1.176 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.067545 | 1.170 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.067545 | 1.170 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.067545 | 1.170 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.067545 | 1.170 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.067545 | 1.170 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.067545 | 1.170 |
R-HSA-3371556 | Cellular response to heat stress | 0.069428 | 1.158 |
R-HSA-5619054 | Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... | 0.076131 | 1.118 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.076131 | 1.118 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.076204 | 1.118 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.079824 | 1.098 |
R-HSA-192823 | Viral mRNA Translation | 0.084085 | 1.075 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.085548 | 1.068 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.083527 | 1.078 |
R-HSA-2408557 | Selenocysteine synthesis | 0.078846 | 1.103 |
R-HSA-8939211 | ESR-mediated signaling | 0.082164 | 1.085 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.086776 | 1.062 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.070389 | 1.152 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.074976 | 1.125 |
R-HSA-111885 | Opioid Signalling | 0.086776 | 1.062 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.090557 | 1.043 |
R-HSA-418885 | DCC mediated attractive signaling | 0.090557 | 1.043 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.090557 | 1.043 |
R-HSA-193648 | NRAGE signals death through JNK | 0.091182 | 1.040 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.095128 | 1.022 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.095772 | 1.019 |
R-HSA-203615 | eNOS activation | 0.095772 | 1.019 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 0.100201 | 0.999 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 0.146479 | 0.834 |
R-HSA-2644607 | Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling | 0.146479 | 0.834 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 0.146479 | 0.834 |
R-HSA-2644605 | FBXW7 Mutants and NOTCH1 in Cancer | 0.146479 | 0.834 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 0.168720 | 0.773 |
R-HSA-2660826 | Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.190382 | 0.720 |
R-HSA-2660825 | Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.190382 | 0.720 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 0.211482 | 0.675 |
R-HSA-177539 | Autointegration results in viral DNA circles | 0.211482 | 0.675 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 0.211482 | 0.675 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.232033 | 0.634 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.232033 | 0.634 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 0.232033 | 0.634 |
R-HSA-72731 | Recycling of eIF2:GDP | 0.232033 | 0.634 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 0.232033 | 0.634 |
R-HSA-5655862 | Translesion synthesis by POLK | 0.106984 | 0.971 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.132933 | 0.876 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.132933 | 0.876 |
R-HSA-170984 | ARMS-mediated activation | 0.271545 | 0.566 |
R-HSA-9613354 | Lipophagy | 0.271545 | 0.566 |
R-HSA-5218900 | CASP8 activity is inhibited | 0.271545 | 0.566 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.271545 | 0.566 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.141873 | 0.848 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.141873 | 0.848 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.141873 | 0.848 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.141873 | 0.848 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.150937 | 0.821 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.160112 | 0.796 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.169386 | 0.771 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.169386 | 0.771 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.309029 | 0.510 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.309029 | 0.510 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.178747 | 0.748 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 0.178747 | 0.748 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.197690 | 0.704 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.344588 | 0.463 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.344588 | 0.463 |
R-HSA-3000484 | Scavenging by Class F Receptors | 0.344588 | 0.463 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.216861 | 0.664 |
R-HSA-8949613 | Cristae formation | 0.216861 | 0.664 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.103266 | 0.986 |
R-HSA-191859 | snRNP Assembly | 0.103266 | 0.986 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.226508 | 0.645 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.226508 | 0.645 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.172388 | 0.763 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.378322 | 0.422 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.129467 | 0.888 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.394533 | 0.404 |
R-HSA-72187 | mRNA 3'-end processing | 0.212200 | 0.673 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.284748 | 0.546 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.168140 | 0.774 |
R-HSA-72649 | Translation initiation complex formation | 0.225891 | 0.646 |
R-HSA-3214815 | HDACs deacetylate histones | 0.232799 | 0.633 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.239745 | 0.620 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.239745 | 0.620 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.313786 | 0.503 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.253738 | 0.596 |
R-HSA-6782135 | Dual incision in TC-NER | 0.253738 | 0.596 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.323413 | 0.490 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.215773 | 0.666 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.370937 | 0.431 |
R-HSA-167161 | HIV Transcription Initiation | 0.370937 | 0.431 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.370937 | 0.431 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.389585 | 0.409 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.339225 | 0.470 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.374893 | 0.426 |
R-HSA-167172 | Transcription of the HIV genome | 0.143505 | 0.843 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.181182 | 0.742 |
R-HSA-167169 | HIV Transcription Elongation | 0.129154 | 0.889 |
R-HSA-72086 | mRNA Capping | 0.236185 | 0.627 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.236185 | 0.627 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.245883 | 0.609 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.129154 | 0.889 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.199146 | 0.701 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.216861 | 0.664 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.361529 | 0.442 |
R-HSA-9948299 | Ribosome-associated quality control | 0.119347 | 0.923 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.123330 | 0.909 |
R-HSA-3371568 | Attenuation phase | 0.129154 | 0.889 |
R-HSA-110312 | Translesion synthesis by REV1 | 0.394533 | 0.404 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 0.323413 | 0.490 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.153182 | 0.815 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.151334 | 0.820 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.117605 | 0.930 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.168720 | 0.773 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.344588 | 0.463 |
R-HSA-69091 | Polymerase switching | 0.344588 | 0.463 |
R-HSA-69109 | Leading Strand Synthesis | 0.344588 | 0.463 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.226829 | 0.644 |
R-HSA-3928664 | Ephrin signaling | 0.124129 | 0.906 |
R-HSA-162592 | Integration of provirus | 0.327043 | 0.485 |
R-HSA-4641265 | Repression of WNT target genes | 0.344588 | 0.463 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.344588 | 0.463 |
R-HSA-180746 | Nuclear import of Rev protein | 0.294448 | 0.531 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.102246 | 0.990 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.284748 | 0.546 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 0.168720 | 0.773 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 0.252049 | 0.599 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 0.327043 | 0.485 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.275036 | 0.561 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.294448 | 0.531 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.323413 | 0.490 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.361529 | 0.442 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.361529 | 0.442 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.370937 | 0.431 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.303409 | 0.518 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 0.275036 | 0.561 |
R-HSA-9692913 | SARS-CoV-1-mediated effects on programmed cell death | 0.146479 | 0.834 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.168720 | 0.773 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.190382 | 0.720 |
R-HSA-8949664 | Processing of SMDT1 | 0.361677 | 0.442 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.394533 | 0.404 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.352068 | 0.453 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.119404 | 0.923 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.138760 | 0.858 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.294448 | 0.531 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.124129 | 0.906 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.313277 | 0.504 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.169611 | 0.771 |
R-HSA-5693538 | Homology Directed Repair | 0.139435 | 0.856 |
R-HSA-3249367 | STAT6-mediated induction of chemokines | 0.123645 | 0.908 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 0.190382 | 0.720 |
R-HSA-434313 | Intracellular metabolism of fatty acids regulates insulin secretion | 0.211482 | 0.675 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.232033 | 0.634 |
R-HSA-3371378 | Regulation by c-FLIP | 0.252049 | 0.599 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.124129 | 0.906 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 0.132933 | 0.876 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 0.290534 | 0.537 |
R-HSA-192905 | vRNP Assembly | 0.309029 | 0.510 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.394533 | 0.404 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.294448 | 0.531 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.274929 | 0.561 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.352068 | 0.453 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.313277 | 0.504 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.380291 | 0.420 |
R-HSA-9646399 | Aggrephagy | 0.352068 | 0.453 |
R-HSA-73894 | DNA Repair | 0.208960 | 0.680 |
R-HSA-9843745 | Adipogenesis | 0.347568 | 0.459 |
R-HSA-72766 | Translation | 0.214247 | 0.669 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 0.232033 | 0.634 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.352068 | 0.453 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.106984 | 0.971 |
R-HSA-3371511 | HSF1 activation | 0.106468 | 0.973 |
R-HSA-3295583 | TRP channels | 0.207252 | 0.684 |
R-HSA-180786 | Extension of Telomeres | 0.260778 | 0.584 |
R-HSA-5218859 | Regulated Necrosis | 0.324907 | 0.488 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.181182 | 0.742 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.245883 | 0.609 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.327043 | 0.485 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.265316 | 0.576 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.394533 | 0.404 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.333006 | 0.478 |
R-HSA-6811438 | Intra-Golgi traffic | 0.370937 | 0.431 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.353523 | 0.452 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.339225 | 0.470 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.178747 | 0.748 |
R-HSA-4086398 | Ca2+ pathway | 0.360658 | 0.443 |
R-HSA-73887 | Death Receptor Signaling | 0.173026 | 0.762 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.301500 | 0.521 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 0.123645 | 0.908 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 0.211482 | 0.675 |
R-HSA-69416 | Dimerization of procaspase-8 | 0.252049 | 0.599 |
R-HSA-164843 | 2-LTR circle formation | 0.290534 | 0.537 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.327043 | 0.485 |
R-HSA-442720 | CREB1 phosphorylation through the activation of Adenylate Cyclase | 0.361677 | 0.442 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.172388 | 0.763 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.378322 | 0.422 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.294448 | 0.531 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.253738 | 0.596 |
R-HSA-9710421 | Defective pyroptosis | 0.389585 | 0.409 |
R-HSA-3214847 | HATs acetylate histones | 0.331014 | 0.480 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.272318 | 0.565 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.188186 | 0.725 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.185421 | 0.732 |
R-HSA-9663891 | Selective autophagy | 0.255052 | 0.593 |
R-HSA-9612973 | Autophagy | 0.312530 | 0.505 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.211482 | 0.675 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 0.252049 | 0.599 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.271545 | 0.566 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.323413 | 0.490 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.232410 | 0.634 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.225215 | 0.647 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.243672 | 0.613 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.283938 | 0.547 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.124129 | 0.906 |
R-HSA-75108 | Activation, myristolyation of BID and translocation to mitochondria | 0.100201 | 0.999 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.232033 | 0.634 |
R-HSA-425381 | Bicarbonate transporters | 0.309029 | 0.510 |
R-HSA-428540 | Activation of RAC1 | 0.327043 | 0.485 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.327043 | 0.485 |
R-HSA-9839394 | TGFBR3 expression | 0.197690 | 0.704 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 0.344588 | 0.463 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 0.361677 | 0.442 |
R-HSA-180024 | DARPP-32 events | 0.236185 | 0.627 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.178872 | 0.747 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.255596 | 0.592 |
R-HSA-9857492 | Protein lipoylation | 0.394533 | 0.404 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.212200 | 0.673 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.112464 | 0.949 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.274929 | 0.561 |
R-HSA-68882 | Mitotic Anaphase | 0.175794 | 0.755 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.367782 | 0.434 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.178734 | 0.748 |
R-HSA-4839726 | Chromatin organization | 0.103932 | 0.983 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.236185 | 0.627 |
R-HSA-438064 | Post NMDA receptor activation events | 0.112770 | 0.948 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.361529 | 0.442 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.139082 | 0.857 |
R-HSA-74160 | Gene expression (Transcription) | 0.151947 | 0.818 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.275036 | 0.561 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.370937 | 0.431 |
R-HSA-162909 | Host Interactions of HIV factors | 0.301348 | 0.521 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.323413 | 0.490 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.301781 | 0.520 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.282035 | 0.550 |
R-HSA-69481 | G2/M Checkpoints | 0.321798 | 0.492 |
R-HSA-9675135 | Diseases of DNA repair | 0.172388 | 0.763 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.190382 | 0.720 |
R-HSA-447041 | CHL1 interactions | 0.232033 | 0.634 |
R-HSA-9629569 | Protein hydroxylation | 0.141873 | 0.848 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 0.378322 | 0.422 |
R-HSA-5357801 | Programmed Cell Death | 0.383721 | 0.416 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.325515 | 0.487 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.353523 | 0.452 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.107449 | 0.969 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.394533 | 0.404 |
R-HSA-5683057 | MAPK family signaling cascades | 0.177290 | 0.751 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.098673 | 1.006 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 0.271545 | 0.566 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.141873 | 0.848 |
R-HSA-1247673 | Erythrocytes take up oxygen and release carbon dioxide | 0.344588 | 0.463 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.361677 | 0.442 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.116040 | 0.935 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.361529 | 0.442 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.168128 | 0.774 |
R-HSA-9824446 | Viral Infection Pathways | 0.331002 | 0.480 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.231934 | 0.635 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.380291 | 0.420 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.333364 | 0.477 |
R-HSA-73928 | Depyrimidination | 0.380291 | 0.420 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 0.252049 | 0.599 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.245883 | 0.609 |
R-HSA-9856872 | Malate-aspartate shuttle | 0.378322 | 0.422 |
R-HSA-9828642 | Respiratory syncytial virus genome transcription | 0.378322 | 0.422 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.153182 | 0.815 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.294448 | 0.531 |
R-HSA-9711097 | Cellular response to starvation | 0.321695 | 0.493 |
R-HSA-8953897 | Cellular responses to stimuli | 0.142492 | 0.846 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 0.197690 | 0.704 |
R-HSA-397014 | Muscle contraction | 0.272234 | 0.565 |
R-HSA-422356 | Regulation of insulin secretion | 0.163862 | 0.786 |
R-HSA-2262752 | Cellular responses to stress | 0.265720 | 0.576 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.232033 | 0.634 |
R-HSA-8852135 | Protein ubiquitination | 0.374893 | 0.426 |
R-HSA-211000 | Gene Silencing by RNA | 0.384377 | 0.415 |
R-HSA-373755 | Semaphorin interactions | 0.289156 | 0.539 |
R-HSA-9707616 | Heme signaling | 0.282035 | 0.550 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.245883 | 0.609 |
R-HSA-8876725 | Protein methylation | 0.394533 | 0.404 |
R-HSA-9733709 | Cardiogenesis | 0.275036 | 0.561 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.275036 | 0.561 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.285325 | 0.545 |
R-HSA-75153 | Apoptotic execution phase | 0.172388 | 0.763 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 0.172388 | 0.763 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.330899 | 0.480 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.178747 | 0.748 |
R-HSA-9842663 | Signaling by LTK | 0.344588 | 0.463 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.342559 | 0.465 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.208723 | 0.680 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.224307 | 0.649 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.380291 | 0.420 |
R-HSA-163685 | Integration of energy metabolism | 0.378634 | 0.422 |
R-HSA-435354 | Zinc transporters | 0.378322 | 0.422 |
R-HSA-1538133 | G0 and Early G1 | 0.265316 | 0.576 |
R-HSA-2514856 | The phototransduction cascade | 0.205425 | 0.687 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.275036 | 0.561 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.194139 | 0.712 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.305482 | 0.515 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.294448 | 0.531 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.313786 | 0.503 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.122233 | 0.913 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 0.123330 | 0.909 |
R-HSA-1500931 | Cell-Cell communication | 0.395005 | 0.403 |
R-HSA-5689880 | Ub-specific processing proteases | 0.395929 | 0.402 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.398816 | 0.399 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.398816 | 0.399 |
R-HSA-373752 | Netrin-1 signaling | 0.398816 | 0.399 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.405240 | 0.392 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.407983 | 0.389 |
R-HSA-9824272 | Somitogenesis | 0.407983 | 0.389 |
R-HSA-9833482 | PKR-mediated signaling | 0.410165 | 0.387 |
R-HSA-5656121 | Translesion synthesis by POLI | 0.410323 | 0.387 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 0.410323 | 0.387 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 0.410323 | 0.387 |
R-HSA-169893 | Prolonged ERK activation events | 0.410323 | 0.387 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.410323 | 0.387 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.410323 | 0.387 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.410323 | 0.387 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.413600 | 0.383 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.417080 | 0.380 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.417080 | 0.380 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.417080 | 0.380 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.417151 | 0.380 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.419714 | 0.377 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.425702 | 0.371 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.425702 | 0.371 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.425702 | 0.371 |
R-HSA-9927020 | Heme assimilation | 0.425702 | 0.371 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.430673 | 0.366 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.431039 | 0.365 |
R-HSA-389356 | Co-stimulation by CD28 | 0.435060 | 0.361 |
R-HSA-5688426 | Deubiquitination | 0.439991 | 0.357 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.440680 | 0.356 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.440680 | 0.356 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.440680 | 0.356 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.440680 | 0.356 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.442329 | 0.354 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.443938 | 0.353 |
R-HSA-73893 | DNA Damage Bypass | 0.443938 | 0.353 |
R-HSA-1500620 | Meiosis | 0.444807 | 0.352 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.444807 | 0.352 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.452737 | 0.344 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.454559 | 0.342 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.455269 | 0.342 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 0.455269 | 0.342 |
R-HSA-163615 | PKA activation | 0.455269 | 0.342 |
R-HSA-5358508 | Mismatch Repair | 0.455269 | 0.342 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.455269 | 0.342 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 0.455269 | 0.342 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.455269 | 0.342 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.455269 | 0.342 |
R-HSA-432142 | Platelet sensitization by LDL | 0.455269 | 0.342 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.458442 | 0.339 |
R-HSA-912446 | Meiotic recombination | 0.461457 | 0.336 |
R-HSA-195721 | Signaling by WNT | 0.462657 | 0.335 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.469479 | 0.328 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.469479 | 0.328 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.469479 | 0.328 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.469479 | 0.328 |
R-HSA-1237044 | Erythrocytes take up carbon dioxide and release oxygen | 0.469479 | 0.328 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.469479 | 0.328 |
R-HSA-844456 | The NLRP3 inflammasome | 0.469479 | 0.328 |
R-HSA-1480926 | O2/CO2 exchange in erythrocytes | 0.469479 | 0.328 |
R-HSA-1237112 | Methionine salvage pathway | 0.469479 | 0.328 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.470095 | 0.328 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.470095 | 0.328 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.470095 | 0.328 |
R-HSA-9645723 | Diseases of programmed cell death | 0.471932 | 0.326 |
R-HSA-1221632 | Meiotic synapsis | 0.478649 | 0.320 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.478649 | 0.320 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 0.483318 | 0.316 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.483318 | 0.316 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.483318 | 0.316 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.483318 | 0.316 |
R-HSA-9823730 | Formation of definitive endoderm | 0.483318 | 0.316 |
R-HSA-6807004 | Negative regulation of MET activity | 0.483318 | 0.316 |
R-HSA-73884 | Base Excision Repair | 0.485269 | 0.314 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.487119 | 0.312 |
R-HSA-2132295 | MHC class II antigen presentation | 0.488691 | 0.311 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.495502 | 0.305 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.496797 | 0.304 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.496797 | 0.304 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.496797 | 0.304 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.496797 | 0.304 |
R-HSA-69186 | Lagging Strand Synthesis | 0.496797 | 0.304 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.496797 | 0.304 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.496797 | 0.304 |
R-HSA-75893 | TNF signaling | 0.503798 | 0.298 |
R-HSA-5578775 | Ion homeostasis | 0.503798 | 0.298 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.509926 | 0.292 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.509926 | 0.292 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.509926 | 0.292 |
R-HSA-109581 | Apoptosis | 0.515499 | 0.288 |
R-HSA-114608 | Platelet degranulation | 0.516452 | 0.287 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.522712 | 0.282 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.522712 | 0.282 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.528149 | 0.277 |
R-HSA-3000170 | Syndecan interactions | 0.535166 | 0.272 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.536085 | 0.271 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.536085 | 0.271 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.536085 | 0.271 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.536085 | 0.271 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.536085 | 0.271 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.536085 | 0.271 |
R-HSA-983189 | Kinesins | 0.536085 | 0.271 |
R-HSA-379724 | tRNA Aminoacylation | 0.536085 | 0.271 |
R-HSA-1227986 | Signaling by ERBB2 | 0.536085 | 0.271 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.539655 | 0.268 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.543145 | 0.265 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.543928 | 0.264 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.547296 | 0.262 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.547296 | 0.262 |
R-HSA-429947 | Deadenylation of mRNA | 0.547296 | 0.262 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 0.547296 | 0.262 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.547296 | 0.262 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.548810 | 0.261 |
R-HSA-9909396 | Circadian clock | 0.548810 | 0.261 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.551679 | 0.258 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.551679 | 0.258 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.552752 | 0.257 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.554093 | 0.256 |
R-HSA-1296041 | Activation of G protein gated Potassium channels | 0.559110 | 0.253 |
R-HSA-1296059 | G protein gated Potassium channels | 0.559110 | 0.253 |
R-HSA-997272 | Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits | 0.559110 | 0.253 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.559110 | 0.253 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.559110 | 0.253 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.559110 | 0.253 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.559110 | 0.253 |
R-HSA-3214842 | HDMs demethylate histones | 0.559110 | 0.253 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.559336 | 0.252 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.559336 | 0.252 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.566900 | 0.246 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.570616 | 0.244 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.570616 | 0.244 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.570616 | 0.244 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.570616 | 0.244 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.570616 | 0.244 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.570616 | 0.244 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.570616 | 0.244 |
R-HSA-525793 | Myogenesis | 0.570616 | 0.244 |
R-HSA-70635 | Urea cycle | 0.570616 | 0.244 |
R-HSA-1483255 | PI Metabolism | 0.573627 | 0.241 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.574370 | 0.241 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.581746 | 0.235 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.581823 | 0.235 |
R-HSA-171306 | Packaging Of Telomere Ends | 0.581823 | 0.235 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 0.581823 | 0.235 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.581823 | 0.235 |
R-HSA-201451 | Signaling by BMP | 0.581823 | 0.235 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.581823 | 0.235 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.581823 | 0.235 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.589027 | 0.230 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.591297 | 0.228 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.591297 | 0.228 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.592737 | 0.227 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.592737 | 0.227 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.592737 | 0.227 |
R-HSA-622312 | Inflammasomes | 0.592737 | 0.227 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.592737 | 0.227 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.592737 | 0.227 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.596214 | 0.225 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.600101 | 0.222 |
R-HSA-1632852 | Macroautophagy | 0.600101 | 0.222 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.603306 | 0.219 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.603368 | 0.219 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.603368 | 0.219 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.609931 | 0.215 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.613722 | 0.212 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.613722 | 0.212 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.613722 | 0.212 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 0.613722 | 0.212 |
R-HSA-9008059 | Interleukin-37 signaling | 0.613722 | 0.212 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.617208 | 0.210 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.619681 | 0.208 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.623806 | 0.205 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.623806 | 0.205 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.623806 | 0.205 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.623806 | 0.205 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.623806 | 0.205 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.623806 | 0.205 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 0.623806 | 0.205 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.623806 | 0.205 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.624017 | 0.205 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.629140 | 0.201 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.631554 | 0.200 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 0.633627 | 0.198 |
R-HSA-69190 | DNA strand elongation | 0.633627 | 0.198 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.633627 | 0.198 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.633847 | 0.198 |
R-HSA-162582 | Signal Transduction | 0.639317 | 0.194 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.643193 | 0.192 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.643193 | 0.192 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.643193 | 0.192 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.643193 | 0.192 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.643193 | 0.192 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.643193 | 0.192 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.643193 | 0.192 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.643883 | 0.191 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.650318 | 0.187 |
R-HSA-9020591 | Interleukin-12 signaling | 0.650318 | 0.187 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.652509 | 0.185 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.652509 | 0.185 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.652509 | 0.185 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.652509 | 0.185 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.652509 | 0.185 |
R-HSA-69306 | DNA Replication | 0.661272 | 0.180 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.661583 | 0.179 |
R-HSA-5205647 | Mitophagy | 0.661583 | 0.179 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.661583 | 0.179 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.662243 | 0.179 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.665705 | 0.177 |
R-HSA-373760 | L1CAM interactions | 0.667313 | 0.176 |
R-HSA-9659379 | Sensory processing of sound | 0.669070 | 0.175 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.669070 | 0.175 |
R-HSA-1989781 | PPARA activates gene expression | 0.670099 | 0.174 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.670420 | 0.174 |
R-HSA-169911 | Regulation of Apoptosis | 0.670420 | 0.174 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.670420 | 0.174 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.670420 | 0.174 |
R-HSA-187687 | Signalling to ERKs | 0.670420 | 0.174 |
R-HSA-381042 | PERK regulates gene expression | 0.670420 | 0.174 |
R-HSA-446728 | Cell junction organization | 0.672060 | 0.173 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.675137 | 0.171 |
R-HSA-5654738 | Signaling by FGFR2 | 0.675137 | 0.171 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.678767 | 0.168 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.679027 | 0.168 |
R-HSA-9682385 | FLT3 signaling in disease | 0.679027 | 0.168 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.679027 | 0.168 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.679027 | 0.168 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.679027 | 0.168 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.679027 | 0.168 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.679027 | 0.168 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.681114 | 0.167 |
R-HSA-212436 | Generic Transcription Pathway | 0.682914 | 0.166 |
R-HSA-68875 | Mitotic Prophase | 0.687039 | 0.163 |
R-HSA-877300 | Interferon gamma signaling | 0.687275 | 0.163 |
R-HSA-4641257 | Degradation of AXIN | 0.687410 | 0.163 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.687410 | 0.163 |
R-HSA-110331 | Cleavage of the damaged purine | 0.687410 | 0.163 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.687410 | 0.163 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.687410 | 0.163 |
R-HSA-196757 | Metabolism of folate and pterines | 0.687410 | 0.163 |
R-HSA-9006936 | Signaling by TGFB family members | 0.691469 | 0.160 |
R-HSA-73927 | Depurination | 0.695575 | 0.158 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.695575 | 0.158 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.695575 | 0.158 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.703526 | 0.153 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.703526 | 0.153 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.703526 | 0.153 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.703526 | 0.153 |
R-HSA-201556 | Signaling by ALK | 0.703526 | 0.153 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.711271 | 0.148 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.711271 | 0.148 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.711271 | 0.148 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.711271 | 0.148 |
R-HSA-202433 | Generation of second messenger molecules | 0.711271 | 0.148 |
R-HSA-194138 | Signaling by VEGF | 0.714968 | 0.146 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.715107 | 0.146 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.718813 | 0.143 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.718813 | 0.143 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.718813 | 0.143 |
R-HSA-9607240 | FLT3 Signaling | 0.718813 | 0.143 |
R-HSA-447115 | Interleukin-12 family signaling | 0.720468 | 0.142 |
R-HSA-109582 | Hemostasis | 0.722395 | 0.141 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.726159 | 0.139 |
R-HSA-977444 | GABA B receptor activation | 0.733314 | 0.135 |
R-HSA-991365 | Activation of GABAB receptors | 0.733314 | 0.135 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.733314 | 0.135 |
R-HSA-112310 | Neurotransmitter release cycle | 0.736042 | 0.133 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.739879 | 0.131 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 0.740282 | 0.131 |
R-HSA-8854214 | TBC/RABGAPs | 0.740282 | 0.131 |
R-HSA-1474165 | Reproduction | 0.740935 | 0.130 |
R-HSA-112316 | Neuronal System | 0.744091 | 0.128 |
R-HSA-5576891 | Cardiac conduction | 0.745075 | 0.128 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.745998 | 0.127 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.745998 | 0.127 |
R-HSA-5683826 | Surfactant metabolism | 0.747068 | 0.127 |
R-HSA-2172127 | DAP12 interactions | 0.747068 | 0.127 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.749596 | 0.125 |
R-HSA-9679506 | SARS-CoV Infections | 0.753437 | 0.123 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.753678 | 0.123 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.753678 | 0.123 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.753678 | 0.123 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.753678 | 0.123 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.755654 | 0.122 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.758415 | 0.120 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.760115 | 0.119 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.760115 | 0.119 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.760115 | 0.119 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.760115 | 0.119 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.760115 | 0.119 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.768819 | 0.114 |
R-HSA-2559583 | Cellular Senescence | 0.770368 | 0.113 |
R-HSA-9711123 | Cellular response to chemical stress | 0.771911 | 0.112 |
R-HSA-9634597 | GPER1 signaling | 0.772490 | 0.112 |
R-HSA-9031628 | NGF-stimulated transcription | 0.772490 | 0.112 |
R-HSA-425410 | Metal ion SLC transporters | 0.772490 | 0.112 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.773997 | 0.111 |
R-HSA-199991 | Membrane Trafficking | 0.774050 | 0.111 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.778437 | 0.109 |
R-HSA-190236 | Signaling by FGFR | 0.782710 | 0.106 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.784228 | 0.106 |
R-HSA-68949 | Orc1 removal from chromatin | 0.795362 | 0.099 |
R-HSA-6794361 | Neurexins and neuroligins | 0.795362 | 0.099 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.797641 | 0.098 |
R-HSA-983712 | Ion channel transport | 0.798966 | 0.097 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.799256 | 0.097 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.800712 | 0.097 |
R-HSA-445355 | Smooth Muscle Contraction | 0.800712 | 0.097 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.807103 | 0.093 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.807103 | 0.093 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.807838 | 0.093 |
R-HSA-2187338 | Visual phototransduction | 0.810892 | 0.091 |
R-HSA-9833110 | RSV-host interactions | 0.810924 | 0.091 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.810997 | 0.091 |
R-HSA-166520 | Signaling by NTRKs | 0.814087 | 0.089 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.814677 | 0.089 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.815940 | 0.088 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.815940 | 0.088 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.815940 | 0.088 |
R-HSA-157118 | Signaling by NOTCH | 0.816299 | 0.088 |
R-HSA-9758941 | Gastrulation | 0.817238 | 0.088 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.819168 | 0.087 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.820753 | 0.086 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.820753 | 0.086 |
R-HSA-69239 | Synthesis of DNA | 0.821984 | 0.085 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.823402 | 0.084 |
R-HSA-2672351 | Stimuli-sensing channels | 0.825540 | 0.083 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.830006 | 0.081 |
R-HSA-186712 | Regulation of beta-cell development | 0.830006 | 0.081 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.832461 | 0.080 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.832461 | 0.080 |
R-HSA-202403 | TCR signaling | 0.832461 | 0.080 |
R-HSA-8873719 | RAB geranylgeranylation | 0.834452 | 0.079 |
R-HSA-977443 | GABA receptor activation | 0.834452 | 0.079 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.834452 | 0.079 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.835130 | 0.078 |
R-HSA-913531 | Interferon Signaling | 0.837029 | 0.077 |
R-HSA-445717 | Aquaporin-mediated transport | 0.838783 | 0.076 |
R-HSA-421270 | Cell-cell junction organization | 0.842740 | 0.074 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.843000 | 0.074 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.845565 | 0.073 |
R-HSA-6799198 | Complex I biogenesis | 0.847107 | 0.072 |
R-HSA-8848021 | Signaling by PTK6 | 0.847107 | 0.072 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.847107 | 0.072 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.851107 | 0.070 |
R-HSA-196807 | Nicotinate metabolism | 0.862491 | 0.064 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.866090 | 0.062 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.871710 | 0.060 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.873007 | 0.059 |
R-HSA-418990 | Adherens junctions interactions | 0.874080 | 0.058 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.876331 | 0.057 |
R-HSA-9638482 | Metal ion assimilation from the host | 0.876331 | 0.057 |
R-HSA-8978934 | Metabolism of cofactors | 0.876331 | 0.057 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.876331 | 0.057 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.876939 | 0.057 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.876939 | 0.057 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.879568 | 0.056 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.882720 | 0.054 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.882720 | 0.054 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.884415 | 0.053 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.884415 | 0.053 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.884415 | 0.053 |
R-HSA-69206 | G1/S Transition | 0.884415 | 0.053 |
R-HSA-5653656 | Vesicle-mediated transport | 0.884420 | 0.053 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.885791 | 0.053 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.888781 | 0.051 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.891470 | 0.050 |
R-HSA-5689603 | UCH proteinases | 0.891692 | 0.050 |
R-HSA-611105 | Respiratory electron transport | 0.892628 | 0.049 |
R-HSA-1643685 | Disease | 0.895522 | 0.048 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.895949 | 0.048 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.902599 | 0.045 |
R-HSA-6806834 | Signaling by MET | 0.902599 | 0.045 |
R-HSA-977225 | Amyloid fiber formation | 0.905150 | 0.043 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.907634 | 0.042 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.909818 | 0.041 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.912409 | 0.040 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.916938 | 0.038 |
R-HSA-5663205 | Infectious disease | 0.917298 | 0.037 |
R-HSA-6807070 | PTEN Regulation | 0.917657 | 0.037 |
R-HSA-1614635 | Sulfur amino acid metabolism | 0.919115 | 0.037 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.919404 | 0.036 |
R-HSA-9664417 | Leishmania phagocytosis | 0.919404 | 0.036 |
R-HSA-9664407 | Parasite infection | 0.919404 | 0.036 |
R-HSA-70268 | Pyruvate metabolism | 0.921234 | 0.036 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.921234 | 0.036 |
R-HSA-9609690 | HCMV Early Events | 0.923181 | 0.035 |
R-HSA-420499 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 0.923298 | 0.035 |
R-HSA-1236974 | ER-Phagosome pathway | 0.925308 | 0.034 |
R-HSA-9609646 | HCMV Infection | 0.926251 | 0.033 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.927265 | 0.033 |
R-HSA-391251 | Protein folding | 0.932835 | 0.030 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.933530 | 0.030 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.933633 | 0.030 |
R-HSA-69242 | S Phase | 0.933633 | 0.030 |
R-HSA-418594 | G alpha (i) signalling events | 0.935288 | 0.029 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.936310 | 0.029 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.936455 | 0.029 |
R-HSA-6798695 | Neutrophil degranulation | 0.936948 | 0.028 |
R-HSA-77289 | Mitochondrial Fatty Acid Beta-Oxidation | 0.937980 | 0.028 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.939164 | 0.027 |
R-HSA-2168880 | Scavenging of heme from plasma | 0.939606 | 0.027 |
R-HSA-1296071 | Potassium Channels | 0.941189 | 0.026 |
R-HSA-1266738 | Developmental Biology | 0.942446 | 0.026 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.942731 | 0.026 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.944233 | 0.025 |
R-HSA-597592 | Post-translational protein modification | 0.944745 | 0.025 |
R-HSA-9610379 | HCMV Late Events | 0.945464 | 0.024 |
R-HSA-70171 | Glycolysis | 0.947120 | 0.024 |
R-HSA-5610787 | Hedgehog 'off' state | 0.947120 | 0.024 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.948506 | 0.023 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.949857 | 0.022 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.951172 | 0.022 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.951634 | 0.022 |
R-HSA-8951664 | Neddylation | 0.953457 | 0.021 |
R-HSA-418346 | Platelet homeostasis | 0.956098 | 0.019 |
R-HSA-5619102 | SLC transporter disorders | 0.956251 | 0.019 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.957361 | 0.019 |
R-HSA-9658195 | Leishmania infection | 0.957361 | 0.019 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.958126 | 0.019 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.958372 | 0.018 |
R-HSA-392499 | Metabolism of proteins | 0.959616 | 0.018 |
R-HSA-418555 | G alpha (s) signalling events | 0.960849 | 0.017 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.961711 | 0.017 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.961981 | 0.017 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.962572 | 0.017 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.965443 | 0.015 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.966984 | 0.015 |
R-HSA-9007101 | Rab regulation of trafficking | 0.968932 | 0.014 |
R-HSA-70326 | Glucose metabolism | 0.968932 | 0.014 |
R-HSA-2980736 | Peptide hormone metabolism | 0.968932 | 0.014 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.970542 | 0.013 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 0.973517 | 0.012 |
R-HSA-6809371 | Formation of the cornified envelope | 0.974213 | 0.011 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.975015 | 0.011 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.976192 | 0.010 |
R-HSA-449147 | Signaling by Interleukins | 0.976650 | 0.010 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.979636 | 0.009 |
R-HSA-9717189 | Sensory perception of taste | 0.979708 | 0.009 |
R-HSA-416476 | G alpha (q) signalling events | 0.980425 | 0.009 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.982107 | 0.008 |
R-HSA-5368287 | Mitochondrial translation | 0.983603 | 0.007 |
R-HSA-5358351 | Signaling by Hedgehog | 0.983603 | 0.007 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.985225 | 0.006 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.987728 | 0.005 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.988406 | 0.005 |
R-HSA-446652 | Interleukin-1 family signaling | 0.989008 | 0.005 |
R-HSA-1483257 | Phospholipid metabolism | 0.989763 | 0.004 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.989798 | 0.004 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.990032 | 0.004 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.990070 | 0.004 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.991263 | 0.004 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.993302 | 0.003 |
R-HSA-72306 | tRNA processing | 0.993380 | 0.003 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.993555 | 0.003 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.993890 | 0.003 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.993890 | 0.003 |
R-HSA-388396 | GPCR downstream signalling | 0.994605 | 0.002 |
R-HSA-9734767 | Developmental Cell Lineages | 0.995408 | 0.002 |
R-HSA-3781865 | Diseases of glycosylation | 0.995446 | 0.002 |
R-HSA-1280218 | Adaptive Immune System | 0.996022 | 0.002 |
R-HSA-372790 | Signaling by GPCR | 0.996683 | 0.001 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.997260 | 0.001 |
R-HSA-9640148 | Infection with Enterobacteria | 0.997260 | 0.001 |
R-HSA-6805567 | Keratinization | 0.997538 | 0.001 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.997714 | 0.001 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.998750 | 0.001 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.998927 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.998933 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 0.998938 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 0.999104 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999643 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999866 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999943 | 0.000 |
R-HSA-168249 | Innate Immune System | 0.999953 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999994 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999997 | 0.000 |
R-HSA-168256 | Immune System | 0.999997 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 0.999999 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.884 | 0.298 | 1 | 0.830 |
NDR2 |
0.884 | 0.264 | -3 | 0.878 |
PIM3 |
0.881 | 0.249 | -3 | 0.878 |
COT |
0.880 | 0.161 | 2 | 0.851 |
CDC7 |
0.878 | 0.143 | 1 | 0.881 |
RSK2 |
0.878 | 0.267 | -3 | 0.837 |
PIM1 |
0.878 | 0.312 | -3 | 0.853 |
MOS |
0.875 | 0.185 | 1 | 0.898 |
CAMK1B |
0.874 | 0.213 | -3 | 0.905 |
NDR1 |
0.874 | 0.273 | -3 | 0.882 |
CAMK2G |
0.872 | 0.138 | 2 | 0.857 |
LATS2 |
0.871 | 0.184 | -5 | 0.733 |
CAMK2B |
0.870 | 0.241 | 2 | 0.848 |
P70S6KB |
0.869 | 0.252 | -3 | 0.862 |
RSK4 |
0.868 | 0.279 | -3 | 0.811 |
P90RSK |
0.868 | 0.197 | -3 | 0.830 |
PKACG |
0.868 | 0.235 | -2 | 0.807 |
PRKD2 |
0.867 | 0.206 | -3 | 0.842 |
PRKX |
0.867 | 0.314 | -3 | 0.780 |
PRPK |
0.867 | -0.031 | -1 | 0.882 |
SKMLCK |
0.866 | 0.160 | -2 | 0.878 |
CAMK2A |
0.865 | 0.231 | 2 | 0.855 |
AMPKA1 |
0.865 | 0.214 | -3 | 0.902 |
PRKD1 |
0.864 | 0.105 | -3 | 0.851 |
GRK1 |
0.864 | 0.138 | -2 | 0.816 |
MAPKAPK2 |
0.864 | 0.176 | -3 | 0.803 |
RSK3 |
0.864 | 0.184 | -3 | 0.825 |
CAMK2D |
0.864 | 0.129 | -3 | 0.874 |
RAF1 |
0.863 | 0.007 | 1 | 0.830 |
NUAK2 |
0.863 | 0.150 | -3 | 0.901 |
IKKB |
0.862 | -0.055 | -2 | 0.753 |
CDKL1 |
0.862 | 0.109 | -3 | 0.842 |
PKN3 |
0.862 | 0.116 | -3 | 0.866 |
AURC |
0.862 | 0.188 | -2 | 0.703 |
SRPK1 |
0.862 | 0.162 | -3 | 0.805 |
PKACB |
0.862 | 0.242 | -2 | 0.730 |
MTOR |
0.862 | -0.049 | 1 | 0.789 |
CLK2 |
0.861 | 0.274 | -3 | 0.830 |
CAMLCK |
0.861 | 0.128 | -2 | 0.869 |
GRK6 |
0.861 | 0.114 | 1 | 0.843 |
WNK1 |
0.861 | 0.164 | -2 | 0.890 |
MARK4 |
0.860 | 0.103 | 4 | 0.869 |
AMPKA2 |
0.860 | 0.198 | -3 | 0.883 |
MST4 |
0.860 | 0.137 | 2 | 0.811 |
TBK1 |
0.859 | -0.055 | 1 | 0.736 |
BMPR1B |
0.859 | 0.191 | 1 | 0.833 |
BMPR2 |
0.859 | -0.113 | -2 | 0.904 |
DAPK2 |
0.859 | 0.108 | -3 | 0.896 |
NIK |
0.858 | 0.122 | -3 | 0.907 |
CDKL5 |
0.858 | 0.113 | -3 | 0.835 |
PDHK4 |
0.858 | -0.222 | 1 | 0.839 |
LATS1 |
0.857 | 0.190 | -3 | 0.875 |
TGFBR1 |
0.857 | 0.152 | -2 | 0.856 |
NLK |
0.857 | 0.016 | 1 | 0.833 |
MSK1 |
0.857 | 0.165 | -3 | 0.802 |
SRPK2 |
0.857 | 0.165 | -3 | 0.744 |
CLK4 |
0.857 | 0.192 | -3 | 0.844 |
ICK |
0.857 | 0.118 | -3 | 0.869 |
TSSK1 |
0.857 | 0.162 | -3 | 0.915 |
MAPKAPK3 |
0.856 | 0.108 | -3 | 0.834 |
ATR |
0.856 | -0.054 | 1 | 0.790 |
TSSK2 |
0.856 | 0.115 | -5 | 0.755 |
GRK5 |
0.855 | -0.053 | -3 | 0.848 |
GCN2 |
0.855 | -0.145 | 2 | 0.779 |
HIPK4 |
0.855 | 0.077 | 1 | 0.759 |
KIS |
0.855 | 0.095 | 1 | 0.720 |
DSTYK |
0.855 | -0.076 | 2 | 0.855 |
FAM20C |
0.855 | 0.116 | 2 | 0.658 |
PIM2 |
0.854 | 0.255 | -3 | 0.822 |
TGFBR2 |
0.854 | 0.013 | -2 | 0.852 |
PKN2 |
0.854 | 0.110 | -3 | 0.885 |
ALK4 |
0.853 | 0.115 | -2 | 0.878 |
ERK5 |
0.853 | -0.007 | 1 | 0.815 |
IKKE |
0.853 | -0.113 | 1 | 0.729 |
CAMK4 |
0.853 | 0.107 | -3 | 0.886 |
IKKA |
0.853 | -0.027 | -2 | 0.741 |
PAK1 |
0.852 | 0.126 | -2 | 0.795 |
MSK2 |
0.852 | 0.104 | -3 | 0.792 |
CLK1 |
0.852 | 0.193 | -3 | 0.831 |
MYLK4 |
0.851 | 0.153 | -2 | 0.796 |
PDHK1 |
0.851 | -0.208 | 1 | 0.827 |
ALK2 |
0.851 | 0.162 | -2 | 0.862 |
HUNK |
0.851 | -0.043 | 2 | 0.790 |
RIPK3 |
0.851 | -0.029 | 3 | 0.721 |
AURB |
0.851 | 0.134 | -2 | 0.695 |
GRK7 |
0.850 | 0.114 | 1 | 0.773 |
PKCD |
0.850 | 0.099 | 2 | 0.738 |
SGK3 |
0.850 | 0.207 | -3 | 0.823 |
BRSK1 |
0.850 | 0.140 | -3 | 0.855 |
PKG2 |
0.849 | 0.185 | -2 | 0.743 |
PRKD3 |
0.848 | 0.130 | -3 | 0.815 |
GRK4 |
0.848 | -0.047 | -2 | 0.845 |
PKACA |
0.848 | 0.204 | -2 | 0.685 |
ULK2 |
0.848 | -0.193 | 2 | 0.750 |
WNK3 |
0.847 | -0.078 | 1 | 0.780 |
BCKDK |
0.847 | -0.090 | -1 | 0.834 |
AKT2 |
0.847 | 0.174 | -3 | 0.776 |
SRPK3 |
0.846 | 0.096 | -3 | 0.776 |
MELK |
0.846 | 0.134 | -3 | 0.870 |
BMPR1A |
0.846 | 0.169 | 1 | 0.823 |
PLK1 |
0.846 | 0.026 | -2 | 0.841 |
QSK |
0.846 | 0.093 | 4 | 0.838 |
DYRK2 |
0.846 | 0.085 | 1 | 0.701 |
MASTL |
0.846 | -0.198 | -2 | 0.832 |
SIK |
0.846 | 0.123 | -3 | 0.838 |
NIM1 |
0.846 | 0.026 | 3 | 0.786 |
CHAK2 |
0.845 | -0.043 | -1 | 0.895 |
MARK3 |
0.845 | 0.126 | 4 | 0.809 |
ATM |
0.845 | -0.027 | 1 | 0.727 |
DCAMKL1 |
0.845 | 0.197 | -3 | 0.864 |
PASK |
0.845 | 0.199 | -3 | 0.875 |
AURA |
0.845 | 0.083 | -2 | 0.651 |
ACVR2B |
0.845 | 0.084 | -2 | 0.845 |
MNK2 |
0.845 | 0.105 | -2 | 0.818 |
DLK |
0.845 | -0.104 | 1 | 0.822 |
PAK3 |
0.844 | 0.059 | -2 | 0.793 |
ACVR2A |
0.844 | 0.076 | -2 | 0.834 |
JNK2 |
0.844 | 0.109 | 1 | 0.656 |
CHK1 |
0.844 | 0.077 | -3 | 0.874 |
NUAK1 |
0.844 | 0.078 | -3 | 0.864 |
PLK3 |
0.844 | 0.051 | 2 | 0.795 |
MARK2 |
0.843 | 0.088 | 4 | 0.786 |
CK2A2 |
0.843 | 0.227 | 1 | 0.803 |
BRSK2 |
0.842 | 0.080 | -3 | 0.874 |
NEK6 |
0.842 | -0.142 | -2 | 0.885 |
PAK2 |
0.842 | 0.061 | -2 | 0.779 |
NEK7 |
0.842 | -0.222 | -3 | 0.799 |
QIK |
0.841 | 0.044 | -3 | 0.875 |
PAK6 |
0.841 | 0.106 | -2 | 0.712 |
CAMK1D |
0.841 | 0.184 | -3 | 0.780 |
MNK1 |
0.841 | 0.134 | -2 | 0.830 |
RIPK1 |
0.840 | -0.124 | 1 | 0.769 |
P70S6K |
0.840 | 0.165 | -3 | 0.777 |
DNAPK |
0.840 | 0.043 | 1 | 0.662 |
CAMK1G |
0.840 | 0.124 | -3 | 0.834 |
MEK1 |
0.840 | -0.089 | 2 | 0.820 |
CDK8 |
0.840 | 0.009 | 1 | 0.698 |
CDK7 |
0.840 | 0.042 | 1 | 0.707 |
ANKRD3 |
0.839 | -0.152 | 1 | 0.836 |
MLK1 |
0.839 | -0.205 | 2 | 0.758 |
MARK1 |
0.839 | 0.092 | 4 | 0.825 |
HIPK1 |
0.838 | 0.122 | 1 | 0.718 |
PKR |
0.838 | -0.027 | 1 | 0.793 |
JNK3 |
0.838 | 0.057 | 1 | 0.688 |
HIPK2 |
0.838 | 0.117 | 1 | 0.622 |
ULK1 |
0.838 | -0.209 | -3 | 0.785 |
DRAK1 |
0.837 | 0.058 | 1 | 0.790 |
DCAMKL2 |
0.837 | 0.130 | -3 | 0.887 |
SGK1 |
0.836 | 0.217 | -3 | 0.696 |
CDK1 |
0.836 | 0.056 | 1 | 0.663 |
MRCKA |
0.836 | 0.285 | -3 | 0.833 |
DYRK4 |
0.836 | 0.110 | 1 | 0.647 |
SSTK |
0.835 | 0.134 | 4 | 0.826 |
DYRK1A |
0.834 | 0.090 | 1 | 0.746 |
TTBK2 |
0.834 | -0.165 | 2 | 0.663 |
PKCB |
0.834 | 0.036 | 2 | 0.667 |
PKCG |
0.834 | 0.025 | 2 | 0.675 |
PHKG1 |
0.834 | 0.017 | -3 | 0.882 |
P38A |
0.834 | 0.049 | 1 | 0.727 |
DAPK3 |
0.834 | 0.168 | -3 | 0.869 |
GRK2 |
0.834 | -0.017 | -2 | 0.731 |
VRK2 |
0.833 | -0.229 | 1 | 0.845 |
SMMLCK |
0.833 | 0.090 | -3 | 0.866 |
AKT1 |
0.833 | 0.147 | -3 | 0.793 |
CK2A1 |
0.833 | 0.204 | 1 | 0.782 |
NEK9 |
0.833 | -0.246 | 2 | 0.783 |
P38B |
0.832 | 0.056 | 1 | 0.669 |
DYRK1B |
0.832 | 0.105 | 1 | 0.665 |
PKCA |
0.832 | 0.007 | 2 | 0.663 |
CDK19 |
0.832 | 0.003 | 1 | 0.661 |
MLK2 |
0.832 | -0.214 | 2 | 0.771 |
BRAF |
0.831 | -0.024 | -4 | 0.782 |
CDK18 |
0.831 | 0.061 | 1 | 0.636 |
TLK2 |
0.831 | -0.092 | 1 | 0.739 |
GAK |
0.831 | 0.138 | 1 | 0.844 |
DAPK1 |
0.831 | 0.156 | -3 | 0.851 |
YSK4 |
0.830 | -0.165 | 1 | 0.764 |
CDK5 |
0.830 | 0.035 | 1 | 0.717 |
PKCH |
0.830 | 0.010 | 2 | 0.656 |
CK1E |
0.830 | 0.027 | -3 | 0.573 |
IRE1 |
0.829 | -0.126 | 1 | 0.729 |
MRCKB |
0.829 | 0.224 | -3 | 0.821 |
P38G |
0.828 | 0.056 | 1 | 0.585 |
ROCK2 |
0.828 | 0.251 | -3 | 0.854 |
GSK3A |
0.828 | 0.086 | 4 | 0.521 |
DYRK3 |
0.828 | 0.095 | 1 | 0.713 |
MAPKAPK5 |
0.827 | -0.037 | -3 | 0.763 |
PLK4 |
0.827 | -0.072 | 2 | 0.629 |
CDK13 |
0.827 | -0.013 | 1 | 0.677 |
CDK10 |
0.827 | 0.127 | 1 | 0.661 |
DMPK1 |
0.826 | 0.280 | -3 | 0.849 |
AKT3 |
0.826 | 0.172 | -3 | 0.710 |
CDK17 |
0.826 | 0.046 | 1 | 0.589 |
IRE2 |
0.826 | -0.090 | 2 | 0.694 |
WNK4 |
0.826 | -0.036 | -2 | 0.879 |
SNRK |
0.825 | -0.090 | 2 | 0.667 |
SMG1 |
0.825 | -0.129 | 1 | 0.728 |
CDK2 |
0.825 | -0.009 | 1 | 0.736 |
PRP4 |
0.825 | -0.002 | -3 | 0.741 |
MST3 |
0.825 | 0.031 | 2 | 0.777 |
PKCZ |
0.825 | -0.055 | 2 | 0.713 |
GSK3B |
0.825 | 0.042 | 4 | 0.510 |
CDK9 |
0.824 | 0.001 | 1 | 0.683 |
ERK1 |
0.824 | 0.014 | 1 | 0.659 |
MEKK3 |
0.824 | -0.138 | 1 | 0.786 |
HIPK3 |
0.824 | 0.048 | 1 | 0.716 |
MLK3 |
0.824 | -0.155 | 2 | 0.681 |
TAO3 |
0.823 | -0.013 | 1 | 0.782 |
NEK2 |
0.823 | -0.172 | 2 | 0.748 |
CDK14 |
0.823 | 0.065 | 1 | 0.675 |
ERK2 |
0.823 | -0.005 | 1 | 0.683 |
CDK3 |
0.823 | 0.056 | 1 | 0.610 |
SBK |
0.822 | 0.139 | -3 | 0.672 |
PAK5 |
0.822 | 0.060 | -2 | 0.651 |
GRK3 |
0.821 | -0.013 | -2 | 0.691 |
PHKG2 |
0.821 | 0.053 | -3 | 0.881 |
PERK |
0.821 | -0.168 | -2 | 0.872 |
TLK1 |
0.821 | -0.110 | -2 | 0.861 |
CHAK1 |
0.821 | -0.174 | 2 | 0.724 |
MEK5 |
0.820 | -0.254 | 2 | 0.789 |
CDK16 |
0.820 | 0.096 | 1 | 0.604 |
CK1D |
0.820 | 0.009 | -3 | 0.523 |
CDK12 |
0.820 | -0.010 | 1 | 0.651 |
CRIK |
0.820 | 0.224 | -3 | 0.779 |
CAMK1A |
0.820 | 0.125 | -3 | 0.747 |
MLK4 |
0.819 | -0.181 | 2 | 0.664 |
PLK2 |
0.819 | 0.035 | -3 | 0.779 |
HRI |
0.818 | -0.211 | -2 | 0.877 |
ZAK |
0.818 | -0.164 | 1 | 0.775 |
CK1A2 |
0.818 | 0.016 | -3 | 0.527 |
MPSK1 |
0.818 | -0.021 | 1 | 0.765 |
PAK4 |
0.817 | 0.044 | -2 | 0.653 |
P38D |
0.817 | 0.041 | 1 | 0.599 |
MAK |
0.816 | 0.130 | -2 | 0.743 |
PKCT |
0.816 | 0.000 | 2 | 0.668 |
MEKK1 |
0.816 | -0.249 | 1 | 0.789 |
MEKK2 |
0.815 | -0.195 | 2 | 0.757 |
NEK5 |
0.815 | -0.187 | 1 | 0.785 |
CHK2 |
0.815 | 0.076 | -3 | 0.734 |
JNK1 |
0.815 | 0.029 | 1 | 0.648 |
IRAK4 |
0.815 | -0.104 | 1 | 0.739 |
PKCE |
0.815 | 0.068 | 2 | 0.654 |
TAO2 |
0.814 | -0.059 | 2 | 0.802 |
PDK1 |
0.814 | -0.058 | 1 | 0.796 |
LKB1 |
0.814 | -0.066 | -3 | 0.813 |
GCK |
0.814 | -0.022 | 1 | 0.781 |
PKCI |
0.813 | -0.003 | 2 | 0.672 |
ROCK1 |
0.812 | 0.195 | -3 | 0.833 |
CK1G1 |
0.811 | -0.041 | -3 | 0.557 |
NEK11 |
0.811 | -0.194 | 1 | 0.785 |
MOK |
0.811 | 0.120 | 1 | 0.713 |
CAMKK2 |
0.810 | -0.150 | -2 | 0.757 |
PBK |
0.810 | 0.072 | 1 | 0.776 |
PKN1 |
0.810 | 0.044 | -3 | 0.800 |
CAMKK1 |
0.810 | -0.204 | -2 | 0.758 |
HPK1 |
0.809 | -0.011 | 1 | 0.762 |
PINK1 |
0.808 | -0.279 | 1 | 0.797 |
TTBK1 |
0.808 | -0.178 | 2 | 0.596 |
PDHK3_TYR |
0.808 | 0.303 | 4 | 0.920 |
PKG1 |
0.807 | 0.102 | -2 | 0.667 |
LOK |
0.807 | 0.009 | -2 | 0.807 |
TAK1 |
0.807 | -0.138 | 1 | 0.806 |
NEK8 |
0.806 | -0.239 | 2 | 0.764 |
MST2 |
0.805 | -0.166 | 1 | 0.790 |
IRAK1 |
0.805 | -0.262 | -1 | 0.790 |
EEF2K |
0.805 | -0.100 | 3 | 0.806 |
LRRK2 |
0.805 | -0.155 | 2 | 0.802 |
TNIK |
0.804 | -0.071 | 3 | 0.830 |
MAP3K15 |
0.803 | -0.163 | 1 | 0.759 |
CDK4 |
0.803 | 0.021 | 1 | 0.636 |
MINK |
0.803 | -0.146 | 1 | 0.765 |
KHS2 |
0.802 | 0.011 | 1 | 0.762 |
SLK |
0.802 | -0.041 | -2 | 0.752 |
ERK7 |
0.802 | -0.061 | 2 | 0.456 |
KHS1 |
0.801 | -0.029 | 1 | 0.749 |
HGK |
0.801 | -0.135 | 3 | 0.825 |
MEKK6 |
0.801 | -0.168 | 1 | 0.764 |
MST1 |
0.800 | -0.123 | 1 | 0.765 |
VRK1 |
0.800 | -0.211 | 2 | 0.799 |
NEK4 |
0.800 | -0.214 | 1 | 0.746 |
CDK6 |
0.800 | 0.005 | 1 | 0.658 |
NEK1 |
0.798 | -0.170 | 1 | 0.758 |
PDHK4_TYR |
0.798 | 0.129 | 2 | 0.889 |
STK33 |
0.797 | -0.126 | 2 | 0.604 |
BUB1 |
0.797 | -0.003 | -5 | 0.708 |
MEK2 |
0.797 | -0.248 | 2 | 0.781 |
TESK1_TYR |
0.796 | 0.103 | 3 | 0.881 |
MAP2K6_TYR |
0.795 | 0.069 | -1 | 0.904 |
MAP2K4_TYR |
0.795 | 0.023 | -1 | 0.898 |
YSK1 |
0.793 | -0.122 | 2 | 0.746 |
PDHK1_TYR |
0.793 | 0.044 | -1 | 0.919 |
BIKE |
0.792 | 0.033 | 1 | 0.736 |
RIPK2 |
0.792 | -0.267 | 1 | 0.745 |
BMPR2_TYR |
0.791 | 0.040 | -1 | 0.902 |
MAP2K7_TYR |
0.791 | -0.054 | 2 | 0.853 |
ALPHAK3 |
0.790 | -0.034 | -1 | 0.808 |
TTK |
0.789 | -0.072 | -2 | 0.858 |
PKMYT1_TYR |
0.789 | -0.051 | 3 | 0.843 |
LIMK2_TYR |
0.787 | 0.067 | -3 | 0.893 |
EPHA6 |
0.787 | 0.058 | -1 | 0.900 |
PINK1_TYR |
0.786 | -0.088 | 1 | 0.826 |
YANK3 |
0.786 | -0.060 | 2 | 0.416 |
HASPIN |
0.785 | -0.044 | -1 | 0.709 |
OSR1 |
0.784 | -0.153 | 2 | 0.751 |
DDR1 |
0.783 | -0.000 | 4 | 0.848 |
ASK1 |
0.782 | -0.184 | 1 | 0.754 |
EPHB4 |
0.782 | -0.013 | -1 | 0.878 |
TXK |
0.781 | 0.085 | 1 | 0.874 |
RET |
0.781 | -0.062 | 1 | 0.776 |
NEK3 |
0.781 | -0.236 | 1 | 0.735 |
CK1A |
0.780 | -0.028 | -3 | 0.432 |
EPHA4 |
0.779 | 0.012 | 2 | 0.801 |
TAO1 |
0.778 | -0.120 | 1 | 0.707 |
LIMK1_TYR |
0.777 | -0.155 | 2 | 0.822 |
AAK1 |
0.775 | 0.057 | 1 | 0.639 |
YES1 |
0.774 | -0.041 | -1 | 0.871 |
INSRR |
0.774 | -0.038 | 3 | 0.722 |
SRMS |
0.774 | -0.042 | 1 | 0.856 |
MST1R |
0.774 | -0.165 | 3 | 0.779 |
EPHB1 |
0.773 | -0.047 | 1 | 0.849 |
FER |
0.773 | -0.127 | 1 | 0.870 |
TYRO3 |
0.773 | -0.160 | 3 | 0.766 |
EPHB2 |
0.772 | -0.021 | -1 | 0.862 |
EPHB3 |
0.772 | -0.041 | -1 | 0.864 |
MYO3B |
0.772 | -0.192 | 2 | 0.761 |
FGFR2 |
0.771 | -0.070 | 3 | 0.779 |
FGR |
0.770 | -0.121 | 1 | 0.842 |
TYK2 |
0.770 | -0.268 | 1 | 0.776 |
MYO3A |
0.770 | -0.204 | 1 | 0.727 |
JAK3 |
0.770 | -0.111 | 1 | 0.775 |
ROS1 |
0.769 | -0.196 | 3 | 0.735 |
TNK2 |
0.769 | -0.074 | 3 | 0.721 |
ITK |
0.769 | -0.060 | -1 | 0.838 |
ABL2 |
0.768 | -0.094 | -1 | 0.838 |
JAK2 |
0.768 | -0.248 | 1 | 0.781 |
CSF1R |
0.767 | -0.191 | 3 | 0.752 |
STLK3 |
0.766 | -0.254 | 1 | 0.735 |
NEK10_TYR |
0.766 | -0.082 | 1 | 0.663 |
BLK |
0.765 | -0.021 | -1 | 0.872 |
AXL |
0.765 | -0.110 | 3 | 0.749 |
DDR2 |
0.765 | 0.052 | 3 | 0.706 |
HCK |
0.764 | -0.140 | -1 | 0.863 |
LCK |
0.764 | -0.071 | -1 | 0.867 |
MERTK |
0.764 | -0.098 | 3 | 0.749 |
ABL1 |
0.764 | -0.117 | -1 | 0.830 |
EPHA3 |
0.763 | -0.084 | 2 | 0.773 |
FYN |
0.763 | -0.006 | -1 | 0.844 |
FGFR1 |
0.763 | -0.147 | 3 | 0.742 |
EPHA7 |
0.763 | -0.055 | 2 | 0.786 |
KDR |
0.762 | -0.106 | 3 | 0.717 |
BMX |
0.762 | -0.063 | -1 | 0.751 |
KIT |
0.762 | -0.167 | 3 | 0.759 |
PDGFRB |
0.762 | -0.200 | 3 | 0.768 |
TEK |
0.762 | -0.143 | 3 | 0.703 |
TNK1 |
0.760 | -0.107 | 3 | 0.750 |
EPHA5 |
0.760 | -0.030 | 2 | 0.791 |
PTK2B |
0.760 | -0.032 | -1 | 0.808 |
MET |
0.760 | -0.122 | 3 | 0.751 |
FLT1 |
0.760 | -0.081 | -1 | 0.873 |
FGFR3 |
0.760 | -0.100 | 3 | 0.749 |
TEC |
0.759 | -0.099 | -1 | 0.773 |
CK1G3 |
0.759 | -0.045 | -3 | 0.385 |
PTK2 |
0.759 | 0.041 | -1 | 0.835 |
TNNI3K_TYR |
0.758 | -0.115 | 1 | 0.788 |
FLT3 |
0.758 | -0.208 | 3 | 0.752 |
LTK |
0.756 | -0.137 | 3 | 0.710 |
NTRK1 |
0.756 | -0.214 | -1 | 0.844 |
ERBB2 |
0.756 | -0.169 | 1 | 0.757 |
EPHA1 |
0.754 | -0.127 | 3 | 0.720 |
BTK |
0.754 | -0.242 | -1 | 0.796 |
EPHA8 |
0.753 | -0.077 | -1 | 0.850 |
ALK |
0.753 | -0.189 | 3 | 0.682 |
JAK1 |
0.752 | -0.207 | 1 | 0.733 |
PTK6 |
0.752 | -0.243 | -1 | 0.761 |
EGFR |
0.752 | -0.086 | 1 | 0.680 |
FLT4 |
0.751 | -0.180 | 3 | 0.723 |
PDGFRA |
0.751 | -0.294 | 3 | 0.762 |
SYK |
0.751 | -0.003 | -1 | 0.814 |
YANK2 |
0.750 | -0.089 | 2 | 0.429 |
INSR |
0.750 | -0.183 | 3 | 0.697 |
LYN |
0.750 | -0.149 | 3 | 0.680 |
WEE1_TYR |
0.749 | -0.188 | -1 | 0.780 |
NTRK2 |
0.749 | -0.239 | 3 | 0.721 |
SRC |
0.749 | -0.110 | -1 | 0.837 |
FRK |
0.749 | -0.170 | -1 | 0.871 |
CSK |
0.747 | -0.162 | 2 | 0.790 |
NTRK3 |
0.746 | -0.202 | -1 | 0.792 |
FGFR4 |
0.745 | -0.124 | -1 | 0.803 |
EPHA2 |
0.745 | -0.074 | -1 | 0.815 |
MATK |
0.744 | -0.163 | -1 | 0.765 |
CK1G2 |
0.741 | -0.046 | -3 | 0.478 |
ERBB4 |
0.740 | -0.068 | 1 | 0.699 |
IGF1R |
0.740 | -0.144 | 3 | 0.644 |
MUSK |
0.725 | -0.233 | 1 | 0.655 |
FES |
0.723 | -0.185 | -1 | 0.731 |
ZAP70 |
0.721 | -0.078 | -1 | 0.731 |