Motif 813 (n=947)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0JLT2 MED19 S226 ochoa Mediator of RNA polymerase II transcription subunit 19 (Lung cancer metastasis-related protein 1) (Mediator complex subunit 19) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
A6NMY6 ANXA2P2 S92 ochoa Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}.
A6NMY6 ANXA2P2 S314 ochoa Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}.
A6QL64 ANKRD36 S478 ochoa Ankyrin repeat domain-containing protein 36A None
B5ME19 EIF3CL S755 ochoa Eukaryotic translation initiation factor 3 subunit C-like protein Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}.
O00151 PDLIM1 S215 ochoa PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}.
O00311 CDC7 S216 psp Cell division cycle 7-related protein kinase (CDC7-related kinase) (HsCdc7) (huCdc7) (EC 2.7.11.1) Kinase involved in initiation of DNA replication. Phosphorylates critical substrates that regulate the G1/S phase transition and initiation of DNA replication, such as MCM proteins and CLASPIN. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:27401717}.
O00311 CDC7 S239 psp Cell division cycle 7-related protein kinase (CDC7-related kinase) (HsCdc7) (huCdc7) (EC 2.7.11.1) Kinase involved in initiation of DNA replication. Phosphorylates critical substrates that regulate the G1/S phase transition and initiation of DNA replication, such as MCM proteins and CLASPIN. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:27401717}.
O15151 MDM4 S340 ochoa Protein Mdm4 (Double minute 4 protein) (Mdm2-like p53-binding protein) (Protein Mdmx) (p53-binding protein Mdm4) Along with MDM2, contributes to TP53 regulation (PubMed:32300648). Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions. {ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:32300648}.
O15213 WDR46 S561 ochoa WD repeat-containing protein 46 (WD repeat-containing protein BING4) Scaffold component of the nucleolar structure. Required for localization of DDX21 and NCL to the granular compartment of the nucleolus (PubMed:23848194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23848194, ECO:0000269|PubMed:34516797}.
O43290 SART1 S761 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43390 HNRNPR S228 ochoa Heterogeneous nuclear ribonucleoprotein R (hnRNP R) Component of ribonucleosomes, which are complexes of at least 20 other different heterogeneous nuclear ribonucleoproteins (hnRNP). hnRNP play an important role in processing of precursor mRNA in the nucleus.
O43491 EPB41L2 S950 ochoa Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
O60238 BNIP3L S166 ochoa BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (Adenovirus E1B19K-binding protein B5) (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3A) (NIP3-like protein X) (NIP3L) Induces apoptosis. Interacts with viral and cellular anti-apoptosis proteins. Can overcome the suppressors BCL-2 and BCL-XL, although high levels of BCL-XL expression will inhibit apoptosis. Inhibits apoptosis induced by BNIP3. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. May function as a tumor suppressor. {ECO:0000269|PubMed:10381623, ECO:0000269|PubMed:21264228}.
O60244 MED14 S617 ochoa Mediator of RNA polymerase II transcription subunit 14 (Activator-recruited cofactor 150 kDa component) (ARC150) (Cofactor required for Sp1 transcriptional activation subunit 2) (CRSP complex subunit 2) (Mediator complex subunit 14) (RGR1 homolog) (hRGR1) (Thyroid hormone receptor-associated protein complex 170 kDa component) (Trap170) (Transcriptional coactivator CRSP150) (Vitamin D3 receptor-interacting protein complex 150 kDa component) (DRIP150) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:15340088, ECO:0000269|PubMed:15625066, ECO:0000269|PubMed:16595664}.
O60443 GSDME S252 ochoa Gasdermin-E (Inversely correlated with estrogen receptor expression 1) (ICERE-1) (Non-syndromic hearing impairment protein 5) [Cleaved into: Gasdermin-E, N-terminal (GSDME-NT); Gasdermin-E, C-terminal (GSDME-CT)] [Gasdermin-E]: Precursor of a pore-forming protein that converts non-inflammatory apoptosis to pyroptosis (PubMed:27281216, PubMed:28459430, PubMed:33852854, PubMed:35594856, PubMed:36607699). This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-E, N-terminal) binds to membranes and forms pores, triggering pyroptosis (PubMed:28459430). {ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:28459430, ECO:0000269|PubMed:33852854, ECO:0000269|PubMed:35594856, ECO:0000269|PubMed:36607699}.; FUNCTION: [Gasdermin-E, N-terminal]: Pore-forming protein produced by cleavage by CASP3 or granzyme B (GZMB), which converts non-inflammatory apoptosis to pyroptosis or promotes granzyme-mediated pyroptosis, respectively (PubMed:27281216, PubMed:28459430, PubMed:32188940, PubMed:33852854, PubMed:35594856). After cleavage, moves to the plasma membrane, homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukins (IL1B and IL16) and triggering pyroptosis (PubMed:28459430, PubMed:32188940, PubMed:33852854, PubMed:35594856). Binds to inner leaflet lipids, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate (PubMed:28459430). Cleavage by CASP3 switches CASP3-mediated apoptosis induced by TNF or danger signals, such as chemotherapy drugs, to pyroptosis (PubMed:27281216, PubMed:28459430, PubMed:32188940). Mediates secondary necrosis downstream of the mitochondrial apoptotic pathway and CASP3 activation as well as in response to viral agents (PubMed:28045099). Exhibits bactericidal activity (PubMed:27281216). Cleavage by GZMB promotes tumor suppressor activity by triggering robust anti-tumor immunity (PubMed:21522185, PubMed:32188940). Suppresses tumors by mediating granzyme-mediated pyroptosis in target cells of natural killer (NK) cells: cleavage by granzyme B (GZMB), delivered to target cells from NK-cells, triggers pyroptosis of tumor cells and tumor suppression (PubMed:31953257, PubMed:32188940). May play a role in the p53/TP53-regulated cellular response to DNA damage (PubMed:16897187). {ECO:0000269|PubMed:16897187, ECO:0000269|PubMed:21522185, ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:28045099, ECO:0000269|PubMed:28459430, ECO:0000269|PubMed:31953257, ECO:0000269|PubMed:32188940, ECO:0000269|PubMed:33852854, ECO:0000269|PubMed:35594856}.; FUNCTION: [Gasdermin-E, N-terminal]: (Microbial infection) Pore-forming protein, which promotes maternal placental pyroptosis in response to Zika virus infection, contributing to adverse fetal outcomes. {ECO:0000269|PubMed:35972780}.
O60565 GREM1 S137 ochoa Gremlin-1 (Cell proliferation-inducing gene 2 protein) (Cysteine knot superfamily 1, BMP antagonist 1) (DAN domain family member 2) (Down-regulated in Mos-transformed cells protein) (Increased in high glucose protein 2) (IHG-2) Cytokine that may play an important role during carcinogenesis and metanephric kidney organogenesis, as a BMP antagonist required for early limb outgrowth and patterning in maintaining the FGF4-SHH feedback loop. Down-regulates the BMP4 signaling in a dose-dependent manner (By similarity). Antagonist of BMP2; inhibits BMP2-mediated differentiation of osteoblasts (in vitro) (PubMed:27036124). Acts as inhibitor of monocyte chemotaxis. Can inhibit the growth or viability of normal cells but not transformed cells when is overexpressed (By similarity). {ECO:0000250|UniProtKB:O35793, ECO:0000250|UniProtKB:O70326, ECO:0000269|PubMed:27036124}.
O60841 EIF5B Y134 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S589 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60934 NBN S447 ochoa Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}.
O75151 PHF2 S534 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O94808 GFPT2 S244 ochoa Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 2 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 2) (Glutamine:fructose-6-phosphate amidotransferase 2) (GFAT 2) (GFAT2) (Hexosephosphate aminotransferase 2) Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins.
O94832 MYO1D S493 ochoa Unconventional myosin-Id Unconventional myosin that functions as actin-based motor protein with ATPase activity (By similarity). Plays a role in endosomal protein trafficking, and especially in the transfer of cargo proteins from early to recycling endosomes (By similarity). Required for normal planar cell polarity in ciliated tracheal cells, for normal rotational polarity of cilia, and for coordinated, unidirectional ciliary movement in the trachea. Required for normal, polarized cilia organization in brain ependymal epithelial cells (By similarity). {ECO:0000250|UniProtKB:F1PRN2, ECO:0000250|UniProtKB:Q63357}.
O94874 UFL1 S458 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O95049 TJP3 S203 ochoa Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}.
O95069 KCNK2 S366 ochoa Potassium channel subfamily K member 2 (Outward rectifying potassium channel protein TREK-1) (TREK-1 K(+) channel subunit) (Two pore domain potassium channel TREK1) (Two pore potassium channel TPKC1) (K2P2.1) K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate. Converts to voltage-independent 'leak' conductance mode upon stimulation by various stimuli including mechanical membrane stretch, acidic pH, heat and lipids. Reversibly converts between a voltage-insensitive K(+) 'leak' channel and a voltage-dependent outward rectifying K(+) channel in a phosphorylation-dependent manner (By similarity) (PubMed:10321245, PubMed:10784345, PubMed:11319556, PubMed:23169818, PubMed:30573346, PubMed:38605031). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (By similarity). In trigeminal ganglia sensory neurons, the heterodimer of KCNK2/TREK-1 and KCNK18/TRESK inhibits neuronal firing and neurogenic inflammation by stabilizing the resting membrane potential at K(+) equilibrium potential as well as by regulating the threshold of action potentials and the spike frequency (By similarity). At trigeminal A-beta afferent nerves, the heterodimer of KCNK2/TREK-1 and KCNK4/TRAAK is mostly coexpressed at nodes of Ranvier where it conducts voltage-independent mechanosensitive and thermosensitive currents, allowing rapid action potential repolarization, high speed and high frequence saltatory conduction on myelinated nerves to ensure prompt sensory responses (By similarity). In hippocampal astrocytes, the heterodimer of KCNK2/TREK-1 and KCNK1/TWIK-1 allows passive K(+) conductance under basal conditions, but changes ion selectivity and becomes permeable to L-glutamate and Cl(-) ions upon binding to G-protein subunit GNG4 in stimulated astrocytes. Mediates rapid L-glutamate release in response to activation of G-protein-coupled receptors, such as F2R and CNR1 (By similarity). In hippocampal pyramidal neurons, the homodimer of KCNK2/TREK-1 contributes to gamma-aminobutyric acid (GABA) B-induced slow inhibitory postsynaptic potential. Associates with AKAP5 and Gs-protein-coupled receptor B2AR at postsynaptic dense bodies and converts to a leak channel no longer sensitive to stimulation by arachidonic acid, acidic pH or mechanical stress, nor inhibited by Gq-coupled receptors but still under the negative control of Gs-coupled receptors (By similarity). Permeable to other monovalent cations such as Rb(+) and Cs(+) (By similarity). {ECO:0000250|UniProtKB:P97438, ECO:0000250|UniProtKB:Q920B6, ECO:0000269|PubMed:10321245, ECO:0000269|PubMed:10784345, ECO:0000269|PubMed:11319556, ECO:0000269|PubMed:23169818, ECO:0000269|PubMed:30573346, ECO:0000269|PubMed:38605031}.; FUNCTION: [Isoform 4]: Does not display channel activity but reduces the channel activity of isoform 1 and isoform 2 and reduces cell surface expression of isoform 2. {ECO:0000250|UniProtKB:Q920B6}.
O95292 VAPB S159 ochoa Vesicle-associated membrane protein-associated protein B/C (VAMP-B/VAMP-C) (VAMP-associated protein B/C) (VAP-B/VAP-C) Endoplasmic reticulum (ER)-anchored protein that mediates the formation of contact sites between the ER and endosomes via interaction with FFAT motif-containing proteins such as STARD3 or WDR44 (PubMed:32344433, PubMed:33124732). Interacts with STARD3 in a FFAT motif phosphorylation dependent manner (PubMed:33124732). Via interaction with WDR44 participates in neosynthesized protein export (PubMed:32344433). Participates in the endoplasmic reticulum unfolded protein response (UPR) by inducing ERN1/IRE1 activity (PubMed:16891305, PubMed:20940299). Involved in cellular calcium homeostasis regulation (PubMed:22131369). {ECO:0000269|PubMed:16891305, ECO:0000269|PubMed:20940299, ECO:0000269|PubMed:22131369, ECO:0000269|PubMed:32344433, ECO:0000269|PubMed:33124732}.
O95425 SVIL S1052 ochoa Supervillin (Archvillin) (p205/p250) [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}.
O95453 PARN S619 ochoa Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}.
O95613 PCNT S44 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95793 STAU1 S278 ochoa Double-stranded RNA-binding protein Staufen homolog 1 Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.; FUNCTION: (Microbial infection) Plays a role in virus particles production of many viruses including of HIV-1, HERV-K, ebola virus and influenza virus. Acts by interacting with various viral proteins involved in particle budding process. {ECO:0000269|PubMed:10325410, ECO:0000269|PubMed:18498651, ECO:0000269|PubMed:23926355, ECO:0000269|PubMed:30301857}.
P00325 ADH1B S23 ochoa All-trans-retinol dehydrogenase [NAD(+)] ADH1B (EC 1.1.1.105) (Alcohol dehydrogenase 1B) (Alcohol dehydrogenase subunit beta) Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate in retinoid metabolism (PubMed:15369820, PubMed:16787387). In vitro can also catalyze the NADH-dependent reduction of all-trans-retinal and its derivatives such as all-trans-4-oxoretinal (PubMed:15369820, PubMed:16787387). Catalyzes in the oxidative direction with higher efficiency (PubMed:16787387). Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal (PubMed:15369820). {ECO:0000269|PubMed:15369820, ECO:0000269|PubMed:16787387}.
P00326 ADH1C S23 ochoa Alcohol dehydrogenase 1C (EC 1.1.1.1) (Alcohol dehydrogenase subunit gamma) Alcohol dehydrogenase. Exhibits high activity for ethanol oxidation and plays a major role in ethanol catabolism. {ECO:0000269|PubMed:6391957}.
P00533 EGFR S720 ochoa Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.
P00558 PGK1 S203 ochoa|psp Phosphoglycerate kinase 1 (EC 2.7.11.1) (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2) Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate (PubMed:30323285, PubMed:7391028). Both L- and D- forms of purine and pyrimidine nucleotides can be used as substrates, but the activity is much lower on pyrimidines (PubMed:18463139). In addition to its role as a glycolytic enzyme, it seems that PGK1 acts as a polymerase alpha cofactor protein (primer recognition protein) (PubMed:2324090). Acts as a protein kinase when localized to the mitochondrion where it phosphorylates pyruvate dehydrogenase kinase PDK1 to inhibit pyruvate dehydrogenase complex activity and suppress the formation of acetyl-coenzyme A from pyruvate, and consequently inhibit oxidative phosphorylation and promote glycolysis (PubMed:26942675, PubMed:36849569). May play a role in sperm motility (PubMed:26677959). {ECO:0000269|PubMed:18463139, ECO:0000269|PubMed:2324090, ECO:0000269|PubMed:26677959, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:30323285, ECO:0000269|PubMed:36849569, ECO:0000269|PubMed:7391028}.
P01270 PTH S34 psp Parathyroid hormone (PTH) (Parathormone) (Parathyrin) Parathyroid hormone elevates calcium level by dissolving the salts in bone and preventing their renal excretion (PubMed:11604398, PubMed:35932760). Acts by binding to its receptor, PTH1R, activating G protein-coupled receptor signaling (PubMed:18375760, PubMed:35932760). Stimulates [1-14C]-2-deoxy-D-glucose (2DG) transport and glycogen synthesis in osteoblastic cells (PubMed:21076856). {ECO:0000269|PubMed:11604398, ECO:0000269|PubMed:18375760, ECO:0000269|PubMed:21076856, ECO:0000269|PubMed:35932760}.
P04626 ERBB2 S728 ochoa Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}.
P04843 RPN1 S528 ochoa Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 67 kDa subunit) (Ribophorin I) (RPN-I) (Ribophorin-1) Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation (PubMed:31831667). N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity (By similarity). {ECO:0000250|UniProtKB:E2RQ08, ECO:0000269|PubMed:31831667, ECO:0000269|PubMed:39567208}.
P07327 ADH1A S23 ochoa Alcohol dehydrogenase 1A (EC 1.1.1.1) (Alcohol dehydrogenase subunit alpha) Alcohol dehydrogenase (PubMed:2738060). Oxidizes primary as well as secondary alcohols. Ethanol is a very poor substrate (PubMed:2738060). {ECO:0000269|PubMed:2738060}.
P07355 ANXA2 S92 ochoa Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}.
P07355 ANXA2 S314 ochoa Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}.
P07951 TPM2 S63 ochoa Tropomyosin beta chain (Beta-tropomyosin) (Tropomyosin-2) Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments. The non-muscle isoform may have a role in agonist-mediated receptor internalization. {ECO:0000250|UniProtKB:P58774, ECO:0000250|UniProtKB:P58775}.
P08240 SRPRA S177 ochoa Signal recognition particle receptor subunit alpha (SR-alpha) (Docking protein alpha) (DP-alpha) Component of the signal recognition particle (SRP) complex receptor (SR) (PubMed:16439358). Ensures, in conjunction with the SRP complex, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system (PubMed:16675701, PubMed:34020957). Forms a guanosine 5'-triphosphate (GTP)-dependent complex with the SRP subunit SRP54 (PubMed:34020957). SRP receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER (PubMed:34020957). {ECO:0000269|PubMed:16439358, ECO:0000269|PubMed:16675701, ECO:0000269|PubMed:34020957}.
P09429 HMGB1 S100 ochoa High mobility group protein B1 (High mobility group protein 1) (HMG-1) Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability (PubMed:33147444). Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as a sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as a danger-associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury (PubMed:27362237). Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors (PubMed:34743181). In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23446148, PubMed:23519706, PubMed:23994764, PubMed:25048472). Has proangiogdenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidylserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P12682, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:23303669, ECO:0000269|PubMed:25549101, ECO:0000269|PubMed:27362237, ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:34743181, ECO:0000305|PubMed:23446148, ECO:0000305|PubMed:23519706, ECO:0000305|PubMed:23994764, ECO:0000305|PubMed:25048472}.; FUNCTION: Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19360789, PubMed:19446504). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:15014079, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:17803946, ECO:0000269|PubMed:19446504, ECO:0000269|PubMed:23063560, ECO:0000305|PubMed:19360789, ECO:0000305|PubMed:20123072}.; FUNCTION: In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages (By similarity). {ECO:0000250|UniProtKB:P63158, ECO:0000269|PubMed:20819940, ECO:0000269|PubMed:21395369}.; FUNCTION: In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:12765338, ECO:0000269|PubMed:15607795, ECO:0000269|PubMed:15944249, ECO:0000269|PubMed:18250463, ECO:0000269|PubMed:18354232, ECO:0000269|PubMed:18631454, ECO:0000269|PubMed:19064698, ECO:0000269|PubMed:19264983, ECO:0000269|PubMed:20547845, ECO:0000269|PubMed:21660935, ECO:0000269|PubMed:22370717, ECO:0000269|PubMed:22473704, ECO:0000269|PubMed:24474694, ECO:0000269|PubMed:24971542, ECO:0000269|PubMed:25660311, ECO:0000269|Ref.8}.; FUNCTION: (Microbial infection) Critical for entry of human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63 (PubMed:33147444). Regulates the expression of the pro-viral genes ACE2 and CTSL through chromatin modulation (PubMed:33147444). Required for SARS-CoV-2 ORF3A-induced reticulophagy which induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:35239449}.; FUNCTION: (Microbial infection) Associates with the influenza A viral protein NP in the nucleus of infected cells, promoting viral growth and enhancing the activity of the viral polymerase. {ECO:0000269|PubMed:22696656}.; FUNCTION: (Microbial infection) Promotes Epstein-Barr virus (EBV) latent-to-lytic switch by sustaining the expression of the viral transcription factor BZLF1 that acts as a molecular switch to induce the transition from the latent to the lytic or productive phase of the virus cycle. Mechanistically, participates in EBV reactivation through the NLRP3 inflammasome. {ECO:0000269|PubMed:34922257}.; FUNCTION: (Microbial infection) Facilitates dengue virus propagation via interaction with the untranslated regions of viral genome. In turn, this interaction with viral RNA may regulate secondary structure of dengue RNA thus facilitating its recognition by the replication complex. {ECO:0000269|PubMed:34971702}.
P09525 ANXA4 S229 ochoa Annexin A4 (35-beta calcimedin) (Annexin IV) (Annexin-4) (Carbohydrate-binding protein p33/p41) (Chromobindin-4) (Endonexin I) (Lipocortin IV) (P32.5) (PP4-X) (Placental anticoagulant protein II) (PAP-II) (Protein II) Calcium/phospholipid-binding protein which promotes membrane fusion and is involved in exocytosis. {ECO:0000250}.
P0DKX0 ZNF728 S136 ochoa Zinc finger protein 728 None
P10586 PTPRF S1299 ochoa Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one.
P11171 EPB41 S812 ochoa Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
P11388 TOP2A S1471 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P13569 CFTR S700 ochoa|psp Cystic fibrosis transmembrane conductance regulator (CFTR) (ATP-binding cassette sub-family C member 7) (Channel conductance-controlling ATPase) (EC 5.6.1.6) (cAMP-dependent chloride channel) Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis (PubMed:26823428). Mediates the transport of chloride ions across the cell membrane (PubMed:10792060, PubMed:11524016, PubMed:11707463, PubMed:12519745, PubMed:12529365, PubMed:12588899, PubMed:12727866, PubMed:15010471, PubMed:17036051, PubMed:1712898, PubMed:17182731, PubMed:19398555, PubMed:19621064, PubMed:22178883, PubMed:25330774, PubMed:26846474, PubMed:28087700, PubMed:8910473, PubMed:9804160). Possesses an intrinsic ATPase activity and utilizes ATP to gate its channel; the passive flow of anions through the channel is gated by cycles of ATP binding and hydrolysis by the ATP-binding domains (PubMed:11524016, PubMed:15284228, PubMed:26627831, PubMed:8910473). The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration (PubMed:15010471, PubMed:19019741). In vitro, mediates ATP-dependent glutathione flux (PubMed:12727866). Exerts its function also by modulating the activity of other ion channels and transporters (PubMed:12403779, PubMed:22121115, PubMed:22178883, PubMed:27941075). Plays an important role in airway fluid homeostasis (PubMed:16645176, PubMed:19621064, PubMed:26823428). Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens (PubMed:14668433, PubMed:16645176, PubMed:26823428). Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex (PubMed:17182731, PubMed:17434346, PubMed:27941075). Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731). Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731, PubMed:27941075). May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7 (PubMed:12403779). Can inhibit the chloride channel activity of ANO1 (PubMed:22178883). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (PubMed:19923167, PubMed:27714810, PubMed:29393851). {ECO:0000269|PubMed:10792060, ECO:0000269|PubMed:11524016, ECO:0000269|PubMed:11707463, ECO:0000269|PubMed:12403779, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:12529365, ECO:0000269|PubMed:12588899, ECO:0000269|PubMed:12727866, ECO:0000269|PubMed:14668433, ECO:0000269|PubMed:15010471, ECO:0000269|PubMed:15284228, ECO:0000269|PubMed:16645176, ECO:0000269|PubMed:17036051, ECO:0000269|PubMed:1712898, ECO:0000269|PubMed:17182731, ECO:0000269|PubMed:19019741, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:19621064, ECO:0000269|PubMed:22178883, ECO:0000269|PubMed:25330774, ECO:0000269|PubMed:26627831, ECO:0000269|PubMed:26823428, ECO:0000269|PubMed:26846474, ECO:0000269|PubMed:27714810, ECO:0000269|PubMed:27941075, ECO:0000269|PubMed:28087700, ECO:0000269|PubMed:29393851, ECO:0000269|PubMed:8910473, ECO:0000269|PubMed:9804160, ECO:0000305|PubMed:19923167}.
P13861 PRKAR2A S254 ochoa cAMP-dependent protein kinase type II-alpha regulatory subunit Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase.
P15036 ETS2 S88 ochoa Protein C-ets-2 Transcription factor activating transcription. Binds specifically the DNA GGAA/T core motif (Ets-binding site or EBS) in gene promoters and stimulates transcription. {ECO:0000269|PubMed:11909962}.
P15924 DSP S2000 ochoa Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P18827 SDC1 S285 ochoa Syndecan-1 (SYND1) (CD antigen CD138) Cell surface proteoglycan that contains both heparan sulfate and chondroitin sulfate and that links the cytoskeleton to the interstitial matrix (By similarity). Regulates exosome biogenesis in concert with SDCBP and PDCD6IP (PubMed:22660413). Able to induce its own expression in dental mesenchymal cells and also in the neighboring dental epithelial cells via an MSX1-mediated pathway (By similarity). {ECO:0000250|UniProtKB:P18828, ECO:0000269|PubMed:22660413}.
P19338 NCL S67 ochoa Nucleolin (Protein C23) Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}.
P19429 TNNI3 S44 psp Troponin I, cardiac muscle (Cardiac troponin I) Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P21817 RYR1 S2845 ochoa Ryanodine receptor 1 (RYR-1) (RyR1) (Skeletal muscle calcium release channel) (Skeletal muscle ryanodine receptor) (Skeletal muscle-type ryanodine receptor) (Type 1 ryanodine receptor) Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:11741831, PubMed:16163667, PubMed:18268335, PubMed:18650434, PubMed:26115329). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (PubMed:18268335). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity). {ECO:0000250|UniProtKB:E9PZQ0, ECO:0000269|PubMed:18268335, ECO:0000269|PubMed:18650434, ECO:0000269|PubMed:26115329, ECO:0000305|PubMed:11741831, ECO:0000305|PubMed:16163667}.
P21860 ERBB3 S717 ochoa Receptor tyrosine-protein kinase erbB-3 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-3) (Tyrosine kinase-type cell surface receptor HER3) Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins. Binds to neuregulin-1 (NRG1) and is activated by it; ligand-binding increases phosphorylation on tyrosine residues and promotes its association with the p85 subunit of phosphatidylinositol 3-kinase (PubMed:20682778). May also be activated by CSPG5 (PubMed:15358134). Involved in the regulation of myeloid cell differentiation (PubMed:27416908). {ECO:0000269|PubMed:15358134, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:27416908}.
P22694 PRKACB S322 ochoa cAMP-dependent protein kinase catalytic subunit beta (PKA C-beta) (EC 2.7.11.11) Mediates cAMP-dependent signaling triggered by receptor binding to GPCRs (PubMed:12420224, PubMed:21423175, PubMed:31112131). PKA activation regulates diverse cellular processes such as cell proliferation, the cell cycle, differentiation and regulation of microtubule dynamics, chromatin condensation and decondensation, nuclear envelope disassembly and reassembly, as well as regulation of intracellular transport mechanisms and ion flux (PubMed:12420224, PubMed:21423175). Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis (PubMed:12420224, PubMed:21423175). Phosphorylates GPKOW which regulates its ability to bind RNA (PubMed:21880142). Acts as a negative regulator of mTORC1 by mediating phosphorylation of RPTOR (PubMed:31112131). {ECO:0000269|PubMed:12420224, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:21880142, ECO:0000269|PubMed:31112131}.
P27816 MAP4 S68 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P28290 ITPRID2 S354 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P29350 PTPN6 S534 ochoa Tyrosine-protein phosphatase non-receptor type 6 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine phosphatase) (Protein-tyrosine phosphatase 1C) (PTP-1C) (Protein-tyrosine phosphatase SHP-1) (SH-PTP1) Tyrosine phosphatase enzyme that plays important roles in controlling immune signaling pathways and fundamental physiological processes such as hematopoiesis (PubMed:14739280, PubMed:29925997). Dephosphorylates and negatively regulate several receptor tyrosine kinases (RTKs) such as EGFR, PDGFR and FGFR, thereby modulating their signaling activities (PubMed:21258366, PubMed:9733788). When recruited to immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors such as immunoglobulin-like transcript 2/LILRB1, programmed cell death protein 1/PDCD1, CD3D, CD22, CLEC12A and other receptors involved in immune regulation, initiates their dephosphorylation and subsequently inhibits downstream signaling events (PubMed:11907092, PubMed:14739280, PubMed:37932456, PubMed:38166031). Modulates the signaling of several cytokine receptors including IL-4 receptor (PubMed:9065461). Additionally, targets multiple cytoplasmic signaling molecules including STING1, LCK or STAT1 among others involved in diverse cellular processes including modulation of T-cell activation or cGAS-STING signaling (PubMed:34811497, PubMed:38532423). Within the nucleus, negatively regulates the activity of some transcription factors such as NFAT5 via direct dephosphorylation. Also acts as a key transcriptional regulator of hepatic gluconeogenesis by controlling recruitment of RNA polymerase II to the PCK1 promoter together with STAT5A (PubMed:37595871). {ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:11266449, ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:29925997, ECO:0000269|PubMed:34811497, ECO:0000269|PubMed:37595871, ECO:0000269|PubMed:37932456, ECO:0000269|PubMed:38166031, ECO:0000269|PubMed:38532423, ECO:0000269|PubMed:9065461, ECO:0000269|PubMed:9733788}.
P29375 KDM5A S1598 ochoa Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}.
P29536 LMOD1 S135 ochoa Leiomodin-1 (64 kDa autoantigen 1D) (64 kDa autoantigen 1D3) (64 kDa autoantigen D1) (Leiomodin, muscle form) (Smooth muscle leiomodin) (SM-Lmod) (Thyroid-associated ophthalmopathy autoantigen) Required for proper contractility of visceral smooth muscle cells (PubMed:28292896). Mediates nucleation of actin filaments. {ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:28292896}.
P30307 CDC25C S263 ochoa|psp M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}.
P30414 NKTR S866 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P33981 TTK S456 ochoa Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}.
P35251 RFC1 Y67 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S360 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S368 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35348 ADRA1A S258 psp Alpha-1A adrenergic receptor (Alpha-1A adrenoreceptor) (Alpha-1A adrenoceptor) (Alpha-1C adrenergic receptor) (Alpha-adrenergic receptor 1c) This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}.
P35348 ADRA1A S402 psp Alpha-1A adrenergic receptor (Alpha-1A adrenoreceptor) (Alpha-1A adrenoceptor) (Alpha-1C adrenergic receptor) (Alpha-adrenergic receptor 1c) This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}.
P35659 DEK S210 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P35659 DEK S303 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P35869 AHR S36 psp Aryl hydrocarbon receptor (Ah receptor) (AhR) (Class E basic helix-loop-helix protein 76) (bHLHe76) Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644, PubMed:33193710). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820). {ECO:0000269|PubMed:23275542, ECO:0000269|PubMed:28602820, ECO:0000269|PubMed:30373764, ECO:0000269|PubMed:32818467, ECO:0000269|PubMed:32866000, ECO:0000269|PubMed:33193710, ECO:0000269|PubMed:34521881, ECO:0000269|PubMed:7961644, ECO:0000303|PubMed:12213388, ECO:0000303|PubMed:18076143}.
P36871 PGM1 S20 ochoa Phosphoglucomutase-1 (PGM 1) (EC 5.4.2.2) (Glucose phosphomutase 1) Catalyzes the reversible isomerization of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate (PubMed:15378030, PubMed:25288802). The mechanism proceeds via the intermediate compound alpha-D-glucose 1,6-bisphosphate (Probable) (PubMed:25288802). This enzyme participates in both the breakdown and synthesis of glucose (PubMed:17924679, PubMed:25288802). {ECO:0000269|PubMed:15378030, ECO:0000269|PubMed:17924679, ECO:0000269|PubMed:25288802, ECO:0000305|PubMed:15378030}.
P41220 RGS2 S46 psp Regulator of G-protein signaling 2 (RGS2) (Cell growth-inhibiting gene 31 protein) (G0/G1 switch regulatory protein 8) Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form (PubMed:11063746, PubMed:19478087). It is involved in the negative regulation of the angiotensin-activated signaling pathway (PubMed:28784619). Plays a role in the regulation of blood pressure in response to signaling via G protein-coupled receptors and GNAQ. Plays a role in regulating the constriction and relaxation of vascular smooth muscle (By similarity). Binds EIF2B5 and blocks its activity, thereby inhibiting the translation of mRNA into protein (PubMed:19736320). {ECO:0000250|UniProtKB:O08849, ECO:0000269|PubMed:11063746, ECO:0000269|PubMed:11278586, ECO:0000269|PubMed:17901199, ECO:0000269|PubMed:19736320, ECO:0000269|PubMed:28784619, ECO:0000305|PubMed:7643615}.
P42566 EPS15 S368 ochoa Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}.
P42684 ABL2 S671 ochoa Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}.
P45973 CBX5 S95 ochoa Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}.
P45973 CBX5 S110 ochoa Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}.
P46013 MKI67 S1864 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46100 ATRX S784 ochoa|psp Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1942 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B S614 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P49137 MAPKAPK2 S216 ochoa MAP kinase-activated protein kinase 2 (MAPK-activated protein kinase 2) (MAPKAP kinase 2) (MAPKAP-K2) (MAPKAPK-2) (MK-2) (MK2) (EC 2.7.11.1) Stress-activated serine/threonine-protein kinase involved in cytokine production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling, DNA damage response and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. Phosphorylates ALOX5, CDC25B, CDC25C, CEP131, ELAVL1, HNRNPA0, HSP27/HSPB1, KRT18, KRT20, LIMK1, LSP1, PABPC1, PARN, PDE4A, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Phosphorylates HSF1; leading to the interaction with HSP90 proteins and inhibiting HSF1 homotrimerization, DNA-binding and transactivation activities (PubMed:16278218). Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to the dissociation of HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impairment of their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins ELAVL1, HNRNPA0, PABPC1 and TTP/ZFP36, leading to the regulation of the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity, leading to inhibition of dependent degradation of ARE-containing transcripts. Phosphorylates CEP131 in response to cellular stress induced by ultraviolet irradiation which promotes binding of CEP131 to 14-3-3 proteins and inhibits formation of novel centriolar satellites (PubMed:26616734). Also involved in late G2/M checkpoint following DNA damage through a process of post-transcriptional mRNA stabilization: following DNA damage, relocalizes from nucleus to cytoplasm and phosphorylates HNRNPA0 and PARN, leading to stabilization of GADD45A mRNA. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:11844797, ECO:0000269|PubMed:12456657, ECO:0000269|PubMed:12565831, ECO:0000269|PubMed:14499342, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:15014438, ECO:0000269|PubMed:15629715, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:16456544, ECO:0000269|PubMed:17481585, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:8093612, ECO:0000269|PubMed:8280084, ECO:0000269|PubMed:8774846}.
P49450 CENPA S68 psp Histone H3-like centromeric protein A (Centromere autoantigen A) (Centromere protein A) (CENP-A) Histone H3-like nucleosomal protein that is specifically found in centromeric nucleosomes (PubMed:11756469, PubMed:14667408, PubMed:15282608, PubMed:15475964, PubMed:15702419, PubMed:17651496, PubMed:19114591, PubMed:20739937, PubMed:27499292, PubMed:7962047, PubMed:9024683). Replaces conventional H3 in the nucleosome core of centromeric chromatin that serves as an assembly site for the inner kinetochore (PubMed:18072184). The presence of CENPA subtly modifies the nucleosome structure and the way DNA is wrapped around the nucleosome and gives rise to protruding DNA ends that are less well-ordered and rigid compared to nucleosomes containing histone H3 (PubMed:26878239, PubMed:27499292). May serve as an epigenetic mark that propagates centromere identity through replication and cell division (PubMed:15282608, PubMed:15475964, PubMed:20739937, PubMed:21478274, PubMed:26878239). Required for recruitment and assembly of kinetochore proteins, and as a consequence required for progress through mitosis, chromosome segregation and cytokinesis (PubMed:11756469, PubMed:14667408, PubMed:18072184, PubMed:23818633, PubMed:25556658, PubMed:27499292). {ECO:0000269|PubMed:11756469, ECO:0000269|PubMed:14667408, ECO:0000269|PubMed:15282608, ECO:0000269|PubMed:15475964, ECO:0000269|PubMed:15702419, ECO:0000269|PubMed:17651496, ECO:0000269|PubMed:18072184, ECO:0000269|PubMed:19114591, ECO:0000269|PubMed:21478274, ECO:0000269|PubMed:23818633, ECO:0000269|PubMed:25556658, ECO:0000269|PubMed:26878239, ECO:0000269|PubMed:27499292, ECO:0000269|PubMed:7962047, ECO:0000269|PubMed:9024683, ECO:0000305|PubMed:20739937}.
P49790 NUP153 S937 ochoa Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}.
P51587 BRCA2 S3319 ochoa Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}.
P51608 MECP2 S116 ochoa Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}.
P53985 SLC16A1 S213 ochoa Monocarboxylate transporter 1 (MCT 1) (Solute carrier family 16 member 1) Bidirectional proton-coupled monocarboxylate transporter (PubMed:12946269, PubMed:32946811, PubMed:33333023). Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, acetate and the ketone bodies acetoacetate and beta-hydroxybutyrate, and thus contributes to the maintenance of intracellular pH (PubMed:12946269, PubMed:33333023). The transport direction is determined by the proton motive force and the concentration gradient of the substrate monocarboxylate. MCT1 is a major lactate exporter (By similarity). Plays a role in cellular responses to a high-fat diet by modulating the cellular levels of lactate and pyruvate that contribute to the regulation of central metabolic pathways and insulin secretion, with concomitant effects on plasma insulin levels and blood glucose homeostasis (By similarity). Facilitates the protonated monocarboxylate form of succinate export, that its transient protonation upon muscle cell acidification in exercising muscle and ischemic heart (PubMed:32946811). Functions via alternate outward- and inward-open conformation states. Protonation and deprotonation of 309-Asp is essential for the conformational transition (PubMed:33333023). {ECO:0000250|UniProtKB:P53986, ECO:0000250|UniProtKB:P53987, ECO:0000269|PubMed:12946269, ECO:0000269|PubMed:32946811, ECO:0000269|PubMed:33333023}.
P54577 YARS1 S338 ochoa Tyrosine--tRNA ligase, cytoplasmic (EC 6.1.1.1) (Tyrosyl-tRNA synthetase) (TyrRS) [Cleaved into: Tyrosine--tRNA ligase, cytoplasmic, N-terminally processed] Tyrosine--tRNA ligase that catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (Probable) (PubMed:25533949). Also acts as a positive regulator of poly-ADP-ribosylation in the nucleus, independently of its tyrosine--tRNA ligase activity (PubMed:25533949). Activity is switched upon resveratrol-binding: resveratrol strongly inhibits the tyrosine--tRNA ligase activity and promotes relocalization to the nucleus, where YARS1 specifically stimulates the poly-ADP-ribosyltransferase activity of PARP1 (PubMed:25533949). {ECO:0000269|PubMed:25533949, ECO:0000305|PubMed:16429158, ECO:0000305|PubMed:9162081}.
P57103 SLC8A3 S382 ochoa Sodium/calcium exchanger 3 (Na(+)/Ca(2+)-exchange protein 3) (Solute carrier family 8 member 3) Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells, both in muscle and in brain. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A3 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels rapidly return to baseline. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In neurons, contributes to the rapid decrease of cytoplasmic Ca(2+) levels back to baseline after neuronal activation, and thereby contributes to modulate synaptic plasticity, learning and memory (By similarity). Required for normal oligodendrocyte differentiation and for normal myelination (PubMed:21959935). Mediates Ca(2+) efflux from mitochondria and contributes to mitochondrial Ca(2+) ion homeostasis (By similarity). {ECO:0000250|UniProtKB:S4R2P9, ECO:0000269|PubMed:21959935}.
P61026 RAB10 S181 ochoa Ras-related protein Rab-10 (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:21248164). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:21248164). That Rab is mainly involved in the biosynthetic transport of proteins from the Golgi to the plasma membrane (PubMed:21248164). Regulates, for instance, SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane (By similarity). In parallel, it regulates the transport of TLR4, a toll-like receptor to the plasma membrane and therefore may be important for innate immune response (By similarity). Also plays a specific role in asymmetric protein transport to the plasma membrane (PubMed:16641372). In neurons, it is involved in axonogenesis through regulation of vesicular membrane trafficking toward the axonal plasma membrane (By similarity). In epithelial cells, it regulates transport from the Golgi to the basolateral membrane (PubMed:16641372). May play a role in the basolateral recycling pathway and in phagosome maturation (By similarity). May play a role in endoplasmic reticulum dynamics and morphology controlling tubulation along microtubules and tubules fusion (PubMed:23263280). Together with LRRK2, RAB8A, and RILPL1, it regulates ciliogenesis (PubMed:30398148). When phosphorylated by LRRK2 on Thr-73, binds RILPL1 and inhibits ciliogenesis (PubMed:30398148). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation where it promotes the extracellular release of lysosomal content through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P24409, ECO:0000250|UniProtKB:P61027, ECO:0000269|PubMed:16641372, ECO:0000269|PubMed:21248164, ECO:0000269|PubMed:23263280, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}.; FUNCTION: (Microbial infection) Upon Legionella pneumophila infection promotes endoplasmic reticulum recruitment and bacterial replication. Plays a role in remodeling the Legionella-containing vacuole (LCV) into an endoplasmic reticulum-like vacuole. {ECO:0000269|PubMed:31540829}.
P62081 RPS7 S119 ochoa Small ribosomal subunit protein eS7 (40S ribosomal protein S7) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for rRNA maturation (PubMed:19061985). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P62330 ARF6 S38 ochoa ADP-ribosylation factor 6 (EC 3.6.5.2) GTP-binding protein involved in protein trafficking that regulates endocytic recycling and cytoskeleton remodeling (PubMed:11266366, PubMed:16737952, PubMed:18400762, PubMed:21170023, PubMed:32103017, PubMed:7589240). GTP-bound form plays an important role in the transport of multiple palmitoylated proteins form the Golgi to the plasma membrane (PubMed:37461827). Required for normal completion of mitotic cytokinesis (By similarity). Plays a role in the reorganization of the actin cytoskeleton and the formation of stress fibers (By similarity). Involved in the regulation of dendritic spine development, contributing to the regulation of dendritic branching and filopodia extension (PubMed:14978216). Potentiates the neurite outgrowth in primary neurons by interacting with the molecular adapter APBB1 (PubMed:36250347). Plays an important role in membrane trafficking, during junctional remodeling and epithelial polarization (PubMed:36017701). Regulates surface levels of adherens junction proteins such as CDH1 (By similarity). Required for NTRK1 sorting to the recycling pathway from early endosomes (By similarity). {ECO:0000250|UniProtKB:P62331, ECO:0000250|UniProtKB:P62332, ECO:0000269|PubMed:11266366, ECO:0000269|PubMed:14978216, ECO:0000269|PubMed:16099990, ECO:0000269|PubMed:16737952, ECO:0000269|PubMed:18400762, ECO:0000269|PubMed:21170023, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:36017701, ECO:0000269|PubMed:36250347, ECO:0000269|PubMed:37461827, ECO:0000269|PubMed:7589240}.; FUNCTION: (Microbial infection) Functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. {ECO:0000269|PubMed:16099990}.; FUNCTION: (Microbial infection) Plays a key role in the endocytosis of enterovirus 71 and thus viral entry into brain microvascular endothelial cells. {ECO:0000269|PubMed:37417384}.
P68104 EEF1A1 S83 ochoa Elongation factor 1-alpha 1 (EF-1-alpha-1) (EC 3.6.5.-) (Elongation factor Tu) (EF-Tu) (Eukaryotic elongation factor 1 A-1) (eEF1A-1) (Leukocyte receptor cluster member 7) Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623). Also plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with TXK and PARP1 (PubMed:17177976). Also plays a role in cytoskeleton organization by promoting actin bundling (By similarity). {ECO:0000250|UniProtKB:P68105, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:26593721, ECO:0000269|PubMed:26651998, ECO:0000269|PubMed:36123449, ECO:0000269|PubMed:36264623, ECO:0000269|PubMed:36638793}.; FUNCTION: (Microbial infection) Required for the translation of viral proteins and viral replication during human coronavirus SARS-CoV-2 infection. {ECO:0000269|PubMed:33495306}.
P68104 EEF1A1 S396 ochoa|psp Elongation factor 1-alpha 1 (EF-1-alpha-1) (EC 3.6.5.-) (Elongation factor Tu) (EF-Tu) (Eukaryotic elongation factor 1 A-1) (eEF1A-1) (Leukocyte receptor cluster member 7) Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623). Also plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with TXK and PARP1 (PubMed:17177976). Also plays a role in cytoskeleton organization by promoting actin bundling (By similarity). {ECO:0000250|UniProtKB:P68105, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:26593721, ECO:0000269|PubMed:26651998, ECO:0000269|PubMed:36123449, ECO:0000269|PubMed:36264623, ECO:0000269|PubMed:36638793}.; FUNCTION: (Microbial infection) Required for the translation of viral proteins and viral replication during human coronavirus SARS-CoV-2 infection. {ECO:0000269|PubMed:33495306}.
P78527 PRKDC S4026 ochoa DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}.
Q00059 TFAM S160 psp Transcription factor A, mitochondrial (mtTFA) (Mitochondrial transcription factor 1) (MtTF1) (Transcription factor 6) (TCF-6) (Transcription factor 6-like 2) Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation (PubMed:29445193, PubMed:32183942). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA (PubMed:29149603). In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand (PubMed:20410300). Required for accurate and efficient promoter recognition by the mitochondrial RNA polymerase (PubMed:22037172). Promotes transcription initiation from the HSP1 and the light strand promoter by binding immediately upstream of transcriptional start sites (PubMed:22037172). Is able to unwind DNA (PubMed:22037172). Bends the mitochondrial light strand promoter DNA into a U-turn shape via its HMG boxes (PubMed:1737790). Required for maintenance of normal levels of mitochondrial DNA (PubMed:19304746, PubMed:22841477). May play a role in organizing and compacting mitochondrial DNA (PubMed:22037171). {ECO:0000269|PubMed:1737790, ECO:0000269|PubMed:19304746, ECO:0000269|PubMed:20410300, ECO:0000269|PubMed:22037171, ECO:0000269|PubMed:22037172, ECO:0000269|PubMed:22841477, ECO:0000269|PubMed:29149603, ECO:0000269|PubMed:29445193, ECO:0000269|PubMed:32183942}.
Q00987 MDM2 S350 ochoa E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}.
Q01804 OTUD4 S351 ochoa OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}.
Q02539 H1-1 S183 psp Histone H1.1 (Histone H1a) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
Q02790 FKBP4 S78 ochoa Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}.
Q02878 RPL6 T91 ochoa Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}.
Q02878 RPL6 S143 ochoa Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}.
Q02880 TOP2B S1550 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1552 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02952 AKAP12 S522 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03164 KMT2A S261 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03188 CENPC S96 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q05086 UBE3A S93 ochoa Ubiquitin-protein ligase E3A (EC 2.3.2.26) (E6AP ubiquitin-protein ligase) (HECT-type ubiquitin transferase E3A) (Human papillomavirus E6-associated protein) (Oncogenic protein-associated protein E6-AP) (Renal carcinoma antigen NY-REN-54) E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and transfers it to its substrates (PubMed:10373495, PubMed:16772533, PubMed:19204938, PubMed:19233847, PubMed:19325566, PubMed:19591933, PubMed:22645313, PubMed:24273172, PubMed:24728990, PubMed:30020076). Several substrates have been identified including the BMAL1, ARC, LAMTOR1, RAD23A and RAD23B, MCM7 (which is involved in DNA replication), annexin A1, the PML tumor suppressor, and the cell cycle regulator CDKN1B (PubMed:10373495, PubMed:19204938, PubMed:19325566, PubMed:19591933, PubMed:22645313, PubMed:24728990, PubMed:30020076). Additionally, may function as a cellular quality control ubiquitin ligase by helping the degradation of the cytoplasmic misfolded proteins (PubMed:19233847). Finally, UBE3A also promotes its own degradation in vivo. Plays an important role in the regulation of the circadian clock: involved in the ubiquitination of the core clock component BMAL1, leading to its proteasomal degradation (PubMed:24728990). Acts as transcriptional coactivator of progesterone receptor PGR upon progesterone hormone activation (PubMed:16772533). Acts as a regulator of synaptic development by mediating ubiquitination and degradation of ARC (By similarity). Required for synaptic remodeling in neurons by mediating ubiquitination and degradation of LAMTOR1, thereby limiting mTORC1 signaling and activity-dependent synaptic remodeling (By similarity). Synergizes with WBP2 in enhancing PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:O08759, ECO:0000269|PubMed:10373495, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:19204938, ECO:0000269|PubMed:19233847, ECO:0000269|PubMed:19325566, ECO:0000269|PubMed:19591933, ECO:0000269|PubMed:22645313, ECO:0000269|PubMed:24273172, ECO:0000269|PubMed:24728990, ECO:0000269|PubMed:30020076}.; FUNCTION: (Microbial infection) Catalyzes the high-risk human papilloma virus E6-mediated ubiquitination of p53/TP53, contributing to the neoplastic progression of cells infected by these viruses. {ECO:0000269|PubMed:8380895}.
Q07889 SOS1 S401 ochoa Son of sevenless homolog 1 (SOS-1) Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}.
Q08499 PDE4D S362 ochoa 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}.
Q09666 AHNAK S3360 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5031 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5720 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12830 BPTF S1827 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q13427 PPIG S254 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13428 TCOF1 S1267 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13480 GAB1 S648 ochoa GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}.
Q13523 PRP4K S232 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13610 PWP1 S249 ochoa Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}.
Q14966 ZNF638 S1913 ochoa Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}.
Q14980 NUMA1 S1103 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15025 TNIP1 S261 ochoa TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}.
Q15042 RAB3GAP1 S539 ochoa Rab3 GTPase-activating protein catalytic subunit (RAB3 GTPase-activating protein 130 kDa subunit) (Rab3-GAP p130) (Rab3-GAP) Catalytic subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:10859313, PubMed:24891604, PubMed:9030515). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (PubMed:10859313). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (PubMed:15696165). The Rab3GAP complex, acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (PubMed:15696165, PubMed:23420520). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (PubMed:9030515, PubMed:9852129). {ECO:0000269|PubMed:10859313, ECO:0000269|PubMed:15696165, ECO:0000269|PubMed:23420520, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9030515, ECO:0000269|PubMed:9852129}.
Q15111 PLCL1 S95 ochoa Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP) Involved in an inositol phospholipid-based intracellular signaling cascade. Shows no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. Component in the phospho-dependent endocytosis process of GABA A receptor (By similarity). Regulates the turnover of receptors and thus contributes to the maintenance of GABA-mediated synaptic inhibition. Its aberrant expression could contribute to the genesis and progression of lung carcinoma. Acts as an inhibitor of PPP1C. {ECO:0000250, ECO:0000269|PubMed:17254016}.
Q15303 ERBB4 S726 ochoa Receptor tyrosine-protein kinase erbB-4 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-4) (Tyrosine kinase-type cell surface receptor HER4) (p180erbB4) [Cleaved into: ERBB4 intracellular domain (4ICD) (E4ICD) (s80HER4)] Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous system, especially for normal neural crest cell migration and normal axon guidance. Required for mammary gland differentiation, induction of milk proteins and lactation. Acts as cell-surface receptor for the neuregulins NRG1, NRG2, NRG3 and NRG4 and the EGF family members BTC, EREG and HBEGF. Ligand binding triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Ligand specificity and signaling is modulated by alternative splicing, proteolytic processing, and by the formation of heterodimers with other ERBB family members, thereby creating multiple combinations of intracellular phosphotyrosines that trigger ligand- and context-specific cellular responses. Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Isoform JM-A CYT-1 and isoform JM-B CYT-1 phosphorylate PIK3R1, leading to the activation of phosphatidylinositol 3-kinase and AKT1 and protect cells against apoptosis. Isoform JM-A CYT-1 and isoform JM-B CYT-1 mediate reorganization of the actin cytoskeleton and promote cell migration in response to NRG1. Isoform JM-A CYT-2 and isoform JM-B CYT-2 lack the phosphotyrosine that mediates interaction with PIK3R1, and hence do not phosphorylate PIK3R1, do not protect cells against apoptosis, and do not promote reorganization of the actin cytoskeleton and cell migration. Proteolytic processing of isoform JM-A CYT-1 and isoform JM-A CYT-2 gives rise to the corresponding soluble intracellular domains (4ICD) that translocate to the nucleus, promote nuclear import of STAT5A, activation of STAT5A, mammary epithelium differentiation, cell proliferation and activation of gene expression. The ERBB4 soluble intracellular domains (4ICD) colocalize with STAT5A at the CSN2 promoter to regulate transcription of milk proteins during lactation. The ERBB4 soluble intracellular domains can also translocate to mitochondria and promote apoptosis. {ECO:0000269|PubMed:10348342, ECO:0000269|PubMed:10353604, ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:10722704, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:11178955, ECO:0000269|PubMed:11390655, ECO:0000269|PubMed:12807903, ECO:0000269|PubMed:15534001, ECO:0000269|PubMed:15746097, ECO:0000269|PubMed:16251361, ECO:0000269|PubMed:16778220, ECO:0000269|PubMed:16837552, ECO:0000269|PubMed:17486069, ECO:0000269|PubMed:17638867, ECO:0000269|PubMed:19098003, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:8383326, ECO:0000269|PubMed:8617750, ECO:0000269|PubMed:9135143, ECO:0000269|PubMed:9168115, ECO:0000269|PubMed:9334263}.
Q15361 TTF1 S621 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15417 CNN3 S162 ochoa Calponin-3 (Calponin, acidic isoform) Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity.
Q15424 SAFB S582 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15554 TERF2 S456 ochoa Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}.
Q15648 MED1 S1368 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15723 ELF2 S185 ochoa ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation.
Q16533 SNAPC1 S290 ochoa snRNA-activating protein complex subunit 1 (SNAPc subunit 1) (Proximal sequence element-binding transcription factor subunit gamma) (PSE-binding factor subunit gamma) (PTF subunit gamma) (Small nuclear RNA-activating complex polypeptide 1) (snRNA-activating protein complex 43 kDa subunit) (SNAPc 43 kDa subunit) Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023}.
Q16537 PPP2R5E S32 ochoa Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit epsilon isoform (PP2A B subunit isoform B'-epsilon) (PP2A B subunit isoform B56-epsilon) (PP2A B subunit isoform PR61-epsilon) (PP2A B subunit isoform R5-epsilon) The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment.
Q29RF7 PDS5A S1223 ochoa Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}.
Q2TB10 ZNF800 S387 ochoa Zinc finger protein 800 May be involved in transcriptional regulation.
Q3B726 POLR1F S316 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3L8U1 CHD9 S612 ochoa Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}.
Q562F6 SGO2 S1085 ochoa Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}.
Q5JPF3 ANKRD36C S512 ochoa Ankyrin repeat domain-containing protein 36C (Protein immuno-reactive with anti-PTH polyclonal antibodies) None
Q5JSZ5 PRRC2B S1422 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5SVZ6 ZMYM1 S944 ochoa Zinc finger MYM-type protein 1 None
Q5SYC1 CLVS2 S302 ochoa Clavesin-2 (Retinaldehyde-binding protein 1-like 2) (clathrin vesicle-associated Sec14 protein 2) Required for normal morphology of late endosomes and/or lysosomes in neurons (By similarity). Binds phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). {ECO:0000250, ECO:0000269|PubMed:19651769}.
Q5UIP0 RIF1 S1579 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VST9 OBSCN S5387 ochoa Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}.
Q5VTE0 EEF1A1P5 S83 ochoa Putative elongation factor 1-alpha-like 3 (EF-1-alpha-like 3) (Eukaryotic elongation factor 1 A-like 3) (eEF1A-like 3) (Eukaryotic translation elongation factor 1 alpha-1 pseudogene 5) This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. {ECO:0000250}.
Q5VTE0 EEF1A1P5 S396 ochoa Putative elongation factor 1-alpha-like 3 (EF-1-alpha-like 3) (Eukaryotic elongation factor 1 A-like 3) (eEF1A-like 3) (Eukaryotic translation elongation factor 1 alpha-1 pseudogene 5) This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. {ECO:0000250}.
Q5VTT5 MYOM3 S1263 ochoa Myomesin-3 (Myomesin family member 3) May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}.
Q641Q2 WASHC2A S614 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q68DA7 FMN1 S199 ochoa Formin-1 (Limb deformity protein homolog) Plays a role in the formation of adherens junction and the polymerization of linear actin cables. {ECO:0000250}.
Q69YQ0 SPECC1L S1003 psp Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}.
Q6KC79 NIPBL S1736 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6N021 TET2 S99 ochoa|psp Methylcytosine dioxygenase TET2 (EC 1.14.11.80) Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}.
Q6P1L5 FAM117B S273 ochoa Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) None
Q6P5Q4 LMOD2 S491 ochoa Leiomodin-2 (Cardiac leiomodin) (C-LMOD) (Leiomodin) Mediates nucleation of actin filaments and thereby promotes actin polymerization (PubMed:18403713, PubMed:25250574, PubMed:26370058, PubMed:26417072). Plays a role in the regulation of actin filament length (By similarity). Required for normal sarcomere organization in the heart, and for normal heart function (PubMed:18403713). {ECO:0000250|UniProtKB:Q3UHZ5, ECO:0000269|PubMed:18403713, ECO:0000269|PubMed:25250574, ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:26417072}.
Q6PD62 CTR9 S1015 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PIF6 MYO7B S904 ochoa Unconventional myosin-VIIb Myosins are actin-based motor molecules with ATPase activity. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. As part of the intermicrovillar adhesion complex/IMAC plays a role in epithelial brush border differentiation, controlling microvilli organization and length (PubMed:24725409, PubMed:26812018, PubMed:32209652). May link the complex to the actin core bundle of microvilli. {ECO:0000269|PubMed:24725409, ECO:0000269|PubMed:26812018, ECO:0000269|PubMed:32209652, ECO:0000305|PubMed:24725409, ECO:0000305|PubMed:26812018}.
Q6PKG0 LARP1 S215 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6UXG2 ELAPOR1 S990 ochoa Endosome/lysosome-associated apoptosis and autophagy regulator 1 (Estrogen-induced gene 121 protein) May protect cells from cell death by inducing cytosolic vacuolization and up-regulating the autophagy pathway (PubMed:21072319). May play a role in apoptosis and cell proliferation through its interaction with HSPA5 (PubMed:26045166). {ECO:0000269|PubMed:21072319, ECO:0000269|PubMed:26045166}.
Q6UXV4 APOOL S204 ochoa MICOS complex subunit MIC27 (Apolipoprotein O-like) (Protein FAM121A) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane. Specifically binds to cardiolipin (in vitro) but not to the precursor lipid phosphatidylglycerol. Plays a crucial role in crista junction formation and mitochondrial function (PubMed:23704930), (PubMed:25764979). {ECO:0000269|PubMed:23704930, ECO:0000269|PubMed:25764979}.
Q6WKZ4 RAB11FIP1 S184 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 S186 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6ZU80 CEP128 S855 ochoa Centrosomal protein of 128 kDa (Cep128) None
Q6ZUJ8 PIK3AP1 S642 ochoa Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}.
Q6ZUT1 NKAPD1 S261 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q71F23 CENPU S229 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q76FK4 NOL8 S296 ochoa Nucleolar protein 8 (Nucleolar protein Nop132) Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}.
Q76FK4 NOL8 S707 ochoa Nucleolar protein 8 (Nucleolar protein Nop132) Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}.
Q76L83 ASXL2 S136 ochoa Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}.
Q7Z2Z1 TICRR S989 ochoa Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}.
Q7Z401 DENND4A S755 ochoa C-myc promoter-binding protein (DENN domain-containing protein 4A) Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}.
Q7Z4S6 KIF21A S855 ochoa Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}.
Q7Z5J4 RAI1 S1550 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z6E9 RBBP6 S1221 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6E9 RBBP6 S1535 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q86U44 METTL3 S219 ochoa N(6)-adenosine-methyltransferase catalytic subunit METTL3 (EC 2.1.1.348) (Methyltransferase-like protein 3) (hMETTL3) (N(6)-adenosine-methyltransferase 70 kDa subunit) (MT-A70) The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:28297716, PubMed:29348140, PubMed:29506078, PubMed:30428350, PubMed:9409616). In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA destabilization and degradation (PubMed:28637692). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian clock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of hepatic lipid metabolism (PubMed:30428350). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). Also required for oogenesis (By similarity). Involved in the response to DNA damage: in response to ultraviolet irradiation, METTL3 rapidly catalyzes the formation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:28297716). M6A is also required for T-cell homeostasis and differentiation: m6A methylation of transcripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes mRNA destabilization and degradation, promoting T-cell differentiation (By similarity). Inhibits the type I interferon response by mediating m6A methylation of IFNB (PubMed:30559377). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates m6A methylation of Xist RNA, thereby participating in random X inactivation: m6A methylation of Xist leads to target YTHDC1 reader on Xist and promote transcription repression activity of Xist (PubMed:27602518). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). METTL3 mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998). Acts as a positive regulator of mRNA translation independently of the methyltransferase activity: promotes translation by interacting with the translation initiation machinery in the cytoplasm (PubMed:27117702). Its overexpression in a number of cancer cells suggests that it may participate in cancer cell proliferation by promoting mRNA translation (PubMed:27117702). During human coronavirus SARS-CoV-2 infection, adds m6A modifications in SARS-CoV-2 RNA leading to decreased RIGI binding and subsequently dampening the sensing and activation of innate immune responses (PubMed:33961823). {ECO:0000250|UniProtKB:Q8C3P7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26321680, ECO:0000269|PubMed:26593424, ECO:0000269|PubMed:27117702, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:28297716, ECO:0000269|PubMed:28637692, ECO:0000269|PubMed:29348140, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:33961823, ECO:0000269|PubMed:9409616}.
Q86W34 AMZ2 S227 ochoa Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}.
Q86Z02 HIPK1 S350 ochoa Homeodomain-interacting protein kinase 1 (EC 2.7.11.1) (Nuclear body-associated kinase 2) Serine/threonine-protein kinase involved in transcription regulation and TNF-mediated cellular apoptosis. Plays a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX and MYB. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. Inactivates MYB transcription factor activity by phosphorylation. Prevents MAP3K5-JNK activation in the absence of TNF. TNF triggers its translocation to the cytoplasm in response to stress stimuli, thus activating nuclear MAP3K5-JNK by derepression and promoting apoptosis. May be involved in anti-oxidative stress responses. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. Promotes angiogenesis and to be involved in erythroid differentiation. May be involved in malignant squamous cell tumor formation. Phosphorylates PAGE4 at 'Thr-51' which is critical for the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:24559171). {ECO:0000269|PubMed:12702766, ECO:0000269|PubMed:12968034, ECO:0000269|PubMed:15701637, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:19646965, ECO:0000269|PubMed:24559171}.
Q8IUW5 RELL1 S244 ochoa RELT-like protein 1 Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}.
Q8IV48 ERI1 S56 ochoa 3'-5' exoribonuclease 1 (EC 3.1.13.1) (3'-5' exonuclease ERI1) (Eri-1 homolog) (Histone mRNA 3'-end-specific exoribonuclease) (Histone mRNA 3'-exonuclease 1) (Protein 3'hExo) (HEXO) RNA exonuclease that binds to the 3'-end of histone mRNAs and degrades them, suggesting that it plays an essential role in histone mRNA decay after replication (PubMed:14536070, PubMed:16912046, PubMed:17135487, PubMed:37352860). A 2' and 3'-hydroxyl groups at the last nucleotide of the histone 3'-end is required for efficient 3'-end histone mRNA exonuclease activity and degradation of RNA substrates (PubMed:14536070, PubMed:16912046, PubMed:17135487). Also able to degrade the 3'-overhangs of short interfering RNAs (siRNAs) in vitro, suggesting a possible role as regulator of RNA interference (RNAi) (PubMed:14961122). Required for binding the 5'-ACCCA-3' sequence present in stem-loop structure (PubMed:14536070, PubMed:16912046). Able to bind other mRNAs (PubMed:14536070, PubMed:16912046). Required for 5.8S rRNA 3'-end processing (PubMed:37352860). Also binds to 5.8s ribosomal RNA (By similarity). Binds with high affinity to the stem-loop structure of replication-dependent histone pre-mRNAs (PubMed:14536070, PubMed:16912046, PubMed:17135487). In vitro, does not have sequence specificity (PubMed:17135487). In vitro, has weak DNA exonuclease activity (PubMed:17135487). In vitro, shows biphasic kinetics such that there is rapid hydrolysis of the last three unpaired RNA nucleotides in the 39 flanking sequence followed by a much slower cleavage through the stem that occurs over a longer incubation period in the order of hours (PubMed:17135487). ERI1-mediated RNA metabolism plays a key role in chondrogenesis (PubMed:37352860). {ECO:0000250|UniProtKB:Q7TMF2, ECO:0000269|PubMed:14536070, ECO:0000269|PubMed:14961122, ECO:0000269|PubMed:16912046, ECO:0000269|PubMed:17135487, ECO:0000269|PubMed:37352860}.
Q8IWE5 PLEKHM2 S329 ochoa Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}.
Q8IXT5 RBM12B S377 ochoa RNA-binding protein 12B (RNA-binding motif protein 12B) None
Q8IZD4 DCP1B S186 ochoa mRNA-decapping enzyme 1B (EC 3.6.1.62) May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}.
Q8IZQ1 WDFY3 S2492 ochoa WD repeat and FYVE domain-containing protein 3 (Autophagy-linked FYVE protein) (Alfy) Required for selective macroautophagy (aggrephagy). Acts as an adapter protein by linking specific proteins destined for degradation to the core autophagic machinery members, such as the ATG5-ATG12-ATG16L E3-like ligase, SQSTM1 and LC3 (PubMed:20417604). Along with p62/SQSTM1, involved in the formation and autophagic degradation of cytoplasmic ubiquitin-containing inclusions (p62 bodies, ALIS/aggresome-like induced structures). Along with SQSTM1, required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Important for normal brain development. Essential for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Involved in the ability of neural cells to respond to guidance cues. Required for cortical neurons to respond to the trophic effects of netrin-1/NTN1 (By similarity). Regulates Wnt signaling through the removal of DVL3 aggregates, likely in an autophagy-dependent manner. This process may be important for the determination of brain size during embryonic development (PubMed:27008544). May regulate osteoclastogenesis by acting on the TNFSF11/RANKL - TRAF6 pathway (By similarity). After cytokinetic abscission, involved in midbody remnant degradation (PubMed:24128730). In vitro strongly binds to phosphatidylinositol 3-phosphate (PtdIns3P) (PubMed:15292400). {ECO:0000250|UniProtKB:Q6VNB8, ECO:0000269|PubMed:15292400, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20417604, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:27008544}.
Q8N556 AFAP1 S548 ochoa Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}.
Q8N5H7 SH2D3C S22 ochoa SH2 domain-containing protein 3C (Cas/HEF1-associated signal transducer) (Chat-H) (Novel SH2-containing protein 3) (SH2 domain-containing Eph receptor-binding protein 1) (SHEP1) Acts as an adapter protein that mediates cell signaling pathways involved in cellular functions such as cell adhesion and migration, tissue organization, and the regulation of the immune response (PubMed:12432078, PubMed:20881139). Plays a role in integrin-mediated cell adhesion through BCAR1-CRK-RAPGEF1 signaling and activation of the small GTPase RAP1 (PubMed:12432078). Promotes cell migration and invasion through the extracellular matrix (PubMed:20881139). Required for marginal zone B-cell development and thymus-independent type 2 immune responses (By similarity). Mediates migration and adhesion of B cells in the splenic marginal zone via promoting hyperphosphorylation of NEDD9/CASL (By similarity). Plays a role in CXCL13-induced chemotaxis of B-cells (By similarity). Plays a role in the migration of olfactory sensory neurons (OSNs) into the forebrain and the innervation of the olfactory bulb by the OSN axons during development (By similarity). Required for the efficient tyrosine phosphorylation of BCAR1 in OSN axons (By similarity). {ECO:0000250|UniProtKB:Q9QZS8, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:20881139}.; FUNCTION: [Isoform 1]: Important regulator of chemokine-induced, integrin-mediated T lymphocyte adhesion and migration, acting upstream of RAP1 (By similarity). Required for tissue-specific adhesion of T lymphocytes to peripheral tissues (By similarity). Required for basal and CXCL2 stimulated serine-threonine phosphorylation of NEDD9 (By similarity). May be involved in the regulation of T-cell receptor-mediated IL2 production through the activation of the JNK pathway in T-cells (By similarity). {ECO:0000250|UniProtKB:Q9QZS8}.; FUNCTION: [Isoform 2]: May be involved in the BCAR1/CAS-mediated JNK activation pathway. {ECO:0000250|UniProtKB:Q9QZS8}.
Q8N9U0 TC2N S83 ochoa Tandem C2 domains nuclear protein (Membrane targeting tandem C2 domain-containing protein 1) (Tandem C2 protein in nucleus) (Tac2-N) None
Q8NB16 MLKL S358 psp Mixed lineage kinase domain-like protein (hMLKL) Pseudokinase that plays a key role in TNF-induced necroptosis, a programmed cell death process (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Does not have protein kinase activity (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Activated following phosphorylation by RIPK3, leading to homotrimerization, localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following activation by ZBP1, MLKL is phosphorylated by RIPK3 in the nucleus, triggering disruption of the nuclear envelope and leakage of cellular DNA into the cytosol.following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Binds to highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which is essential for its necroptotic function (PubMed:29883610). {ECO:0000250|UniProtKB:Q9D2Y4, ECO:0000269|PubMed:22265413, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:22421439, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:29883610}.
Q8NDI1 EHBP1 S767 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NEL9 DDHD1 S711 ochoa Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}.
Q8NFP9 NBEA S1731 ochoa Neurobeachin (Lysosomal-trafficking regulator 2) (Protein BCL8B) Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the membrane. May anchor the kinase to cytoskeletal and/or organelle-associated proteins (By similarity). {ECO:0000250}.
Q8NG31 KNL1 S1076 ochoa Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}.
Q8NHM5 KDM2B S474 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8NI08 NCOA7 S89 ochoa Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}.
Q8NI27 THOC2 S1388 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TC05 MDM1 S560 ochoa Nuclear protein MDM1 Microtubule-binding protein that negatively regulates centriole duplication. Binds to and stabilizes microtubules (PubMed:26337392). {ECO:0000269|PubMed:26337392}.
Q8TCN5 ZNF507 S73 ochoa Zinc finger protein 507 May be involved in transcriptional regulation.
Q8TDM6 DLG5 S972 ochoa Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}.
Q8TDR2 STK35 S497 ochoa Serine/threonine-protein kinase 35 (EC 2.7.11.1) (CLP-36-interacting kinase 1) (CLIK-1) (PDLIM1-interacting kinase 1) (Serine/threonine-protein kinase 35 L1) None
Q8TED9 AFAP1L1 S387 ochoa Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}.
Q8TEW0 PARD3 S1046 ochoa Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}.
Q8TF01 PNISR S465 ochoa Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) None
Q8WVM8 SCFD1 S316 ochoa|psp Sec1 family domain-containing protein 1 (SLY1 homolog) (Sly1p) (Syntaxin-binding protein 1-like 2) Plays a role in SNARE-pin assembly and Golgi-to-ER retrograde transport via its interaction with COG4. Involved in vesicular transport between the endoplasmic reticulum and the Golgi (By similarity). {ECO:0000250}.
Q8WY36 BBX S478 ochoa HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}.
Q8WY36 BBX S479 ochoa HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}.
Q8WYP3 RIN2 S486 ochoa Ras and Rab interactor 2 (Ras association domain family 4) (Ras inhibitor JC265) (Ras interaction/interference protein 2) Ras effector protein. May function as an upstream activator and/or downstream effector for RAB5B in endocytic pathway. May function as a guanine nucleotide exchange (GEF) of RAB5B, required for activating the RAB5 proteins by exchanging bound GDP for free GTP. {ECO:0000269|PubMed:11733506}.
Q92834 RPGR S961 ochoa X-linked retinitis pigmentosa GTPase regulator Acts as a guanine-nucleotide releasing factor (GEF) for RAB8A and RAB37 by promoting the conversion of inactive RAB-GDP to the active form RAB-GTP (PubMed:20631154). GEF activity towards RAB8A may facilitate ciliary trafficking by modulating ciliary intracellular localization of RAB8A (PubMed:20631154). GEF activity towards RAB37 maintains autophagic homeostasis and retinal function (By similarity). Involved in photoreceptor integrity (By similarity). May control cilia formation by regulating actin stress filaments and cell contractility. May be involved in microtubule organization and regulation of transport in primary cilia (PubMed:21933838). May play a critical role in spermatogenesis and in intraflagellar transport processes (By similarity). {ECO:0000250|UniProtKB:Q9R0X5, ECO:0000269|PubMed:20631154, ECO:0000269|PubMed:21933838}.
Q92888 ARHGEF1 S266 ochoa Rho guanine nucleotide exchange factor 1 (115 kDa guanine nucleotide exchange factor) (p115-RhoGEF) (p115RhoGEF) (Sub1.5) Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits (PubMed:9641915, PubMed:9641916). Acts as a GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase (PubMed:30521495, PubMed:8810315, PubMed:9641915, PubMed:9641916). Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain (PubMed:9641916). This GEF activity is inhibited by binding to activated GNA12 (PubMed:9641916). Mediates angiotensin-2-induced RhoA activation (PubMed:20098430). In lymphoid follicles, may trigger activation of GNA13 as part of S1PR2-dependent signaling pathway that leads to inhibition of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:Q61210, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:30521495, ECO:0000269|PubMed:8810315, ECO:0000269|PubMed:9641915, ECO:0000269|PubMed:9641916}.
Q92945 KHSRP S181 ochoa Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}.
Q92997 DVL3 S601 psp Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}.
Q96AA8 JAKMIP2 S376 ochoa Janus kinase and microtubule-interacting protein 2 (CTCL tumor antigen HD-CL-04) (Neuroendocrine long coiled-coil protein 1) None
Q96BK5 PINX1 S110 psp PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q96BK5 PINX1 S226 psp PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q96C57 CUSTOS S202 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96F05 C11orf24 S43 ochoa Uncharacterized protein C11orf24 (Protein DM4E3) None
Q96F86 EDC3 S110 ochoa Enhancer of mRNA-decapping protein 3 (LSM16 homolog) (YjeF N-terminal domain-containing protein 2) (YjeF_N2) (hYjeF_N2) (YjeF domain-containing protein 1) Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping. May play a role in spermiogenesis and oogenesis. {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:17533573, ECO:0000269|PubMed:18678652, ECO:0000269|PubMed:25701870}.
Q96H12 MSANTD3 S98 ochoa Myb/SANT-like DNA-binding domain-containing protein 3 None
Q96I34 PPP1R16A S60 ochoa Protein phosphatase 1 regulatory subunit 16A (Myosin phosphatase-targeting subunit 3) Inhibits protein phosphatase 1 activity toward phosphorylase, myosin light chain and myosin substrates. {ECO:0000250}.
Q96JQ2 CLMN S619 ochoa Calmin (Calponin-like transmembrane domain protein) None
Q96K49 TMEM87B S505 ochoa Transmembrane protein 87B May be involved in retrograde transport from endosomes to the trans-Golgi network (TGN). {ECO:0000269|PubMed:26157166}.
Q96N16 JAKMIP1 S382 ochoa Janus kinase and microtubule-interacting protein 1 (GABA-B receptor-binding protein) (Multiple alpha-helices and RNA-linker protein 1) (Marlin-1) Associates with microtubules and may play a role in the microtubule-dependent transport of the GABA-B receptor. May play a role in JAK1 signaling and regulate microtubule cytoskeleton rearrangements. {ECO:0000269|PubMed:14718537, ECO:0000269|PubMed:15277531, ECO:0000269|PubMed:17532644}.
Q96NB3 ZNF830 S40 ochoa Zinc finger protein 830 (Coiled-coil domain-containing protein 16) May play a role in pre-mRNA splicing as component of the spliceosome (PubMed:25599396). Acts as an important regulator of the cell cycle that participates in the maintenance of genome integrity. During cell cycle progression in embryonic fibroblast, prevents replication fork collapse, double-strand break formation and cell cycle checkpoint activation. Controls mitotic cell cycle progression and cell survival in rapidly proliferating intestinal epithelium and embryonic stem cells. During the embryo preimplantation, controls different aspects of M phase. During early oocyte growth, plays a role in oocyte survival by preventing chromosomal breaks formation, activation of TP63 and reduction of transcription (By similarity). {ECO:0000250|UniProtKB:Q8R1N0, ECO:0000305|PubMed:25599396}.
Q96NW7 LRRC7 S949 ochoa Leucine-rich repeat-containing protein 7 (Densin-180) (Densin) (Protein LAP1) Required for normal synaptic spine architecture and function. Necessary for DISC1 and GRM5 localization to postsynaptic density complexes and for both N-methyl D-aspartate receptor-dependent and metabotropic glutamate receptor-dependent long term depression. {ECO:0000269|PubMed:11729199}.
Q96PU4 UHRF2 S667 ochoa E3 ubiquitin-protein ligase UHRF2 (EC 2.3.2.27) (Np95/ICBP90-like RING finger protein) (Np95-like RING finger protein) (Nuclear protein 97) (Nuclear zinc finger protein Np97) (RING finger protein 107) (RING-type E3 ubiquitin transferase UHRF2) (Ubiquitin-like PHD and RING finger domain-containing protein 2) (Ubiquitin-like-containing PHD and RING finger domains protein 2) E3 ubiquitin ligase that plays important roles in DNA methylation, histone modifications, cell cycle and DNA repair (PubMed:15178429, PubMed:23404503, PubMed:27743347, PubMed:29506131). Acts as a specific reader for 5-hydroxymethylcytosine (5hmC) and thereby recruits various substrates to these sites to ubiquitinate them (PubMed:24813944, PubMed:27129234). This activity also allows the maintenance of 5mC levels at specific genomic loci and regulates neuron-related gene expression (By similarity). Participates in cell cycle regulation by ubiquitinating cyclins CCND1 and CCNE1 and thereby inducing G1 arrest (PubMed:15178429, PubMed:15361834, PubMed:21952639). Also ubiquitinates PCNP leading to its degradation by the proteasome (PubMed:12176013, PubMed:14741369). Plays an active role in DNA damage repair by ubiquitinating p21/CDKN1A leading to its proteasomal degradation (PubMed:29923055). Also promotes DNA repair by acting as an interstrand cross-links (ICLs) sensor. Mechanistically, cooperates with UHRF1 to ensure recruitment of FANCD2 to ICLs, leading to FANCD2 monoubiquitination and subsequent activation (PubMed:30335751). Contributes to UV-induced DNA damage response by physically interacting with ATR in response to irradiation, thereby promoting ATR activation (PubMed:33848395). {ECO:0000250|UniProtKB:Q7TMI3, ECO:0000269|PubMed:12176013, ECO:0000269|PubMed:14741369, ECO:0000269|PubMed:15178429, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:21952639, ECO:0000269|PubMed:23404503, ECO:0000269|PubMed:24813944, ECO:0000269|PubMed:27129234, ECO:0000269|PubMed:27743347, ECO:0000269|PubMed:29506131, ECO:0000269|PubMed:29923055, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:33848395}.
Q96PZ2 FAM111A S508 ochoa Serine protease FAM111A (EC 3.4.21.-) Single-stranded DNA-binding serine protease that mediates the proteolytic cleavage of covalent DNA-protein cross-links (DPCs) during DNA synthesis, thereby playing a key role in maintaining genomic integrity (PubMed:32165630). DPCs are highly toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription, and which are induced by reactive agents, such as UV light or formaldehyde (PubMed:32165630). Protects replication fork from stalling by removing DPCs, such as covalently trapped topoisomerase 1 (TOP1) adducts on DNA lesion, or poly(ADP-ribose) polymerase 1 (PARP1)-DNA complexes trapped by PARP inhibitors (PubMed:32165630). Required for PCNA loading on replication sites (PubMed:24561620). Promotes S-phase entry and DNA synthesis (PubMed:24561620). Also acts as a restriction factor for some viruses including SV40 polyomavirus and vaccinia virus (PubMed:23093934, PubMed:37607234). Mechanistically, affects nuclear barrier function during viral replication by mediating the disruption of the nuclear pore complex (NPC) via its protease activity (PubMed:33369867, PubMed:37607234). In turn, interacts with vaccinia virus DNA-binding protein OPG079 in the cytoplasm and promotes its degradation without the need of its protease activity but through autophagy (PubMed:37607234). {ECO:0000269|PubMed:24561620, ECO:0000269|PubMed:32165630, ECO:0000269|PubMed:37607234}.
Q96Q89 KIF20B S1574 ochoa Kinesin-like protein KIF20B (Cancer/testis antigen 90) (CT90) (Kinesin family member 20B) (Kinesin-related motor interacting with PIN1) (M-phase phosphoprotein 1) (MPP1) Plus-end-directed motor enzyme that is required for completion of cytokinesis (PubMed:11470801, PubMed:12740395). Required for proper midbody organization and abscission in polarized cortical stem cells. Plays a role in the regulation of neuronal polarization by mediating the transport of specific cargos. Participates in the mobilization of SHTN1 and in the accumulation of PIP3 in the growth cone of primary hippocampal neurons in a tubulin and actin-dependent manner. In the developing telencephalon, cooperates with SHTN1 to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in cerebral cortex growth (By similarity). Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000250|UniProtKB:Q80WE4, ECO:0000269|PubMed:11470801, ECO:0000269|PubMed:12740395, ECO:0000269|PubMed:17409436}.
Q96QB1 DLC1 S673 ochoa Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}.
Q99549 MPHOSPH8 S85 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99613 EIF3C S754 ochoa Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
Q99698 LYST S1503 ochoa Lysosomal-trafficking regulator (Beige homolog) Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}.
Q99996 AKAP9 S43 psp A-kinase anchor protein 9 (AKAP-9) (A-kinase anchor protein 350 kDa) (AKAP 350) (hgAKAP 350) (A-kinase anchor protein 450 kDa) (AKAP 450) (AKAP 120-like protein) (Centrosome- and Golgi-localized PKN-associated protein) (CG-NAP) (Protein hyperion) (Protein kinase A-anchoring protein 9) (PRKA9) (Protein yotiao) Scaffolding protein that assembles several protein kinases and phosphatases on the centrosome and Golgi apparatus. Required to maintain the integrity of the Golgi apparatus (PubMed:10202149, PubMed:15047863). Required for microtubule nucleation at the cis-side of the Golgi apparatus (PubMed:15047863, PubMed:19242490). Required for association of the centrosomes with the poles of the bipolar mitotic spindle during metaphase (PubMed:25657325). In complex with PDE4DIP isoform 13/MMG8/SMYLE, recruits CAMSAP2 to the Golgi apparatus and tethers non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745, PubMed:28814570). In complex with PDE4DIP isoform 13/MMG8/SMYLE, EB1/MAPRE1 and CDK5RAP2, contributes to microtubules nucleation and extension also from the centrosome to the cell periphery (PubMed:29162697). {ECO:0000269|PubMed:10202149, ECO:0000269|PubMed:15047863, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28814570, ECO:0000269|PubMed:29162697}.; FUNCTION: [Isoform 4]: Associated with the N-methyl-D-aspartate receptor and is specifically found in the neuromuscular junction (NMJ) as well as in neuronal synapses, suggesting a role in the organization of postsynaptic specializations. {ECO:0000269|PubMed:9482789}.
Q9BU68 PRR15L S73 ochoa Proline-rich protein 15-like protein (Protein ATAD4) None
Q9BUI4 POLR3C S204 ochoa DNA-directed RNA polymerase III subunit RPC3 (RNA polymerase III subunit C3) (DNA-directed RNA polymerase III subunit C) (RNA polymerase III 62 kDa subunit) (RPC62) DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:20413673, PubMed:33558764, PubMed:33558766, PubMed:34675218, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci (PubMed:20413673, PubMed:33558764, PubMed:33558766, PubMed:35637192). Part of POLR3C/RPC3-POLR3F/RPC6-POLR3G/RPC7 heterotrimer, coordinates the dynamics of Pol III stalk and clamp modules during the transition from apo to elongation state (PubMed:33558764, PubMed:33558766). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). Preferentially binds single-stranded DNA (ssDNA) in a sequence-independent manner (PubMed:21358628). {ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:21358628, ECO:0000269|PubMed:33558764, ECO:0000269|PubMed:33558766, ECO:0000269|PubMed:34675218, ECO:0000269|PubMed:35637192}.
Q9BWH2 FUNDC2 S151 ochoa FUN14 domain-containing protein 2 (Cervical cancer proto-oncogene 3 protein) (HCC-3) (Hepatitis C virus core-binding protein 6) Binds directly and specifically 1,2-Diacyl-sn-glycero-3-phospho-(1'-myo-inositol-3',4',5'-bisphosphate) (PIP3) leading to the recruitment of PIP3 to mitochondria and may play a role in the regulation of the platelet activation via AKT/GSK3B/cGMP signaling pathways (PubMed:29786068). May act as transcription factor that regulates SREBP1 (isoform SREBP-1C) expression in order to modulate triglyceride (TG) homeostasis in hepatocytes (PubMed:25855506, PubMed:29187281). {ECO:0000269|PubMed:25855506, ECO:0000269|PubMed:29187281, ECO:0000269|PubMed:29786068}.
Q9BY42 RTF2 S207 ochoa Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}.
Q9BZ67 FRMD8 S439 ochoa FERM domain-containing protein 8 (Band4.1 inhibitor LRP interactor) (Bili) (iRhom tail-associated protein) (iTAP) Promotes the cell surface stability of iRhom1/RHBDF1 and iRhom2/RHBDF2 and prevents their degradation via the endolysosomal pathway. By acting on iRhoms, involved in ADAM17-mediated shedding of TNF, amphiregulin/AREG, HBEGF and TGFA from the cell surface (PubMed:29897333, PubMed:29897336). Negatively regulates Wnt signaling, possibly by antagonizing the recruitment of AXIN1 to LRP6 (PubMed:19572019). {ECO:0000269|PubMed:19572019, ECO:0000269|PubMed:29897333, ECO:0000269|PubMed:29897336}.
Q9BZI7 UPF3B S409 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9C040 TRIM2 S456 ochoa Tripartite motif-containing protein 2 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM2) (RING finger protein 86) (RING-type E3 ubiquitin transferase TRIM2) UBE2D1-dependent E3 ubiquitin-protein ligase that mediates the ubiquitination of NEFL and of phosphorylated BCL2L11. Plays a neuroprotective function. May play a role in neuronal rapid ischemic tolerance. Plays a role in antiviral immunity and limits New World arenavirus infection independently of its ubiquitin ligase activity (PubMed:24068738). {ECO:0000250|UniProtKB:Q9ESN6, ECO:0000269|PubMed:24068738}.
Q9C073 FAM117A S178 ochoa Protein FAM117A (C/EBP-induced protein) None
Q9C0D5 TANC1 S22 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9GZR1 SENP6 S326 ochoa Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}.
Q9H093 NUAK2 S416 ochoa NUAK family SNF1-like kinase 2 (EC 2.7.11.1) (Omphalocele kinase 2) (SNF1/AMP kinase-related kinase) (SNARK) Stress-activated kinase involved in tolerance to glucose starvation. Induces cell-cell detachment by increasing F-actin conversion to G-actin. Expression is induced by CD95 or TNF-alpha, via NF-kappa-B. Protects cells from CD95-mediated apoptosis and is required for the increased motility and invasiveness of CD95-activated tumor cells. Phosphorylates LATS1 and LATS2. Plays a key role in neural tube closure during embryonic development through LATS2 phosphorylation and regulation of the nuclear localization of YAP1 a critical downstream regulatory target in the Hippo signaling pathway (PubMed:32845958). {ECO:0000269|PubMed:14575707, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15345718, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:32845958}.
Q9H2F5 EPC1 S347 ochoa Enhancer of polycomb homolog 1 Component of the NuA4 histone acetyltransferase (HAT) complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR) (PubMed:27153538). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone acetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). In the NuA4 complex, EPC1 is required to recruit MBTD1 into the complex (PubMed:32209463). {ECO:0000250|UniProtKB:Q8C9X6, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:32209463}.
Q9H2G2 SLK S779 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H2X6 HIPK2 S359 ochoa|psp Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}.
Q9H3M0 KCNF1 S178 ochoa Voltage-gated potassium channel regulatory subunit KCNF1 (Potassium voltage-gated channel subfamily F member 1) (Voltage-gated potassium channel subunit Kv5.1) (kH1) Regulatory alpha-subunit of the voltage-gated potassium (Kv) channel which, when coassembled with KCNB1 or KCNB2, can modulate their expression and their gating kinetics by acting on deactivation upon repolarization and inactivation during maintained depolarization. Accelerates inactivation but has relatively little effect on deactivation. Coexpression with KCNB1 or KCNB2 markedly slows inactivation. Each modulatory subunit has its own specific properties of regulation, and can lead to extensive inhibitions, to large changes in kinetics, and/or to large shifts in the voltage dependencies of the inactivation process. The gating kinetics depends on the nature and stoichiometry of the associated regulatory sunbunit. Fails to produce a potassium current when expressed alone. {ECO:0000250|UniProtKB:D4ADX7}.
Q9H422 HIPK3 S357 ochoa Homeodomain-interacting protein kinase 3 (EC 2.7.11.1) (Androgen receptor-interacting nuclear protein kinase) (ANPK) (Fas-interacting serine/threonine-protein kinase) (FIST) (Homolog of protein kinase YAK1) Serine/threonine-protein kinase involved in transcription regulation, apoptosis and steroidogenic gene expression. Phosphorylates JUN and RUNX2. Seems to negatively regulate apoptosis by promoting FADD phosphorylation. Enhances androgen receptor-mediated transcription. May act as a transcriptional corepressor for NK homeodomain transcription factors. The phosphorylation of NR5A1 activates SF1 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation. In osteoblasts, supports transcription activation: phosphorylates RUNX2 that synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE). {ECO:0000269|PubMed:14766760, ECO:0000269|PubMed:17210646}.
Q9H4G0 EPB41L1 S820 ochoa Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases.
Q9H6F5 CCDC86 S255 ochoa Coiled-coil domain-containing protein 86 (Cytokine-induced protein with coiled-coil domain) Required for proper chromosome segregation during mitosis and error-free mitotic progression. {ECO:0000269|PubMed:36695333}.
Q9H7N4 SCAF1 S929 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9HCC0 MCCC2 S499 ochoa Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial (MCCase subunit beta) (EC 6.4.1.4) (3-methylcrotonyl-CoA carboxylase 2) (3-methylcrotonyl-CoA carboxylase non-biotin-containing subunit) (3-methylcrotonyl-CoA:carbon dioxide ligase subunit beta) Carboxyltransferase subunit of the 3-methylcrotonyl-CoA carboxylase, an enzyme that catalyzes the conversion of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA, a critical step for leucine and isovaleric acid catabolism. {ECO:0000269|PubMed:17360195}.
Q9NP56 PDE7B S74 ochoa 3',5'-cyclic-AMP phosphodiesterase 7B (EC 3.1.4.53) (cAMP-specific phosphodiesterase 7B) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:10814504, PubMed:10872825). May be involved in the control of cAMP-mediated neural activity and cAMP metabolism in the brain (PubMed:10814504). {ECO:0000269|PubMed:10814504, ECO:0000269|PubMed:10872825}.
Q9NQZ2 UTP3 S396 ochoa Something about silencing protein 10 (Charged amino acid-rich leucine zipper 1) (CRL1) (Disrupter of silencing SAS10) (UTP3 homolog) Essential for gene silencing: has a role in the structure of silenced chromatin. Plays a role in the developing brain (By similarity). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:Q12136, ECO:0000250|UniProtKB:Q9JI13, ECO:0000269|PubMed:34516797}.
Q9NRZ9 HELLS S115 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NSI8 SAMSN1 S23 ochoa|psp SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}.
Q9NWH9 SLTM S590 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NXL9 MCM9 S934 ochoa DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}.
Q9NYZ1 TVP23B S184 ochoa Golgi apparatus membrane protein TVP23 homolog B None
Q9NZI8 IGF2BP1 S313 ochoa Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2 mRNA-binding protein 1) (IMP-1) (IMP1) (Coding region determinant-binding protein) (CRD-BP) (IGF-II mRNA-binding protein 1) (VICKZ family member 1) (Zipcode-binding protein 1) (ZBP-1) RNA-binding factor that recruits target transcripts to cytoplasmic protein-RNA complexes (mRNPs). This transcript 'caging' into mRNPs allows mRNA transport and transient storage. It also modulates the rate and location at which target transcripts encounter the translational apparatus and shields them from endonuclease attacks or microRNA-mediated degradation. Preferentially binds to N6-methyladenosine (m6A)-containing mRNAs and increases their stability (PubMed:29476152, PubMed:32245947). Plays a direct role in the transport and translation of transcripts required for axonal regeneration in adult sensory neurons (By similarity). Regulates localized beta-actin/ACTB mRNA translation, a crucial process for cell polarity, cell migration and neurite outgrowth. Co-transcriptionally associates with the ACTB mRNA in the nucleus. This binding involves a conserved 54-nucleotide element in the ACTB mRNA 3'-UTR, known as the 'zipcode'. The RNP thus formed is exported to the cytoplasm, binds to a motor protein and is transported along the cytoskeleton to the cell periphery. During transport, prevents ACTB mRNA from being translated into protein. When the RNP complex reaches its destination near the plasma membrane, IGF2BP1 is phosphorylated. This releases the mRNA, allowing ribosomal 40S and 60S subunits to assemble and initiate ACTB protein synthesis. Monomeric ACTB then assembles into the subcortical actin cytoskeleton (By similarity). During neuronal development, key regulator of neurite outgrowth, growth cone guidance and neuronal cell migration, presumably through the spatiotemporal fine tuning of protein synthesis, such as that of ACTB (By similarity). May regulate mRNA transport to activated synapses (By similarity). Binds to and stabilizes ABCB1/MDR-1 mRNA (By similarity). During interstinal wound repair, interacts with and stabilizes PTGS2 transcript. PTGS2 mRNA stabilization may be crucial for colonic mucosal wound healing (By similarity). Binds to the 3'-UTR of IGF2 mRNA by a mechanism of cooperative and sequential dimerization and regulates IGF2 mRNA subcellular localization and translation. Binds to MYC mRNA, in the coding region instability determinant (CRD) of the open reading frame (ORF), hence preventing MYC cleavage by endonucleases and possibly microRNA targeting to MYC-CRD (PubMed:29476152). Binding to MYC mRNA is enhanced by m6A-modification of the CRD (PubMed:29476152). Binds to the 3'-UTR of CD44 mRNA and stabilizes it, hence promotes cell adhesion and invadopodia formation in cancer cells. Binds to the oncofetal H19 transcript and to the neuron-specific TAU mRNA and regulates their localizations. Binds to and stabilizes BTRC/FBW1A mRNA. Binds to the adenine-rich autoregulatory sequence (ARS) located in PABPC1 mRNA and represses its translation. PABPC1 mRNA-binding is stimulated by PABPC1 protein. Prevents BTRC/FBW1A mRNA degradation by disrupting microRNA-dependent interaction with AGO2. Promotes the directed movement of tumor-derived cells by fine-tuning intracellular signaling networks. Binds to MAPK4 3'-UTR and inhibits its translation. Interacts with PTEN transcript open reading frame (ORF) and prevents mRNA decay. This combined action on MAPK4 (down-regulation) and PTEN (up-regulation) antagonizes HSPB1 phosphorylation, consequently it prevents G-actin sequestration by phosphorylated HSPB1, allowing F-actin polymerization. Hence enhances the velocity of cell migration and stimulates directed cell migration by PTEN-modulated polarization. Interacts with Hepatitis C virus (HCV) 5'-UTR and 3'-UTR and specifically enhances translation at the HCV IRES, but not 5'-cap-dependent translation, possibly by recruiting eIF3. Interacts with HIV-1 GAG protein and blocks the formation of infectious HIV-1 particles. Reduces HIV-1 assembly by inhibiting viral RNA packaging, as well as assembly and processing of GAG protein on cellular membranes. During cellular stress, such as oxidative stress or heat shock, stabilizes target mRNAs that are recruited to stress granules, including CD44, IGF2, MAPK4, MYC, PTEN, RAPGEF2 and RPS6KA5 transcripts. {ECO:0000250, ECO:0000269|PubMed:10875929, ECO:0000269|PubMed:16356927, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:16778892, ECO:0000269|PubMed:17101699, ECO:0000269|PubMed:17255263, ECO:0000269|PubMed:17893325, ECO:0000269|PubMed:18385235, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19541769, ECO:0000269|PubMed:19647520, ECO:0000269|PubMed:20080952, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:29476152, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8132663, ECO:0000269|PubMed:9891060}.
Q9P0M6 MACROH2A2 S171 ochoa Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}.
Q9P0W2 HMG20B S161 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1-related (SMARCE1-related protein) (BRCA2-associated factor 35) (HMG box-containing protein 20B) (HMG domain-containing protein 2) (HMG domain-containing protein HMGX2) (Sox-like transcriptional factor) (Structural DNA-binding protein BRAF35) Required for correct progression through G2 phase of the cell cycle and entry into mitosis. Required for RCOR1/CoREST mediated repression of neuronal specific gene promoters.
Q9P2E9 RRBP1 S533 ochoa Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}.
Q9UBH6 XPR1 S666 ochoa Solute carrier family 53 member 1 (Phosphate exporter SLC53A1) (Protein SYG1 homolog) (Xenotropic and polytropic murine leukemia virus receptor X3) (X-receptor) (Xenotropic and polytropic retrovirus receptor 1) Inorganic ion transporter that mediates phosphate ion export across plasma membrane (PubMed:23791524, PubMed:25938945, PubMed:27080106, PubMed:31043717, PubMed:39169184, PubMed:39325866, PubMed:39747008, PubMed:39814721). Plays a major role in phosphate homeostasis, preventing intracellular phosphate accumulation and possible calcium phosphate precipitation, ultimately preserving calcium signaling (PubMed:27080106). Binds inositol hexakisphosphate (Ins6P) and similar inositol polyphosphates, such as 5-diphospho-inositol pentakisphosphate (5-InsP7), which are important intracellular signaling molecules involved in regulation of phosphate flux (PubMed:27080106, PubMed:39169184, PubMed:39325866). {ECO:0000269|PubMed:23791524, ECO:0000269|PubMed:25938945, ECO:0000269|PubMed:27080106, ECO:0000269|PubMed:31043717, ECO:0000269|PubMed:39169184, ECO:0000269|PubMed:39325866, ECO:0000269|PubMed:39747008, ECO:0000269|PubMed:39814721}.
Q9UBZ9 REV1 S1088 ochoa DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}.
Q9UDY4 DNAJB4 S248 ochoa DnaJ homolog subfamily B member 4 (Heat shock 40 kDa protein 1 homolog) (HSP40 homolog) (Heat shock protein 40 homolog) (Human liver DnaJ-like protein) Probable chaperone. Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro) (PubMed:24318877). {ECO:0000269|PubMed:24318877}.
Q9UER7 DAXX S641 ochoa Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}.
Q9UGU5 HMGXB4 S205 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UHB6 LIMA1 S671 ochoa LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}.
Q9UID3 VPS51 S649 ochoa Vacuolar protein sorting-associated protein 51 homolog (Another new gene 2 protein) (Protein fat-free homolog) Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of protein retrieval from endosomes to the TGN, acid hydrolase sorting, lysosome function, endosomal cholesterol traffic and autophagy. VPS51 participates in retrograde transport of acid hydrolase receptors, likely by promoting tethering and SNARE-dependent fusion of endosome-derived carriers to the TGN (PubMed:20685960). Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane (PubMed:25799061). {ECO:0000269|PubMed:20685960, ECO:0000269|PubMed:25799061}.
Q9UKJ3 GPATCH8 S349 ochoa G patch domain-containing protein 8 None
Q9UKJ3 GPATCH8 S721 ochoa G patch domain-containing protein 8 None
Q9UKX7 NUP50 S262 ochoa Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}.
Q9ULU4 ZMYND8 S1119 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9ULX6 AKAP8L S283 ochoa A-kinase anchor protein 8-like (AKAP8-like protein) (Helicase A-binding protein 95) (HAP95) (Homologous to AKAP95 protein) (HA95) (Neighbor of A-kinase-anchoring protein 95) (Neighbor of AKAP95) Could play a role in constitutive transport element (CTE)-mediated gene expression by association with DHX9. Increases CTE-dependent nuclear unspliced mRNA export (PubMed:10748171, PubMed:11402034). Proposed to target PRKACA to the nucleus but does not seem to be implicated in the binding of regulatory subunit II of PKA (PubMed:10761695, PubMed:11884601). May be involved in nuclear envelope breakdown and chromatin condensation. May be involved in anchoring nuclear membranes to chromatin in interphase and in releasing membranes from chromating at mitosis (PubMed:11034899). May regulate the initiation phase of DNA replication when associated with TMPO isoform Beta (PubMed:12538639). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function seems to act redundantly with AKAP8 (PubMed:16980585). May be involved in regulation of pre-mRNA splicing (PubMed:17594903). {ECO:0000269|PubMed:10748171, ECO:0000269|PubMed:11034899, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11884601, ECO:0000269|PubMed:12538639, ECO:0000269|PubMed:16980585, ECO:0000305|PubMed:10761695}.; FUNCTION: (Microbial infection) In case of EBV infection, may target PRKACA to EBNA-LP-containing nuclear sites to modulate transcription from specific promoters. {ECO:0000269|PubMed:11884601}.; FUNCTION: (Microbial infection) Can synergize with DHX9 to activate the CTE-mediated gene expression of type D retroviruses. {ECO:0000269|PubMed:11402034}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, involved in the DHX9-promoted annealing of host tRNA(Lys3) to viral genomic RNA as a primer in reverse transcription; in vitro negatively regulates DHX9 annealing activity. {ECO:0000269|PubMed:25034436}.
Q9UN76 SLC6A14 S21 ochoa Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) (Amino acid transporter ATB0+) (Solute carrier family 6 member 14) Amino acid transporter that plays an important role in the absorption of amino acids in the intestinal tract. Mediates the uptake of a broad range of neutral and cationic amino acids (with the exception of proline) in a Na(+)/Cl(-)-dependent manner (PubMed:10446133). Transports non-alpha-amino acids such as beta-alanine with low affinity, and has a higher affinity for dipolar and cationic amino acids such as leucine and lysine (PubMed:18599538). Can also transport carnitine, butirylcarnitine and propionylcarnitine coupled to the transmembrane gradients of Na(+) and Cl(-) (PubMed:17855766). {ECO:0000250|UniProtKB:Q9JMA9, ECO:0000269|PubMed:10446133, ECO:0000269|PubMed:17855766, ECO:0000269|PubMed:18599538}.
Q9UPG8 PLAGL2 S243 ochoa Zinc finger protein PLAGL2 (Pleiomorphic adenoma-like protein 2) Shows weak transcriptional activatory activity.
Q9UQ35 SRRM2 S472 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQE7 SMC3 S292 ochoa Structural maintenance of chromosomes protein 3 (SMC protein 3) (SMC-3) (Basement membrane-associated chondroitin proteoglycan) (Bamacan) (Chondroitin sulfate proteoglycan 6) (Chromosome-associated polypeptide) (hCAP) Central component of cohesin, a complex required for chromosome cohesion during the cell cycle. The cohesin complex may form a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. Cohesion is coupled to DNA replication and is involved in DNA repair. The cohesin complex also plays an important role in spindle pole assembly during mitosis and in chromosomes movement. {ECO:0000269|PubMed:11076961, ECO:0000269|PubMed:19907496}.
Q9Y230 RUVBL2 S431 ochoa RuvB-like 2 (EC 3.6.4.12) (48 kDa TATA box-binding protein-interacting protein) (48 kDa TBP-interacting protein) (51 kDa erythrocyte cytosolic protein) (ECP-51) (INO80 complex subunit J) (Repressing pontin 52) (Reptin 52) (TIP49b) (TIP60-associated protein 54-beta) (TAP54-beta) Possesses single-stranded DNA-stimulated ATPase and ATP-dependent DNA helicase (5' to 3') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring-like structure contribute to the ATPase activity (PubMed:10428817, PubMed:17157868, PubMed:33205750). Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). This modification may both alter nucleosome -DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:14966270). The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400 (PubMed:14966270). NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage (PubMed:14966270). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Proposed core component of the chromatin remodeling INO80 complex which exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding (PubMed:16230350, PubMed:21303910). Plays an essential role in oncogenic transformation by MYC and also modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex (PubMed:10882073, PubMed:16014379). May also inhibit the transcriptional activity of ATF2 (PubMed:11713276). Involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway where it negatively regulates expression of ER stress response genes (PubMed:25652260). May play a role in regulating the composition of the U5 snRNP complex (PubMed:28561026). {ECO:0000269|PubMed:10428817, ECO:0000269|PubMed:10882073, ECO:0000269|PubMed:11713276, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:17157868, ECO:0000269|PubMed:21303910, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:25652260, ECO:0000269|PubMed:28561026, ECO:0000269|PubMed:33205750}.
Q9Y232 CDYL S88 ochoa Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}.
Q9Y2D8 SSX2IP S290 ochoa Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}.
Q9Y2J2 EPB41L3 S1031 ochoa Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}.
Q9Y2W1 THRAP3 S377 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2W1 THRAP3 S379 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2W1 THRAP3 S737 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y6M1 IGF2BP2 S311 ochoa Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2 mRNA-binding protein 2) (IMP-2) (Hepatocellular carcinoma autoantigen p62) (IGF-II mRNA-binding protein 2) (VICKZ family member 2) RNA-binding factor that recruits target transcripts to cytoplasmic protein-RNA complexes (mRNPs). This transcript 'caging' into mRNPs allows mRNA transport and transient storage. It also modulates the rate and location at which target transcripts encounter the translational apparatus and shields them from endonuclease attacks or microRNA-mediated degradation (By similarity). Preferentially binds to N6-methyladenosine (m6A)-containing mRNAs and increases their stability (PubMed:29476152). Binds to the 5'-UTR of the insulin-like growth factor 2 (IGF2) mRNAs (PubMed:9891060). Binding is isoform-specific. Binds to beta-actin/ACTB and MYC transcripts. Increases MYC mRNA stability by binding to the coding region instability determinant (CRD) and binding is enhanced by m6A-modification of the CRD (PubMed:29476152). {ECO:0000250, ECO:0000269|PubMed:23640942, ECO:0000269|PubMed:29476152, ECO:0000269|PubMed:9891060}.
Q9Y6W6 DUSP10 S230 psp Dual specificity protein phosphatase 10 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 5) (MAP kinase phosphatase 5) (MKP-5) Protein phosphatase involved in the inactivation of MAP kinases. Has a specificity for the MAPK11/MAPK12/MAPK13/MAPK14 subfamily. It preferably dephosphorylates p38. {ECO:0000269|PubMed:10391943, ECO:0000269|PubMed:10597297, ECO:0000269|PubMed:22375048}.
Q9Y5L4 TIMM13 S57 Sugiyama Mitochondrial import inner membrane translocase subunit Tim13 Mitochondrial intermembrane chaperone that participates in the import and insertion of some multi-pass transmembrane proteins into the mitochondrial inner membrane. Also required for the transfer of beta-barrel precursors from the TOM complex to the sorting and assembly machinery (SAM complex) of the outer membrane. Acts as a chaperone-like protein that protects the hydrophobic precursors from aggregation and guide them through the mitochondrial intermembrane space. The TIMM8-TIMM13 complex mediates the import of proteins such as TIMM23, SLC25A12/ARALAR1 and SLC25A13/ARALAR2, while the predominant TIMM9-TIMM10 70 kDa complex mediates the import of much more proteins. {ECO:0000269|PubMed:11489896, ECO:0000269|PubMed:15254020}.
P61163 ACTR1A S331 Sugiyama Alpha-centractin (Centractin) (ARP1) (Actin-RPV) (Centrosome-associated actin homolog) Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules. {ECO:0000250|UniProtKB:F2Z5G5}.
O60285 NUAK1 S358 Sugiyama NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}.
O75116 ROCK2 S134 Sugiyama Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}.
Q13464 ROCK1 S118 Sugiyama Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}.
O75582 RPS6KA5 S647 Sugiyama Ribosomal protein S6 kinase alpha-5 (S6K-alpha-5) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 5) (Nuclear mitogen- and stress-activated protein kinase 1) (RSK-like protein kinase) (RSKL) Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:18511904, PubMed:9687510, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be important during development and breast tumor formation (PubMed:12569367). Directly represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393). May also phosphorylate 'Ser-28' of histone H3 (PubMed:12773393). Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14) (PubMed:12773393). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines (By similarity). Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors (By similarity). Plays a role in neuronal cell death by mediating the downstream effects of excitotoxic injury (By similarity). Phosphorylates TRIM7 at 'Ser-107' in response to growth factor signaling via the MEK/ERK pathway, thereby stimulating its ubiquitin ligase activity (PubMed:25851810). {ECO:0000250|UniProtKB:Q8C050, ECO:0000269|PubMed:11909979, ECO:0000269|PubMed:12569367, ECO:0000269|PubMed:12628924, ECO:0000269|PubMed:12763138, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:15010469, ECO:0000269|PubMed:18511904, ECO:0000269|PubMed:25851810, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9873047}.
Q14204 DYNC1H1 S3257 Sugiyama Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}.
O95835 LATS1 S593 Sugiyama Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}.
P05129 PRKCG S600 Sugiyama Protein kinase C gamma type (PKC-gamma) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GRIA4/GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor GRM5/MGLUR5 and phosphorylates GRIN1/NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May be involved in desensitization of mu-type opioid receptor-mediated G-protein activation in the spinal cord, and may be critical for the development and/or maintenance of morphine-induced reinforcing effects in the limbic forebrain. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43 (GJA1/CX43), resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress (By similarity). Phosphorylates p53/TP53 and promotes p53/TP53-dependent apoptosis in response to DNA damage. Involved in the phase resetting of the cerebral cortex circadian clock during temporally restricted feeding. Stabilizes the core clock component BMAL1 by interfering with its ubiquitination, thus suppressing its degradation, resulting in phase resetting of the cerebral cortex clock (By similarity). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P63318, ECO:0000250|UniProtKB:P63319, ECO:0000269|PubMed:16377624, ECO:0000269|PubMed:36040231}.
P11388 TOP2A S29 SIGNOR|iPTMNet|EPSD DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P07333 CSF1R S555 Sugiyama Macrophage colony-stimulating factor 1 receptor (CSF-1 receptor) (CSF-1-R) (CSF-1R) (M-CSF-R) (EC 2.7.10.1) (Proto-oncogene c-Fms) (CD antigen CD115) Tyrosine-protein kinase that acts as a cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of pro-inflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding, including the ERK1/2 and the JNK pathway (PubMed:20504948, PubMed:30982609). Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor. In the central nervous system, may play a role in the development of microglia macrophages (PubMed:30982608). {ECO:0000269|PubMed:12882960, ECO:0000269|PubMed:15117969, ECO:0000269|PubMed:16170366, ECO:0000269|PubMed:16337366, ECO:0000269|PubMed:16648572, ECO:0000269|PubMed:17121910, ECO:0000269|PubMed:18467591, ECO:0000269|PubMed:18814279, ECO:0000269|PubMed:19193011, ECO:0000269|PubMed:19934330, ECO:0000269|PubMed:20489731, ECO:0000269|PubMed:20504948, ECO:0000269|PubMed:20829061, ECO:0000269|PubMed:30982608, ECO:0000269|PubMed:30982609, ECO:0000269|PubMed:7683918}.
P27635 RPL10 S168 SIGNOR|EPSD Large ribosomal subunit protein uL16 (60S ribosomal protein L10) (Laminin receptor homolog) (Protein QM) (Ribosomal protein L10) (Tumor suppressor QM) Component of the large ribosomal subunit (PubMed:26290468). Plays a role in the formation of actively translating ribosomes (PubMed:26290468). May play a role in the embryonic brain development (PubMed:25316788). {ECO:0000269|PubMed:25316788, ECO:0000269|PubMed:26290468, ECO:0000305|PubMed:12962325}.
P33778 H2BC3 S33 EPSD Histone H2B type 1-B (H2B-clustered histone 3) (Histone H2B.1) (Histone H2B.f) (H2B/f) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P45379 TNNT2 S189 EPSD|PSP Troponin T, cardiac muscle (TnTc) (Cardiac muscle troponin T) (cTnT) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P25685 DNAJB1 S252 Sugiyama DnaJ homolog subfamily B member 1 (DnaJ protein homolog 1) (Heat shock 40 kDa protein 1) (HSP40) (Heat shock protein 40) (Human DnaJ protein 1) (hDj-1) Interacts with HSP70 and can stimulate its ATPase activity. Stimulates the association between HSC70 and HIP. Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro) (PubMed:24318877). {ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:9499401}.
P62807 H2BC4 S33 ELM Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P21802 FGFR2 S410 Sugiyama Fibroblast growth factor receptor 2 (FGFR-2) (EC 2.7.10.1) (K-sam) (KGFR) (Keratinocyte growth factor receptor) (CD antigen CD332) Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Required for normal embryonic patterning, trophoblast function, limb bud development, lung morphogenesis, osteogenesis and skin development. Plays an essential role in the regulation of osteoblast differentiation, proliferation and apoptosis, and is required for normal skeleton development. Promotes cell proliferation in keratinocytes and immature osteoblasts, but promotes apoptosis in differentiated osteoblasts. Phosphorylates PLCG1, FRS2 and PAK4. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. FGFR2 signaling is down-regulated by ubiquitination, internalization and degradation. Mutations that lead to constitutive kinase activation or impair normal FGFR2 maturation, internalization and degradation lead to aberrant signaling. Over-expressed FGFR2 promotes activation of STAT1. {ECO:0000269|PubMed:12529371, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:15629145, ECO:0000269|PubMed:16384934, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19103595, ECO:0000269|PubMed:19387476, ECO:0000269|PubMed:19410646, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:8663044}.
P31327 CPS1 S896 Sugiyama Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell.
P28838 LAP3 S180 Sugiyama Cytosol aminopeptidase (EC 3.4.11.1) (Cysteinylglycine-S-conjugate dipeptidase) (EC 3.4.13.23) (Leucine aminopeptidase 3) (LAP-3) (Leucyl aminopeptidase) (Peptidase S) (Proline aminopeptidase) (EC 3.4.11.5) (Prolyl aminopeptidase) Cytosolic metallopeptidase that catalyzes the removal of unsubstituted N-terminal hydrophobic amino acids from various peptides. The presence of Zn(2+) ions is essential for the peptidase activity, and the association with other cofactors can modulate the substrate spectificity of the enzyme. For instance, in the presence of Mn(2+), it displays a specific Cys-Gly hydrolyzing activity of Cys-Gly-S-conjugates. Involved in the metabolism of glutathione and in the degradation of glutathione S-conjugates, which may play a role in the control of the cell redox status. {ECO:0000250|UniProtKB:P00727}.
O75116 ROCK2 S724 Sugiyama Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}.
Q92620 DHX38 S438 Sugiyama Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 (EC 3.6.4.13) (ATP-dependent RNA helicase DHX38) (DEAH box protein 38) Probable ATP-binding RNA helicase (Probable). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:29301961, PubMed:9524131). {ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:9524131, ECO:0000305}.
P13073 COX4I1 S71 Sugiyama Cytochrome c oxidase subunit 4 isoform 1, mitochondrial (Cytochrome c oxidase polypeptide IV) (Cytochrome c oxidase subunit IV isoform 1) (COX IV-1) Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. {ECO:0000250|UniProtKB:P00424}.
Q9BXP5 SRRT S703 Sugiyama Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}.
Q96E11 MRRF S227 Sugiyama Ribosome-recycling factor, mitochondrial (RRF) (mtRRF) (Ribosome-releasing factor, mitochondrial) Responsible for the disassembly of ribosomes from messenger RNA at the termination of mitochondrial protein biosynthesis (PubMed:19716793, PubMed:33878294). Acts in collaboration with GFM2 (PubMed:33878294). Promotes mitochondrial ribosome recycling by dissolution of intersubunit contacts (PubMed:33878294). {ECO:0000269|PubMed:19716793, ECO:0000269|PubMed:33878294}.
Q9Y3F4 STRAP S160 Sugiyama Serine-threonine kinase receptor-associated protein (MAP activator with WD repeats) (UNR-interacting protein) (WD-40 repeat protein PT-WD) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. STRAP plays a role in the cellular distribution of the SMN complex. Negatively regulates TGF-beta signaling but positively regulates the PDPK1 kinase activity by enhancing its autophosphorylation and by significantly reducing the association of PDPK1 with 14-3-3 protein. {ECO:0000269|PubMed:16251192, ECO:0000269|PubMed:18984161}.
P61927 RPL37 S50 Sugiyama Large ribosomal subunit protein eL37 (60S ribosomal protein L37) (G1.16) Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
Q86UK7 ZNF598 S851 Sugiyama E3 ubiquitin-protein ligase ZNF598 (EC 2.3.2.27) (Zinc finger protein 598) E3 ubiquitin-protein ligase that plays a key role in the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, leading to degradation of nascent peptide chains (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:32099016, PubMed:32579943, PubMed:33581075). ZNF598 is activated when ribosomes are stalled within an mRNA following translation of prematurely polyadenylated mRNAs (PubMed:28065601, PubMed:28132843, PubMed:28685749). Acts as a ribosome collision sensor: specifically recognizes and binds collided di-ribosome, which arises when a trailing ribosome encounters a slower leading ribosome, leading to terminally arrest translation (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:30293783). Following binding to colliding ribosomes, mediates monoubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS3/uS3, and 'Lys-63'-linked polyubiquitination of RPS20/uS10 (PubMed:28065601, PubMed:28132843, PubMed:28685749). Polyubiquitination of RPS20/uS10 promotes recruitment of the RQT (ribosome quality control trigger) complex, which drives the disassembly of stalled ribosomes, followed by degradation of nascent peptides (PubMed:32099016, PubMed:32579943, PubMed:36302773). E3 ubiquitin-protein ligase activity is dependent on the E2 ubiquitin-conjugating enzyme UBE2D3 (PubMed:28685749). Also acts as an adapter that recruits the 4EHP-GYF2 complex to mRNAs (PubMed:22751931, PubMed:32726578). Independently of its role in RQC, may also act as a negative regulator of interferon-stimulated gene (ISG) expression (PubMed:29719242). {ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:28065601, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:28685749, ECO:0000269|PubMed:29719242, ECO:0000269|PubMed:30293783, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33581075, ECO:0000269|PubMed:36302773}.; FUNCTION: (Microbial infection) Required for poxvirus protein synthesis by mediating ubiquitination of RPS10/eS10 and RPS20/uS10 (PubMed:29719242). Poxvirus encoding mRNAs contain unusual 5' poly(A) leaders and ZNF598 is required for their translational efficiency, possibly via its ability to suppress readthrough or sliding on shorter poly(A) tracts (PubMed:29719242). {ECO:0000269|PubMed:29719242}.
Q9BXS6 NUSAP1 S198 Sugiyama Nucleolar and spindle-associated protein 1 (NuSAP) Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}.
Q9UPT8 ZC3H4 S131 Sugiyama Zinc finger CCCH domain-containing protein 4 RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}.
Q8IU85 CAMK1D S64 Sugiyama Calcium/calmodulin-dependent protein kinase type 1D (EC 2.7.11.17) (CaM kinase I delta) (CaM kinase ID) (CaM-KI delta) (CaMKI delta) (CaMKID) (CaMKI-like protein kinase) (CKLiK) Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1 signaling cascade and, upon calcium influx, activates CREB-dependent gene transcription, regulates calcium-mediated granulocyte function and respiratory burst and promotes basal dendritic growth of hippocampal neurons. In neutrophil cells, required for cytokine-induced proliferative responses and activation of the respiratory burst. Activates the transcription factor CREB1 in hippocampal neuron nuclei. May play a role in apoptosis of erythroleukemia cells. In vitro, phosphorylates transcription factor CREM isoform Beta. {ECO:0000269|PubMed:11050006, ECO:0000269|PubMed:15840691, ECO:0000269|PubMed:16324104, ECO:0000269|PubMed:17056143}.
P60520 GABARAPL2 S39 Sugiyama Gamma-aminobutyric acid receptor-associated protein-like 2 (GABA(A) receptor-associated protein-like 2) (Ganglioside expression factor 2) (GEF-2) (General protein transport factor p16) (Golgi-associated ATPase enhancer of 16 kDa) (GATE-16) (MAP1 light chain 3-related protein) Ubiquitin-like modifier involved in intra-Golgi traffic (By similarity). Modulates intra-Golgi transport through coupling between NSF activity and SNAREs activation (By similarity). It first stimulates the ATPase activity of NSF which in turn stimulates the association with GOSR1 (By similarity). Involved in autophagy (PubMed:20418806, PubMed:23209295). Plays a role in mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production (PubMed:20418806, PubMed:23209295). Whereas LC3s are involved in elongation of the phagophore membrane, the GABARAP/GATE-16 subfamily is essential for a later stage in autophagosome maturation (PubMed:20418806, PubMed:23209295). {ECO:0000250|UniProtKB:P60519, ECO:0000269|PubMed:20418806, ECO:0000269|PubMed:23209295}.
O94763 URI1 S188 Sugiyama Unconventional prefoldin RPB5 interactor 1 (Protein NNX3) (Protein phosphatase 1 regulatory subunit 19) (RNA polymerase II subunit 5-mediating protein) (RPB5-mediating protein) Involved in gene transcription regulation. Acts as a transcriptional repressor in concert with the corepressor UXT to regulate androgen receptor (AR) transcription. May act as a tumor suppressor to repress AR-mediated gene transcription and to inhibit anchorage-independent growth in prostate cancer cells. Required for cell survival in ovarian cancer cells. Together with UXT, associates with chromatin to the NKX3-1 promoter region. Antagonizes transcriptional modulation via hepatitis B virus X protein.; FUNCTION: Plays a central role in maintaining S6K1 signaling and BAD phosphorylation under normal growth conditions thereby protecting cells from potential deleterious effects of sustained S6K1 signaling. The URI1-PPP1CC complex acts as a central component of a negative feedback mechanism that counteracts excessive S6K1 survival signaling to BAD in response to growth factors. Mediates inhibition of PPP1CC phosphatase activity in mitochondria. Coordinates the regulation of nutrient-sensitive gene expression availability in a mTOR-dependent manner. Seems to be a scaffolding protein able to assemble a prefoldin-like complex that contains PFDs and proteins with roles in transcription and ubiquitination.
Q9Y4K4 MAP4K5 S764 Sugiyama Mitogen-activated protein kinase kinase kinase kinase 5 (EC 2.7.11.1) (Kinase homologous to SPS1/STE20) (KHS) (MAPK/ERK kinase kinase kinase 5) (MEK kinase kinase 5) (MEKKK 5) May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. {ECO:0000269|PubMed:9038372}.
Q8WVK2 SNRNP27 S123 Sugiyama U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein (U4/U6.U5 snRNP 27 kDa protein) (U4/U6.U5-27K) (Nucleic acid-binding protein RY-1) (U4/U6.U5 tri-snRNP-associated 27 kDa protein) (27K) (U4/U6.U5 tri-snRNP-associated protein 3) May play a role in mRNA splicing.
A1A4G5 LNP1 S114 ochoa Leukemia NUP98 fusion partner 1 None
K7ERJ3 None S30 ochoa KS6B1 kinase None
O00233 PSMD9 S127 ochoa 26S proteasome non-ATPase regulatory subunit 9 (26S proteasome regulatory subunit p27) Acts as a chaperone during the assembly of the 26S proteasome, specifically of the base subcomplex of the PA700/19S regulatory complex (RC). During the base subcomplex assembly is part of an intermediate PSMD9:PSMC6:PSMC3 module, also known as modulator trimer complex; PSMD9 is released during the further base assembly process. {ECO:0000269|PubMed:19490896}.
O00515 LAD1 S269 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00515 LAD1 S385 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00567 NOP56 S563 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00767 SCD S198 ochoa Stearoyl-CoA desaturase (hSCD1) (EC 1.14.19.1) (Acyl-CoA desaturase) (Delta(9)-desaturase) (Delta-9 desaturase) (Fatty acid desaturase) Stearoyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates (PubMed:15907797, PubMed:18765284). Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA (PubMed:15907797, PubMed:18765284). Gives rise to a mixture of 16:1 and 18:1 unsaturated fatty acids (PubMed:15610069). Plays an important role in lipid biosynthesis. Plays an important role in regulating the expression of genes that are involved in lipogenesis and in regulating mitochondrial fatty acid oxidation (By similarity). Plays an important role in body energy homeostasis (By similarity). Contributes to the biosynthesis of membrane phospholipids, cholesterol esters and triglycerides (By similarity). {ECO:0000250|UniProtKB:P13516, ECO:0000269|PubMed:15610069, ECO:0000269|PubMed:15907797, ECO:0000269|PubMed:18765284}.
O15013 ARHGEF10 S1232 ochoa Rho guanine nucleotide exchange factor 10 May play a role in developmental myelination of peripheral nerves. {ECO:0000269|PubMed:14508709}.
O15523 DDX3Y S70 ochoa ATP-dependent RNA helicase DDX3Y (EC 3.6.4.13) (DEAD box protein 3, Y-chromosomal) Probable ATP-dependent RNA helicase. During immune response, may enhance IFNB1 expression via IRF3/IRF7 pathway (By similarity). {ECO:0000250|UniProtKB:Q62095}.
O43290 SART1 S762 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43310 CTIF S328 ochoa CBP80/20-dependent translation initiation factor Specifically required for the pioneer round of mRNA translation mediated by the cap-binding complex (CBC), that takes place during or right after mRNA export via the nuclear pore complex (NPC). Acts via its interaction with the NCBP1/CBP80 component of the CBC complex and recruits the 40S small subunit of the ribosome via eIF3. In contrast, it is not involved in steady state translation, that takes place when the CBC complex is replaced by cytoplasmic cap-binding protein eIF4E. Also required for nonsense-mediated mRNA decay (NMD), the pioneer round of mRNA translation mediated by the cap-binding complex playing a central role in nonsense-mediated mRNA decay (NMD). {ECO:0000269|PubMed:19648179}.
O43314 PPIP5K2 S1091 ochoa Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}.
O43493 TGOLN2 S347 ochoa Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) May be involved in regulating membrane traffic to and from trans-Golgi network.
O43707 ACTN4 S608 ochoa Alpha-actinin-4 (Non-muscle alpha-actinin 4) F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}.
O60306 AQR S956 ochoa RNA helicase aquarius (EC 3.6.4.13) (Intron-binding protein of 160 kDa) (IBP160) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:25599396, PubMed:28076346, PubMed:28502770). Intron-binding spliceosomal protein required to link pre-mRNA splicing and snoRNP (small nucleolar ribonucleoprotein) biogenesis (PubMed:16949364). Plays a key role in position-dependent assembly of intron-encoded box C/D small snoRNP, splicing being required for snoRNP assembly (PubMed:16949364). May act by helping the folding of the snoRNA sequence. Binds to intron of pre-mRNAs in a sequence-independent manner, contacting the region between snoRNA and the branchpoint of introns (40 nucleotides upstream of the branchpoint) during the late stages of splicing (PubMed:16949364). Has ATP-dependent RNA helicase activity and can unwind double-stranded RNA molecules with a 3' overhang (in vitro) (PubMed:25599396). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:16949364, ECO:0000269|PubMed:25599396, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770}.
O60343 TBC1D4 S566 ochoa TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}.
O60524 NEMF S831 ochoa Ribosome quality control complex subunit NEMF (Antigen NY-CO-1) (Nuclear export mediator factor) (Serologically defined colon cancer antigen 1) Key component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes as well as their ubiquitin-mediated proteasomal degradation (PubMed:25578875, PubMed:32726578, PubMed:33406423, PubMed:33909987). Thereby, frees 60S subunit ribosomes from the stalled translation complex and prevents the accumulation of nascent polypeptide chains that are potentially toxic for the cell (PubMed:25578875, PubMed:33406423, PubMed:33909987). Within the RQC complex, NEMF specifically binds stalled 60S ribosomal subunits by recognizing an exposed, nascent chain-conjugated tRNA moiety and promotes the recruitment of LTN1 to stalled 60S subunits (PubMed:25578875). Following binding to stalled 60S ribosomal subunits, NEMF mediates CAT tailing by recruiting alanine-charged tRNA to the A-site and directing the elongation of stalled nascent chains independently of mRNA or 40S subunits, leading to non-templated C-terminal alanine extensions (CAT tails) (PubMed:33406423, PubMed:33909987). Mainly recruits alanine-charged tRNAs, but can also other amino acid-charged tRNAs (PubMed:33406423, PubMed:33909987). CAT tailing is required to promote ubiquitination of stalled nascent chains by different E3 ubiquitin-protein ligases (PubMed:33909987). In the canonical RQC pathway (RQC-L), CAT tailing facilitates LTN1-dependent ubiquitination by exposing lysine residues that would otherwise remain buried in the ribosomal exit tunnel (By similarity). In the alternative RQC pathway (RQC-C) CAT tailing creates an C-degron mainly composed of alanine that is recognized by the CRL2(KLHDC10) and RCHY1/PIRH2 E3 ligases, leading to ubiquitination and degradation of stalled nascent chains (PubMed:33909987). NEMF may also indirectly play a role in nuclear export (PubMed:16103875). {ECO:0000250|UniProtKB:Q12532, ECO:0000269|PubMed:16103875, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33406423, ECO:0000269|PubMed:33909987}.
O60563 CCNT1 S577 ochoa Cyclin-T1 (CycT1) (Cyclin-T) Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II) (PubMed:16109376, PubMed:16109377, PubMed:30134174, PubMed:35393539). Required to activate the protein kinase activity of CDK9: acts by mediating formation of liquid-liquid phase separation (LLPS) that enhances binding of P-TEFb to the CTD of RNA Pol II (PubMed:29849146, PubMed:35393539). {ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:35393539}.; FUNCTION: (Microbial infection) In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. {ECO:0000269|PubMed:10329125, ECO:0000269|PubMed:10329126}.
O60828 PQBP1 S95 ochoa Polyglutamine-binding protein 1 (PQBP-1) (38 kDa nuclear protein containing a WW domain) (Npw38) (Polyglutamine tract-binding protein 1) Intrinsically disordered protein that acts as a scaffold, and which is involved in different processes, such as pre-mRNA splicing, transcription regulation, innate immunity and neuron development (PubMed:10198427, PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). Interacts with splicing-related factors via the intrinsically disordered region and regulates alternative splicing of target pre-mRNA species (PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). May suppress the ability of POU3F2 to transactivate the DRD1 gene in a POU3F2 dependent manner. Can activate transcription directly or via association with the transcription machinery (PubMed:10198427). May be involved in ATXN1 mutant-induced cell death (PubMed:12062018). The interaction with ATXN1 mutant reduces levels of phosphorylated RNA polymerase II large subunit (PubMed:12062018). Involved in the assembly of cytoplasmic stress granule, possibly by participating in the transport of neuronal RNA granules (PubMed:21933836). Also acts as an innate immune sensor of infection by retroviruses, such as HIV, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:26046437). Directly binds retroviral reverse-transcribed DNA in the cytosol and interacts with CGAS, leading to activate the cGAS-STING signaling pathway, triggering type-I interferon production (PubMed:26046437). {ECO:0000269|PubMed:10198427, ECO:0000269|PubMed:10332029, ECO:0000269|PubMed:12062018, ECO:0000269|PubMed:20410308, ECO:0000269|PubMed:21933836, ECO:0000269|PubMed:23512658, ECO:0000269|PubMed:26046437}.
O75151 PHF2 S954 psp Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75387 SLC43A1 S237 ochoa Large neutral amino acids transporter small subunit 3 (L-type amino acid transporter 3) (Prostate cancer overexpressed gene 1 protein) (Solute carrier family 43 member 1) Uniport that mediates the transport of neutral amino acids such as L-leucine, L-isoleucine, L-valine, and L-phenylalanine (PubMed:12930836). The transport activity is sodium ions-independent, electroneutral and mediated by a facilitated diffusion (PubMed:12930836). {ECO:0000269|PubMed:12930836}.
O75530 EED S24 ochoa Polycomb protein EED (hEED) (Embryonic ectoderm development protein) (WD protein associating with integrin cytoplasmic tails 1) (WAIT-1) Polycomb group (PcG) protein. Component of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' and 'Lys-27' of histone H3, leading to transcriptional repression of the affected target gene. Also recognizes 'Lys-26' trimethylated histone H1 with the effect of inhibiting PRC2 complex methyltransferase activity on nucleosomal histone H3 'Lys-27', whereas H3 'Lys-27' recognition has the opposite effect, enabling the propagation of this repressive mark. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1 and CDKN2A. {ECO:0000269|PubMed:10581039, ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:20974918, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:9584199}.
O94806 PRKD3 S252 ochoa Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}.
O94955 RHOBTB3 S215 ochoa Rho-related BTB domain-containing protein 3 (EC 3.6.1.-) Rab9-regulated ATPase required for endosome to Golgi transport. Involved in transport vesicle docking at the Golgi complex, possibly by participating in release M6PRBP1/TIP47 from vesicles to permit their efficient docking and fusion at the Golgi. Specifically binds Rab9, but not other Rab proteins. Has low intrinsic ATPase activity due to autoinhibition, which is relieved by Rab9. {ECO:0000269|PubMed:19490898}.
O95171 SCEL S289 ochoa Sciellin May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope.
O95208 EPN2 S327 ochoa Epsin-2 (EPS-15-interacting protein 2) Plays a role in the formation of clathrin-coated invaginations and endocytosis. {ECO:0000269|PubMed:10567358}.
O95433 AHSA1 S193 ochoa Activator of 90 kDa heat shock protein ATPase homolog 1 (AHA1) (p38) Acts as a co-chaperone of HSP90AA1 (PubMed:29127155). Activates the ATPase activity of HSP90AA1 leading to increase in its chaperone activity (PubMed:29127155). Competes with the inhibitory co-chaperone FNIP1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Competes with the inhibitory co-chaperone TSC1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). {ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155}.
P02786 TFRC S132 ochoa Transferrin receptor protein 1 (TR) (TfR) (TfR1) (Trfr) (T9) (p90) (CD antigen CD71) [Cleaved into: Transferrin receptor protein 1, serum form (sTfR)] Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes (PubMed:26214738). Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the hereditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site. Positively regulates T and B cell proliferation through iron uptake (PubMed:26642240). Acts as a lipid sensor that regulates mitochondrial fusion by regulating activation of the JNK pathway (PubMed:26214738). When dietary levels of stearate (C18:0) are low, promotes activation of the JNK pathway, resulting in HUWE1-mediated ubiquitination and subsequent degradation of the mitofusin MFN2 and inhibition of mitochondrial fusion (PubMed:26214738). When dietary levels of stearate (C18:0) are high, TFRC stearoylation inhibits activation of the JNK pathway and thus degradation of the mitofusin MFN2 (PubMed:26214738). Mediates uptake of NICOL1 into fibroblasts where it may regulate extracellular matrix production (By similarity). {ECO:0000250|UniProtKB:Q62351, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:26642240, ECO:0000269|PubMed:3568132}.; FUNCTION: (Microbial infection) Acts as a receptor for new-world arenaviruses: Guanarito, Junin and Machupo virus. {ECO:0000269|PubMed:17287727, ECO:0000269|PubMed:18268337}.; FUNCTION: (Microbial infection) Acts as a host entry factor for rabies virus that hijacks the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762, ECO:0000269|PubMed:36779763}.; FUNCTION: (Microbial infection) Acts as a host entry factor for SARS-CoV, MERS-CoV and SARS-CoV-2 viruses that hijack the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762}.
P05067 APP S730 psp Amyloid-beta precursor protein (APP) (ABPP) (APPI) (Alzheimer disease amyloid A4 protein homolog) (Alzheimer disease amyloid protein) (Amyloid precursor protein) (Amyloid-beta (A4) precursor protein) (Amyloid-beta A4 protein) (Cerebral vascular amyloid peptide) (CVAP) (PreA4) (Protease nexin-II) (PN-II) [Cleaved into: N-APP; Soluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99 (Beta-secretase C-terminal fragment) (Beta-CTF); Amyloid-beta protein 42 (Abeta42) (Beta-APP42); Amyloid-beta protein 40 (Abeta40) (Beta-APP40); C83 (Alpha-secretase C-terminal fragment) (Alpha-CTF); P3(42); P3(40); C80; Gamma-secretase C-terminal fragment 59 (Amyloid intracellular domain 59) (AICD-59) (AID(59)) (Gamma-CTF(59)); Gamma-secretase C-terminal fragment 57 (Amyloid intracellular domain 57) (AICD-57) (AID(57)) (Gamma-CTF(57)); Gamma-secretase C-terminal fragment 50 (Amyloid intracellular domain 50) (AICD-50) (AID(50)) (Gamma-CTF(50)); C31] Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Interaction between APP molecules on neighboring cells promotes synaptogenesis (PubMed:25122912). Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(o) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1 (By similarity). By acting as a kinesin I membrane receptor, plays a role in axonal anterograde transport of cargo towards synapses in axons (PubMed:17062754, PubMed:23011729). Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1. {ECO:0000250, ECO:0000250|UniProtKB:P12023, ECO:0000269|PubMed:17062754, ECO:0000269|PubMed:23011729, ECO:0000269|PubMed:25122912}.; FUNCTION: Amyloid-beta peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Amyloid-beta peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.; FUNCTION: [Amyloid-beta protein 42]: More effective reductant than amyloid-beta protein 40. May activate mononuclear phagocytes in the brain and elicit inflammatory responses.; FUNCTION: Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain. {ECO:0000250}.; FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.
P05198 EIF2S1 S91 ochoa Eukaryotic translation initiation factor 2 subunit 1 (Eukaryotic translation initiation factor 2 subunit alpha) (eIF-2-alpha) (eIF-2A) (eIF-2alpha) (eIF2-alpha) Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:16289705, PubMed:38340717). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S pre-initiation complex (43S PIC) (PubMed:16289705). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex (PubMed:16289705). In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (PubMed:16289705). EIF2S1/eIF2-alpha is a key component of the integrated stress response (ISR), required for adaptation to various stress: phosphorylation by metabolic-stress sensing protein kinases (EIF2AK1/HRI, EIF2AK2/PKR, EIF2AK3/PERK and EIF2AK4/GCN2) in response to stress converts EIF2S1/eIF2-alpha in a global protein synthesis inhibitor, leading to an attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:19131336, PubMed:33384352, PubMed:38340717). EIF2S1/eIF2-alpha also acts as an activator of mitophagy in response to mitochondrial damage: phosphorylation by EIF2AK1/HRI promotes relocalization to the mitochondrial surface, thereby triggering PRKN-independent mitophagy (PubMed:38340717). {ECO:0000269|PubMed:16289705, ECO:0000269|PubMed:19131336, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:38340717}.
P06241 FYN S186 ochoa Tyrosine-protein kinase Fyn (EC 2.7.10.2) (Proto-oncogene Syn) (Proto-oncogene c-Fyn) (Src-like kinase) (SLK) (p59-Fyn) Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance (PubMed:11536198, PubMed:15489916, PubMed:15557120, PubMed:16387660, PubMed:20100835, PubMed:7568038, PubMed:7822789). Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain (PubMed:15489916). Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions (PubMed:15489916). Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin) (PubMed:17194753). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT (PubMed:14707117, PubMed:15536091). Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage (PubMed:16841086). Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL1 and TRPC6 (PubMed:14761972, PubMed:18258597, PubMed:19179337). Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein (PubMed:11162638, PubMed:12788081, PubMed:19652227). Involved in reelin signaling by mediating phosphorylation of DAB1 following reelin (RELN)-binding to its receptor (By similarity). Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation (PubMed:22080863). Phosphorylates PTK2B/PYK2 in response to T-cell receptor activation (PubMed:20028775). Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts (PubMed:18056706). CSK maintains LCK and FYN in an inactive form (By similarity). Promotes CD28-induced phosphorylation of VAV1 (PubMed:11005864). In mast cells, phosphorylates CLNK after activation of immunoglobulin epsilon receptor signaling (By similarity). Can also promote CD244-mediated NK cell activation (PubMed:15713798). {ECO:0000250|UniProtKB:P39688, ECO:0000269|PubMed:11005864, ECO:0000269|PubMed:11162638, ECO:0000269|PubMed:11536198, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:14707117, ECO:0000269|PubMed:14761972, ECO:0000269|PubMed:15536091, ECO:0000269|PubMed:15557120, ECO:0000269|PubMed:15713798, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:16841086, ECO:0000269|PubMed:17194753, ECO:0000269|PubMed:18056706, ECO:0000269|PubMed:18258597, ECO:0000269|PubMed:19179337, ECO:0000269|PubMed:19652227, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:7568038, ECO:0000269|PubMed:7822789, ECO:0000303|PubMed:15489916}.
P06748 NPM1 S254 ochoa Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}.
P07948 LYN S166 ochoa Tyrosine-protein kinase Lyn (EC 2.7.10.2) (Lck/Yes-related novel protein tyrosine kinase) (V-yes-1 Yamaguchi sarcoma viral related oncogene homolog) (p53Lyn) (p56Lyn) Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors and plays an important role in the regulation of innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines, integrin signaling, but also responses to DNA damage and genotoxic agents. Functions primarily as negative regulator, but can also function as activator, depending on the context. Required for the initiation of the B-cell response, but also for its down-regulation and termination. Plays an important role in the regulation of B-cell differentiation, proliferation, survival and apoptosis, and is important for immune self-tolerance. Acts downstream of several immune receptors, including the B-cell receptor, CD79A, CD79B, CD5, CD19, CD22, FCER1, FCGR2, FCGR1A, TLR2 and TLR4. Plays a role in the inflammatory response to bacterial lipopolysaccharide. Mediates the responses to cytokines and growth factors in hematopoietic progenitors, platelets, erythrocytes, and in mature myeloid cells, such as dendritic cells, neutrophils and eosinophils. Acts downstream of EPOR, KIT, MPL, the chemokine receptor CXCR4, as well as the receptors for IL3, IL5 and CSF2. Plays an important role in integrin signaling. Regulates cell proliferation, survival, differentiation, migration, adhesion, degranulation, and cytokine release. Involved in the regulation of endothelial activation, neutrophil adhesion and transendothelial migration (PubMed:36932076). Down-regulates signaling pathways by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIM), that then serve as binding sites for phosphatases, such as PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1, that modulate signaling by dephosphorylation of kinases and their substrates. Phosphorylates LIME1 in response to CD22 activation. Phosphorylates BTK, CBL, CD5, CD19, CD72, CD79A, CD79B, CSF2RB, DOK1, HCLS1, LILRB3/PIR-B, MS4A2/FCER1B, SYK and TEC. Promotes phosphorylation of SIRPA, PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1. Mediates phosphorylation of the BCR-ABL fusion protein. Required for rapid phosphorylation of FER in response to FCER1 activation. Mediates KIT phosphorylation. Acts as an effector of EPOR (erythropoietin receptor) in controlling KIT expression and may play a role in erythroid differentiation during the switch between proliferation and maturation. Depending on the context, activates or inhibits several signaling cascades. Regulates phosphatidylinositol 3-kinase activity and AKT1 activation. Regulates activation of the MAP kinase signaling cascade, including activation of MAP2K1/MEK1, MAPK1/ERK2, MAPK3/ERK1, MAPK8/JNK1 and MAPK9/JNK2. Mediates activation of STAT5A and/or STAT5B. Phosphorylates LPXN on 'Tyr-72'. Kinase activity facilitates TLR4-TLR6 heterodimerization and signal initiation. Phosphorylates SCIMP on 'Tyr-107'; this enhances binding of SCIMP to TLR4, promoting the phosphorylation of TLR4, and a selective cytokine response to lipopolysaccharide in macrophages (By similarity). Phosphorylates CLNK (By similarity). Phosphorylates BCAR1/CAS and NEDD9/HEF1 (PubMed:9020138). {ECO:0000250|UniProtKB:P25911, ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:10748115, ECO:0000269|PubMed:10891478, ECO:0000269|PubMed:11435302, ECO:0000269|PubMed:11517336, ECO:0000269|PubMed:11825908, ECO:0000269|PubMed:14726379, ECO:0000269|PubMed:15795233, ECO:0000269|PubMed:16467205, ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:17977829, ECO:0000269|PubMed:18056483, ECO:0000269|PubMed:18070987, ECO:0000269|PubMed:18235045, ECO:0000269|PubMed:18577747, ECO:0000269|PubMed:18802065, ECO:0000269|PubMed:19290919, ECO:0000269|PubMed:20037584, ECO:0000269|PubMed:36122175, ECO:0000269|PubMed:36932076, ECO:0000269|PubMed:7687428, ECO:0000269|PubMed:9020138}.
P07949 RET S891 psp Proto-oncogene tyrosine-protein kinase receptor Ret (EC 2.7.10.1) (Cadherin family member 12) (Proto-oncogene c-Ret) [Cleaved into: Soluble RET kinase fragment; Extracellular cell-membrane anchored RET cadherin 120 kDa fragment] Receptor tyrosine-protein kinase involved in numerous cellular mechanisms including cell proliferation, neuronal navigation, cell migration, and cell differentiation in response to glia cell line-derived growth family factors (GDNF, NRTN, ARTN, PSPN and GDF15) (PubMed:20064382, PubMed:20616503, PubMed:20702524, PubMed:21357690, PubMed:21454698, PubMed:24560924, PubMed:28846097, PubMed:28846099, PubMed:28953886, PubMed:31118272). In contrast to most receptor tyrosine kinases, RET requires not only its cognate ligands but also coreceptors, for activation (PubMed:21994944, PubMed:23333276, PubMed:28846097, PubMed:28846099, PubMed:28953886). GDNF ligands (GDNF, NRTN, ARTN, PSPN and GDF15) first bind their corresponding GDNFR coreceptors (GFRA1, GFRA2, GFRA3, GFRA4 and GFRAL, respectively), triggering RET autophosphorylation and activation, leading to activation of downstream signaling pathways, including the MAPK- and AKT-signaling pathways (PubMed:21994944, PubMed:23333276, PubMed:24560924, PubMed:25242331, PubMed:28846097, PubMed:28846099, PubMed:28953886). Acts as a dependence receptor via the GDNF-GFRA1 signaling: in the presence of the ligand GDNF in somatotrophs within pituitary, promotes survival and down regulates growth hormone (GH) production, but triggers apoptosis in absence of GDNF (PubMed:20616503, PubMed:21994944). Required for the molecular mechanisms orchestration during intestine organogenesis via the ARTN-GFRA3 signaling: involved in the development of enteric nervous system and renal organogenesis during embryonic life, and promotes the formation of Peyer's patch-like structures, a major component of the gut-associated lymphoid tissue (By similarity). Mediates, through interaction with GDF15-receptor GFRAL, GDF15-induced cell-signaling in the brainstem which triggers an aversive response, characterized by nausea, vomiting, and/or loss of appetite in response to various stresses (PubMed:28846097, PubMed:28846099, PubMed:28953886). Modulates cell adhesion via its cleavage by caspase in sympathetic neurons and mediates cell migration in an integrin (e.g. ITGB1 and ITGB3)-dependent manner (PubMed:20702524, PubMed:21357690). Also active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage (PubMed:21357690). Triggers the differentiation of rapidly adapting (RA) mechanoreceptors (PubMed:20064382). Involved in the development of the neural crest (By similarity). Regulates nociceptor survival and size (By similarity). Phosphorylates PTK2/FAK1 (PubMed:21454698). {ECO:0000250|UniProtKB:P35546, ECO:0000269|PubMed:20064382, ECO:0000269|PubMed:20616503, ECO:0000269|PubMed:20702524, ECO:0000269|PubMed:21357690, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:21994944, ECO:0000269|PubMed:23333276, ECO:0000269|PubMed:24560924, ECO:0000269|PubMed:25242331, ECO:0000269|PubMed:28846097, ECO:0000269|PubMed:28846099, ECO:0000269|PubMed:28953886, ECO:0000269|PubMed:31118272}.; FUNCTION: [Isoform 1]: Isoform 1 in complex with GFRAL induces higher activation of MAPK-signaling pathway than isoform 2 in complex with GFRAL. {ECO:0000269|PubMed:28846099}.
P09661 SNRPA1 S197 ochoa U2 small nuclear ribonucleoprotein A' (U2 snRNP A') Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:27035939, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Associated with sn-RNP U2, where it contributes to the binding of stem loop IV of U2 snRNA (PubMed:27035939, PubMed:32494006, PubMed:9716128). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:27035939, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:9716128}.
P09769 FGR S181 ochoa Tyrosine-protein kinase Fgr (EC 2.7.10.2) (Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog) (Proto-oncogene c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr) Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as a negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity). {ECO:0000250|UniProtKB:P14234, ECO:0000269|PubMed:10739672, ECO:0000269|PubMed:17164290, ECO:0000269|PubMed:1737799, ECO:0000269|PubMed:7519620}.
P0DOY3 IGLC3 S84 ochoa Immunoglobulin lambda constant 3 (Ig lambda chain C region DOT) (Ig lambda chain C region NEWM) (Ig lambda-3 chain C regions) Constant region of immunoglobulin light chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268). {ECO:0000303|PubMed:17576170, ECO:0000303|PubMed:20176268, ECO:0000303|PubMed:22158414}.
P10244 MYBL2 S629 ochoa Myb-related protein B (B-Myb) (Myb-like protein 2) Transcription factor involved in the regulation of cell survival, proliferation, and differentiation. Transactivates the expression of the CLU gene. {ECO:0000269|PubMed:10770937}.
P10412 H1-4 S36 ochoa|psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10636 MAPT S396 psp Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}.
P13929 ENO3 S362 ochoa Beta-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 3) (Muscle-specific enolase) (MSE) (Skeletal muscle enolase) Glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate. Appears to have a function in striated muscle development and regeneration. {ECO:0000250|UniProtKB:P15429}.
P16333 NCK1 S85 ochoa SH2/SH3 adapter protein NCK1 (Cytoplasmic protein NCK1) (NCK adapter protein 1) (Nck-1) (SH2/SH3 adapter protein NCK-alpha) Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:16835242, ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:9430661}.
P16402 H1-3 S37 ochoa Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P20265 POU3F2 S360 psp POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}.
P20810 CAST S133 ochoa|psp Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P23443 RPS6KB1 S427 ochoa|psp Ribosomal protein S6 kinase beta-1 (S6K-beta-1) (S6K1) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 1) (P70S6K1) (p70-S6K 1) (Ribosomal protein S6 kinase I) (Serine/threonine-protein kinase 14A) (p70 ribosomal S6 kinase alpha) (p70 S6 kinase alpha) (p70 S6K-alpha) (p70 S6KA) Serine/threonine-protein kinase that acts downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Regulates protein synthesis through phosphorylation of EIF4B, RPS6 and EEF2K, and contributes to cell survival by repressing the pro-apoptotic function of BAD (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Under conditions of nutrient depletion, the inactive form associates with the EIF3 translation initiation complex (PubMed:16286006). Upon mitogenic stimulation, phosphorylation by the mechanistic target of rapamycin complex 1 (mTORC1) leads to dissociation from the EIF3 complex and activation (PubMed:16286006). The active form then phosphorylates and activates several substrates in the pre-initiation complex, including the EIF2B complex and the cap-binding complex component EIF4B (PubMed:16286006). Also controls translation initiation by phosphorylating a negative regulator of EIF4A, PDCD4, targeting it for ubiquitination and subsequent proteolysis (PubMed:17053147). Promotes initiation of the pioneer round of protein synthesis by phosphorylating POLDIP3/SKAR (PubMed:15341740). In response to IGF1, activates translation elongation by phosphorylating EEF2 kinase (EEF2K), which leads to its inhibition and thus activation of EEF2 (PubMed:11500364). Also plays a role in feedback regulation of mTORC2 by mTORC1 by phosphorylating MAPKAP1/SIN1, MTOR and RICTOR, resulting in the inhibition of mTORC2 and AKT1 signaling (PubMed:15899889, PubMed:19720745, PubMed:19935711, PubMed:19995915). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic protein BAD and suppressing its pro-apoptotic function (By similarity). Phosphorylates mitochondrial URI1 leading to dissociation of a URI1-PPP1CC complex (PubMed:17936702). The free mitochondrial PPP1CC can then dephosphorylate RPS6KB1 at Thr-412, which is proposed to be a negative feedback mechanism for the RPS6KB1 anti-apoptotic function (PubMed:17936702). Mediates TNF-alpha-induced insulin resistance by phosphorylating IRS1 at multiple serine residues, resulting in accelerated degradation of IRS1 (PubMed:18952604). In cells lacking functional TSC1-2 complex, constitutively phosphorylates and inhibits GSK3B (PubMed:17052453). May be involved in cytoskeletal rearrangement through binding to neurabin (By similarity). Phosphorylates and activates the pyrimidine biosynthesis enzyme CAD, downstream of MTOR (PubMed:23429703). Following activation by mTORC1, phosphorylates EPRS and thereby plays a key role in fatty acid uptake by adipocytes and also most probably in interferon-gamma-induced translation inhibition (PubMed:28178239). {ECO:0000250|UniProtKB:P67999, ECO:0000250|UniProtKB:Q8BSK8, ECO:0000269|PubMed:11500364, ECO:0000269|PubMed:12801526, ECO:0000269|PubMed:14673156, ECO:0000269|PubMed:15071500, ECO:0000269|PubMed:15341740, ECO:0000269|PubMed:15899889, ECO:0000269|PubMed:16286006, ECO:0000269|PubMed:17052453, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:17936702, ECO:0000269|PubMed:18952604, ECO:0000269|PubMed:19085255, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:28178239}.
P23470 PTPRG S1182 ochoa Receptor-type tyrosine-protein phosphatase gamma (Protein-tyrosine phosphatase gamma) (R-PTP-gamma) (EC 3.1.3.48) Possesses tyrosine phosphatase activity. {ECO:0000269|PubMed:19167335}.
P23528 CFL1 S23 ochoa|psp Cofilin-1 (18 kDa phosphoprotein) (p18) (Cofilin, non-muscle isoform) Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity (PubMed:11812157). In conjunction with the subcortical maternal complex (SCMC), plays an essential role for zygotes to progress beyond the first embryonic cell divisions via regulation of actin dynamics (PubMed:15580268). Required for the centralization of the mitotic spindle and symmetric division of zygotes (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization in epithelial cells (PubMed:21834987). Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). Required for neural tube morphogenesis and neural crest cell migration (By similarity). {ECO:0000250|UniProtKB:P18760, ECO:0000269|PubMed:11812157, ECO:0000269|PubMed:15580268, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:23633677}.
P23634 ATP2B4 S1148 ochoa Plasma membrane calcium-transporting ATPase 4 (PMCA4) (EC 7.2.2.10) (Matrix-remodeling-associated protein 1) (Plasma membrane calcium ATPase isoform 4) (Plasma membrane calcium pump isoform 4) Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity). {ECO:0000250|UniProtKB:Q6Q477, ECO:0000269|PubMed:8530416}.
P25054 APC S2054 psp Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P26583 HMGB2 S34 ochoa High mobility group protein B2 (High mobility group protein 2) (HMG-2) Multifunctional protein with various roles in different cellular compartments. May act in a redox sensitive manner. In the nucleus is an abundant chromatin-associated non-histone protein involved in transcription, chromatin remodeling and V(D)J recombination and probably other processes. Binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:11909973, PubMed:18413230, PubMed:19522541, PubMed:19965638, PubMed:20123072, PubMed:7797075). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). Proposed to be involved in the innate immune response to nucleic acids by acting as a promiscuous immunogenic DNA/RNA sensor which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). In the extracellular compartment acts as a chemokine. Promotes proliferation and migration of endothelial cells implicating AGER/RAGE (PubMed:19811285). Has antimicrobial activity in gastrointestinal epithelial tissues (PubMed:23877675). Involved in inflammatory response to antigenic stimulus coupled with pro-inflammatory activity (By similarity). Involved in modulation of neurogenesis probably by regulation of neural stem proliferation (By similarity). Involved in articular cartilage surface maintenance implicating LEF1 and the Wnt/beta-catenin pathway (By similarity). {ECO:0000250|UniProtKB:P09429, ECO:0000250|UniProtKB:P30681, ECO:0000269|PubMed:11909973, ECO:0000269|PubMed:18413230, ECO:0000269|PubMed:19522541, ECO:0000269|PubMed:19811285, ECO:0000269|PubMed:19965638, ECO:0000269|PubMed:23877675, ECO:0000269|PubMed:7797075, ECO:0000305|PubMed:20123072}.
P29144 TPP2 S642 ochoa Tripeptidyl-peptidase 2 (TPP-2) (EC 3.4.14.10) (Tripeptidyl aminopeptidase) (Tripeptidyl-peptidase II) (TPP-II) Cytosolic tripeptidyl-peptidase that releases N-terminal tripeptides from polypeptides and is a component of the proteolytic cascade acting downstream of the 26S proteasome in the ubiquitin-proteasome pathway (PubMed:25525876, PubMed:30533531). It plays an important role in intracellular amino acid homeostasis (PubMed:25525876). Stimulates adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q64514, ECO:0000269|PubMed:25525876, ECO:0000269|PubMed:30533531}.
P29466 CASP1 S376 psp Caspase-1 (CASP-1) (EC 3.4.22.36) (Interleukin-1 beta convertase) (IL-1BC) (Interleukin-1 beta-converting enzyme) (ICE) (IL-1 beta-converting enzyme) (p45) [Cleaved into: Caspase-1 subunit p20; Caspase-1 subunit p10] Thiol protease involved in a variety of inflammatory processes by proteolytically cleaving other proteins, such as the precursors of the inflammatory cytokines interleukin-1 beta (IL1B) and interleukin 18 (IL18) as well as the pyroptosis inducer Gasdermin-D (GSDMD), into active mature peptides (PubMed:15326478, PubMed:15498465, PubMed:1574116, PubMed:26375003, PubMed:32051255, PubMed:37993714, PubMed:7876192, PubMed:9334240). Plays a key role in cell immunity as an inflammatory response initiator: once activated through formation of an inflammasome complex, it initiates a pro-inflammatory response through the cleavage of the two inflammatory cytokines IL1B and IL18, releasing the mature cytokines which are involved in a variety of inflammatory processes (PubMed:15326478, PubMed:15498465, PubMed:1574116, PubMed:32051255, PubMed:7876192). Cleaves a tetrapeptide after an Asp residue at position P1 (PubMed:15498465, PubMed:1574116, PubMed:7876192). Also initiates pyroptosis, a programmed lytic cell death pathway, through cleavage of GSDMD (PubMed:26375003). In contrast to cleavage of interleukin IL1B, recognition and cleavage of GSDMD is not strictly dependent on the consensus cleavage site but depends on an exosite interface on CASP1 that recognizes and binds the Gasdermin-D, C-terminal (GSDMD-CT) part (PubMed:32051255, PubMed:32109412, PubMed:32553275). Cleaves and activates CASP7 in response to bacterial infection, promoting plasma membrane repair (PubMed:22464733). Upon inflammasome activation, during DNA virus infection but not RNA virus challenge, controls antiviral immunity through the cleavage of CGAS, rendering it inactive (PubMed:28314590). In apoptotic cells, cleaves SPHK2 which is released from cells and remains enzymatically active extracellularly (PubMed:20197547). {ECO:0000269|PubMed:15326478, ECO:0000269|PubMed:15498465, ECO:0000269|PubMed:1574116, ECO:0000269|PubMed:20197547, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:32051255, ECO:0000269|PubMed:32109412, ECO:0000269|PubMed:32553275, ECO:0000269|PubMed:37993714, ECO:0000269|PubMed:7876192, ECO:0000269|PubMed:9334240}.; FUNCTION: [Isoform Delta]: Apoptosis inactive. {ECO:0000269|PubMed:7876192}.; FUNCTION: [Isoform Epsilon]: Apoptosis inactive. {ECO:0000269|PubMed:7876192}.
P29966 MARCKS S159 psp Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P30041 PRDX6 S146 ochoa Peroxiredoxin-6 (EC 1.11.1.27) (1-Cys peroxiredoxin) (1-Cys PRX) (24 kDa protein) (Acidic calcium-independent phospholipase A2) (aiPLA2) (EC 3.1.1.4) (Antioxidant protein 2) (Glutathione-dependent peroxiredoxin) (Liver 2D page spot 40) (Lysophosphatidylcholine acyltransferase 5) (LPC acyltransferase 5) (LPCAT-5) (Lyso-PC acyltransferase 5) (EC 2.3.1.23) (Non-selenium glutathione peroxidase) (NSGPx) (Red blood cells page spot 12) Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively (PubMed:10893423, PubMed:9497358). Can reduce H(2)O(2) and short chain organic, fatty acid, and phospholipid hydroperoxides (PubMed:10893423). Also has phospholipase activity, can therefore either reduce the oxidized sn-2 fatty acyl group of phospholipids (peroxidase activity) or hydrolyze the sn-2 ester bond of phospholipids (phospholipase activity) (PubMed:10893423, PubMed:26830860). These activities are dependent on binding to phospholipids at acidic pH and to oxidized phospholipds at cytosolic pH (PubMed:10893423). Plays a role in cell protection against oxidative stress by detoxifying peroxides and in phospholipid homeostasis (PubMed:10893423). Exhibits acyl-CoA-dependent lysophospholipid acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (PubMed:26830860). Shows a clear preference for LPC as the lysophospholipid and for palmitoyl CoA as the fatty acyl substrate (PubMed:26830860). {ECO:0000269|PubMed:10893423, ECO:0000269|PubMed:26830860, ECO:0000269|PubMed:9497358}.
P31431 SDC4 S179 psp Syndecan-4 (SYND4) (Amphiglycan) (Ryudocan core protein) Cell surface proteoglycan which regulates exosome biogenesis in concert with SDCBP and PDCD6IP (PubMed:22660413). {ECO:0000269|PubMed:22660413}.
P34932 HSPA4 S777 ochoa Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) None
P35749 MYH11 S209 ochoa Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) Muscle contraction.
P38432 COIL S462 ochoa Coilin (p80-coilin) Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}.
P40425 PBX2 S101 ochoa Pre-B-cell leukemia transcription factor 2 (Homeobox protein PBX2) (Protein G17) Transcriptional activator that binds the sequence 5'-ATCAATCAA-3'. Activates transcription of PF4 in complex with MEIS1. {ECO:0000269|PubMed:12609849}.
P41235 HNF4A S313 psp Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}.
P41236 PPP1R2 S20 ochoa Protein phosphatase inhibitor 2 (IPP-2) Inhibitor of protein-phosphatase 1.
P41252 IARS1 S136 ochoa Isoleucine--tRNA ligase, cytoplasmic (EC 6.1.1.5) (Isoleucyl-tRNA synthetase) (IRS) (IleRS) Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. {ECO:0000269|PubMed:8052601}.
P46013 MKI67 S2638 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46100 ATRX S704 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S722 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P47895 ALDH1A3 S434 ochoa Retinaldehyde dehydrogenase 3 (RALDH-3) (RalDH3) (EC 1.2.1.36) (Aldehyde dehydrogenase 6) (Aldehyde dehydrogenase family 1 member A3) (ALDH1A3) Catalyzes the NAD-dependent oxidation of aldehyde substrates, such as all-trans-retinal and all-trans-13,14-dihydroretinal, to their corresponding carboxylic acids, all-trans-retinoate and all-trans-13,14-dihydroretinoate, respectively (By similarity) (PubMed:27759097). High specificity for all-trans-retinal as substrate, can also accept acetaldehyde as substrate in vitro but with lower affinity (PubMed:27759097). Required for the biosynthesis of normal levels of retinoate in the embryonic ocular and nasal regions; a critical lipid in the embryonic development of the eye and the nasal region (By similarity). {ECO:0000250|UniProtKB:Q9JHW9, ECO:0000269|PubMed:27759097}.
P48742 LHX1 S168 ochoa LIM/homeobox protein Lhx1 (LIM homeobox protein 1) (Homeobox protein Lim-1) (hLim-1) Potential transcription factor. May play a role in early mesoderm formation and later in lateral mesoderm differentiation and neurogenesis. {ECO:0000269|PubMed:9212161}.
P49006 MARCKSL1 S93 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P49792 RANBP2 S1773 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P51587 BRCA2 S489 ochoa Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}.
P52179 MYOM1 S1493 ochoa Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P52292 KPNA2 S24 ochoa Importin subunit alpha-1 (Karyopherin subunit alpha-2) (RAG cohort protein 1) (SRP1-alpha) Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:7604027, PubMed:7754385). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA1 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:28991411, ECO:0000269|PubMed:32130408, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7604027, ECO:0000269|PubMed:7754385}.
P53355 DAPK1 S308 psp Death-associated protein kinase 1 (DAP kinase 1) (EC 2.7.11.1) Calcium/calmodulin-dependent serine/threonine kinase involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. Regulates both type I apoptotic and type II autophagic cell deaths signal, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles. Phosphorylates PIN1 resulting in inhibition of its catalytic activity, nuclear localization, and cellular function. Phosphorylates TPM1, enhancing stress fiber formation in endothelial cells. Phosphorylates STX1A and significantly decreases its binding to STXBP1. Phosphorylates PRKD1 and regulates JNK signaling by binding and activating PRKD1 under oxidative stress. Phosphorylates BECN1, reducing its interaction with BCL2 and BCL2L1 and promoting the induction of autophagy. Phosphorylates TSC2, disrupting the TSC1-TSC2 complex and stimulating mTORC1 activity in a growth factor-dependent pathway. Phosphorylates RPS6, MYL9 and DAPK3. Acts as a signaling amplifier of NMDA receptors at extrasynaptic sites for mediating brain damage in stroke. Cerebral ischemia recruits DAPK1 into the NMDA receptor complex and it phosphorylates GRINB at Ser-1303 inducing injurious Ca(2+) influx through NMDA receptor channels, resulting in an irreversible neuronal death. Required together with DAPK3 for phosphorylation of RPL13A upon interferon-gamma activation which is causing RPL13A involvement in transcript-selective translation inhibition.; FUNCTION: Isoform 2 cannot induce apoptosis but can induce membrane blebbing.
P54277 PMS1 S673 ochoa PMS1 protein homolog 1 (DNA mismatch repair protein PMS1) Probably involved in the repair of mismatches in DNA. {ECO:0000269|PubMed:10748105}.
P68363 TUBA1B S340 ochoa Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}.
P68366 TUBA4A S340 ochoa Tubulin alpha-4A chain (EC 3.6.5.-) (Alpha-tubulin 1) (Testis-specific alpha-tubulin) (Tubulin H2-alpha) (Tubulin alpha-1 chain) Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P78371 CCT2 S254 ochoa T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}.
P83731 RPL24 S64 ochoa Large ribosomal subunit protein eL24 (60S ribosomal protein L24) (60S ribosomal protein L30) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
Q00059 TFAM S56 psp Transcription factor A, mitochondrial (mtTFA) (Mitochondrial transcription factor 1) (MtTF1) (Transcription factor 6) (TCF-6) (Transcription factor 6-like 2) Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation (PubMed:29445193, PubMed:32183942). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA (PubMed:29149603). In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand (PubMed:20410300). Required for accurate and efficient promoter recognition by the mitochondrial RNA polymerase (PubMed:22037172). Promotes transcription initiation from the HSP1 and the light strand promoter by binding immediately upstream of transcriptional start sites (PubMed:22037172). Is able to unwind DNA (PubMed:22037172). Bends the mitochondrial light strand promoter DNA into a U-turn shape via its HMG boxes (PubMed:1737790). Required for maintenance of normal levels of mitochondrial DNA (PubMed:19304746, PubMed:22841477). May play a role in organizing and compacting mitochondrial DNA (PubMed:22037171). {ECO:0000269|PubMed:1737790, ECO:0000269|PubMed:19304746, ECO:0000269|PubMed:20410300, ECO:0000269|PubMed:22037171, ECO:0000269|PubMed:22037172, ECO:0000269|PubMed:22841477, ECO:0000269|PubMed:29149603, ECO:0000269|PubMed:29445193, ECO:0000269|PubMed:32183942}.
Q00325 SLC25A3 S297 ochoa Solute carrier family 25 member 3 (Phosphate carrier protein, mitochondrial) (Phosphate transport protein) (PTP) Inorganic ion transporter that transports phosphate or copper ions across the mitochondrial inner membrane into the matrix compartment (By similarity) (PubMed:17273968, PubMed:29237729). Mediates proton-coupled symport of phosphate ions necessary for mitochondrial oxidative phosphorylation of ADP to ATP (By similarity) (PubMed:17273968). Transports copper ions probably in the form of anionic copper(I) complexes to maintain mitochondrial matrix copper pool and to supply copper for cytochrome C oxidase complex assembly (PubMed:29237729). May also play a role in regulation of the mitochondrial permeability transition pore (mPTP) (By similarity). {ECO:0000250|UniProtKB:P12234, ECO:0000250|UniProtKB:P16036, ECO:0000269|PubMed:17273968, ECO:0000269|PubMed:29237729}.
Q00653 NFKB2 S23 ochoa Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}.
Q00688 FKBP3 S100 ochoa Peptidyl-prolyl cis-trans isomerase FKBP3 (PPIase FKBP3) (EC 5.2.1.8) (25 kDa FK506-binding protein) (25 kDa FKBP) (FKBP-25) (FK506-binding protein 3) (FKBP-3) (Immunophilin FKBP25) (Rapamycin-selective 25 kDa immunophilin) (Rotamase) FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins.
Q01831 XPC S61 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q02543 RPL18A S57 ochoa Large ribosomal subunit protein eL20 (60S ribosomal protein L18a) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
Q05193 DNM1 S512 psp Dynamin-1 (EC 3.6.5.5) (Dynamin) (Dynamin I) Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission and participates in many forms of endocytosis, such as clathrin-mediated endocytosis or synaptic vesicle endocytosis as well as rapid endocytosis (RE) (PubMed:15703209, PubMed:20428113, PubMed:29668686, PubMed:8101525, PubMed:8910402, PubMed:9362482). Associates to the membrane, through lipid binding, and self-assembles into rings and stacks of interconnected rings through oligomerization to form a helical polymer around the vesicle membrane leading to constriction of invaginated coated pits around their necks (PubMed:30069048, PubMed:7877694, PubMed:9922133). Self-assembly of the helical polymer induces membrane tubules narrowing until the polymer reaches a length sufficient to trigger GTP hydrolysis (PubMed:19084269). Depending on the curvature imposed on the tubules, membrane detachment from the helical polymer upon GTP hydrolysis can cause spontaneous hemifission followed by complete fission (PubMed:19084269). May play a role in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells through its activation by dephosphorylation via the signaling downstream of EGFR (PubMed:29668686). Controls vesicle size at a step before fission, during formation of membrane pits, at hippocampal synapses (By similarity). Controls plastic adaptation of the synaptic vesicle recycling machinery to high levels of activity (By similarity). Mediates rapid endocytosis (RE), a Ca(2+)-dependent and clathrin- and K(+)-independent process in chromaffin cells (By similarity). Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP (By similarity). Through its interaction with DNAJC6, acts during the early steps of clathrin-coated vesicle (CCV) formation (PubMed:12791276). {ECO:0000250|UniProtKB:P39053, ECO:0000250|UniProtKB:Q08DF4, ECO:0000269|PubMed:12791276, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:19084269, ECO:0000269|PubMed:20428113, ECO:0000269|PubMed:29668686, ECO:0000269|PubMed:30069048, ECO:0000269|PubMed:7877694, ECO:0000269|PubMed:8101525, ECO:0000269|PubMed:8910402, ECO:0000269|PubMed:9362482, ECO:0000269|PubMed:9922133}.
Q06265 EXOSC9 S287 ochoa Exosome complex component RRP45 (Autoantigen PM/Scl 1) (Exosome component 9) (P75 polymyositis-scleroderma overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 1) (Polymyositis/scleroderma autoantigen 75 kDa) (PM/Scl-75) Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC9 binds to ARE-containing RNAs. {ECO:0000269|PubMed:11782436, ECO:0000269|PubMed:16455498, ECO:0000269|PubMed:16912217, ECO:0000269|PubMed:17545563}.
Q08945 SSRP1 S667 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q12830 BPTF S2682 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q12888 TP53BP1 S280 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12923 PTPN13 S301 ochoa Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}.
Q12959 DLG1 S598 ochoa Disks large homolog 1 (Synapse-associated protein 97) (SAP-97) (SAP97) (hDlg) Essential multidomain scaffolding protein required for normal development (By similarity). Recruits channels, receptors and signaling molecules to discrete plasma membrane domains in polarized cells. Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). May also play a role in adherens junction assembly, signal transduction, cell proliferation, synaptogenesis and lymphocyte activation. Regulates the excitability of cardiac myocytes by modulating the functional expression of Kv4 channels. Functional regulator of Kv1.5 channel. During long-term depression in hippocampal neurons, it recruits ADAM10 to the plasma membrane (PubMed:23676497). {ECO:0000250|UniProtKB:A0A8C0TYJ0, ECO:0000250|UniProtKB:Q811D0, ECO:0000269|PubMed:10656683, ECO:0000269|PubMed:12445884, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15263016, ECO:0000269|PubMed:19213956, ECO:0000269|PubMed:20605917, ECO:0000269|PubMed:23676497}.
Q13009 TIAM1 S172 ochoa|psp Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}.
Q13118 KLF10 S384 psp Krueppel-like factor 10 (EGR-alpha) (Transforming growth factor-beta-inducible early growth response protein 1) (TGFB-inducible early growth response protein 1) (TIEG-1) Transcriptional repressor which binds to the consensus sequence 5'-GGTGTG-3'. Plays a role in the regulation of the circadian clock; binds to the GC box sequence in the promoter of the core clock component ARTNL/BMAL1 and represses its transcriptional activity. Regulates the circadian expression of genes involved in lipogenesis, gluconeogenesis, and glycolysis in the liver. Represses the expression of PCK2, a rate-limiting step enzyme of gluconeogenesis (By similarity). May play a role in the cell cycle regulation. {ECO:0000250|UniProtKB:O89091, ECO:0000269|PubMed:8584037}.
Q13129 RLF S1228 ochoa Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) May be involved in transcriptional regulation.
Q13427 PPIG S506 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13428 TCOF1 S1350 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13480 GAB1 S646 ochoa GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}.
Q13555 CAMK2G S334 psp Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}.
Q13835 PKP1 S153 ochoa Plakophilin-1 (Band 6 protein) (B6P) A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}.
Q13835 PKP1 S155 ochoa|psp Plakophilin-1 (Band 6 protein) (B6P) A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}.
Q14116 IL18 S133 ochoa Interleukin-18 (IL-18) (Iboctadekin) (Interferon gamma-inducing factor) (IFN-gamma-inducing factor) (Interleukin-1 gamma) (IL-1 gamma) Pro-inflammatory cytokine primarily involved in epithelial barrier repair, polarized T-helper 1 (Th1) cell and natural killer (NK) cell immune responses (PubMed:10653850). Upon binding to IL18R1 and IL18RAP, forms a signaling ternary complex which activates NF-kappa-B, triggering synthesis of inflammatory mediators (PubMed:14528293, PubMed:25500532, PubMed:37993714). Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T-helper 1 (Th1) cells and natural killer (NK) cells (PubMed:10653850). Involved in transduction of inflammation downstream of pyroptosis: its mature form is specifically released in the extracellular milieu by passing through the gasdermin-D (GSDMD) pore (PubMed:33883744). {ECO:0000269|PubMed:10653850, ECO:0000269|PubMed:14528293, ECO:0000269|PubMed:25500532, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:37993714}.
Q14498 RBM39 S23 ochoa RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}.
Q14524 SCN5A S1503 psp Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}.
Q14676 MDC1 S544 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14831 GRM7 S862 psp Metabotropic glutamate receptor 7 (mGluR7) G-protein coupled receptor activated by glutamate that regulates axon outgrowth through the MAPK-cAMP-PKA signaling pathway during neuronal development (PubMed:33500274). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as adenylate cyclase that it inhibits (PubMed:9473604). {ECO:0000269|PubMed:33500274, ECO:0000269|PubMed:9473604}.
Q15435 PPP1R7 S322 ochoa Protein phosphatase 1 regulatory subunit 7 (Protein phosphatase 1 regulatory subunit 22) Regulatory subunit of protein phosphatase 1. {ECO:0000250}.
Q15637 SF1 S20 psp Splicing factor 1 (Mammalian branch point-binding protein) (BBP) (mBBP) (Transcription factor ZFM1) (Zinc finger gene in MEN1 locus) (Zinc finger protein 162) Necessary for the ATP-dependent first step of spliceosome assembly. Binds to the intron branch point sequence (BPS) 5'-UACUAAC-3' of the pre-mRNA. May act as transcription repressor. {ECO:0000269|PubMed:10449420, ECO:0000269|PubMed:8752089, ECO:0000269|PubMed:9660765}.
Q15648 MED1 S1347 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q19T08 ECSCR S166 ochoa Endothelial cell-specific chemotaxis regulator (Apoptosis regulator through modulating IAP expression) (ARIA) (Endothelial cell-specific molecule 2) Regulates endothelial chemotaxis and tube formation. Has a role in angiogenesis and apoptosis via modulation of the actin cytoskeleton and facilitation of proteasomal degradation of the apoptosis inhibitors BIRC3/IAP1 and BIRC2/IAP2. {ECO:0000269|PubMed:18556573, ECO:0000269|PubMed:19416853}.
Q460N5 PARP14 S1324 ochoa Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14) ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins (PubMed:16061477, PubMed:18851833, PubMed:25043379, PubMed:27796300). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation (PubMed:27796300). However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703' (PubMed:29858569). Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription (PubMed:27796300). In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation (PubMed:27796300). Mono-ADP-ribosylates PARP9 (PubMed:27796300). {ECO:0000269|PubMed:16061477, ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27796300, ECO:0000305|PubMed:29858569}.
Q4KMQ2 ANO6 S156 ochoa Anoctamin-6 (Small-conductance calcium-activated nonselective cation channel) (SCAN channel) (Transmembrane protein 16F) Small-conductance calcium-activated nonselective cation (SCAN) channel which acts as a regulator of phospholipid scrambling in platelets and osteoblasts (PubMed:20056604, PubMed:21107324, PubMed:21908539, PubMed:22006324, PubMed:22946059). Phospholipid scrambling results in surface exposure of phosphatidylserine which in platelets is essential to trigger the clotting system whereas in osteoblasts is essential for the deposition of hydroxyapatite during bone mineralization (By similarity). Has calcium-dependent phospholipid scramblase activity; scrambles phosphatidylserine, phosphatidylcholine and galactosylceramide (By similarity). Can generate outwardly rectifying chloride channel currents in airway epithelial cells and Jurkat T lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q6P9J9, ECO:0000269|PubMed:20056604, ECO:0000269|PubMed:21107324, ECO:0000269|PubMed:21908539, ECO:0000269|PubMed:22006324, ECO:0000269|PubMed:22946059}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, is activated by spike protein which increases the amplitude of spontaneous Ca(2+) signals and is required for spike-mediated syncytia. {ECO:0000269|PubMed:33827113}.
Q53EL6 PDCD4 S313 ochoa Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}.
Q53EU6 GPAT3 S68 ochoa Glycerol-3-phosphate acyltransferase 3 (GPAT-3) (EC 2.3.1.15) (1-acyl-sn-glycerol-3-phosphate O-acyltransferase 10) (AGPAT 10) (1-acyl-sn-glycerol-3-phosphate O-acyltransferase 9) (1-AGP acyltransferase 9) (1-AGPAT 9) (EC 2.3.1.51) (Acyl-CoA:glycerol-3-phosphate acyltransferase 3) (hGPAT3) (Lung cancer metastasis-associated protein 1) (Lysophosphatidic acid acyltransferase theta) (LPAAT-theta) (MAG-1) Converts glycerol-3-phosphate to 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) by incorporating an acyl moiety at the sn-1 position of the glycerol backbone (PubMed:17170135). Also converts LPA into 1,2-diacyl-sn-glycerol-3-phosphate (phosphatidic acid or PA) by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (PubMed:19318427). Protects cells against lipotoxicity (PubMed:30846318). {ECO:0000269|PubMed:17170135, ECO:0000269|PubMed:19318427, ECO:0000269|PubMed:30846318}.
Q53HL2 CDCA8 S154 psp Borealin (Cell division cycle-associated protein 8) (Dasra-B) (hDasra-B) (Pluripotent embryonic stem cell-related gene 3 protein) Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Major effector of the TTK kinase in the control of attachment-error-correction and chromosome alignment. {ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:15260989, ECO:0000269|PubMed:16571674, ECO:0000269|PubMed:18243099}.
Q5CZC0 FSIP2 S3858 ochoa Fibrous sheath-interacting protein 2 Plays a role in spermatogenesis. {ECO:0000305|PubMed:30137358}.
Q5S007 LRRK2 S1627 psp Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}.
Q5SSJ5 HP1BP3 S249 ochoa Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
Q5SSJ5 HP1BP3 S512 ochoa Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
Q5VUA4 ZNF318 S991 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VWQ8 DAB2IP S289 ochoa Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}.
Q6NXS1 PPP1R2B S20 ochoa Protein phosphatase inhibitor 2 family member B (PPP1R2 family member B) (Protein phosphatase 1, regulatory subunit 2 pseudogene 3) (Protein phosphatase inhibitor 2-like protein 3) Inhibitor of protein-phosphatase 1. {ECO:0000269|PubMed:23506001}.
Q6P0N0 MIS18BP1 S729 ochoa Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}.
Q6P499 NIPAL3 S361 ochoa NIPA-like protein 3 None
Q6P4F7 ARHGAP11A S285 ochoa Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}.
Q6WKZ4 RAB11FIP1 S232 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6XYQ8 SYT10 S221 ochoa Synaptotagmin-10 (Synaptotagmin X) (SytX) Ca(2+) sensor specifically required for the Ca(2+)-dependent exocytosis of secretory vesicles containing IGF1 in neurons of the olfactory bulb. Exocytosis of IGF1 is required for sensory perception of smell. Not involved in Ca(2+)-dependent synaptic vesicle exocytosis (By similarity). Acts through Ca(2+) and phospholipid binding to the C2 domain: Ca(2+) induces binding of the C2-domains to phospholipid membranes and to assembled SNARE-complexes; both actions contribute to triggering exocytosis (By similarity). {ECO:0000250|UniProtKB:O08625, ECO:0000250|UniProtKB:Q9R0N4}.
Q6ZMI0 PPP1R21 S93 ochoa Protein phosphatase 1 regulatory subunit 21 (Coiled-coil domain-containing protein 128) (Ferry endosomal RAB5 effector complex subunit 2) (Fy-2) (KLRAQ motif-containing protein 1) Component of the FERRY complex (Five-subunit Endosomal Rab5 and RNA/ribosome intermediary) (PubMed:37267905, PubMed:37267906). The FERRY complex directly interacts with mRNAs and RAB5A, and functions as a RAB5A effector involved in the localization and the distribution of specific mRNAs most likely by mediating their endosomal transport. The complex recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction (PubMed:37267905). In the complex, PPP1R21 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via RAB5A (PubMed:37267906). Putative regulator of protein phosphatase 1 (PP1) activity (PubMed:19389623). May play a role in the endosomal sorting process or in endosome maturation pathway (Probable) (PubMed:30520571). {ECO:0000269|PubMed:30520571, ECO:0000269|PubMed:37267905, ECO:0000269|PubMed:37267906, ECO:0000305|PubMed:19389623}.
Q6ZNA4 RNF111 S97 ochoa E3 ubiquitin-protein ligase Arkadia (EC 2.3.2.27) (RING finger protein 111) (hRNF111) (RING-type E3 ubiquitin transferase Arkadia) E3 ubiquitin-protein ligase (PubMed:26656854). Required for mesoderm patterning during embryonic development (By similarity). Acts as an enhancer of the transcriptional responses of the SMAD2/SMAD3 effectors, which are activated downstream of BMP (PubMed:14657019, PubMed:16601693). Acts by mediating ubiquitination and degradation of SMAD inhibitors such as SMAD7, inducing their proteasomal degradation and thereby enhancing the transcriptional activity of TGF-beta and BMP (PubMed:14657019, PubMed:16601693). In addition to enhance transcription of SMAD2/SMAD3 effectors, also regulates their turnover by mediating their ubiquitination and subsequent degradation, coupling their activation with degradation, thereby ensuring that only effectors 'in use' are degraded (By similarity). Activates SMAD3/SMAD4-dependent transcription by triggering signal-induced degradation of SNON isoform of SKIL (PubMed:17591695). Associates with UBE2D2 as an E2 enzyme (PubMed:22411132). Specifically binds polysumoylated chains via SUMO interaction motifs (SIMs) and mediates ubiquitination of sumoylated substrates (PubMed:23751493). Catalyzes 'Lys-63'-linked ubiquitination of sumoylated XPC in response to UV irradiation, promoting nucleotide excision repair (PubMed:23751493). Mediates ubiquitination and degradation of sumoylated PML (By similarity). The regulation of the BMP-SMAD signaling is however independent of sumoylation and is not dependent of SUMO interaction motifs (SIMs) (By similarity). {ECO:0000250|UniProtKB:Q99ML9, ECO:0000269|PubMed:14657019, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17591695, ECO:0000269|PubMed:22411132, ECO:0000269|PubMed:23751493, ECO:0000269|PubMed:26656854}.
Q6ZU35 CRACD S873 ochoa Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}.
Q6ZU35 CRACD S874 ochoa Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}.
Q7LBC6 KDM3B S455 ochoa Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}.
Q7Z2W4 ZC3HAV1 S631 ochoa Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}.
Q7Z2W7 TRPM8 S1040 psp Transient receptor potential cation channel subfamily M member 8 (Long transient receptor potential channel 6) (LTrpC-6) (LTrpC6) (Transient receptor potential p8) (Trp-p8) Non-selective ion channel permeable to monovalent and divalent cations, including Na(+), K(+), and Ca(2+), with higher permeability for Ca(2+). Activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. Activated by cool temperatures (<23-28 degrees Celsius) and by chemical ligands evoking a sensation of coolness, such as menthol and icilin therefore plays a central role in the detection of environmental cold temperatures (PubMed:15306801, PubMed:15852009, PubMed:16174775, PubMed:25559186, PubMed:37857704). TRPM8 is a voltage-dependent channel; its activation by cold or chemical ligands shifts its voltage thresholds towards physiological membrane potentials, leading to the opening of the channel (PubMed:15306801). In addition to its critical role in temperature sensing, regulates basal tear secretion by sensing evaporation-induced cooling and changes in osmolality (By similarity). May plays a role in prostate cancer cell migration (PubMed:16174775, PubMed:25559186). {ECO:0000250|UniProtKB:Q8R4D5, ECO:0000269|PubMed:15306801, ECO:0000269|PubMed:15852009, ECO:0000269|PubMed:16174775, ECO:0000269|PubMed:25559186, ECO:0000269|PubMed:37857704}.; FUNCTION: [Isoform 2]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}.; FUNCTION: [Isoform 3]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}.
Q7Z3S7 CACNA2D4 S499 ochoa Voltage-dependent calcium channel subunit alpha-2/delta-4 (Voltage-gated calcium channel subunit alpha-2/delta-4) [Cleaved into: Voltage-dependent calcium channel subunit alpha-2-4; Voltage-dependent calcium channel subunit delta-4] The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. {ECO:0000269|PubMed:12181424}.
Q7Z4V5 HDGFL2 S230 ochoa Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q7Z5J4 RAI1 S642 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z6E9 RBBP6 S136 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q86TI0 TBC1D1 S503 ochoa TBC1 domain family member 1 May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}.
Q86UX7 FERMT3 S60 ochoa Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}.
Q86V48 LUZP1 S608 ochoa Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}.
Q86YP4 GATAD2A S589 ochoa Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}.
Q8IYM9 TRIM22 S384 ochoa E3 ubiquitin-protein ligase TRIM22 (EC 2.3.2.27) (50 kDa-stimulated trans-acting factor) (RING finger protein 94) (RING-type E3 ubiquitin transferase TRIM22) (Staf-50) (Tripartite motif-containing protein 22) Interferon-induced E3 ubiquitin ligase that plays important roles in innate and adaptive immunity (PubMed:25683609, PubMed:35777501). Restricts the replication of many viruses including HIV-1, encephalomyocarditis virus (EMCV), hepatitis B virus (HBV), hepatitis C virus (HCV) or Zika virus (ZIKV) (PubMed:25683609, PubMed:35777501, PubMed:36042495). Mechanistically, negatively regulates HCV replication by promoting ubiquitination and subsequent degradation of viral NS5A (PubMed:25683609). Also acts by promoting the degradation of Zika virus NS1 and NS3 proteins through proteasomal degradation (PubMed:36042495). Acts as a suppressor of basal HIV-1 LTR-driven transcription by preventing Sp1 binding to the HIV-1 promoter (PubMed:26683615). Also plays a role in antiviral immunity by co-regulating together with NT5C2 the RIGI/NF-kappa-B pathway by promoting 'Lys-63'-linked ubiquitination of RIGI, while NT5C2 is responsible for 'Lys-48'-linked ubiquitination of RIGI (PubMed:36159777). Participates in adaptive immunity by suppressing the amount of MHC class II protein in a negative feedback manner in order to limit the extent of MHC class II induction (PubMed:35777501). {ECO:0000269|PubMed:18389079, ECO:0000269|PubMed:18656448, ECO:0000269|PubMed:19218198, ECO:0000269|PubMed:19585648, ECO:0000269|PubMed:25683609, ECO:0000269|PubMed:26683615, ECO:0000269|PubMed:35777501, ECO:0000269|PubMed:36042495, ECO:0000269|PubMed:36159777}.
Q8IYW5 RNF168 S393 ochoa E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}.
Q8IZT6 ASPM S3426 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8N488 RYBP S123 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N556 AFAP1 S336 ochoa Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}.
Q8N7Q3 ZNF676 S104 ochoa Zinc finger protein 676 May be involved in transcriptional regulation.
Q8N8Z6 DCBLD1 S488 ochoa|psp Discoidin, CUB and LCCL domain-containing protein 1 None
Q8ND71 GIMAP8 S299 ochoa GTPase IMAP family member 8 (Immune-associated nucleotide-binding protein 9) (IAN-9) (Protein IanT) Exerts an anti-apoptotic effect in the immune system and is involved in responses to infections. {ECO:0000250|UniProtKB:Q75N62}.
Q8NG31 KNL1 S530 ochoa Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}.
Q8NI08 NCOA7 S376 ochoa Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}.
Q8NI77 KIF18A S836 ochoa Kinesin-like protein KIF18A (Marrow stromal KIF18A) (MS-KIF18A) Microtubule-depolymerizing kinesin which plays a role in chromosome congression by reducing the amplitude of preanaphase oscillations and slowing poleward movement during anaphase, thus suppressing chromosome movements. May stabilize the CENPE-BUB1B complex at the kinetochores during early mitosis and maintains CENPE levels at kinetochores during chromosome congression. {ECO:0000269|PubMed:17346968, ECO:0000269|PubMed:18267093, ECO:0000269|PubMed:18513970, ECO:0000269|PubMed:19625775}.
Q8TAQ2 SMARCC2 S304 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8TDD1 DDX54 S95 ochoa ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}.
Q8TDW5 SYTL5 S482 ochoa Synaptotagmin-like protein 5 May act as Rab effector protein and play a role in vesicle trafficking. Binds phospholipids.
Q8TEY7 USP33 S387 ochoa Ubiquitin carboxyl-terminal hydrolase 33 (EC 3.4.19.12) (Deubiquitinating enzyme 33) (Ubiquitin thioesterase 33) (Ubiquitin-specific-processing protease 33) (VHL-interacting deubiquitinating enzyme 1) (hVDU1) Deubiquitinating enzyme involved in various processes such as centrosome duplication, cellular migration and beta-2 adrenergic receptor/ADRB2 recycling. Involved in regulation of centrosome duplication by mediating deubiquitination of CCP110 in S and G2/M phase, leading to stabilize CCP110 during the period which centrioles duplicate and elongate. Involved in cell migration via its interaction with intracellular domain of ROBO1, leading to regulate the Slit signaling. Plays a role in commissural axon guidance cross the ventral midline of the neural tube in a Slit-dependent manner, possibly by mediating the deubiquitination of ROBO1. Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination of beta-arrestins (ARRB1 and ARRB2) and beta-2 adrenergic receptor (ADRB2). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, leading to beta-arrestins deubiquitination and disengagement from ADRB2. This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Mediates deubiquitination of both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains. {ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:19363159, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:23486064}.
Q8TF71 SLC16A10 S263 ochoa Monocarboxylate transporter 10 (MCT 10) (Aromatic amino acid transporter 1) (Solute carrier family 16 member 10) (T-type amino acid transporter 1) Sodium- and proton-independent thyroid hormones and aromatic acids transporter (PubMed:11827462, PubMed:18337592, PubMed:28754537). Mediates both uptake and efflux of 3,5,3'-triiodothyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) with high affinity, suggesting a role in the homeostasis of thyroid hormone levels (PubMed:18337592). Responsible for low affinity bidirectional transport of the aromatic amino acids, such as phenylalanine, tyrosine, tryptophan and L-3,4-dihydroxyphenylalanine (L-dopa) (PubMed:11827462, PubMed:28754537). Plays an important role in homeostasis of aromatic amino acids (By similarity). {ECO:0000250|UniProtKB:Q3U9N9, ECO:0000269|PubMed:11827462, ECO:0000269|PubMed:18337592, ECO:0000269|PubMed:28754537}.
Q8WW12 PCNP S156 ochoa PEST proteolytic signal-containing nuclear protein (PCNP) (PEST-containing nuclear protein) May be involved in cell cycle regulation.
Q8WWI1 LMO7 S295 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WWK9 CKAP2 S595 ochoa Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}.
Q8WXG6 MADD S1270 ochoa MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}.
Q8WY36 BBX S805 ochoa HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}.
Q92522 H1-10 S27 ochoa Histone H1.10 (Histone H1x) Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures.
Q92598 HSPH1 S88 ochoa Heat shock protein 105 kDa (Antigen NY-CO-25) (Heat shock 110 kDa protein) (Heat shock protein family H member 1) Acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release (PubMed:24318877). Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities (By similarity). {ECO:0000250|UniProtKB:Q60446, ECO:0000250|UniProtKB:Q61699, ECO:0000269|PubMed:24318877}.
Q92618 ZNF516 S852 ochoa Zinc finger protein 516 Transcriptional regulator that binds to the promoter and activates the transcription of genes promoting brown adipose tissue (BAT) differentiation. Among brown adipose tissue-specific genes, binds the proximal region of the promoter of the UCP1 gene to activate its transcription and thereby regulate thermogenesis (By similarity). May also play a role in the cellular response to replication stress (PubMed:23446422). {ECO:0000250|UniProtKB:Q7TSH3, ECO:0000269|PubMed:23446422}.
Q92930 RAB8B S180 ochoa Ras-related protein Rab-8B (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB8B may be involved in polarized vesicular trafficking and neurotransmitter release (Probable). May participate in cell junction dynamics in Sertoli cells (By similarity). May also participate in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). {ECO:0000250|UniProtKB:P61006, ECO:0000250|UniProtKB:P70550, ECO:0000269|PubMed:32344433, ECO:0000305}.
Q93100 PHKB S701 ochoa Phosphorylase b kinase regulatory subunit beta (Phosphorylase kinase subunit beta) Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The beta chain acts as a regulatory unit and modulates the activity of the holoenzyme in response to phosphorylation.
Q96A57 TMEM230 S20 ochoa Transmembrane protein 230 Involved in trafficking and recycling of synaptic vesicles. {ECO:0000269|PubMed:27270108}.
Q96A65 EXOC4 S219 ochoa Exocyst complex component 4 (Exocyst complex component Sec8) Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. {ECO:0000250|UniProtKB:Q62824}.
Q96AC1 FERMT2 S414 ochoa Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}.
Q96FQ6 S100A16 S36 ochoa Protein S100-A16 (Aging-associated gene 13 protein) (Protein S100-F) (S100 calcium-binding protein A16) Calcium-binding protein. Binds one calcium ion per monomer (PubMed:17030513). Can promote differentiation of adipocytes (in vitro) (By similarity). Overexpression in preadipocytes increases their proliferation, enhances adipogenesis and reduces insulin-stimulated glucose uptake (By similarity). {ECO:0000250|UniProtKB:Q9D708, ECO:0000269|PubMed:17030513}.
Q96GV9 MACIR S165 ochoa Macrophage immunometabolism regulator Regulates the macrophage function, by enhancing the resolution of inflammation and wound repair functions mediated by M2 macrophages (PubMed:30659109). The regulation of macrophage function is, due at least in part, to its ability to inhibit glycolysis (PubMed:30659109). May also play a role in trafficking of proteins via its interaction with UNC119 and UNC119B cargo adapters: may help the release of UNC119 and UNC119B cargo or the recycling of UNC119 and UNC119B (PubMed:22085962). May play a role in ciliary membrane localization via its interaction with UNC119B and protein transport into photoreceptor cells (PubMed:22085962). {ECO:0000269|PubMed:22085962, ECO:0000269|PubMed:30659109}.
Q96HE7 ERO1A S106 ochoa ERO1-like protein alpha (ERO1-L) (ERO1-L-alpha) (EC 1.8.4.-) (Endoplasmic oxidoreductin-1-like protein) (Endoplasmic reticulum oxidoreductase alpha) (Oxidoreductin-1-L-alpha) Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell. Required for the proper folding of immunoglobulins (PubMed:29858230). Plays an important role in ER stress-induced, CHOP-dependent apoptosis by activating the inositol 1,4,5-trisphosphate receptor IP3R1. Involved in the release of the unfolded cholera toxin from reduced P4HB/PDI in case of infection by V.cholerae, thereby playing a role in retrotranslocation of the toxin. {ECO:0000269|PubMed:10671517, ECO:0000269|PubMed:10970843, ECO:0000269|PubMed:11707400, ECO:0000269|PubMed:12403808, ECO:0000269|PubMed:18833192, ECO:0000269|PubMed:18971943, ECO:0000269|PubMed:23027870, ECO:0000269|PubMed:29858230}.
Q96HH4 TMEM169 S47 ochoa Transmembrane protein 169 None
Q96I25 RBM17 S28 ochoa Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}.
Q96QB1 DLC1 S800 ochoa Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}.
Q96S59 RANBP9 S535 ochoa Ran-binding protein 9 (RanBP9) (BPM-L) (BPM90) (Ran-binding protein M) (RanBPM) (RanBP7) May act as scaffolding protein, and as adapter protein to couple membrane receptors to intracellular signaling pathways (Probable). Acts as a mediator of cell spreading and actin cytoskeleton rearrangement (PubMed:18710924). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). May be involved in signaling of ITGB2/LFA-1 and other integrins (PubMed:14722085). Enhances HGF-MET signaling by recruiting Sos and activating the Ras pathway (PubMed:12147692). Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but not affect estrogen-induced transactivation (PubMed:12361945, PubMed:18222118). Stabilizes TP73 isoform Alpha, probably by inhibiting its ubiquitination, and increases its proapoptotic activity (PubMed:15558019). Inhibits the kinase activity of DYRK1A and DYRK1B. Inhibits FMR1 binding to RNA. {ECO:0000269|PubMed:12147692, ECO:0000269|PubMed:12361945, ECO:0000269|PubMed:14500717, ECO:0000269|PubMed:14722085, ECO:0000269|PubMed:15381419, ECO:0000269|PubMed:15558019, ECO:0000269|PubMed:18222118, ECO:0000269|PubMed:18710924, ECO:0000269|PubMed:29911972, ECO:0000305}.
Q96T58 SPEN S1824 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q99447 PCYT2 S162 ochoa Ethanolamine-phosphate cytidylyltransferase (EC 2.7.7.14) (CTP:phosphoethanolamine cytidylyltransferase) (Phosphorylethanolamine transferase) Ethanolamine-phosphate cytidylyltransferase that catalyzes the second step in the synthesis of phosphatidylethanolamine (PE) from ethanolamine via the CDP-ethanolamine pathway (PubMed:31637422, PubMed:9083101). Phosphatidylethanolamine is a dominant inner-leaflet phospholipid in cell membranes, where it plays a role in membrane function by structurally stabilizing membrane-anchored proteins, and participates in important cellular processes such as cell division, cell fusion, blood coagulation, and apoptosis (PubMed:9083101). {ECO:0000269|PubMed:31637422, ECO:0000269|PubMed:9083101, ECO:0000303|PubMed:9083101}.
Q99607 ELF4 S186 ochoa ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
Q9BQF6 SENP7 S24 ochoa Sentrin-specific protease 7 (EC 3.4.22.-) (SUMO-1-specific protease 2) (Sentrin/SUMO-specific protease SENP7) Protease that acts as a positive regulator of the cGAS-STING pathway by catalyzing desumoylation of CGAS. Desumoylation of CGAS promotes DNA-binding activity of CGAS, subsequent oligomerization and activation (By similarity). Deconjugates SUMO2 and SUMO3 from targeted proteins, but not SUMO1 (PubMed:18799455). Catalyzes the deconjugation of poly-SUMO2 and poly-SUMO3 chains (PubMed:18799455). Has very low efficiency in processing full-length SUMO proteins to their mature forms (PubMed:18799455). {ECO:0000250|UniProtKB:Q8BUH8, ECO:0000269|PubMed:18799455}.
Q9BRR9 ARHGAP9 S279 ochoa Rho GTPase-activating protein 9 (Rho-type GTPase-activating protein 9) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has a substantial GAP activity toward CDC42 and RAC1 and less toward RHOA. Has a role in regulating adhesion of hematopoietic cells to the extracellular matrix. Binds phosphoinositides, and has the highest affinity for phosphatidylinositol 3,4,5-trisphosphate, followed by phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 4,5-bisphosphate. {ECO:0000269|PubMed:11396949}.
Q9BX63 BRIP1 S226 ochoa Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}.
Q9BXB5 OSBPL10 S505 ochoa Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}.
Q9BXF6 RAB11FIP5 S564 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9BXS6 NUSAP1 S365 ochoa Nucleolar and spindle-associated protein 1 (NuSAP) Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}.
Q9BY42 RTF2 S214 ochoa Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}.
Q9BYG3 NIFK S218 ochoa MKI67 FHA domain-interacting nucleolar phosphoprotein (Nucleolar phosphoprotein Nopp34) (Nucleolar protein interacting with the FHA domain of pKI-67) (hNIFK) None
Q9C0I1 MTMR12 S601 ochoa Myotubularin-related protein 12 (Inactive phosphatidylinositol 3-phosphatase 12) (Phosphatidylinositol 3 phosphate 3-phosphatase adapter subunit) (3-PAP) (3-phosphatase adapter protein) Acts as an adapter for the myotubularin-related phosphatases (PubMed:11504939, PubMed:12847286, PubMed:23818870). Regulates phosphatase MTM1 protein stability and possibly its intracellular location (PubMed:23818870). By stabilizing MTM1 protein levels, required for skeletal muscle maintenance but not for myogenesis (By similarity). {ECO:0000250|UniProtKB:Q80TA6, ECO:0000269|PubMed:11504939, ECO:0000269|PubMed:12847286, ECO:0000269|PubMed:23818870}.
Q9H093 NUAK2 S418 ochoa NUAK family SNF1-like kinase 2 (EC 2.7.11.1) (Omphalocele kinase 2) (SNF1/AMP kinase-related kinase) (SNARK) Stress-activated kinase involved in tolerance to glucose starvation. Induces cell-cell detachment by increasing F-actin conversion to G-actin. Expression is induced by CD95 or TNF-alpha, via NF-kappa-B. Protects cells from CD95-mediated apoptosis and is required for the increased motility and invasiveness of CD95-activated tumor cells. Phosphorylates LATS1 and LATS2. Plays a key role in neural tube closure during embryonic development through LATS2 phosphorylation and regulation of the nuclear localization of YAP1 a critical downstream regulatory target in the Hippo signaling pathway (PubMed:32845958). {ECO:0000269|PubMed:14575707, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15345718, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:32845958}.
Q9H2G2 SLK S777 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H792 PEAK1 S1368 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9HA77 CARS2 S545 ochoa Probable cysteine--tRNA ligase, mitochondrial (EC 6.1.1.16) (Cysteinyl-tRNA synthetase) (CysRS) Mitochondrial cysteine-specific aminoacyl-tRNA synthetase that catalyzes the ATP-dependent ligation of cysteine to tRNA(Cys). {ECO:0000269|PubMed:29079736}.; FUNCTION: In addition to its role as an aminoacyl-tRNA synthetase, has also cysteine persulfide synthase activity. Produces reactive persulfide species such as cysteine persulfide (CysSSH) from substrate cysteine and mediate direct incorporation of CysSSH into proteins during translations, resulting in protein persulfides and polysulfides (PubMed:29079736). CysSSHs behave as potent antioxidants and cellular protectants (PubMed:29079736). {ECO:0000269|PubMed:29079736}.
Q9HAB8 PPCS S199 ochoa Phosphopantothenate--cysteine ligase (EC 6.3.2.51) (Phosphopantothenoylcysteine synthetase) (PPC synthetase) Catalyzes the second step in the biosynthesis of coenzyme A from vitamin B5, where cysteine is conjugated to 4'-phosphopantothenate to form 4-phosphopantothenoylcysteine (PubMed:11923312, PubMed:12906824, PubMed:29754768). Has a preference for ATP over CTP as a cosubstrate (PubMed:11923312). {ECO:0000269|PubMed:11923312, ECO:0000269|PubMed:12906824, ECO:0000269|PubMed:29754768}.
Q9HC35 EML4 S184 ochoa Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}.
Q9NPF5 DMAP1 S41 ochoa DNA methyltransferase 1-associated protein 1 (DNMAP1) (DNMT1-associated protein 1) Involved in transcription repression and activation. Its interaction with HDAC2 may provide a mechanism for histone deacetylation in heterochromatin following replication of DNA at late firing origins. Can also repress transcription independently of histone deacetylase activity. May specifically potentiate DAXX-mediated repression of glucocorticoid receptor-dependent transcription. Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Participates in the nuclear localization of URI1 and increases its transcriptional corepressor activity. {ECO:0000269|PubMed:14665632, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:14978102, ECO:0000269|PubMed:15367675}.
Q9NR99 MXRA5 S1305 ochoa Matrix-remodeling-associated protein 5 (Adhesion protein with leucine-rich repeats and immunoglobulin domains related to perlecan) (Adlican) In kidney, has anti-inflammatory and anti-fibrotic properties by limiting the induction of chemokines, fibronectin and collagen expression in response to TGB1 and pro-inflammatory stimuli. {ECO:0000269|PubMed:27599751}.
Q9NRL2 BAZ1A S956 ochoa Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}.
Q9NS91 RAD18 S155 ochoa E3 ubiquitin-protein ligase RAD18 (EC 2.3.2.27) (Postreplication repair protein RAD18) (hHR18) (hRAD18) (RING finger protein 73) (RING-type E3 ubiquitin transferase RAD18) E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:21659603}.
Q9NW13 RBM28 S200 ochoa RNA-binding protein 28 (RNA-binding motif protein 28) Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}.
Q9NXD2 MTMR10 S582 ochoa Myotubularin-related protein 10 (Inactive phosphatidylinositol 3-phosphatase 10) None
Q9NXL9 MCM9 S898 ochoa DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}.
Q9NZC9 SMARCAL1 S173 ochoa|psp SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1 (EC 3.6.4.-) (HepA-related protein) (hHARP) (Sucrose nonfermenting protein 2-like 1) ATP-dependent annealing helicase that binds selectively to fork DNA relative to ssDNA or dsDNA and catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. May play an important role in DNA damage response by acting at stalled replication forks. {ECO:0000269|PubMed:18805831, ECO:0000269|PubMed:18974355, ECO:0000269|PubMed:19793861, ECO:0000269|PubMed:19793862}.
Q9P212 PLCE1 S65 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 (EC 3.1.4.11) (Pancreas-enriched phospholipase C) (Phosphoinositide phospholipase C-epsilon-1) (Phospholipase C-epsilon-1) (PLC-epsilon-1) The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation. In podocytes, is involved in the regulation of lamellipodia formation. Acts downstream of AVIL to allow ARP2/3 complex assembly (PubMed:29058690). {ECO:0000269|PubMed:11022047, ECO:0000269|PubMed:11395506, ECO:0000269|PubMed:11715024, ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:12721365, ECO:0000269|PubMed:16537651, ECO:0000269|PubMed:17086182, ECO:0000269|PubMed:29058690}.
Q9P2J5 LARS1 S720 ochoa Leucine--tRNA ligase, cytoplasmic (EC 6.1.1.4) (Leucyl-tRNA synthetase) (LeuRS) (cLRS) Aminoacyl-tRNA synthetase that catalyzes the specific attachment of leucine to its cognate tRNA (tRNA(Leu)) (PubMed:25051973, PubMed:32232361). It performs tRNA aminoacylation in a two-step reaction: Leu is initially activated by ATP to form a leucyl-adenylate (Leu-AMP) intermediate; then the leucyl moiety is transferred to the acceptor 3' end of the tRNA to yield leucyl-tRNA (PubMed:25051973). To improve the fidelity of catalytic reactions, it is also able to hydrolyze misactivated aminoacyl-adenylate intermediates (pre-transfer editing) and mischarged aminoacyl-tRNAs (post-transfer editing) (PubMed:25051973). {ECO:0000269|PubMed:19426743, ECO:0000269|PubMed:25051973, ECO:0000269|PubMed:32232361}.
Q9P2K8 EIF2AK4 S1517 ochoa eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}.
Q9UBD5 ORC3 S207 ochoa Origin recognition complex subunit 3 (Origin recognition complex subunit Latheo) Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:31160578}.
Q9UBP0 SPAST S597 ochoa Spastin (EC 5.6.1.1) (Spastic paraplegia 4 protein) ATP-dependent microtubule severing protein that specifically recognizes and cuts microtubules that are polyglutamylated (PubMed:11809724, PubMed:15716377, PubMed:16219033, PubMed:17389232, PubMed:20530212, PubMed:22637577, PubMed:26875866). Preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold (PubMed:26875866). Severing activity is not dependent on tubulin acetylation or detyrosination (PubMed:26875866). Microtubule severing promotes reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. It is critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. SPAST is involved in abscission step of cytokinesis and nuclear envelope reassembly during anaphase in cooperation with the ESCRT-III complex (PubMed:19000169, PubMed:21310966, PubMed:26040712). Recruited at the midbody, probably by IST1, and participates in membrane fission during abscission together with the ESCRT-III complex (PubMed:21310966). Recruited to the nuclear membrane by IST1 and mediates microtubule severing, promoting nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Required for membrane traffic from the endoplasmic reticulum (ER) to the Golgi and endosome recycling (PubMed:23897888). Recruited by IST1 to endosomes and regulates early endosomal tubulation and recycling by mediating microtubule severing (PubMed:23897888). Probably plays a role in axon growth and the formation of axonal branches (PubMed:15716377). {ECO:0000255|HAMAP-Rule:MF_03021, ECO:0000269|PubMed:11809724, ECO:0000269|PubMed:15716377, ECO:0000269|PubMed:16219033, ECO:0000269|PubMed:17389232, ECO:0000269|PubMed:19000169, ECO:0000269|PubMed:20530212, ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:22637577, ECO:0000269|PubMed:23897888, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:26875866}.; FUNCTION: [Isoform 1]: Involved in lipid metabolism by regulating the size and distribution of lipid droplets. {ECO:0000269|PubMed:25875445}.
Q9UGU5 HMGXB4 S79 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UGU5 HMGXB4 S101 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UGU5 HMGXB4 S102 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UH17 APOBEC3B S46 psp DNA dC->dU-editing enzyme APOBEC-3B (A3B) (EC 3.5.4.38) (Phorbolin-1-related protein) (Phorbolin-2/3) DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase-dependent and -independent mechanisms. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels of mutations in the proviral genome, along with a deamination-independent mechanism that works prior to the proviral integration, together exert efficient antiretroviral effects in infected target cells. Selectively targets single-stranded DNA and does not deaminate double-stranded DNA or single- or double-stranded RNA. Exhibits antiviral activity against simian immunodeficiency virus (SIV), hepatitis B virus (HBV) and human T-cell leukemia virus type 1 (HTLV-1) and may inhibit the mobility of LTR and non-LTR retrotransposons. {ECO:0000269|PubMed:12859895, ECO:0000269|PubMed:15466872, ECO:0000269|PubMed:16060832, ECO:0000269|PubMed:16527742, ECO:0000269|PubMed:20062055, ECO:0000269|PubMed:22457529}.
Q9UHC6 CNTNAP2 S1303 ochoa Contactin-associated protein-like 2 (Cell recognition molecule Caspr2) Required for gap junction formation (Probable). Required, with CNTNAP1, for radial and longitudinal organization of myelinated axons. Plays a role in the formation of functional distinct domains critical for saltatory conduction of nerve impulses in myelinated nerve fibers. Demarcates the juxtaparanodal region of the axo-glial junction. {ECO:0000250|UniProtKB:Q9CPW0, ECO:0000305|PubMed:33238150}.
Q9UHG0 DCDC2 S300 ochoa Doublecortin domain-containing protein 2 (Protein RU2S) Protein that plays a role in the inhibition of canonical Wnt signaling pathway (PubMed:25557784). May be involved in neuronal migration during development of the cerebral neocortex (By similarity). Involved in the control of ciliogenesis and ciliary length (PubMed:25601850, PubMed:27319779). {ECO:0000250|UniProtKB:D3ZR10, ECO:0000269|PubMed:25557784, ECO:0000269|PubMed:25601850, ECO:0000269|PubMed:27319779}.
Q9UHV7 MED13 S397 ochoa Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}.
Q9UMZ2 SYNRG S223 ochoa Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}.
Q9UMZ2 SYNRG S932 ochoa Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}.
Q9UNL4 ING4 S150 ochoa Inhibitor of growth protein 4 (p29ING4) Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653). Through chromatin acetylation it may function in DNA replication (PubMed:16387653). May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation (PubMed:15251430, PubMed:15528276). Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA (PubMed:15029197). May also specifically suppress loss of contact inhibition elicited by activated oncogenes such as MYC (PubMed:15029197). Represses hypoxia inducible factor's (HIF) activity by interacting with HIF prolyl hydroxylase 2 (EGLN1) (PubMed:15897452). Can enhance apoptosis induced by serum starvation in mammary epithelial cell line HC11 (By similarity). {ECO:0000250|UniProtKB:Q8C0D7, ECO:0000269|PubMed:15029197, ECO:0000269|PubMed:15251430, ECO:0000269|PubMed:15528276, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:16387653}.
Q9UNP9 PPIE S92 ochoa Peptidyl-prolyl cis-trans isomerase E (PPIase E) (EC 5.2.1.8) (Cyclophilin E) (Cyclophilin-33) (Rotamase E) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346). Combines RNA-binding and PPIase activities (PubMed:18258190, PubMed:20460131, PubMed:20677832, PubMed:8977107). Binds mRNA and has a preference for single-stranded RNA molecules with poly-A and poly-U stretches, suggesting it binds to the poly(A)-region in the 3'-UTR of mRNA molecules (PubMed:18258190, PubMed:20460131, PubMed:8977107). Catalyzes the cis-trans isomerization of proline imidic peptide bonds in proteins (PubMed:18258190, PubMed:20541251, PubMed:20677832, PubMed:8977107). Inhibits KMT2A activity; this requires proline isomerase activity (PubMed:20460131, PubMed:20541251, PubMed:20677832). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:18258190, ECO:0000269|PubMed:20460131, ECO:0000269|PubMed:20541251, ECO:0000269|PubMed:20677832, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:8977107}.
Q9UQ84 EXO1 S422 ochoa Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}.
Q9Y281 CFL2 S23 ochoa Cofilin-2 (Cofilin, muscle isoform) Controls reversibly actin polymerization and depolymerization in a pH-sensitive manner. Its F-actin depolymerization activity is regulated by association with CSPR3 (PubMed:19752190). It has the ability to bind G- and F-actin in a 1:1 ratio of cofilin to actin. It is the major component of intranuclear and cytoplasmic actin rods. Required for muscle maintenance. May play a role during the exchange of alpha-actin forms during the early postnatal remodeling of the sarcomere (By similarity). {ECO:0000250|UniProtKB:P45591, ECO:0000269|PubMed:19752190}.
Q9Y2H2 INPP5F S793 ochoa Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}.
Q9Y2I8 WDR37 S114 ochoa WD repeat-containing protein 37 Required for normal ER Ca2+ handling in lymphocytes. Together with PACS1, it plays an essential role in stabilizing peripheral lymphocyte populations. {ECO:0000250|UniProtKB:Q8CBE3}.
Q9Y3B9 RRP15 S107 ochoa RRP15-like protein (Ribosomal RNA-processing protein 15) None
Q9Y4C1 KDM3A S265 ochoa|psp Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}.
Q9Y4E5 ZNF451 S438 ochoa E3 SUMO-protein ligase ZNF451 (EC 2.3.2.-) (Coactivator for steroid receptors) (E3 SUMO-protein transferase ZNF451) (Zinc finger protein 451) E3 SUMO-protein ligase; has a preference for SUMO2 and SUMO3 and facilitates UBE2I/UBC9-mediated sumoylation of target proteins (PubMed:26524493, PubMed:26524494). Plays a role in protein SUMO2 modification in response to stress caused by DNA damage and by proteasome inhibitors (in vitro). Required for MCM4 sumoylation (By similarity). Has no activity with SUMO1 (PubMed:26524493). Preferentially transfers an additional SUMO2 chain onto the SUMO2 consensus site 'Lys-11' (PubMed:26524493). Negatively regulates transcriptional activation mediated by the SMAD4 complex in response to TGF-beta signaling. Inhibits EP300-mediated acetylation of histone H3 at 'Lys-9' (PubMed:24324267). Plays a role in regulating the transcription of AR targets (PubMed:18656483). {ECO:0000250|UniProtKB:Q8C0P7, ECO:0000269|PubMed:18656483, ECO:0000269|PubMed:24324267, ECO:0000269|PubMed:26524493, ECO:0000269|PubMed:26524494}.
Q9Y4G8 RAPGEF2 S930 ochoa Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}.
Q9Y4J8 DTNA S637 ochoa Dystrobrevin alpha (DTN-A) (Alpha-dystrobrevin) (Dystrophin-related protein 3) May be involved in the formation and stability of synapses as well as being involved in the clustering of nicotinic acetylcholine receptors.
Q9Y520 PRRC2C S1544 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y5M8 SRPRB S174 ochoa Signal recognition particle receptor subunit beta (SR-beta) (Protein APMCF1) Component of the signal recognition particle (SRP) complex receptor (SR) (By similarity). Ensures, in conjunction with the SRP complex, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system (By similarity). May mediate the membrane association of SR (By similarity). {ECO:0000250|UniProtKB:P47758}.
Q9Y657 SPIN1 S38 ochoa Spindlin-1 (Ovarian cancer-related protein) (Spindlin1) Chromatin reader that specifically recognizes and binds histone H3 both trimethylated at 'Lys-4' and 'Lys-9' (H3K4me3K9me3) and is involved in piRNA-mediated retrotransposon silencing during spermatogenesis (PubMed:33574238). Plays a key role in the initiation of the PIWIL4-piRNA pathway, a pathway that directs transposon DNA methylation and silencing in the male embryonic germ cells, by promoting recruitment of DNA methylation machinery to transposons: binds young, but not old, LINE1 transposons, which are specifically marked with H3K4me3K9me3, and promotes the recruitment of PIWIL4 and SPOCD1 to transposons, leading to piRNA-directed DNA methylation (By similarity). Also recognizes and binds histone H3 both trimethylated at 'Lys-4' and asymmetrically dimethylated at 'Arg-8' (H3K4me3 and H3R8me2a) and acts as an activator of Wnt signaling pathway downstream of PRMT2 (PubMed:22258766, PubMed:29061846). In case of cancer, promotes cell cancer proliferation via activation of the Wnt signaling pathway (PubMed:24589551). Overexpression induces metaphase arrest and chromosomal instability. Localizes to active rDNA loci and promotes the expression of rRNA genes (PubMed:21960006). May play a role in cell-cycle regulation during the transition from gamete to embryo (By similarity). Involved in oocyte meiotic resumption, a process that takes place before ovulation to resume meiosis of oocytes blocked in prophase I: may act by regulating maternal transcripts to control meiotic resumption (By similarity). {ECO:0000250|UniProtKB:Q61142, ECO:0000269|PubMed:21960006, ECO:0000269|PubMed:22258766, ECO:0000269|PubMed:24589551, ECO:0000269|PubMed:29061846, ECO:0000269|PubMed:33574238}.
Q9Y657 SPIN1 S39 ochoa Spindlin-1 (Ovarian cancer-related protein) (Spindlin1) Chromatin reader that specifically recognizes and binds histone H3 both trimethylated at 'Lys-4' and 'Lys-9' (H3K4me3K9me3) and is involved in piRNA-mediated retrotransposon silencing during spermatogenesis (PubMed:33574238). Plays a key role in the initiation of the PIWIL4-piRNA pathway, a pathway that directs transposon DNA methylation and silencing in the male embryonic germ cells, by promoting recruitment of DNA methylation machinery to transposons: binds young, but not old, LINE1 transposons, which are specifically marked with H3K4me3K9me3, and promotes the recruitment of PIWIL4 and SPOCD1 to transposons, leading to piRNA-directed DNA methylation (By similarity). Also recognizes and binds histone H3 both trimethylated at 'Lys-4' and asymmetrically dimethylated at 'Arg-8' (H3K4me3 and H3R8me2a) and acts as an activator of Wnt signaling pathway downstream of PRMT2 (PubMed:22258766, PubMed:29061846). In case of cancer, promotes cell cancer proliferation via activation of the Wnt signaling pathway (PubMed:24589551). Overexpression induces metaphase arrest and chromosomal instability. Localizes to active rDNA loci and promotes the expression of rRNA genes (PubMed:21960006). May play a role in cell-cycle regulation during the transition from gamete to embryo (By similarity). Involved in oocyte meiotic resumption, a process that takes place before ovulation to resume meiosis of oocytes blocked in prophase I: may act by regulating maternal transcripts to control meiotic resumption (By similarity). {ECO:0000250|UniProtKB:Q61142, ECO:0000269|PubMed:21960006, ECO:0000269|PubMed:22258766, ECO:0000269|PubMed:24589551, ECO:0000269|PubMed:29061846, ECO:0000269|PubMed:33574238}.
A0MZ66 SHTN1 S444 Sugiyama Shootin-1 (Shootin1) Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}.
P61247 RPS3A S203 Sugiyama Small ribosomal subunit protein eS1 (40S ribosomal protein S3a) (v-fos transformation effector protein) (Fte-1) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity). {ECO:0000255|HAMAP-Rule:MF_03122, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P40925 MDH1 S153 Sugiyama Malate dehydrogenase, cytoplasmic (EC 1.1.1.37) (Aromatic alpha-keto acid reductase) (KAR) (EC 1.1.1.96) (Cytosolic malate dehydrogenase) Catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH (PubMed:2449162, PubMed:3052244). Plays essential roles in the malate-aspartate shuttle and the tricarboxylic acid cycle, important in mitochondrial NADH supply for oxidative phosphorylation (PubMed:31538237). Catalyzes the reduction of 2-oxoglutarate to 2-hydroxyglutarate, leading to elevated reactive oxygen species (ROS) (PubMed:34012073). {ECO:0000269|PubMed:2449162, ECO:0000269|PubMed:3052244, ECO:0000269|PubMed:31538237}.
O14976 GAK S399 Sugiyama Cyclin-G-associated kinase (EC 2.7.11.1) (DnaJ homolog subfamily C member 26) Associates with cyclin G and CDK5. Seems to act as an auxilin homolog that is involved in the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells. Expression oscillates slightly during the cell cycle, peaking at G1 (PubMed:10625686). May play a role in clathrin-mediated endocytosis and intracellular trafficking, and in the dynamics of clathrin assembly/disassembly (PubMed:18489706). {ECO:0000269|PubMed:10625686, ECO:0000269|PubMed:18489706}.
P62191 PSMC1 Y25 Sugiyama 26S proteasome regulatory subunit 4 (P26s4) (26S proteasome AAA-ATPase subunit RPT2) (Proteasome 26S subunit ATPase 1) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC1 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798}.
O75914 PAK3 S143 Sugiyama Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}.
P11362 FGFR1 S602 Sugiyama Fibroblast growth factor receptor 1 (FGFR-1) (EC 2.7.10.1) (Basic fibroblast growth factor receptor 1) (BFGFR) (bFGF-R-1) (Fms-like tyrosine kinase 2) (FLT-2) (N-sam) (Proto-oncogene c-Fgr) (CD antigen CD331) Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation. {ECO:0000250|UniProtKB:P16092, ECO:0000269|PubMed:10830168, ECO:0000269|PubMed:11353842, ECO:0000269|PubMed:12181353, ECO:0000269|PubMed:1379697, ECO:0000269|PubMed:1379698, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18480409, ECO:0000269|PubMed:19224897, ECO:0000269|PubMed:19261810, ECO:0000269|PubMed:19665973, ECO:0000269|PubMed:20133753, ECO:0000269|PubMed:20139426, ECO:0000269|PubMed:21765395, ECO:0000269|PubMed:8622701, ECO:0000269|PubMed:8663044}.
P22607 FGFR3 S596 Sugiyama Fibroblast growth factor receptor 3 (FGFR-3) (EC 2.7.10.1) (CD antigen CD333) Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation and apoptosis. Plays an essential role in the regulation of chondrocyte differentiation, proliferation and apoptosis, and is required for normal skeleton development. Regulates both osteogenesis and postnatal bone mineralization by osteoblasts. Promotes apoptosis in chondrocytes, but can also promote cancer cell proliferation. Required for normal development of the inner ear. Phosphorylates PLCG1, CBL and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Plays a role in the regulation of vitamin D metabolism. Mutations that lead to constitutive kinase activation or impair normal FGFR3 maturation, internalization and degradation lead to aberrant signaling. Over-expressed or constitutively activated FGFR3 promotes activation of PTPN11/SHP2, STAT1, STAT5A and STAT5B. Secreted isoform 3 retains its capacity to bind FGF1 and FGF2 and hence may interfere with FGF signaling. {ECO:0000269|PubMed:10611230, ECO:0000269|PubMed:11294897, ECO:0000269|PubMed:11703096, ECO:0000269|PubMed:14534538, ECO:0000269|PubMed:16410555, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17145761, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17561467, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:19286672, ECO:0000269|PubMed:8663044}.
O43526 KCNQ2 S558 SIGNOR|iPTMNet|EPSD Potassium voltage-gated channel subfamily KQT member 2 (KQT-like 2) (Neuroblastoma-specific potassium channel subunit alpha KvLQT2) (Voltage-gated potassium channel subunit Kv7.2) Pore-forming subunit of the voltage-gated potassium (Kv) M-channel which is responsible for the M-current, a key controller of neuronal excitability (PubMed:24277843, PubMed:28793216, PubMed:9836639). M-channel is composed of pore-forming subunits KCNQ2 and KCNQ3 assembled as heterotetramers (PubMed:10781098, PubMed:14534157, PubMed:32884139, PubMed:37857637, PubMed:9836639). The native M-current has a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs (PubMed:14534157, PubMed:28793216, PubMed:9836639). KCNQ2-KCNQ3 M-channel is selectively permeable in vitro to other cations besides potassium, in decreasing order of affinity K(+) > Rb(+) > Cs(+) > Na(+) (PubMed:28793216). M-channel association with SLC5A3/SMIT1 alters channel ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) (PubMed:28793216). Suppressed by activation of the muscarinic acetylcholine receptor CHRM1 (PubMed:10684873, PubMed:10713961). {ECO:0000269|PubMed:10684873, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:10781098, ECO:0000269|PubMed:14534157, ECO:0000269|PubMed:24277843, ECO:0000269|PubMed:28793216, ECO:0000269|PubMed:32884139, ECO:0000269|PubMed:37857637, ECO:0000269|PubMed:9836639}.
P08684 CYP3A4 S131 EPSD|PSP Cytochrome P450 3A4 (EC 1.14.14.1) (1,4-cineole 2-exo-monooxygenase) (1,8-cineole 2-exo-monooxygenase) (EC 1.14.14.56) (Albendazole monooxygenase (sulfoxide-forming)) (EC 1.14.14.73) (Albendazole sulfoxidase) (CYPIIIA3) (CYPIIIA4) (Cholesterol 25-hydroxylase) (Cytochrome P450 3A3) (Cytochrome P450 HLp) (Cytochrome P450 NF-25) (Cytochrome P450-PCN1) (Nifedipine oxidase) (Quinine 3-monooxygenase) (EC 1.14.14.55) A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981). {ECO:0000269|PubMed:10681376, ECO:0000269|PubMed:10759686, ECO:0000269|PubMed:11093772, ECO:0000269|PubMed:11159812, ECO:0000269|PubMed:11555828, ECO:0000269|PubMed:11695850, ECO:0000269|PubMed:12865317, ECO:0000269|PubMed:14559847, ECO:0000269|PubMed:15373842, ECO:0000269|PubMed:15764715, ECO:0000269|PubMed:19965576, ECO:0000269|PubMed:20702771, ECO:0000269|PubMed:21490593, ECO:0000269|PubMed:21576599, ECO:0000269|PubMed:22773874, ECO:0000269|PubMed:2732228, ECO:0000269|PubMed:29461981, ECO:0000269|PubMed:8968357, ECO:0000269|PubMed:9435160}.
Q13574 DGKZ S265 SIGNOR Diacylglycerol kinase zeta (DAG kinase zeta) (EC 2.7.1.107) (EC 2.7.1.93) (Diglyceride kinase zeta) (DGK-zeta) Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:15544348, PubMed:18004883, PubMed:19744926, PubMed:22108654, PubMed:22627129, PubMed:23949095, PubMed:9159104). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (PubMed:15544348, PubMed:18004883, PubMed:19744926, PubMed:22108654, PubMed:22627129, PubMed:23949095, PubMed:9159104). Also plays an important role in the biosynthesis of complex lipids (Probable). Does not exhibit an acyl chain-dependent substrate specificity among diacylglycerol species (PubMed:19744926, PubMed:22108654, PubMed:9159104). Can also phosphorylate 1-alkyl-2-acylglycerol in vitro but less efficiently and with a preference for alkylacylglycerols containing an arachidonoyl group (PubMed:15544348, PubMed:19744926, PubMed:22627129). The biological processes it is involved in include T cell activation since it negatively regulates T-cell receptor signaling which is in part mediated by diacylglycerol (By similarity). By generating phosphatidic acid, stimulates PIP5KIA activity which regulates actin polymerization (PubMed:15157668). Through the same mechanism could also positively regulate insulin-induced translocation of SLC2A4 to the cell membrane (By similarity). {ECO:0000250|UniProtKB:Q80UP3, ECO:0000269|PubMed:15157668, ECO:0000269|PubMed:15544348, ECO:0000269|PubMed:18004883, ECO:0000269|PubMed:19744926, ECO:0000269|PubMed:22108654, ECO:0000269|PubMed:22627129, ECO:0000269|PubMed:23949095, ECO:0000269|PubMed:9159104, ECO:0000305|PubMed:8626588}.; FUNCTION: [Isoform 1]: Regulates RASGRP1 activity. {ECO:0000269|PubMed:11257115}.; FUNCTION: [Isoform 2]: Does not regulate RASGRP1 activity. {ECO:0000269|PubMed:11257115}.
P23381 WARS1 S353 Sugiyama Tryptophan--tRNA ligase, cytoplasmic (EC 6.1.1.2) (Interferon-induced protein 53) (IFP53) (Tryptophanyl-tRNA synthetase) (TrpRS) (hWRS) [Cleaved into: T1-TrpRS; T2-TrpRS] Catalyzes the attachment of tryptophan to tRNA(Trp) in a two-step reaction: tryptophan is first activated by ATP to form Trp-AMP and then transferred to the acceptor end of the tRNA(Trp). {ECO:0000269|PubMed:1373391, ECO:0000269|PubMed:1761529, ECO:0000269|PubMed:28369220}.; FUNCTION: [Isoform 1]: Has no angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.; FUNCTION: [T2-TrpRS]: Possesses an angiostatic activity but has no aminoacylation activity (PubMed:11773625, PubMed:11773626, PubMed:14630953). Inhibits fluid shear stress-activated responses of endothelial cells (PubMed:14630953). Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression (PubMed:14630953). {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626, ECO:0000269|PubMed:14630953}.; FUNCTION: [Isoform 2]: Has an angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.
Q7Z417 NUFIP2 S671 Sugiyama FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
O43290 SART1 S670 Sugiyama U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
P35579 MYH9 S1376 Sugiyama Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}.
O60749 SNX2 S302 Sugiyama Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}.
P10768 ESD S189 Sugiyama S-formylglutathione hydrolase (FGH) (EC 3.1.2.12) (Esterase D) (Methylumbelliferyl-acetate deacetylase) (EC 3.1.1.56) Serine hydrolase involved in the detoxification of formaldehyde. {ECO:0000269|PubMed:3770744, ECO:0000269|PubMed:4768551}.
P78362 SRPK2 S114 Sugiyama SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
Q08881 ITK S284 Sugiyama Tyrosine-protein kinase ITK/TSK (EC 2.7.10.2) (Interleukin-2-inducible T-cell kinase) (IL-2-inducible T-cell kinase) (Kinase EMT) (T-cell-specific kinase) (Tyrosine-protein kinase Lyk) Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation (PubMed:12186560, PubMed:12682224, PubMed:21725281). Required for TCR-mediated calcium response in gamma-delta T-cells, may also be involved in the modulation of the transcriptomic signature in the Vgamma2-positive subset of immature gamma-delta T-cells (By similarity). Phosphorylates TBX21 at 'Tyr-530' and mediates its interaction with GATA3 (By similarity). {ECO:0000250|UniProtKB:Q03526, ECO:0000269|PubMed:12186560, ECO:0000269|PubMed:12682224, ECO:0000269|PubMed:21725281}.
P35613 BSG S228 Sugiyama Basigin (5F7) (Collagenase stimulatory factor) (Extracellular matrix metalloproteinase inducer) (EMMPRIN) (Hepatoma-associated antigen) (HAb18G) (Leukocyte activation antigen M6) (OK blood group antigen) (Tumor cell-derived collagenase stimulatory factor) (TCSF) (CD antigen CD147) [Isoform 1]: Essential for normal retinal maturation and development (By similarity). Acts as a retinal cell surface receptor for NXNL1 and plays an important role in NXNL1-mediated survival of retinal cone photoreceptors (PubMed:25957687). In association with glucose transporter SLC16A1/GLUT1 and NXNL1, promotes retinal cone survival by enhancing aerobic glycolysis and accelerating the entry of glucose into photoreceptors (PubMed:25957687). May act as a potent stimulator of IL6 secretion in multiple cell lines that include monocytes (PubMed:21620857). {ECO:0000250|UniProtKB:P18572, ECO:0000269|PubMed:21620857, ECO:0000269|PubMed:25957687}.; FUNCTION: [Isoform 1]: (Microbial infection) Erythrocyte receptor for P.falciparum RH5 which is essential for erythrocyte invasion by the merozoite stage of P.falciparum isolates 3D7 and Dd2. {ECO:0000269|PubMed:22080952}.; FUNCTION: [Isoform 2]: Signaling receptor for cyclophilins, essential for PPIA/CYPA and PPIB/CYPB-dependent signaling related to chemotaxis and adhesion of immune cells (PubMed:11688976, PubMed:11943775). Plays an important role in targeting monocarboxylate transporters SLC16A1/GLUT1, SLC16A11 and SLC16A12 to the plasma membrane (PubMed:17127621, PubMed:21778275, PubMed:28666119). Acts as a coreceptor for vascular endothelial growth factor receptor 2 (KDR/VEGFR2) in endothelial cells enhancing its VEGFA-mediated activation and downstream signaling (PubMed:25825981). Promotes angiogenesis through EPAS1/HIF2A-mediated up-regulation of VEGFA (isoform VEGF-165 and VEGF-121) and KDR/VEGFR2 in endothelial cells (PubMed:19837976). Plays a key role in regulating tumor growth, invasion, metastasis and neoangiogenesis by stimulating the production and release of extracellular matrix metalloproteinases and KDR/VEGFR2 by both tumor cells and stromal cells (fibroblasts and endothelial cells) (PubMed:11992541, PubMed:12553375, PubMed:15833850). {ECO:0000269|PubMed:11688976, ECO:0000269|PubMed:11943775, ECO:0000269|PubMed:11992541, ECO:0000269|PubMed:12553375, ECO:0000269|PubMed:15833850, ECO:0000269|PubMed:17127621, ECO:0000269|PubMed:19837976, ECO:0000269|PubMed:21778275, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:28666119}.; FUNCTION: [Isoform 2]: (Microbial infection) Erythrocyte receptor for P.falciparum RH5 which is essential for erythrocyte invasion by the merozoite stage of P.falciparum isolates 3D7, Dd2, 7G8 and HB3 (PubMed:22080952, PubMed:26195724). Binding of P.falciparum RH5 results in BSG dimerization which triggers an increase in intracellular Ca(2+) in the erythrocyte (PubMed:28409866). This essential step leads to a rearrangement of the erythrocyte cytoskeleton required for the merozoite invasion (PubMed:28409866). {ECO:0000269|PubMed:22080952, ECO:0000269|PubMed:26195724, ECO:0000269|PubMed:28409866}.; FUNCTION: [Isoform 2]: (Microbial infection) Can facilitate human SARS coronavirus (SARS-CoV-1) infection via its interaction with virus-associated PPIA/CYPA. {ECO:0000269|PubMed:15688292}.; FUNCTION: [Isoform 2]: (Microbial infection) Can facilitate HIV-1 infection via its interaction with virus-associated PPIA/CYPA. {ECO:0000269|PubMed:11353871}.; FUNCTION: [Isoform 2]: (Microbial infection) First described as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is not required for SARS-CoV-2 infection. {ECO:0000269|PubMed:33432067, ECO:0000303|PubMed:32307653}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a receptor for measles virus. {ECO:0000269|PubMed:20147391}.; FUNCTION: [Isoform 2]: (Microbial infection) Promotes entry of pentamer-expressing human cytomegalovirus (HCMV) into epithelial and endothelial cells. {ECO:0000269|PubMed:29739904}.
Q15349 RPS6KA2 S454 Sugiyama Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}.
Q15349 RPS6KA2 S634 Sugiyama Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}.
Q15418 RPS6KA1 S457 Sugiyama Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}.
O14979 HNRNPDL S293 Sugiyama Heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like) (hnRNP DL) (AU-rich element RNA-binding factor) (JKT41-binding protein) (Protein laAUF1) Acts as a transcriptional regulator. Promotes transcription repression. Promotes transcription activation in differentiated myotubes (By similarity). Binds to double- and single-stranded DNA sequences. Binds to the transcription suppressor CATR sequence of the COX5B promoter (By similarity). Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Binds both to nuclear and cytoplasmic poly(A) mRNAs. Binds to poly(G) and poly(A), but not to poly(U) or poly(C) RNA homopolymers. Binds to the 5'-ACUAGC-3' RNA consensus sequence. {ECO:0000250, ECO:0000269|PubMed:9538234}.
Q01844 EWSR1 S443 Sugiyama RNA-binding protein EWS (EWS oncogene) (Ewing sarcoma breakpoint region 1 protein) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Might normally function as a transcriptional repressor (PubMed:10767297). EWS-fusion-proteins (EFPS) may play a role in the tumorigenic process. They may disturb gene expression by mimicking, or interfering with the normal function of CTD-POLII within the transcription initiation complex. They may also contribute to an aberrant activation of the fusion protein target genes. {ECO:0000269|PubMed:10767297, ECO:0000269|PubMed:21256132}.
Q8N568 DCLK2 S174 Sugiyama Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}.
Q8N568 DCLK2 S223 Sugiyama Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}.
Q9NP61 ARFGAP3 S429 Sugiyama ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}.
Q04726 TLE3 S743 Sugiyama Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q99439 CNN2 S138 Sugiyama Calponin-2 (Calponin H2, smooth muscle) (Neutral calponin) Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity.
Q9BYP7 WNK3 S44 Sugiyama Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}.
Q01081 U2AF1 S19 Sugiyama Splicing factor U2AF 35 kDa subunit (U2 auxiliary factor 35 kDa subunit) (U2 small nuclear RNA auxiliary factor 1) (U2 snRNP auxiliary factor small subunit) Plays a critical role in both constitutive and enhancer-dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3'-splice site selection. Recruits U2 snRNP to the branch point. Directly mediates interactions between U2AF2 and proteins bound to the enhancers and thus may function as a bridge between U2AF2 and the enhancer complex to recruit it to the adjacent intron. {ECO:0000269|PubMed:22158538, ECO:0000269|PubMed:25311244, ECO:0000269|PubMed:8647433}.
Q8WU68 U2AF1L4 S19 Sugiyama Splicing factor U2AF 26 kDa subunit (U2 auxiliary factor 26) (U2 small nuclear RNA auxiliary factor 1-like protein 4) (U2AF1-like 4) (U2(RNU2) small nuclear RNA auxiliary factor 1-like protein 3) (U2 small nuclear RNA auxiliary factor 1-like protein 3) (U2AF1-like protein 3) RNA-binding protein that function as a pre-mRNA splicing factor. Plays a critical role in both constitutive and enhancer-dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3'-splice site selection. Acts by enhancing the binding of U2AF2 to weak pyrimidine tracts. Also participates in the regulation of alternative pre-mRNA splicing. Activates exon 5 skipping of PTPRC during T-cell activation; an event reversed by GFI1. Binds to RNA at the AG dinucleotide at the 3'-splice site (By similarity). Shows a preference for AGC or AGA (By similarity). {ECO:0000250|UniProtKB:Q8BGJ9}.
Q96HE7 ERO1A S71 Sugiyama ERO1-like protein alpha (ERO1-L) (ERO1-L-alpha) (EC 1.8.4.-) (Endoplasmic oxidoreductin-1-like protein) (Endoplasmic reticulum oxidoreductase alpha) (Oxidoreductin-1-L-alpha) Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell. Required for the proper folding of immunoglobulins (PubMed:29858230). Plays an important role in ER stress-induced, CHOP-dependent apoptosis by activating the inositol 1,4,5-trisphosphate receptor IP3R1. Involved in the release of the unfolded cholera toxin from reduced P4HB/PDI in case of infection by V.cholerae, thereby playing a role in retrotranslocation of the toxin. {ECO:0000269|PubMed:10671517, ECO:0000269|PubMed:10970843, ECO:0000269|PubMed:11707400, ECO:0000269|PubMed:12403808, ECO:0000269|PubMed:18833192, ECO:0000269|PubMed:18971943, ECO:0000269|PubMed:23027870, ECO:0000269|PubMed:29858230}.
Q9UK32 RPS6KA6 S465 Sugiyama Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}.
A0AVT1 UBA6 S743 ochoa Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}.
A0PK00 TMEM120B S69 ochoa Transmembrane protein 120B Necessary for efficient adipogenesis. Does not show ion channel activity. {ECO:0000250|UniProtKB:Q3TA38}.
A6NHR9 SMCHD1 S1697 ochoa Structural maintenance of chromosomes flexible hinge domain-containing protein 1 (SMC hinge domain-containing protein 1) (EC 3.6.1.-) Non-canonical member of the structural maintenance of chromosomes (SMC) protein family that plays a key role in epigenetic silencing by regulating chromatin architecture (By similarity). Promotes heterochromatin formation in both autosomes and chromosome X, probably by mediating the merge of chromatin compartments (By similarity). Plays a key role in chromosome X inactivation in females by promoting the spreading of heterochromatin (PubMed:23542155). Recruited to inactivated chromosome X by Xist RNA and acts by mediating the merge of chromatin compartments: promotes random chromatin interactions that span the boundaries of existing structures, leading to create a compartment-less architecture typical of inactivated chromosome X (By similarity). Required to facilitate Xist RNA spreading (By similarity). Also required for silencing of a subset of clustered autosomal loci in somatic cells, such as the DUX4 locus (PubMed:23143600). Has ATPase activity; may participate in structural manipulation of chromatin in an ATP-dependent manner as part of its role in gene expression regulation (PubMed:29748383). Also plays a role in DNA repair: localizes to sites of DNA double-strand breaks in response to DNA damage to promote the repair of DNA double-strand breaks (PubMed:24790221, PubMed:25294876). Acts by promoting non-homologous end joining (NHEJ) and inhibiting homologous recombination (HR) repair (PubMed:25294876). {ECO:0000250|UniProtKB:Q6P5D8, ECO:0000269|PubMed:23143600, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:24790221, ECO:0000269|PubMed:25294876, ECO:0000269|PubMed:29748383}.
B4DEV8 None S54 ochoa Proteasome subunit alpha type None
K7ENP7 None S26 ochoa INO80 complex subunit C None
O00257 CBX4 S415 ochoa E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}.
O00327 BMAL1 S42 ochoa|psp Basic helix-loop-helix ARNT-like protein 1 (Aryl hydrocarbon receptor nuclear translocator-like protein 1) (Basic-helix-loop-helix-PAS protein MOP3) (Brain and muscle ARNT-like 1) (Class E basic helix-loop-helix protein 5) (bHLHe5) (Member of PAS protein 3) (PAS domain-containing protein 3) (bHLH-PAS protein JAP3) Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). Essential for the rhythmic interaction of CLOCK with ASS1 and plays a critical role in positively regulating CLOCK-mediated acetylation of ASS1 (PubMed:28985504). Plays a role in protecting against lethal sepsis by limiting the expression of immune checkpoint protein CD274 in macrophages in a PKM2-dependent manner (By similarity). Regulates the diurnal rhythms of skeletal muscle metabolism via transcriptional activation of genes promoting triglyceride synthesis (DGAT2) and metabolic efficiency (COQ10B) (By similarity). {ECO:0000250|UniProtKB:Q9WTL8, ECO:0000269|PubMed:11441146, ECO:0000269|PubMed:12738229, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:23955654, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}.; FUNCTION: (Microbial infection) Regulates SARS coronavirus-2/SARS-CoV-2 entry and replication in lung epithelial cells probably through the post-transcriptional regulation of ACE2 and interferon-stimulated gene expression. {ECO:0000269|PubMed:34545347}.
O00423 EML1 S135 ochoa Echinoderm microtubule-associated protein-like 1 (EMAP-1) (HuEMAP-1) Modulates the assembly and organization of the microtubule cytoskeleton, and probably plays a role in regulating the orientation of the mitotic spindle and the orientation of the plane of cell division. Required for normal proliferation of neuronal progenitor cells in the developing brain and for normal brain development. Does not affect neuron migration per se. {ECO:0000250|UniProtKB:Q05BC3}.
O14647 CHD2 S1728 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14976 GAK S73 ochoa Cyclin-G-associated kinase (EC 2.7.11.1) (DnaJ homolog subfamily C member 26) Associates with cyclin G and CDK5. Seems to act as an auxilin homolog that is involved in the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells. Expression oscillates slightly during the cell cycle, peaking at G1 (PubMed:10625686). May play a role in clathrin-mediated endocytosis and intracellular trafficking, and in the dynamics of clathrin assembly/disassembly (PubMed:18489706). {ECO:0000269|PubMed:10625686, ECO:0000269|PubMed:18489706}.
O14986 PIP5K1B S413 ochoa Phosphatidylinositol 4-phosphate 5-kinase type-1 beta (PIP5K1-beta) (PtdIns(4)P-5-kinase 1 beta) (EC 2.7.1.68) (Phosphatidylinositol 4-phosphate 5-kinase type I beta) (PIP5KIbeta) (Protein STM-7) (Type I phosphatidylinositol 4-phosphate 5-kinase beta) Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (By similarity). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (By similarity). Mediates RAC1-dependent reorganization of actin filaments. Contributes to the activation of phospholipase PLD2. Together with PIP5K1A, is required, after stimulation by G-protein coupled receptors, for the synthesis of IP3 that will induce stable platelet adhesion (By similarity). {ECO:0000250|UniProtKB:P70181, ECO:0000250|UniProtKB:Q99755}.
O15042 U2SURP S97 ochoa U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) None
O15226 NKRF S35 ochoa NF-kappa-B-repressing factor (NFkB-repressing factor) (NRF) (Protein ITBA4) Enhances the ATPase activity of DHX15 by acting like a brace that tethers mobile sections of DHX15 together, stabilizing a functional conformation with high RNA affinity of DHX15 (PubMed:12381793). Involved in the constitutive silencing of the interferon beta promoter, independently of the virus-induced signals, and in the inhibition of the basal and cytokine-induced iNOS promoter activity (PubMed:12381793). Also involved in the regulation of IL-8 transcription (PubMed:12381793). May also act as a DNA-binding transcription regulator: interacts with a specific negative regulatory element (NRE) 5'-AATTCCTCTGA-3' to mediate transcriptional repression of certain NK-kappa-B responsive genes (PubMed:10562553). {ECO:0000269|PubMed:10562553, ECO:0000269|PubMed:12381793}.
O43166 SIPA1L1 S1508 ochoa Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}.
O43312 MTSS1 S569 ochoa Protein MTSS 1 (Metastasis suppressor YGL-1) (Metastasis suppressor protein 1) (Missing in metastasis protein) May be related to cancer progression or tumor metastasis in a variety of organ sites, most likely through an interaction with the actin cytoskeleton.
O43829 ZBTB14 S131 ochoa Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}.
O60256 PRPSAP2 S198 ochoa Phosphoribosyl pyrophosphate synthase-associated protein 2 (PRPP synthase-associated protein 2) (41 kDa phosphoribosypyrophosphate synthetase-associated protein) (PAP41) Seems to play a negative regulatory role in 5-phosphoribose 1-diphosphate synthesis.
O60343 TBC1D4 S751 psp TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}.
O60673 REV3L S1075 psp DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}.
O60684 KPNA6 S461 ochoa Importin subunit alpha-7 (Karyopherin subunit alpha-6) Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. {ECO:0000269|PubMed:10523667}.
O60701 UGDH Y473 psp UDP-glucose 6-dehydrogenase (UDP-Glc dehydrogenase) (UDP-GlcDH) (UDPGDH) (EC 1.1.1.22) Catalyzes the formation of UDP-alpha-D-glucuronate, a constituent of complex glycosaminoglycans (PubMed:21502315, PubMed:21961565, PubMed:22123821, PubMed:23106432, PubMed:25478983, PubMed:27966912, PubMed:30420606, PubMed:30457329). Required for the biosynthesis of chondroitin sulfate and heparan sulfate. Required for embryonic development via its role in the biosynthesis of glycosaminoglycans (By similarity). Required for proper brain and neuronal development (PubMed:32001716). {ECO:0000250|UniProtKB:O70475, ECO:0000269|PubMed:21502315, ECO:0000269|PubMed:21961565, ECO:0000269|PubMed:22123821, ECO:0000269|PubMed:23106432, ECO:0000269|PubMed:25478983, ECO:0000269|PubMed:27966912, ECO:0000269|PubMed:30420606, ECO:0000269|PubMed:30457329, ECO:0000269|PubMed:32001716}.
O75121 MFAP3L S298 ochoa Microfibrillar-associated protein 3-like (Testis development protein NYD-SP9) May participate in the nuclear signaling of EGFR and MAPK1/ERK2. May a have a role in metastasis. {ECO:0000269|PubMed:24735981}.
O75151 PHF2 S705 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75151 PHF2 S899 ochoa|psp Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75152 ZC3H11A S290 ochoa Zinc finger CCCH domain-containing protein 11A Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.
O75175 CNOT3 S291 ochoa CCR4-NOT transcription complex subunit 3 (CCR4-associated factor 3) (Leukocyte receptor cluster member 2) Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. May be involved in metabolic regulation; may be involved in recruitment of the CCR4-NOT complex to deadenylation target mRNAs involved in energy metabolism. Involved in mitotic progression and regulation of the spindle assembly checkpoint by regulating the stability of MAD1L1 mRNA. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may involve histone deacetylases. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:22342980, ECO:0000269|PubMed:22367759}.
O75446 SAP30 S131 ochoa Histone deacetylase complex subunit SAP30 (30 kDa Sin3-associated polypeptide) (Sin3 corepressor complex subunit SAP30) (Sin3-associated polypeptide p30) Involved in the functional recruitment of the Sin3-histone deacetylase complex (HDAC) to a specific subset of N-CoR corepressor complexes. Capable of transcription repression by N-CoR. Active in deacetylating core histone octamers (when in a complex) but inactive in deacetylating nucleosomal histones. {ECO:0000250|UniProtKB:O88574, ECO:0000269|PubMed:9651585}.; FUNCTION: (Microbial infection) Involved in transcriptional repression of HHV-1 genes TK and gC. {ECO:0000269|PubMed:21221920}.
O75475 PSIP1 S347 ochoa PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O75676 RPS6KA4 S502 ochoa Ribosomal protein S6 kinase alpha-4 (S6K-alpha-4) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 4) (Nuclear mitogen- and stress-activated protein kinase 2) (Ribosomal protein kinase B) (RSKB) Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factor RELA, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes. Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin. Plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors. {ECO:0000269|PubMed:11035004, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:9792677}.
O76064 RNF8 S157 ochoa|psp E3 ubiquitin-protein ligase RNF8 (hRNF8) (EC 2.3.2.27) (RING finger protein 8) (RING-type E3 ubiquitin transferase RNF8) E3 ubiquitin-protein ligase that plays a key role in DNA damage signaling via 2 distinct roles: by mediating the 'Lys-63'-linked ubiquitination of histones H2A and H2AX and promoting the recruitment of DNA repair proteins at double-strand breaks (DSBs) sites, and by catalyzing 'Lys-48'-linked ubiquitination to remove target proteins from DNA damage sites. Following DNA DSBs, it is recruited to the sites of damage by ATM-phosphorylated MDC1 and catalyzes the 'Lys-63'-linked ubiquitination of histones H2A and H2AX, thereby promoting the formation of TP53BP1 and BRCA1 ionizing radiation-induced foci (IRIF) (PubMed:18001824, PubMed:18006705). Also controls the recruitment of UIMC1-BRCC3 (RAP80-BRCC36) and PAXIP1/PTIP to DNA damage sites (PubMed:18077395, PubMed:19202061). Promotes the recruitment of NBN to DNA damage sites by catalyzing 'Lys-6'-linked ubiquitination of NBN (PubMed:23115235). Also recruited at DNA interstrand cross-links (ICLs) sites and catalyzes 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Promotes the formation of 'Lys-63'-linked polyubiquitin chains via interactions with the specific ubiquitin-conjugating UBE2N/UBC13 and ubiquitinates non-histone substrates such as PCNA. Substrates that are polyubiquitinated at 'Lys-63' are usually not targeted for degradation. Also catalyzes the formation of 'Lys-48'-linked polyubiquitin chains via interaction with the ubiquitin-conjugating UBE2L6/UBCH8, leading to degradation of substrate proteins such as CHEK2, JMJD2A/KDM4A and KU80/XRCC5: it is still unclear how the preference toward 'Lys-48'- versus 'Lys-63'-linked ubiquitination is regulated but it could be due to RNF8 ability to interact with specific E2 specific ligases. For instance, interaction with phosphorylated HERC2 promotes the association between RNF8 and UBE2N/UBC13 and favors the specific formation of 'Lys-63'-linked ubiquitin chains. Promotes non-homologous end joining (NHEJ) by promoting the 'Lys-48'-linked ubiquitination and degradation the of KU80/XRCC5. Following DNA damage, mediates the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF168, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites (PubMed:11322894, PubMed:14981089, PubMed:17724460, PubMed:18001825, PubMed:18337245, PubMed:18948756, PubMed:19015238, PubMed:19124460, PubMed:19203578, PubMed:19203579, PubMed:20550933, PubMed:21558560, PubMed:21857671, PubMed:21911360, PubMed:22266820, PubMed:22373579, PubMed:22531782, PubMed:22705371, PubMed:22980979). Following DNA damage, mediates the ubiquitination and degradation of POLD4/p12, a subunit of DNA polymerase delta. In the absence of POLD4, DNA polymerase delta complex exhibits higher proofreading activity (PubMed:23233665). In addition to its function in damage signaling, also plays a role in higher-order chromatin structure by mediating extensive chromatin decondensation. Involved in the activation of ATM by promoting histone H2B ubiquitination, which indirectly triggers histone H4 'Lys-16' acetylation (H4K16ac), establishing a chromatin environment that promotes efficient activation of ATM kinase. Required in the testis, where it plays a role in the replacement of histones during spermatogenesis. At uncapped telomeres, promotes the joining of deprotected chromosome ends by inducing H2A ubiquitination and TP53BP1 recruitment, suggesting that it may enhance cancer development by aggravating telomere-induced genome instability in case of telomeric crisis. Promotes the assembly of RAD51 at DNA DSBs in the absence of BRCA1 and TP53BP1 Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair (PubMed:22865450). May be required for proper exit from mitosis after spindle checkpoint activation and may regulate cytokinesis. May play a role in the regulation of RXRA-mediated transcriptional activity. Not involved in RXRA ubiquitination by UBE2E2 (PubMed:11322894, PubMed:14981089, PubMed:17724460, PubMed:18001825, PubMed:18337245, PubMed:18948756, PubMed:19015238, PubMed:19124460, PubMed:19203578, PubMed:19203579, PubMed:20550933, PubMed:21558560, PubMed:21857671, PubMed:21911360, PubMed:22266820, PubMed:22373579, PubMed:22531782, PubMed:22705371, PubMed:22980979). {ECO:0000269|PubMed:11322894, ECO:0000269|PubMed:14981089, ECO:0000269|PubMed:17724460, ECO:0000269|PubMed:18001824, ECO:0000269|PubMed:18001825, ECO:0000269|PubMed:18006705, ECO:0000269|PubMed:18077395, ECO:0000269|PubMed:18337245, ECO:0000269|PubMed:18948756, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19124460, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:21558560, ECO:0000269|PubMed:21857671, ECO:0000269|PubMed:21911360, ECO:0000269|PubMed:22266820, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22531782, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22865450, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23233665}.
O94806 PRKD3 S213 ochoa Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}.
O94921 CDK14 S95 ochoa Cyclin-dependent kinase 14 (EC 2.7.11.22) (Cell division protein kinase 14) (Serine/threonine-protein kinase PFTAIRE-1) (hPFTAIRE1) Serine/threonine-protein kinase involved in the control of the eukaryotic cell cycle, whose activity is controlled by an associated cyclin. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by mediating the phosphorylation of LRP6 at 'Ser-1490', leading to the activation of the Wnt signaling pathway. Acts as a regulator of cell cycle progression and cell proliferation via its interaction with CCDN3. Phosphorylates RB1 in vitro, however the relevance of such result remains to be confirmed in vivo. May also play a role in meiosis, neuron differentiation and may indirectly act as a negative regulator of insulin-responsive glucose transport. {ECO:0000269|PubMed:16461467, ECO:0000269|PubMed:17517622, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949}.
O95071 UBR5 S636 ochoa E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}.
O95155 UBE4B S143 ochoa Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}.
O95405 ZFYVE9 S121 ochoa Zinc finger FYVE domain-containing protein 9 (Mothers against decapentaplegic homolog-interacting protein) (Madh-interacting protein) (Novel serine protease) (NSP) (Receptor activation anchor) (hSARA) (Smad anchor for receptor activation) Early endosomal protein that functions to recruit SMAD2/SMAD3 to intracellular membranes and to the TGF-beta receptor. Plays a significant role in TGF-mediated signaling by regulating the subcellular location of SMAD2 and SMAD3 and modulating the transcriptional activity of the SMAD3/SMAD4 complex. Possibly associated with TGF-beta receptor internalization. {ECO:0000269|PubMed:15356634, ECO:0000269|PubMed:9865696}.
O95453 PARN S570 ochoa Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}.
O95477 ABCA1 S2054 psp Phospholipid-transporting ATPase ABCA1 (EC 7.6.2.1) (ATP-binding cassette sub-family A member 1) (ATP-binding cassette transporter 1) (ABC-1) (ATP-binding cassette 1) (Cholesterol efflux regulatory protein) Catalyzes the translocation of specific phospholipids from the cytoplasmic to the extracellular/lumenal leaflet of membrane coupled to the hydrolysis of ATP (PubMed:24097981, PubMed:35974019). Thereby, participates in phospholipid transfer to apolipoproteins to form nascent high density lipoproteins/HDLs (PubMed:14754908). Transports preferentially phosphatidylcholine over phosphatidylserine (PubMed:24097981). May play a similar role in the efflux of intracellular cholesterol to apolipoproteins and the formation of nascent high density lipoproteins/HDLs (PubMed:10533863, PubMed:14754908, PubMed:24097981, PubMed:35974019). Translocates phospholipids from the outer face of the plasma membrane and forces it through its gateway and annulus into an elongated hydrophobic tunnel in its extracellular domain (PubMed:35974019). {ECO:0000269|PubMed:10533863, ECO:0000269|PubMed:14754908, ECO:0000269|PubMed:24097981, ECO:0000269|PubMed:35974019}.
O95644 NFATC1 S153 ochoa|psp Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}.
O95696 BRD1 S803 ochoa Bromodomain-containing protein 1 (BR140-like protein) (Bromodomain and PHD finger-containing protein 2) Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, that acts as a regulator of hematopoiesis (PubMed:16387653, PubMed:21753189, PubMed:21880731). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby promoting erythroid differentiation (PubMed:21753189). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21880731}.
O96013 PAK4 S181 ochoa|psp Serine/threonine-protein kinase PAK 4 (EC 2.7.11.1) (p21-activated kinase 4) (PAK-4) Serine/threonine-protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell adhesion turnover, cell migration, growth, proliferation or cell survival (PubMed:26598620). Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN. Promotes kinase-independent stabilization of RHOU, thereby contributing to focal adhesion disassembly during cell migration (PubMed:26598620). {ECO:0000269|PubMed:11278822, ECO:0000269|PubMed:11313478, ECO:0000269|PubMed:14560027, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:20507994, ECO:0000269|PubMed:20631255, ECO:0000269|PubMed:20805321, ECO:0000269|PubMed:26598620, ECO:0000269|PubMed:26607847}.
P00519 ABL1 S620 ochoa Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}.
P01730 CD4 S440 psp T-cell surface glycoprotein CD4 (T-cell surface antigen T4/Leu-3) (CD antigen CD4) Integral membrane glycoprotein that plays an essential role in the immune response and serves multiple functions in responses against both external and internal offenses. In T-cells, functions primarily as a coreceptor for MHC class II molecule:peptide complex. The antigens presented by class II peptides are derived from extracellular proteins while class I peptides are derived from cytosolic proteins. Interacts simultaneously with the T-cell receptor (TCR) and the MHC class II presented by antigen presenting cells (APCs). In turn, recruits the Src kinase LCK to the vicinity of the TCR-CD3 complex. LCK then initiates different intracellular signaling pathways by phosphorylating various substrates ultimately leading to lymphokine production, motility, adhesion and activation of T-helper cells. In other cells such as macrophages or NK cells, plays a role in differentiation/activation, cytokine expression and cell migration in a TCR/LCK-independent pathway. Participates in the development of T-helper cells in the thymus and triggers the differentiation of monocytes into functional mature macrophages. {ECO:0000269|PubMed:16951326, ECO:0000269|PubMed:24942581, ECO:0000269|PubMed:2823150, ECO:0000269|PubMed:7604010}.; FUNCTION: (Microbial infection) Primary receptor for human immunodeficiency virus-1 (HIV-1) (PubMed:12089508, PubMed:16331979, PubMed:2214026, PubMed:9641677). Down-regulated by HIV-1 Vpu (PubMed:17346169). Acts as a receptor for Human Herpes virus 7/HHV-7 (PubMed:7909607). {ECO:0000269|PubMed:12089508, ECO:0000269|PubMed:16331979, ECO:0000269|PubMed:17346169, ECO:0000269|PubMed:2214026, ECO:0000269|PubMed:7909607, ECO:0000269|PubMed:9641677}.
P04075 ALDOA S46 ochoa Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}.
P08138 NGFR S277 psp Tumor necrosis factor receptor superfamily member 16 (Gp80-LNGFR) (Low affinity neurotrophin receptor p75NTR) (Low-affinity nerve growth factor receptor) (NGF receptor) (Low-affinity nerve growth factor receptor p75NGFR) (Low-affinity nerve growth factor receptor p75NGR) (p75 ICD) (CD antigen CD271) Low affinity receptor which can bind to NGF, BDNF, NTF3, and NTF4. Forms a heterodimeric receptor with SORCS2 that binds the precursor forms of NGF, BDNF and NTF3 with high affinity, and has much lower affinity for mature NGF and BDNF (PubMed:24908487). Plays an important role in differentiation and survival of specific neuronal populations during development (By similarity). Can mediate cell survival as well as cell death of neural cells. Plays a role in the inactivation of RHOA (PubMed:26646181). Plays a role in the regulation of the translocation of GLUT4 to the cell surface in adipocytes and skeletal muscle cells in response to insulin, probably by regulating RAB31 activity, and thereby contributes to the regulation of insulin-dependent glucose uptake (By similarity). Necessary for the circadian oscillation of the clock genes BMAL1, PER1, PER2 and NR1D1 in the suprachiasmatic nucleus (SCmgetaN) of the brain and in liver and of the genes involved in glucose and lipid metabolism in the liver (PubMed:23785138). Together with BFAR negatively regulates NF-kappa-B and JNK-related signaling pathways (PubMed:22566094). {ECO:0000250, ECO:0000250|UniProtKB:Q9Z0W1, ECO:0000269|PubMed:14966521, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:24908487, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:3022937}.
P08151 GLI1 S84 psp Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}.
P09651 HNRNPA1 S91 ochoa Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}.
P10070 GLI2 S234 ochoa Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}.
P10586 PTPRF S1291 ochoa Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one.
P10645 CHGA S136 ochoa|psp Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}.
P11388 TOP2A S1469 ochoa|psp DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11908 PRPS2 S180 ochoa|psp Ribose-phosphate pyrophosphokinase 2 (EC 2.7.6.1) (PPRibP) (Phosphoribosyl pyrophosphate synthase II) (PRS-II) Catalyzes the synthesis of phosphoribosylpyrophosphate (PRPP) that is essential for nucleotide synthesis.
P12268 IMPDH2 S496 ochoa Inosine-5'-monophosphate dehydrogenase 2 (IMP dehydrogenase 2) (IMPD 2) (IMPDH 2) (EC 1.1.1.205) (Inosine-5'-monophosphate dehydrogenase type II) (IMP dehydrogenase II) (IMPDH-II) Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (PubMed:7763314, PubMed:7903306). Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism (PubMed:14766016). It may also have a role in the development of malignancy and the growth progression of some tumors. {ECO:0000269|PubMed:14766016, ECO:0000269|PubMed:7763314, ECO:0000269|PubMed:7903306}.
P12980 LYL1 S134 ochoa Protein lyl-1 (Class A basic helix-loop-helix protein 18) (bHLHa18) (Lymphoblastic leukemia-derived sequence 1) None
P13797 PLS3 S339 ochoa Plastin-3 (T-fimbrin) (T-plastin) Actin-bundling protein.
P13861 PRKAR2A S383 ochoa cAMP-dependent protein kinase type II-alpha regulatory subunit Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase.
P15822 HIVEP1 S1749 ochoa Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis.
P15924 DSP S2209 ochoa Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P16144 ITGB4 S1325 psp Integrin beta-4 (GP150) (CD antigen CD104) Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}.
P17480 UBTF S412 ochoa|psp Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}.
P17542 TAL1 S172 psp T-cell acute lymphocytic leukemia protein 1 (TAL-1) (Class A basic helix-loop-helix protein 17) (bHLHa17) (Stem cell protein) (T-cell leukemia/lymphoma protein 5) Implicated in the genesis of hemopoietic malignancies. It may play an important role in hemopoietic differentiation. Serves as a positive regulator of erythroid differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:1396592}.
P19532 TFE3 S334 ochoa Transcription factor E3 (Class E basic helix-loop-helix protein 33) (bHLHe33) Transcription factor that acts as a master regulator of lysosomal biogenesis and immune response (PubMed:2338243, PubMed:24448649, PubMed:29146937, PubMed:30733432, PubMed:31672913, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFEB or MITF (PubMed:24448649). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFE3 phosphorylation by MTOR promotes its inactivation (PubMed:24448649, PubMed:31672913, PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces TFE3 dephosphorylation, resulting in transcription factor activity (PubMed:24448649, PubMed:31672913, PubMed:36608670). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:24448649). Maintains the pluripotent state of embryonic stem cells by promoting the expression of genes such as ESRRB; mTOR-dependent TFE3 cytosolic retention and inactivation promotes exit from pluripotency (By similarity). Required to maintain the naive pluripotent state of hematopoietic stem cell; mTOR-dependent cytoplasmic retention of TFE3 promotes the exit of hematopoietic stem cell from pluripotency (PubMed:30733432). TFE3 activity is also involved in the inhibition of neuronal progenitor differentiation (By similarity). Acts as a positive regulator of browning of adipose tissue by promoting expression of target genes; mTOR-dependent phosphorylation promotes cytoplasmic retention of TFE3 and inhibits browning of adipose tissue (By similarity). In association with TFEB, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the MUE3 box, a subset of E-boxes, present in the immunoglobulin enhancer (PubMed:2338243). It also binds very well to a USF/MLTF site (PubMed:2338243). Promotes TGF-beta-induced transcription of COL1A2; via its interaction with TSC22D1 at E-boxes in the gene proximal promoter (By similarity). May regulate lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). {ECO:0000250|UniProtKB:Q64092, ECO:0000269|PubMed:2338243, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30733432, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:37079666}.
P20273 CD22 S717 ochoa B-cell receptor CD22 (B-lymphocyte cell adhesion molecule) (BL-CAM) (Sialic acid-binding Ig-like lectin 2) (Siglec-2) (T-cell surface antigen Leu-14) (CD antigen CD22) Most highly expressed siglec (sialic acid-binding immunoglobulin-like lectin) on B-cells that plays a role in various aspects of B-cell biology including differentiation, antigen presentation, and trafficking to bone marrow (PubMed:34330755, PubMed:8627166). Binds to alpha 2,6-linked sialic acid residues of surface molecules such as CD22 itself, CD45 and IgM in a cis configuration. Can also bind to ligands on other cells as an adhesion molecule in a trans configuration (PubMed:20172905). Acts as an inhibitory coreceptor on the surface of B-cells and inhibits B-cell receptor induced signaling, characterized by inhibition of the calcium mobilization and cellular activation. Mechanistically, the immunoreceptor tyrosine-based inhibitory motif domain is phosphorylated by the Src kinase LYN, which in turn leads to the recruitment of the protein tyrosine phosphatase 1/PTPN6, leading to the negative regulation of BCR signaling (PubMed:8627166). If this negative signaling from is of sufficient strength, apoptosis of the B-cell can be induced (PubMed:20516366). {ECO:0000269|PubMed:20172905, ECO:0000269|PubMed:20516366, ECO:0000269|PubMed:34330755, ECO:0000269|PubMed:8627166}.
P20839 IMPDH1 S432 ochoa Inosine-5'-monophosphate dehydrogenase 1 (IMP dehydrogenase 1) (IMPD 1) (IMPDH 1) (EC 1.1.1.205) (IMPDH-I) Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors.
P21127 CDK11B S752 ochoa|psp Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}.
P23771 GATA3 S308 psp Trans-acting T-cell-specific transcription factor GATA-3 (GATA-binding factor 3) Transcriptional activator which binds to the enhancer of the T-cell receptor alpha and delta genes. Binds to the consensus sequence 5'-AGATAG-3'. Required for the T-helper 2 (Th2) differentiation process following immune and inflammatory responses. Positively regulates ASB2 expression (By similarity). Coordinates macrophage transcriptional activation and UCP2-dependent metabolic reprogramming in response to IL33. Upon tissue injury, acts downstream of IL33 signaling to drive differentiation of inflammation-resolving alternatively activated macrophages. {ECO:0000250|UniProtKB:P23772, ECO:0000269|PubMed:23824597}.
P25786 PSMA1 S54 ochoa Proteasome subunit alpha type-1 (30 kDa prosomal protein) (PROS-30) (Macropain subunit C2) (Multicatalytic endopeptidase complex subunit C2) (Proteasome component C2) (Proteasome nu chain) (Proteasome subunit alpha-6) (alpha-6) Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}.
P26641 EEF1G S298 ochoa Elongation factor 1-gamma (EF-1-gamma) (eEF-1B gamma) Probably plays a role in anchoring the complex to other cellular components.
P28066 PSMA5 S56 ochoa Proteasome subunit alpha type-5 (Macropain zeta chain) (Multicatalytic endopeptidase complex zeta chain) (Proteasome subunit alpha-5) (alpha-5) (Proteasome zeta chain) Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}.
P29474 NOS3 S633 ochoa|psp Nitric oxide synthase 3 (EC 1.14.13.39) (Constitutive NOS) (cNOS) (EC-NOS) (NOS type III) (NOSIII) (Nitric oxide synthase, endothelial) (Endothelial NOS) (eNOS) Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway (PubMed:1378832). NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. {ECO:0000269|PubMed:1378832}.; FUNCTION: [Isoform eNOS13C]: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.
P29590 PML S480 ochoa Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}.
P30304 CDC25A S124 psp M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}.
P30304 CDC25A S293 psp M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}.
P30679 GNA15 S336 psp Guanine nucleotide-binding protein subunit alpha-15 (G alpha-15) (G-protein subunit alpha-15) (Epididymis tissue protein Li 17E) (Guanine nucleotide-binding protein subunit alpha-16) (G alpha-16) (G-protein subunit alpha-16) Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems.
P31260 HOXA10 Y343 psp Homeobox protein Hox-A10 (Homeobox protein Hox-1.8) (Homeobox protein Hox-1H) (PL) Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to the DNA sequence 5'-AA[AT]TTTTATTAC-3'.
P32249 GPR183 S328 ochoa G-protein coupled receptor 183 (Epstein-Barr virus-induced G-protein coupled receptor 2) (EBI2) (EBV-induced G-protein coupled receptor 2) (hEBI2) G-protein coupled receptor expressed in lymphocytes that acts as a chemotactic receptor for B-cells, T-cells, splenic dendritic cells, monocytes/macrophages and astrocytes (By similarity). Receptor for oxysterol 7-alpha,25-dihydroxycholesterol (7-alpha,25-OHC) and other related oxysterols (PubMed:21796212, PubMed:22875855, PubMed:22930711). Mediates cell positioning and movement of a number of cells by binding the 7-alpha,25-OHC ligand that forms a chemotactic gradient (By similarity). Binding of 7-alpha,25-OHC mediates the correct localization of B-cells during humoral immune responses (By similarity). Guides B-cell movement along the B-cell zone-T-cell zone boundary and later to interfollicular and outer follicular regions (By similarity). Its specific expression during B-cell maturation helps position B-cells appropriately for mounting T-dependent antibody responses (By similarity). Collaborates with CXCR5 to mediate B-cell migration; probably by forming a heterodimer with CXCR5 that affects the interaction between of CXCL13 and CXCR5 (PubMed:22913878). Also acts as a chemotactic receptor for some T-cells upon binding to 7-alpha,25-OHC ligand (By similarity). Promotes follicular helper T (Tfh) cells differentiation by positioning activated T-cells at the follicle-T-zone interface, promoting contact of newly activated CD4 T-cells with activated dendritic cells and exposing them to Tfh-cell-promoting inducible costimulator (ICOS) ligand (By similarity). Expression in splenic dendritic cells is required for their homeostasis, localization and ability to induce B- and T-cell responses: GPR183 acts as a chemotactic receptor in dendritic cells that mediates the accumulation of CD4(+) dendritic cells in bridging channels (By similarity). Regulates migration of astrocytes and is involved in communication between astrocytes and macrophages (PubMed:25297897). Promotes osteoclast precursor migration to bone surfaces (By similarity). Signals constitutively through G(i)-alpha, but not G(s)-alpha or G(q)-alpha (PubMed:21673108, PubMed:25297897). Signals constitutively also via MAPK1/3 (ERK1/2) (By similarity). {ECO:0000250|UniProtKB:Q3U6B2, ECO:0000269|PubMed:16540462, ECO:0000269|PubMed:21673108, ECO:0000269|PubMed:21796212, ECO:0000269|PubMed:22875855, ECO:0000269|PubMed:22913878, ECO:0000269|PubMed:22930711, ECO:0000269|PubMed:25297897}.
P35462 DRD3 S257 psp D(3) dopamine receptor (Dopamine D3 receptor) Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase. Promotes cell proliferation. {ECO:0000269|PubMed:19520868}.
P35498 SCN1A S551 ochoa Sodium channel protein type 1 subunit alpha (Sodium channel protein brain I subunit alpha) (Sodium channel protein type I subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.1) Pore-forming subunit of Nav1.1, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:14672992). By regulating the excitability of neurons, ensures that they respond appropriately to synaptic inputs, maintaining the balance between excitation and inhibition in brain neural circuits (By similarity). Nav1.1 plays a role in controlling the excitability and action potential propagation from somatosensory neurons, thereby contributing to the sensory perception of mechanically-induced pain (By similarity). {ECO:0000250|UniProtKB:A2APX8, ECO:0000269|PubMed:14672992}.
P35568 IRS1 S527 ochoa|psp Insulin receptor substrate 1 (IRS-1) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}.
P35711 SOX5 S21 ochoa Transcription factor SOX-5 Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}.
P36776 LONP1 S173 psp Lon protease homolog, mitochondrial (EC 3.4.21.53) (LONHs) (Lon protease-like protein) (LONP) (Mitochondrial ATP-dependent protease Lon) (Serine protease 15) ATP-dependent serine protease that mediates the selective degradation of misfolded, unassembled or oxidatively damaged polypeptides as well as certain short-lived regulatory proteins in the mitochondrial matrix (PubMed:12198491, PubMed:15870080, PubMed:17579211, PubMed:37327776, PubMed:8248235). Endogenous substrates include mitochondrial steroidogenic acute regulatory (StAR) protein, DELE1, helicase Twinkle (TWNK) and the large ribosomal subunit protein MRPL32/bL32m (PubMed:17579211, PubMed:28377575, PubMed:37327776). MRPL32/bL32m is protected from degradation by LONP1 when it is bound to a nucleic acid (RNA), but TWNK is not (PubMed:17579211, PubMed:28377575). May also have a chaperone function in the assembly of inner membrane protein complexes (By similarity). Participates in the regulation of mitochondrial gene expression and in the maintenance of the integrity of the mitochondrial genome (PubMed:17420247). Binds to mitochondrial promoters and RNA in a single-stranded, site-specific, and strand-specific manner (PubMed:17420247). May regulate mitochondrial DNA replication and/or gene expression using site-specific, single-stranded DNA binding to target the degradation of regulatory proteins binding to adjacent sites in mitochondrial promoters (PubMed:14739292, PubMed:17420247). {ECO:0000255|HAMAP-Rule:MF_03120, ECO:0000269|PubMed:12198491, ECO:0000269|PubMed:14739292, ECO:0000269|PubMed:15870080, ECO:0000269|PubMed:17420247, ECO:0000269|PubMed:17579211, ECO:0000269|PubMed:28377575, ECO:0000269|PubMed:37327776, ECO:0000269|PubMed:8248235}.
P38398 BRCA1 S694 ochoa|psp Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}.
P40818 USP8 S718 ochoa|psp Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}.
P41002 CCNF S577 psp Cyclin-F (F-box only protein 1) Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:20596027, PubMed:22632967, PubMed:26818844, PubMed:27080313, PubMed:27653696, PubMed:28852778). The SCF(CCNF) E3 ubiquitin-protein ligase complex is an integral component of the ubiquitin proteasome system (UPS) and links proteasome degradation to the cell cycle (PubMed:20596027, PubMed:26818844, PubMed:27653696, PubMed:8706131). Mediates the substrate recognition and the proteasomal degradation of various target proteins involved in the regulation of cell cycle progression and in the maintenance of genome stability (PubMed:20596027, PubMed:22632967, PubMed:26818844, PubMed:27653696). Mediates the ubiquitination and proteasomal degradation of CP110 during G2 phase, thereby acting as an inhibitor of centrosome reduplication (PubMed:20596027). In G2, mediates the ubiquitination and subsequent degradation of ribonucleotide reductase RRM2, thereby maintaining a balanced pool of dNTPs and genome integrity (PubMed:22632967). In G2, mediates the ubiquitination and proteasomal degradation of CDC6, thereby suppressing DNA re-replication and preventing genome instability (PubMed:26818844). Involved in the ubiquitination and degradation of the substrate adapter CDH1 of the anaphase-promoting complex (APC/C), thereby acting as an antagonist of APC/C in regulating G1 progression and S phase entry (PubMed:27653696). May play a role in the G2 cell cycle checkpoint control after DNA damage, possibly by promoting the ubiquitination of MYBL2/BMYB (PubMed:25557911). {ECO:0000269|PubMed:20596027, ECO:0000269|PubMed:22632967, ECO:0000269|PubMed:25557911, ECO:0000269|PubMed:26818844, ECO:0000269|PubMed:27080313, ECO:0000269|PubMed:27653696, ECO:0000269|PubMed:28852778, ECO:0000269|PubMed:8706131}.
P42568 MLLT3 S301 ochoa Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}.
P43243 MATR3 S598 ochoa Matrin-3 May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}.
P46776 RPL27A S68 ochoa Large ribosomal subunit protein uL15 (60S ribosomal protein L27a) Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P48634 PRRC2A S1386 ochoa Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}.
P48764 SLC9A3 S663 psp Sodium/hydrogen exchanger 3 (Na(+)/H(+) exchanger 3) (NHE-3) (Solute carrier family 9 member 3) Plasma membrane Na(+)/H(+) antiporter (PubMed:18829453, PubMed:26358773, PubMed:35613257). Exchanges intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry, playing a key role in salt and fluid absorption and pH homeostasis (By similarity). Major apical Na(+)/H(+) exchanger in kidney and intestine playing an important role in renal and intestine Na(+) absorption and blood pressure regulation (PubMed:24622516, PubMed:26358773). {ECO:0000250|UniProtKB:G3X939, ECO:0000269|PubMed:18829453, ECO:0000269|PubMed:24622516, ECO:0000269|PubMed:26358773, ECO:0000269|PubMed:35613257}.
P49757 NUMB S295 ochoa|psp Protein numb homolog (h-Numb) (Protein S171) Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}.
P51587 BRCA2 S648 ochoa Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}.
P51991 HNRNPA3 S112 ochoa Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:11886857}.
P53602 MVD S96 ochoa|psp Diphosphomevalonate decarboxylase (EC 4.1.1.33) (Mevalonate (diphospho)decarboxylase) (MDDase) (Mevalonate pyrophosphate decarboxylase) Catalyzes the ATP dependent decarboxylation of (R)-5-diphosphomevalonate to form isopentenyl diphosphate (IPP). Functions in the mevalonate (MVA) pathway leading to isopentenyl diphosphate (IPP), a key precursor for the biosynthesis of isoprenoids and sterol synthesis. {ECO:0000269|PubMed:18823933, ECO:0000269|PubMed:8626466, ECO:0000269|PubMed:9392419}.
P54253 ATXN1 S775 ochoa|psp Ataxin-1 (Spinocerebellar ataxia type 1 protein) Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression. Binds RNA in vitro. May be involved in RNA metabolism (PubMed:21475249). In concert with CIC and ATXN1L, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P54254, ECO:0000269|PubMed:21475249}.
P55040 GEM S261 psp GTP-binding protein GEM (GTP-binding mitogen-induced T-cell protein) (RAS-like protein KIR) Could be a regulatory protein, possibly participating in receptor-mediated signal transduction at the plasma membrane. Has guanine nucleotide-binding activity but undetectable intrinsic GTPase activity.
P55081 MFAP1 S361 ochoa Microfibrillar-associated protein 1 (Spliceosome B complex protein MFAP1) Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}.
P55735 SEC13 S184 ochoa Protein SEC13 homolog (GATOR2 complex protein SEC13) (SEC13-like protein 1) (SEC13-related protein) Functions as a component of the nuclear pore complex (NPC) and the COPII coat (PubMed:8972206). At the endoplasmic reticulum, SEC13 is involved in the biogenesis of COPII-coated vesicles (PubMed:8972206). Required for the exit of adipsin (CFD/ADN), an adipocyte-secreted protein from the endoplasmic reticulum (By similarity). {ECO:0000250|UniProtKB:Q9D1M0, ECO:0000269|PubMed:8972206}.; FUNCTION: As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:26972053, PubMed:27487210). Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex (PubMed:35831510). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26972053, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}.
P57678 GEMIN4 S205 ochoa Gem-associated protein 4 (Gemin-4) (Component of gems 4) (p97) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. {ECO:0000269|PubMed:18984161}.
P57764 GSDMD S181 ochoa Gasdermin-D (Gasdermin domain-containing protein 1) [Cleaved into: Gasdermin-D, N-terminal (GSDMD-NT) (hGSDMD-NTD); Gasdermin-D, C-terminal (GSDMD-CT) (hGSDMD-CTD); Gasdermin-D, p13 (Gasdermin-D, 13 kDa) (13 kDa GSDMD); Gasdermin-D, p40] [Gasdermin-D]: Precursor of a pore-forming protein that plays a key role in host defense against pathogen infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27281216). This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-D, N-terminal) binds to membranes and forms pores, triggering pyroptosis (PubMed:26375003, PubMed:26375259, PubMed:27281216). {ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216}.; FUNCTION: [Gasdermin-D, N-terminal]: Promotes pyroptosis in response to microbial infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27418190, PubMed:28392147, PubMed:32820063, PubMed:34289345, PubMed:38040708, PubMed:38530158, PubMed:38599239). Produced by the cleavage of gasdermin-D by inflammatory caspases CASP1, CASP4 or CASP5 in response to canonical, as well as non-canonical (such as cytosolic LPS) inflammasome activators (PubMed:26375003, PubMed:26375259, PubMed:27418190). After cleavage, moves to the plasma membrane where it strongly binds to inner leaflet lipids, including monophosphorylated phosphatidylinositols, such as phosphatidylinositol 4-phosphate, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate, as well as phosphatidylinositol (3,4,5)-bisphosphate, and more weakly to phosphatidic acid and phosphatidylserine (PubMed:27281216, PubMed:29898893, PubMed:36227980). Homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukin-1 (IL1B and IL18) and triggering pyroptosis (PubMed:27281216, PubMed:27418190, PubMed:29898893, PubMed:33883744, PubMed:38040708, PubMed:38530158, PubMed:38599239). Gasdermin pores also allow the release of mature caspase-7 (CASP7) (By similarity). In some, but not all, cells types, pyroptosis is followed by pyroptotic cell death, which is caused by downstream activation of ninjurin-1 (NINJ1), which mediates membrane rupture (cytolysis) (PubMed:33472215, PubMed:37198476). Also forms pores in the mitochondrial membrane, resulting in release of mitochondrial DNA (mtDNA) into the cytosol (By similarity). Gasdermin-D, N-terminal released from pyroptotic cells into the extracellular milieu rapidly binds to and kills both Gram-negative and Gram-positive bacteria, without harming neighboring mammalian cells, as it does not disrupt the plasma membrane from the outside due to lipid-binding specificity (PubMed:27281216). Under cell culture conditions, also active against intracellular bacteria, such as Listeria monocytogenes (By similarity). Also active in response to MAP3K7/TAK1 inactivation by Yersinia toxin YopJ, which triggers cleavage by CASP8 and subsequent activation (By similarity). Required for mucosal tissue defense against enteric pathogens (By similarity). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Strongly binds to bacterial and mitochondrial lipids, including cardiolipin (PubMed:27281216). Does not bind to unphosphorylated phosphatidylinositol, phosphatidylethanolamine nor phosphatidylcholine (PubMed:27281216). {ECO:0000250|UniProtKB:Q9D8T2, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:27418190, ECO:0000269|PubMed:28392147, ECO:0000269|PubMed:29898893, ECO:0000269|PubMed:32820063, ECO:0000269|PubMed:33472215, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:36227980, ECO:0000269|PubMed:37198476, ECO:0000269|PubMed:38040708, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.; FUNCTION: [Gasdermin-D, p13]: Transcription coactivator produced by the cleavage by CASP3 or CASP7 in the upper small intestine in response to dietary antigens (By similarity). Required to maintain food tolerance in small intestine: translocates to the nucleus and acts as a coactivator for STAT1 to induce the transcription of CIITA and MHC class II molecules, which in turn induce type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:Q9D8T2}.; FUNCTION: [Gasdermin-D, p40]: Produced by the cleavage by papain allergen (PubMed:35794369). After cleavage, moves to the plasma membrane and homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the specific release of mature interleukin-33 (IL33), promoting type 2 inflammatory immune response (PubMed:35794369). {ECO:0000269|PubMed:35794369}.
P57764 GSDMD S252 ochoa Gasdermin-D (Gasdermin domain-containing protein 1) [Cleaved into: Gasdermin-D, N-terminal (GSDMD-NT) (hGSDMD-NTD); Gasdermin-D, C-terminal (GSDMD-CT) (hGSDMD-CTD); Gasdermin-D, p13 (Gasdermin-D, 13 kDa) (13 kDa GSDMD); Gasdermin-D, p40] [Gasdermin-D]: Precursor of a pore-forming protein that plays a key role in host defense against pathogen infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27281216). This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-D, N-terminal) binds to membranes and forms pores, triggering pyroptosis (PubMed:26375003, PubMed:26375259, PubMed:27281216). {ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216}.; FUNCTION: [Gasdermin-D, N-terminal]: Promotes pyroptosis in response to microbial infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27418190, PubMed:28392147, PubMed:32820063, PubMed:34289345, PubMed:38040708, PubMed:38530158, PubMed:38599239). Produced by the cleavage of gasdermin-D by inflammatory caspases CASP1, CASP4 or CASP5 in response to canonical, as well as non-canonical (such as cytosolic LPS) inflammasome activators (PubMed:26375003, PubMed:26375259, PubMed:27418190). After cleavage, moves to the plasma membrane where it strongly binds to inner leaflet lipids, including monophosphorylated phosphatidylinositols, such as phosphatidylinositol 4-phosphate, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate, as well as phosphatidylinositol (3,4,5)-bisphosphate, and more weakly to phosphatidic acid and phosphatidylserine (PubMed:27281216, PubMed:29898893, PubMed:36227980). Homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukin-1 (IL1B and IL18) and triggering pyroptosis (PubMed:27281216, PubMed:27418190, PubMed:29898893, PubMed:33883744, PubMed:38040708, PubMed:38530158, PubMed:38599239). Gasdermin pores also allow the release of mature caspase-7 (CASP7) (By similarity). In some, but not all, cells types, pyroptosis is followed by pyroptotic cell death, which is caused by downstream activation of ninjurin-1 (NINJ1), which mediates membrane rupture (cytolysis) (PubMed:33472215, PubMed:37198476). Also forms pores in the mitochondrial membrane, resulting in release of mitochondrial DNA (mtDNA) into the cytosol (By similarity). Gasdermin-D, N-terminal released from pyroptotic cells into the extracellular milieu rapidly binds to and kills both Gram-negative and Gram-positive bacteria, without harming neighboring mammalian cells, as it does not disrupt the plasma membrane from the outside due to lipid-binding specificity (PubMed:27281216). Under cell culture conditions, also active against intracellular bacteria, such as Listeria monocytogenes (By similarity). Also active in response to MAP3K7/TAK1 inactivation by Yersinia toxin YopJ, which triggers cleavage by CASP8 and subsequent activation (By similarity). Required for mucosal tissue defense against enteric pathogens (By similarity). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Strongly binds to bacterial and mitochondrial lipids, including cardiolipin (PubMed:27281216). Does not bind to unphosphorylated phosphatidylinositol, phosphatidylethanolamine nor phosphatidylcholine (PubMed:27281216). {ECO:0000250|UniProtKB:Q9D8T2, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:27418190, ECO:0000269|PubMed:28392147, ECO:0000269|PubMed:29898893, ECO:0000269|PubMed:32820063, ECO:0000269|PubMed:33472215, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:36227980, ECO:0000269|PubMed:37198476, ECO:0000269|PubMed:38040708, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.; FUNCTION: [Gasdermin-D, p13]: Transcription coactivator produced by the cleavage by CASP3 or CASP7 in the upper small intestine in response to dietary antigens (By similarity). Required to maintain food tolerance in small intestine: translocates to the nucleus and acts as a coactivator for STAT1 to induce the transcription of CIITA and MHC class II molecules, which in turn induce type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:Q9D8T2}.; FUNCTION: [Gasdermin-D, p40]: Produced by the cleavage by papain allergen (PubMed:35794369). After cleavage, moves to the plasma membrane and homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the specific release of mature interleukin-33 (IL33), promoting type 2 inflammatory immune response (PubMed:35794369). {ECO:0000269|PubMed:35794369}.
P60891 PRPS1 S180 ochoa|psp Ribose-phosphate pyrophosphokinase 1 (EC 2.7.6.1) (PPRibP) (Phosphoribosyl pyrophosphate synthase I) (PRS-I) Catalyzes the synthesis of phosphoribosylpyrophosphate (PRPP) that is essential for nucleotide synthesis. {ECO:0000269|PubMed:16939420, ECO:0000269|PubMed:17701900, ECO:0000269|PubMed:7593598}.
P61587 RND3 S210 psp Rho-related GTP-binding protein RhoE (Protein MemB) (Rho family GTPase 3) (Rho-related GTP-binding protein Rho8) (Rnd3) Binds GTP but lacks intrinsic GTPase activity and is resistant to Rho-specific GTPase-activating proteins.
P78312 FAM193A S642 ochoa Protein FAM193A (Protein IT14) None
P78347 GTF2I S674 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
P83369 LSM11 S280 ochoa U7 snRNA-associated Sm-like protein LSm11 Component of the U7 snRNP complex that is involved in the histone 3'-end pre-mRNA processing (PubMed:11574479, PubMed:16914750, PubMed:33230297). Increases U7 snRNA levels but not histone 3'-end pre-mRNA processing activity, when overexpressed (PubMed:11574479, PubMed:16914750). Required for cell cycle progression from G1 to S phases (By similarity). Binds specifically to the Sm-binding site of U7 snRNA (PubMed:11574479, PubMed:16914750). {ECO:0000250|UniProtKB:Q8BUV6, ECO:0000269|PubMed:11574479, ECO:0000269|PubMed:16914750, ECO:0000269|PubMed:33230297}.
Q00839 HNRNPU S26 psp Heterogeneous nuclear ribonucleoprotein U (hnRNP U) (GRIP120) (Nuclear p120 ribonucleoprotein) (Scaffold-attachment factor A) (SAF-A) (p120) (pp120) DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression (PubMed:10490622, PubMed:18082603, PubMed:19029303, PubMed:22325991, PubMed:25986610, PubMed:28622508). Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability (PubMed:1324173, PubMed:28622508, PubMed:8174554). Required for the localization of the long non-coding Xist RNA on the inactive chromosome X (Xi) and the subsequent initiation and maintenance of X-linked transcriptional gene silencing during X-inactivation (By similarity). Plays a role as a RNA polymerase II (Pol II) holoenzyme transcription regulator (PubMed:10490622, PubMed:15711563, PubMed:19617346, PubMed:23811339, PubMed:8174554, PubMed:9353307). Promotes transcription initiation by direct association with the core-TFIIH basal transcription factor complex for the assembly of a functional pre-initiation complex with Pol II in a actin-dependent manner (PubMed:10490622, PubMed:15711563). Blocks Pol II transcription elongation activity by inhibiting the C-terminal domain (CTD) phosphorylation of Pol II and dissociates from Pol II pre-initiation complex prior to productive transcription elongation (PubMed:10490622). Positively regulates CBX5-induced transcriptional gene silencing and retention of CBX5 in the nucleus (PubMed:19617346). Negatively regulates glucocorticoid-mediated transcriptional activation (PubMed:9353307). Key regulator of transcription initiation and elongation in embryonic stem cells upon leukemia inhibitory factor (LIF) signaling (By similarity). Involved in the long non-coding RNA H19-mediated Pol II transcriptional repression (PubMed:23811339). Participates in the circadian regulation of the core clock component BMAL1 transcription (By similarity). Plays a role in the regulation of telomere length (PubMed:18082603). Plays a role as a global pre-mRNA alternative splicing modulator by regulating U2 small nuclear ribonucleoprotein (snRNP) biogenesis (PubMed:22325991). Plays a role in mRNA stability (PubMed:17174306, PubMed:17289661, PubMed:19029303). Component of the CRD-mediated complex that promotes MYC mRNA stabilization (PubMed:19029303). Enhances the expression of specific genes, such as tumor necrosis factor TNFA, by regulating mRNA stability, possibly through binding to the 3'-untranslated region (UTR) (PubMed:17174306). Plays a role in mitotic cell cycle regulation (PubMed:21242313, PubMed:25986610). Involved in the formation of stable mitotic spindle microtubules (MTs) attachment to kinetochore, spindle organization and chromosome congression (PubMed:21242313). Phosphorylation at Ser-59 by PLK1 is required for chromosome alignement and segregation and progression through mitosis (PubMed:25986610). Also contributes to the targeting of AURKA to mitotic spindle MTs (PubMed:21242313). Binds to double- and single-stranded DNA and RNA, poly(A), poly(C) and poly(G) oligoribonucleotides (PubMed:1628625, PubMed:8068679, PubMed:8174554, PubMed:9204873, PubMed:9405365). Binds to chromatin-associated RNAs (caRNAs) (PubMed:28622508). Associates with chromatin to scaffold/matrix attachment region (S/MAR) elements in a chromatin-associated RNAs (caRNAs)-dependent manner (PubMed:10671544, PubMed:11003645, PubMed:11909954, PubMed:1324173, PubMed:28622508, PubMed:7509195, PubMed:9204873, PubMed:9405365). Binds to the Xist RNA (PubMed:26244333). Binds the long non-coding H19 RNA (PubMed:23811339). Binds to SMN1/2 pre-mRNAs at G/U-rich regions (PubMed:22325991). Binds to small nuclear RNAs (snRNAs) (PubMed:22325991). Binds to the 3'-UTR of TNFA mRNA (PubMed:17174306). Binds (via RNA-binding RGG-box region) to the long non-coding Xist RNA; this binding is direct and bridges the Xist RNA and the inactive chromosome X (Xi) (By similarity). Also negatively regulates embryonic stem cell differentiation upon LIF signaling (By similarity). Required for embryonic development (By similarity). Binds to brown fat long non-coding RNA 1 (Blnc1); facilitates the recruitment of Blnc1 by ZBTB7B required to drive brown and beige fat development and thermogenesis (By similarity). {ECO:0000250|UniProtKB:Q8VEK3, ECO:0000269|PubMed:10490622, ECO:0000269|PubMed:10671544, ECO:0000269|PubMed:11003645, ECO:0000269|PubMed:11909954, ECO:0000269|PubMed:1324173, ECO:0000269|PubMed:15711563, ECO:0000269|PubMed:1628625, ECO:0000269|PubMed:17174306, ECO:0000269|PubMed:17289661, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19617346, ECO:0000269|PubMed:21242313, ECO:0000269|PubMed:22325991, ECO:0000269|PubMed:23811339, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26244333, ECO:0000269|PubMed:28622508, ECO:0000269|PubMed:7509195, ECO:0000269|PubMed:8068679, ECO:0000269|PubMed:8174554, ECO:0000269|PubMed:9204873, ECO:0000269|PubMed:9353307, ECO:0000269|PubMed:9405365}.; FUNCTION: (Microbial infection) Negatively regulates immunodeficiency virus type 1 (HIV-1) replication by preventing the accumulation of viral mRNA transcripts in the cytoplasm. {ECO:0000269|PubMed:16916646}.
Q00G26 PLIN5 S148 ochoa Perilipin-5 (Lipid storage droplet protein 5) Lipid droplet-associated protein that maintains the balance between lipogenesis and lipolysis and also regulates fatty acid oxidation in oxidative tissues. Recruits mitochondria to the surface of lipid droplets and is involved in lipid droplet homeostasis by regulating both the storage of fatty acids in the form of triglycerides and the release of fatty acids for mitochondrial fatty acid oxidation. In lipid droplet triacylglycerol hydrolysis, plays a role as a scaffolding protein for three major key lipolytic players: ABHD5, PNPLA2 and LIPE. Reduces the triacylglycerol hydrolase activity of PNPLA2 by recruiting and sequestering PNPLA2 to lipid droplets. Phosphorylation by PKA enables lipolysis probably by promoting release of ABHD5 from the perilipin scaffold and by facilitating interaction of ABHD5 with PNPLA2. Also increases lipolysis through interaction with LIPE and upon PKA-mediated phosphorylation of LIPE (By similarity). {ECO:0000250, ECO:0000269|PubMed:17234449}.
Q01668 CACNA1D S1490 psp Voltage-dependent L-type calcium channel subunit alpha-1D (Calcium channel, L type, alpha-1 polypeptide, isoform 2) (Voltage-gated calcium channel subunit alpha Cav1.3) Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. {ECO:0000269|PubMed:21131953, ECO:0000269|PubMed:23913001, ECO:0000269|PubMed:25620733, ECO:0000269|PubMed:28472301}.; FUNCTION: [Isoform Neuronal-type]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. {ECO:0000269|PubMed:1309651}.; FUNCTION: [Isoform 3]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. {ECO:0000269|PubMed:18482979}.; FUNCTION: [Isoform 4]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. {ECO:0000269|PubMed:18482979}.
Q01955 COL4A3 S1435 psp Collagen alpha-3(IV) chain (Goodpasture antigen) [Cleaved into: Tumstatin] Type IV collagen is the major structural component of glomerular basement membranes (GBM), forming a 'chicken-wire' meshwork together with laminins, proteoglycans and entactin/nidogen.; FUNCTION: Tumstatin, a cleavage fragment corresponding to the collagen alpha 3(IV) NC1 domain, possesses both anti-angiogenic and anti-tumor cell activity; these two anti-tumor properties may be regulated via RGD-independent ITGB3-mediated mechanisms.
Q02224 CENPE S2083 ochoa Centromere-associated protein E (Centromere protein E) (CENP-E) (Kinesin-7) (Kinesin-related protein CENPE) Microtubule plus-end-directed kinetochore motor which plays an important role in chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules towards the spindle equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules (PubMed:23891108, PubMed:25395579, PubMed:7889940). The transport of pole-proximal chromosomes towards the spindle equator is favored by microtubule tracks that are detyrosinated (PubMed:25908662). Acts as a processive bi-directional tracker of dynamic microtubule tips; after chromosomes have congressed, continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends (PubMed:23955301). Suppresses chromosome congression in NDC80-depleted cells and contributes positively to congression only when microtubules are stabilized (PubMed:25743205). Plays an important role in the formation of stable attachments between kinetochores and spindle microtubules (PubMed:17535814) The stabilization of kinetochore-microtubule attachment also requires CENPE-dependent localization of other proteins to the kinetochore including BUB1B, MAD1 and MAD2. Plays a role in spindle assembly checkpoint activation (SAC) via its interaction with BUB1B resulting in the activation of its kinase activity, which is important for activating SAC. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss (By similarity). {ECO:0000250|UniProtKB:Q6RT24, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:23955301, ECO:0000269|PubMed:25395579, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:25908662, ECO:0000269|PubMed:7889940}.
Q02241 KIF23 S912 ochoa Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}.
Q02779 MAP3K10 S498 ochoa Mitogen-activated protein kinase kinase kinase 10 (EC 2.7.11.25) (Mixed lineage kinase 2) (Protein kinase MST) Activates the JUN N-terminal pathway. {ECO:0000250}.
Q03169 TNFAIP2 S632 ochoa Tumor necrosis factor alpha-induced protein 2 (TNF alpha-induced protein 2) (Primary response gene B94 protein) May play a role as a mediator of inflammation and angiogenesis.
Q05D32 CTDSPL2 S28 ochoa CTD small phosphatase-like protein 2 (CTDSP-like 2) (EC 3.1.3.-) Probable phosphatase. {ECO:0000250}.
Q08378 GOLGA3 S878 ochoa Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) Golgi auto-antigen; probably involved in maintaining Golgi structure.
Q12979 ABR S638 ochoa Active breakpoint cluster region-related protein Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:7479768). The central Dbl homology (DH) domain functions as a guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:7479768). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF-1 directed motility and phagocytosis through the modulation of RAC1 activity (By similarity). {ECO:0000250|UniProtKB:Q5SSL4, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:7479768}.
Q13206 DDX10 S831 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q13263 TRIM28 S473 ochoa|psp Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}.
Q13315 ATM S2996 ochoa|psp Serine-protein kinase ATM (EC 2.7.11.1) (Ataxia telangiectasia mutated) (A-T mutated) Serine/threonine protein kinase which activates checkpoint signaling upon double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15064416, PubMed:15448695, PubMed:15456891, PubMed:15790808, PubMed:15916964, PubMed:17923702, PubMed:21757780, PubMed:24534091, PubMed:35076389, PubMed:9733514). Recognizes the substrate consensus sequence [ST]-Q (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15448695, PubMed:15456891, PubMed:15916964, PubMed:17923702, PubMed:24534091, PubMed:9733514). Phosphorylates 'Ser-139' of histone variant H2AX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism (By similarity). Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. After the introduction of DNA breaks by the RAG complex on one immunoglobulin allele, acts by mediating a repositioning of the second allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. Also involved in signal transduction and cell cycle control. May function as a tumor suppressor. Necessary for activation of ABL1 and SAPK. Phosphorylates DYRK2, CHEK2, p53/TP53, FBXW7, FANCD2, NFKBIA, BRCA1, CREBBP/CBP, RBBP8/CTIP, FBXO46, MRE11, nibrin (NBN), RAD50, RAD17, PELI1, TERF1, UFL1, RAD9, UBQLN4 and DCLRE1C (PubMed:10550055, PubMed:10766245, PubMed:10802669, PubMed:10839545, PubMed:10910365, PubMed:10973490, PubMed:11375976, PubMed:12086603, PubMed:15456891, PubMed:19965871, PubMed:21757780, PubMed:24534091, PubMed:26240375, PubMed:26774286, PubMed:30171069, PubMed:30612738, PubMed:30886146, PubMed:30952868, PubMed:38128537, PubMed:9733515, PubMed:9843217). May play a role in vesicle and/or protein transport. Could play a role in T-cell development, gonad and neurological function. Plays a role in replication-dependent histone mRNA degradation. Binds DNA ends. Phosphorylation of DYRK2 in nucleus in response to genotoxic stress prevents its MDM2-mediated ubiquitination and subsequent proteasome degradation (PubMed:19965871). Phosphorylates ATF2 which stimulates its function in DNA damage response (PubMed:15916964). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878). Phosphorylates TTC5/STRAP at 'Ser-203' in the cytoplasm in response to DNA damage, which promotes TTC5/STRAP nuclear localization (PubMed:15448695). Also involved in pexophagy by mediating phosphorylation of PEX5: translocated to peroxisomes in response to reactive oxygen species (ROS), and catalyzes phosphorylation of PEX5, promoting PEX5 ubiquitination and induction of pexophagy (PubMed:26344566). {ECO:0000250|UniProtKB:Q62388, ECO:0000269|PubMed:10550055, ECO:0000269|PubMed:10766245, ECO:0000269|PubMed:10802669, ECO:0000269|PubMed:10839545, ECO:0000269|PubMed:10910365, ECO:0000269|PubMed:10973490, ECO:0000269|PubMed:11375976, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12556884, ECO:0000269|PubMed:14871926, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:16086026, ECO:0000269|PubMed:16858402, ECO:0000269|PubMed:17923702, ECO:0000269|PubMed:19431188, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:21757780, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9733514, ECO:0000269|PubMed:9733515, ECO:0000269|PubMed:9843217}.
Q13393 PLD1 S505 ochoa|psp Phospholipase D1 (PLD 1) (hPLD1) (EC 3.1.4.4) (Choline phosphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D1) Function as phospholipase selective for phosphatidylcholine (PubMed:25936805, PubMed:8530346, PubMed:9582313). Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity). {ECO:0000250|UniProtKB:Q9Z280, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:8530346, ECO:0000269|PubMed:9582313}.
Q13546 RIPK1 S320 ochoa|psp Receptor-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (Cell death protein RIP) (Receptor-interacting protein 1) (RIP-1) Serine-threonine kinase which is a key regulator of TNF-mediated apoptosis, necroptosis and inflammatory pathways (PubMed:17703191, PubMed:24144979, PubMed:31827280, PubMed:31827281, PubMed:32657447, PubMed:35831301). Exhibits kinase activity-dependent functions that regulate cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival (PubMed:11101870, PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Has kinase-independent scaffold functions: upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, in part, by activating the canonical NF-kappa-B pathway (By similarity). Kinase activity is essential to regulate necroptosis and apoptosis, two parallel forms of cell death: upon activation of its protein kinase activity, regulates assembly of two death-inducing complexes, namely complex IIa (RIPK1-FADD-CASP8), which drives apoptosis, and the complex IIb (RIPK1-RIPK3-MLKL), which drives necroptosis (By similarity). RIPK1 is required to limit CASP8-dependent TNFR1-induced apoptosis (By similarity). In normal conditions, RIPK1 acts as an inhibitor of RIPK3-dependent necroptosis, a process mediated by RIPK3 component of complex IIb, which catalyzes phosphorylation of MLKL upon induction by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Inhibits RIPK3-mediated necroptosis via FADD-mediated recruitment of CASP8, which cleaves RIPK1 and limits TNF-induced necroptosis (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Required to inhibit apoptosis and necroptosis during embryonic development: acts by preventing the interaction of TRADD with FADD thereby limiting aberrant activation of CASP8 (By similarity). In addition to apoptosis and necroptosis, also involved in inflammatory response by promoting transcriptional production of pro-inflammatory cytokines, such as interleukin-6 (IL6) (PubMed:31827280, PubMed:31827281). Phosphorylates RIPK3: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade (PubMed:15310755, PubMed:17389591). Required for ZBP1-induced NF-kappa-B activation in response to DNA damage (By similarity). {ECO:0000250|UniProtKB:Q60855, ECO:0000269|PubMed:11101870, ECO:0000269|PubMed:15310755, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:19524512, ECO:0000269|PubMed:19524513, ECO:0000269|PubMed:24144979, ECO:0000269|PubMed:29440439, ECO:0000269|PubMed:30988283, ECO:0000269|PubMed:31827280, ECO:0000269|PubMed:31827281, ECO:0000269|PubMed:32657447, ECO:0000269|PubMed:35831301}.
Q13625 TP53BP2 S481 ochoa Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}.
Q13873 BMPR2 S757 ochoa|psp Bone morphogenetic protein receptor type-2 (BMP type-2 receptor) (BMPR-2) (EC 2.7.11.30) (Bone morphogenetic protein receptor type II) (BMP type II receptor) (BMPR-II) On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Can also mediate signaling through the activation of the p38MAPK cascade (PubMed:12045205). Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. Promotes signaling also by binding to activin A/INHBA (PubMed:24018044). {ECO:0000250|UniProtKB:O35607, ECO:0000269|PubMed:12045205, ECO:0000269|PubMed:24018044}.
Q14135 VGLL4 S59 ochoa Transcription cofactor vestigial-like protein 4 (Vgl-4) May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}.
Q14149 MORC3 S546 ochoa MORC family CW-type zinc finger protein 3 (Nuclear matrix protein 2) (Zinc finger CW-type coiled-coil domain protein 3) Nuclear matrix protein which forms MORC3-NBs (nuclear bodies) via an ATP-dependent mechanism and plays a role in innate immunity by restricting different viruses through modulation of the IFN response (PubMed:27440897, PubMed:34759314). Mechanistically, possesses a primary antiviral function through a MORC3-regulated element that activates IFNB1, and this function is guarded by a secondary IFN-repressing function (PubMed:34759314). Sumoylated MORC3-NBs associates with PML-NBs and recruits TP53 and SP100, thus regulating TP53 activity (PubMed:17332504, PubMed:20501696). Binds RNA in vitro (PubMed:11927593). Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:11927593, ECO:0000269|PubMed:17332504, ECO:0000269|PubMed:20501696, ECO:0000269|PubMed:26933034, ECO:0000269|PubMed:27440897, ECO:0000269|PubMed:34759314}.; FUNCTION: (Microbial infection) May be required for influenza A transcription during viral infection (PubMed:26202233). {ECO:0000269|PubMed:26202233}.
Q14181 POLA2 S126 ochoa DNA polymerase alpha subunit B (DNA polymerase alpha 70 kDa subunit) Accessory subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis (PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (By similarity). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P20664, ECO:0000269|PubMed:9705292}.
Q14524 SCN5A S484 psp Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}.
Q14667 BLTP2 S1484 ochoa Bridge-like lipid transfer protein family member 2 (Antigen MLAA-22) (Breast cancer-overexpressed gene 1 protein) (Protein hobbit homolog) Tube-forming lipid transport protein which binds to phosphatidylinositols and affects phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) distribution. {ECO:0000250|UniProtKB:Q9VZS7}.
Q14669 TRIP12 S77 ochoa E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}.
Q14669 TRIP12 S312 ochoa|psp E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}.
Q14678 KANK1 S325 ochoa KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}.
Q14697 GANAB S52 ochoa Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}.
Q14789 GOLGB1 S539 ochoa Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) May participate in forming intercisternal cross-bridges of the Golgi complex.
Q14839 CHD4 S310 ochoa|psp Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q15032 R3HDM1 S261 ochoa R3H domain-containing protein 1 None
Q15139 PRKD1 S421 psp Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}.
Q15652 JMJD1C S317 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15785 TOMM34 S160 ochoa Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}.
Q15788 NCOA1 S22 ochoa|psp Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}.
Q15910 EZH2 S21 psp Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}.
Q16666 IFI16 S132 psp Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q16829 DUSP7 S366 ochoa Dual specificity protein phosphatase 7 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST2) Dual specificity protein phosphatase (PubMed:9788880). Shows high activity towards MAPK1/ERK2 (PubMed:9788880). Also has lower activity towards MAPK14 and MAPK8 (PubMed:9788880). In arrested oocytes, plays a role in meiotic resumption (By similarity). Promotes nuclear envelope breakdown and activation of the CDK1/Cyclin-B complex in oocytes, probably by dephosphorylating and inactivating the conventional protein kinase C (cPKC) isozyme PRKCB (By similarity). May also inactivate PRKCA and/or PRKCG (By similarity). Also important in oocytes for normal chromosome alignment on the metaphase plate and progression to anaphase, where it might regulate activity of the spindle-assembly checkpoint (SAC) complex (By similarity). {ECO:0000250|UniProtKB:Q91Z46, ECO:0000269|PubMed:9788880}.
Q17RB8 LONRF1 S413 ochoa LON peptidase N-terminal domain and RING finger protein 1 (RING finger protein 191) None
Q2LD37 BLTP1 S1312 ochoa Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}.
Q32P51 HNRNPA1L2 S91 ochoa Heterogeneous nuclear ribonucleoprotein A1-like 2 (hnRNP A1-like 2) (hnRNP core protein A1-like 2) Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. {ECO:0000250}.
Q3KR37 GRAMD1B S30 ochoa Protein Aster-B (GRAM domain-containing protein 1B) Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}.
Q49A26 GLYR1 S130 ochoa Cytokine-like nuclear factor N-PAC (NPAC) (3-hydroxyisobutyrate dehydrogenase-like protein) (Glyoxylate reductase 1 homolog) (Nuclear protein NP60) (Nuclear protein of 60 kDa) (Nucleosome-destabilizing factor) (hNDF) (Putative oxidoreductase GLYR1) Cytokine-like nuclear factor with chromatin gene reader activity involved in chromatin modification and regulation of gene expression (PubMed:23260659, PubMed:30970244). Acts as a nucleosome-destabilizing factor that is recruited to genes during transcriptional activation (PubMed:29759984, PubMed:30970244). Recognizes and binds histone H3 without a preference for specific epigenetic markers and also binds DNA (PubMed:20850016, PubMed:30970244). Interacts with KDM1B and promotes its histone demethylase activity by facilitating the capture of H3 tails, they form a multifunctional enzyme complex that modifies transcribed chromatin and facilitates Pol II transcription through nucleosomes (PubMed:23260659, PubMed:29759984, PubMed:30970244). Stimulates the acetylation of 'Lys-56' of nucleosomal histone H3 (H3K56ac) by EP300 (PubMed:29759984). With GATA4, co-binds a defined set of heart development genes and coregulates their expression during cardiomyocyte differentiation (PubMed:35182466). Regulates p38 MAP kinase activity by mediating stress activation of MAPK14/p38alpha and specifically regulating MAPK14 signaling (PubMed:16352664). Indirectly promotes phosphorylation of MAPK14 and activation of ATF2 (PubMed:16352664). The phosphorylation of MAPK14 requires upstream activity of MAP2K4 and MAP2K6 (PubMed:16352664). {ECO:0000269|PubMed:16352664, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:23260659, ECO:0000269|PubMed:29759984, ECO:0000269|PubMed:30970244, ECO:0000269|PubMed:35182466}.
Q4G0J3 LARP7 S300 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q4L235 AASDH S649 ochoa Beta-alanine-activating enzyme (EC 6.2.1.-) (Acyl-CoA synthetase family member 4) (Protein NRPS998) Covalently binds beta-alanine in an ATP-dependent manner to form a thioester bond with its phosphopantetheine group and transfers it to an, as yet, unknown acceptor. May be required for a post-translational protein modification or for post-transcriptional modification of an RNA. {ECO:0000250|UniProtKB:Q80WC9}.
Q562F6 SGO2 S279 ochoa Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}.
Q5M775 SPECC1 S55 ochoa Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) None
Q5R372 RABGAP1L S72 ochoa Rab GTPase-activating protein 1-like GTP-hydrolysis activating protein (GAP) for small GTPase RAB22A, converting active RAB22A-GTP to the inactive form RAB22A-GDP (PubMed:16923123). Plays a role in endocytosis and intracellular protein transport. Recruited by ANK2 to phosphatidylinositol 3-phosphate (PI3P)-positive early endosomes, where it inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:A6H6A9, ECO:0000269|PubMed:16923123}.
Q5T1M5 FKBP15 S619 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5T200 ZC3H13 S1191 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T4S7 UBR4 S1733 ochoa E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}.
Q5T6C5 ATXN7L2 S575 ochoa Ataxin-7-like protein 2 None
Q5T890 ERCC6L2 S1000 ochoa DNA excision repair protein ERCC-6-like 2 (EC 3.6.4.-) (DNA repair and recombination protein RAD26-like) (Excision repair cross-complementation group 6-like 2) Promotes double-strand break (DSB) end-joining and facilitates programmed recombination by controlling how DNA ends are joined in a spatially oriented manner during repair (By similarity). Also plays a role in DNA repair by restricting DNA end resection in double strand break (DSB) repair (PubMed:24507776, PubMed:37014751). Facilitates replication of complex DNA regions and regulates the maintenance of chromatin structure (PubMed:37014751). {ECO:0000250|UniProtKB:Q9JIM3, ECO:0000269|PubMed:24507776, ECO:0000269|PubMed:37014751}.
Q5VT25 CDC42BPA S1545 ochoa Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}.
Q5VTL8 PRPF38B S473 ochoa Pre-mRNA-splicing factor 38B (Sarcoma antigen NY-SAR-27) May be required for pre-mRNA splicing. {ECO:0000305}.
Q5VUA4 ZNF318 S527 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VUA4 ZNF318 S1945 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VUJ6 LRCH2 S327 ochoa Leucine-rich repeat and calponin homology domain-containing protein 2 May play a role in the organization of the cytoskeleton. {ECO:0000250|UniProtKB:Q960C5, ECO:0000250|UniProtKB:Q96II8}.
Q5VWQ0 RSBN1 S554 ochoa Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}.
Q5VZ89 DENND4C S1634 ochoa DENN domain-containing protein 4C Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}.
Q659C4 LARP1B S863 ochoa La-related protein 1B (La ribonucleoprotein domain family member 1B) (La ribonucleoprotein domain family member 2) (La-related protein 2) None
Q68EM7 ARHGAP17 S484 ochoa Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}.
Q69YH5 CDCA2 S977 ochoa|psp Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}.
Q6BDS2 BLTP3A S1103 ochoa Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}.
Q6ISB3 GRHL2 S81 ochoa Grainyhead-like protein 2 homolog (Brother of mammalian grainyhead) (Transcription factor CP2-like 3) Transcription factor playing an important role in primary neurulation and in epithelial development (PubMed:25152456, PubMed:29309642). Binds directly to the consensus DNA sequence 5'-AACCGGTT-3' acting as an activator and repressor on distinct target genes (By similarity). During embryogenesis, plays unique and cooperative roles with GRHL3 in establishing distinct zones of primary neurulation. Essential for closure 3 (rostral end of the forebrain), functions cooperatively with GRHL3 in closure 2 (forebrain/midbrain boundary) and posterior neuropore closure (By similarity). Regulates epithelial morphogenesis acting as a target gene-associated transcriptional activator of apical junctional complex components. Up-regulates of CLDN3 and CLDN4, as well as of RAB25, which increases the CLDN4 protein and its localization at tight junctions (By similarity). Comprises an essential component of the transcriptional machinery that establishes appropriate expression levels of CLDN4 and CDH1 in different types of epithelia. Exhibits functional redundancy with GRHL3 in epidermal morphogenetic events and epidermal wound repair (By similarity). In lung, forms a regulatory loop with NKX2-1 that coordinates lung epithelial cell morphogenesis and differentiation (By similarity). In keratinocytes, plays a role in telomerase activation during cellular proliferation, regulates TERT expression by binding to TERT promoter region and inhibiting DNA methylation at the 5'-CpG island, possibly by interfering with DNMT1 enzyme activity (PubMed:19015635, PubMed:20938050). In addition, impairs keratinocyte differentiation and epidermal function by inhibiting the expression of genes clustered at the epidermal differentiation complex (EDC) as well as GRHL1 and GRHL3 through epigenetic mechanisms (PubMed:23254293). {ECO:0000250|UniProtKB:Q8K5C0, ECO:0000269|PubMed:19015635, ECO:0000269|PubMed:20938050, ECO:0000269|PubMed:20978075, ECO:0000269|PubMed:23254293, ECO:0000269|PubMed:25152456, ECO:0000269|PubMed:29309642, ECO:0000305|PubMed:12175488}.
Q6KC79 NIPBL S2509 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6NT16 SLC18B1 S438 ochoa MFS-type transporter SLC18B1 (Solute carrier family 18 member B1) (Vesicular polyamine transporter) (VPAT) Proton-coupled polyamine antiporter involved in the translocation of polyamines from cytosol into secretory vesicles prior to their release via exocytosis. Uses the electrochemical proton gradient generated by a V-type proton-pumping ATPase to couple the efflux of protons with the uptake of a polyamine molecule (PubMed:25355561). Facilitates vesicular storage of spermine and spermidine in astrocytes with an impact on glutamatergic neuronal transmission and memory formation (By similarity) (PubMed:25355561). Upon antigen stimulation, regulates polyamine accumulation and release in mast cell secretory granules, which in turn potentiates mast cell degranulation and histamine secretion (By similarity). {ECO:0000250|UniProtKB:D3Z5L6, ECO:0000269|PubMed:25355561}.
Q6P0Q8 MAST2 S876 ochoa Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q6P3S1 DENND1B S653 ochoa DENN domain-containing protein 1B (Connecdenn 2) (Protein FAM31B) Guanine nucleotide exchange factor (GEF) for RAB35 that acts as a regulator of T-cell receptor (TCR) internalization in TH2 cells (PubMed:20154091, PubMed:20937701, PubMed:24520163, PubMed:26774822). Acts by promoting the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form (PubMed:20154091, PubMed:20937701). Plays a role in clathrin-mediated endocytosis (PubMed:20154091). Controls cytokine production in TH2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes: acts by mediating clathrin-mediated endocytosis of TCR via its interaction with the adapter protein complex 2 (AP-2) and GEF activity (PubMed:26774822). Dysregulation leads to impaired TCR down-modulation and recycling, affecting cytokine production in TH2 cells (PubMed:26774822). {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:24520163, ECO:0000269|PubMed:26774822}.
Q6PI98 INO80C S26 ochoa INO80 complex subunit C (IES6 homolog) (hIes6) Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair.
Q6RFH5 WDR74 S361 ochoa WD repeat-containing protein 74 (NOP seven-associated protein 1) Regulatory protein of the MTREX-exosome complex involved in the synthesis of the 60S ribosomal subunit (PubMed:26456651). Participates in an early cleavage of the pre-rRNA processing pathway in cooperation with NVL (PubMed:29107693). Required for blastocyst formation, is necessary for RNA transcription, processing and/or stability during preimplantation development (By similarity). {ECO:0000250|UniProtKB:Q8VCG3, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:29107693}.
Q6W2J9 BCOR S1139 ochoa BCL-6 corepressor (BCoR) Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}.
Q6WKZ4 RAB11FIP1 S280 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6YP21 KYAT3 S190 ochoa Kynurenine--oxoglutarate transaminase 3 (EC 2.6.1.7) (Cysteine-S-conjugate beta-lyase 2) (EC 4.4.1.13) (Kynurenine aminotransferase 3) (Kynurenine aminotransferase III) (KATIII) (Kynurenine--glyoxylate transaminase) (EC 2.6.1.63) (Kynurenine--oxoglutarate transaminase III) Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA), an intermediate in the tryptophan catabolic pathway which is also a broad spectrum antagonist of the three ionotropic excitatory amino acid receptors among others. May catalyze the beta-elimination of S-conjugates and Se-conjugates of L-(seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond. Has transaminase activity towards L-kynurenine, tryptophan, phenylalanine, serine, cysteine, methionine, histidine, glutamine and asparagine with glyoxylate as an amino group acceptor (in vitro). Has lower activity with 2-oxoglutarate as amino group acceptor (in vitro). {ECO:0000250|UniProtKB:Q71RI9}.
Q6ZN18 AEBP2 S390 ochoa Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}.
Q6ZNB6 NFXL1 S835 ochoa NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) None
Q6ZU35 CRACD S132 ochoa Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}.
Q6ZWB6 KCTD8 S410 ochoa BTB/POZ domain-containing protein KCTD8 Auxiliary subunit of GABA-B receptors that determine the pharmacology and kinetics of the receptor response. Increases agonist potency and markedly alter the G-protein signaling of the receptors by accelerating onset and promoting desensitization (By similarity). {ECO:0000250}.
Q70E73 RAPH1 S1130 ochoa Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion.
Q765P7 MTSS2 S538 ochoa Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}.
Q76L83 ASXL2 S571 ochoa Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}.
Q7LDG7 RASGRP2 S147 ochoa RAS guanyl-releasing protein 2 (Calcium and DAG-regulated guanine nucleotide exchange factor I) (CalDAG-GEFI) (Cdc25-like protein) (hCDC25L) (F25B3.3 kinase-like protein) Functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. May also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. Functions in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation. May function in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. {ECO:0000269|PubMed:10918068, ECO:0000269|PubMed:14702343, ECO:0000269|PubMed:17576779, ECO:0000269|PubMed:17702895, ECO:0000269|PubMed:24958846, ECO:0000269|PubMed:27235135}.
Q7RTN6 STRADA S387 ochoa STE20-related kinase adapter protein alpha (STRAD alpha) (STE20-related adapter protein) (Serologically defined breast cancer antigen NY-BR-96) Pseudokinase which, in complex with CAB39/MO25 (CAB39/MO25alpha or CAB39L/MO25beta), binds to and activates STK11/LKB1. Adopts a closed conformation typical of active protein kinases and binds STK11/LKB1 as a pseudosubstrate, promoting conformational change of STK11/LKB1 in an active conformation. {ECO:0000269|PubMed:12805220, ECO:0000269|PubMed:14517248, ECO:0000269|PubMed:19892943}.
Q7Z401 DENND4A S1015 ochoa C-myc promoter-binding protein (DENN domain-containing protein 4A) Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}.
Q7Z5L9 IRF2BP2 S360 ochoa|psp Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}.
Q86T82 USP37 S210 ochoa Ubiquitin carboxyl-terminal hydrolase 37 (EC 3.4.19.12) (Deubiquitinating enzyme 37) (Ubiquitin thioesterase 37) (Ubiquitin-specific-processing protease 37) Deubiquitinase that plays a role in different processes including cell cycle regulation, DNA replication or DNA damage response (PubMed:26299517, PubMed:27296872, PubMed:31911859, PubMed:34509474). Antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), thereby promoting S phase entry. Specifically mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2) (PubMed:21596315). Plays an important role in the regulation of DNA replication by stabilizing the licensing factor CDT1 (PubMed:27296872). Also plays an essential role beyond S-phase entry to promote the efficiency and fidelity of replication by deubiquitinating checkpoint kinase 1/CHK1, promoting its stability (PubMed:34509474). Sustains the DNA damage response (DDR) by deubiquitinating and stabilizing the ATP-dependent DNA helicase BLM (PubMed:34606619). Mechanistically, DNA double-strand breaks (DSB) promotes ATM-mediated phosphorylation of USP37 and enhances the binding between USP37 and BLM (PubMed:34606619). Promotes cell migration by deubiquitinating and stabilizing the epithelial-mesenchymal transition (EMT)-inducing transcription factor SNAI (PubMed:31911859). Plays a role in the regulation of mitotic spindle assembly and mitotic progression by associating with chromatin-associated WAPL and stabilizing it through deubiquitination (PubMed:26299517). {ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:26299517, ECO:0000269|PubMed:27296872, ECO:0000269|PubMed:31911859, ECO:0000269|PubMed:34509474, ECO:0000269|PubMed:34606619}.
Q86U70 LDB1 S302 ochoa LIM domain-binding protein 1 (LDB-1) (Carboxyl-terminal LIM domain-binding protein 2) (CLIM-2) (LIM domain-binding factor CLIM2) (hLdb1) (Nuclear LIM interactor) Binds to the LIM domain of a wide variety of LIM domain-containing transcription factors. May regulate the transcriptional activity of LIM-containing proteins by determining specific partner interactions. Plays a role in the development of interneurons and motor neurons in cooperation with LHX3 and ISL1. Acts synergistically with LHX1/LIM1 in axis formation and activation of gene expression. Acts with LMO2 in the regulation of red blood cell development, maintaining erythroid precursors in an immature state. {ECO:0000250|UniProtKB:P70662}.
Q86UX6 STK32C S70 ochoa Serine/threonine-protein kinase 32C (EC 2.7.11.1) (PKE) (Yet another novel kinase 3) None
Q86VM9 ZC3H18 S893 ochoa Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) None
Q86VY9 TMEM200A S19 ochoa Transmembrane protein 200A None
Q86W92 PPFIBP1 S540 ochoa Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}.
Q8IVE3 PLEKHH2 S459 ochoa Pleckstrin homology domain-containing family H member 2 In the kidney glomerulus may play a role in linking podocyte foot processes to the glomerular basement membrane. May be involved in stabilization of F-actin by attenuating its depolymerization. Can recruit TGFB1I1 from focal adhesions to podocyte lamellipodia.
Q8IWB9 TEX2 S295 ochoa Testis-expressed protein 2 (Transmembrane protein 96) During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}.
Q8IWC1 MAP7D3 S490 ochoa MAP7 domain-containing protein 3 Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}.
Q8IWQ3 BRSK2 S367 ochoa Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}.
Q8IX03 WWC1 S975 psp Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}.
Q8IX21 SLF2 S317 ochoa SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}.
Q8IXQ3 C9orf40 S76 ochoa Uncharacterized protein C9orf40 None
Q8IY18 SMC5 S35 ochoa Structural maintenance of chromosomes protein 5 (SMC protein 5) (SMC-5) (hSMC5) Core component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination. The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). Required for recruitment of telomeres to PML nuclear bodies. Required for sister chromatid cohesion during prometaphase and mitotic progression; the function seems to be independent of SMC6. SMC5-SMC6 complex may prevent transcription of episomal DNA, such as circular viral DNA genome (PubMed:26983541). {ECO:0000269|PubMed:16810316, ECO:0000269|PubMed:17589526, ECO:0000269|PubMed:19502785, ECO:0000269|PubMed:26983541}.
Q8IY92 SLX4 S1087 ochoa Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}.
Q8IYH5 ZZZ3 S89 ochoa ZZ-type zinc finger-containing protein 3 Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}.
Q8IZ21 PHACTR4 S176 ochoa Phosphatase and actin regulator 4 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}.
Q8N205 SYNE4 S331 ochoa Nesprin-4 (KASH domain-containing protein 4) (KASH4) (Nuclear envelope spectrin repeat protein 4) As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (By similarity). Behaves as a kinesin cargo, providing a functional binding site for kinesin-1 at the nuclear envelope. Hence may contribute to the establishment of secretory epithelial morphology by promoting kinesin-dependent apical migration of the centrosome and Golgi apparatus and basal localization of the nucleus (By similarity). {ECO:0000250}.
Q8N228 SCML4 S274 ochoa Sex comb on midleg-like protein 4 Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}.
Q8N4C6 NIN S269 ochoa Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}.
Q8N6U8 GPR161 S430 ochoa G-protein coupled receptor 161 (G-protein coupled receptor RE2) Key negative regulator of Shh signaling, which promotes the processing of GLI3 into GLI3R during neural tube development. Recruited by TULP3 and the IFT-A complex to primary cilia and acts as a regulator of the PKA-dependent basal repression machinery in Shh signaling by increasing cAMP levels, leading to promote the PKA-dependent processing of GLI3 into GLI3R and repress the Shh signaling. In presence of SHH, it is removed from primary cilia and is internalized into recycling endosomes, preventing its activity and allowing activation of the Shh signaling. Its ligand is unknown (By similarity). {ECO:0000250}.
Q8N7C4 TMEM217 S170 ochoa Transmembrane protein 217 None
Q8N884 CGAS S305 ochoa|psp Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}.
Q8NDI1 EHBP1 S1035 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NFC6 BOD1L1 S3029 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NG31 KNL1 S1690 ochoa Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}.
Q8NI27 THOC2 S799 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TAD8 SNIP1 S99 ochoa Smad nuclear-interacting protein 1 (FHA domain-containing protein SNIP1) Required for pre-mRNA splicing as component of the spliceosome (PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Down-regulates NF-kappa-B signaling by competing with RELA for CREBBP/EP300 binding. Involved in the microRNA (miRNA) biogenesis. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:11567019, ECO:0000269|PubMed:15378006, ECO:0000269|PubMed:18632581, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}.
Q8TBB1 LNX1 S583 ochoa E3 ubiquitin-protein ligase LNX (EC 2.3.2.27) (Ligand of Numb-protein X 1) (Numb-binding protein 1) (PDZ domain-containing RING finger protein 2) (RING-type E3 ubiquitin transferase LNX) E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of NUMB. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Mediates ubiquitination of isoform p66 and isoform p72 of NUMB, but not that of isoform p71 or isoform p65. {ECO:0000250|UniProtKB:O70263}.; FUNCTION: Isoform 2 provides an endocytic scaffold for IGSF5/JAM4. {ECO:0000250|UniProtKB:O70263}.
Q8TCU6 PREX1 S319 ochoa|psp Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (P-Rex1) (PtdIns(3,4,5)-dependent Rac exchanger 1) Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils.
Q8TD19 NEK9 S331 ochoa Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}.
Q8TD26 CHD6 S1839 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TDC3 BRSK1 S384 ochoa Serine/threonine-protein kinase BRSK1 (EC 2.7.11.1) (Brain-selective kinase 1) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 1) (BR serine/threonine-protein kinase 1) (Serine/threonine-protein kinase SAD-B) (Synapses of Amphids Defective homolog 1) (SAD1 homolog) (hSAD1) Serine/threonine-protein kinase that plays a key role in polarization of neurons and centrosome duplication. Phosphorylates CDC25B, CDC25C, MAPT/TAU, RIMS1, TUBG1, TUBG2 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. In neurons, localizes to synaptic vesicles and plays a role in neurotransmitter release, possibly by phosphorylating RIMS1. Also acts as a positive regulator of centrosome duplication by mediating phosphorylation of gamma-tubulin (TUBG1 and TUBG2) at 'Ser-131', leading to translocation of gamma-tubulin and its associated proteins to the centrosome. Involved in the UV-induced DNA damage checkpoint response, probably by inhibiting CDK1 activity through phosphorylation and activation of WEE1, and inhibition of CDC25B and CDC25C. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15150265, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311}.
Q8TDJ6 DMXL2 S2640 ochoa DmX-like protein 2 (Rabconnectin-3) May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}.
Q8TED9 AFAP1L1 S747 ochoa Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}.
Q8TF72 SHROOM3 S1100 ochoa Protein Shroom3 (Shroom-related protein) (hShrmL) Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}.
Q8WTS1 ABHD5 S237 psp 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 (EC 2.3.1.51) (Abhydrolase domain-containing protein 5) (Lipid droplet-binding protein CGI-58) Coenzyme A-dependent lysophosphatidic acid acyltransferase that catalyzes the transfer of an acyl group on a lysophosphatidic acid (PubMed:18606822). Functions preferentially with 1-oleoyl-lysophosphatidic acid followed by 1-palmitoyl-lysophosphatidic acid, 1-stearoyl-lysophosphatidic acid and 1-arachidonoyl-lysophosphatidic acid as lipid acceptor. Functions preferentially with arachidonoyl-CoA followed by oleoyl-CoA as acyl group donors (By similarity). Functions in phosphatidic acid biosynthesis (PubMed:18606822). May regulate the cellular storage of triacylglycerol through activation of the phospholipase PNPLA2 (PubMed:16679289). Involved in keratinocyte differentiation (PubMed:18832586). Regulates lipid droplet fusion (By similarity). {ECO:0000250|UniProtKB:Q9DBL9, ECO:0000269|PubMed:16679289, ECO:0000269|PubMed:18606822, ECO:0000269|PubMed:18832586}.
Q8WWI1 LMO7 S246 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WXH2 JPH3 S440 ochoa Junctophilin-3 (JP-3) (Junctophilin type 3) (Trinucleotide repeat-containing gene 22 protein) Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH3 is brain-specific and appears to have an active role in certain neurons involved in motor coordination and memory.
Q8WXX7 AUTS2 S853 ochoa Autism susceptibility gene 2 protein Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). The PRC1-like complex that contains PCGF5, RNF2, CSNK2B, RYBP and AUTS2 has decreased histone H2A ubiquitination activity, due to the phosphorylation of RNF2 by CSNK2B (PubMed:25519132). As a consequence, the complex mediates transcriptional activation (PubMed:25519132). In the cytoplasm, plays a role in axon and dendrite elongation and in neuronal migration during embryonic brain development. Promotes reorganization of the actin cytoskeleton, lamellipodia formation and neurite elongation via its interaction with RAC guanine nucleotide exchange factors, which then leads to the activation of RAC1 (By similarity). {ECO:0000250|UniProtKB:A0A087WPF7, ECO:0000269|PubMed:25519132}.
Q8WYP5 AHCTF1 S1846 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q92466 DDB2 S26 ochoa DNA damage-binding protein 2 (DDB p48 subunit) (DDBb) (Damage-specific DNA-binding protein 2) (UV-damaged DNA-binding protein 2) (UV-DDB 2) Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:10882109, PubMed:11278856, PubMed:11705987, PubMed:12732143, PubMed:15882621, PubMed:16473935, PubMed:18593899, PubMed:32789493, PubMed:9892649). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:10882109, PubMed:11278856, PubMed:11705987, PubMed:12944386, PubMed:14751237, PubMed:16260596, PubMed:32789493). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:10882109, PubMed:11278856, PubMed:11705987, PubMed:12944386, PubMed:16260596). Also functions as the substrate recognition module for the DCX (DDB2-CUL4-X-box) E3 ubiquitin-protein ligase complex DDB2-CUL4-ROC1 (also known as CUL4-DDB-ROC1 and CUL4-DDB-RBX1) (PubMed:12732143, PubMed:15882621, PubMed:16473935, PubMed:18593899, PubMed:26572825). The DDB2-CUL4-ROC1 complex may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110). The DDB2-CUL4-ROC1 complex also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). The DDB2-CUL4-ROC1 complex also ubiquitinates KAT7/HBO1 in response to DNA damage, leading to its degradation: recognizes KAT7/HBO1 following phosphorylation by ATR (PubMed:26572825). {ECO:0000269|PubMed:10882109, ECO:0000269|PubMed:11278856, ECO:0000269|PubMed:11705987, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:12944386, ECO:0000269|PubMed:14751237, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:26572825, ECO:0000269|PubMed:32789493, ECO:0000269|PubMed:9892649}.; FUNCTION: [Isoform D1]: Inhibits UV-damaged DNA repair. {ECO:0000269|PubMed:14751237}.; FUNCTION: [Isoform D2]: Inhibits UV-damaged DNA repair. {ECO:0000269|PubMed:14751237}.
Q92610 ZNF592 S298 ochoa Zinc finger protein 592 May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}.
Q92698 RAD54L S38 ochoa DNA repair and recombination protein RAD54-like (EC 3.6.4.12) (RAD54 homolog) (hHR54) (hRAD54) Plays an essential role in homologous recombination (HR) which is a major pathway for repairing DNA double-strand breaks (DSBs), single-stranded DNA (ssDNA) gaps, and stalled or collapsed replication forks (PubMed:11459989, PubMed:12205100, PubMed:24798879, PubMed:27264870, PubMed:32457312, PubMed:9774452). Acts as a molecular motor during the homology search and guides RAD51 ssDNA along a donor dsDNA thereby changing the homology search from the diffusion-based mechanism to a motor-guided mechanism. Also plays an essential role in RAD51-mediated synaptic complex formation which consists of three strands encased in a protein filament formed once homology is recognized. Once DNA strand exchange occured, dissociates RAD51 from nucleoprotein filaments formed on dsDNA (By similarity). {ECO:0000250|UniProtKB:P32863, ECO:0000269|PubMed:11459989, ECO:0000269|PubMed:12205100, ECO:0000269|PubMed:24798879, ECO:0000269|PubMed:27264870, ECO:0000269|PubMed:32457312, ECO:0000269|PubMed:9774452}.
Q92766 RREB1 S175 ochoa Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}.
Q92786 PROX1 S79 ochoa|psp Prospero homeobox protein 1 (Homeobox prospero-like protein PROX1) (PROX-1) Transcription factor involved in developmental processes such as cell fate determination, gene transcriptional regulation and progenitor cell regulation in a number of organs. Plays a critical role in embryonic development and functions as a key regulatory protein in neurogenesis and the development of the heart, eye lens, liver, pancreas and the lymphatic system. Involved in the regulation of the circadian rhythm. Represses: transcription of the retinoid-related orphan receptor RORG, transcriptional activator activity of RORA and RORG and the expression of RORA/G-target genes including core clock components: BMAL1, NPAS2 and CRY1 and metabolic genes: AVPR1A and ELOVL3. {ECO:0000269|PubMed:23723244, ECO:0000303|PubMed:22733308}.
Q92794 KAT6A S941 ochoa Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}.
Q92953 KCNB2 S448 ochoa Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2) Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells. {ECO:0000250|UniProtKB:A6H8H5, ECO:0000250|UniProtKB:Q63099}.
Q93100 PHKB S27 ochoa Phosphorylase b kinase regulatory subunit beta (Phosphorylase kinase subunit beta) Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The beta chain acts as a regulatory unit and modulates the activity of the holoenzyme in response to phosphorylation.
Q96CC6 RHBDF1 S390 ochoa Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}.
Q96EZ8 MCRS1 S36 ochoa|psp Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}.
Q96I25 RBM17 S62 ochoa|psp Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}.
Q96J02 ITCH S450 psp E3 ubiquitin-protein ligase Itchy homolog (Itch) (EC 2.3.2.26) (Atrophin-1-interacting protein 4) (AIP4) (HECT-type E3 ubiquitin transferase Itchy homolog) (NFE2-associated polypeptide 1) (NAPP1) Acts as an Acts as an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11046148, PubMed:14602072, PubMed:15051726, PubMed:16387660, PubMed:17028573, PubMed:18718448, PubMed:18718449, PubMed:19116316, PubMed:19592251, PubMed:19881509, PubMed:20068034, PubMed:20392206, PubMed:20491914, PubMed:23146885, PubMed:24790097, PubMed:25631046). Catalyzes 'Lys-29'-, 'Lys-48'- and 'Lys-63'-linked ubiquitin conjugation (PubMed:17028573, PubMed:18718448, PubMed:19131965, PubMed:19881509). Involved in the control of inflammatory signaling pathways (PubMed:19131965). Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, TAX1BP1 and RNF11, that ensures the transient nature of inflammatory signaling pathways (PubMed:19131965). Promotes the association of the complex after TNF stimulation (PubMed:19131965). Once the complex is formed, TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:19131965). This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NFKB1 (PubMed:19131965). Ubiquitinates RIPK2 by 'Lys-63'-linked conjugation and influences NOD2-dependent signal transduction pathways (PubMed:19592251). Regulates the transcriptional activity of several transcription factors, and probably plays an important role in the regulation of immune response (PubMed:18718448, PubMed:20491914). Ubiquitinates NFE2 by 'Lys-63' linkages and is implicated in the control of the development of hematopoietic lineages (PubMed:18718448). Mediates JUN ubiquitination and degradation (By similarity). Mediates JUNB ubiquitination and degradation (PubMed:16387660). Critical regulator of type 2 helper T (Th2) cell cytokine production by inducing JUNB ubiquitination and degradation (By similarity). Involved in the negative regulation of MAVS-dependent cellular antiviral responses (PubMed:19881509). Ubiquitinates MAVS through 'Lys-48'-linked conjugation resulting in MAVS proteasomal degradation (PubMed:19881509). Following ligand stimulation, regulates sorting of Wnt receptor FZD4 to the degradative endocytic pathway probably by modulating PI42KA activity (PubMed:23146885). Ubiquitinates PI4K2A and negatively regulates its catalytic activity (PubMed:23146885). Ubiquitinates chemokine receptor CXCR4 and regulates sorting of CXCR4 to the degradative endocytic pathway following ligand stimulation by ubiquitinating endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:14602072, PubMed:23146885, PubMed:34927784). Targets DTX1 for lysosomal degradation and controls NOTCH1 degradation, in the absence of ligand, through 'Lys-29'-linked polyubiquitination (PubMed:17028573, PubMed:18628966, PubMed:23886940). Ubiquitinates SNX9 (PubMed:20491914). Ubiquitinates MAP3K7 through 'Lys-48'-linked conjugation (By similarity). Together with UBR5, involved in the regulation of apoptosis and reactive oxygen species levels through the ubiquitination and proteasomal degradation of TXNIP: catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP (PubMed:20068034, PubMed:29378950). ITCH synthesizes 'Lys-63'-linked chains, while UBR5 is branching multiple 'Lys-48'-linked chains of substrate initially modified (PubMed:29378950). Mediates the antiapoptotic activity of epidermal growth factor through the ubiquitination and proteasomal degradation of p15 BID (PubMed:20392206). Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Inhibits the replication of influenza A virus (IAV) via ubiquitination of IAV matrix protein 1 (M1) through 'Lys-48'-linked conjugation resulting in M1 proteasomal degradation (PubMed:30328013). Ubiquitinates NEDD9/HEF1, resulting in proteasomal degradation of NEDD9/HEF1 (PubMed:15051726). {ECO:0000250|UniProtKB:Q8C863, ECO:0000269|PubMed:14602072, ECO:0000269|PubMed:15051726, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:17028573, ECO:0000269|PubMed:18628966, ECO:0000269|PubMed:18718448, ECO:0000269|PubMed:18718449, ECO:0000269|PubMed:19116316, ECO:0000269|PubMed:19131965, ECO:0000269|PubMed:19592251, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:20068034, ECO:0000269|PubMed:20392206, ECO:0000269|PubMed:20491914, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:23886940, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:30328013}.
Q96K30 RITA1 S199 ochoa RBPJ-interacting and tubulin-associated protein 1 (RBPJ-interacting and tubulin-associated protein) Tubulin-binding protein that acts as a negative regulator of Notch signaling pathway. Shuttles between the cytoplasm and the nucleus and mediates the nuclear export of RBPJ/RBPSUH, thereby preventing the interaction between RBPJ/RBPSUH and NICD product of Notch proteins (Notch intracellular domain), leading to down-regulate Notch-mediated transcription. May play a role in neurogenesis. {ECO:0000269|PubMed:21102556}.
Q96QT4 TRPM7 S1477 ochoa|psp Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}.
Q96RU3 FNBP1 S296 ochoa Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}.
Q96RV3 PCNX1 S571 ochoa Pecanex-like protein 1 (Pecanex homolog protein 1) None
Q96T17 MAP7D2 S187 ochoa MAP7 domain-containing protein 2 Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}.
Q96T58 SPEN S1857 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q99250 SCN2A S554 ochoa Sodium channel protein type 2 subunit alpha (HBSC II) (Sodium channel protein brain II subunit alpha) (Sodium channel protein type II subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.2) Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient (PubMed:1325650, PubMed:17021166, PubMed:28256214, PubMed:29844171). Implicated in the regulation of hippocampal replay occurring within sharp wave ripples (SPW-R) important for memory (By similarity). {ECO:0000250|UniProtKB:B1AWN6, ECO:0000269|PubMed:1325650, ECO:0000269|PubMed:17021166, ECO:0000269|PubMed:28256214, ECO:0000269|PubMed:29844171}.
Q99956 DUSP9 S325 ochoa Dual specificity protein phosphatase 9 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 4) (MAP kinase phosphatase 4) (MKP-4) Inactivates MAP kinases. Has a specificity for the ERK family.
Q99963 SH3GL3 S265 ochoa Endophilin-A3 (EEN-B2) (Endophilin-3) (SH3 domain protein 2C) (SH3 domain-containing GRB2-like protein 3) Implicated in endocytosis. May recruit other proteins to membranes with high curvature (By similarity). {ECO:0000250}.
Q9BQI5 SGIP1 S169 ochoa SH3-containing GRB2-like protein 3-interacting protein 1 (Endophilin-3-interacting protein) May function in clathrin-mediated endocytosis. Has both a membrane binding/tubulating activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a preference for membranes enriched in phosphatidylserine and phosphoinositides and is required for the endocytosis of the transferrin receptor. May also bind tubulin. May play a role in the regulation of energy homeostasis. {ECO:0000250|UniProtKB:Q8VD37}.
Q9BRQ0 PYGO2 S48 ochoa|psp Pygopus homolog 2 Involved in signal transduction through the Wnt pathway.
Q9BSJ8 ESYT1 S1034 ochoa Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}.
Q9BV36 MLPH S191 ochoa Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}.
Q9BW91 NUDT9 S183 ochoa ADP-ribose pyrophosphatase, mitochondrial (EC 3.6.1.13) (ADP-ribose diphosphatase) (ADP-ribose phosphohydrolase) (Adenosine diphosphoribose pyrophosphatase) (ADPR-PPase) (Nucleoside diphosphate-linked moiety X motif 9) (Nudix motif 9) Hydrolyzes ADP-ribose (ADPR) to AMP and ribose 5'-phosphate. {ECO:0000269|PubMed:11385575}.
Q9BWT3 PAPOLG S648 ochoa Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}.
Q9BWT3 PAPOLG S708 ochoa Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}.
Q9BX66 SORBS1 S704 ochoa Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}.
Q9BXF6 RAB11FIP5 S307 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9BY89 KIAA1671 S1410 ochoa Uncharacterized protein KIAA1671 None
Q9BZ72 PITPNM2 S668 ochoa Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}.
Q9BZL6 PRKD2 S197 ochoa Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}.
Q9BZW8 CD244 S334 ochoa Natural killer cell receptor 2B4 (NK cell activation-inducing ligand) (NAIL) (NK cell type I receptor protein 2B4) (NKR2B4) (h2B4) (SLAM family member 4) (SLAMF4) (Signaling lymphocytic activation molecule 4) (CD antigen CD244) Heterophilic receptor of the signaling lymphocytic activation molecule (SLAM) family; its ligand is CD48. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Acts as activating natural killer (NK) cell receptor (PubMed:10359122, PubMed:11714776, PubMed:8376943). Activating function implicates association with SH2D1A and FYN (PubMed:15713798). Downstreaming signaling involves predominantly VAV1, and, to a lesser degree, INPP5D/SHIP1 and CBL. Signal attenuation in the absence of SH2D1A is proposed to be dependent on INPP5D and to a lesser extent PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:10934222, PubMed:15713798). Stimulates NK cell cytotoxicity, production of IFN-gamma and granule exocytosis (PubMed:11714776, PubMed:8376943). Optimal expansion and activation of NK cells seems to be dependent on the engagement of CD244 with CD48 expressed on neighboring NK cells (By similarity). Acts as costimulator in NK activation by enhancing signals by other NK receptors such as NCR3 and NCR1 (PubMed:10741393). At early stages of NK cell differentiation may function as an inhibitory receptor possibly ensuring the self-tolerance of developing NK cells (PubMed:11917118). Involved in the regulation of CD8(+) T-cell proliferation; expression on activated T-cells and binding to CD48 provides costimulatory-like function for neighboring T-cells (By similarity). Inhibits inflammatory responses in dendritic cells (DCs) (By similarity). {ECO:0000250|UniProtKB:Q07763, ECO:0000269|PubMed:10359122, ECO:0000269|PubMed:10741393, ECO:0000269|PubMed:10934222, ECO:0000269|PubMed:11714776, ECO:0000269|PubMed:11917118, ECO:0000269|PubMed:8376943, ECO:0000305|PubMed:15713798}.
Q9C073 FAM117A S145 ochoa Protein FAM117A (C/EBP-induced protein) None
Q9C0C9 UBE2O S1240 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9GZX7 AICDA S38 psp Single-stranded DNA cytosine deaminase (EC 3.5.4.38) (Activation-induced cytidine deaminase) (AID) (Cytidine aminohydrolase) Single-stranded DNA-specific cytidine deaminase. Involved in somatic hypermutation (SHM), gene conversion, and class-switch recombination (CSR) in B-lymphocytes by deaminating C to U during transcription of Ig-variable (V) and Ig-switch (S) region DNA. Required for several crucial steps of B-cell terminal differentiation necessary for efficient antibody responses (PubMed:18722174, PubMed:21385873, PubMed:21518874, PubMed:27716525). May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation (PubMed:21496894). {ECO:0000269|PubMed:18722174, ECO:0000269|PubMed:21385873, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21518874, ECO:0000269|PubMed:27716525}.
Q9H0B6 KLC2 S428 ochoa Kinesin light chain 2 (KLC 2) Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}.
Q9H0B6 KLC2 S582 ochoa|psp Kinesin light chain 2 (KLC 2) Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}.
Q9H0K6 PUS7L S293 ochoa Pseudouridylate synthase PUS7L (EC 5.4.99.-) (Pseudouridylate synthase 7 homolog-like protein) Pseudouridine synthase that catalyzes pseudouridylation of mRNAs. {ECO:0000269|PubMed:35051350}.
Q9H1B7 IRF2BPL S547 ochoa Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}.
Q9H4Z3 PCIF1 S116 ochoa mRNA (2'-O-methyladenosine-N(6)-)-methyltransferase (EC 2.1.1.62) (Cap-specific adenosine methyltransferase) (CAPAM) (hCAPAM) (Phosphorylated CTD-interacting factor 1) (hPCIF1) (Protein phosphatase 1 regulatory subunit 121) Cap-specific adenosine methyltransferase that catalyzes formation of N(6),2'-O-dimethyladenosine cap (m6A(m)) by methylating the adenosine at the second transcribed position of capped mRNAs (PubMed:30467178, PubMed:30487554, PubMed:31279658, PubMed:31279659, PubMed:33428944). Recruited to the early elongation complex of RNA polymerase II (RNAPII) via interaction with POLR2A and mediates formation of m6A(m) co-transcriptionally (PubMed:30467178). {ECO:0000269|PubMed:30467178, ECO:0000269|PubMed:30487554, ECO:0000269|PubMed:31279658, ECO:0000269|PubMed:31279659, ECO:0000269|PubMed:33428944}.
Q9H6F5 CCDC86 S217 ochoa Coiled-coil domain-containing protein 86 (Cytokine-induced protein with coiled-coil domain) Required for proper chromosome segregation during mitosis and error-free mitotic progression. {ECO:0000269|PubMed:36695333}.
Q9H792 PEAK1 S1035 ochoa Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}.
Q9H9P5 UNKL S344 ochoa Putative E3 ubiquitin-protein ligase UNKL (EC 2.3.2.-) (RING finger protein unkempt-like) (Zinc finger CCCH domain-containing protein 5-like) May participate in a protein complex showing an E3 ligase activity regulated by RAC1. Ubiquitination is directed towards itself and possibly other substrates, such as SMARCD2/BAF60b. Intrinsic E3 ligase activity has not been proven. {ECO:0000269|PubMed:20148946}.
Q9HA47 UCK1 S253 ochoa Uridine-cytidine kinase 1 (UCK 1) (EC 2.7.1.48) (Cytidine monophosphokinase 1) (Uridine monophosphokinase 1) Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate (PubMed:11306702). Does not phosphorylate deoxyribonucleosides or purine ribonucleosides (PubMed:11306702). Can use ATP or GTP as a phosphate donor (PubMed:11306702). Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine (PubMed:11306702). {ECO:0000269|PubMed:11306702}.
Q9HAJ7 SAP30L S93 ochoa Histone deacetylase complex subunit SAP30L (HCV non-structural protein 4A-transactivated protein 2) (Sin3 corepressor complex subunit SAP30L) (Sin3-associated protein p30-like) [Isoform 1]: Functions as a transcription repressor, probably via its interaction with histone deacetylase complexes (PubMed:16820529, PubMed:18070604). Involved in the functional recruitment of the class 1 Sin3-histone deacetylase complex (HDAC) to the nucleolus (PubMed:16820529). Binds DNA, apparently without sequence-specificity, and bends bound double-stranded DNA (PubMed:19015240). Binds phosphoinositol phosphates (phosphoinositol 3-phosphate, phosphoinositol 4-phosphate and phosphoinositol 5-phosphate) via the same basic sequence motif that mediates DNA binding and nuclear import (PubMed:19015240, PubMed:26609676). {ECO:0000269|PubMed:16820529, ECO:0000269|PubMed:18070604, ECO:0000269|PubMed:19015240, ECO:0000269|PubMed:26609676}.; FUNCTION: [Isoform 2]: Functions as a transcription repressor; isoform 2 has lower transcription repressor activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:18070604}.; FUNCTION: [Isoform 3]: Functions as a transcription repressor; its activity is marginally lower than that of isoform 1. {ECO:0000269|PubMed:18070604}.
Q9HAU0 PLEKHA5 S161 ochoa Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) None
Q9HB07 MYG1 S39 ochoa MYG1 exonuclease (EC 3.1.-.-) 3'-5' RNA exonuclease which cleaves in situ on specific transcripts in both nucleus and mitochondrion. Involved in regulating spatially segregated organellar RNA processing, acts as a coordinator of nucleo-mitochondrial crosstalk (PubMed:31081026). In nucleolus, processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, processes 3'-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins (Probable). {ECO:0000269|PubMed:31081026, ECO:0000305|PubMed:31081026}.
Q9HB20 PLEKHA3 S211 ochoa Pleckstrin homology domain-containing family A member 3 (PH domain-containing family A member 3) (Phosphatidylinositol-four-phosphate adapter protein 1) (FAPP-1) (Phosphoinositol 4-phosphate adapter protein 1) Plays a role in regulation of vesicular cargo transport from the trans-Golgi network (TGN) to the plasma membrane (PubMed:15107860). Regulates Golgi phosphatidylinositol 4-phosphate (PtdIns(4)P) levels and activates the PtdIns(4)P phosphatase activity of SACM1L when it binds PtdIns(4)P in 'trans' configuration (PubMed:30659099). Binds preferentially to PtdIns(4)P (PubMed:11001876, PubMed:15107860). Negatively regulates APOB secretion from hepatocytes (PubMed:30659099). {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:15107860, ECO:0000269|PubMed:30659099}.
Q9HB21 PLEKHA1 S177 ochoa Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}.
Q9HCI7 MSL2 S345 ochoa E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}.
Q9HCM1 RESF1 S1708 ochoa Retroelement silencing factor 1 Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}.
Q9HD67 MYO10 S1883 ochoa Unconventional myosin-X (Unconventional myosin-10) Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as a plus end-directed motor. Moves with higher velocity and takes larger steps on actin bundles than on single actin filaments (PubMed:27580874). The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. {ECO:0000269|PubMed:16894163, ECO:0000269|PubMed:18570893, ECO:0000269|PubMed:27580874}.; FUNCTION: [Isoform Headless]: Functions as a dominant-negative regulator of isoform 1, suppressing its filopodia-inducing and axon outgrowth-promoting activities. In hippocampal neurons, it increases VASP retention in spine heads to induce spine formation and spine head expansion (By similarity). {ECO:0000250|UniProtKB:F8VQB6}.
Q9NP62 GCM1 S269 psp Chorion-specific transcription factor GCMa (hGCMa) (GCM motif protein 1) (Glial cells missing homolog 1) Transcription factor involved in the control of expression of placental growth factor (PGF) and other placenta-specific genes (PubMed:10542267, PubMed:18160678). Binds to the trophoblast-specific element 2 (TSE2) of the aromatase gene enhancer (PubMed:10542267). Binds to the SYDE1 promoter (PubMed:27917469). Has a central role in mediating the differentiation of trophoblast cells along both the villous and extravillous pathways in placental development (PubMed:19219068). {ECO:0000269|PubMed:10542267, ECO:0000269|PubMed:18160678, ECO:0000269|PubMed:19219068, ECO:0000269|PubMed:27917469}.
Q9NPI7 KRCC1 S183 ochoa Lysine-rich coiled-coil protein 1 (Cryptogenic hepatitis-binding protein 2) None
Q9NQS7 INCENP S72 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQS7 INCENP S894 ochoa|psp Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NR48 ASH1L S1226 ochoa Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}.
Q9NRJ4 TULP4 S1343 ochoa Tubby-related protein 4 (Tubby superfamily protein) (Tubby-like protein 4) May be a substrate-recognition component of a SCF-like ECS (Elongin-Cullin-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. {ECO:0000250}.
Q9NRL3 STRN4 S201 ochoa Striatin-4 (Zinedin) Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:32640226). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:32640226). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). Key regulator of the expanded Hippo signaling pathway by interacting and allowing the inhibition of MAP4K kinases by the STRIPAK complex (PubMed:32640226). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:32640226, ECO:0000305|PubMed:26876214}.
Q9NSI6 BRWD1 S1904 ochoa Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}.
Q9NSI6 BRWD1 S2131 ochoa Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}.
Q9NTI5 PDS5B S1204 ochoa Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}.
Q9NV58 RNF19A S66 ochoa E3 ubiquitin-protein ligase RNF19A (EC 2.3.2.31) (Double ring-finger protein) (Dorfin) (RING finger protein 19A) (p38) E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as SNCAIP or CASR. Specifically ubiquitinates pathogenic SOD1 variants, which leads to their proteasomal degradation and to neuronal protection. {ECO:0000269|PubMed:11237715, ECO:0000269|PubMed:12145308, ECO:0000269|PubMed:12750386, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16513638}.
Q9NW75 GPATCH2 S129 ochoa G patch domain-containing protein 2 Enhances the ATPase activity of DHX15 in vitro. {ECO:0000269|PubMed:19432882}.
Q9NWZ5 UCKL1 S63 ochoa Uridine-cytidine kinase-like 1 (EC 2.7.1.48) May contribute to UTP accumulation needed for blast transformation and proliferation. {ECO:0000269|PubMed:12199906}.
Q9NX63 CHCHD3 S179 ochoa MICOS complex subunit MIC19 (Coiled-coil-helix-coiled-coil-helix domain-containing protein 3) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:25781180, PubMed:32567732, PubMed:33130824). Has also been shown to function as a transcription factor which binds to the BAG1 promoter and represses BAG1 transcription (PubMed:22567091). {ECO:0000269|PubMed:22567091, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}.
Q9NXV6 CDKN2AIP S131 ochoa CDKN2A-interacting protein (Collaborator of ARF) Regulates DNA damage response in a dose-dependent manner through a number of signaling pathways involved in cell proliferation, apoptosis and senescence. {ECO:0000269|PubMed:15109303, ECO:0000269|PubMed:24825908}.
Q9NYB0 TERF2IP S43 ochoa Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}.
Q9NZL6 RGL1 S629 ochoa Ral guanine nucleotide dissociation stimulator-like 1 (RalGDS-like 1) Probable guanine nucleotide exchange factor.
Q9P2D0 IBTK S992 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2D3 HEATR5B S1564 ochoa HEAT repeat-containing protein 5B Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025}.
Q9P2N5 RBM27 S566 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q9P2Y5 UVRAG S483 ochoa UV radiation resistance-associated gene protein (p63) Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}.
Q9P2Y5 UVRAG S509 ochoa UV radiation resistance-associated gene protein (p63) Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}.
Q9UBD5 ORC3 S23 ochoa Origin recognition complex subunit 3 (Origin recognition complex subunit Latheo) Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:31160578}.
Q9UBF8 PI4KB S294 psp Phosphatidylinositol 4-kinase beta (PI4K-beta) (PI4Kbeta) (PtdIns 4-kinase beta) (EC 2.7.1.67) (NPIK) (PI4K92) (PI4KIII) Phosphorylates phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol-1,4,5,-trisphosphate (PIP). May regulate Golgi disintegration/reorganization during mitosis, possibly via its phosphorylation. Involved in Golgi-to-plasma membrane trafficking (By similarity) (PubMed:10559940, PubMed:11277933, PubMed:12749687, PubMed:9405935). May play an important role in the inner ear development. {ECO:0000250|UniProtKB:O08561, ECO:0000269|PubMed:10559940, ECO:0000269|PubMed:11277933, ECO:0000269|PubMed:12749687, ECO:0000269|PubMed:33358777, ECO:0000269|PubMed:9405935}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication (PubMed:22124328, PubMed:22258260, PubMed:27989622). Recruited by ACBD3 at the viral replication sites (PubMed:22124328, PubMed:27989622). {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}.; FUNCTION: (Microbial infection) Required for cellular spike-mediated entry of human coronavirus SARS-CoV. {ECO:0000269|PubMed:22253445}.
Q9UHV7 MED13 S395 ochoa Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}.
Q9UJY4 GGA2 S400 ochoa ADP-ribosylation factor-binding protein GGA2 (Gamma-adaptin-related protein 2) (Golgi-localized, gamma ear-containing, ARF-binding protein 2) (VHS domain and ear domain of gamma-adaptin) (Vear) Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:10747088). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:27901063). Regulates retrograde transport of phosphorylated form of BACE1 from endosomes to the trans-Golgi network (PubMed:15615712). {ECO:0000269|PubMed:10747088, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:27901063}.
Q9UK58 CCNL1 S166 ochoa Cyclin-L1 (Cyclin-L) Involved in pre-mRNA splicing. Functions in association with cyclin-dependent kinases (CDKs) (PubMed:18216018). Inhibited by the CDK-specific inhibitor CDKN1A/p21 (PubMed:11980906). May play a role in the regulation of RNA polymerase II (pol II). May be a candidate proto-oncogene in head and neck squamous cell carcinomas (HNSCC) (PubMed:12414649, PubMed:15700036). {ECO:0000269|PubMed:11980906, ECO:0000269|PubMed:12414649, ECO:0000269|PubMed:15700036, ECO:0000269|PubMed:18216018}.
Q9UK61 TASOR S658 ochoa Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q9UKM9 RALY S106 ochoa RNA-binding protein Raly (Autoantigen p542) (Heterogeneous nuclear ribonucleoprotein C-like 2) (hnRNP core protein C-like 2) (hnRNP associated with lethal yellow protein homolog) RNA-binding protein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the liver. Binds the lipid-responsive non-coding RNA LeXis and is required for LeXis-mediated effect on cholesterogenesis (By similarity). May be a heterogeneous nuclear ribonucleoprotein (hnRNP) (PubMed:9376072). {ECO:0000250|UniProtKB:Q64012, ECO:0000269|PubMed:9376072}.
Q9UKS7 IKZF2 S433 ochoa Zinc finger protein Helios (Ikaros family zinc finger protein 2) Transcriptional regulator required for outer hair cells (OHC) maturation and, consequently, for hearing. {ECO:0000250|UniProtKB:P81183}.
Q9UKV3 ACIN1 S825 ochoa Apoptotic chromatin condensation inducer in the nucleus (Acinus) Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}.
Q9ULR3 PPM1H S124 ochoa Protein phosphatase 1H (EC 3.1.3.16) Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}.
Q9ULT8 HECTD1 S1772 ochoa E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}.
Q9ULV0 MYO5B S1644 ochoa Unconventional myosin-Vb May be involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation. Required in a complex with RAB11A and RAB11FIP2 for the transport of NPC1L1 to the plasma membrane. Together with RAB11A participates in CFTR trafficking to the plasma membrane and TF (transferrin) recycling in nonpolarized cells. Together with RAB11A and RAB8A participates in epithelial cell polarization. Together with RAB25 regulates transcytosis. Required for proper localization of bile salt export pump ABCB11 at the apical/canalicular plasma membrane of hepatocytes (PubMed:34816459). {ECO:0000269|PubMed:21206382, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:34816459}.
Q9UMS6 SYNPO2 S89 ochoa Synaptopodin-2 (Genethonin-2) (Myopodin) Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}.
Q9UMZ2 SYNRG S1075 ochoa Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}.
Q9UNZ2 NSFL1C S176 ochoa|psp NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}.
Q9UPN3 MACF1 S814 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN4 CEP131 S114 ochoa Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}.
Q9UPR5 SLC8A2 S622 ochoa Sodium/calcium exchanger 2 (Na(+)/Ca(2+)-exchange protein 2) (Solute carrier family 8 member 2) Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells. Contributes to the rapid decrease of cytoplasmic Ca(2+) levels back to baseline after neuronal activation, and thereby contributes to modulate synaptic plasticity, learning and memory. Plays a role in regulating urinary Ca(2+) and Na(+) excretion. {ECO:0000250|UniProtKB:Q8K596}.
Q9UPU9 SAMD4A S254 ochoa Protein Smaug homolog 1 (Smaug 1) (hSmaug1) (Sterile alpha motif domain-containing protein 4A) (SAM domain-containing protein 4A) Acts as a translational repressor of SRE-containing messengers. {ECO:0000269|PubMed:16221671}.
Q9UQ35 SRRM2 S248 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ88 CDK11A S740 ochoa Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}.
Q9Y285 FARSA S301 ochoa Phenylalanine--tRNA ligase alpha subunit (EC 6.1.1.20) (CML33) (Phenylalanyl-tRNA synthetase alpha subunit) (PheRS) None
Q9Y2H0 DLGAP4 S665 ochoa Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane.
Q9Y2H0 DLGAP4 S968 ochoa Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane.
Q9Y2K9 STXBP5L S772 psp Syntaxin-binding protein 5-like (Lethal(2) giant larvae protein homolog 4) (Tomosyn-2) Plays a role in vesicle trafficking and exocytosis inhibition. In pancreatic beta-cells, inhibits insulin secretion probably by interacting with and regulating STX1A and STX4, key t-SNARE proteins involved in the fusion of insulin granules to the plasma membrane. Also plays a role in neurotransmitter release by inhibiting basal acetylcholine release from axon terminals and by preventing synaptic fatigue upon repetitive stimulation (By similarity). Promotes as well axonal outgrowth (PubMed:25504045). {ECO:0000250|UniProtKB:Q5DQR4, ECO:0000269|PubMed:25504045}.
Q9Y490 TLN1 S1225 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y4A5 TRRAP S2051 ochoa Transformation/transcription domain-associated protein (350/400 kDa PCAF-associated factor) (PAF350/400) (STAF40) (Tra1 homolog) Adapter protein, which is found in various multiprotein chromatin complexes with histone acetyltransferase activity (HAT), which gives a specific tag for epigenetic transcription activation. Component of the NuA4 histone acetyltransferase complex which is responsible for acetylation of nucleosomal histones H4 and H2A. Plays a central role in MYC transcription activation, and also participates in cell transformation by MYC. Required for p53/TP53-, E2F1- and E2F4-mediated transcription activation. Also involved in transcription activation mediated by the adenovirus E1A, a viral oncoprotein that deregulates transcription of key genes. Probably acts by linking transcription factors such as E1A, MYC or E2F1 to HAT complexes such as STAGA thereby allowing transcription activation. Probably not required in the steps following histone acetylation in processes of transcription activation. May be required for the mitotic checkpoint and normal cell cycle progression. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. May play a role in the formation and maintenance of the auditory system (By similarity). {ECO:0000250|UniProtKB:A0A0R4ITC5, ECO:0000269|PubMed:11418595, ECO:0000269|PubMed:12138177, ECO:0000269|PubMed:12660246, ECO:0000269|PubMed:12743606, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:9708738}.
Q9Y4F5 CEP170B S1179 ochoa Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}.
Q9Y4F9 RIPOR2 S573 ochoa Rho family-interacting cell polarization regulator 2 Acts as an inhibitor of the small GTPase RHOA and plays several roles in the regulation of myoblast and hair cell differentiation, lymphocyte T proliferation and neutrophil polarization (PubMed:17150207, PubMed:23241886, PubMed:24687993, PubMed:24958875, PubMed:25588844, PubMed:27556504). Inhibits chemokine-induced T lymphocyte responses, such as cell adhesion, polarization and migration (PubMed:23241886). Involved also in the regulation of neutrophil polarization, chemotaxis and adhesion (By similarity). Required for normal development of inner and outer hair cell stereocilia within the cochlea of the inner ear (By similarity). Plays a role for maintaining the structural organization of the basal domain of stereocilia (By similarity). Involved in mechanosensory hair cell function (By similarity). Required for normal hearing (PubMed:24958875). {ECO:0000250|UniProtKB:Q80U16, ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:23241886, ECO:0000269|PubMed:24687993, ECO:0000269|PubMed:24958875, ECO:0000269|PubMed:27556504}.; FUNCTION: [Isoform 2]: Acts as an inhibitor of the small GTPase RHOA (PubMed:25588844). Plays a role in fetal mononuclear myoblast differentiation by promoting filopodia and myotube formation (PubMed:17150207). Maintains naive T lymphocytes in a quiescent state (PubMed:27556504). {ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:25588844, ECO:0000269|PubMed:27556504}.
Q9Y4H2 IRS2 S577 ochoa|psp Insulin receptor substrate 2 (IRS-2) Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}.
Q9Y4I1 MYO5A S1115 ochoa Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin) Processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament. Can hydrolyze ATP in the presence of actin, which is essential for its function as a motor protein (PubMed:10448864). Involved in melanosome transport. Also mediates the transport of vesicles to the plasma membrane (By similarity). May also be required for some polarization process involved in dendrite formation (By similarity). {ECO:0000250|UniProtKB:Q99104, ECO:0000250|UniProtKB:Q9QYF3, ECO:0000269|PubMed:10448864}.
Q9Y4I1 MYO5A S1652 ochoa Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin) Processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament. Can hydrolyze ATP in the presence of actin, which is essential for its function as a motor protein (PubMed:10448864). Involved in melanosome transport. Also mediates the transport of vesicles to the plasma membrane (By similarity). May also be required for some polarization process involved in dendrite formation (By similarity). {ECO:0000250|UniProtKB:Q99104, ECO:0000250|UniProtKB:Q9QYF3, ECO:0000269|PubMed:10448864}.
Q9Y570 PPME1 S42 ochoa Protein phosphatase methylesterase 1 (PME-1) (EC 3.1.1.89) Demethylates proteins that have been reversibly carboxymethylated. Demethylates PPP2CB (in vitro) and PPP2CA. Binding to PPP2CA displaces the manganese ion and inactivates the enzyme. {ECO:0000269|PubMed:10318862}.
Q9Y577 TRIM17 S59 ochoa E3 ubiquitin-protein ligase TRIM17 (EC 2.3.2.27) (RING finger protein 16) (RING-type E3 ubiquitin transferase TRIM17) (Testis RING finger protein) (Tripartite motif-containing protein 17) E3 ubiquitin ligase that plays important roles in the regulation of neuronal apoptosis, selective autophagy or cell proliferation (PubMed:19358823, PubMed:22023800, PubMed:27562068). Stimulates the degradation of kinetochore ZW10 interacting protein ZWINT in a proteasome-dependent manner, leading to negative regulation of cell proliferation (PubMed:22023800). Inhibits autophagic degradation of diverse known targets while contributing to autophagy of midbodies. Autophagy-inhibitory activity involves MCL1, which TRIM17 assembles into complexes with the key autophagy regulator BECN1 (PubMed:27562068). Controls neuronal apoptosis by mediating ubiquitination and degradation of MCL1 to initiate neuronal death. In addition, regulates NFAT transcription factors NFATC3 and NFATC4 activities by preventing their nuclear localization, thus inhibiting their transcriptional activities. Decreases TRIM41-mediated degradation of ZSCAN2 thereby stimulating alpha-synuclein/SNCA transcription in neuronal cells (By similarity). Prevents the E3 ubiquitin-ligase activity of TRIM28 and its interaction with anti-apoptotic BCL2A1, blocking TRIM28 from ubiquitinating BCL2A1 (PubMed:19358823). {ECO:0000250|UniProtKB:Q7TPM3, ECO:0000269|PubMed:19358823, ECO:0000269|PubMed:22023800, ECO:0000269|PubMed:27562068}.
Q9Y5B0 CTDP1 S839 ochoa RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}.
Q9Y5B9 SUPT16H S19 ochoa FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}.
Q9Y6R0 NUMBL S324 ochoa Numb-like protein (Numb-related protein) (Numb-R) Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}.
Q9Y6R0 NUMBL S411 ochoa Numb-like protein (Numb-related protein) (Numb-R) Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}.
Q9Y6X4 FAM169A S278 ochoa Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) None
U3KPZ7 LOC127814297 S511 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000256|ARBA:ARBA00043866}.
Q96CW6 SLC7A6OS S32 Sugiyama Probable RNA polymerase II nuclear localization protein SLC7A6OS (ADAMS proteinase-related protein) (Solute carrier family 7 member 6 opposite strand transcript) Directs RNA polymerase II nuclear import. {ECO:0000250}.
Q9UNE7 STUB1 S149 Sugiyama E3 ubiquitin-protein ligase CHIP (EC 2.3.2.27) (Antigen NY-CO-7) (CLL-associated antigen KW-8) (Carboxy terminus of Hsp70-interacting protein) (RING-type E3 ubiquitin transferase CHIP) (STIP1 homology and U box-containing protein 1) E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462, PubMed:26265139). Plays a role in the maintenance of mitochondrial morphology and promotes mitophagic removal of dysfunctional mitochondria; thereby acts as a protector against apoptosis in response to cellular stress (By similarity). Negatively regulates vascular smooth muscle contraction, via degradation of the transcriptional activator MYOCD and subsequent loss of transcription of genes involved in vascular smooth muscle contraction (By similarity). Promotes survival and proliferation of cardiac smooth muscle cells via ubiquitination and degradation of FOXO1, resulting in subsequent repression of FOXO1-mediated transcription of pro-apoptotic genes (PubMed:19483080). Ubiquitinates ICER-type isoforms of CREM and targets them for proteasomal degradation, thereby acts as a positive effector of MAPK/ERK-mediated inhibition of apoptosis in cardiomyocytes (PubMed:20724525). Inhibits lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes, via ubiquitination and subsequent proteasomal degradation of NFATC3 (PubMed:30980393). Collaborates with ATXN3 in the degradation of misfolded chaperone substrates: ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462). Ubiquitinates NOS1 in concert with Hsp70 and Hsp40 (PubMed:15466472). Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90 (PubMed:10330192, PubMed:11146632, PubMed:15466472). Ubiquitinates CHRNA3 targeting it for endoplasmic reticulum-associated degradation in cortical neurons, as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Ubiquitinates and promotes ESR1 proteasomal degradation in response to age-related circulating estradiol (17-beta-estradiol/E2) decline, thereby promotes neuronal apoptosis in response to ischemic reperfusion injury (By similarity). Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation (PubMed:11557750, PubMed:23990462). Mediates polyubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair: catalyzes polyubiquitination by amplifying the HUWE1/ARF-BP1-dependent monoubiquitination and leading to POLB-degradation by the proteasome (PubMed:19713937). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). Ubiquitinates EPHA2 and may regulate the receptor stability and activity through proteasomal degradation (PubMed:19567782). Acts as a co-chaperone for HSPA1A and HSPA1B chaperone proteins and promotes ubiquitin-mediated protein degradation (PubMed:27708256). Negatively regulates the suppressive function of regulatory T-cells (Treg) during inflammation by mediating the ubiquitination and degradation of FOXP3 in a HSPA1A/B-dependent manner (PubMed:23973223). Catalyzes monoubiquitination of SIRT6, preventing its degradation by the proteasome (PubMed:24043303). Likely mediates polyubiquitination and down-regulates plasma membrane expression of PD-L1/CD274, an immune inhibitory ligand critical for immune tolerance to self and antitumor immunity (PubMed:28813410). Negatively regulates TGF-beta signaling by modulating the basal level of SMAD3 via ubiquitin-mediated degradation (PubMed:24613385). Plays a role in the degradation of TP53 (PubMed:26634371). Mediates ubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation (PubMed:29883609). May regulate myosin assembly in striated muscles together with UBE4B and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). Ubiquitinates PPARG in macrophages playing a role in M2 macrophages polarization and angiogenesis (By similarity). {ECO:0000250|UniProtKB:A6HD62, ECO:0000250|UniProtKB:Q9WUD1, ECO:0000269|PubMed:10330192, ECO:0000269|PubMed:11146632, ECO:0000269|PubMed:11557750, ECO:0000269|PubMed:15466472, ECO:0000269|PubMed:17369820, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:19567782, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20724525, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24043303, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30980393}.
P46779 RPL28 S76 Sugiyama Large ribosomal subunit protein eL28 (60S ribosomal protein L28) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
Q9HDC5 JPH1 Y316 Sugiyama Junctophilin-1 (JP-1) (Junctophilin type 1) Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes.
P41279 MAP3K8 S413 SIGNOR Mitogen-activated protein kinase kinase kinase 8 (EC 2.7.11.25) (Cancer Osaka thyroid oncogene) (Proto-oncogene c-Cot) (Serine/threonine-protein kinase cot) (Tumor progression locus 2) (TPL-2) Required for lipopolysaccharide (LPS)-induced, TLR4-mediated activation of the MAPK/ERK pathway in macrophages, thus being critical for production of the pro-inflammatory cytokine TNF-alpha (TNF) during immune responses. Involved in the regulation of T-helper cell differentiation and IFNG expression in T-cells. Involved in mediating host resistance to bacterial infection through negative regulation of type I interferon (IFN) production. In vitro, activates MAPK/ERK pathway in response to IL1 in an IRAK1-independent manner, leading to up-regulation of IL8 and CCL4. Transduces CD40 and TNFRSF1A signals that activate ERK in B-cells and macrophages, and thus may play a role in the regulation of immunoglobulin production. May also play a role in the transduction of TNF signals that activate JNK and NF-kappa-B in some cell types. In adipocytes, activates MAPK/ERK pathway in an IKBKB-dependent manner in response to IL1B and TNF, but not insulin, leading to induction of lipolysis. Plays a role in the cell cycle. Isoform 1 shows some transforming activity, although it is much weaker than that of the activated oncogenic variant. {ECO:0000269|PubMed:11342626, ECO:0000269|PubMed:12667451, ECO:0000269|PubMed:15169888, ECO:0000269|PubMed:16371247, ECO:0000269|PubMed:1833717, ECO:0000269|PubMed:19001140, ECO:0000269|PubMed:19808894}.
Q8NER1 TRPV1 S775 SIGNOR|iPTMNet Transient receptor potential cation channel subfamily V member 1 (TrpV1) (Capsaicin receptor) (Osm-9-like TRP channel 1) (OTRPC1) (Vanilloid receptor 1) Non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli (PubMed:11050376, PubMed:11243859, PubMed:11226139, PubMed:12077606). Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activated by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius (PubMed:37117175). Upon activation, exhibits a time- and Ca(2+)-dependent outward rectification, followed by a long-lasting refractory state. Mild extracellular acidic pH (6.5) potentiates channel activation by noxious heat and vanilloids, whereas acidic conditions (pH <6) directly activate the channel. Can be activated by endogenous compounds, including 12-hydroperoxytetraenoic acid and bradykinin. Acts as ionotropic endocannabinoid receptor with central neuromodulatory effects. Triggers a form of long-term depression (TRPV1-LTD) mediated by the endocannabinoid anandamine in the hippocampus and nucleus accumbens by affecting AMPA receptors endocytosis. {ECO:0000250|UniProtKB:O35433, ECO:0000269|PubMed:11050376, ECO:0000269|PubMed:11226139, ECO:0000269|PubMed:11243859, ECO:0000269|PubMed:12077606, ECO:0000269|PubMed:37117175}.
Q13573 SNW1 S83 Sugiyama SNW domain-containing protein 1 (Nuclear protein SkiP) (Nuclear receptor coactivator NCoA-62) (Ski-interacting protein) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Required for the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. May recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1-mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coactivators such as MAML1 to form an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ to form a transcriptional activation complex by releasing SNW1 and redundant NOTCH1 NICD. {ECO:0000269|PubMed:10644367, ECO:0000269|PubMed:11278756, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:11514567, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12840015, ECO:0000269|PubMed:14985122, ECO:0000269|PubMed:15194481, ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:19818711, ECO:0000269|PubMed:21245387, ECO:0000269|PubMed:21460037, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:9632709, ECO:0000305|PubMed:33509932}.; FUNCTION: (Microbial infection) Is recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat transcription by recruitment of MYC, MEN1 and TRRAP to the HIV promoter. {ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:19818711}.; FUNCTION: (Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters. {ECO:0000269|PubMed:10644367}.
P55809 OXCT1 S113 Sugiyama Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial (SCOT) (EC 2.8.3.5) (3-oxoacid CoA-transferase 1) (Somatic-type succinyl-CoA:3-oxoacid CoA-transferase) (SCOT-s) (Succinyl-CoA:3-oxoacid CoA transferase) Key enzyme for ketone body catabolism. Catalyzes the first, rate-limiting step of ketone body utilization in extrahepatic tissues, by transferring coenzyme A (CoA) from a donor thiolester species (succinyl-CoA) to an acceptor carboxylate (acetoacetate), and produces acetoacetyl-CoA. Acetoacetyl-CoA is further metabolized by acetoacetyl-CoA thiolase into two acetyl-CoA molecules which enter the citric acid cycle for energy production (PubMed:10964512). Forms a dimeric enzyme where both of the subunits are able to form enzyme-CoA thiolester intermediates, but only one subunit is competent to transfer the CoA moiety to the acceptor carboxylate (3-oxo acid) and produce a new acyl-CoA. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity). {ECO:0000250|UniProtKB:Q29551, ECO:0000269|PubMed:10964512}.
Q96PY6 NEK1 S295 Sugiyama Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}.
Q15750 TAB1 S339 Sugiyama TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 1) (TGF-beta-activated kinase 1-binding protein 1) (TAK1-binding protein 1) Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (PubMed:22307082, PubMed:24403530). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (PubMed:10838074, PubMed:25260751, PubMed:37832545). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (PubMed:11847341, PubMed:29229647). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism (PubMed:14592977). Also plays a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits (PubMed:18021073). {ECO:0000269|PubMed:10838074, ECO:0000269|PubMed:11847341, ECO:0000269|PubMed:14592977, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:22307082, ECO:0000269|PubMed:24403530, ECO:0000269|PubMed:25260751, ECO:0000269|PubMed:29229647, ECO:0000269|PubMed:37832545}.
Download
reactome_id name p -log10_p
R-HSA-69620 Cell Cycle Checkpoints 8.912677e-07 6.050
R-HSA-422475 Axon guidance 6.109320e-07 6.214
R-HSA-1640170 Cell Cycle 1.519881e-06 5.818
R-HSA-9675108 Nervous system development 2.525302e-06 5.598
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 1.277853e-05 4.894
R-HSA-69481 G2/M Checkpoints 3.165813e-05 4.500
R-HSA-5673001 RAF/MAP kinase cascade 5.059800e-05 4.296
R-HSA-3247509 Chromatin modifying enzymes 5.651478e-05 4.248
R-HSA-5684996 MAPK1/MAPK3 signaling 7.968930e-05 4.099
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 9.885369e-05 4.005
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 1.055623e-04 3.976
R-HSA-5683057 MAPK family signaling cascades 1.003611e-04 3.998
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 1.542640e-04 3.812
R-HSA-4839726 Chromatin organization 1.607277e-04 3.794
R-HSA-69278 Cell Cycle, Mitotic 1.535387e-04 3.814
R-HSA-69473 G2/M DNA damage checkpoint 2.045686e-04 3.689
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 2.185697e-04 3.660
R-HSA-5693606 DNA Double Strand Break Response 2.690402e-04 3.570
R-HSA-72163 mRNA Splicing - Major Pathway 3.740225e-04 3.427
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 3.063399e-04 3.514
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 3.166712e-04 3.499
R-HSA-68877 Mitotic Prometaphase 3.484238e-04 3.458
R-HSA-438064 Post NMDA receptor activation events 3.535438e-04 3.452
R-HSA-9645723 Diseases of programmed cell death 3.949548e-04 3.403
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 3.802352e-04 3.420
R-HSA-5357801 Programmed Cell Death 3.914241e-04 3.407
R-HSA-376176 Signaling by ROBO receptors 3.181788e-04 3.497
R-HSA-2467813 Separation of Sister Chromatids 4.490512e-04 3.348
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 4.945157e-04 3.306
R-HSA-373760 L1CAM interactions 5.184653e-04 3.285
R-HSA-75153 Apoptotic execution phase 5.852206e-04 3.233
R-HSA-1226099 Signaling by FGFR in disease 6.401191e-04 3.194
R-HSA-8953750 Transcriptional Regulation by E2F6 6.288319e-04 3.201
R-HSA-2219528 PI3K/AKT Signaling in Cancer 6.202549e-04 3.207
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 6.640573e-04 3.178
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 6.740892e-04 3.171
R-HSA-72172 mRNA Splicing 7.857159e-04 3.105
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 7.300018e-04 3.137
R-HSA-112399 IRS-mediated signalling 7.874489e-04 3.104
R-HSA-199418 Negative regulation of the PI3K/AKT network 7.586600e-04 3.120
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 8.217797e-04 3.085
R-HSA-141424 Amplification of signal from the kinetochores 8.217797e-04 3.085
R-HSA-8847993 ERBB2 Activates PTK6 Signaling 9.235709e-04 3.035
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 9.249599e-04 3.034
R-HSA-9006925 Intracellular signaling by second messengers 1.030515e-03 2.987
R-HSA-109704 PI3K Cascade 1.036170e-03 2.985
R-HSA-9768919 NPAS4 regulates expression of target genes 1.081001e-03 2.966
R-HSA-6785631 ERBB2 Regulates Cell Motility 1.214446e-03 2.916
R-HSA-2428928 IRS-related events triggered by IGF1R 1.299333e-03 2.886
R-HSA-140342 Apoptosis induced DNA fragmentation 1.317369e-03 2.880
R-HSA-5693607 Processing of DNA double-strand break ends 1.376204e-03 2.861
R-HSA-2559583 Cellular Senescence 1.481526e-03 2.829
R-HSA-9664565 Signaling by ERBB2 KD Mutants 1.567408e-03 2.805
R-HSA-5693538 Homology Directed Repair 1.534847e-03 2.814
R-HSA-199920 CREB phosphorylation 2.392345e-03 2.621
R-HSA-428540 Activation of RAC1 2.441567e-03 2.612
R-HSA-1963640 GRB2 events in ERBB2 signaling 2.001238e-03 2.699
R-HSA-1963642 PI3K events in ERBB2 signaling 2.515502e-03 2.599
R-HSA-1227990 Signaling by ERBB2 in Cancer 1.863931e-03 2.730
R-HSA-774815 Nucleosome assembly 1.785979e-03 2.748
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 1.785979e-03 2.748
R-HSA-8863795 Downregulation of ERBB2 signaling 1.863931e-03 2.730
R-HSA-156842 Eukaryotic Translation Elongation 1.807105e-03 2.743
R-HSA-5693532 DNA Double-Strand Break Repair 2.297929e-03 2.639
R-HSA-212165 Epigenetic regulation of gene expression 2.502486e-03 2.602
R-HSA-68884 Mitotic Telophase/Cytokinesis 2.441567e-03 2.612
R-HSA-74751 Insulin receptor signalling cascade 1.842243e-03 2.735
R-HSA-2428924 IGF1R signaling cascade 1.842243e-03 2.735
R-HSA-68886 M Phase 2.093035e-03 2.679
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 2.059985e-03 2.686
R-HSA-437239 Recycling pathway of L1 2.326161e-03 2.633
R-HSA-9020591 Interleukin-12 signaling 2.303090e-03 2.638
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 2.587352e-03 2.587
R-HSA-8953854 Metabolism of RNA 2.594321e-03 2.586
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 2.698817e-03 2.569
R-HSA-9620244 Long-term potentiation 3.225546e-03 2.491
R-HSA-2470946 Cohesin Loading onto Chromatin 3.477544e-03 2.459
R-HSA-1227986 Signaling by ERBB2 3.492090e-03 2.457
R-HSA-3214847 HATs acetylate histones 3.627392e-03 2.440
R-HSA-9709603 Impaired BRCA2 binding to PALB2 3.834019e-03 2.416
R-HSA-5610787 Hedgehog 'off' state 3.934885e-03 2.405
R-HSA-69618 Mitotic Spindle Checkpoint 3.934885e-03 2.405
R-HSA-1257604 PIP3 activates AKT signaling 3.978774e-03 2.400
R-HSA-109581 Apoptosis 4.100589e-03 2.387
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 4.318026e-03 2.365
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 4.658217e-03 2.332
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 4.658217e-03 2.332
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 4.658217e-03 2.332
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 4.658217e-03 2.332
R-HSA-9710421 Defective pyroptosis 4.555726e-03 2.341
R-HSA-73886 Chromosome Maintenance 4.488265e-03 2.348
R-HSA-1253288 Downregulation of ERBB4 signaling 4.856327e-03 2.314
R-HSA-9825895 Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... 4.856327e-03 2.314
R-HSA-2262752 Cellular responses to stress 5.173758e-03 2.286
R-HSA-5620971 Pyroptosis 5.282151e-03 2.277
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 6.148655e-03 2.211
R-HSA-68882 Mitotic Anaphase 6.180745e-03 2.209
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 6.786976e-03 2.168
R-HSA-9673013 Diseases of Telomere Maintenance 6.786976e-03 2.168
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 6.786976e-03 2.168
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 6.786976e-03 2.168
R-HSA-9022534 Loss of MECP2 binding ability to 5hmC-DNA 6.786976e-03 2.168
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 6.786976e-03 2.168
R-HSA-448706 Interleukin-1 processing 6.561047e-03 2.183
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 7.239605e-03 2.140
R-HSA-1250196 SHC1 events in ERBB2 signaling 7.116919e-03 2.148
R-HSA-73894 DNA Repair 6.868806e-03 2.163
R-HSA-2555396 Mitotic Metaphase and Anaphase 6.498615e-03 2.187
R-HSA-447115 Interleukin-12 family signaling 6.845074e-03 2.165
R-HSA-5633007 Regulation of TP53 Activity 7.399862e-03 2.131
R-HSA-156902 Peptide chain elongation 7.422668e-03 2.129
R-HSA-5218859 Regulated Necrosis 7.756504e-03 2.110
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 7.775046e-03 2.109
R-HSA-9948299 Ribosome-associated quality control 7.820264e-03 2.107
R-HSA-9938206 Developmental Lineage of Mammary Stem Cells 7.911988e-03 2.102
R-HSA-9670095 Inhibition of DNA recombination at telomere 8.897262e-03 2.051
R-HSA-8953897 Cellular responses to stimuli 9.093346e-03 2.041
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 9.347560e-03 2.029
R-HSA-5632684 Hedgehog 'on' state 1.012916e-02 1.994
R-HSA-3700989 Transcriptional Regulation by TP53 1.034810e-02 1.985
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 1.070023e-02 1.971
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 1.070023e-02 1.971
R-HSA-74752 Signaling by Insulin receptor 1.091176e-02 1.962
R-HSA-5610780 Degradation of GLI1 by the proteasome 1.120257e-02 1.951
R-HSA-5688426 Deubiquitination 1.158545e-02 1.936
R-HSA-5635851 GLI proteins bind promoters of Hh responsive genes to promote transcription 1.327590e-02 1.877
R-HSA-9652817 Signaling by MAPK mutants 1.327590e-02 1.877
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 1.254701e-02 1.901
R-HSA-5693537 Resolution of D-Loop Structures 1.214325e-02 1.916
R-HSA-9830364 Formation of the nephric duct 1.254701e-02 1.901
R-HSA-9634815 Transcriptional Regulation by NPAS4 1.229852e-02 1.910
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 1.219373e-02 1.914
R-HSA-162582 Signal Transduction 1.338714e-02 1.873
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 1.354714e-02 1.868
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 1.372154e-02 1.863
R-HSA-9018519 Estrogen-dependent gene expression 1.412403e-02 1.850
R-HSA-72689 Formation of a pool of free 40S subunits 1.452626e-02 1.838
R-HSA-3214815 HDACs deacetylate histones 1.632800e-02 1.787
R-HSA-72737 Cap-dependent Translation Initiation 1.504749e-02 1.823
R-HSA-72613 Eukaryotic Translation Initiation 1.504749e-02 1.823
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 1.587547e-02 1.799
R-HSA-9700206 Signaling by ALK in cancer 1.587547e-02 1.799
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 1.499268e-02 1.824
R-HSA-5689880 Ub-specific processing proteases 1.560220e-02 1.807
R-HSA-69275 G2/M Transition 1.588290e-02 1.799
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 1.544755e-02 1.811
R-HSA-8851708 Signaling by FGFR2 IIIa TM 1.650299e-02 1.782
R-HSA-3928663 EPHA-mediated growth cone collapse 1.653098e-02 1.782
R-HSA-171306 Packaging Of Telomere Ends 1.653098e-02 1.782
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 1.691660e-02 1.772
R-HSA-212300 PRC2 methylates histones and DNA 1.730922e-02 1.762
R-HSA-453274 Mitotic G2-G2/M phases 1.745131e-02 1.758
R-HSA-416482 G alpha (12/13) signalling events 1.780804e-02 1.749
R-HSA-9830369 Kidney development 1.803770e-02 1.744
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 1.808591e-02 1.743
R-HSA-446652 Interleukin-1 family signaling 1.819546e-02 1.740
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 1.928438e-02 1.715
R-HSA-3371556 Cellular response to heat stress 2.024911e-02 1.694
R-HSA-112412 SOS-mediated signalling 2.374084e-02 1.625
R-HSA-9709570 Impaired BRCA2 binding to RAD51 2.131065e-02 1.671
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 2.128416e-02 1.672
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 2.274735e-02 1.643
R-HSA-69541 Stabilization of p53 2.385789e-02 1.622
R-HSA-2682334 EPH-Ephrin signaling 2.428341e-02 1.615
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 2.461500e-02 1.609
R-HSA-427413 NoRC negatively regulates rRNA expression 2.461500e-02 1.609
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 2.479320e-02 1.606
R-HSA-983189 Kinesins 2.507020e-02 1.601
R-HSA-1433559 Regulation of KIT signaling 2.508436e-02 1.601
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 2.637410e-02 1.579
R-HSA-9012546 Interleukin-18 signaling 3.024280e-02 1.519
R-HSA-444257 RSK activation 3.024280e-02 1.519
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 2.848221e-02 1.545
R-HSA-5655253 Signaling by FGFR2 in disease 2.723089e-02 1.565
R-HSA-1500620 Meiosis 2.915535e-02 1.535
R-HSA-912446 Meiotic recombination 2.967153e-02 1.528
R-HSA-6794362 Protein-protein interactions at synapses 2.915535e-02 1.535
R-HSA-1266738 Developmental Biology 2.675429e-02 1.573
R-HSA-1538133 G0 and Early G1 3.010205e-02 1.521
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 3.010205e-02 1.521
R-HSA-111465 Apoptotic cleavage of cellular proteins 3.010205e-02 1.521
R-HSA-5358351 Signaling by Hedgehog 3.032578e-02 1.518
R-HSA-72764 Eukaryotic Translation Termination 3.119387e-02 1.506
R-HSA-373755 Semaphorin interactions 3.168004e-02 1.499
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 3.193606e-02 1.496
R-HSA-6794361 Neurexins and neuroligins 3.225855e-02 1.491
R-HSA-68616 Assembly of the ORC complex at the origin of replication 3.349020e-02 1.475
R-HSA-9022692 Regulation of MECP2 expression and activity 3.349020e-02 1.475
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 3.349020e-02 1.475
R-HSA-9930044 Nuclear RNA decay 3.349020e-02 1.475
R-HSA-110329 Cleavage of the damaged pyrimidine 3.499050e-02 1.456
R-HSA-73928 Depyrimidination 3.499050e-02 1.456
R-HSA-1221632 Meiotic synapsis 3.499529e-02 1.456
R-HSA-73854 RNA Polymerase I Promoter Clearance 3.506350e-02 1.455
R-HSA-1839120 Signaling by FGFR1 amplification mutants 3.766166e-02 1.424
R-HSA-2023837 Signaling by FGFR2 amplification mutants 3.766166e-02 1.424
R-HSA-9022538 Loss of MECP2 binding ability to 5mC-DNA 3.766166e-02 1.424
R-HSA-1250347 SHC1 events in ERBB4 signaling 4.044706e-02 1.393
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 4.098328e-02 1.387
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 4.098328e-02 1.387
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 4.098328e-02 1.387
R-HSA-73864 RNA Polymerase I Transcription 3.999812e-02 1.398
R-HSA-69002 DNA Replication Pre-Initiation 3.655314e-02 1.437
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 3.696026e-02 1.432
R-HSA-9960525 CASP5-mediated substrate cleavage 3.766166e-02 1.424
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 3.880003e-02 1.411
R-HSA-9960519 CASP4-mediated substrate cleavage 3.766166e-02 1.424
R-HSA-1474165 Reproduction 3.635294e-02 1.439
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 3.773154e-02 1.423
R-HSA-8863678 Neurodegenerative Diseases 3.773154e-02 1.423
R-HSA-5621575 CD209 (DC-SIGN) signaling 3.773154e-02 1.423
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 4.044706e-02 1.393
R-HSA-5654695 PI-3K cascade:FGFR2 4.237865e-02 1.373
R-HSA-400685 Sema4D in semaphorin signaling 4.237865e-02 1.373
R-HSA-3214842 HDMs demethylate histones 4.237865e-02 1.373
R-HSA-927802 Nonsense-Mediated Decay (NMD) 4.288453e-02 1.368
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 4.288453e-02 1.368
R-HSA-9022927 MECP2 regulates transcription of genes involved in GABA signaling 5.214640e-02 1.283
R-HSA-1251932 PLCG1 events in ERBB2 signaling 5.214640e-02 1.283
R-HSA-1306955 GRB7 events in ERBB2 signaling 5.214640e-02 1.283
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 4.574742e-02 1.340
R-HSA-5655332 Signaling by FGFR3 in disease 5.266405e-02 1.278
R-HSA-5654699 SHC-mediated cascade:FGFR2 5.266405e-02 1.278
R-HSA-73728 RNA Polymerase I Promoter Opening 5.266405e-02 1.278
R-HSA-5654696 Downstream signaling of activated FGFR2 4.509599e-02 1.346
R-HSA-8853659 RET signaling 4.945684e-02 1.306
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 5.125209e-02 1.290
R-HSA-192823 Viral mRNA Translation 4.904845e-02 1.309
R-HSA-1839126 FGFR2 mutant receptor activation 4.945684e-02 1.306
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 4.538956e-02 1.343
R-HSA-74749 Signal attenuation 4.574742e-02 1.340
R-HSA-3295583 TRP channels 4.735551e-02 1.325
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 4.509599e-02 1.346
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 4.650271e-02 1.333
R-HSA-193648 NRAGE signals death through JNK 4.413389e-02 1.355
R-HSA-111933 Calmodulin induced events 4.945684e-02 1.306
R-HSA-111997 CaM pathway 4.945684e-02 1.306
R-HSA-8868773 rRNA processing in the nucleus and cytosol 5.262284e-02 1.279
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 5.102562e-02 1.292
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 4.509599e-02 1.346
R-HSA-2559580 Oxidative Stress Induced Senescence 4.650271e-02 1.333
R-HSA-9675135 Diseases of DNA repair 4.911521e-02 1.309
R-HSA-8878171 Transcriptional regulation by RUNX1 4.955980e-02 1.305
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 5.266405e-02 1.278
R-HSA-2408557 Selenocysteine synthesis 4.404943e-02 1.356
R-HSA-9827857 Specification of primordial germ cells 4.652657e-02 1.332
R-HSA-453279 Mitotic G1 phase and G1/S transition 4.616033e-02 1.336
R-HSA-9665348 Signaling by ERBB2 ECD mutants 5.308526e-02 1.275
R-HSA-3928664 Ephrin signaling 5.308526e-02 1.275
R-HSA-156711 Polo-like kinase mediated events 5.308526e-02 1.275
R-HSA-9831926 Nephron development 5.308526e-02 1.275
R-HSA-68867 Assembly of the pre-replicative complex 5.320439e-02 1.274
R-HSA-74160 Gene expression (Transcription) 5.360502e-02 1.271
R-HSA-110331 Cleavage of the damaged purine 5.406802e-02 1.267
R-HSA-210990 PECAM1 interactions 5.470998e-02 1.262
R-HSA-5654700 FRS-mediated FGFR2 signaling 5.830494e-02 1.234
R-HSA-9924644 Developmental Lineages of the Mammary Gland 5.849762e-02 1.233
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 5.886982e-02 1.230
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 5.893102e-02 1.230
R-HSA-73927 Depurination 5.893102e-02 1.230
R-HSA-74713 IRS activation 6.826093e-02 1.166
R-HSA-9022535 Loss of phosphorylation of MECP2 at T308 6.826093e-02 1.166
R-HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 7.490940e-02 1.125
R-HSA-5654221 Phospholipase C-mediated cascade; FGFR2 6.762139e-02 1.170
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 6.216898e-02 1.206
R-HSA-380287 Centrosome maturation 6.994311e-02 1.155
R-HSA-9609690 HCMV Early Events 7.027124e-02 1.153
R-HSA-157579 Telomere Maintenance 6.914748e-02 1.160
R-HSA-1358803 Downregulation of ERBB2:ERBB3 signaling 7.490940e-02 1.125
R-HSA-9646399 Aggrephagy 6.941497e-02 1.159
R-HSA-5693548 Sensing of DNA Double Strand Breaks 6.444204e-02 1.191
R-HSA-190236 Signaling by FGFR 7.266770e-02 1.139
R-HSA-418359 Reduction of cytosolic Ca++ levels 6.444204e-02 1.191
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 6.632715e-02 1.178
R-HSA-373753 Nephrin family interactions 6.762139e-02 1.170
R-HSA-69615 G1/S DNA Damage Checkpoints 7.115966e-02 1.148
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 7.503549e-02 1.125
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 7.503549e-02 1.125
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 6.011903e-02 1.221
R-HSA-9842663 Signaling by LTK 7.490940e-02 1.125
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 6.427766e-02 1.192
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 6.404663e-02 1.194
R-HSA-9766229 Degradation of CDH1 6.178388e-02 1.209
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 6.178388e-02 1.209
R-HSA-69563 p53-Dependent G1 DNA Damage Response 6.178388e-02 1.209
R-HSA-8856688 Golgi-to-ER retrograde transport 7.189439e-02 1.143
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 6.762139e-02 1.170
R-HSA-3214841 PKMTs methylate histone lysines 7.503549e-02 1.125
R-HSA-9008059 Interleukin-37 signaling 7.058046e-02 1.151
R-HSA-168273 Influenza Viral RNA Transcription and Replication 6.710918e-02 1.173
R-HSA-9616222 Transcriptional regulation of granulopoiesis 6.679605e-02 1.175
R-HSA-447038 NrCAM interactions 6.826093e-02 1.166
R-HSA-9824446 Viral Infection Pathways 7.291161e-02 1.137
R-HSA-190241 FGFR2 ligand binding and activation 7.558361e-02 1.122
R-HSA-198753 ERK/MAPK targets 7.558361e-02 1.122
R-HSA-73772 RNA Polymerase I Promoter Escape 7.627488e-02 1.118
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 7.627488e-02 1.118
R-HSA-399719 Trafficking of AMPA receptors 7.721050e-02 1.112
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 7.749171e-02 1.111
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 7.815021e-02 1.107
R-HSA-397014 Muscle contraction 7.815021e-02 1.107
R-HSA-199991 Membrane Trafficking 7.980558e-02 1.098
R-HSA-5610783 Degradation of GLI2 by the proteasome 8.090701e-02 1.092
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 8.151152e-02 1.089
R-HSA-9764265 Regulation of CDH1 Expression and Function 8.209698e-02 1.086
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 8.209698e-02 1.086
R-HSA-162909 Host Interactions of HIV factors 8.253497e-02 1.083
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 8.399494e-02 1.076
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 8.399494e-02 1.076
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 8.399494e-02 1.076
R-HSA-72766 Translation 8.492881e-02 1.071
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 8.526886e-02 1.069
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 8.576357e-02 1.067
R-HSA-111457 Release of apoptotic factors from the mitochondria 8.576357e-02 1.067
R-HSA-2033514 FGFR3 mutant receptor activation 8.607409e-02 1.065
R-HSA-1839130 Signaling by activated point mutants of FGFR3 8.607409e-02 1.065
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 8.607409e-02 1.065
R-HSA-166520 Signaling by NTRKs 8.614756e-02 1.065
R-HSA-73929 Base-Excision Repair, AP Site Formation 8.695041e-02 1.061
R-HSA-73762 RNA Polymerase I Transcription Initiation 8.702766e-02 1.060
R-HSA-111996 Ca-dependent events 8.702766e-02 1.060
R-HSA-9842860 Regulation of endogenous retroelements 8.787315e-02 1.056
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 8.801503e-02 1.055
R-HSA-5632987 Defective Mismatch Repair Associated With PMS2 1.142773e-01 0.942
R-HSA-5545483 Defective Mismatch Repair Associated With MLH1 1.142773e-01 0.942
R-HSA-9663199 Defective DNA double strand break response due to BRCA1 loss of function 1.142773e-01 0.942
R-HSA-9763198 Impaired BRCA2 binding to SEM1 (DSS1) 1.142773e-01 0.942
R-HSA-9699150 Defective DNA double strand break response due to BARD1 loss of function 1.142773e-01 0.942
R-HSA-9709275 Impaired BRCA2 translocation to the nucleus 1.142773e-01 0.942
R-HSA-8857538 PTK6 promotes HIF1A stabilization 1.044354e-01 0.981
R-HSA-9027283 Erythropoietin activates STAT5 1.044354e-01 0.981
R-HSA-5619070 Defective SLC16A1 causes symptomatic deficiency in lactate transport (SDLT) 1.044354e-01 0.981
R-HSA-9027284 Erythropoietin activates RAS 1.103297e-01 0.957
R-HSA-110312 Translesion synthesis by REV1 1.103297e-01 0.957
R-HSA-180534 Vpu mediated degradation of CD4 9.901944e-02 1.004
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 1.150962e-01 0.939
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 1.064438e-01 0.973
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 9.143546e-02 1.039
R-HSA-174430 Telomere C-strand synthesis initiation 1.103297e-01 0.957
R-HSA-180746 Nuclear import of Rev protein 1.069089e-01 0.971
R-HSA-5685942 HDR through Homologous Recombination (HRR) 9.031087e-02 1.044
R-HSA-399954 Sema3A PAK dependent Axon repulsion 1.103297e-01 0.957
R-HSA-8856828 Clathrin-mediated endocytosis 1.181260e-01 0.928
R-HSA-2559585 Oncogene Induced Senescence 1.150962e-01 0.939
R-HSA-1489509 DAG and IP3 signaling 1.068569e-01 0.971
R-HSA-176187 Activation of ATR in response to replication stress 9.143546e-02 1.039
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 1.048855e-01 0.979
R-HSA-201681 TCF dependent signaling in response to WNT 1.143735e-01 0.942
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 1.069089e-01 0.971
R-HSA-5578749 Transcriptional regulation by small RNAs 1.180247e-01 0.928
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 1.180247e-01 0.928
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 9.143546e-02 1.039
R-HSA-5576891 Cardiac conduction 1.173954e-01 0.930
R-HSA-9764561 Regulation of CDH1 Function 1.044669e-01 0.981
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 1.180247e-01 0.928
R-HSA-3928662 EPHB-mediated forward signaling 1.000060e-01 1.000
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 9.143546e-02 1.039
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 9.284279e-02 1.032
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 9.143546e-02 1.039
R-HSA-982772 Growth hormone receptor signaling 1.021129e-01 0.991
R-HSA-9821993 Replacement of protamines by nucleosomes in the male pronucleus 1.117896e-01 0.952
R-HSA-449147 Signaling by Interleukins 9.074779e-02 1.042
R-HSA-168255 Influenza Infection 1.006557e-01 0.997
R-HSA-9764560 Regulation of CDH1 Gene Transcription 1.064438e-01 0.973
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 1.212058e-01 0.916
R-HSA-163282 Mitochondrial transcription initiation 1.664259e-01 0.779
R-HSA-8853334 Signaling by FGFR3 fusions in cancer 1.664259e-01 0.779
R-HSA-205017 NFG and proNGF binds to p75NTR 1.664259e-01 0.779
R-HSA-8853333 Signaling by FGFR2 fusions 1.664259e-01 0.779
R-HSA-2033515 t(4;14) translocations of FGFR3 1.664259e-01 0.779
R-HSA-176034 Interactions of Tat with host cellular proteins 1.664259e-01 0.779
R-HSA-5609974 Defective PGM1 causes PGM1-CDG 1.664259e-01 0.779
R-HSA-6791462 TALDO1 deficiency: failed conversion of Fru(6)P, E4P to SH7P, GA3P 1.664259e-01 0.779
R-HSA-6791055 TALDO1 deficiency: failed conversion of SH7P, GA3P to Fru(6)P, E4P 1.664259e-01 0.779
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 2.155072e-01 0.667
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 2.155072e-01 0.667
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 2.155072e-01 0.667
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 2.155072e-01 0.667
R-HSA-1299503 TWIK related potassium channel (TREK) 2.155072e-01 0.667
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 2.155072e-01 0.667
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 2.155072e-01 0.667
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 2.155072e-01 0.667
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 2.155072e-01 0.667
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 2.155072e-01 0.667
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 2.155072e-01 0.667
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 2.155072e-01 0.667
R-HSA-9022707 MECP2 regulates transcription factors 1.240784e-01 0.906
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 1.240784e-01 0.906
R-HSA-5368598 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 2.617013e-01 0.582
R-HSA-209563 Axonal growth stimulation 2.617013e-01 0.582
R-HSA-8853336 Signaling by plasma membrane FGFR1 fusions 2.617013e-01 0.582
R-HSA-8865999 MET activates PTPN11 2.617013e-01 0.582
R-HSA-5682113 Defective ABCA1 causes TGD 2.617013e-01 0.582
R-HSA-9909438 3-Methylcrotonyl-CoA carboxylase deficiency 2.617013e-01 0.582
R-HSA-8875656 MET receptor recycling 1.445139e-01 0.840
R-HSA-201688 WNT mediated activation of DVL 1.655806e-01 0.781
R-HSA-73843 5-Phosphoribose 1-diphosphate biosynthesis 1.655806e-01 0.781
R-HSA-9700645 ALK mutants bind TKIs 1.655806e-01 0.781
R-HSA-205025 NADE modulates death signalling 3.051779e-01 0.515
R-HSA-9013957 TLR3-mediated TICAM1-dependent programmed cell death 3.051779e-01 0.515
R-HSA-3656532 TGFBR1 KD Mutants in Cancer 3.051779e-01 0.515
R-HSA-9022702 MECP2 regulates transcription of neuronal ligands 1.871337e-01 0.728
R-HSA-9027277 Erythropoietin activates Phospholipase C gamma (PLCG) 1.871337e-01 0.728
R-HSA-451308 Activation of Ca-permeable Kainate Receptor 1.871337e-01 0.728
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 1.233331e-01 0.909
R-HSA-5656121 Translesion synthesis by POLI 1.233331e-01 0.909
R-HSA-5655862 Translesion synthesis by POLK 1.368600e-01 0.864
R-HSA-4839744 Signaling by APC mutants 2.090431e-01 0.680
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 2.090431e-01 0.680
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 2.090431e-01 0.680
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 2.090431e-01 0.680
R-HSA-9032759 NTRK2 activates RAC1 3.460967e-01 0.461
R-HSA-203754 NOSIP mediated eNOS trafficking 3.460967e-01 0.461
R-HSA-190374 FGFR1c and Klotho ligand binding and activation 3.460967e-01 0.461
R-HSA-9673768 Signaling by membrane-tethered fusions of PDGFRA or PDGFRB 3.460967e-01 0.461
R-HSA-3304356 SMAD2/3 Phosphorylation Motif Mutants in Cancer 3.460967e-01 0.461
R-HSA-1839122 Signaling by activated point mutants of FGFR1 2.311922e-01 0.636
R-HSA-433692 Proton-coupled monocarboxylate transport 2.311922e-01 0.636
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 2.311922e-01 0.636
R-HSA-1250342 PI3K events in ERBB4 signaling 2.311922e-01 0.636
R-HSA-5339716 Signaling by GSK3beta mutants 2.311922e-01 0.636
R-HSA-5654710 PI-3K cascade:FGFR3 1.801228e-01 0.744
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 2.534771e-01 0.596
R-HSA-9005895 Pervasive developmental disorders 2.534771e-01 0.596
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 2.534771e-01 0.596
R-HSA-9697154 Disorders of Nervous System Development 2.534771e-01 0.596
R-HSA-69091 Polymerase switching 2.534771e-01 0.596
R-HSA-69109 Leading Strand Synthesis 2.534771e-01 0.596
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 2.534771e-01 0.596
R-HSA-3656237 Defective EXT2 causes exostoses 2 2.534771e-01 0.596
R-HSA-179812 GRB2 events in EGFR signaling 2.534771e-01 0.596
R-HSA-3656253 Defective EXT1 causes exostoses 1, TRPS2 and CHDS 2.534771e-01 0.596
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 2.534771e-01 0.596
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 2.534771e-01 0.596
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 2.534771e-01 0.596
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 2.534771e-01 0.596
R-HSA-73863 RNA Polymerase I Transcription Termination 1.430839e-01 0.844
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 1.430839e-01 0.844
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 1.430839e-01 0.844
R-HSA-389513 Co-inhibition by CTLA4 1.952867e-01 0.709
R-HSA-167287 HIV elongation arrest and recovery 1.542069e-01 0.812
R-HSA-167290 Pausing and recovery of HIV elongation 1.542069e-01 0.812
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 2.758051e-01 0.559
R-HSA-389359 CD28 dependent Vav1 pathway 2.758051e-01 0.559
R-HSA-190375 FGFR2c ligand binding and activation 2.758051e-01 0.559
R-HSA-5654704 SHC-mediated cascade:FGFR3 2.107481e-01 0.676
R-HSA-9006335 Signaling by Erythropoietin 1.656422e-01 0.781
R-HSA-5654708 Downstream signaling of activated FGFR3 1.656422e-01 0.781
R-HSA-5334118 DNA methylation 1.656422e-01 0.781
R-HSA-180910 Vpr-mediated nuclear import of PICs 1.323292e-01 0.878
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 1.773689e-01 0.751
R-HSA-5654706 FRS-mediated FGFR3 signaling 2.264645e-01 0.645
R-HSA-5654227 Phospholipase C-mediated cascade; FGFR3 2.980939e-01 0.526
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 1.893658e-01 0.723
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 1.893658e-01 0.723
R-HSA-5654689 PI-3K cascade:FGFR1 2.423944e-01 0.615
R-HSA-180336 SHC1 events in EGFR signaling 3.202710e-01 0.494
R-HSA-196299 Beta-catenin phosphorylation cascade 3.202710e-01 0.494
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 3.202710e-01 0.494
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 1.237382e-01 0.907
R-HSA-1855170 IPs transport between nucleus and cytosol 2.140845e-01 0.669
R-HSA-159227 Transport of the SLBP independent Mature mRNA 2.140845e-01 0.669
R-HSA-72187 mRNA 3'-end processing 1.611200e-01 0.793
R-HSA-112382 Formation of RNA Pol II elongation complex 1.611200e-01 0.793
R-HSA-5696394 DNA Damage Recognition in GG-NER 2.267632e-01 0.644
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 2.267632e-01 0.644
R-HSA-5654688 SHC-mediated cascade:FGFR1 2.747376e-01 0.561
R-HSA-389960 Formation of tubulin folding intermediates by CCT/TriC 2.747376e-01 0.561
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 3.422721e-01 0.466
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 1.446822e-01 0.840
R-HSA-380259 Loss of Nlp from mitotic centrosomes 1.446822e-01 0.840
R-HSA-75955 RNA Polymerase II Transcription Elongation 1.697000e-01 0.770
R-HSA-1236394 Signaling by ERBB4 1.302488e-01 0.885
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 2.396261e-01 0.620
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 2.396261e-01 0.620
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 2.396261e-01 0.620
R-HSA-5654693 FRS-mediated FGFR1 signaling 2.910759e-01 0.536
R-HSA-5654687 Downstream signaling of activated FGFR1 2.526522e-01 0.597
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 3.640413e-01 0.439
R-HSA-9912633 Antigen processing: Ub, ATP-independent proteasomal degradation 3.640413e-01 0.439
R-HSA-4420332 Defective B3GALT6 causes EDSP2 and SEMDJL1 3.640413e-01 0.439
R-HSA-3560783 Defective B4GALT7 causes EDS, progeroid type 3.640413e-01 0.439
R-HSA-8854518 AURKA Activation by TPX2 1.671902e-01 0.777
R-HSA-5678895 Defective CFTR causes cystic fibrosis 2.219417e-01 0.654
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 1.405011e-01 0.852
R-HSA-1296072 Voltage gated Potassium channels 2.791100e-01 0.554
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 3.059738e-01 0.514
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 3.059738e-01 0.514
R-HSA-1251985 Nuclear signaling by ERBB4 3.195090e-01 0.496
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 3.195090e-01 0.496
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 3.195090e-01 0.496
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 3.195090e-01 0.496
R-HSA-1989781 PPARA activates gene expression 2.568073e-01 0.590
R-HSA-1643713 Signaling by EGFR in Cancer 3.074785e-01 0.512
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 2.107481e-01 0.676
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 2.107481e-01 0.676
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 2.352566e-01 0.628
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 2.352566e-01 0.628
R-HSA-5637812 Signaling by EGFRvIII in Cancer 1.508644e-01 0.821
R-HSA-5637810 Constitutive Signaling by EGFRvIII 1.508644e-01 0.821
R-HSA-167169 HIV Transcription Elongation 3.195090e-01 0.496
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 3.195090e-01 0.496
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 3.195090e-01 0.496
R-HSA-177929 Signaling by EGFR 3.482732e-01 0.458
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 2.694796e-01 0.569
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 2.219417e-01 0.654
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 2.219417e-01 0.654
R-HSA-2033519 Activated point mutants of FGFR2 1.653005e-01 0.782
R-HSA-171319 Telomere Extension By Telomerase 3.403464e-01 0.468
R-HSA-68962 Activation of the pre-replicative complex 1.773689e-01 0.751
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 2.352566e-01 0.628
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 3.422721e-01 0.466
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 1.830004e-01 0.738
R-HSA-9675151 Disorders of Developmental Biology 3.640413e-01 0.439
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 3.466928e-01 0.460
R-HSA-195253 Degradation of beta-catenin by the destruction complex 1.994042e-01 0.700
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 2.423944e-01 0.615
R-HSA-5696398 Nucleotide Excision Repair 2.834179e-01 0.548
R-HSA-198203 PI3K/AKT activation 1.871337e-01 0.728
R-HSA-3371568 Attenuation phase 1.601773e-01 0.795
R-HSA-3000170 Syndecan interactions 2.584982e-01 0.588
R-HSA-5213460 RIPK1-mediated regulated necrosis 2.925011e-01 0.534
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 2.219417e-01 0.654
R-HSA-6804757 Regulation of TP53 Degradation 1.235727e-01 0.908
R-HSA-193704 p75 NTR receptor-mediated signalling 3.526577e-01 0.453
R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR signaling 3.460967e-01 0.461
R-HSA-9931529 Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK 3.460967e-01 0.461
R-HSA-163615 PKA activation 1.653005e-01 0.782
R-HSA-3371571 HSF1-dependent transactivation 1.527335e-01 0.816
R-HSA-73856 RNA Polymerase II Transcription Termination 1.305386e-01 0.884
R-HSA-389356 Co-stimulation by CD28 2.551824e-01 0.593
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 3.330880e-01 0.477
R-HSA-9843745 Adipogenesis 2.838399e-01 0.547
R-HSA-5654738 Signaling by FGFR2 2.886136e-01 0.540
R-HSA-111931 PKA-mediated phosphorylation of CREB 2.107481e-01 0.676
R-HSA-9820960 Respiratory syncytial virus (RSV) attachment and entry 1.893658e-01 0.723
R-HSA-5675482 Regulation of necroptotic cell death 2.140845e-01 0.669
R-HSA-399997 Acetylcholine regulates insulin secretion 3.640413e-01 0.439
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 3.239124e-01 0.490
R-HSA-432722 Golgi Associated Vesicle Biogenesis 3.128614e-01 0.505
R-HSA-9693928 Defective RIPK1-mediated regulated necrosis 1.871337e-01 0.728
R-HSA-9907900 Proteasome assembly 2.111678e-01 0.675
R-HSA-9909396 Circadian clock 2.910175e-01 0.536
R-HSA-9613829 Chaperone Mediated Autophagy 1.653005e-01 0.782
R-HSA-75944 Transcription from mitochondrial promoters 2.155072e-01 0.667
R-HSA-9686347 Microbial modulation of RIPK1-mediated regulated necrosis 1.240784e-01 0.906
R-HSA-428359 Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... 1.871337e-01 0.728
R-HSA-190377 FGFR2b ligand binding and activation 2.090431e-01 0.680
R-HSA-174411 Polymerase switching on the C-strand of the telomere 1.218559e-01 0.914
R-HSA-442720 CREB1 phosphorylation through the activation of Adenylate Cyclase 2.758051e-01 0.559
R-HSA-8963896 HDL assembly 2.980939e-01 0.526
R-HSA-418885 DCC mediated attractive signaling 3.202710e-01 0.494
R-HSA-190239 FGFR3 ligand binding and activation 3.202710e-01 0.494
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 1.699495e-01 0.770
R-HSA-9619483 Activation of AMPK downstream of NMDARs 3.403464e-01 0.468
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 3.603061e-01 0.443
R-HSA-6806003 Regulation of TP53 Expression and Degradation 1.506423e-01 0.822
R-HSA-450294 MAP kinase activation 1.305386e-01 0.884
R-HSA-6802957 Oncogenic MAPK signaling 3.363170e-01 0.473
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 1.240575e-01 0.906
R-HSA-5357905 Regulation of TNFR1 signaling 2.328776e-01 0.633
R-HSA-73887 Death Receptor Signaling 1.681872e-01 0.774
R-HSA-9609646 HCMV Infection 2.888304e-01 0.539
R-HSA-75893 TNF signaling 1.965242e-01 0.707
R-HSA-69306 DNA Replication 1.632411e-01 0.787
R-HSA-9692913 SARS-CoV-1-mediated effects on programmed cell death 3.051779e-01 0.515
R-HSA-9761174 Formation of intermediate mesoderm 1.871337e-01 0.728
R-HSA-8851805 MET activates RAS signaling 2.534771e-01 0.596
R-HSA-5655302 Signaling by FGFR1 in disease 1.799470e-01 0.745
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 1.240575e-01 0.906
R-HSA-427359 SIRT1 negatively regulates rRNA expression 2.791100e-01 0.554
R-HSA-448424 Interleukin-17 signaling 1.994042e-01 0.700
R-HSA-5658442 Regulation of RAS by GAPs 2.779772e-01 0.556
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 2.915343e-01 0.535
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 3.258090e-01 0.487
R-HSA-4641258 Degradation of DVL 1.323292e-01 0.878
R-HSA-379716 Cytosolic tRNA aminoacylation 1.901576e-01 0.721
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 1.874101e-01 0.727
R-HSA-375165 NCAM signaling for neurite out-growth 2.543016e-01 0.595
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 2.915343e-01 0.535
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 3.146087e-01 0.502
R-HSA-432142 Platelet sensitization by LDL 1.653005e-01 0.782
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 3.146087e-01 0.502
R-HSA-9734767 Developmental Cell Lineages 3.599072e-01 0.444
R-HSA-9636667 Manipulation of host energy metabolism 1.664259e-01 0.779
R-HSA-8985801 Regulation of cortical dendrite branching 2.155072e-01 0.667
R-HSA-111446 Activation of BIM and translocation to mitochondria 2.617013e-01 0.582
R-HSA-844623 The IPAF inflammasome 2.617013e-01 0.582
R-HSA-8964540 Alanine metabolism 3.051779e-01 0.515
R-HSA-2179392 EGFR Transactivation by Gastrin 1.871337e-01 0.728
R-HSA-451306 Ionotropic activity of kainate receptors 2.090431e-01 0.680
R-HSA-3656534 Loss of Function of TGFBR1 in Cancer 3.460967e-01 0.461
R-HSA-4839735 Signaling by AXIN mutants 2.311922e-01 0.636
R-HSA-4839748 Signaling by AMER1 mutants 2.311922e-01 0.636
R-HSA-879415 Advanced glycosylation endproduct receptor signaling 2.534771e-01 0.596
R-HSA-5576892 Phase 0 - rapid depolarisation 1.542069e-01 0.812
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 1.893658e-01 0.723
R-HSA-176033 Interactions of Vpr with host cellular proteins 1.601773e-01 0.795
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 3.202710e-01 0.494
R-HSA-112043 PLC beta mediated events 1.305386e-01 0.884
R-HSA-68949 Orc1 removal from chromatin 1.611200e-01 0.793
R-HSA-933542 TRAF6 mediated NF-kB activation 2.747376e-01 0.561
R-HSA-429947 Deadenylation of mRNA 2.747376e-01 0.561
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 2.906385e-01 0.537
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 3.108355e-01 0.507
R-HSA-8939211 ESR-mediated signaling 2.232270e-01 0.651
R-HSA-69242 S Phase 2.143090e-01 0.669
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 2.551824e-01 0.593
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 1.983590e-01 0.703
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB 1.871337e-01 0.728
R-HSA-2980766 Nuclear Envelope Breakdown 3.601380e-01 0.444
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 1.286660e-01 0.891
R-HSA-5689603 UCH proteinases 2.516975e-01 0.599
R-HSA-166166 MyD88-independent TLR4 cascade 1.286660e-01 0.891
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 2.758940e-01 0.559
R-HSA-68875 Mitotic Prophase 2.991763e-01 0.524
R-HSA-177243 Interactions of Rev with host cellular proteins 1.601773e-01 0.795
R-HSA-6806834 Signaling by MET 2.886136e-01 0.540
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 2.157678e-01 0.666
R-HSA-9006115 Signaling by NTRK2 (TRKB) 1.430839e-01 0.844
R-HSA-199992 trans-Golgi Network Vesicle Budding 2.163548e-01 0.665
R-HSA-180024 DARPP-32 events 3.567511e-01 0.448
R-HSA-5578775 Ion homeostasis 1.965242e-01 0.707
R-HSA-202433 Generation of second messenger molecules 3.195090e-01 0.496
R-HSA-442729 CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde 1.445139e-01 0.840
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 1.799470e-01 0.745
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 2.267632e-01 0.644
R-HSA-975871 MyD88 cascade initiated on plasma membrane 1.318171e-01 0.880
R-HSA-429914 Deadenylation-dependent mRNA decay 2.248025e-01 0.648
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 2.543016e-01 0.595
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 1.318171e-01 0.880
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 1.318171e-01 0.880
R-HSA-112040 G-protein mediated events 1.750183e-01 0.757
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 2.910759e-01 0.536
R-HSA-8852135 Protein ubiquitination 1.365961e-01 0.865
R-HSA-388841 Regulation of T cell activation by CD28 family 2.417461e-01 0.617
R-HSA-975155 MyD88 dependent cascade initiated on endosome 2.050346e-01 0.688
R-HSA-9007101 Rab regulation of trafficking 1.781660e-01 0.749
R-HSA-9006931 Signaling by Nuclear Receptors 1.833626e-01 0.737
R-HSA-72312 rRNA processing 1.999378e-01 0.699
R-HSA-9711097 Cellular response to starvation 1.223803e-01 0.912
R-HSA-9669938 Signaling by KIT in disease 2.423944e-01 0.615
R-HSA-983169 Class I MHC mediated antigen processing & presentation 3.322586e-01 0.479
R-HSA-5423599 Diseases of Mismatch Repair (MMR) 2.617013e-01 0.582
R-HSA-193670 p75NTR negatively regulates cell cycle via SC1 3.051779e-01 0.515
R-HSA-77108 Utilization of Ketone Bodies 2.090431e-01 0.680
R-HSA-5655291 Signaling by FGFR4 in disease 2.980939e-01 0.526
R-HSA-168276 NS1 Mediated Effects on Host Pathways 1.506423e-01 0.822
R-HSA-8941858 Regulation of RUNX3 expression and activity 1.601773e-01 0.795
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 2.016115e-01 0.695
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 3.202710e-01 0.494
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 3.422721e-01 0.466
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 2.526522e-01 0.597
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 2.526522e-01 0.597
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 3.640413e-01 0.439
R-HSA-9932298 Degradation of CRY and PER proteins 3.466928e-01 0.460
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 3.266737e-01 0.486
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 2.326402e-01 0.633
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 2.542072e-01 0.595
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 1.430839e-01 0.844
R-HSA-73857 RNA Polymerase II Transcription 1.633890e-01 0.787
R-HSA-445355 Smooth Muscle Contraction 1.697000e-01 0.770
R-HSA-379724 tRNA Aminoacylation 2.345117e-01 0.630
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 2.328776e-01 0.633
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 2.328776e-01 0.633
R-HSA-212436 Generic Transcription Pathway 2.214631e-01 0.655
R-HSA-449836 Other interleukin signaling 1.801228e-01 0.744
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 1.843954e-01 0.734
R-HSA-9020702 Interleukin-1 signaling 2.440996e-01 0.612
R-HSA-9830674 Formation of the ureteric bud 2.584982e-01 0.588
R-HSA-3371511 HSF1 activation 2.658203e-01 0.575
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 3.059738e-01 0.514
R-HSA-844456 The NLRP3 inflammasome 1.801228e-01 0.744
R-HSA-381042 PERK regulates gene expression 2.526522e-01 0.597
R-HSA-112316 Neuronal System 2.915386e-01 0.535
R-HSA-2132295 MHC class II antigen presentation 1.348297e-01 0.870
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 1.664753e-01 0.779
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 2.607956e-01 0.584
R-HSA-9816359 Maternal to zygotic transition (MZT) 1.348297e-01 0.870
R-HSA-70171 Glycolysis 3.616690e-01 0.442
R-HSA-844615 The AIM2 inflammasome 2.155072e-01 0.667
R-HSA-390696 Adrenoceptors 1.445139e-01 0.840
R-HSA-9706374 FLT3 signaling through SRC family kinases 3.051779e-01 0.515
R-HSA-390651 Dopamine receptors 3.051779e-01 0.515
R-HSA-9927353 Co-inhibition by BTLA 3.460967e-01 0.461
R-HSA-8941284 RUNX2 regulates chondrocyte maturation 3.460967e-01 0.461
R-HSA-8866376 Reelin signalling pathway 3.460967e-01 0.461
R-HSA-425561 Sodium/Calcium exchangers 2.311922e-01 0.636
R-HSA-8849932 Synaptic adhesion-like molecules 1.653005e-01 0.782
R-HSA-445095 Interaction between L1 and Ankyrins 1.430839e-01 0.844
R-HSA-6807004 Negative regulation of MET activity 1.952867e-01 0.709
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 2.758051e-01 0.559
R-HSA-75892 Platelet Adhesion to exposed collagen 2.758051e-01 0.559
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 3.202710e-01 0.494
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 3.422721e-01 0.466
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 2.658203e-01 0.575
R-HSA-180585 Vif-mediated degradation of APOBEC3G 2.658203e-01 0.575
R-HSA-4641257 Degradation of AXIN 2.791100e-01 0.554
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 2.791100e-01 0.554
R-HSA-622312 Inflammasomes 3.403464e-01 0.468
R-HSA-418360 Platelet calcium homeostasis 3.567511e-01 0.448
R-HSA-9692914 SARS-CoV-1-host interactions 1.852988e-01 0.732
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 3.330880e-01 0.477
R-HSA-69206 G1/S Transition 3.459680e-01 0.461
R-HSA-9686114 Non-canonical inflammasome activation 2.980939e-01 0.526
R-HSA-1266695 Interleukin-7 signaling 1.218559e-01 0.914
R-HSA-389948 Co-inhibition by PD-1 3.539644e-01 0.451
R-HSA-187037 Signaling by NTRK1 (TRKA) 1.658110e-01 0.780
R-HSA-5687128 MAPK6/MAPK4 signaling 2.079328e-01 0.682
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 2.423944e-01 0.615
R-HSA-5654727 Negative regulation of FGFR2 signaling 2.396261e-01 0.620
R-HSA-1834941 STING mediated induction of host immune responses 1.801228e-01 0.744
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 1.445139e-01 0.840
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 3.460967e-01 0.461
R-HSA-3270619 IRF3-mediated induction of type I IFN 3.202710e-01 0.494
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 2.396261e-01 0.620
R-HSA-169911 Regulation of Apoptosis 2.526522e-01 0.597
R-HSA-1483148 Synthesis of PG 3.640413e-01 0.439
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 2.925011e-01 0.534
R-HSA-9707616 Heme signaling 2.543016e-01 0.595
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 3.370873e-01 0.472
R-HSA-69202 Cyclin E associated events during G1/S transition 3.370873e-01 0.472
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 3.603061e-01 0.443
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 3.640413e-01 0.439
R-HSA-6803207 TP53 Regulates Transcription of Caspase Activators and Caspases 1.233331e-01 0.909
R-HSA-5675221 Negative regulation of MAPK pathway 3.466928e-01 0.460
R-HSA-1483255 PI Metabolism 2.518124e-01 0.599
R-HSA-1500931 Cell-Cell communication 1.767991e-01 0.753
R-HSA-6804760 Regulation of TP53 Activity through Methylation 1.653005e-01 0.782
R-HSA-5578768 Physiological factors 2.980939e-01 0.526
R-HSA-112409 RAF-independent MAPK1/3 activation 2.423944e-01 0.615
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 1.446822e-01 0.840
R-HSA-9604323 Negative regulation of NOTCH4 signaling 3.195090e-01 0.496
R-HSA-9679191 Potential therapeutics for SARS 1.488652e-01 0.827
R-HSA-5362768 Hh mutants are degraded by ERAD 3.330880e-01 0.477
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 3.330880e-01 0.477
R-HSA-73884 Base Excision Repair 2.564952e-01 0.591
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 3.583323e-01 0.446
R-HSA-8948751 Regulation of PTEN stability and activity 3.128614e-01 0.505
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 1.446822e-01 0.840
R-HSA-8848021 Signaling by PTK6 1.446822e-01 0.840
R-HSA-9010642 ROBO receptors bind AKAP5 1.445139e-01 0.840
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 3.403464e-01 0.468
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 3.059738e-01 0.514
R-HSA-446728 Cell junction organization 3.554425e-01 0.449
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 2.792605e-01 0.554
R-HSA-71384 Ethanol oxidation 2.423944e-01 0.615
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 1.237382e-01 0.907
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 3.601380e-01 0.444
R-HSA-9679506 SARS-CoV Infections 2.133313e-01 0.671
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 1.662737e-01 0.779
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 2.980939e-01 0.526
R-HSA-6807070 PTEN Regulation 3.500080e-01 0.456
R-HSA-2586552 Signaling by Leptin 1.871337e-01 0.728
R-HSA-9793380 Formation of paraxial mesoderm 2.443477e-01 0.612
R-HSA-418990 Adherens junctions interactions 2.822117e-01 0.549
R-HSA-2408522 Selenoamino acid metabolism 2.215983e-01 0.654
R-HSA-210745 Regulation of gene expression in beta cells 1.656422e-01 0.781
R-HSA-69052 Switching of origins to a post-replicative state 3.689893e-01 0.433
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 3.720138e-01 0.429
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 3.730990e-01 0.428
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 3.730990e-01 0.428
R-HSA-1433557 Signaling by SCF-KIT 3.739111e-01 0.427
R-HSA-8854214 TBC/RABGAPs 3.739111e-01 0.427
R-HSA-5387390 Hh mutants abrogate ligand secretion 3.739111e-01 0.427
R-HSA-9663891 Selective autophagy 3.752045e-01 0.426
R-HSA-9909648 Regulation of PD-L1(CD274) expression 3.767852e-01 0.424
R-HSA-674695 RNA Polymerase II Pre-transcription Events 3.796584e-01 0.421
R-HSA-421270 Cell-cell junction organization 3.819694e-01 0.418
R-HSA-4420097 VEGFA-VEGFR2 Pathway 3.831765e-01 0.417
R-HSA-191859 snRNP Assembly 3.838896e-01 0.416
R-HSA-194441 Metabolism of non-coding RNA 3.838896e-01 0.416
R-HSA-180786 Extension of Telomeres 3.838896e-01 0.416
R-HSA-186712 Regulation of beta-cell development 3.838896e-01 0.416
R-HSA-5603029 IkBA variant leads to EDA-ID 3.846081e-01 0.415
R-HSA-5638303 Inhibition of Signaling by Overexpressed EGFR 3.846081e-01 0.415
R-HSA-5638302 Signaling by Overexpressed Wild-Type EGFR in Cancer 3.846081e-01 0.415
R-HSA-8937144 Aryl hydrocarbon receptor signalling 3.846081e-01 0.415
R-HSA-163358 PKA-mediated phosphorylation of key metabolic factors 3.846081e-01 0.415
R-HSA-6791465 Pentose phosphate pathway disease 3.846081e-01 0.415
R-HSA-75094 Formation of the Editosome 3.846081e-01 0.415
R-HSA-3304349 Loss of Function of SMAD2/3 in Cancer 3.846081e-01 0.415
R-HSA-68689 CDC6 association with the ORC:origin complex 3.846081e-01 0.415
R-HSA-193681 Ceramide signalling 3.846081e-01 0.415
R-HSA-444821 Relaxin receptors 3.846081e-01 0.415
R-HSA-9758919 Epithelial-Mesenchymal Transition (EMT) during gastrulation 3.846081e-01 0.415
R-HSA-174437 Removal of the Flap Intermediate from the C-strand 3.855296e-01 0.414
R-HSA-5654219 Phospholipase C-mediated cascade: FGFR1 3.855296e-01 0.414
R-HSA-3560801 Defective B3GAT3 causes JDSSDHD 3.855296e-01 0.414
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 3.855296e-01 0.414
R-HSA-190840 Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 3.855296e-01 0.414
R-HSA-5358606 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 3.855296e-01 0.414
R-HSA-2028269 Signaling by Hippo 3.855296e-01 0.414
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 3.874919e-01 0.412
R-HSA-389958 Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 3.893645e-01 0.410
R-HSA-182971 EGFR downregulation 3.893645e-01 0.410
R-HSA-186763 Downstream signal transduction 3.893645e-01 0.410
R-HSA-1280215 Cytokine Signaling in Immune system 3.900020e-01 0.409
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 3.903313e-01 0.409
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 3.947473e-01 0.404
R-HSA-8943724 Regulation of PTEN gene transcription 3.957546e-01 0.403
R-HSA-9678108 SARS-CoV-1 Infection 3.976292e-01 0.401
R-HSA-111885 Opioid Signalling 3.978868e-01 0.400
R-HSA-9860931 Response of endothelial cells to shear stress 3.978868e-01 0.400
R-HSA-168898 Toll-like Receptor Cascades 3.983286e-01 0.400
R-HSA-5654741 Signaling by FGFR3 4.010329e-01 0.397
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 4.010329e-01 0.397
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 4.010329e-01 0.397
R-HSA-4608870 Asymmetric localization of PCP proteins 4.010329e-01 0.397
R-HSA-9824272 Somitogenesis 4.010329e-01 0.397
R-HSA-69190 DNA strand elongation 4.055235e-01 0.392
R-HSA-180292 GAB1 signalosome 4.066946e-01 0.391
R-HSA-190242 FGFR1 ligand binding and activation 4.066946e-01 0.391
R-HSA-5358508 Mismatch Repair 4.066946e-01 0.391
R-HSA-164378 PKA activation in glucagon signalling 4.066946e-01 0.391
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 4.066946e-01 0.391
R-HSA-190872 Transport of connexons to the plasma membrane 4.066946e-01 0.391
R-HSA-111471 Apoptotic factor-mediated response 4.066946e-01 0.391
R-HSA-8939902 Regulation of RUNX2 expression and activity 4.075984e-01 0.390
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 4.145197e-01 0.382
R-HSA-2299718 Condensation of Prophase Chromosomes 4.145197e-01 0.382
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 4.145197e-01 0.382
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 4.145197e-01 0.382
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 4.194108e-01 0.377
R-HSA-2980767 Activation of NIMA Kinases NEK9, NEK6, NEK7 4.208536e-01 0.376
R-HSA-177539 Autointegration results in viral DNA circles 4.208536e-01 0.376
R-HSA-113507 E2F-enabled inhibition of pre-replication complex formation 4.208536e-01 0.376
R-HSA-175567 Integration of viral DNA into host genomic DNA 4.208536e-01 0.376
R-HSA-3304351 Signaling by TGF-beta Receptor Complex in Cancer 4.208536e-01 0.376
R-HSA-164944 Nef and signal transduction 4.208536e-01 0.376
R-HSA-354192 Integrin signaling 4.215540e-01 0.375
R-HSA-9668328 Sealing of the nuclear envelope (NE) by ESCRT-III 4.215540e-01 0.375
R-HSA-1839124 FGFR1 mutant receptor activation 4.215540e-01 0.375
R-HSA-5619084 ABC transporter disorders 4.222961e-01 0.374
R-HSA-4086400 PCP/CE pathway 4.222961e-01 0.374
R-HSA-5653656 Vesicle-mediated transport 4.226507e-01 0.374
R-HSA-113510 E2F mediated regulation of DNA replication 4.275000e-01 0.369
R-HSA-912631 Regulation of signaling by CBL 4.275000e-01 0.369
R-HSA-392517 Rap1 signalling 4.275000e-01 0.369
R-HSA-9694631 Maturation of nucleoprotein 4.275000e-01 0.369
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 4.279384e-01 0.369
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 4.279384e-01 0.369
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 4.279384e-01 0.369
R-HSA-162906 HIV Infection 4.304596e-01 0.366
R-HSA-69239 Synthesis of DNA 4.341442e-01 0.362
R-HSA-211000 Gene Silencing by RNA 4.341442e-01 0.362
R-HSA-390522 Striated Muscle Contraction 4.374354e-01 0.359
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 4.429033e-01 0.354
R-HSA-2672351 Stimuli-sensing channels 4.431794e-01 0.353
R-HSA-9833482 PKR-mediated signaling 4.434866e-01 0.353
R-HSA-389977 Post-chaperonin tubulin folding pathway 4.479146e-01 0.349
R-HSA-445144 Signal transduction by L1 4.479146e-01 0.349
R-HSA-168638 NOD1/2 Signaling Pathway 4.531488e-01 0.344
R-HSA-5686938 Regulation of TLR by endogenous ligand 4.531488e-01 0.344
R-HSA-5365859 RA biosynthesis pathway 4.531488e-01 0.344
R-HSA-977225 Amyloid fiber formation 4.540249e-01 0.343
R-HSA-73893 DNA Damage Bypass 4.545191e-01 0.342
R-HSA-167590 Nef Mediated CD4 Down-regulation 4.549663e-01 0.342
R-HSA-8851907 MET activates PI3K/AKT signaling 4.549663e-01 0.342
R-HSA-203641 NOSTRIN mediated eNOS trafficking 4.549663e-01 0.342
R-HSA-2562578 TRIF-mediated programmed cell death 4.549663e-01 0.342
R-HSA-111367 SLBP independent Processing of Histone Pre-mRNAs 4.549663e-01 0.342
R-HSA-190371 FGFR3b ligand binding and activation 4.549663e-01 0.342
R-HSA-72731 Recycling of eIF2:GDP 4.549663e-01 0.342
R-HSA-114516 Disinhibition of SNARE formation 4.549663e-01 0.342
R-HSA-72200 mRNA Editing: C to U Conversion 4.549663e-01 0.342
R-HSA-9032845 Activated NTRK2 signals through CDK5 4.549663e-01 0.342
R-HSA-9603381 Activated NTRK3 signals through PI3K 4.549663e-01 0.342
R-HSA-139915 Activation of PUMA and translocation to mitochondria 4.549663e-01 0.342
R-HSA-163754 Insulin effects increased synthesis of Xylulose-5-Phosphate 4.549663e-01 0.342
R-HSA-8948747 Regulation of PTEN localization 4.549663e-01 0.342
R-HSA-3371599 Defective HLCS causes multiple carboxylase deficiency 4.549663e-01 0.342
R-HSA-5576890 Phase 3 - rapid repolarisation 4.549663e-01 0.342
R-HSA-110357 Displacement of DNA glycosylase by APEX1 4.549663e-01 0.342
R-HSA-202403 TCR signaling 4.611832e-01 0.336
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 4.645163e-01 0.333
R-HSA-210991 Basigin interactions 4.679125e-01 0.330
R-HSA-69186 Lagging Strand Synthesis 4.679125e-01 0.330
R-HSA-162594 Early Phase of HIV Life Cycle 4.679125e-01 0.330
R-HSA-167044 Signalling to RAS 4.679125e-01 0.330
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 4.679125e-01 0.330
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 4.686771e-01 0.329
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 4.715759e-01 0.326
R-HSA-6807878 COPI-mediated anterograde transport 4.724580e-01 0.326
R-HSA-5607764 CLEC7A (Dectin-1) signaling 4.724580e-01 0.326
R-HSA-381119 Unfolded Protein Response (UPR) 4.738907e-01 0.324
R-HSA-194138 Signaling by VEGF 4.763758e-01 0.322
R-HSA-1169091 Activation of NF-kappaB in B cells 4.806783e-01 0.318
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 4.806783e-01 0.318
R-HSA-5358346 Hedgehog ligand biogenesis 4.806783e-01 0.318
R-HSA-170834 Signaling by TGF-beta Receptor Complex 4.820291e-01 0.317
R-HSA-5621481 C-type lectin receptors (CLRs) 4.838354e-01 0.315
R-HSA-114604 GPVI-mediated activation cascade 4.840045e-01 0.315
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 4.853336e-01 0.314
R-HSA-9032500 Activated NTRK2 signals through FYN 4.870717e-01 0.312
R-HSA-446107 Type I hemidesmosome assembly 4.870717e-01 0.312
R-HSA-212718 EGFR interacts with phospholipase C-gamma 4.870717e-01 0.312
R-HSA-9028335 Activated NTRK2 signals through PI3K 4.870717e-01 0.312
R-HSA-190370 FGFR1b ligand binding and activation 4.870717e-01 0.312
R-HSA-193634 Axonal growth inhibition (RHOA activation) 4.870717e-01 0.312
R-HSA-77588 SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs 4.870717e-01 0.312
R-HSA-3371378 Regulation by c-FLIP 4.870717e-01 0.312
R-HSA-196025 Formation of annular gap junctions 4.870717e-01 0.312
R-HSA-69416 Dimerization of procaspase-8 4.870717e-01 0.312
R-HSA-444473 Formyl peptide receptors bind formyl peptides and many other ligands 4.870717e-01 0.312
R-HSA-425986 Sodium/Proton exchangers 4.870717e-01 0.312
R-HSA-1462054 Alpha-defensins 4.870717e-01 0.312
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 4.874718e-01 0.312
R-HSA-9694614 Attachment and Entry 4.874718e-01 0.312
R-HSA-9671555 Signaling by PDGFR in disease 4.874718e-01 0.312
R-HSA-9034015 Signaling by NTRK3 (TRKC) 4.874718e-01 0.312
R-HSA-8876384 Listeria monocytogenes entry into host cells 4.874718e-01 0.312
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 4.891104e-01 0.311
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 4.891104e-01 0.311
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 4.935726e-01 0.307
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 4.935726e-01 0.307
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 4.935726e-01 0.307
R-HSA-9855142 Cellular responses to mechanical stimuli 4.968081e-01 0.304
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 4.991169e-01 0.302
R-HSA-5689896 Ovarian tumor domain proteases 4.991169e-01 0.302
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 5.004529e-01 0.301
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 5.053311e-01 0.296
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 5.063304e-01 0.296
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 5.063304e-01 0.296
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 5.065750e-01 0.295
R-HSA-157118 Signaling by NOTCH 5.113884e-01 0.291
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 5.116973e-01 0.291
R-HSA-381038 XBP1(S) activates chaperone genes 5.160575e-01 0.287
R-HSA-193692 Regulated proteolysis of p75NTR 5.172877e-01 0.286
R-HSA-5218900 CASP8 activity is inhibited 5.172877e-01 0.286
R-HSA-193697 p75NTR regulates axonogenesis 5.172877e-01 0.286
R-HSA-190873 Gap junction degradation 5.172877e-01 0.286
R-HSA-2025928 Calcineurin activates NFAT 5.172877e-01 0.286
R-HSA-176974 Unwinding of DNA 5.172877e-01 0.286
R-HSA-937042 IRAK2 mediated activation of TAK1 complex 5.172877e-01 0.286
R-HSA-75072 mRNA Editing 5.172877e-01 0.286
R-HSA-9840373 Cellular response to mitochondrial stress 5.172877e-01 0.286
R-HSA-3323169 Defects in biotin (Btn) metabolism 5.172877e-01 0.286
R-HSA-418889 Caspase activation via Dependence Receptors in the absence of ligand 5.172877e-01 0.286
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 5.172877e-01 0.286
R-HSA-72649 Translation initiation complex formation 5.189427e-01 0.285
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 5.189427e-01 0.285
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 5.228367e-01 0.282
R-HSA-389957 Prefoldin mediated transfer of substrate to CCT/TriC 5.252078e-01 0.280
R-HSA-912526 Interleukin receptor SHC signaling 5.252078e-01 0.280
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 5.252078e-01 0.280
R-HSA-74182 Ketone body metabolism 5.252078e-01 0.280
R-HSA-6798695 Neutrophil degranulation 5.259023e-01 0.279
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 5.286467e-01 0.277
R-HSA-71336 Pentose phosphate pathway 5.286467e-01 0.277
R-HSA-9012852 Signaling by NOTCH3 5.314013e-01 0.275
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 5.314013e-01 0.275
R-HSA-70326 Glucose metabolism 5.403047e-01 0.267
R-HSA-5696395 Formation of Incision Complex in GG-NER 5.430426e-01 0.265
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 5.433594e-01 0.265
R-HSA-8963898 Plasma lipoprotein assembly 5.433594e-01 0.265
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 5.436984e-01 0.265
R-HSA-72702 Ribosomal scanning and start codon recognition 5.436984e-01 0.265
R-HSA-5654736 Signaling by FGFR1 5.436984e-01 0.265
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 5.436984e-01 0.265
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 5.436984e-01 0.265
R-HSA-109606 Intrinsic Pathway for Apoptosis 5.436984e-01 0.265
R-HSA-173107 Binding and entry of HIV virion 5.457255e-01 0.263
R-HSA-8875555 MET activates RAP1 and RAC1 5.457255e-01 0.263
R-HSA-68952 DNA replication initiation 5.457255e-01 0.263
R-HSA-390450 Folding of actin by CCT/TriC 5.457255e-01 0.263
R-HSA-9664873 Pexophagy 5.457255e-01 0.263
R-HSA-5221030 TET1,2,3 and TDG demethylate DNA 5.457255e-01 0.263
R-HSA-9014325 TICAM1,TRAF6-dependent induction of TAK1 complex 5.457255e-01 0.263
R-HSA-164843 2-LTR circle formation 5.457255e-01 0.263
R-HSA-9683686 Maturation of spike protein 5.457255e-01 0.263
R-HSA-1296346 Tandem pore domain potassium channels 5.457255e-01 0.263
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 5.457255e-01 0.263
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 5.502556e-01 0.259
R-HSA-9730414 MITF-M-regulated melanocyte development 5.508227e-01 0.259
R-HSA-9013694 Signaling by NOTCH4 5.555654e-01 0.255
R-HSA-1483166 Synthesis of PA 5.558272e-01 0.255
R-HSA-9833110 RSV-host interactions 5.564834e-01 0.255
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 5.571801e-01 0.254
R-HSA-9694548 Maturation of spike protein 5.571801e-01 0.254
R-HSA-9607240 FLT3 Signaling 5.571801e-01 0.254
R-HSA-195721 Signaling by WNT 5.582090e-01 0.253
R-HSA-3000157 Laminin interactions 5.610218e-01 0.251
R-HSA-70221 Glycogen breakdown (glycogenolysis) 5.610218e-01 0.251
R-HSA-8986944 Transcriptional Regulation by MECP2 5.655797e-01 0.248
R-HSA-3000171 Non-integrin membrane-ECM interactions 5.662269e-01 0.247
R-HSA-1169408 ISG15 antiviral mechanism 5.662269e-01 0.247
R-HSA-9856651 MITF-M-dependent gene expression 5.667246e-01 0.247
R-HSA-6782135 Dual incision in TC-NER 5.677812e-01 0.246
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 5.677812e-01 0.246
R-HSA-933543 NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 5.724895e-01 0.242
R-HSA-9706019 RHOBTB3 ATPase cycle 5.724895e-01 0.242
R-HSA-9034864 Activated NTRK3 signals through RAS 5.724895e-01 0.242
R-HSA-1483226 Synthesis of PI 5.724895e-01 0.242
R-HSA-9645460 Alpha-protein kinase 1 signaling pathway 5.724895e-01 0.242
R-HSA-9754560 SARS-CoV-2 modulates autophagy 5.724895e-01 0.242
R-HSA-9662834 CD163 mediating an anti-inflammatory response 5.724895e-01 0.242
R-HSA-75205 Dissolution of Fibrin Clot 5.724895e-01 0.242
R-HSA-418346 Platelet homeostasis 5.743635e-01 0.241
R-HSA-381070 IRE1alpha activates chaperones 5.751910e-01 0.240
R-HSA-1980143 Signaling by NOTCH1 5.767561e-01 0.239
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 5.781897e-01 0.238
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 5.781897e-01 0.238
R-HSA-9703465 Signaling by FLT3 fusion proteins 5.781897e-01 0.238
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 5.781897e-01 0.238
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 5.781897e-01 0.238
R-HSA-5689901 Metalloprotease DUBs 5.781897e-01 0.238
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 5.781897e-01 0.238
R-HSA-9772573 Late SARS-CoV-2 Infection Events 5.846955e-01 0.233
R-HSA-9694635 Translation of Structural Proteins 5.871488e-01 0.231
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 5.894807e-01 0.230
R-HSA-1660661 Sphingolipid de novo biosynthesis 5.911426e-01 0.228
R-HSA-351202 Metabolism of polyamines 5.911426e-01 0.228
R-HSA-174414 Processive synthesis on the C-strand of the telomere 5.948601e-01 0.226
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 5.948601e-01 0.226
R-HSA-8949613 Cristae formation 5.948601e-01 0.226
R-HSA-389357 CD28 dependent PI3K/Akt signaling 5.948601e-01 0.226
R-HSA-264876 Insulin processing 5.948601e-01 0.226
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 5.948601e-01 0.226
R-HSA-162592 Integration of provirus 5.976782e-01 0.224
R-HSA-9026519 Activated NTRK2 signals through RAS 5.976782e-01 0.224
R-HSA-209560 NF-kB is activated and signals survival 5.976782e-01 0.224
R-HSA-202670 ERKs are inactivated 5.976782e-01 0.224
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 5.976782e-01 0.224
R-HSA-113501 Inhibition of replication initiation of damaged DNA by RB1/E2F1 5.976782e-01 0.224
R-HSA-180689 APOBEC3G mediated resistance to HIV-1 infection 5.976782e-01 0.224
R-HSA-2214320 Anchoring fibril formation 5.976782e-01 0.224
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 5.976782e-01 0.224
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 5.979713e-01 0.223
R-HSA-112315 Transmission across Chemical Synapses 6.015892e-01 0.221
R-HSA-168325 Viral Messenger RNA Synthesis 6.025401e-01 0.220
R-HSA-1280218 Adaptive Immune System 6.066201e-01 0.217
R-HSA-9659379 Sensory processing of sound 6.075086e-01 0.216
R-HSA-9612973 Autophagy 6.105283e-01 0.214
R-HSA-190828 Gap junction trafficking 6.110093e-01 0.214
R-HSA-373752 Netrin-1 signaling 6.110093e-01 0.214
R-HSA-375280 Amine ligand-binding receptors 6.110093e-01 0.214
R-HSA-451326 Activation of kainate receptors upon glutamate binding 6.110319e-01 0.214
R-HSA-5654732 Negative regulation of FGFR3 signaling 6.110319e-01 0.214
R-HSA-73614 Pyrimidine salvage 6.110319e-01 0.214
R-HSA-9664407 Parasite infection 6.122272e-01 0.213
R-HSA-9664422 FCGR3A-mediated phagocytosis 6.122272e-01 0.213
R-HSA-9664417 Leishmania phagocytosis 6.122272e-01 0.213
R-HSA-6784531 tRNA processing in the nucleus 6.137433e-01 0.212
R-HSA-186797 Signaling by PDGF 6.137433e-01 0.212
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 6.137433e-01 0.212
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 6.174688e-01 0.209
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 6.174688e-01 0.209
R-HSA-162587 HIV Life Cycle 6.176149e-01 0.209
R-HSA-1632852 Macroautophagy 6.196661e-01 0.208
R-HSA-209543 p75NTR recruits signalling complexes 6.213842e-01 0.207
R-HSA-3000484 Scavenging by Class F Receptors 6.213842e-01 0.207
R-HSA-5619094 Variant SLC6A14 may confer susceptibility towards obesity 6.213842e-01 0.207
R-HSA-4641265 Repression of WNT target genes 6.213842e-01 0.207
R-HSA-8941856 RUNX3 regulates NOTCH signaling 6.213842e-01 0.207
R-HSA-2428933 SHC-related events triggered by IGF1R 6.213842e-01 0.207
R-HSA-9028731 Activated NTRK2 signals through FRS2 and FRS3 6.213842e-01 0.207
R-HSA-877312 Regulation of IFNG signaling 6.213842e-01 0.207
R-HSA-198323 AKT phosphorylates targets in the cytosol 6.213842e-01 0.207
R-HSA-8983432 Interleukin-15 signaling 6.213842e-01 0.207
R-HSA-76009 Platelet Aggregation (Plug Formation) 6.237607e-01 0.205
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 6.237607e-01 0.205
R-HSA-6790901 rRNA modification in the nucleus and cytosol 6.247485e-01 0.204
R-HSA-9615710 Late endosomal microautophagy 6.267060e-01 0.203
R-HSA-5656169 Termination of translesion DNA synthesis 6.267060e-01 0.203
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 6.272784e-01 0.203
R-HSA-114608 Platelet degranulation 6.300926e-01 0.201
R-HSA-877300 Interferon gamma signaling 6.315904e-01 0.200
R-HSA-5690714 CD22 mediated BCR regulation 6.355526e-01 0.197
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 6.362229e-01 0.196
R-HSA-8878159 Transcriptional regulation by RUNX3 6.393049e-01 0.194
R-HSA-2424491 DAP12 signaling 6.418849e-01 0.193
R-HSA-76046 RNA Polymerase III Transcription Initiation 6.418849e-01 0.193
R-HSA-5654716 Downstream signaling of activated FGFR4 6.418849e-01 0.193
R-HSA-114452 Activation of BH3-only proteins 6.418849e-01 0.193
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 6.436948e-01 0.191
R-HSA-190373 FGFR1c ligand binding and activation 6.436948e-01 0.191
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 6.436948e-01 0.191
R-HSA-9683610 Maturation of nucleoprotein 6.436948e-01 0.191
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 6.436948e-01 0.191
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 6.461532e-01 0.190
R-HSA-1234174 Cellular response to hypoxia 6.461532e-01 0.190
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 6.464352e-01 0.189
R-HSA-9707564 Cytoprotection by HMOX1 6.464352e-01 0.189
R-HSA-8955332 Carboxyterminal post-translational modifications of tubulin 6.483939e-01 0.188
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 6.483939e-01 0.188
R-HSA-9824443 Parasitic Infection Pathways 6.496176e-01 0.187
R-HSA-9658195 Leishmania infection 6.496176e-01 0.187
R-HSA-5620924 Intraflagellar transport 6.602724e-01 0.180
R-HSA-9031628 NGF-stimulated transcription 6.602724e-01 0.180
R-HSA-70263 Gluconeogenesis 6.602724e-01 0.180
R-HSA-425410 Metal ion SLC transporters 6.602724e-01 0.180
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 6.646919e-01 0.177
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 6.646919e-01 0.177
R-HSA-399956 CRMPs in Sema3A signaling 6.646919e-01 0.177
R-HSA-69166 Removal of the Flap Intermediate 6.646919e-01 0.177
R-HSA-205043 NRIF signals cell death from the nucleus 6.646919e-01 0.177
R-HSA-190372 FGFR3c ligand binding and activation 6.646919e-01 0.177
R-HSA-975163 IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation 6.646919e-01 0.177
R-HSA-5607763 CLEC7A (Dectin-1) induces NFAT activation 6.646919e-01 0.177
R-HSA-177504 Retrograde neurotrophin signalling 6.646919e-01 0.177
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 6.646919e-01 0.177
R-HSA-173599 Formation of the active cofactor, UDP-glucuronate 6.646919e-01 0.177
R-HSA-9856872 Malate-aspartate shuttle 6.646919e-01 0.177
R-HSA-391160 Signal regulatory protein family interactions 6.646919e-01 0.177
R-HSA-382556 ABC-family proteins mediated transport 6.649428e-01 0.177
R-HSA-199977 ER to Golgi Anterograde Transport 6.695669e-01 0.174
R-HSA-4791275 Signaling by WNT in cancer 6.707742e-01 0.173
R-HSA-9675126 Diseases of mitotic cell cycle 6.707742e-01 0.173
R-HSA-2024096 HS-GAG degradation 6.707742e-01 0.173
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 6.707742e-01 0.173
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 6.718578e-01 0.173
R-HSA-157858 Gap junction trafficking and regulation 6.718578e-01 0.173
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 6.739833e-01 0.171
R-HSA-167172 Transcription of the HIV genome 6.767139e-01 0.170
R-HSA-1592230 Mitochondrial biogenesis 6.812208e-01 0.167
R-HSA-2173791 TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 6.844529e-01 0.165
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 6.844529e-01 0.165
R-HSA-73780 RNA Polymerase III Chain Elongation 6.844529e-01 0.165
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 6.844529e-01 0.165
R-HSA-69183 Processive synthesis on the lagging strand 6.844529e-01 0.165
R-HSA-193639 p75NTR signals via NF-kB 6.844529e-01 0.165
R-HSA-937072 TRAF6-mediated induction of TAK1 complex within TLR4 complex 6.844529e-01 0.165
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants 6.844529e-01 0.165
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants 6.844529e-01 0.165
R-HSA-196780 Biotin transport and metabolism 6.844529e-01 0.165
R-HSA-8876725 Protein methylation 6.844529e-01 0.165
R-HSA-171007 p38MAPK events 6.844529e-01 0.165
R-HSA-446353 Cell-extracellular matrix interactions 6.844529e-01 0.165
R-HSA-5654726 Negative regulation of FGFR1 signaling 6.844960e-01 0.165
R-HSA-390466 Chaperonin-mediated protein folding 6.915394e-01 0.160
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 6.942726e-01 0.158
R-HSA-8878166 Transcriptional regulation by RUNX2 6.960545e-01 0.157
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 6.977452e-01 0.156
R-HSA-114508 Effects of PIP2 hydrolysis 6.977452e-01 0.156
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 6.977452e-01 0.156
R-HSA-163359 Glucagon signaling in metabolic regulation 6.977452e-01 0.156
R-HSA-76002 Platelet activation, signaling and aggregation 7.025226e-01 0.153
R-HSA-9664420 Killing mechanisms 7.030503e-01 0.153
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 7.030503e-01 0.153
R-HSA-434316 Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion 7.030503e-01 0.153
R-HSA-140534 Caspase activation via Death Receptors in the presence of ligand 7.030503e-01 0.153
R-HSA-5576886 Phase 4 - resting membrane potential 7.030503e-01 0.153
R-HSA-9754706 Atorvastatin ADME 7.030503e-01 0.153
R-HSA-9945266 Differentiation of T cells 7.030503e-01 0.153
R-HSA-9942503 Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) 7.030503e-01 0.153
R-HSA-9634600 Regulation of glycolysis by fructose 2,6-bisphosphate metabolism 7.030503e-01 0.153
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 7.030503e-01 0.153
R-HSA-9733458 Induction of Cell-Cell Fusion 7.030503e-01 0.153
R-HSA-5099900 WNT5A-dependent internalization of FZD4 7.030503e-01 0.153
R-HSA-5635838 Activation of SMO 7.030503e-01 0.153
R-HSA-9706369 Negative regulation of FLT3 7.030503e-01 0.153
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 7.050422e-01 0.152
R-HSA-5619507 Activation of HOX genes during differentiation 7.050422e-01 0.152
R-HSA-5620920 Cargo trafficking to the periciliary membrane 7.053899e-01 0.152
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 7.053899e-01 0.152
R-HSA-453276 Regulation of mitotic cell cycle 7.053899e-01 0.152
R-HSA-5663205 Infectious disease 7.081308e-01 0.150
R-HSA-1236974 ER-Phagosome pathway 7.084391e-01 0.150
R-HSA-1643685 Disease 7.093615e-01 0.149
R-HSA-5696400 Dual Incision in GG-NER 7.105298e-01 0.148
R-HSA-1971475 Glycosaminoglycan-protein linkage region biosynthesis 7.105298e-01 0.148
R-HSA-6814122 Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding 7.105298e-01 0.148
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 7.105298e-01 0.148
R-HSA-5673000 RAF activation 7.105298e-01 0.148
R-HSA-190861 Gap junction assembly 7.105298e-01 0.148
R-HSA-202424 Downstream TCR signaling 7.166417e-01 0.145
R-HSA-1483257 Phospholipid metabolism 7.188489e-01 0.143
R-HSA-9690406 Transcriptional regulation of testis differentiation 7.205528e-01 0.142
R-HSA-5576893 Phase 2 - plateau phase 7.205528e-01 0.142
R-HSA-1566977 Fibronectin matrix formation 7.205528e-01 0.142
R-HSA-70370 Galactose catabolism 7.205528e-01 0.142
R-HSA-196783 Coenzyme A biosynthesis 7.205528e-01 0.142
R-HSA-9027307 Biosynthesis of maresin-like SPMs 7.205528e-01 0.142
R-HSA-187687 Signalling to ERKs 7.228585e-01 0.141
R-HSA-9694516 SARS-CoV-2 Infection 7.244645e-01 0.140
R-HSA-1912408 Pre-NOTCH Transcription and Translation 7.246792e-01 0.140
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 7.254130e-01 0.139
R-HSA-109582 Hemostasis 7.337208e-01 0.134
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 7.347407e-01 0.134
R-HSA-2022928 HS-GAG biosynthesis 7.347407e-01 0.134
R-HSA-74158 RNA Polymerase III Transcription 7.347407e-01 0.134
R-HSA-432720 Lysosome Vesicle Biogenesis 7.347407e-01 0.134
R-HSA-9682385 FLT3 signaling in disease 7.347407e-01 0.134
R-HSA-163560 Triglyceride catabolism 7.347407e-01 0.134
R-HSA-8941326 RUNX2 regulates bone development 7.347407e-01 0.134
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 7.370246e-01 0.133
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 7.370246e-01 0.133
R-HSA-4641263 Regulation of FZD by ubiquitination 7.370246e-01 0.133
R-HSA-391251 Protein folding 7.402596e-01 0.131
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 7.406870e-01 0.130
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 7.448294e-01 0.128
R-HSA-419037 NCAM1 interactions 7.461862e-01 0.127
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 7.461862e-01 0.127
R-HSA-9006936 Signaling by TGFB family members 7.511912e-01 0.124
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 7.525265e-01 0.123
R-HSA-73980 RNA Polymerase III Transcription Termination 7.525265e-01 0.123
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 7.525265e-01 0.123
R-HSA-2564830 Cytosolic iron-sulfur cluster assembly 7.525265e-01 0.123
R-HSA-210993 Tie2 Signaling 7.525265e-01 0.123
R-HSA-9679504 Translation of Replicase and Assembly of the Replication Transcription Complex 7.525265e-01 0.123
R-HSA-162599 Late Phase of HIV Life Cycle 7.535951e-01 0.123
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 7.535951e-01 0.123
R-HSA-9837999 Mitochondrial protein degradation 7.551835e-01 0.122
R-HSA-1483249 Inositol phosphate metabolism 7.621623e-01 0.118
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 7.624010e-01 0.118
R-HSA-9772572 Early SARS-CoV-2 Infection Events 7.631345e-01 0.117
R-HSA-2871837 FCERI mediated NF-kB activation 7.653198e-01 0.116
R-HSA-937041 IKK complex recruitment mediated by RIP1 7.671154e-01 0.115
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 7.671154e-01 0.115
R-HSA-110320 Translesion Synthesis by POLH 7.671154e-01 0.115
R-HSA-429958 mRNA decay by 3' to 5' exoribonuclease 7.671154e-01 0.115
R-HSA-2243919 Crosslinking of collagen fibrils 7.671154e-01 0.115
R-HSA-201556 Signaling by ALK 7.678078e-01 0.115
R-HSA-352230 Amino acid transport across the plasma membrane 7.718798e-01 0.112
R-HSA-1296071 Potassium Channels 7.763519e-01 0.110
R-HSA-5260271 Diseases of Immune System 7.780053e-01 0.109
R-HSA-5602358 Diseases associated with the TLR signaling cascade 7.780053e-01 0.109
R-HSA-8982491 Glycogen metabolism 7.780053e-01 0.109
R-HSA-451927 Interleukin-2 family signaling 7.780053e-01 0.109
R-HSA-5362517 Signaling by Retinoic Acid 7.803591e-01 0.108
R-HSA-5654720 PI-3K cascade:FGFR4 7.808452e-01 0.107
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 7.808452e-01 0.107
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 7.808452e-01 0.107
R-HSA-5620916 VxPx cargo-targeting to cilium 7.808452e-01 0.107
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 7.808452e-01 0.107
R-HSA-9629569 Protein hydroxylation 7.808452e-01 0.107
R-HSA-3322077 Glycogen synthesis 7.808452e-01 0.107
R-HSA-5218920 VEGFR2 mediated vascular permeability 7.878083e-01 0.104
R-HSA-73933 Resolution of Abasic Sites (AP sites) 7.878083e-01 0.104
R-HSA-8853884 Transcriptional Regulation by VENTX 7.878083e-01 0.104
R-HSA-73817 Purine ribonucleoside monophosphate biosynthesis 7.878083e-01 0.104
R-HSA-445717 Aquaporin-mediated transport 7.885769e-01 0.103
R-HSA-422356 Regulation of insulin secretion 7.896656e-01 0.103
R-HSA-913531 Interferon Signaling 7.911664e-01 0.102
R-HSA-9758941 Gastrulation 7.928652e-01 0.101
R-HSA-202040 G-protein activation 7.937662e-01 0.100
R-HSA-5357786 TNFR1-induced proapoptotic signaling 7.937662e-01 0.100
R-HSA-5602498 MyD88 deficiency (TLR2/4) 7.937662e-01 0.100
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 7.937662e-01 0.100
R-HSA-9931295 PD-L1(CD274) glycosylation and translocation to plasma membrane 7.937662e-01 0.100
R-HSA-2161541 Abacavir metabolism 7.937662e-01 0.100
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 7.937662e-01 0.100
R-HSA-9656223 Signaling by RAF1 mutants 7.972280e-01 0.098
R-HSA-9683701 Translation of Structural Proteins 7.972280e-01 0.098
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 8.059262e-01 0.094
R-HSA-5603041 IRAK4 deficiency (TLR2/4) 8.059262e-01 0.094
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 8.059262e-01 0.094
R-HSA-5654719 SHC-mediated cascade:FGFR4 8.059262e-01 0.094
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 8.059262e-01 0.094
R-HSA-8949215 Mitochondrial calcium ion transport 8.059262e-01 0.094
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 8.062754e-01 0.094
R-HSA-165159 MTOR signalling 8.062754e-01 0.094
R-HSA-983712 Ion channel transport 8.093180e-01 0.092
R-HSA-5617833 Cilium Assembly 8.137731e-01 0.089
R-HSA-5654743 Signaling by FGFR4 8.149617e-01 0.089
R-HSA-350054 Notch-HLH transcription pathway 8.173699e-01 0.088
R-HSA-6803529 FGFR2 alternative splicing 8.173699e-01 0.088
R-HSA-166208 mTORC1-mediated signalling 8.173699e-01 0.088
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 8.173699e-01 0.088
R-HSA-5654712 FRS-mediated FGFR4 signaling 8.173699e-01 0.088
R-HSA-912694 Regulation of IFNA/IFNB signaling 8.173699e-01 0.088
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 8.173699e-01 0.088
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 8.173699e-01 0.088
R-HSA-9694676 Translation of Replicase and Assembly of the Replication Transcription Complex 8.173699e-01 0.088
R-HSA-3858494 Beta-catenin independent WNT signaling 8.190736e-01 0.087
R-HSA-1852241 Organelle biogenesis and maintenance 8.197443e-01 0.086
R-HSA-9705683 SARS-CoV-2-host interactions 8.203739e-01 0.086
R-HSA-5619115 Disorders of transmembrane transporters 8.219415e-01 0.085
R-HSA-2172127 DAP12 interactions 8.232979e-01 0.084
R-HSA-69231 Cyclin D associated events in G1 8.232979e-01 0.084
R-HSA-69236 G1 Phase 8.232979e-01 0.084
R-HSA-9759194 Nuclear events mediated by NFE2L2 8.267585e-01 0.083
R-HSA-400451 Free fatty acids regulate insulin secretion 8.281395e-01 0.082
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 8.281395e-01 0.082
R-HSA-446210 Synthesis of UDP-N-acetyl-glucosamine 8.281395e-01 0.082
R-HSA-1855167 Synthesis of pyrophosphates in the cytosol 8.281395e-01 0.082
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 8.281395e-01 0.082
R-HSA-9018682 Biosynthesis of maresins 8.281395e-01 0.082
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 8.281395e-01 0.082
R-HSA-9711123 Cellular response to chemical stress 8.309478e-01 0.080
R-HSA-3560782 Diseases associated with glycosaminoglycan metabolism 8.312952e-01 0.080
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 8.312952e-01 0.080
R-HSA-9958863 SLC-mediated transport of amino acids 8.326618e-01 0.080
R-HSA-202430 Translocation of ZAP-70 to Immunological synapse 8.382746e-01 0.077
R-HSA-418592 ADP signalling through P2Y purinoceptor 1 8.382746e-01 0.077
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 8.382746e-01 0.077
R-HSA-428930 Thromboxane signalling through TP receptor 8.382746e-01 0.077
R-HSA-446199 Synthesis of dolichyl-phosphate 8.382746e-01 0.077
R-HSA-9703648 Signaling by FLT3 ITD and TKD mutants 8.382746e-01 0.077
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 8.389645e-01 0.076
R-HSA-9649948 Signaling downstream of RAS mutants 8.389645e-01 0.076
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 8.389645e-01 0.076
R-HSA-6802949 Signaling by RAS mutants 8.389645e-01 0.076
R-HSA-9861718 Regulation of pyruvate metabolism 8.389645e-01 0.076
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 8.428383e-01 0.074
R-HSA-9932451 SWI/SNF chromatin remodelers 8.478126e-01 0.072
R-HSA-9932444 ATP-dependent chromatin remodelers 8.478126e-01 0.072
R-HSA-420029 Tight junction interactions 8.478126e-01 0.072
R-HSA-1482801 Acyl chain remodelling of PS 8.478126e-01 0.072
R-HSA-9839394 TGFBR3 expression 8.478126e-01 0.072
R-HSA-1236975 Antigen processing-Cross presentation 8.520931e-01 0.070
R-HSA-9634597 GPER1 signaling 8.533625e-01 0.069
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 8.556227e-01 0.068
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 8.567886e-01 0.067
R-HSA-525793 Myogenesis 8.567886e-01 0.067
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 8.567886e-01 0.067
R-HSA-400042 Adrenaline,noradrenaline inhibits insulin secretion 8.567886e-01 0.067
R-HSA-9638630 Attachment of bacteria to epithelial cells 8.567886e-01 0.067
R-HSA-70635 Urea cycle 8.567886e-01 0.067
R-HSA-2161522 Abacavir ADME 8.567886e-01 0.067
R-HSA-9865118 Diseases of branched-chain amino acid catabolism 8.567886e-01 0.067
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 8.567886e-01 0.067
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 8.601124e-01 0.065
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 8.652357e-01 0.063
R-HSA-201451 Signaling by BMP 8.652357e-01 0.063
R-HSA-8866652 Synthesis of active ubiquitin: roles of E1 and E2 enzymes 8.652357e-01 0.063
R-HSA-1483213 Synthesis of PE 8.652357e-01 0.063
R-HSA-193807 Synthesis of bile acids and bile salts via 27-hydroxycholesterol 8.652357e-01 0.063
R-HSA-9748787 Azathioprine ADME 8.665767e-01 0.062
R-HSA-9749641 Aspirin ADME 8.686036e-01 0.061
R-HSA-2029481 FCGR activation 8.705054e-01 0.060
R-HSA-9864848 Complex IV assembly 8.727658e-01 0.059
R-HSA-113418 Formation of the Early Elongation Complex 8.731850e-01 0.059
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 8.731850e-01 0.059
R-HSA-77387 Insulin receptor recycling 8.731850e-01 0.059
R-HSA-9757110 Prednisone ADME 8.731850e-01 0.059
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 8.731850e-01 0.059
R-HSA-1912422 Pre-NOTCH Expression and Processing 8.749205e-01 0.058
R-HSA-9674555 Signaling by CSF3 (G-CSF) 8.806659e-01 0.055
R-HSA-392154 Nitric oxide stimulates guanylate cyclase 8.806659e-01 0.055
R-HSA-8956320 Nucleotide biosynthesis 8.843577e-01 0.053
R-HSA-9755511 KEAP1-NFE2L2 pathway 8.863258e-01 0.052
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 8.877060e-01 0.052
R-HSA-456926 Thrombin signalling through proteinase activated receptors (PARs) 8.877060e-01 0.052
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 8.877060e-01 0.052
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 8.883945e-01 0.051
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 8.897261e-01 0.051
R-HSA-2871809 FCERI mediated Ca+2 mobilization 8.909630e-01 0.050
R-HSA-383280 Nuclear Receptor transcription pathway 8.931671e-01 0.049
R-HSA-9913351 Formation of the dystrophin-glycoprotein complex (DGC) 8.943310e-01 0.049
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 8.943310e-01 0.049
R-HSA-418597 G alpha (z) signalling events 8.949650e-01 0.048
R-HSA-3299685 Detoxification of Reactive Oxygen Species 8.999226e-01 0.046
R-HSA-9937080 Developmental Lineage of Multipotent Pancreatic Progenitor Cells 9.005657e-01 0.045
R-HSA-163685 Integration of energy metabolism 9.015242e-01 0.045
R-HSA-5621480 Dectin-2 family 9.046613e-01 0.044
R-HSA-9610379 HCMV Late Events 9.054688e-01 0.043
R-HSA-9733709 Cardiogenesis 9.064328e-01 0.043
R-HSA-159418 Recycling of bile acids and salts 9.064328e-01 0.043
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 9.064328e-01 0.043
R-HSA-5609975 Diseases associated with glycosylation precursor biosynthesis 9.064328e-01 0.043
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 9.119540e-01 0.040
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 9.119540e-01 0.040
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 9.119540e-01 0.040
R-HSA-5223345 Miscellaneous transport and binding events 9.119540e-01 0.040
R-HSA-1638091 Heparan sulfate/heparin (HS-GAG) metabolism 9.135158e-01 0.039
R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 9.135158e-01 0.039
R-HSA-8979227 Triglyceride metabolism 9.135158e-01 0.039
R-HSA-203615 eNOS activation 9.171498e-01 0.038
R-HSA-392518 Signal amplification 9.171498e-01 0.038
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 9.171498e-01 0.038
R-HSA-901042 Calnexin/calreticulin cycle 9.171498e-01 0.038
R-HSA-2393930 Phosphate bond hydrolysis by NUDT proteins 9.171498e-01 0.038
R-HSA-8873719 RAB geranylgeranylation 9.176481e-01 0.037
R-HSA-948021 Transport to the Golgi and subsequent modification 9.189552e-01 0.037
R-HSA-211976 Endogenous sterols 9.215942e-01 0.035
R-HSA-8956321 Nucleotide salvage 9.215942e-01 0.035
R-HSA-917977 Transferrin endocytosis and recycling 9.220392e-01 0.035
R-HSA-3296482 Defects in vitamin and cofactor metabolism 9.220392e-01 0.035
R-HSA-416476 G alpha (q) signalling events 9.250105e-01 0.034
R-HSA-1268020 Mitochondrial protein import 9.253617e-01 0.034
R-HSA-9845576 Glycosphingolipid transport 9.266404e-01 0.033
R-HSA-69205 G1/S-Specific Transcription 9.266404e-01 0.033
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 9.272046e-01 0.033
R-HSA-70268 Pyruvate metabolism 9.302985e-01 0.031
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 9.309703e-01 0.031
R-HSA-8948216 Collagen chain trimerization 9.309703e-01 0.031
R-HSA-196757 Metabolism of folate and pterines 9.309703e-01 0.031
R-HSA-5619102 SLC transporter disorders 9.312589e-01 0.031
R-HSA-211981 Xenobiotics 9.323900e-01 0.030
R-HSA-936837 Ion transport by P-type ATPases 9.323900e-01 0.030
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 9.350449e-01 0.029
R-HSA-8875878 MET promotes cell motility 9.350449e-01 0.029
R-HSA-9931953 Biofilm formation 9.350449e-01 0.029
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 9.350449e-01 0.029
R-HSA-9648002 RAS processing 9.388792e-01 0.027
R-HSA-168249 Innate Immune System 9.420726e-01 0.026
R-HSA-71240 Tryptophan catabolism 9.424873e-01 0.026
R-HSA-379726 Mitochondrial tRNA aminoacylation 9.424873e-01 0.026
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.454303e-01 0.024
R-HSA-9664433 Leishmania parasite growth and survival 9.454303e-01 0.024
R-HSA-5423646 Aflatoxin activation and detoxification 9.458827e-01 0.024
R-HSA-202733 Cell surface interactions at the vascular wall 9.485455e-01 0.023
R-HSA-5674135 MAP2K and MAPK activation 9.490778e-01 0.023
R-HSA-442660 SLC-mediated transport of neurotransmitters 9.490778e-01 0.023
R-HSA-204005 COPII-mediated vesicle transport 9.499014e-01 0.022
R-HSA-975634 Retinoid metabolism and transport 9.523629e-01 0.021
R-HSA-3000178 ECM proteoglycans 9.523629e-01 0.021
R-HSA-1461973 Defensins 9.549138e-01 0.020
R-HSA-9637690 Response of Mtb to phagocytosis 9.549138e-01 0.020
R-HSA-8951664 Neddylation 9.556666e-01 0.020
R-HSA-5683826 Surfactant metabolism 9.575762e-01 0.019
R-HSA-3214858 RMTs methylate histone arginines 9.575762e-01 0.019
R-HSA-2142691 Synthesis of Leukotrienes (LT) and Eoxins (EX) 9.575762e-01 0.019
R-HSA-1483206 Glycerophospholipid biosynthesis 9.588313e-01 0.018
R-HSA-6783310 Fanconi Anemia Pathway 9.600815e-01 0.018
R-HSA-917937 Iron uptake and transport 9.611006e-01 0.017
R-HSA-9839373 Signaling by TGFBR3 9.624390e-01 0.017
R-HSA-1483191 Synthesis of PC 9.646574e-01 0.016
R-HSA-9955298 SLC-mediated transport of organic anions 9.666220e-01 0.015
R-HSA-216083 Integrin cell surface interactions 9.666220e-01 0.015
R-HSA-6783783 Interleukin-10 signaling 9.666220e-01 0.015
R-HSA-168256 Immune System 9.699055e-01 0.013
R-HSA-6806667 Metabolism of fat-soluble vitamins 9.713853e-01 0.013
R-HSA-70895 Branched-chain amino acid catabolism 9.722971e-01 0.012
R-HSA-418555 G alpha (s) signalling events 9.733821e-01 0.012
R-HSA-9639288 Amino acids regulate mTORC1 9.754738e-01 0.011
R-HSA-156588 Glucuronidation 9.769230e-01 0.010
R-HSA-2871796 FCERI mediated MAPK activation 9.804273e-01 0.009
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 9.839882e-01 0.007
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 9.839882e-01 0.007
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 9.839882e-01 0.007
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 9.839882e-01 0.007
R-HSA-2644603 Signaling by NOTCH1 in Cancer 9.839882e-01 0.007
R-HSA-156590 Glutathione conjugation 9.839882e-01 0.007
R-HSA-2029485 Role of phospholipids in phagocytosis 9.845437e-01 0.007
R-HSA-1442490 Collagen degradation 9.849346e-01 0.007
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 9.854514e-01 0.006
R-HSA-1474290 Collagen formation 9.869050e-01 0.006
R-HSA-388396 GPCR downstream signalling 9.885060e-01 0.005
R-HSA-196807 Nicotinate metabolism 9.895487e-01 0.005
R-HSA-193368 Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 9.895487e-01 0.005
R-HSA-8957275 Post-translational protein phosphorylation 9.899475e-01 0.004
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 9.901667e-01 0.004
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.912954e-01 0.004
R-HSA-9009391 Extra-nuclear estrogen signaling 9.914292e-01 0.004
R-HSA-8978934 Metabolism of cofactors 9.918103e-01 0.004
R-HSA-597592 Post-translational protein modification 9.921797e-01 0.003
R-HSA-74259 Purine catabolism 9.922947e-01 0.003
R-HSA-4086398 Ca2+ pathway 9.927505e-01 0.003
R-HSA-5663084 Diseases of carbohydrate metabolism 9.927505e-01 0.003
R-HSA-1222556 ROS and RNS production in phagocytes 9.931794e-01 0.003
R-HSA-1474228 Degradation of the extracellular matrix 9.938261e-01 0.003
R-HSA-191273 Cholesterol biosynthesis 9.946559e-01 0.002
R-HSA-5419276 Mitochondrial translation termination 9.947059e-01 0.002
R-HSA-392499 Metabolism of proteins 9.947152e-01 0.002
R-HSA-9925561 Developmental Lineage of Pancreatic Acinar Cells 9.949722e-01 0.002
R-HSA-6803157 Antimicrobial peptides 9.952465e-01 0.002
R-HSA-9018677 Biosynthesis of DHA-derived SPMs 9.955497e-01 0.002
R-HSA-9748784 Drug ADME 9.960879e-01 0.002
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 9.961702e-01 0.002
R-HSA-5628897 TP53 Regulates Metabolic Genes 9.963720e-01 0.002
R-HSA-418594 G alpha (i) signalling events 9.964453e-01 0.002
R-HSA-72306 tRNA processing 9.966793e-01 0.001
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.969141e-01 0.001
R-HSA-2980736 Peptide hormone metabolism 9.969170e-01 0.001
R-HSA-173623 Classical antibody-mediated complement activation 9.972687e-01 0.001
R-HSA-420499 Class C/3 (Metabotropic glutamate/pheromone receptors) 9.972687e-01 0.001
R-HSA-373080 Class B/2 (Secretin family receptors) 9.975826e-01 0.001
R-HSA-446203 Asparagine N-linked glycosylation 9.978484e-01 0.001
R-HSA-6809371 Formation of the cornified envelope 9.978947e-01 0.001
R-HSA-9609507 Protein localization 9.980394e-01 0.001
R-HSA-2168880 Scavenging of heme from plasma 9.984234e-01 0.001
R-HSA-372790 Signaling by GPCR 9.984507e-01 0.001
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.984913e-01 0.001
R-HSA-5389840 Mitochondrial translation elongation 9.985168e-01 0.001
R-HSA-5368286 Mitochondrial translation initiation 9.986874e-01 0.001
R-HSA-446219 Synthesis of substrates in N-glycan biosythesis 9.987151e-01 0.001
R-HSA-192105 Synthesis of bile acids and bile salts 9.987652e-01 0.001
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 9.988334e-01 0.001
R-HSA-71291 Metabolism of amino acids and derivatives 9.988739e-01 0.000
R-HSA-9937383 Mitochondrial ribosome-associated quality control 9.990329e-01 0.000
R-HSA-211897 Cytochrome P450 - arranged by substrate type 9.990401e-01 0.000
R-HSA-5368287 Mitochondrial translation 9.991739e-01 0.000
R-HSA-166786 Creation of C4 and C2 activators 9.992426e-01 0.000
R-HSA-428157 Sphingolipid metabolism 9.992461e-01 0.000
R-HSA-194068 Bile acid and bile salt metabolism 9.994069e-01 0.000
R-HSA-15869 Metabolism of nucleotides 9.994664e-01 0.000
R-HSA-611105 Respiratory electron transport 9.994838e-01 0.000
R-HSA-2187338 Visual phototransduction 9.995260e-01 0.000
R-HSA-166663 Initial triggering of complement 9.995631e-01 0.000
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.995990e-01 0.000
R-HSA-909733 Interferon alpha/beta signaling 9.996134e-01 0.000
R-HSA-3781865 Diseases of glycosylation 9.996224e-01 0.000
R-HSA-1474244 Extracellular matrix organization 9.997115e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.997212e-01 0.000
R-HSA-446193 Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... 9.997289e-01 0.000
R-HSA-9635486 Infection with Mycobacterium tuberculosis 9.997322e-01 0.000
R-HSA-9717207 Sensory perception of sweet, bitter, and umami (glutamate) taste 9.997630e-01 0.000
R-HSA-977606 Regulation of Complement cascade 9.997903e-01 0.000
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.998295e-01 0.000
R-HSA-8956319 Nucleotide catabolism 9.998456e-01 0.000
R-HSA-9717189 Sensory perception of taste 9.998715e-01 0.000
R-HSA-8957322 Metabolism of steroids 9.998793e-01 0.000
R-HSA-9018678 Biosynthesis of specialized proresolving mediators (SPMs) 9.999455e-01 0.000
R-HSA-375276 Peptide ligand-binding receptors 9.999502e-01 0.000
R-HSA-166658 Complement cascade 9.999518e-01 0.000
R-HSA-1630316 Glycosaminoglycan metabolism 9.999666e-01 0.000
R-HSA-2142753 Arachidonate metabolism 9.999686e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.999809e-01 0.000
R-HSA-6805567 Keratinization 9.999850e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999853e-01 0.000
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.999858e-01 0.000
R-HSA-382551 Transport of small molecules 9.999884e-01 0.000
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.999960e-01 0.000
R-HSA-156580 Phase II - Conjugation of compounds 9.999978e-01 0.000
R-HSA-9640148 Infection with Enterobacteria 9.999987e-01 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 9.999990e-01 0.000
R-HSA-211859 Biological oxidations 1.000000e+00 0.000
R-HSA-9824439 Bacterial Infection Pathways 1.000000e+00 0.000
R-HSA-5668914 Diseases of metabolism 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-500792 GPCR ligand binding 1.000000e+00 0.000
R-HSA-8978868 Fatty acid metabolism 1.000000e+00 0.000
R-HSA-9752946 Expression and translocation of olfactory receptors 1.000000e+00 -0.000
R-HSA-381753 Olfactory Signaling Pathway 1.000000e+00 -0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
RSK2RSK2 0.843 0.458 -3 0.945
PRKD2PRKD2 0.837 0.431 -3 0.917
PIM1PIM1 0.836 0.477 -3 0.921
P90RSKP90RSK 0.836 0.442 -3 0.943
RSK4RSK4 0.834 0.439 -3 0.939
RSK3RSK3 0.834 0.422 -3 0.942
PRKXPRKX 0.833 0.430 -3 0.904
P70S6KBP70S6KB 0.830 0.447 -3 0.919
NDR1NDR1 0.829 0.416 -3 0.873
NDR2NDR2 0.828 0.311 -3 0.850
SRPK2SRPK2 0.828 0.392 -3 0.940
SRPK1SRPK1 0.828 0.371 -3 0.943
PRKD3PRKD3 0.828 0.447 -3 0.928
MAPKAPK2MAPKAPK2 0.828 0.396 -3 0.911
PIM3PIM3 0.828 0.362 -3 0.893
PKACBPKACB 0.827 0.368 -2 0.806
PKACGPKACG 0.826 0.364 -2 0.874
MAPKAPK3MAPKAPK3 0.825 0.413 -3 0.891
AKT2AKT2 0.825 0.441 -3 0.945
CAMK1BCAMK1B 0.825 0.467 -3 0.878
PRKD1PRKD1 0.822 0.298 -3 0.871
PIM2PIM2 0.822 0.443 -3 0.939
MSK1MSK1 0.821 0.356 -3 0.919
CDKL1CDKL1 0.821 0.393 -3 0.922
CDKL5CDKL5 0.820 0.358 -3 0.930
PKACAPKACA 0.820 0.372 -2 0.766
AMPKA2AMPKA2 0.820 0.419 -3 0.885
MSK2MSK2 0.819 0.362 -3 0.918
CAMK1DCAMK1D 0.819 0.487 -3 0.916
CLK3CLK3 0.819 0.250 1 0.870
CLK1CLK1 0.819 0.371 -3 0.935
AURCAURC 0.819 0.262 -2 0.779
NUAK2NUAK2 0.819 0.358 -3 0.899
CLK4CLK4 0.819 0.365 -3 0.936
AMPKA1AMPKA1 0.818 0.405 -3 0.863
PKN3PKN3 0.818 0.345 -3 0.879
P70S6KP70S6K 0.817 0.436 -3 0.923
MYLK4MYLK4 0.816 0.359 -2 0.860
CLK2CLK2 0.816 0.362 -3 0.946
SGK3SGK3 0.816 0.402 -3 0.901
CAMK1GCAMK1G 0.816 0.439 -3 0.921
SGK1SGK1 0.815 0.451 -3 0.923
LATS2LATS2 0.814 0.229 -5 0.778
TSSK1TSSK1 0.814 0.368 -3 0.865
SBKSBK 0.814 0.451 -3 0.917
AKT3AKT3 0.813 0.429 -3 0.928
MELKMELK 0.812 0.412 -3 0.887
PKG2PKG2 0.812 0.315 -2 0.824
WNK1WNK1 0.812 0.312 -2 0.920
PKN2PKN2 0.812 0.329 -3 0.849
CAMK4CAMK4 0.811 0.333 -3 0.859
CAMK2ACAMK2A 0.811 0.300 2 0.863
SRPK3SRPK3 0.811 0.321 -3 0.923
CAMLCKCAMLCK 0.811 0.340 -2 0.910
CAMK1ACAMK1A 0.810 0.468 -3 0.916
BRSK1BRSK1 0.810 0.345 -3 0.899
AKT1AKT1 0.810 0.391 -3 0.932
ICKICK 0.810 0.322 -3 0.901
SIKSIK 0.809 0.340 -3 0.895
CAMK2DCAMK2D 0.809 0.231 -3 0.843
AURBAURB 0.808 0.238 -2 0.770
SKMLCKSKMLCK 0.808 0.246 -2 0.919
TSSK2TSSK2 0.807 0.321 -5 0.859
HIPK4HIPK4 0.807 0.222 1 0.825
CAMK2BCAMK2B 0.807 0.257 2 0.857
NUAK1NUAK1 0.807 0.293 -3 0.907
CDC7CDC7 0.806 0.075 1 0.898
PAK1PAK1 0.806 0.256 -2 0.859
COTCOT 0.806 0.045 2 0.897
DAPK2DAPK2 0.805 0.323 -3 0.856
DCAMKL1DCAMKL1 0.803 0.412 -3 0.900
MNK2MNK2 0.803 0.233 -2 0.880
PKCDPKCD 0.803 0.263 2 0.792
MRCKBMRCKB 0.802 0.434 -3 0.915
MNK1MNK1 0.802 0.278 -2 0.895
MRCKAMRCKA 0.802 0.426 -3 0.904
NIKNIK 0.802 0.358 -3 0.814
MARK4MARK4 0.802 0.176 4 0.890
MAPKAPK5MAPKAPK5 0.801 0.323 -3 0.891
CRIKCRIK 0.801 0.486 -3 0.936
BRSK2BRSK2 0.801 0.287 -3 0.862
PAK6PAK6 0.801 0.204 -2 0.780
MST4MST4 0.800 0.181 2 0.847
RAF1RAF1 0.800 0.094 1 0.889
QSKQSK 0.799 0.238 4 0.864
MOSMOS 0.799 0.068 1 0.926
PAK3PAK3 0.799 0.204 -2 0.856
CHK2CHK2 0.798 0.411 -3 0.923
NLKNLK 0.798 0.113 1 0.883
LATS1LATS1 0.797 0.242 -3 0.834
QIKQIK 0.797 0.249 -3 0.832
CHK1CHK1 0.796 0.262 -3 0.836
DYRK1ADYRK1A 0.796 0.278 1 0.790
PRPKPRPK 0.795 -0.012 -1 0.909
CAMK2GCAMK2G 0.795 0.026 2 0.874
SMMLCKSMMLCK 0.795 0.343 -3 0.895
NIM1NIM1 0.795 0.202 3 0.821
DYRK2DYRK2 0.794 0.176 1 0.744
DMPK1DMPK1 0.794 0.441 -3 0.918
AURAAURA 0.794 0.177 -2 0.721
HIPK1HIPK1 0.794 0.252 1 0.764
MARK3MARK3 0.794 0.216 4 0.831
RIPK3RIPK3 0.793 0.093 3 0.796
PAK2PAK2 0.793 0.218 -2 0.841
DCAMKL2DCAMKL2 0.793 0.313 -3 0.901
PHKG1PHKG1 0.793 0.245 -3 0.866
DYRK3DYRK3 0.793 0.272 1 0.763
PDHK4PDHK4 0.793 -0.111 1 0.897
MTORMTOR 0.792 -0.037 1 0.840
PKN1PKN1 0.792 0.348 -3 0.920
SSTKSSTK 0.791 0.318 4 0.848
ROCK2ROCK2 0.791 0.424 -3 0.894
WNK3WNK3 0.791 0.110 1 0.850
PKCBPKCB 0.790 0.218 2 0.731
DAPK3DAPK3 0.790 0.356 -3 0.911
PKCGPKCG 0.790 0.196 2 0.739
ATRATR 0.790 0.008 1 0.840
IKKBIKKB 0.790 -0.051 -2 0.759
TBK1TBK1 0.789 -0.022 1 0.796
HIPK2HIPK2 0.788 0.198 1 0.661
DAPK1DAPK1 0.788 0.343 -3 0.918
PHKG2PHKG2 0.788 0.277 -3 0.879
PKCHPKCH 0.788 0.233 2 0.721
MARK1MARK1 0.787 0.197 4 0.846
ERK5ERK5 0.787 0.016 1 0.848
MARK2MARK2 0.787 0.170 4 0.799
GCN2GCN2 0.786 -0.097 2 0.827
DYRK1BDYRK1B 0.786 0.200 1 0.704
PKG1PKG1 0.786 0.307 -2 0.753
RIPK1RIPK1 0.786 0.085 1 0.843
PKCAPKCA 0.785 0.170 2 0.723
BMPR2BMPR2 0.785 -0.131 -2 0.883
HUNKHUNK 0.784 0.010 2 0.840
HIPK3HIPK3 0.784 0.219 1 0.771
PAK5PAK5 0.784 0.197 -2 0.719
TGFBR2TGFBR2 0.784 0.005 -2 0.779
PDHK1PDHK1 0.784 -0.116 1 0.886
CDK10CDK10 0.783 0.197 1 0.690
GRK6GRK6 0.783 0.018 1 0.882
SNRKSNRK 0.783 0.179 2 0.711
PKCEPKCE 0.783 0.295 2 0.720
IKKEIKKE 0.782 -0.069 1 0.790
DYRK4DYRK4 0.782 0.162 1 0.675
ROCK1ROCK1 0.782 0.396 -3 0.904
PASKPASK 0.782 0.270 -3 0.856
PAK4PAK4 0.781 0.186 -2 0.722
MASTLMASTL 0.781 -0.028 -2 0.832
CDK7CDK7 0.781 0.071 1 0.732
ULK2ULK2 0.781 -0.103 2 0.803
DSTYKDSTYK 0.780 -0.120 2 0.908
BCKDKBCKDK 0.780 -0.053 -1 0.853
GRK5GRK5 0.779 -0.093 -3 0.669
PKCTPKCT 0.779 0.232 2 0.728
MOKMOK 0.779 0.301 1 0.767
KISKIS 0.778 0.021 1 0.753
MAKMAK 0.778 0.269 -2 0.782
GRK1GRK1 0.777 -0.019 -2 0.807
FAM20CFAM20C 0.777 0.047 2 0.710
PKCZPKCZ 0.777 0.133 2 0.779
DRAK1DRAK1 0.776 0.130 1 0.806
PKCIPKCI 0.776 0.214 2 0.741
WNK4WNK4 0.775 0.187 -2 0.897
DLKDLK 0.775 -0.003 1 0.871
ATMATM 0.775 -0.013 1 0.773
CDK14CDK14 0.774 0.136 1 0.705
CHAK2CHAK2 0.774 -0.043 -1 0.912
IRE1IRE1 0.773 0.058 1 0.809
IKKAIKKA 0.771 -0.118 -2 0.738
PKRPKR 0.771 0.065 1 0.865
ALK4ALK4 0.771 -0.012 -2 0.813
NEK7NEK7 0.771 -0.153 -3 0.646
ANKRD3ANKRD3 0.771 -0.047 1 0.894
JNK2JNK2 0.770 0.058 1 0.679
DNAPKDNAPK 0.770 0.022 1 0.714
CDK8CDK8 0.769 -0.004 1 0.721
MLK1MLK1 0.769 -0.104 2 0.817
BMPR1BBMPR1B 0.769 0.004 1 0.846
NEK9NEK9 0.769 -0.092 2 0.838
ULK1ULK1 0.769 -0.141 -3 0.626
CDK18CDK18 0.769 0.068 1 0.658
NEK6NEK6 0.769 -0.122 -2 0.852
IRE2IRE2 0.769 0.063 2 0.757
TTBK2TTBK2 0.769 -0.063 2 0.729
TGFBR1TGFBR1 0.768 -0.031 -2 0.782
PLK1PLK1 0.767 -0.033 -2 0.805
GRK4GRK4 0.767 -0.115 -2 0.826
MEK1MEK1 0.767 -0.057 2 0.864
NEK2NEK2 0.766 -0.022 2 0.811
MLK2MLK2 0.766 -0.078 2 0.825
P38AP38A 0.765 0.043 1 0.759
GRK7GRK7 0.765 -0.002 1 0.809
CDK9CDK9 0.764 0.040 1 0.712
BRAFBRAF 0.764 -0.010 -4 0.119
ALK2ALK2 0.764 -0.020 -2 0.793
VRK2VRK2 0.763 -0.087 1 0.905
CDK19CDK19 0.763 -0.005 1 0.681
PLK3PLK3 0.763 -0.036 2 0.830
JNK3JNK3 0.761 0.015 1 0.713
CDK13CDK13 0.761 0.005 1 0.705
MST3MST3 0.761 0.101 2 0.834
CDK16CDK16 0.760 0.105 1 0.623
CDK17CDK17 0.760 0.046 1 0.604
CK1ECK1E 0.760 -0.047 -3 0.390
CHAK1CHAK1 0.760 -0.012 2 0.782
IRAK4IRAK4 0.760 0.081 1 0.819
SMG1SMG1 0.760 -0.073 1 0.780
CDK5CDK5 0.759 0.026 1 0.746
CDK12CDK12 0.758 0.023 1 0.678
PDK1PDK1 0.758 0.144 1 0.848
ACVR2AACVR2A 0.757 -0.063 -2 0.760
ACVR2BACVR2B 0.757 -0.068 -2 0.776
GRK2GRK2 0.757 -0.038 -2 0.719
YSK4YSK4 0.757 -0.105 1 0.821
P38BP38B 0.757 0.024 1 0.688
CDK1CDK1 0.757 0.012 1 0.684
PLK4PLK4 0.756 -0.031 2 0.669
MLK3MLK3 0.756 -0.079 2 0.743
BUB1BUB1 0.756 0.172 -5 0.811
GAKGAK 0.756 0.078 1 0.889
MEK5MEK5 0.755 -0.035 2 0.839
ERK2ERK2 0.754 0.010 1 0.722
PRP4PRP4 0.754 -0.029 -3 0.599
GSK3BGSK3B 0.754 0.031 4 0.507
CDK2CDK2 0.754 -0.004 1 0.763
CK1A2CK1A2 0.754 -0.041 -3 0.353
P38GP38G 0.754 0.030 1 0.599
MPSK1MPSK1 0.754 0.032 1 0.827
HRIHRI 0.753 -0.079 -2 0.838
CK1DCK1D 0.752 -0.060 -3 0.337
ERK1ERK1 0.752 0.005 1 0.681
PBKPBK 0.752 0.116 1 0.813
BMPR1ABMPR1A 0.751 -0.016 1 0.829
PERKPERK 0.751 -0.087 -2 0.818
MEKK3MEKK3 0.751 -0.071 1 0.844
IRAK1IRAK1 0.751 -0.038 -1 0.838
LOKLOK 0.751 0.141 -2 0.834
GSK3AGSK3A 0.751 0.031 4 0.517
TAO3TAO3 0.751 0.017 1 0.839
LKB1LKB1 0.750 -0.027 -3 0.664
TAO2TAO2 0.750 0.071 2 0.853
TLK2TLK2 0.749 -0.131 1 0.812
NEK5NEK5 0.749 -0.058 1 0.856
HPK1HPK1 0.748 0.091 1 0.830
MLK4MLK4 0.748 -0.117 2 0.728
CK1G1CK1G1 0.747 -0.077 -3 0.373
ZAKZAK 0.747 -0.075 1 0.827
MEKK1MEKK1 0.747 -0.115 1 0.853
CDK3CDK3 0.747 0.029 1 0.624
TLK1TLK1 0.747 -0.103 -2 0.813
PINK1PINK1 0.746 -0.146 1 0.863
TTBK1TTBK1 0.746 -0.077 2 0.655
CK2A2CK2A2 0.746 0.022 1 0.769
CDK4CDK4 0.745 0.073 1 0.663
NEK11NEK11 0.745 -0.053 1 0.844
GCKGCK 0.745 0.026 1 0.844
LRRK2LRRK2 0.744 0.061 2 0.858
MEKK6MEKK6 0.744 0.054 1 0.830
MEKK2MEKK2 0.744 -0.094 2 0.813
NEK8NEK8 0.743 -0.044 2 0.823
CAMKK2CAMKK2 0.743 -0.066 -2 0.779
GRK3GRK3 0.742 -0.051 -2 0.672
NEK4NEK4 0.741 -0.019 1 0.825
KHS2KHS2 0.740 0.096 1 0.833
CAMKK1CAMKK1 0.739 -0.132 -2 0.777
KHS1KHS1 0.739 0.073 1 0.822
TNIKTNIK 0.739 0.026 3 0.859
NEK1NEK1 0.738 0.021 1 0.834
CDK6CDK6 0.738 0.041 1 0.686
RIPK2RIPK2 0.737 -0.056 1 0.793
ERK7ERK7 0.737 -0.003 2 0.534
HGKHGK 0.737 -0.010 3 0.858
STK33STK33 0.737 -0.002 2 0.653
JNK1JNK1 0.737 -0.001 1 0.664
P38DP38D 0.737 -0.003 1 0.613
MAP3K15MAP3K15 0.737 -0.029 1 0.812
SLKSLK 0.737 0.012 -2 0.764
TAK1TAK1 0.736 -0.059 1 0.867
MINKMINK 0.735 -0.037 1 0.834
CK2A1CK2A1 0.735 0.016 1 0.745
PLK2PLK2 0.734 -0.055 -3 0.612
EEF2KEEF2K 0.733 -0.033 3 0.835
PDHK3_TYRPDHK3_TYR 0.732 0.099 4 0.930
VRK1VRK1 0.732 -0.070 2 0.852
YSK1YSK1 0.732 0.022 2 0.802
HASPINHASPIN 0.732 0.079 -1 0.766
MST2MST2 0.730 -0.122 1 0.850
TESK1_TYRTESK1_TYR 0.729 0.155 3 0.909
MST1MST1 0.729 -0.055 1 0.829
LIMK2_TYRLIMK2_TYR 0.728 0.206 -3 0.759
BIKEBIKE 0.727 0.060 1 0.772
MEK2MEK2 0.727 -0.132 2 0.826
NEK3NEK3 0.726 -0.042 1 0.801
PKMYT1_TYRPKMYT1_TYR 0.722 0.031 3 0.884
MAP2K7_TYRMAP2K7_TYR 0.721 0.010 2 0.891
MAP2K4_TYRMAP2K4_TYR 0.721 -0.012 -1 0.921
PINK1_TYRPINK1_TYR 0.720 0.059 1 0.879
PDHK4_TYRPDHK4_TYR 0.720 -0.025 2 0.917
DDR1DDR1 0.719 0.115 4 0.849
YANK3YANK3 0.718 -0.011 2 0.448
CK1ACK1A 0.717 -0.088 -3 0.254
MAP2K6_TYRMAP2K6_TYR 0.717 -0.052 -1 0.923
BMPR2_TYRBMPR2_TYR 0.717 -0.030 -1 0.911
TAO1TAO1 0.717 0.021 1 0.771
LIMK1_TYRLIMK1_TYR 0.716 0.072 2 0.870
RETRET 0.715 0.055 1 0.840
EPHA6EPHA6 0.715 0.022 -1 0.899
ALPHAK3ALPHAK3 0.714 -0.013 -1 0.814
TTKTTK 0.714 -0.043 -2 0.810
PDHK1_TYRPDHK1_TYR 0.714 -0.081 -1 0.928
ASK1ASK1 0.713 -0.078 1 0.804
MYO3BMYO3B 0.713 -0.027 2 0.820
AAK1AAK1 0.712 0.071 1 0.667
MST1RMST1R 0.709 -0.015 3 0.838
TNK2TNK2 0.709 0.051 3 0.785
OSR1OSR1 0.709 -0.104 2 0.802
EPHB4EPHB4 0.708 -0.021 -1 0.886
MYO3AMYO3A 0.707 -0.058 1 0.814
TYRO3TYRO3 0.706 -0.045 3 0.818
DDR2DDR2 0.706 0.148 3 0.768
TNK1TNK1 0.704 0.072 3 0.804
NEK10_TYRNEK10_TYR 0.704 0.048 1 0.729
TYK2TYK2 0.703 -0.127 1 0.841
ROS1ROS1 0.703 -0.047 3 0.792
EPHA4EPHA4 0.702 -0.040 2 0.831
YES1YES1 0.701 -0.040 -1 0.891
FGFR2FGFR2 0.701 -0.017 3 0.834
TXKTXK 0.701 -0.015 1 0.879
AXLAXL 0.700 0.007 3 0.812
INSRRINSRR 0.700 -0.023 3 0.780
JAK2JAK2 0.700 -0.133 1 0.840
EPHB1EPHB1 0.699 -0.053 1 0.882
SRMSSRMS 0.699 -0.073 1 0.888
JAK3JAK3 0.698 -0.075 1 0.824
FGRFGR 0.698 -0.092 1 0.885
CSF1RCSF1R 0.698 -0.107 3 0.817
TNNI3K_TYRTNNI3K_TYR 0.698 0.012 1 0.846
EPHB3EPHB3 0.698 -0.050 -1 0.872
TEKTEK 0.698 -0.012 3 0.761
FERFER 0.697 -0.120 1 0.903
ABL2ABL2 0.697 -0.059 -1 0.854
PDGFRBPDGFRB 0.697 -0.050 3 0.829
KDRKDR 0.697 -0.014 3 0.792
ITKITK 0.695 -0.050 -1 0.867
EPHB2EPHB2 0.695 -0.068 -1 0.864
FGFR1FGFR1 0.694 -0.059 3 0.802
CK1G3CK1G3 0.694 -0.092 -3 0.213
ABL1ABL1 0.692 -0.078 -1 0.848
FLT3FLT3 0.692 -0.087 3 0.811
HCKHCK 0.692 -0.129 -1 0.880
STLK3STLK3 0.692 -0.157 1 0.792
MERTKMERTK 0.692 -0.062 3 0.811
EPHA1EPHA1 0.691 -0.021 3 0.790
LTKLTK 0.691 -0.028 3 0.773
EPHA7EPHA7 0.691 -0.042 2 0.827
LCKLCK 0.691 -0.083 -1 0.879
EPHA3EPHA3 0.690 -0.059 2 0.804
PDGFRAPDGFRA 0.690 -0.082 3 0.822
BLKBLK 0.689 -0.055 -1 0.878
BMXBMX 0.689 -0.048 -1 0.777
TECTEC 0.689 -0.057 -1 0.802
KITKIT 0.689 -0.128 3 0.823
JAK1JAK1 0.688 -0.081 1 0.790
WEE1_TYRWEE1_TYR 0.688 -0.056 -1 0.817
PTK2BPTK2B 0.687 -0.026 -1 0.833
ALKALK 0.687 -0.066 3 0.743
BTKBTK 0.686 -0.137 -1 0.837
FGFR3FGFR3 0.686 -0.076 3 0.809
FLT1FLT1 0.686 -0.082 -1 0.865
METMET 0.686 -0.100 3 0.812
NTRK1NTRK1 0.685 -0.139 -1 0.858
FYNFYN 0.684 -0.073 -1 0.851
FLT4FLT4 0.683 -0.081 3 0.793
EPHA5EPHA5 0.683 -0.058 2 0.821
ERBB2ERBB2 0.681 -0.123 1 0.797
PTK6PTK6 0.681 -0.152 -1 0.794
NTRK2NTRK2 0.680 -0.144 3 0.790
INSRINSR 0.679 -0.112 3 0.757
FRKFRK 0.678 -0.117 -1 0.884
YANK2YANK2 0.678 -0.053 2 0.464
LYNLYN 0.677 -0.129 3 0.751
EPHA8EPHA8 0.677 -0.084 -1 0.848
PTK2PTK2 0.675 -0.036 -1 0.818
CSKCSK 0.675 -0.103 2 0.827
MATKMATK 0.675 -0.092 -1 0.773
NTRK3NTRK3 0.674 -0.139 -1 0.805
SRCSRC 0.672 -0.114 -1 0.846
EGFREGFR 0.670 -0.097 1 0.708
FGFR4FGFR4 0.668 -0.116 -1 0.805
EPHA2EPHA2 0.667 -0.082 -1 0.812
CK1G2CK1G2 0.666 -0.088 -3 0.298
SYKSYK 0.666 -0.086 -1 0.800
IGF1RIGF1R 0.663 -0.104 3 0.702
MUSKMUSK 0.660 -0.113 1 0.695
ERBB4ERBB4 0.658 -0.085 1 0.723
FESFES 0.649 -0.130 -1 0.753
ZAP70ZAP70 0.635 -0.101 -1 0.727