Motif 806 (n=419)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A6NHR9 | SMCHD1 | S756 | ochoa | Structural maintenance of chromosomes flexible hinge domain-containing protein 1 (SMC hinge domain-containing protein 1) (EC 3.6.1.-) | Non-canonical member of the structural maintenance of chromosomes (SMC) protein family that plays a key role in epigenetic silencing by regulating chromatin architecture (By similarity). Promotes heterochromatin formation in both autosomes and chromosome X, probably by mediating the merge of chromatin compartments (By similarity). Plays a key role in chromosome X inactivation in females by promoting the spreading of heterochromatin (PubMed:23542155). Recruited to inactivated chromosome X by Xist RNA and acts by mediating the merge of chromatin compartments: promotes random chromatin interactions that span the boundaries of existing structures, leading to create a compartment-less architecture typical of inactivated chromosome X (By similarity). Required to facilitate Xist RNA spreading (By similarity). Also required for silencing of a subset of clustered autosomal loci in somatic cells, such as the DUX4 locus (PubMed:23143600). Has ATPase activity; may participate in structural manipulation of chromatin in an ATP-dependent manner as part of its role in gene expression regulation (PubMed:29748383). Also plays a role in DNA repair: localizes to sites of DNA double-strand breaks in response to DNA damage to promote the repair of DNA double-strand breaks (PubMed:24790221, PubMed:25294876). Acts by promoting non-homologous end joining (NHEJ) and inhibiting homologous recombination (HR) repair (PubMed:25294876). {ECO:0000250|UniProtKB:Q6P5D8, ECO:0000269|PubMed:23143600, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:24790221, ECO:0000269|PubMed:25294876, ECO:0000269|PubMed:29748383}. |
A6NMZ7 | COL6A6 | S817 | ochoa | Collagen alpha-6(VI) chain | Collagen VI acts as a cell-binding protein. {ECO:0000250}. |
E9PCH4 | None | S690 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
H0YC42 | None | S134 | ochoa | Tumor protein D52 | None |
H0YC42 | None | S151 | ochoa | Tumor protein D52 | None |
O00180 | KCNK1 | S300 | ochoa | Potassium channel subfamily K member 1 (Inward rectifying potassium channel protein TWIK-1) (Potassium channel K2P1) (Potassium channel KCNO1) | Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues (PubMed:15820677, PubMed:21653227). Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium (PubMed:21653227, PubMed:22431633). The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (PubMed:15820677, PubMed:21653227, PubMed:22431633, PubMed:23169818, PubMed:25001086, PubMed:8605869, PubMed:8978667). Channel activity is modulated by activation of serotonin receptors (By similarity). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity (PubMed:23169818). Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (PubMed:23169818). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation (PubMed:15820677, PubMed:20498050, PubMed:23169818). The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (PubMed:19959478). Permeable to monovalent cations with ion selectivity for K(+) > Rb(+) >> NH4(+) >> Cs(+) = Na(+) = Li(+). {ECO:0000250|UniProtKB:O08581, ECO:0000250|UniProtKB:Q9Z2T2, ECO:0000269|PubMed:15820677, ECO:0000269|PubMed:17693262, ECO:0000269|PubMed:19959478, ECO:0000269|PubMed:20498050, ECO:0000269|PubMed:21653227, ECO:0000269|PubMed:22282804, ECO:0000269|PubMed:22431633, ECO:0000269|PubMed:23169818, ECO:0000269|PubMed:25001086, ECO:0000269|PubMed:8605869, ECO:0000269|PubMed:8978667}. |
O00444 | PLK4 | S22 | psp | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
O00559 | EBAG9 | S86 | ochoa | Receptor-binding cancer antigen expressed on SiSo cells (Cancer-associated surface antigen RCAS1) (Estrogen receptor-binding fragment-associated gene 9 protein) | May participate in suppression of cell proliferation and induces apoptotic cell death through activation of interleukin-1-beta converting enzyme (ICE)-like proteases. {ECO:0000269|PubMed:12054692, ECO:0000269|PubMed:12138241, ECO:0000269|PubMed:12672804}. |
O14920 | IKBKB | S177 | psp | Inhibitor of nuclear factor kappa-B kinase subunit beta (I-kappa-B-kinase beta) (IKK-B) (IKK-beta) (IkBKB) (EC 2.7.11.10) (I-kappa-B kinase 2) (IKK-2) (IKK2) (Nuclear factor NF-kappa-B inhibitor kinase beta) (NFKBIKB) (Serine/threonine protein kinase IKBKB) (EC 2.7.11.1) | Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:30337470, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation (PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE (PubMed:11297557, PubMed:14673179, PubMed:20410276, PubMed:21138416). IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs (PubMed:11297557, PubMed:20410276, PubMed:21138416). Phosphorylates FOXO3, mediating the TNF-dependent inactivation of this pro-apoptotic transcription factor (PubMed:15084260). Also phosphorylates other substrates including NAA10, NCOA3, BCL10 and IRS1 (PubMed:17213322, PubMed:19716809). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates the C-terminus of IRF5, stimulating IRF5 homodimerization and translocation into the nucleus (PubMed:25326418). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylates STAT1 at 'Thr-749' which restricts interferon signaling and anti-inflammatory responses and promotes innate inflammatory responses (PubMed:38621137). IKBKB-mediated phosphorylation of STAT1 at 'Thr-749' promotes binding of STAT1 to the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). It also promotes binding of STAT1 to the IL12B promoter and activation of IL12B transcription (PubMed:32209697). {ECO:0000250|UniProtKB:O88351, ECO:0000269|PubMed:11297557, ECO:0000269|PubMed:14673179, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17213322, ECO:0000269|PubMed:19716809, ECO:0000269|PubMed:20410276, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20797629, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:25326418, ECO:0000269|PubMed:30337470, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:38621137, ECO:0000269|PubMed:9346484}. |
O15055 | PER2 | S696 | psp | Period circadian protein homolog 2 (hPER2) (Circadian clock protein PERIOD 2) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndrome and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. PER1 and PER2 proteins transport CRY1 and CRY2 into the nucleus with appropriate circadian timing, but also contribute directly to repression of clock-controlled target genes through interaction with several classes of RNA-binding proteins, helicases and others transcriptional repressors. PER appears to regulate circadian control of transcription by at least three different modes. First, interacts directly with the CLOCK-BMAL1 at the tail end of the nascent transcript peak to recruit complexes containing the SIN3-HDAC that remodel chromatin to repress transcription. Second, brings H3K9 methyltransferases such as SUV39H1 and SUV39H2 to the E-box elements of the circadian target genes, like PER2 itself or PER1. The recruitment of each repressive modifier to the DNA seems to be very precisely temporally orchestrated by the large PER complex, the deacetylases acting before than the methyltransferases. Additionally, large PER complexes are also recruited to the target genes 3' termination site through interactions with RNA-binding proteins and helicases that may play a role in transcription termination to regulate transcription independently of CLOCK-BMAL1 interactions. Recruitment of large PER complexes to the elongating polymerase at PER and CRY termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. May propagate clock information to metabolic pathways via the interaction with nuclear receptors. Coactivator of PPARA and corepressor of NR1D1, binds rhythmically at the promoter of nuclear receptors target genes like BMAL1 or G6PC1. Directly and specifically represses PPARG proadipogenic activity by blocking PPARG recruitment to target promoters and thereby inhibiting transcriptional activation. Required for fatty acid and lipid metabolism, is involved as well in the regulation of circulating insulin levels. Plays an important role in the maintenance of cardiovascular functions through the regulation of NO and vasodilatatory prostaglandins production in aortas. Controls circadian glutamate uptake in synaptic vesicles through the regulation of VGLUT1 expression. May also be involved in the regulation of inflammatory processes. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1 and ATF4. Negatively regulates the formation of the TIMELESS-CRY1 complex by competing with TIMELESS for binding to CRY1. {ECO:0000250|UniProtKB:O54943}. |
O15111 | CHUK | S176 | psp | Inhibitor of nuclear factor kappa-B kinase subunit alpha (I-kappa-B kinase alpha) (IKK-A) (IKK-alpha) (IkBKA) (IkappaB kinase) (EC 2.7.11.10) (Conserved helix-loop-helix ubiquitous kinase) (I-kappa-B kinase 1) (IKK-1) (IKK1) (Nuclear factor NF-kappa-B inhibitor kinase alpha) (NFKBIKA) (Transcription factor 16) (TCF-16) | Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed:35952808, PubMed:9244310, PubMed:9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed:21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B-responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed:30217973). {ECO:0000250|UniProtKB:Q60680, ECO:0000269|PubMed:12789342, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17434128, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20501937, ECO:0000269|PubMed:21765415, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35952808, ECO:0000269|PubMed:9244310, ECO:0000269|PubMed:9252186, ECO:0000269|PubMed:9346484, ECO:0000303|PubMed:18626576}. |
O15117 | FYB1 | S306 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O43194 | GPR39 | S421 | ochoa | G-protein coupled receptor 39 | Zinc-sensing receptor that can sense changes in extracellular Zn(2+), mediate Zn(2+) signal transmission, and participates in the regulation of numerous physiological processes including glucose homeostasis regulation, gastrointestinal mobility, hormone secretion and cell death (PubMed:18180304). Activation by Zn(2+) in keratinocytes increases the intracellular concentration of Ca(2+) and activates the ERK/MAPK and PI3K/AKT signaling pathways leading to epithelial repair (PubMed:20522546). Plays an essential role in normal wound healing by inducing the production of cytokines including the major inflammatory cytokine IL6 via the PKC/MAPK/CEBPB pathway (By similarity). Regulates adipose tissue metabolism, especially lipolysis, and regulates the function of lipases, such as hormone-sensitive lipase and adipose triglyceride lipase (By similarity). Plays a role in the inhibition of cell death and protects against oxidative, endoplasmic reticulum and mitochondrial stress by inducing secretion of the cytoprotective pigment epithelium-derived growth factor (PEDF) and probably other protective transcripts in a GNA13/RHOA/SRE-dependent manner (PubMed:18180304). Forms dynamic heteroreceptor complexes with HTR1A and GALR1 depending on cell type or specific physiological states, resulting in signaling diversity: HTR1A-GPR39 shows additive increase in signaling along the serum response element (SRE) and NF-kappa-B pathways while GALR1 acts as an antagonist blocking SRE (PubMed:26365466). {ECO:0000250|UniProtKB:Q5U431, ECO:0000269|PubMed:18180304, ECO:0000269|PubMed:20522546, ECO:0000269|PubMed:26365466}. |
O43314 | PPIP5K2 | S1065 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43399 | TPD52L2 | S141 | ochoa | Tumor protein D54 (hD54) (Tumor protein D52-like 2) | None |
O43683 | BUB1 | S445 | ochoa | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43683 | BUB1 | S667 | psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43704 | SULT1B1 | S92 | ochoa | Sulfotransferase 1B1 (ST1B1) (EC 2.8.2.1) (Sulfotransferase 1B2) (Sulfotransferase family cytosolic 1B member 1) (Thyroid hormone sulfotransferase) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of dopamine, small phenols such as 1-naphthol and p-nitrophenol and thyroid hormones, including 3,3'-diiodothyronine, triidothyronine (T3) and reverse triiodothyronine (rT3) (PubMed:28084139, PubMed:9443824, PubMed:9463486). May play a role in gut microbiota-host metabolic interaction. O-sulfonates 4-ethylphenol (4-EP), a dietary tyrosine-derived metabolite produced by gut bacteria. The product 4-EPS crosses the blood-brain barrier and may negatively regulate oligodendrocyte maturation and myelination, affecting the functional connectivity of different brain regions associated with the limbic system (PubMed:35165440). {ECO:0000269|PubMed:28084139, ECO:0000269|PubMed:35165440, ECO:0000269|PubMed:9443824, ECO:0000269|PubMed:9463486}. |
O43707 | ACTN4 | S269 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O43707 | ACTN4 | S606 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O43747 | AP1G1 | S369 | ochoa | AP-1 complex subunit gamma-1 (Adaptor protein complex AP-1 subunit gamma-1) (Adaptor-related protein complex 1 subunit gamma-1) (Clathrin assembly protein complex 1 gamma-1 large chain) (Gamma1-adaptin) (Golgi adaptor HA1/AP1 adaptin subunit gamma-1) | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. In association with AFTPH/aftiphilin in the aftiphilin/p200/gamma-synergin complex, involved in the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000269|PubMed:34102099}. |
O60343 | TBC1D4 | S702 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O60437 | PPL | S949 | ochoa | Periplakin (190 kDa paraneoplastic pemphigus antigen) (195 kDa cornified envelope precursor protein) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. May act as a localization signal in PKB/AKT-mediated signaling. {ECO:0000269|PubMed:9412476}. |
O60496 | DOK2 | S63 | ochoa | Docking protein 2 (Downstream of tyrosine kinase 2) (p56(dok-2)) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK2 may modulate the cellular proliferation induced by IL-4, as well as IL-2 and IL-3. May be involved in modulating Bcr-Abl signaling. Attenuates EGF-stimulated MAP kinase activation (By similarity). {ECO:0000250}. |
O60508 | CDC40 | S56 | ochoa | Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) | Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}. |
O60664 | PLIN3 | S130 | ochoa | Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) | Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}. |
O60841 | EIF5B | S438 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O75128 | COBL | S974 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75369 | FLNB | S2532 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75410 | TACC1 | S147 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75891 | ALDH1L1 | S629 | ochoa | Cytosolic 10-formyltetrahydrofolate dehydrogenase (10-FTHFDH) (FDH) (EC 1.5.1.6) (Aldehyde dehydrogenase family 1 member L1) | Cytosolic 10-formyltetrahydrofolate dehydrogenase that catalyzes the NADP(+)-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and carbon dioxide (PubMed:19933275, PubMed:21238436). May also have an NADP(+)-dependent aldehyde dehydrogenase activity towards formaldehyde, acetaldehyde, propionaldehyde, and benzaldehyde (By similarity). {ECO:0000250|UniProtKB:P28037, ECO:0000269|PubMed:19933275, ECO:0000269|PubMed:21238436}. |
O94806 | PRKD3 | S731 | ochoa|psp | Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) | Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}. |
O94851 | MICAL2 | S991 | ochoa | [F-actin]-monooxygenase MICAL2 (EC 1.14.13.225) (MICAL C-terminal-like protein) (Mical-cL) (Molecule interacting with CasL protein 2) (MICAL-2) | Methionine monooxygenase that promotes depolymerization of F-actin by mediating oxidation of residues 'Met-44' and 'Met-47' on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization (PubMed:24440334, PubMed:29343822). Regulates the disassembly of branched actin networks also by oxidizing ARP3B-containing ARP2/3 complexes leading to ARP3B dissociation from the network (PubMed:34106209). Acts as a key regulator of the SRF signaling pathway elicited by nerve growth factor and serum: mediates oxidation and subsequent depolymerization of nuclear actin, leading to increase MKL1/MRTF-A presence in the nucleus and promote SRF:MKL1/MRTF-A-dependent gene transcription. Does not activate SRF:MKL1/MRTF-A through RhoA (PubMed:24440334). {ECO:0000269|PubMed:24440334, ECO:0000269|PubMed:29343822, ECO:0000269|PubMed:34106209}. |
O94868 | FCHSD2 | S190 | ochoa | F-BAR and double SH3 domains protein 2 (Carom) (Protein nervous wreck 1) (NWK1) (SH3 multiple domains protein 3) | Adapter protein that plays a role in endocytosis via clathrin-coated pits. Contributes to the internalization of cell surface receptors, such as integrin ITGB1 and transferrin receptor (PubMed:29887380). Promotes endocytosis of EGFR in cancer cells, and thereby contributes to the down-regulation of EGFR signaling (PubMed:30249660). Recruited to clathrin-coated pits during a mid-to-late stage of assembly, where it is required for normal progress from U-shaped intermediate stage pits to terminal, omega-shaped pits (PubMed:29887380). Binds to membranes enriched in phosphatidylinositol 3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate (PubMed:29887380). When bound to membranes, promotes actin polymerization via its interaction with WAS and/or WASL which leads to the activation of the Arp2/3 complex. Does not promote actin polymerisation in the absence of membranes (PubMed:29887380). {ECO:0000269|PubMed:29887380, ECO:0000269|PubMed:30249660}. |
O94887 | FARP2 | S375 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) | Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}. |
O94915 | FRYL | S218 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O94953 | KDM4B | S197 | ochoa | Lysine-specific demethylase 4B (EC 1.14.11.66) (JmjC domain-containing histone demethylation protein 3B) (Jumonji domain-containing protein 2B) ([histone H3]-trimethyl-L-lysine(9) demethylase 4B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Only able to demethylate trimethylated H3 'Lys-9', with a weaker activity than KDM4A, KDM4C and KDM4D. Demethylation of Lys residue generates formaldehyde and succinate (PubMed:16603238, PubMed:28262558). Plays a critical role in the development of the central nervous system (CNS). {ECO:0000250|UniProtKB:Q91VY5, ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}. |
O95071 | UBR5 | S695 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95208 | EPN2 | S420 | ochoa | Epsin-2 (EPS-15-interacting protein 2) | Plays a role in the formation of clathrin-coated invaginations and endocytosis. {ECO:0000269|PubMed:10567358}. |
O95235 | KIF20A | S238 | ochoa | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95630 | STAMBP | S243 | psp | STAM-binding protein (EC 3.4.19.-) (Associated molecule with the SH3 domain of STAM) (Endosome-associated ubiquitin isopeptidase) | Zinc metalloprotease that specifically cleaves 'Lys-63'-linked polyubiquitin chains (PubMed:15314065, PubMed:23542699, PubMed:34425109). Does not cleave 'Lys-48'-linked polyubiquitin chains (PubMed:15314065). Plays a role in signal transduction for cell growth and MYC induction mediated by IL-2 and GM-CSF (PubMed:10383417). Potentiates BMP (bone morphogenetic protein) signaling by antagonizing the inhibitory action of SMAD6 and SMAD7 (PubMed:11483516). Has a key role in regulation of cell surface receptor-mediated endocytosis and ubiquitin-dependent sorting of receptors to lysosomes (PubMed:15314065, PubMed:17261583). Endosomal localization of STAMBP is required for efficient EGFR degradation but not for its internalization (PubMed:15314065, PubMed:17261583). Involved in the negative regulation of PI3K-AKT-mTOR and RAS-MAP signaling pathways (PubMed:23542699). {ECO:0000269|PubMed:10383417, ECO:0000269|PubMed:11483516, ECO:0000269|PubMed:15314065, ECO:0000269|PubMed:17261583, ECO:0000269|PubMed:23542699, ECO:0000269|PubMed:34425109}. |
O95831 | AIFM1 | S524 | ochoa | Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) | Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}. |
O95997 | PTTG1 | S87 | psp | Securin (Esp1-associated protein) (Pituitary tumor-transforming gene 1 protein) (Tumor-transforming protein 1) (hPTTG) | Regulatory protein, which plays a central role in chromosome stability, in the p53/TP53 pathway, and DNA repair. Probably acts by blocking the action of key proteins. During the mitosis, it blocks Separase/ESPL1 function, preventing the proteolysis of the cohesin complex and the subsequent segregation of the chromosomes. At the onset of anaphase, it is ubiquitinated, conducting to its destruction and to the liberation of ESPL1. Its function is however not limited to a blocking activity, since it is required to activate ESPL1. Negatively regulates the transcriptional activity and related apoptosis activity of TP53. The negative regulation of TP53 may explain the strong transforming capability of the protein when it is overexpressed. May also play a role in DNA repair via its interaction with Ku, possibly by connecting DNA damage-response pathways with sister chromatid separation. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11238996, ECO:0000269|PubMed:11371342, ECO:0000269|PubMed:12355087}. |
O96017 | CHEK2 | S379 | ochoa|psp | Serine/threonine-protein kinase Chk2 (EC 2.7.11.1) (CHK2 checkpoint homolog) (Cds1 homolog) (Hucds1) (hCds1) (Checkpoint kinase 2) | Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T] (PubMed:37943659). Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978). Under oxidative stress, promotes ATG7 ubiquitination by phosphorylating the E3 ubiquitin ligase TRIM32 at 'Ser-55' leading to positive regulation of the autophagosme assembly (PubMed:37943659). {ECO:0000250|UniProtKB:Q9Z265, ECO:0000269|PubMed:10097108, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11298456, ECO:0000269|PubMed:12402044, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:17715138, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:18644861, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:20364141, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25619829, ECO:0000269|PubMed:37943659, ECO:0000269|PubMed:9836640, ECO:0000269|PubMed:9889122}.; FUNCTION: (Microbial infection) Phosphorylates herpes simplex virus 1/HHV-1 protein ICP0 and thus activates its SUMO-targeted ubiquitin ligase activity. {ECO:0000269|PubMed:32001251}. |
P00390 | GSR | S178 | ochoa | Glutathione reductase, mitochondrial (GR) (GRase) (EC 1.8.1.7) | Catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH). Constitutes the major mechanism to maintain a high GSH:GSSG ratio in the cytosol. {ECO:0000269|PubMed:17185460}. |
P00488 | F13A1 | S128 | ochoa | Coagulation factor XIII A chain (Coagulation factor XIIIa) (EC 2.3.2.13) (Protein-glutamine gamma-glutamyltransferase A chain) (Transglutaminase A chain) | Factor XIII is activated by thrombin and calcium ion to a transglutaminase that catalyzes the formation of gamma-glutamyl-epsilon-lysine cross-links between fibrin chains, thus stabilizing the fibrin clot. Also cross-link alpha-2-plasmin inhibitor, or fibronectin, to the alpha chains of fibrin. {ECO:0000269|PubMed:27363989}. |
P01009 | SERPINA1 | S260 | ochoa | Alpha-1-antitrypsin (Alpha-1 protease inhibitor) (Alpha-1-antiproteinase) (Serpin A1) [Cleaved into: Short peptide from AAT (SPAAT)] | Inhibitor of serine proteases. Its primary target is elastase, but it also has a moderate affinity for plasmin and thrombin. Irreversibly inhibits trypsin, chymotrypsin and plasminogen activator. The aberrant form inhibits insulin-induced NO synthesis in platelets, decreases coagulation time and has proteolytic activity against insulin and plasmin.; FUNCTION: [Short peptide from AAT]: Reversible chymotrypsin inhibitor. It also inhibits elastase, but not trypsin. Its major physiological function is the protection of the lower respiratory tract against proteolytic destruction by human leukocyte elastase (HLE). |
P04049 | RAF1 | S497 | ochoa|psp | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P04049 | RAF1 | S604 | ochoa | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P04150 | NR3C1 | S45 | ochoa | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
P04406 | GAPDH | S241 | ochoa|psp | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) | Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}. |
P04637 | TP53 | S371 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P05107 | ITGB2 | S346 | ochoa | Integrin beta-2 (Cell surface adhesion glycoproteins LFA-1/CR3/p150,95 subunit beta) (Complement receptor C3 subunit beta) (CD antigen CD18) | Integrin ITGAL/ITGB2 is a receptor for ICAM1, ICAM2, ICAM3 and ICAM4. Integrin ITGAL/ITGB2 is also a receptor for the secreted form of ubiquitin-like protein ISG15; the interaction is mediated by ITGAL (PubMed:29100055). Integrins ITGAM/ITGB2 and ITGAX/ITGB2 are receptors for the iC3b fragment of the third complement component and for fibrinogen. Integrin ITGAX/ITGB2 recognizes the sequence G-P-R in fibrinogen alpha-chain. Integrin ITGAM/ITGB2 recognizes P1 and P2 peptides of fibrinogen gamma chain. Integrin ITGAM/ITGB2 is also a receptor for factor X. Integrin ITGAD/ITGB2 is a receptor for ICAM3 and VCAM1. Contributes to natural killer cell cytotoxicity (PubMed:15356110). Involved in leukocyte adhesion and transmigration of leukocytes including T-cells and neutrophils (PubMed:11812992, PubMed:28807980). Triggers neutrophil transmigration during lung injury through PTK2B/PYK2-mediated activation (PubMed:18587400). Integrin ITGAL/ITGB2 in association with ICAM3, contributes to apoptotic neutrophil phagocytosis by macrophages (PubMed:23775590). In association with alpha subunit ITGAM/CD11b, required for CD177-PRTN3-mediated activation of TNF primed neutrophils (PubMed:21193407). {ECO:0000269|PubMed:11812992, ECO:0000269|PubMed:15356110, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:21193407, ECO:0000269|PubMed:23775590, ECO:0000269|PubMed:28807980, ECO:0000269|PubMed:29100055}. |
P06400 | RB1 | S838 | ochoa|psp | Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) | Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}. |
P07384 | CAPN1 | S93 | ochoa | Calpain-1 catalytic subunit (EC 3.4.22.52) (Calcium-activated neutral proteinase 1) (CANP 1) (Calpain mu-type) (Calpain-1 large subunit) (Cell proliferation-inducing gene 30 protein) (Micromolar-calpain) (muCANP) | Calcium-regulated non-lysosomal thiol-protease which catalyzes limited proteolysis of substrates involved in cytoskeletal remodeling and signal transduction (PubMed:19617626, PubMed:21531719, PubMed:2400579). Proteolytically cleaves CTBP1 at 'Asn-375', 'Gly-387' and 'His-409' (PubMed:23707407). Cleaves and activates caspase-7 (CASP7) (PubMed:19617626). {ECO:0000269|PubMed:19617626, ECO:0000269|PubMed:21531719, ECO:0000269|PubMed:23707407, ECO:0000269|PubMed:2400579}. |
P07451 | CA3 | S50 | ochoa | Carbonic anhydrase 3 (EC 4.2.1.1) (Carbonate dehydratase III) (Carbonic anhydrase III) (CA-III) | Reversible hydration of carbon dioxide. {ECO:0000269|PubMed:17427958, ECO:0000269|PubMed:18618712}. |
P07954 | FH | S75 | psp | Fumarate hydratase, mitochondrial (Fumarase) (HsFH) (EC 4.2.1.2) | Catalyzes the reversible stereospecific interconversion of fumarate to L-malate (PubMed:30761759). Experiments in other species have demonstrated that specific isoforms of this protein act in defined pathways and favor one direction over the other (Probable). {ECO:0000269|PubMed:30761759, ECO:0000305}.; FUNCTION: [Isoform Mitochondrial]: Catalyzes the hydration of fumarate to L-malate in the tricarboxylic acid (TCA) cycle to facilitate a transition step in the production of energy in the form of NADH. {ECO:0000250|UniProtKB:P10173}.; FUNCTION: [Isoform Cytoplasmic]: Catalyzes the dehydration of L-malate to fumarate (By similarity). Fumarate metabolism in the cytosol plays a role during urea cycle and arginine metabolism; fumarate being a by-product of the urea cycle and amino-acid catabolism (By similarity). Also plays a role in DNA repair by promoting non-homologous end-joining (NHEJ) (PubMed:20231875, PubMed:26237645). In response to DNA damage and phosphorylation by PRKDC, translocates to the nucleus and accumulates at DNA double-strand breaks (DSBs): acts by catalyzing formation of fumarate, an inhibitor of KDM2B histone demethylase activity, resulting in enhanced dimethylation of histone H3 'Lys-36' (H3K36me2) (PubMed:26237645). {ECO:0000250|UniProtKB:P97807, ECO:0000269|PubMed:20231875, ECO:0000269|PubMed:26237645}. |
P08047 | SP1 | S698 | psp | Transcription factor Sp1 | Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}. |
P08047 | SP1 | S720 | psp | Transcription factor Sp1 | Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}. |
P08138 | NGFR | S287 | psp | Tumor necrosis factor receptor superfamily member 16 (Gp80-LNGFR) (Low affinity neurotrophin receptor p75NTR) (Low-affinity nerve growth factor receptor) (NGF receptor) (Low-affinity nerve growth factor receptor p75NGFR) (Low-affinity nerve growth factor receptor p75NGR) (p75 ICD) (CD antigen CD271) | Low affinity receptor which can bind to NGF, BDNF, NTF3, and NTF4. Forms a heterodimeric receptor with SORCS2 that binds the precursor forms of NGF, BDNF and NTF3 with high affinity, and has much lower affinity for mature NGF and BDNF (PubMed:24908487). Plays an important role in differentiation and survival of specific neuronal populations during development (By similarity). Can mediate cell survival as well as cell death of neural cells. Plays a role in the inactivation of RHOA (PubMed:26646181). Plays a role in the regulation of the translocation of GLUT4 to the cell surface in adipocytes and skeletal muscle cells in response to insulin, probably by regulating RAB31 activity, and thereby contributes to the regulation of insulin-dependent glucose uptake (By similarity). Necessary for the circadian oscillation of the clock genes BMAL1, PER1, PER2 and NR1D1 in the suprachiasmatic nucleus (SCmgetaN) of the brain and in liver and of the genes involved in glucose and lipid metabolism in the liver (PubMed:23785138). Together with BFAR negatively regulates NF-kappa-B and JNK-related signaling pathways (PubMed:22566094). {ECO:0000250, ECO:0000250|UniProtKB:Q9Z0W1, ECO:0000269|PubMed:14966521, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:24908487, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:3022937}. |
P09874 | PARP1 | S542 | ochoa | Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}. |
P10398 | ARAF | S458 | ochoa | Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) | Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}. |
P10636 | MAPT | S726 | ochoa|psp | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P10636 | MAPT | S288 | psp | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P10645 | CHGA | S207 | ochoa | Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] | [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}. |
P11142 | HSPA8 | S538 | ochoa | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
P11166 | SLC2A1 | S465 | ochoa | Solute carrier family 2, facilitated glucose transporter member 1 (Glucose transporter type 1, erythrocyte/brain) (GLUT-1) (HepG2 glucose transporter) | Facilitative glucose transporter, which is responsible for constitutive or basal glucose uptake (PubMed:10227690, PubMed:10954735, PubMed:18245775, PubMed:19449892, PubMed:25982116, PubMed:27078104, PubMed:32860739). Has a very broad substrate specificity; can transport a wide range of aldoses including both pentoses and hexoses (PubMed:18245775, PubMed:19449892). Most important energy carrier of the brain: present at the blood-brain barrier and assures the energy-independent, facilitative transport of glucose into the brain (PubMed:10227690). In association with BSG and NXNL1, promotes retinal cone survival by increasing glucose uptake into photoreceptors (By similarity). Required for mesendoderm differentiation (By similarity). {ECO:0000250|UniProtKB:P17809, ECO:0000250|UniProtKB:P46896, ECO:0000269|PubMed:10227690, ECO:0000269|PubMed:10954735, ECO:0000269|PubMed:18245775, ECO:0000269|PubMed:19449892, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:27078104, ECO:0000269|PubMed:32860739}. |
P12004 | PCNA | S152 | ochoa | Proliferating cell nuclear antigen (PCNA) (Cyclin) | Auxiliary protein of DNA polymerase delta and epsilon, is involved in the control of eukaryotic DNA replication by increasing the polymerase's processibility during elongation of the leading strand (PubMed:35585232). Induces a robust stimulatory effect on the 3'-5' exonuclease and 3'-phosphodiesterase, but not apurinic-apyrimidinic (AP) endonuclease, APEX2 activities. Has to be loaded onto DNA in order to be able to stimulate APEX2. Plays a key role in DNA damage response (DDR) by being conveniently positioned at the replication fork to coordinate DNA replication with DNA repair and DNA damage tolerance pathways (PubMed:24939902). Acts as a loading platform to recruit DDR proteins that allow completion of DNA replication after DNA damage and promote postreplication repair: Monoubiquitinated PCNA leads to recruitment of translesion (TLS) polymerases, while 'Lys-63'-linked polyubiquitination of PCNA is involved in error-free pathway and employs recombination mechanisms to synthesize across the lesion (PubMed:24695737). {ECO:0000269|PubMed:18719106, ECO:0000269|PubMed:19443450, ECO:0000269|PubMed:24695737, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:38459011}. |
P12814 | ACTN1 | S250 | ochoa | Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}. |
P13796 | LCP1 | S323 | ochoa | Plastin-2 (L-plastin) (LC64P) (Lymphocyte cytosolic protein 1) (LCP-1) | Actin-binding protein (PubMed:16636079, PubMed:17294403, PubMed:28493397). Plays a role in the activation of T-cells in response to costimulation through TCR/CD3 and CD2 or CD28 (PubMed:17294403). Modulates the cell surface expression of IL2RA/CD25 and CD69 (PubMed:17294403). {ECO:0000269|PubMed:16636079, ECO:0000269|PubMed:17294403, ECO:0000269|PubMed:28493397}. |
P13797 | PLS3 | S326 | ochoa | Plastin-3 (T-fimbrin) (T-plastin) | Actin-bundling protein. |
P13984 | GTF2F2 | S142 | ochoa | General transcription factor IIF subunit 2 (General transcription factor IIF 30 kDa subunit) (Transcription initiation factor IIF subunit beta) (TFIIF-beta) (Transcription initiation factor RAP30) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. {ECO:0000269|PubMed:2477704}. |
P15056 | BRAF | S605 | ochoa|psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15260 | IFNGR1 | S293 | ochoa | Interferon gamma receptor 1 (IFN-gamma receptor 1) (IFN-gamma-R1) (CDw119) (Interferon gamma receptor alpha-chain) (IFN-gamma-R-alpha) (CD antigen CD119) | Receptor subunit for interferon gamma/INFG that plays crucial roles in antimicrobial, antiviral, and antitumor responses by activating effector immune cells and enhancing antigen presentation (PubMed:20015550). Associates with transmembrane accessory factor IFNGR2 to form a functional receptor (PubMed:10986460, PubMed:2971451, PubMed:7615558, PubMed:7617032, PubMed:7673114). Upon ligand binding, the intracellular domain of IFNGR1 opens out to allow association of downstream signaling components JAK1 and JAK2. In turn, activated JAK1 phosphorylates IFNGR1 to form a docking site for STAT1. Subsequent phosphorylation of STAT1 leads to dimerization, translocation to the nucleus, and stimulation of target gene transcription (PubMed:28883123). STAT3 can also be activated in a similar manner although activation seems weaker. IFNGR1 intracellular domain phosphorylation also provides a docking site for SOCS1 that regulates the JAK-STAT pathway by competing with STAT1 binding to IFNGR1 (By similarity). {ECO:0000250|UniProtKB:P15261, ECO:0000269|PubMed:10986460, ECO:0000269|PubMed:20015550, ECO:0000269|PubMed:28883123, ECO:0000269|PubMed:2971451, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7617032, ECO:0000269|PubMed:7673114}. |
P16144 | ITGB4 | S1209 | ochoa | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P18206 | VCL | S101 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S816 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P19447 | ERCC3 | S231 | ochoa | General transcription and DNA repair factor IIH helicase/translocase subunit XPB (TFIIH subunit XPB) (EC 5.6.2.4) (Basic transcription factor 2 89 kDa subunit) (BTF2 p89) (DNA 3'-5' helicase/translocase XPB) (DNA excision repair protein ERCC-3) (DNA repair protein complementing XP-B cells) (TFIIH basal transcription factor complex 89 kDa subunit) (TFIIH 89 kDa subunit) (TFIIH p89) (Xeroderma pigmentosum group B-complementing protein) | ATP-dependent 3'-5' DNA helicase/translocase (PubMed:17466626, PubMed:27193682, PubMed:33902107, PubMed:8465201, PubMed:8663148). Binds dsDNA rather than ssDNA, unzipping it in a translocase rather than classical helicase activity (PubMed:27193682, PubMed:33902107). Component of the general transcription and DNA repair factor IIH (TFIIH) core complex (PubMed:10024882, PubMed:17466626, PubMed:8157004, PubMed:8465201). When complexed to CDK-activating kinase (CAK), involved in RNA transcription by RNA polymerase II. The ATPase activity of XPB/ERCC3, but not its helicase activity, is required for DNA opening; it may wrap around the damaged DNA wedging it open, causing localized melting that allows XPD/ERCC2 helicase to anchor (PubMed:10024882, PubMed:17466626). In transcription, TFIIH has an essential role in transcription initiation (PubMed:30894545, PubMed:8157004). When the pre-initiation complex (PIC) has been established, TFIIH is required for promoter opening and promoter escape (PubMed:8157004). The ATP-dependent helicase activity of XPB/ERCC3 is required for promoter opening and promoter escape (PubMed:10024882). In transcription pre-initiation complexes induces and propagates a DNA twist to open DNA (PubMed:27193682, PubMed:33902107). Also involved in transcription-coupled nucleotide excision repair (NER) of damaged DNA (PubMed:17466626, PubMed:2111438, PubMed:8157004). In NER, TFIIH acts by opening DNA around the lesion to allow the excision of the damaged oligonucleotide and its replacement by a new DNA fragment. The structure of the TFIIH transcription complex differs from the NER-TFIIH complex; large movements by XPD/ERCC2 and XPB/ERCC3 are stabilized by XPA (PubMed:31253769, PubMed:33902107). XPA retains XPB/ERCC3 at the 5' end of a DNA bubble (mimicking DNA damage) (PubMed:31253769). {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:17466626, ECO:0000269|PubMed:30894545, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:33902107, ECO:0000269|PubMed:7724549, ECO:0000269|PubMed:8157004, ECO:0000269|PubMed:8663148, ECO:0000305|PubMed:8465201}. |
P19838 | NFKB1 | S328 | psp | Nuclear factor NF-kappa-B p105 subunit (DNA-binding factor KBF1) (EBP-1) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) [Cleaved into: Nuclear factor NF-kappa-B p50 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. {ECO:0000269|PubMed:15485931, ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:2203531, ECO:0000269|PubMed:2234062, ECO:0000269|PubMed:7830764}.; FUNCTION: [Nuclear factor NF-kappa-B p105 subunit]: P105 is the precursor of the active p50 subunit (Nuclear factor NF-kappa-B p50 subunit) of the nuclear factor NF-kappa-B (PubMed:1423592). Acts as a cytoplasmic retention of attached NF-kappa-B proteins by p105 (PubMed:1423592). {ECO:0000269|PubMed:1423592}.; FUNCTION: [Nuclear factor NF-kappa-B p50 subunit]: Constitutes the active form, which associates with RELA/p65 to form the NF-kappa-B p65-p50 complex to form a transcription factor (PubMed:1740106, PubMed:7830764). Together with RELA/p65, binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions (PubMed:1740106, PubMed:7830764). {ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:7830764}. |
P20929 | NEB | S6606 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P21333 | FLNA | S972 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S1921 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2577 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21453 | S1PR1 | S355 | ochoa|psp | Sphingosine 1-phosphate receptor 1 (S1P receptor 1) (S1P1) (Endothelial differentiation G-protein coupled receptor 1) (Sphingosine 1-phosphate receptor Edg-1) (S1P receptor Edg-1) (CD antigen CD363) | G-protein coupled receptor for the bioactive lysosphingolipid sphingosine 1-phosphate (S1P) that seems to be coupled to the G(i) subclass of heteromeric G proteins. Signaling leads to the activation of RAC1, SRC, PTK2/FAK1 and MAP kinases. Plays an important role in cell migration, probably via its role in the reorganization of the actin cytoskeleton and the formation of lamellipodia in response to stimuli that increase the activity of the sphingosine kinase SPHK1. Required for normal chemotaxis toward sphingosine 1-phosphate. Required for normal embryonic heart development and normal cardiac morphogenesis. Plays an important role in the regulation of sprouting angiogenesis and vascular maturation. Inhibits sprouting angiogenesis to prevent excessive sprouting during blood vessel development. Required for normal egress of mature T-cells from the thymus into the blood stream and into peripheral lymphoid organs. Plays a role in the migration of osteoclast precursor cells, the regulation of bone mineralization and bone homeostasis (By similarity). Plays a role in responses to oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by pulmonary endothelial cells and in the protection against ventilator-induced lung injury. {ECO:0000250, ECO:0000269|PubMed:10982820, ECO:0000269|PubMed:11230698, ECO:0000269|PubMed:11583630, ECO:0000269|PubMed:11604399, ECO:0000269|PubMed:19286607, ECO:0000269|PubMed:22344443, ECO:0000269|PubMed:8626678, ECO:0000269|PubMed:9488656}. |
P21728 | DRD1 | S263 | psp | D(1A) dopamine receptor (Dopamine D1 receptor) | Dopamine receptor whose activity is mediated by G proteins which activate adenylyl cyclase. |
P22314 | UBA1 | S816 | ochoa | Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) | Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}. |
P25705 | ATP5F1A | S254 | ochoa | ATP synthase F(1) complex subunit alpha, mitochondrial (ATP synthase F1 subunit alpha) | Subunit alpha, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the catalytic subunit beta (ATP5F1B), forms the catalytic core in the F(1) domain (PubMed:37244256). Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (Probable). Binds the bacterial siderophore enterobactin and can promote mitochondrial accumulation of enterobactin-derived iron ions (PubMed:30146159). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:30146159, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
P27816 | MAP4 | S1000 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28290 | ITPRID2 | S364 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28290 | ITPRID2 | S591 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28749 | RBL1 | S762 | ochoa | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P30101 | PDIA3 | S424 | ochoa | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
P30101 | PDIA3 | S474 | ochoa | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
P30414 | NKTR | S325 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P31483 | TIA1 | S102 | ochoa | Cytotoxic granule associated RNA binding protein TIA1 (Nucleolysin TIA-1 isoform p40) (RNA-binding protein TIA-1) (T-cell-restricted intracellular antigen-1) (TIA-1) (p40-TIA-1) | RNA-binding protein involved in the regulation of alternative pre-RNA splicing and mRNA translation by binding to uridine-rich (U-rich) RNA sequences (PubMed:11106748, PubMed:12486009, PubMed:17488725, PubMed:8576255). Binds to U-rich sequences immediately downstream from a 5' splice sites in a uridine-rich small nuclear ribonucleoprotein (U snRNP)-dependent fashion, thereby modulating alternative pre-RNA splicing (PubMed:11106748, PubMed:8576255). Preferably binds to the U-rich IAS1 sequence in a U1 snRNP-dependent manner; this binding is optimal if a 5' splice site is adjacent to IAS1 (By similarity). Activates the use of heterologous 5' splice sites; the activation depends on the intron sequence downstream from the 5' splice site, with a preference for a downstream U-rich sequence (PubMed:11106748). By interacting with SNRPC/U1-C, promotes recruitment and binding of spliceosomal U1 snRNP to 5' splice sites followed by U-rich sequences, thereby facilitating atypical 5' splice site recognition by U1 snRNP (PubMed:11106748, PubMed:12486009, PubMed:17488725). Activates splicing of alternative exons with weak 5' splice sites followed by a U-rich stretch on its own pre-mRNA and on TIAR mRNA (By similarity). Acts as a modulator of alternative splicing for the apoptotic FAS receptor, thereby promoting apoptosis (PubMed:11106748, PubMed:17488725, PubMed:1934064). Binds to the 5' splice site region of FAS intron 5 to promote accumulation of transcripts that include exon 6 at the expense of transcripts in which exon 6 is skipped, thereby leading to the transcription of a membrane-bound apoptotic FAS receptor, which promotes apoptosis (PubMed:11106748, PubMed:17488725, PubMed:1934064). Binds to a conserved AU-rich cis element in COL2A1 intron 2 and modulates alternative splicing of COL2A1 exon 2 (PubMed:17580305). Also binds to the equivalent AT-rich element in COL2A1 genomic DNA, and may thereby be involved in the regulation of transcription (PubMed:17580305). Binds specifically to a polypyrimidine-rich controlling element (PCE) located between the weak 5' splice site and the intronic splicing silencer of CFTR mRNA to promote exon 9 inclusion, thereby antagonizing PTB1 and its role in exon skipping of CFTR exon 9 (PubMed:14966131). Involved in the repression of mRNA translation by binding to AU-rich elements (AREs) located in mRNA 3' untranslated regions (3' UTRs), including target ARE-bearing mRNAs encoding TNF and PTGS2 (By similarity). Also participates in the cellular response to environmental stress, by acting downstream of the stress-induced phosphorylation of EIF2S1/EIF2A to promote the recruitment of untranslated mRNAs to cytoplasmic stress granules (SGs), leading to stress-induced translational arrest (PubMed:10613902). Formation and recruitment to SGs is regulated by Zn(2+) (By similarity). Possesses nucleolytic activity against cytotoxic lymphocyte target cells (PubMed:1934064). {ECO:0000250|UniProtKB:P52912, ECO:0000269|PubMed:10613902, ECO:0000269|PubMed:11106748, ECO:0000269|PubMed:12486009, ECO:0000269|PubMed:14966131, ECO:0000269|PubMed:17488725, ECO:0000269|PubMed:17580305, ECO:0000269|PubMed:1934064, ECO:0000269|PubMed:8576255}.; FUNCTION: [Isoform Short]: Displays enhanced splicing regulatory activity compared with TIA isoform Long. {ECO:0000269|PubMed:17488725}. |
P31949 | S100A11 | S41 | ochoa | Protein S100-A11 (Calgizzarin) (Metastatic lymph node gene 70 protein) (MLN 70) (Protein S100-C) (S100 calcium-binding protein A11) [Cleaved into: Protein S100-A11, N-terminally processed] | Facilitates the differentiation and the cornification of keratinocytes. {ECO:0000269|PubMed:18618420}. |
P35222 | CTNNB1 | S33 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35222 | CTNNB1 | S184 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35268 | RPL22 | S66 | ochoa | Large ribosomal subunit protein eL22 (60S ribosomal protein L22) (EBER-associated protein) (EAP) (Epstein-Barr virus small RNA-associated protein) (Heparin-binding protein HBp15) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P35269 | GTF2F1 | S449 | ochoa | General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}. |
P35754 | GLRX | S34 | ochoa | Glutaredoxin-1 (Thioltransferase-1) (TTase-1) | Has a glutathione-disulfide oxidoreductase activity in the presence of NADPH and glutathione reductase. Reduces low molecular weight disulfides and proteins. |
P36871 | PGM1 | S541 | ochoa | Phosphoglucomutase-1 (PGM 1) (EC 5.4.2.2) (Glucose phosphomutase 1) | Catalyzes the reversible isomerization of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate (PubMed:15378030, PubMed:25288802). The mechanism proceeds via the intermediate compound alpha-D-glucose 1,6-bisphosphate (Probable) (PubMed:25288802). This enzyme participates in both the breakdown and synthesis of glucose (PubMed:17924679, PubMed:25288802). {ECO:0000269|PubMed:15378030, ECO:0000269|PubMed:17924679, ECO:0000269|PubMed:25288802, ECO:0000305|PubMed:15378030}. |
P36957 | DLST | S81 | ochoa | Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial (EC 2.3.1.61) (2-oxoglutarate dehydrogenase complex component E2) (OGDC-E2) (Dihydrolipoamide succinyltransferase component of 2-oxoglutarate dehydrogenase complex) (E2K) | Dihydrolipoamide succinyltransferase (E2) component of the 2-oxoglutarate dehydrogenase complex. The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). The 2-oxoglutarate dehydrogenase complex is mainly active in the mitochondrion (PubMed:29211711, PubMed:30929736). A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl-CoA to histone succinyltransferase KAT2A (PubMed:29211711). {ECO:0000269|PubMed:29211711, ECO:0000269|PubMed:30929736}. |
P38398 | BRCA1 | S1466 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38398 | BRCA1 | S1473 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38398 | BRCA1 | S1514 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38646 | HSPA9 | S408 | ochoa | Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) | Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}. |
P38919 | EIF4A3 | S84 | ochoa | Eukaryotic initiation factor 4A-III (eIF-4A-III) (eIF4A-III) (EC 3.6.4.13) (ATP-dependent RNA helicase DDX48) (ATP-dependent RNA helicase eIF4A-3) (DEAD box protein 48) (Eukaryotic initiation factor 4A-like NUK-34) (Eukaryotic translation initiation factor 4A isoform 3) (Nuclear matrix protein 265) (NMP 265) (hNMP 265) [Cleaved into: Eukaryotic initiation factor 4A-III, N-terminally processed] | ATP-dependent RNA helicase (PubMed:16170325). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs (PubMed:16170325, PubMed:16209946, PubMed:16314458, PubMed:16923391, PubMed:16931718, PubMed:19033377, PubMed:20479275). The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Its RNA-dependent ATPase and RNA-helicase activities are induced by CASC3, but abolished in presence of the MAGOH-RBM8A heterodimer, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The inhibition of ATPase activity by the MAGOH-RBM8A heterodimer increases the RNA-binding affinity of the EJC. Involved in translational enhancement of spliced mRNAs after formation of the 80S ribosome complex. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Shows higher affinity for single-stranded RNA in an ATP-bound core EJC complex than after the ATP is hydrolyzed. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly (PubMed:22203037). Involved in craniofacial development (PubMed:24360810). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15034551, ECO:0000269|PubMed:16170325, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16314458, ECO:0000269|PubMed:16923391, ECO:0000269|PubMed:16931718, ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:19033377, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:20479275, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:24360810, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
P40121 | CAPG | S129 | ochoa | Macrophage-capping protein (Actin regulatory protein CAP-G) | Calcium-sensitive protein which reversibly blocks the barbed ends of actin filaments but does not sever preformed actin filaments. May play an important role in macrophage function. May play a role in regulating cytoplasmic and/or nuclear structures through potential interactions with actin. May bind DNA. |
P40121 | CAPG | S318 | ochoa | Macrophage-capping protein (Actin regulatory protein CAP-G) | Calcium-sensitive protein which reversibly blocks the barbed ends of actin filaments but does not sever preformed actin filaments. May play an important role in macrophage function. May play a role in regulating cytoplasmic and/or nuclear structures through potential interactions with actin. May bind DNA. |
P40692 | MLH1 | S406 | ochoa|psp | DNA mismatch repair protein Mlh1 (MutL protein homolog 1) | Heterodimerizes with PMS2 to form MutL alpha, a component of the post-replicative DNA mismatch repair system (MMR). DNA repair is initiated by MutS alpha (MSH2-MSH6) or MutS beta (MSH2-MSH3) binding to a dsDNA mismatch, then MutL alpha is recruited to the heteroduplex. Assembly of the MutL-MutS-heteroduplex ternary complex in presence of RFC and PCNA is sufficient to activate endonuclease activity of PMS2. It introduces single-strand breaks near the mismatch and thus generates new entry points for the exonuclease EXO1 to degrade the strand containing the mismatch. DNA methylation would prevent cleavage and therefore assure that only the newly mutated DNA strand is going to be corrected. MutL alpha (MLH1-PMS2) interacts physically with the clamp loader subunits of DNA polymerase III, suggesting that it may play a role to recruit the DNA polymerase III to the site of the MMR. Also implicated in DNA damage signaling, a process which induces cell cycle arrest and can lead to apoptosis in case of major DNA damages. Heterodimerizes with MLH3 to form MutL gamma which plays a role in meiosis. {ECO:0000269|PubMed:16873062, ECO:0000269|PubMed:18206974, ECO:0000269|PubMed:20020535, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:39032648, ECO:0000269|PubMed:9311737}. |
P40926 | MDH2 | S310 | ochoa | Malate dehydrogenase, mitochondrial (EC 1.1.1.37) | None |
P42166 | TMPO | S442 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P42345 | MTOR | S2454 | ochoa | Serine/threonine-protein kinase mTOR (EC 2.7.11.1) (FK506-binding protein 12-rapamycin complex-associated protein 1) (FKBP12-rapamycin complex-associated protein) (Mammalian target of rapamycin) (mTOR) (Mechanistic target of rapamycin) (Rapamycin and FKBP12 target 1) (Rapamycin target protein 1) (Tyrosine-protein kinase mTOR) (EC 2.7.10.2) | Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:30171069, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex, MTOR transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15467718, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:15268862, PubMed:15467718, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). May also regulate insulin signaling by acting as a tyrosine protein kinase that catalyzes phosphorylation of IGF1R and INSR; additional evidence are however required to confirm this result in vivo (PubMed:26584640). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity). {ECO:0000250|UniProtKB:Q9JLN9, ECO:0000269|PubMed:12087098, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:17517883, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:18762023, ECO:0000269|PubMed:18925875, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20537536, ECO:0000269|PubMed:21376236, ECO:0000269|PubMed:21576368, ECO:0000269|PubMed:21659604, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23426360, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:24670654, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25799227, ECO:0000269|PubMed:26018084, ECO:0000269|PubMed:26584640, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29424687, ECO:0000269|PubMed:29567957, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:31601708, ECO:0000269|PubMed:31695197, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:34519269, ECO:0000269|PubMed:35926713, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:36691768, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:37751742}. |
P42858 | HTT | S2548 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P43268 | ETV4 | S20 | ochoa | ETS translocation variant 4 (Adenovirus E1A enhancer-binding protein) (E1A-F) (Polyomavirus enhancer activator 3 homolog) (Protein PEA3) | Transcriptional activator (PubMed:19307308, PubMed:31552090). May play a role in keratinocyte differentiation (PubMed:31552090). {ECO:0000269|PubMed:19307308, ECO:0000269|PubMed:31552090}.; FUNCTION: (Microbial infection) Binds to the enhancer of the adenovirus E1A gene and acts as a transcriptional activator; the core-binding sequence is 5'-[AC]GGA[AT]GT-3'. {ECO:0000269|PubMed:8441666}. |
P46013 | MKI67 | S634 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46821 | MAP1B | S1190 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46939 | UTRN | S2219 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P49327 | FASN | S714 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49790 | NUP153 | S306 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49792 | RANBP2 | S1648 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P50461 | CSRP3 | S156 | ochoa | Cysteine and glycine-rich protein 3 (Cardiac LIM protein) (Cysteine-rich protein 3) (CRP3) (LIM domain protein, cardiac) (Muscle LIM protein) | Positive regulator of myogenesis. Acts as a cofactor for myogenic bHLH transcription factors such as MYOD1, and probably MYOG and MYF6. Enhances the DNA-binding activity of the MYOD1:TCF3 isoform E47 complex and may promote formation of a functional MYOD1:TCF3 isoform E47:MEF2A complex involved in myogenesis (By similarity). Plays a crucial and specific role in the organization of cytosolic structures in cardiomyocytes. Could play a role in mechanical stretch sensing. May be a scaffold protein that promotes the assembly of interacting proteins at Z-line structures. It is essential for calcineurin anchorage to the Z line. Required for stress-induced calcineurin-NFAT activation (By similarity). The role in regulation of cytoskeleton dynamics by association with CFL2 is reported conflictingly: Shown to enhance CFL2-mediated F-actin depolymerization dependent on the CSRP3:CFL2 molecular ratio, and also shown to reduce the ability of CLF1 and CFL2 to enhance actin depolymerization (PubMed:19752190, PubMed:24934443). Proposed to contribute to the maintenance of muscle cell integrity through an actin-based mechanism. Can directly bind to actin filaments, cross-link actin filaments into bundles without polarity selectivity and protect them from dilution- and cofilin-mediated depolymerization; the function seems to involve its self-association (PubMed:24934443). In vitro can inhibit PKC/PRKCA activity (PubMed:27353086). Proposed to be involved in cardiac stress signaling by down-regulating excessive PKC/PRKCA signaling (By similarity). {ECO:0000250|UniProtKB:P50462, ECO:0000250|UniProtKB:P50463, ECO:0000269|PubMed:19752190, ECO:0000269|PubMed:24934443, ECO:0000269|PubMed:27353086}.; FUNCTION: [Isoform 2]: May play a role in early sarcomere organization. Overexpression in myotubes negatively regulates myotube differentiation. By association with isoform 1 and thus changing the CSRP3 isoform 1:CFL2 stoichiometry is proposed to down-regulate CFL2-mediated F-actin depolymerization. {ECO:0000269|PubMed:24860983}. |
P51659 | HSD17B4 | S198 | ochoa | Peroxisomal multifunctional enzyme type 2 (MFE-2) (17-beta-hydroxysteroid dehydrogenase 4) (17-beta-HSD 4) (D-bifunctional protein) (DBP) (Multifunctional protein 2) (MFP-2) (Short chain dehydrogenase/reductase family 8C member 1) [Cleaved into: (3R)-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.n12); Enoyl-CoA hydratase 2 (EC 4.2.1.107) (EC 4.2.1.119) (3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholest-24-enoyl-CoA hydratase)] | Bifunctional enzyme acting on the peroxisomal fatty acid beta-oxidation pathway. Catalyzes two of the four reactions in fatty acid degradation: hydration of 2-enoyl-CoA (trans-2-enoyl-CoA) to produce (3R)-3-hydroxyacyl-CoA, and dehydrogenation of (3R)-3-hydroxyacyl-CoA to produce 3-ketoacyl-CoA (3-oxoacyl-CoA), which is further metabolized by SCPx. Can use straight-chain and branched-chain fatty acids, as well as bile acid intermediates as substrates. {ECO:0000269|PubMed:10671535, ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:8902629, ECO:0000269|PubMed:9089413}. |
P51825 | AFF1 | S684 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P54132 | BLM | S527 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54296 | MYOM2 | S553 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P55011 | SLC12A2 | S957 | ochoa | Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) | Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}. |
P55196 | AFDN | S246 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55196 | AFDN | S512 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P60520 | GABARAPL2 | S88 | psp | Gamma-aminobutyric acid receptor-associated protein-like 2 (GABA(A) receptor-associated protein-like 2) (Ganglioside expression factor 2) (GEF-2) (General protein transport factor p16) (Golgi-associated ATPase enhancer of 16 kDa) (GATE-16) (MAP1 light chain 3-related protein) | Ubiquitin-like modifier involved in intra-Golgi traffic (By similarity). Modulates intra-Golgi transport through coupling between NSF activity and SNAREs activation (By similarity). It first stimulates the ATPase activity of NSF which in turn stimulates the association with GOSR1 (By similarity). Involved in autophagy (PubMed:20418806, PubMed:23209295). Plays a role in mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production (PubMed:20418806, PubMed:23209295). Whereas LC3s are involved in elongation of the phagophore membrane, the GABARAP/GATE-16 subfamily is essential for a later stage in autophagosome maturation (PubMed:20418806, PubMed:23209295). {ECO:0000250|UniProtKB:P60519, ECO:0000269|PubMed:20418806, ECO:0000269|PubMed:23209295}. |
P60709 | ACTB | S350 | ochoa | Actin, cytoplasmic 1 (EC 3.6.4.-) (Beta-actin) [Cleaved into: Actin, cytoplasmic 1, N-terminally processed] | Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells (PubMed:25255767, PubMed:29581253). Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction (PubMed:29581253). In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA (PubMed:29925947). Plays a role in the assembly of the gamma-tubulin ring complex (gTuRC), which regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments (PubMed:39321809, PubMed:38609661). Part of the ACTR1A/ACTB filament around which the dynactin complex is built (By similarity). The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:Q6QAQ1, ECO:0000269|PubMed:25255767, ECO:0000269|PubMed:29581253, ECO:0000269|PubMed:29925947, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
P60983 | GMFB | S72 | psp | Glia maturation factor beta (GMF-beta) | This protein causes differentiation of brain cells, stimulation of neural regeneration, and inhibition of proliferation of tumor cells. |
P61019 | RAB2A | S67 | ochoa | Ras-related protein Rab-2A (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology (PubMed:37821429). RAB2A regulates autophagy by promoting autophagosome-lysosome fusion via recruitment of the HOPS endosomal tethering complex; this process involves autophagosomal RAB2A and lysosomal RAB39A recruitment of HOPS subcomplexes VPS39-VPS11 and VPS41-VPS16-VPS18-VPS33A, respectively, which assemble into a functional complex to mediate membrane tethering and SNAREs-driven membrane fusion (PubMed:37821429). Required for protein transport from the endoplasmic reticulum to the Golgi complex. Regulates the compacted morphology of the Golgi (PubMed:26209634). Together with RAB2B, redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:28483915, ECO:0000269|PubMed:37821429}. |
P63261 | ACTG1 | S350 | ochoa | Actin, cytoplasmic 2 (EC 3.6.4.-) (Gamma-actin) [Cleaved into: Actin, cytoplasmic 2, N-terminally processed] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. May play a role in the repair of noise-induced stereocilia gaps thereby maintains hearing sensitivity following loud noise damage (By similarity). {ECO:0000250|UniProtKB:P63260, ECO:0000305|PubMed:29581253}. |
P67775 | PPP2CA | S43 | ochoa | Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform (PP2A-alpha) (EC 3.1.3.16) (Replication protein C) (RP-C) | Catalytic subunit of protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events (PubMed:10801873, PubMed:12473674, PubMed:17245430, PubMed:22613722, PubMed:33243860, PubMed:34004147, PubMed:9920888). PP2A is the major phosphatase for microtubule-associated proteins (MAPs) (PubMed:22613722). PP2A can modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase (PubMed:22613722). Cooperates with SGO2 to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I (By similarity). Can dephosphorylate various proteins, such as SV40 large T antigen, AXIN1, p53/TP53, PIM3, WEE1 (PubMed:10801873, PubMed:12473674, PubMed:17245430, PubMed:9920888). Activates RAF1 by dephosphorylating it at 'Ser-259' (PubMed:10801873). Mediates dephosphorylation of WEE1, preventing its ubiquitin-mediated proteolysis, increasing WEE1 protein levels, and promoting the G2/M checkpoint (PubMed:33108758). Mediates dephosphorylation of MYC; promoting its ubiquitin-mediated proteolysis: interaction with AMBRA1 enhances interaction between PPP2CA and MYC (PubMed:25438055). Mediates dephosphorylation of FOXO3; promoting its stabilization: interaction with AMBRA1 enhances interaction between PPP2CA and FOXO3 (PubMed:30513302). Catalyzes dephosphorylation of the pyrin domain of NLRP3, promoting assembly of the NLRP3 inflammasome (By similarity). Together with RACK1 adapter, mediates dephosphorylation of AKT1 at 'Ser-473', preventing AKT1 activation and AKT-mTOR signaling pathway (By similarity). Dephosphorylation of AKT1 is essential for regulatory T-cells (Treg) homeostasis and stability (By similarity). Catalyzes dephosphorylation of PIM3, promotinh PIM3 ubiquitination and proteasomal degradation (PubMed:12473674). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:33633399). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:33633399). Key mediator of a quality checkpoint during transcription elongation as part of the Integrator-PP2A (INTAC) complex (PubMed:33243860, PubMed:34004147, PubMed:37080207). The INTAC complex drives premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: within the INTAC complex, PPP2CA catalyzes dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, thereby preventing transcriptional elongation (PubMed:33243860, PubMed:34004147, PubMed:37080207). {ECO:0000250|UniProtKB:P63330, ECO:0000269|PubMed:10801873, ECO:0000269|PubMed:12473674, ECO:0000269|PubMed:17245430, ECO:0000269|PubMed:22613722, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:30513302, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33633399, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:37080207, ECO:0000269|PubMed:9920888}. |
P68363 | TUBA1B | S340 | ochoa | Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
P68366 | TUBA4A | S340 | ochoa | Tubulin alpha-4A chain (EC 3.6.5.-) (Alpha-tubulin 1) (Testis-specific alpha-tubulin) (Tubulin H2-alpha) (Tubulin alpha-1 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P78369 | CLDN10 | S202 | ochoa | Claudin-10 (Oligodendrocyte-specific protein-like) (OSP-like) | Forms paracellular channels: polymerizes in tight junction strands with cation- and anion-selective channels through the strands, conveying epithelial permeability in a process known as paracellular tight junction permeability. {ECO:0000269|PubMed:19383724, ECO:0000269|PubMed:28686597, ECO:0000269|PubMed:35650657, ECO:0000269|PubMed:36008380}.; FUNCTION: [Isoform 1]: Forms cation-selective paracellular channels. In sweat glands and in the thick ascending limb (TAL) of Henle's loop in kidney, it controls paracellular sodium permeability which is essential for proper sweat production and renal function (PubMed:19383724, PubMed:28686597, PubMed:28771254, PubMed:35650657, PubMed:36008380). {ECO:0000269|PubMed:19383724, ECO:0000269|PubMed:28686597, ECO:0000269|PubMed:28771254, ECO:0000269|PubMed:35650657, ECO:0000269|PubMed:36008380}.; FUNCTION: [Isoform 2]: Forms anion-selective paracellular channels. In renal proximal tubules, it conveys selective chloride over hydrogencarbonate anion permeability which is required for renal chloride reabsorption and salt homeostasis. {ECO:0000250|UniProtKB:Q9Z0S6, ECO:0000269|PubMed:19383724, ECO:0000269|PubMed:36008380}. |
P78371 | CCT2 | S54 | psp | T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P78371 | CCT2 | S168 | ochoa | T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P78559 | MAP1A | S878 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P82094 | TMF1 | S197 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P98088 | MUC5AC | S988 | ochoa | Mucin-5AC (MUC-5AC) (Gastric mucin) (Major airway glycoprotein) (Mucin-5 subtype AC, tracheobronchial) (Tracheobronchial mucin) (TBM) | Gel-forming glycoprotein of gastric and respiratory tract epithelia that protects the mucosa from infection and chemical damage by binding to inhaled microorganisms and particles that are subsequently removed by the mucociliary system (PubMed:14535999, PubMed:14718370). Interacts with H.pylori in the gastric epithelium, Barrett's esophagus as well as in gastric metaplasia of the duodenum (GMD) (PubMed:14535999). {ECO:0000269|PubMed:14535999, ECO:0000303|PubMed:14535999, ECO:0000303|PubMed:14718370}. |
Q00341 | HDLBP | S363 | ochoa | Vigilin (High density lipoprotein-binding protein) (HDL-binding protein) | Appears to play a role in cell sterol metabolism. It may function to protect cells from over-accumulation of cholesterol. |
Q00688 | FKBP3 | S36 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP3 (PPIase FKBP3) (EC 5.2.1.8) (25 kDa FK506-binding protein) (25 kDa FKBP) (FKBP-25) (FK506-binding protein 3) (FKBP-3) (Immunophilin FKBP25) (Rapamycin-selective 25 kDa immunophilin) (Rotamase) | FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins. |
Q00872 | MYBPC1 | S825 | ochoa | Myosin-binding protein C, slow-type (Slow MyBP-C) (C-protein, skeletal muscle slow isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. Slow skeletal protein that binds to both myosin and actin (PubMed:31025394, PubMed:31264822). In vitro, binds to native thin filaments and modifies the activity of actin-activated myosin ATPase. May modulate muscle contraction or may play a more structural role. {ECO:0000269|PubMed:31025394, ECO:0000269|PubMed:31264822}. |
Q01082 | SPTBN1 | S1447 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q02446 | SP4 | S38 | ochoa | Transcription factor Sp4 (SPR-1) | Binds to GT and GC boxes promoters elements. Probable transcriptional activator. |
Q02952 | AKAP12 | S505 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03164 | KMT2A | S2361 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q04656 | ATP7A | S1463 | ochoa|psp | Copper-transporting ATPase 1 (EC 7.2.2.8) (Copper pump 1) (Menkes disease-associated protein) | ATP-driven copper (Cu(+)) ion pump that plays an important role in intracellular copper ion homeostasis (PubMed:10419525, PubMed:11092760, PubMed:28389643). Within a catalytic cycle, acquires Cu(+) ion from donor protein on the cytoplasmic side of the membrane and delivers it to acceptor protein on the lumenal side. The transfer of Cu(+) ion across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:10419525, PubMed:19453293, PubMed:19917612, PubMed:28389643, PubMed:31283225). Under physiological conditions, at low cytosolic copper concentration, it is localized at the trans-Golgi network (TGN) where it transfers Cu(+) ions to cuproenzymes of the secretory pathway (PubMed:11092760, PubMed:28389643). Upon elevated cytosolic copper concentrations, it relocalizes to the plasma membrane where it is responsible for the export of excess Cu(+) ions (PubMed:10419525, PubMed:28389643). May play a dual role in neuron function and survival by regulating cooper efflux and neuronal transmission at the synapse as well as by supplying Cu(+) ions to enzymes such as PAM, TYR and SOD3 (By similarity) (PubMed:28389643). In the melanosomes of pigmented cells, provides copper cofactor to TYR to form an active TYR holoenzyme for melanin biosynthesis (By similarity). {ECO:0000250|UniProtKB:Q64430, ECO:0000269|PubMed:10419525, ECO:0000269|PubMed:11092760, ECO:0000269|PubMed:19453293, ECO:0000269|PubMed:19917612, ECO:0000269|PubMed:28389643, ECO:0000269|PubMed:31283225}. |
Q05209 | PTPN12 | S491 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q07869 | PPARA | S230 | psp | Peroxisome proliferator-activated receptor alpha (PPAR-alpha) (Nuclear receptor subfamily 1 group C member 1) | Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as a transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2. {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:24043310, ECO:0000269|PubMed:7629123, ECO:0000269|PubMed:7684926, ECO:0000269|PubMed:9556573}. |
Q08209 | PPP3CA | S438 | ochoa | Protein phosphatase 3 catalytic subunit alpha (EC 3.1.3.16) (CAM-PRP catalytic subunit) (Calcineurin A alpha) (Calmodulin-dependent calcineurin A subunit alpha isoform) (CNA alpha) (Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform) | Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals (PubMed:15671020, PubMed:18838687, PubMed:19154138, PubMed:23468591, PubMed:30254215). Many of the substrates contain a PxIxIT motif and/or a LxVP motif (PubMed:17498738, PubMed:17502104, PubMed:22343722, PubMed:23468591, PubMed:27974827). In response to increased Ca(2+) levels, dephosphorylates and activates phosphatase SSH1 which results in cofilin dephosphorylation (PubMed:15671020). In response to increased Ca(2+) levels following mitochondrial depolarization, dephosphorylates DNM1L inducing DNM1L translocation to the mitochondrion (PubMed:18838687). Positively regulates the CACNA1B/CAV2.2-mediated Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). Dephosphorylates heat shock protein HSPB1 (By similarity). Dephosphorylates and activates transcription factor NFATC1 (PubMed:19154138). In response to increased Ca(2+) levels, regulates NFAT-mediated transcription probably by dephosphorylating NFAT and promoting its nuclear translocation (PubMed:26248042). Dephosphorylates and inactivates transcription factor ELK1 (PubMed:19154138). Dephosphorylates DARPP32 (PubMed:19154138). May dephosphorylate CRTC2 at 'Ser-171' resulting in CRTC2 dissociation from 14-3-3 proteins (PubMed:30611118). Dephosphorylates transcription factor TFEB at 'Ser-211' following Coxsackievirus B3 infection, promoting nuclear translocation (PubMed:33691586). Required for postnatal development of the nephrogenic zone and superficial glomeruli in the kidneys, cell cycle homeostasis in the nephrogenic zone, and ultimately normal kidney function (By similarity). Plays a role in intracellular AQP2 processing and localization to the apical membrane in the kidney, may thereby be required for efficient kidney filtration (By similarity). Required for secretion of salivary enzymes amylase, peroxidase, lysozyme and sialic acid via formation of secretory vesicles in the submandibular glands (By similarity). Required for calcineurin activity and homosynaptic depotentiation in the hippocampus (By similarity). Required for normal differentiation and survival of keratinocytes and therefore required for epidermis superstructure formation (By similarity). Positively regulates osteoblastic bone formation, via promotion of osteoblast differentiation (By similarity). Positively regulates osteoclast differentiation, potentially via NFATC1 signaling (By similarity). May play a role in skeletal muscle fiber type specification, potentially via NFATC1 signaling (By similarity). Negatively regulates MAP3K14/NIK signaling via inhibition of nuclear translocation of the transcription factors RELA and RELB (By similarity). Required for antigen-specific T-cell proliferation response (By similarity). Dephosphorylates KLHL3, promoting the interaction between KLHL3 and WNK4 and subsequent degradation of WNK4 (PubMed:30718414). Negatively regulates SLC9A1 activity (PubMed:31375679). {ECO:0000250|UniProtKB:P48452, ECO:0000250|UniProtKB:P63328, ECO:0000250|UniProtKB:P63329, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:17498738, ECO:0000269|PubMed:17502104, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19154138, ECO:0000269|PubMed:22343722, ECO:0000269|PubMed:23468591, ECO:0000269|PubMed:26248042, ECO:0000269|PubMed:27974827, ECO:0000269|PubMed:30254215, ECO:0000269|PubMed:30611118, ECO:0000269|PubMed:30718414, ECO:0000269|PubMed:31375679, ECO:0000269|PubMed:33691586}. |
Q08AD1 | CAMSAP2 | S443 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AE8 | SPIRE1 | S433 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q09666 | AHNAK | S4900 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5448 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5542 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5643 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5669 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5739 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q10571 | MN1 | S815 | ochoa | Transcriptional activator MN1 (Probable tumor suppressor protein MN1) | Transcriptional activator which specifically regulates expression of TBX22 in the posterior region of the developing palate. Required during later stages of palate development for growth and medial fusion of the palatal shelves. Promotes maturation and normal function of calvarial osteoblasts, including expression of the osteoclastogenic cytokine TNFSF11/RANKL. Necessary for normal development of the membranous bones of the skull (By similarity). May play a role in tumor suppression (Probable). {ECO:0000250|UniProtKB:D3YWE6, ECO:0000305|PubMed:7731706}. |
Q12767 | TMEM94 | S518 | ochoa | Transmembrane protein 94 (Endoplasmic reticulum magnesium ATPase) | Could function in the uptake of Mg(2+) from the cytosol into the endoplasmic reticulum and regulate intracellular Mg(2+) homeostasis. {ECO:0000269|PubMed:38513662}. |
Q12824 | SMARCB1 | S138 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (BRG1-associated factor 47) (BAF47) (Integrase interactor 1 protein) (SNF5 homolog) (hSNF5) | Core component of the BAF (hSWI/SNF) complex. This ATP-dependent chromatin-remodeling complex plays important roles in cell proliferation and differentiation, in cellular antiviral activities and inhibition of tumor formation. The BAF complex is able to create a stable, altered form of chromatin that constrains fewer negative supercoils than normal. This change in supercoiling would be due to the conversion of up to one-half of the nucleosomes on polynucleosomal arrays into asymmetric structures, termed altosomes, each composed of 2 histones octamers. Stimulates in vitro the remodeling activity of SMARCA4/BRG1/BAF190A. Involved in activation of CSF1 promoter. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Plays a key role in cell-cycle control and causes cell cycle arrest in G0/G1. {ECO:0000250|UniProtKB:Q9Z0H3, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:12226744, ECO:0000269|PubMed:14604992, ECO:0000269|PubMed:16267391, ECO:0000269|PubMed:16314535, ECO:0000269|PubMed:9448295}. |
Q12841 | FSTL1 | S165 | ochoa | Follistatin-related protein 1 (Follistatin-like protein 1) | Secreted glycoprotein that is involved in various physiological processes, such as angiogenesis, regulation of the immune response, cell proliferation and differentiation (PubMed:22265692, PubMed:29212066). Plays a role in the development of the central nervous system, skeletal system, lungs, and ureter (By similarity). Promotes endothelial cell survival, migration and differentiation into network structures in an AKT-dependent manner. Also promotes survival of cardiac myocytes (By similarity). Initiates various signaling cascades by activating different receptors on the cell surface such as DIP2A, TLR4 or BMP receptors (PubMed:20054002, PubMed:22265692). {ECO:0000250|UniProtKB:Q62356, ECO:0000269|PubMed:20054002, ECO:0000269|PubMed:22265692, ECO:0000269|PubMed:29212066}. |
Q12846 | STX4 | S78 | psp | Syntaxin-4 (Renal carcinoma antigen NY-REN-31) | Plasma membrane t-SNARE that mediates docking of transport vesicles (By similarity). Necessary for the translocation of SLC2A4 from intracellular vesicles to the plasma membrane (By similarity). In neurons, recruited at neurite tips to membrane domains rich in the phospholipid 1-oleoyl-2-palmitoyl-PC (OPPC) which promotes neurite tip surface expression of the dopamine transporter SLC6A3/DAT by facilitating fusion of SLC6A3-containing transport vesicles with the plasma membrane (By similarity). Together with STXB3 and VAMP2, may also play a role in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes and in docking of synaptic vesicles at presynaptic active zones (By similarity). Required for normal hearing (PubMed:36355422). {ECO:0000250|UniProtKB:P70452, ECO:0000250|UniProtKB:Q08850, ECO:0000269|PubMed:36355422}. |
Q12888 | TP53BP1 | S831 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12904 | AIMP1 | S90 | ochoa | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] | Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}. |
Q12906 | ILF3 | S57 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12931 | TRAP1 | S195 | ochoa | Heat shock protein 75 kDa, mitochondrial (HSP 75) (Heat shock protein family C member 5) (TNFR-associated protein 1) (Tumor necrosis factor type 1 receptor-associated protein) (TRAP-1) | Chaperone that expresses an ATPase activity. Involved in maintaining mitochondrial function and polarization, downstream of PINK1 and mitochondrial complex I. Is a negative regulator of mitochondrial respiration able to modulate the balance between oxidative phosphorylation and aerobic glycolysis. The impact of TRAP1 on mitochondrial respiration is probably mediated by modulation of mitochondrial SRC and inhibition of SDHA. {ECO:0000269|PubMed:23525905, ECO:0000269|PubMed:23564345, ECO:0000269|PubMed:23747254}. |
Q13153 | PAK1 | S155 | ochoa | Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) | Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}. |
Q13428 | TCOF1 | S734 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13480 | GAB1 | S206 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13546 | RIPK1 | S25 | psp | Receptor-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (Cell death protein RIP) (Receptor-interacting protein 1) (RIP-1) | Serine-threonine kinase which is a key regulator of TNF-mediated apoptosis, necroptosis and inflammatory pathways (PubMed:17703191, PubMed:24144979, PubMed:31827280, PubMed:31827281, PubMed:32657447, PubMed:35831301). Exhibits kinase activity-dependent functions that regulate cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival (PubMed:11101870, PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Has kinase-independent scaffold functions: upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, in part, by activating the canonical NF-kappa-B pathway (By similarity). Kinase activity is essential to regulate necroptosis and apoptosis, two parallel forms of cell death: upon activation of its protein kinase activity, regulates assembly of two death-inducing complexes, namely complex IIa (RIPK1-FADD-CASP8), which drives apoptosis, and the complex IIb (RIPK1-RIPK3-MLKL), which drives necroptosis (By similarity). RIPK1 is required to limit CASP8-dependent TNFR1-induced apoptosis (By similarity). In normal conditions, RIPK1 acts as an inhibitor of RIPK3-dependent necroptosis, a process mediated by RIPK3 component of complex IIb, which catalyzes phosphorylation of MLKL upon induction by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Inhibits RIPK3-mediated necroptosis via FADD-mediated recruitment of CASP8, which cleaves RIPK1 and limits TNF-induced necroptosis (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Required to inhibit apoptosis and necroptosis during embryonic development: acts by preventing the interaction of TRADD with FADD thereby limiting aberrant activation of CASP8 (By similarity). In addition to apoptosis and necroptosis, also involved in inflammatory response by promoting transcriptional production of pro-inflammatory cytokines, such as interleukin-6 (IL6) (PubMed:31827280, PubMed:31827281). Phosphorylates RIPK3: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade (PubMed:15310755, PubMed:17389591). Required for ZBP1-induced NF-kappa-B activation in response to DNA damage (By similarity). {ECO:0000250|UniProtKB:Q60855, ECO:0000269|PubMed:11101870, ECO:0000269|PubMed:15310755, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:19524512, ECO:0000269|PubMed:19524513, ECO:0000269|PubMed:24144979, ECO:0000269|PubMed:29440439, ECO:0000269|PubMed:30988283, ECO:0000269|PubMed:31827280, ECO:0000269|PubMed:31827281, ECO:0000269|PubMed:32657447, ECO:0000269|PubMed:35831301}. |
Q13546 | RIPK1 | S320 | ochoa|psp | Receptor-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (Cell death protein RIP) (Receptor-interacting protein 1) (RIP-1) | Serine-threonine kinase which is a key regulator of TNF-mediated apoptosis, necroptosis and inflammatory pathways (PubMed:17703191, PubMed:24144979, PubMed:31827280, PubMed:31827281, PubMed:32657447, PubMed:35831301). Exhibits kinase activity-dependent functions that regulate cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival (PubMed:11101870, PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Has kinase-independent scaffold functions: upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, in part, by activating the canonical NF-kappa-B pathway (By similarity). Kinase activity is essential to regulate necroptosis and apoptosis, two parallel forms of cell death: upon activation of its protein kinase activity, regulates assembly of two death-inducing complexes, namely complex IIa (RIPK1-FADD-CASP8), which drives apoptosis, and the complex IIb (RIPK1-RIPK3-MLKL), which drives necroptosis (By similarity). RIPK1 is required to limit CASP8-dependent TNFR1-induced apoptosis (By similarity). In normal conditions, RIPK1 acts as an inhibitor of RIPK3-dependent necroptosis, a process mediated by RIPK3 component of complex IIb, which catalyzes phosphorylation of MLKL upon induction by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Inhibits RIPK3-mediated necroptosis via FADD-mediated recruitment of CASP8, which cleaves RIPK1 and limits TNF-induced necroptosis (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Required to inhibit apoptosis and necroptosis during embryonic development: acts by preventing the interaction of TRADD with FADD thereby limiting aberrant activation of CASP8 (By similarity). In addition to apoptosis and necroptosis, also involved in inflammatory response by promoting transcriptional production of pro-inflammatory cytokines, such as interleukin-6 (IL6) (PubMed:31827280, PubMed:31827281). Phosphorylates RIPK3: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade (PubMed:15310755, PubMed:17389591). Required for ZBP1-induced NF-kappa-B activation in response to DNA damage (By similarity). {ECO:0000250|UniProtKB:Q60855, ECO:0000269|PubMed:11101870, ECO:0000269|PubMed:15310755, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:19524512, ECO:0000269|PubMed:19524513, ECO:0000269|PubMed:24144979, ECO:0000269|PubMed:29440439, ECO:0000269|PubMed:30988283, ECO:0000269|PubMed:31827280, ECO:0000269|PubMed:31827281, ECO:0000269|PubMed:32657447, ECO:0000269|PubMed:35831301}. |
Q13555 | CAMK2G | S36 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}. |
Q14160 | SCRIB | S1279 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14191 | WRN | S1141 | psp | Bifunctional 3'-5' exonuclease/ATP-dependent helicase WRN (DNA helicase, RecQ-like type 3) (RecQ protein-like 2) (Werner syndrome protein) [Includes: 3'-5' exonuclease (EC 3.1.-.-); ATP-dependent helicase (EC 5.6.2.4) (DNA 3'-5' helicase WRN)] | Multifunctional enzyme that has magnesium and ATP-dependent 3'-5' DNA-helicase activity on partially duplex substrates (PubMed:9224595, PubMed:9288107, PubMed:9611231). Also has 3'->5' exonuclease activity towards double-stranded (ds)DNA with a 5'-overhang (PubMed:11863428). Has no nuclease activity towards single-stranded (ss)DNA or blunt-ended dsDNA (PubMed:11863428). Helicase activity is most efficient with (d)ATP, but (d)CTP will substitute with reduced efficiency; strand displacement is enhanced by single-strand binding-protein (heterotrimeric replication protein A complex, RPA1, RPA2, RPA3) (PubMed:9611231). Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or during DNA repair. Alleviates stalling of DNA polymerases at the site of DNA lesions. Plays a role in the formation of DNA replication focal centers; stably associates with foci elements generating binding sites for RP-A (By similarity). Plays a role in double-strand break repair after gamma-irradiation (PubMed:9224595, PubMed:9288107, PubMed:9611231). Unwinds some G-quadruplex DNA (d(CGG)n tracts); unwinding seems to occur in both 5'-3' and 3'-5' direction and requires a short single-stranded tail (PubMed:10212265). d(CGG)n tracts have a propensity to assemble into tetraplex structures; other G-rich substrates from a telomeric or IgG switch sequence are not unwound (PubMed:10212265). Depletion leads to chromosomal breaks and genome instability (PubMed:33199508). {ECO:0000250|UniProtKB:O09053, ECO:0000269|PubMed:10212265, ECO:0000269|PubMed:11863428, ECO:0000269|PubMed:17563354, ECO:0000269|PubMed:18596042, ECO:0000269|PubMed:19283071, ECO:0000269|PubMed:19652551, ECO:0000269|PubMed:21639834, ECO:0000269|PubMed:27063109, ECO:0000269|PubMed:33199508, ECO:0000269|PubMed:9224595, ECO:0000269|PubMed:9288107, ECO:0000269|PubMed:9611231}. |
Q14315 | FLNC | S339 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S2655 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14651 | PLS1 | S112 | ochoa | Plastin-1 (Intestine-specific plastin) (I-plastin) | Actin-bundling protein. In the inner ear, it is required for stereocilia formation. Mediates liquid packing of actin filaments that is necessary for stereocilia to grow to their proper dimensions. {ECO:0000250|UniProtKB:Q3V0K9}. |
Q14669 | TRIP12 | S1113 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q15021 | NCAPD2 | S1315 | ochoa | Condensin complex subunit 1 (Chromosome condensation-related SMC-associated protein 1) (Chromosome-associated protein D2) (hCAP-D2) (Non-SMC condensin I complex subunit D2) (XCAP-D2 homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. May target the condensin complex to DNA via its C-terminal domain (PubMed:11136719). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of non-centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15022 | SUZ12 | S382 | ochoa | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15043 | SLC39A14 | S311 | ochoa | Metal cation symporter ZIP14 (LIV-1 subfamily of ZIP zinc transporter 4) (LZT-Hs4) (Solute carrier family 39 member 14) (Zrt- and Irt-like protein 14) (ZIP-14) | Electroneutral transporter of the plasma membrane mediating the cellular uptake of the divalent metal cations zinc, manganese and iron that are important for tissue homeostasis, metabolism, development and immunity (PubMed:15642354, PubMed:27231142, PubMed:29621230). Functions as an energy-dependent symporter, transporting through the membranes an electroneutral complex composed of a divalent metal cation and two bicarbonate anions (By similarity). Beside these endogenous cellular substrates, can also import cadmium a non-essential metal which is cytotoxic and carcinogenic (By similarity). Controls the cellular uptake by the intestinal epithelium of systemic zinc, which is in turn required to maintain tight junctions and the intestinal permeability (By similarity). Modifies the activity of zinc-dependent phosphodiesterases, thereby indirectly regulating G protein-coupled receptor signaling pathways important for gluconeogenesis and chondrocyte differentiation (By similarity). Regulates insulin receptor signaling, glucose uptake, glycogen synthesis and gluconeogenesis in hepatocytes through the zinc-dependent intracellular catabolism of insulin (PubMed:27703010). Through zinc cellular uptake also plays a role in the adaptation of cells to endoplasmic reticulum stress (By similarity). Major manganese transporter of the basolateral membrane of intestinal epithelial cells, it plays a central role in manganese systemic homeostasis through intestinal manganese uptake (PubMed:31028174). Also involved in manganese extracellular uptake by cells of the blood-brain barrier (PubMed:31699897). May also play a role in manganese and zinc homeostasis participating in their elimination from the blood through the hepatobiliary excretion (By similarity). Also functions in the extracellular uptake of free iron. May also function intracellularly and mediate the transport from endosomes to cytosol of iron endocytosed by transferrin (PubMed:20682781). Plays a role in innate immunity by regulating the expression of cytokines by activated macrophages (PubMed:23052185). {ECO:0000250|UniProtKB:Q75N73, ECO:0000269|PubMed:15642354, ECO:0000269|PubMed:20682781, ECO:0000269|PubMed:23052185, ECO:0000269|PubMed:27231142, ECO:0000269|PubMed:27703010, ECO:0000269|PubMed:29621230, ECO:0000269|PubMed:31028174, ECO:0000269|PubMed:31699897}. |
Q15139 | PRKD1 | S738 | ochoa|psp | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15334 | LLGL1 | S683 | ochoa | Lethal(2) giant larvae protein homolog 1 (LLGL) (DLG4) (Hugl-1) (Human homolog to the D-lgl gene protein) | Cortical cytoskeleton protein found in a complex involved in maintaining cell polarity and epithelial integrity. Involved in the regulation of mitotic spindle orientation, proliferation, differentiation and tissue organization of neuroepithelial cells. Involved in axonogenesis through RAB10 activation thereby regulating vesicular membrane trafficking toward the axonal plasma membrane. {ECO:0000269|PubMed:15735678, ECO:0000269|PubMed:16170365}. |
Q15398 | DLGAP5 | S725 | ochoa|psp | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15849 | SLC14A2 | S477 | psp | Urea transporter 2 (Solute carrier family 14 member 2) (Urea transporter, kidney) | [Isoform 1]: Mediates the transport of urea driven by a concentration gradient across the cell membrane of the renal inner medullary collecting duct which is critical to the urinary concentrating mechanism. {ECO:0000269|PubMed:11502588, ECO:0000269|PubMed:17702749}.; FUNCTION: [Isoform 2]: Mediates the transport of urea driven by a concentration gradient across the cell membrane of the kidney inner medullary collecting duct which is critical to the urinary concentrating mechanism. {ECO:0000269|PubMed:8647271, ECO:0000269|PubMed:8997401}. |
Q16659 | MAPK6 | S665 | ochoa | Mitogen-activated protein kinase 6 (MAP kinase 6) (MAPK 6) (EC 2.7.11.24) (Extracellular signal-regulated kinase 3) (ERK-3) (MAP kinase isoform p97) (p97-MAPK) | Atypical MAPK protein. Phosphorylates microtubule-associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPKAPK5, ERK3/MAPK6 is phosphorylated at Ser-189 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6. May promote entry in the cell cycle (By similarity). {ECO:0000250}. |
Q16760 | DGKD | S66 | psp | Diacylglycerol kinase delta (DAG kinase delta) (EC 2.7.1.107) (130 kDa diacylglycerol kinase) (Diglyceride kinase delta) (DGK-delta) | Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12200442, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable). By controlling the levels of diacylglycerol, regulates for instance the PKC and EGF receptor signaling pathways and plays a crucial role during development (By similarity). May also regulate clathrin-dependent endocytosis (PubMed:17880279). {ECO:0000250|UniProtKB:E9PUQ8, ECO:0000269|PubMed:12200442, ECO:0000269|PubMed:17880279, ECO:0000269|PubMed:23949095, ECO:0000305}. |
Q16760 | DGKD | S70 | psp | Diacylglycerol kinase delta (DAG kinase delta) (EC 2.7.1.107) (130 kDa diacylglycerol kinase) (Diglyceride kinase delta) (DGK-delta) | Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12200442, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable). By controlling the levels of diacylglycerol, regulates for instance the PKC and EGF receptor signaling pathways and plays a crucial role during development (By similarity). May also regulate clathrin-dependent endocytosis (PubMed:17880279). {ECO:0000250|UniProtKB:E9PUQ8, ECO:0000269|PubMed:12200442, ECO:0000269|PubMed:17880279, ECO:0000269|PubMed:23949095, ECO:0000305}. |
Q16762 | TST | S38 | ochoa | Thiosulfate sulfurtransferase (EC 2.8.1.1) (Rhodanese) | Formation of iron-sulfur complexes, cyanide detoxification or modification of sulfur-containing enzymes. Other thiol compounds, besides cyanide, can act as sulfur ion acceptors. Also has weak mercaptopyruvate sulfurtransferase (MST) activity (By similarity). Together with MRPL18, acts as a mitochondrial import factor for the cytosolic 5S rRNA. Only the nascent unfolded cytoplasmic form is able to bind to the 5S rRNA. {ECO:0000250, ECO:0000269|PubMed:20663881, ECO:0000269|PubMed:21685364}. |
Q2M1Z3 | ARHGAP31 | S1339 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q32NC0 | C18orf21 | S126 | ochoa | UPF0711 protein C18orf21 (HBV X-transactivated gene 13 protein) (HBV XAg-transactivated protein 13) | None |
Q32P44 | EML3 | S207 | ochoa | Echinoderm microtubule-associated protein-like 3 (EMAP-3) | Regulates mitotic spindle assembly, microtubule (MT)-kinetochore attachment and chromosome separation via recruitment of HAUS augmin-like complex and TUBG1 to the existing MTs and promoting MT-based MT nucleation (PubMed:30723163). Required for proper alignnment of chromosomes during metaphase (PubMed:18445686). {ECO:0000269|PubMed:18445686, ECO:0000269|PubMed:30723163}. |
Q53F19 | NCBP3 | S448 | ochoa | Nuclear cap-binding protein subunit 3 (Protein ELG) | Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}. |
Q53QZ3 | ARHGAP15 | S43 | ochoa | Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}. |
Q59EK9 | RUNDC3A | S374 | ochoa | RUN domain-containing protein 3A (Rap2-interacting protein 8) (RPIP-8) | May act as an effector of RAP2A in neuronal cells. {ECO:0000250}. |
Q5H9R7 | PPP6R3 | S823 | ochoa | Serine/threonine-protein phosphatase 6 regulatory subunit 3 (SAPS domain family member 3) (Sporulation-induced transcript 4-associated protein SAPL) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. May have an important role in maintaining immune self-tolerance. {ECO:0000269|PubMed:11401438, ECO:0000269|PubMed:16769727}. |
Q5JSZ5 | PRRC2B | S1826 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5SW79 | CEP170 | S1278 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T0W9 | FAM83B | S309 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T1M5 | FKBP15 | S1139 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T1R4 | HIVEP3 | S809 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T4S7 | UBR4 | S1733 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T5X7 | BEND3 | S55 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5THJ4 | VPS13D | S1603 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5UIP0 | RIF1 | S1089 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VZ89 | DENND4C | S1634 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZK9 | CARMIL1 | S1080 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q5W0V3 | FHIP2A | S190 | ochoa | FHF complex subunit HOOK interacting protein 2A (FHIP2A) | Required for proper functioning of the nervous system. {ECO:0000269|PubMed:31353455}. |
Q68CZ2 | TNS3 | S583 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68CZ2 | TNS3 | S1201 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q6DCA0 | AMMECR1L | S27 | ochoa | AMMECR1-like protein | None |
Q6ISB3 | GRHL2 | S108 | ochoa | Grainyhead-like protein 2 homolog (Brother of mammalian grainyhead) (Transcription factor CP2-like 3) | Transcription factor playing an important role in primary neurulation and in epithelial development (PubMed:25152456, PubMed:29309642). Binds directly to the consensus DNA sequence 5'-AACCGGTT-3' acting as an activator and repressor on distinct target genes (By similarity). During embryogenesis, plays unique and cooperative roles with GRHL3 in establishing distinct zones of primary neurulation. Essential for closure 3 (rostral end of the forebrain), functions cooperatively with GRHL3 in closure 2 (forebrain/midbrain boundary) and posterior neuropore closure (By similarity). Regulates epithelial morphogenesis acting as a target gene-associated transcriptional activator of apical junctional complex components. Up-regulates of CLDN3 and CLDN4, as well as of RAB25, which increases the CLDN4 protein and its localization at tight junctions (By similarity). Comprises an essential component of the transcriptional machinery that establishes appropriate expression levels of CLDN4 and CDH1 in different types of epithelia. Exhibits functional redundancy with GRHL3 in epidermal morphogenetic events and epidermal wound repair (By similarity). In lung, forms a regulatory loop with NKX2-1 that coordinates lung epithelial cell morphogenesis and differentiation (By similarity). In keratinocytes, plays a role in telomerase activation during cellular proliferation, regulates TERT expression by binding to TERT promoter region and inhibiting DNA methylation at the 5'-CpG island, possibly by interfering with DNMT1 enzyme activity (PubMed:19015635, PubMed:20938050). In addition, impairs keratinocyte differentiation and epidermal function by inhibiting the expression of genes clustered at the epidermal differentiation complex (EDC) as well as GRHL1 and GRHL3 through epigenetic mechanisms (PubMed:23254293). {ECO:0000250|UniProtKB:Q8K5C0, ECO:0000269|PubMed:19015635, ECO:0000269|PubMed:20938050, ECO:0000269|PubMed:20978075, ECO:0000269|PubMed:23254293, ECO:0000269|PubMed:25152456, ECO:0000269|PubMed:29309642, ECO:0000305|PubMed:12175488}. |
Q6KC79 | NIPBL | S579 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6MZZ7 | CAPN13 | S608 | ochoa | Calpain-13 (EC 3.4.22.-) (Calcium-activated neutral proteinase 13) (CANP 13) | Probable non-lysosomal thiol-protease. {ECO:0000250}. |
Q6P4F7 | ARHGAP11A | S886 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P9A1 | ZNF530 | S131 | ochoa | Zinc finger protein 530 | May be involved in transcriptional regulation. {ECO:0000250}. |
Q6UB98 | ANKRD12 | S132 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UWF9 | FAM180A | S113 | ochoa | Protein FAM180A | None |
Q6WKZ4 | RAB11FIP1 | S477 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6XZF7 | DNMBP | S440 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q71F23 | CENPU | S190 | ochoa | Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}. |
Q7L2E3 | DHX30 | S260 | ochoa | ATP-dependent RNA helicase DHX30 (EC 3.6.4.13) (DEAH box protein 30) | RNA-dependent helicase (PubMed:29100085). Plays an important role in the assembly of the mitochondrial large ribosomal subunit (PubMed:25683715, PubMed:29100085). Required for optimal function of the zinc-finger antiviral protein ZC3HAV1 (By similarity). Associates with mitochondrial DNA (PubMed:18063578). Involved in nervous system development and differentiation through its involvement in the up-regulation of a number of genes which are required for neurogenesis, including GSC, NCAM1, neurogenin, and NEUROD (By similarity). {ECO:0000250|UniProtKB:Q5BJS0, ECO:0000250|UniProtKB:Q99PU8, ECO:0000269|PubMed:18063578, ECO:0000269|PubMed:25683715, ECO:0000269|PubMed:29100085}. |
Q7Z406 | MYH14 | S595 | ochoa | Myosin-14 (Myosin heavy chain 14) (Myosin heavy chain, non-muscle IIc) (Non-muscle myosin heavy chain IIc) (NMHC II-C) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. {ECO:0000250}. |
Q7Z5K2 | WAPL | S231 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z6J0 | SH3RF1 | S315 | ochoa | E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) | Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}. |
Q7Z7L1 | SLFN11 | S753 | psp | Schlafen family member 11 (EC 3.1.-.-) | Inhibitor of DNA replication that promotes cell death in response to DNA damage (PubMed:22927417, PubMed:26658330, PubMed:29395061). Acts as a guardian of the genome by killing cells with defective replication (PubMed:29395061). Persistently blocks stressed replication forks by opening chromatin across replication initiation sites at stressed replication forks, possibly leading to unwind DNA ahead of the MCM helicase and block fork progression, ultimately leading to cell death (PubMed:29395061). Upon DNA damage, inhibits translation of ATR or ATM based on distinct codon usage without disrupting early DNA damage response signaling (PubMed:30374083). Antiviral restriction factor with manganese-dependent type II tRNA endoribonuclease (PubMed:36115853). A single tRNA molecule is bound and cleaved by the SLFN11 dimer (PubMed:36115853). Specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1) by acting as a specific inhibitor of the synthesis of retroviruses encoded proteins in a codon-usage-dependent manner (PubMed:23000900). Impairs the replication of human cytomegalovirus (HCMV) and some Flaviviruses (PubMed:35105802, PubMed:36115853). Exploits the unique viral codon bias towards A/T nucleotides (PubMed:23000900). Also acts as an interferon (IFN)-induced antiviral protein which acts as an inhibitor of retrovirus protein synthesis (PubMed:23000900). {ECO:0000269|PubMed:22927417, ECO:0000269|PubMed:23000900, ECO:0000269|PubMed:26658330, ECO:0000269|PubMed:29395061, ECO:0000269|PubMed:30374083, ECO:0000269|PubMed:35105802, ECO:0000269|PubMed:36115853}. |
Q86SQ7 | SDCCAG8 | S51 | ochoa | Serologically defined colon cancer antigen 8 (Antigen NY-CO-8) (Centrosomal colon cancer autoantigen protein) (hCCCAP) | Plays a role in the establishment of cell polarity and epithelial lumen formation (By similarity). Also plays an essential role in ciliogenesis and subsequent Hedgehog signaling pathway that requires the presence of intact primary cilia for pathway activation. Mechanistically, interacts with and mediates RABEP2 centrosomal localization which is critical for ciliogenesis (PubMed:27224062). {ECO:0000250|UniProtKB:Q80UF4, ECO:0000269|PubMed:27224062}. |
Q86UP2 | KTN1 | S1313 | ochoa | Kinectin (CG-1 antigen) (Kinesin receptor) | Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin. |
Q86VY9 | TMEM200A | S471 | ochoa | Transmembrane protein 200A | None |
Q8IW35 | CEP97 | S813 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IWC1 | MAP7D3 | S555 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWZ3 | ANKHD1 | S208 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IWZ8 | SUGP1 | S326 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8N1G4 | LRRC47 | S528 | ochoa | Leucine-rich repeat-containing protein 47 | None |
Q8NAA4 | ATG16L2 | S278 | ochoa | Protein Atg16l2 (APG16-like 2) (Autophagy-related protein 16-2) (WD repeat-containing protein 80) | May play a role in regulating epithelial homeostasis in an ATG16L1-dependent manner. {ECO:0000250|UniProtKB:Q6KAU8}. |
Q8NC26 | ZNF114 | S291 | ochoa | Zinc finger protein 114 | May be involved in transcriptional regulation. |
Q8NCG7 | DAGLB | S175 | ochoa | Diacylglycerol lipase-beta (DAGL-beta) (DGL-beta) (EC 3.1.1.116) (KCCR13L) (PUFA-specific triacylglycerol lipase) (EC 3.1.1.3) (Sn1-specific diacylglycerol lipase beta) | Lipase that catalyzes the hydrolysis of arachidonic acid (AA)-esterified diacylglycerols (DAGs) to produce the principal endocannabinoid, 2-arachidonoylglycerol (2-AG) which can be further cleaved by downstream enzymes to release arachidonic acid (AA) for cyclooxygenase (COX)-mediated eicosanoid production (PubMed:14610053). Preferentially hydrolyzes DAGs at the sn-1 position in a calcium-dependent manner and has negligible activity against other lipids including monoacylglycerols and phospholipids (PubMed:14610053). Plays a key role in the regulation of 2-AG and AA pools utilized by COX1/2 to generate lipid mediators of macrophage and microglia inflammatory responses. Also functions as a polyunsaturated fatty acids-specific triacylglycerol lipase in macrophages. Plays an important role to support the metabolic and signaling demands of macrophages (By similarity). {ECO:0000250|UniProtKB:Q91WC9, ECO:0000269|PubMed:14610053}. |
Q8ND04 | SMG8 | S895 | ochoa | Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}. |
Q8NDV7 | TNRC6A | S164 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NEM7 | SUPT20H | S296 | ochoa | Transcription factor SPT20 homolog (p38-interacting protein) (p38IP) | Required for MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) activation during gastrulation. Required for down-regulation of E-cadherin during gastrulation by regulating E-cadherin protein level downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by FGF signaling and Snail (By similarity). Required for starvation-induced ATG9A trafficking during autophagy. {ECO:0000250, ECO:0000269|PubMed:19893488}. |
Q8NFC6 | BOD1L1 | S478 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | S1098 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NHU6 | TDRD7 | S571 | ochoa | Tudor domain-containing protein 7 (PCTAIRE2-binding protein) (Tudor repeat associator with PCTAIRE-2) (Trap) | Component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. Required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. Also required during spermatogenesis. {ECO:0000269|PubMed:21436445}. |
Q8NHV4 | NEDD1 | S377 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8TBA6 | GOLGA5 | S88 | ochoa | Golgin subfamily A member 5 (Cell proliferation-inducing gene 31 protein) (Golgin-84) (Protein Ret-II) (RET-fused gene 5 protein) | Involved in maintaining Golgi structure. Stimulates the formation of Golgi stacks and ribbons. Involved in intra-Golgi retrograde transport. {ECO:0000269|PubMed:12538640, ECO:0000269|PubMed:15718469}. |
Q8TDB6 | DTX3L | S212 | ochoa | E3 ubiquitin-protein ligase DTX3L (EC 2.3.2.27) (B-lymphoma- and BAL-associated protein) (Protein deltex-3-like) (RING-type E3 ubiquitin transferase DTX3L) (Rhysin-2) (Rhysin2) | E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses (PubMed:12670957, PubMed:19818714, PubMed:23230272, PubMed:26479788). Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4 (PubMed:28525742). In response to DNA damage, mediates monoubiquitination of 'Lys-91' of histone H4 (H4K91ub1) (PubMed:19818714). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 'Lys-20' methylation (H4K20me) (PubMed:19818714). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). By monoubiquitinating histone H2B H2BC9/H2BJ and thereby promoting chromatin remodeling, positively regulates STAT1-dependent interferon-stimulated gene transcription and thus STAT1-mediated control of viral replication (PubMed:26479788). Independently of its catalytic activity, promotes the sorting of chemokine receptor CXCR4 from early endosome to lysosome following CXCL12 stimulation by reducing E3 ligase ITCH activity and thus ITCH-mediated ubiquitination of endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:24790097). In addition, required for the recruitment of HGS and STAM to early endosomes (PubMed:24790097). In association with PARP9, plays a role in antiviral responses by mediating 'Lys-48'-linked ubiquitination of encephalomyocarditis virus (EMCV) and human rhinovirus (HRV) C3 proteases and thus promoting their proteasomal-mediated degradation (PubMed:26479788). {ECO:0000269|PubMed:12670957, ECO:0000269|PubMed:19818714, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28525742}. |
Q8TE02 | ELP5 | S277 | ochoa | Elongator complex protein 5 (Dermal papilla-derived protein 6) (S-phase 2 protein) | Component of the elongator complex which is required for multiple tRNA modifications, including mcm5U (5-methoxycarbonylmethyl uridine), mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine), and ncm5U (5-carbamoylmethyl uridine) (PubMed:29332244). The elongator complex catalyzes formation of carboxymethyluridine in the wobble base at position 34 in tRNAs (PubMed:29332244). Involved in cell migration (By similarity). {ECO:0000250|UniProtKB:Q99L85, ECO:0000303|PubMed:29332244}. |
Q8TEJ3 | SH3RF3 | S392 | ochoa | E3 ubiquitin-protein ligase SH3RF3 (EC 2.3.2.27) (Plenty of SH3s 2) (SH3 domain-containing RING finger protein 3) (SH3 multiple domains protein 4) | Has E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20696164}. |
Q8TEU7 | RAPGEF6 | S640 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TEW8 | PARD3B | S402 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF76 | HASPIN | S243 | psp | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WUD1 | RAB2B | S67 | ochoa | Ras-related protein Rab-2B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology. Regulates the compacted morphology of the Golgi (Probable). Promotes cytosolic DNA-induced innate immune responses. Regulates IFN responses against DNA viruses by regulating the CGAS-STING signaling axis (By similarity). Together with RAB2A redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000250|UniProtKB:P59279, ECO:0000269|PubMed:28483915, ECO:0000305|PubMed:26209634}. |
Q8WUH6 | TMEM263 | S77 | ochoa | Transmembrane protein 263 | May play a role in bone development. {ECO:0000269|PubMed:34238371}. |
Q8WVV9 | HNRNPLL | S285 | ochoa | Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) (Stromal RNA-regulating factor) | RNA-binding protein that functions as a regulator of alternative splicing for multiple target mRNAs, including PTPRC/CD45 and STAT5A. Required for alternative splicing of PTPRC. {ECO:0000269|PubMed:18669861}. |
Q8WWK9 | CKAP2 | S651 | ochoa | Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) | Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}. |
Q8WXI7 | MUC16 | S12481 | ochoa | Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) | Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}. |
Q8WXX7 | AUTS2 | S261 | ochoa | Autism susceptibility gene 2 protein | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). The PRC1-like complex that contains PCGF5, RNF2, CSNK2B, RYBP and AUTS2 has decreased histone H2A ubiquitination activity, due to the phosphorylation of RNF2 by CSNK2B (PubMed:25519132). As a consequence, the complex mediates transcriptional activation (PubMed:25519132). In the cytoplasm, plays a role in axon and dendrite elongation and in neuronal migration during embryonic brain development. Promotes reorganization of the actin cytoskeleton, lamellipodia formation and neurite elongation via its interaction with RAC guanine nucleotide exchange factors, which then leads to the activation of RAC1 (By similarity). {ECO:0000250|UniProtKB:A0A087WPF7, ECO:0000269|PubMed:25519132}. |
Q92560 | BAP1 | S305 | ochoa | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92576 | PHF3 | S1731 | ochoa | PHD finger protein 3 | None |
Q92614 | MYO18A | S1998 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92625 | ANKS1A | S331 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q92734 | TFG | S193 | ochoa | Protein TFG (TRK-fused gene protein) | Plays a role in the normal dynamic function of the endoplasmic reticulum (ER) and its associated microtubules (PubMed:23479643, PubMed:27813252). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:21478858). {ECO:0000269|PubMed:21478858, ECO:0000269|PubMed:23479643, ECO:0000269|PubMed:27813252}. |
Q92783 | STAM | S147 | ochoa | Signal transducing adapter molecule 1 (STAM-1) | Involved in intracellular signal transduction mediated by cytokines and growth factors. Upon IL-2 and GM-CSL stimulation, it plays a role in signaling leading to DNA synthesis and MYC induction. May also play a role in T-cell development. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with HGS (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.; FUNCTION: (Microbial infection) Plays an important role in Dengue virus entry. {ECO:0000269|PubMed:29742433}. |
Q92797 | SYMPK | S1081 | ochoa | Symplekin | Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3'-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house-keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity. {ECO:0000269|PubMed:16230528, ECO:0000269|PubMed:20861839}. |
Q92835 | INPP5D | S1027 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q93052 | LPP | S240 | ochoa | Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) | May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}. |
Q969V6 | MRTFA | S416 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96AC1 | FERMT2 | S414 | ochoa | Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) | Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}. |
Q96AE4 | FUBP1 | S147 | ochoa | Far upstream element-binding protein 1 (FBP) (FUSE-binding protein 1) (DNA helicase V) (hDH V) | Regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. May act both as activator and repressor of transcription. {ECO:0000269|PubMed:8125259}. |
Q96B97 | SH3KBP1 | S108 | ochoa | SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) | Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}. |
Q96CW1 | AP2M1 | S153 | ochoa | AP-2 complex subunit mu (AP-2 mu chain) (Adaptin-mu2) (Adaptor protein complex AP-2 subunit mu) (Adaptor-related protein complex 2 subunit mu) (Clathrin assembly protein complex 2 mu medium chain) (Clathrin coat assembly protein AP50) (Clathrin coat-associated protein AP50) (HA2 50 kDa subunit) (Plasma membrane adaptor AP-2 50 kDa protein) | Component of the adaptor protein complex 2 (AP-2) (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis (PubMed:16581796). AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules (By similarity). AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway (PubMed:19033387). During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 mu subunit binds to transmembrane cargo proteins; it recognizes the Y-X-X-Phi motifs (By similarity). The surface region interacting with to the Y-X-X-Phi motif is inaccessible in cytosolic AP-2, but becomes accessible through a conformational change following phosphorylation of AP-2 mu subunit at Thr-156 in membrane-associated AP-2 (PubMed:11877457). The membrane-specific phosphorylation event appears to involve assembled clathrin which activates the AP-2 mu kinase AAK1 (PubMed:11877457). Plays a role in endocytosis of frizzled family members upon Wnt signaling (By similarity). {ECO:0000250|UniProtKB:P84092, ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:12694563, ECO:0000269|PubMed:12952941, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:14985334, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:16581796, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497, ECO:0000269|PubMed:31104773}. |
Q96CX2 | KCTD12 | S243 | psp | BTB/POZ domain-containing protein KCTD12 (Pfetin) (Predominantly fetal expressed T1 domain) | Auxiliary subunit of GABA-B receptors that determine the pharmacology and kinetics of the receptor response. Increases agonist potency and markedly alter the G-protein signaling of the receptors by accelerating onset and promoting desensitization (By similarity). {ECO:0000250}. |
Q96GD4 | AURKB | S45 | ochoa | Aurora kinase B (EC 2.7.11.1) (Aurora 1) (Aurora- and IPL1-like midbody-associated protein 1) (AIM-1) (Aurora/IPL1-related kinase 2) (ARK-2) (Aurora-related kinase 2) (STK-1) (Serine/threonine-protein kinase 12) (Serine/threonine-protein kinase 5) (Serine/threonine-protein kinase aurora-B) | Serine/threonine-protein kinase component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:29449677). The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly (PubMed:11516652, PubMed:12925766, PubMed:14610074, PubMed:14722118, PubMed:26829474). Involved in the bipolar attachment of spindle microtubules to kinetochores and is a key regulator for the onset of cytokinesis during mitosis (PubMed:15249581). Required for central/midzone spindle assembly and cleavage furrow formation (PubMed:12458200, PubMed:12686604). Key component of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage: phosphorylates CHMP4C, leading to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis (PubMed:22422861, PubMed:24814515). AURKB phosphorylates the CPC complex subunits BIRC5/survivin, CDCA8/borealin and INCENP (PubMed:11516652, PubMed:12925766, PubMed:14610074). Phosphorylation of INCENP leads to increased AURKB activity (PubMed:11516652, PubMed:12925766, PubMed:14610074). Other known AURKB substrates involved in centromeric functions and mitosis are CENPA, DES/desmin, GPAF, KIF2C, NSUN2, RACGAP1, SEPTIN1, VIM/vimentin, HASPIN, and histone H3 (PubMed:11756469, PubMed:11784863, PubMed:11856369, PubMed:12689593, PubMed:14602875, PubMed:16103226, PubMed:21658950). A positive feedback loop involving HASPIN and AURKB contributes to localization of CPC to centromeres (PubMed:21658950). Phosphorylation of VIM controls vimentin filament segregation in cytokinetic process, whereas histone H3 is phosphorylated at 'Ser-10' and 'Ser-28' during mitosis (H3S10ph and H3S28ph, respectively) (PubMed:11784863, PubMed:11856369). AURKB is also required for kinetochore localization of BUB1 and SGO1 (PubMed:15020684, PubMed:17617734). Phosphorylation of p53/TP53 negatively regulates its transcriptional activity (PubMed:20959462). Key regulator of active promoters in resting B- and T-lymphocytes: acts by mediating phosphorylation of H3S28ph at active promoters in resting B-cells, inhibiting RNF2/RING1B-mediated ubiquitination of histone H2A and enhancing binding and activity of the USP16 deubiquitinase at transcribed genes (By similarity). Acts as an inhibitor of CGAS during mitosis: catalyzes phosphorylation of the N-terminus of CGAS during the G2-M transition, blocking CGAS liquid phase separation and activation, and thereby preventing CGAS-induced autoimmunity (PubMed:33542149). Phosphorylates KRT5 during anaphase and telophase (By similarity). Phosphorylates ATXN10 which promotes phosphorylation of ATXN10 by PLK1 and may play a role in the regulation of cytokinesis and stimulating the proteasomal degradation of ATXN10 (PubMed:25666058). {ECO:0000250|UniProtKB:O70126, ECO:0000269|PubMed:11516652, ECO:0000269|PubMed:11756469, ECO:0000269|PubMed:11784863, ECO:0000269|PubMed:11856369, ECO:0000269|PubMed:12458200, ECO:0000269|PubMed:12686604, ECO:0000269|PubMed:12689593, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:14602875, ECO:0000269|PubMed:14610074, ECO:0000269|PubMed:14722118, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:21658950, ECO:0000269|PubMed:22422861, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:25666058, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:29449677, ECO:0000269|PubMed:33542149}. |
Q96GX5 | MASTL | S631 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96HC4 | PDLIM5 | S319 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96JC9 | EAF1 | S68 | ochoa | ELL-associated factor 1 | Acts as a transcriptional transactivator of ELL and ELL2 elongation activities. {ECO:0000269|PubMed:11418481, ECO:0000269|PubMed:16006523}. |
Q96JK9 | MAML3 | S351 | ochoa | Mastermind-like protein 3 (Mam-3) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. {ECO:0000269|PubMed:12370315, ECO:0000269|PubMed:12386158}. |
Q96JM3 | CHAMP1 | S121 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96L92 | SNX27 | S62 | ochoa | Sorting nexin-27 | Involved in the retrograde transport from endosome to plasma membrane, a trafficking pathway that promotes the recycling of internalized transmembrane proteins. Following internalization, endocytosed transmembrane proteins are delivered to early endosomes and recycled to the plasma membrane instead of being degraded in lysosomes. SNX27 specifically binds and directs sorting of a subset of transmembrane proteins containing a PDZ-binding motif at the C-terminus: following interaction with target transmembrane proteins, associates with the retromer complex, preventing entry into the lysosomal pathway, and promotes retromer-tubule based plasma membrane recycling. SNX27 also binds with the WASH complex. Interacts with membranes containing phosphatidylinositol-3-phosphate (PtdIns(3P)). May participate in establishment of natural killer cell polarity. Recruits CYTIP to early endosomes. {ECO:0000269|PubMed:17351151, ECO:0000269|PubMed:20733053, ECO:0000269|PubMed:21300787, ECO:0000269|PubMed:21303929, ECO:0000269|PubMed:21602791, ECO:0000269|PubMed:21926430, ECO:0000269|PubMed:22411990, ECO:0000269|PubMed:23563491}. |
Q96NC0 | ZMAT2 | S75 | ochoa | Zinc finger matrin-type protein 2 | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}. |
Q96RL1 | UIMC1 | S627 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96S38 | RPS6KC1 | S644 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96SD1 | DCLRE1C | S534 | psp | Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) | Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}. |
Q96SN8 | CDK5RAP2 | S1672 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96T58 | SPEN | S1641 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99570 | PIK3R4 | S861 | ochoa | Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) | Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}. |
Q99623 | PHB2 | S267 | ochoa | Prohibitin-2 (B-cell receptor-associated protein BAP37) (D-prohibitin) (Repressor of estrogen receptor activity) | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors and sex steroid hormones in the nucleus. {ECO:0000269|PubMed:10359819, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:24003225, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Also regulates cytochrome-c oxidase assembly (COX) and mitochondrial respiration (PubMed:11302691, PubMed:20959514). Binding to sphingoid 1-phosphate (SPP) modulates its regulator activity (PubMed:11302691, PubMed:20959514). Has a key role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305|PubMed:25904163}.; FUNCTION: In the nucleus, serves as transcriptional co-regulator (Probable). Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases. Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000305|PubMed:25904163}.; FUNCTION: In the plasma membrane, is involved in IGFBP6-induced cell migration (PubMed:24003225). Cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates. Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:24003225}.; FUNCTION: (Microbial infection) Involved in human enterovirus 71/EV-71 infection by enhancing the autophagy mechanism during the infection. {ECO:0000269|PubMed:32276428}. |
Q9BQG0 | MYBBP1A | S1303 | ochoa|psp | Myb-binding protein 1A | May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}. |
Q9BT25 | HAUS8 | S139 | ochoa|psp | HAUS augmin-like complex subunit 8 (HEC1/NDC80-interacting centrosome-associated protein 1) (Sarcoma antigen NY-SAR-48) | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:18362163, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q9BUJ2 | HNRNPUL1 | S512 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 1 (Adenovirus early region 1B-associated protein 5) (E1B-55 kDa-associated protein 5) (E1B-AP5) | Acts as a basic transcriptional regulator. Represses basic transcription driven by several virus and cellular promoters. When associated with BRD7, activates transcription of glucocorticoid-responsive promoter in the absence of ligand-stimulation. Also plays a role in mRNA processing and transport. Binds avidly to poly(G) and poly(C) RNA homopolymers in vitro. {ECO:0000269|PubMed:12489984, ECO:0000269|PubMed:9733834}. |
Q9BVC5 | C2orf49 | S112 | ochoa | Ashwin | None |
Q9BX66 | SORBS1 | S697 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BY32 | ITPA | S53 | ochoa | Inosine triphosphate pyrophosphatase (ITPase) (Inosine triphosphatase) (EC 3.6.1.66) (Non-canonical purine NTP pyrophosphatase) (Non-standard purine NTP pyrophosphatase) (Nucleoside-triphosphate diphosphatase) (Nucleoside-triphosphate pyrophosphatase) (NTPase) (Putative oncogene protein hlc14-06-p) (XTP/dITP diphosphatase) | Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2'-deoxy-N-6-hydroxylaminopurine triphosphate (dHAPTP) and xanthosine 5'-triphosphate (XTP) to their respective monophosphate derivatives. The enzyme does not distinguish between the deoxy- and ribose forms. Probably excludes non-canonical purines from RNA and DNA precursor pools, thus preventing their incorporation into RNA and DNA and avoiding chromosomal lesions. {ECO:0000255|HAMAP-Rule:MF_03148, ECO:0000269|PubMed:11278832, ECO:0000269|PubMed:17090528}. |
Q9BY77 | POLDIP3 | S243 | ochoa | Polymerase delta-interacting protein 3 (46 kDa DNA polymerase delta interaction protein) (p46) (S6K1 Aly/REF-like target) (SKAR) | Is involved in regulation of translation. Is preferentially associated with CBC-bound spliced mRNA-protein complexes during the pioneer round of mRNA translation. Contributes to enhanced translational efficiency of spliced over nonspliced mRNAs. Recruits activated ribosomal protein S6 kinase beta-1 I/RPS6KB1 to newly synthesized mRNA. Involved in nuclear mRNA export; probably mediated by association with the TREX complex. {ECO:0000269|PubMed:18423201, ECO:0000269|PubMed:22928037}. |
Q9BYW2 | SETD2 | S1144 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZL6 | PRKD2 | S706 | ochoa|psp | Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}. |
Q9C0C2 | TNKS1BP1 | S456 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9GZT3 | SLIRP | S68 | ochoa | SRA stem-loop-interacting RNA-binding protein, mitochondrial | RNA-binding protein that acts as a nuclear receptor corepressor. Probably acts by binding the SRA RNA, and repressing the SRA-mediated nuclear receptor coactivation. Binds the STR7 loop of SRA RNA. Also able to repress glucocorticoid (GR), androgen (AR), thyroid (TR) and VDR-mediated transactivation. {ECO:0000269|PubMed:16762838}. |
Q9H089 | LSG1 | S413 | ochoa | Large subunit GTPase 1 homolog (hLsg1) (EC 3.6.5.-) | Functions as a GTPase (PubMed:16209721). May act by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm during the 60S ribosomal subunit maturation (PubMed:31148378). {ECO:0000269|PubMed:16209721, ECO:0000269|PubMed:31148378}. |
Q9H223 | EHD4 | S406 | ochoa | EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) | ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}. |
Q9H3P7 | ACBD3 | S320 | ochoa | Golgi resident protein GCP60 (Acyl-CoA-binding domain-containing protein 3) (Golgi complex-associated protein 1) (GOCAP1) (Golgi phosphoprotein 1) (GOLPH1) (PBR- and PKA-associated protein 7) (Peripheral benzodiazepine receptor-associated protein PAP7) [Cleaved into: Golgi resident protein GCP60, N-terminally processed] | Involved in the maintenance of Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and Golgi (PubMed:11590181). Involved in hormone-induced steroid biosynthesis in testicular Leydig cells (By similarity). Recruits PI4KB to the Golgi apparatus membrane; enhances the enzyme activity of PI4KB activity via its membrane recruitment thereby increasing the local concentration of the substrate in the vicinity of the kinase (PubMed:27009356). {ECO:0000250|UniProtKB:Q8BMP6, ECO:0000269|PubMed:11590181, ECO:0000269|PubMed:27009356}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication by recruiting PI4KB at the viral replication sites. {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}. |
Q9H3R0 | KDM4C | S198 | ochoa | Lysine-specific demethylase 4C (EC 1.14.11.66) (Gene amplified in squamous cell carcinoma 1 protein) (GASC-1 protein) (JmjC domain-containing histone demethylation protein 3C) (Jumonji domain-containing protein 2C) ([histone H3]-trimethyl-L-lysine(9) demethylase 4C) | Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. {ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}. |
Q9H582 | ZNF644 | S199 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H788 | SH2D4A | S129 | ochoa | SH2 domain-containing protein 4A (Protein SH(2)A) (Protein phosphatase 1 regulatory subunit 38) | Inhibits estrogen-induced cell proliferation by competing with PLCG for binding to ESR1, blocking the effect of estrogen on PLCG and repressing estrogen-induced proliferation. May play a role in T-cell development and function. {ECO:0000269|PubMed:18641339, ECO:0000269|PubMed:19712589}. |
Q9H8N7 | ZNF395 | S387 | ochoa | Zinc finger protein 395 (HD-regulating factor 2) (HDRF-2) (Huntington disease gene regulatory region-binding protein 2) (HD gene regulatory region-binding protein 2) (HDBP-2) (Papillomavirus regulatory factor 1) (PRF-1) (Papillomavirus-binding factor) | Plays a role in papillomavirus genes transcription. |
Q9H9Q4 | NHEJ1 | S245 | psp | Non-homologous end-joining factor 1 (Protein cernunnos) (XRCC4-like factor) | DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781, PubMed:17717001, PubMed:18158905, PubMed:18644470, PubMed:20558749, PubMed:26100018, PubMed:28369633). Plays a key role in NHEJ by promoting the ligation of various mismatched and non-cohesive ends (PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are non-complementary or partially complementary (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781). In some studies, has been shown to associate with XRCC4 to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22228831, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). Alternatively, it has also been shown that rather than forming filaments, a single NHEJ1 dimer interacts through both head domains with XRCC4 to promote the close alignment of DNA ends (By similarity). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Binds DNA in a length-dependent manner (PubMed:17317666, PubMed:18158905). {ECO:0000250|UniProtKB:A0A1L8ENT6, ECO:0000269|PubMed:16439204, ECO:0000269|PubMed:16439205, ECO:0000269|PubMed:17317666, ECO:0000269|PubMed:17470781, ECO:0000269|PubMed:17717001, ECO:0000269|PubMed:18158905, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:19056826, ECO:0000269|PubMed:20558749, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28369633, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:30250067}. |
Q9HC35 | EML4 | S869 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9NP98 | MYOZ1 | S83 | ochoa | Myozenin-1 (Calsarcin-2) (Filamin-, actinin- and telethonin-binding protein) (Protein FATZ) | Myozenins may serve as intracellular binding proteins involved in linking Z-disk proteins such as alpha-actinin, gamma-filamin, TCAP/telethonin, LDB3/ZASP and localizing calcineurin signaling to the sarcomere. Plays an important role in the modulation of calcineurin signaling. May play a role in myofibrillogenesis. |
Q9NPG1 | FZD3 | S561 | ochoa | Frizzled-3 (Fz-3) (hFz3) | Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. Activation by Wnt5A stimulates PKC activity via a G-protein-dependent mechanism. Involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Plays a role in controlling early axon growth and guidance processes necessary for the formation of a subset of central and peripheral major fiber tracts. Required for the development of major fiber tracts in the central nervous system, including: the anterior commissure, the corpus callosum, the thalamocortical, corticothalamic and nigrostriatal tracts, the corticospinal tract, the fasciculus retroflexus, the mammillothalamic tract, the medial lemniscus, and ascending fiber tracts from the spinal cord to the brain. In the peripheral nervous system, controls axon growth in distinct populations of cranial and spinal motor neurons, including the facial branchimotor nerve, the hypoglossal nerve, the phrenic nerve, and motor nerves innervating dorsal limbs. Involved in the migration of cranial neural crest cells. May also be implicated in the transmission of sensory information from the trunk and limbs to the brain. Controls commissural sensory axons guidance after midline crossing along the anterior-posterior axis in the developing spinal cord in a Wnt-dependent signaling pathway. Together with FZD6, is involved in the neural tube closure and plays a role in the regulation of the establishment of planar cell polarity (PCP), particularly in the orientation of asymmetric bundles of stereocilia on the apical faces of a subset of auditory and vestibular sensory cells located in the inner ear. Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle in a beta-catenin-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q61086}. |
Q9NPI1 | BRD7 | S38 | ochoa | Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) | Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}. |
Q9NQS3 | NECTIN3 | S465 | ochoa | Nectin-3 (CDw113) (Nectin cell adhesion molecule 3) (Poliovirus receptor-related protein 3) (CD antigen CD113) | Cell adhesion molecule that promotes cell-cell adhesion through heterophilic trans-interactions with nectins-like or other nectins, such as trans-interaction with NECTIN2 at Sertoli-spermatid junctions (PubMed:16216929). Trans-interaction with PVR induces activation of CDC42 and RAC small G proteins through common signaling molecules such as SRC and RAP1 (PubMed:16216929). Induces endocytosis-mediated down-regulation of PVR from the cell surface, resulting in reduction of cell movement and proliferation (PubMed:16216929). Involved in axon guidance by promoting contacts between the commissural axons and the floor plate cells (By similarity). Also involved in the formation of cell-cell junctions, including adherens junctions and synapses (By similarity). Promotes formation of checkerboard-like cellular pattern of hair cells and supporting cells in the auditory epithelium via heterophilic interaction with NECTIN1: NECTIN1 is present in the membrane of hair cells and associates with NECTIN3 on supporting cells, thereby mediating heterotypic adhesion between these two cell types (By similarity). Plays a role in the morphology of the ciliary body (By similarity). {ECO:0000250|UniProtKB:Q9JLB9, ECO:0000269|PubMed:16216929}. |
Q9NQW6 | ANLN | S349 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQW6 | ANLN | S419 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQW6 | ANLN | S471 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NSI6 | BRWD1 | S2011 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NUP1 | BLOC1S4 | S186 | ochoa | Biogenesis of lysosome-related organelles complex 1 subunit 4 (BLOC-1 subunit 4) (Protein cappuccino homolog) | Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Plays a role in intracellular vesicle trafficking. {ECO:0000269|PubMed:17182842}. |
Q9NVI1 | FANCI | S1121 | ochoa|psp | Fanconi anemia group I protein (Protein FACI) | Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}. |
Q9NWQ8 | PAG1 | S314 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NZZ3 | CHMP5 | S86 | ochoa | Charged multivesicular body protein 5 (Chromatin-modifying protein 5) (SNF7 domain-containing protein 2) (Vacuolar protein sorting-associated protein 60) (Vps60) (hVps60) | Probable peripherally associated component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses) (PubMed:14519844). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in HIV-1 p6- and p9-dependent virus release (PubMed:14519844). {ECO:0000269|PubMed:14519844}. |
Q9P0K7 | RAI14 | S327 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9P107 | GMIP | S885 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P2D0 | IBTK | S1198 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2E9 | RRBP1 | S552 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2M4 | TBC1D14 | S103 | ochoa | TBC1 domain family member 14 | Plays a role in the regulation of starvation-induced autophagosome formation (PubMed:22613832). Together with the TRAPPIII complex, regulates a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. {ECO:0000269|PubMed:22613832, ECO:0000269|PubMed:26711178}. |
Q9UBB9 | TFIP11 | S144 | ochoa | Tuftelin-interacting protein 11 (Septin and tuftelin-interacting protein 1) (STIP-1) | Involved in pre-mRNA splicing, specifically in spliceosome disassembly during late-stage splicing events. Intron turnover seems to proceed through reactions in two lariat-intron associated complexes termed Intron Large (IL) and Intron Small (IS). In cooperation with DHX15 seems to mediate the transition of the U2, U5 and U6 snRNP-containing IL complex to the snRNP-free IS complex leading to efficient debranching and turnover of excised introns. May play a role in the differentiation of ameloblasts and odontoblasts or in the forming of the enamel extracellular matrix. {ECO:0000269|PubMed:19103666}. |
Q9UG63 | ABCF2 | S512 | ochoa | ATP-binding cassette sub-family F member 2 (Iron-inhibited ABC transporter 2) | None |
Q9UHB6 | LIMA1 | S541 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHR4 | BAIAP2L1 | S354 | ochoa | BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) | May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}. |
Q9UI08 | EVL | S362 | ochoa | Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization. |
Q9UI26 | IPO11 | S343 | ochoa | Importin-11 (Imp11) (Ran-binding protein 11) (RanBP11) | Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Mediates the nuclear import of UBE2E3, and of RPL12 (By similarity). {ECO:0000250, ECO:0000269|PubMed:11032817}. |
Q9UIS9 | MBD1 | S37 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UIU6 | SIX4 | S286 | ochoa | Homeobox protein SIX4 (Sine oculis homeobox homolog 4) | Transcriptional regulator which can act as both a transcriptional repressor and activator by binding a DNA sequence on these target genes and is involved in processes like cell differentiation, cell migration and cell survival. Transactivates gene expression by binding a 5'-[CAT]A[CT][CT][CTG]GA[GAT]-3' motif present in the Trex site and a 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 site of the muscle-specific genes enhancer. Acts cooperatively with EYA proteins to transactivate their target genes through interaction and nuclear translocation of EYA protein. Acts synergistically with SIX1 to regulate target genes involved in formation of various organs, including muscle, kidney, gonad, ganglia, olfactory epithelium and cranial skeleton. Plays a role in several important steps of muscle development. Controls the genesis of hypaxial myogenic progenitors in the dermomyotome by transactivating PAX3 and the delamination and migration of the hypaxial precursors from the ventral lip to the limb buds through the transactivation of PAX3, MET and LBX1. Controls myoblast determination by transactivating MYF5, MYOD1 and MYF6. Controls somitic differentiation in myocyte through MYOG transactivation. Plays a role in synaptogenesis and sarcomere organization by participating in myofiber specialization during embryogenesis by activating fast muscle program in the primary myotome resulting in an up-regulation of fast muscle genes, including ATP2A1, MYL1 and TNNT3. Simultaneously, is also able to activate inhibitors of slow muscle genes, such as SOX6, HRASLS, and HDAC4, thereby restricting the activation of the slow muscle genes. During muscle regeneration, negatively regulates differentiation of muscle satellite cells through down-regulation of MYOG expression. During kidney development regulates the early stages of metanephros development and ureteric bud formation through regulation of GDNF, SALL1, PAX8 and PAX2 expression. Plays a role in gonad development by regulating both testis determination and size determination. In gonadal sex determination, transactivates ZFPM2 by binding a MEF3 consensus sequence, resulting in SRY up-regulation. In gonadal size determination, transactivates NR5A1 by binding a MEF3 consensus sequence resulting in gonadal precursor cell formation regulation. During olfactory development mediates the specification and patterning of olfactory placode through fibroblast growth factor and BMP4 signaling pathways and also regulates epithelial cell proliferation during placode formation. Promotes survival of sensory neurons during early trigeminal gangliogenesis. In the developing dorsal root ganglia, up-regulates SLC12A2 transcription. Regulates early thymus/parathyroid organogenesis through regulation of GCM2 and FOXN1 expression. Forms gustatory papillae during development of the tongue. Also plays a role during embryonic cranial skeleton morphogenesis. {ECO:0000250|UniProtKB:Q61321}. |
Q9UJA3 | MCM8 | S630 | ochoa | DNA helicase MCM8 (EC 3.6.4.12) (Minichromosome maintenance 8) | Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MNR complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). However, may play a non-essential for DNA replication: may be involved in the activation of the prereplicative complex (pre-RC) during G(1) phase by recruiting CDC6 to the origin recognition complex (ORC) (PubMed:15684404). Probably by regulating HR, plays a key role during gametogenesis (By similarity). Stabilizes MCM9 protein (PubMed:23401855, PubMed:26215093). {ECO:0000250|UniProtKB:Q9CWV1, ECO:0000269|PubMed:15684404, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093}. |
Q9UK61 | TASOR | S1206 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKA2 | FBXL4 | S268 | ochoa | F-box/LRR-repeat protein 4 (F-box and leucine-rich repeat protein 4) (F-box protein FBL4/FBL5) | Substrate-recognition component of the mitochondria-localized SCF-FBXL4 ubiquitin E3 ligase complex that plays a role in the restriction of mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors (PubMed:36896912, PubMed:38992176). Rescues also mitochondrial injury through reverting hyperactivation of DRP1-mediated mitochondrial fission (By similarity). {ECO:0000250|UniProtKB:Q8BH70, ECO:0000269|PubMed:36896912, ECO:0000269|PubMed:38992176}. |
Q9UKN8 | GTF3C4 | S604 | ochoa | General transcription factor 3C polypeptide 4 (EC 2.3.1.48) (TF3C-delta) (Transcription factor IIIC 90 kDa subunit) (TFIIIC 90 kDa subunit) (TFIIIC90) (Transcription factor IIIC subunit delta) | Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin (PubMed:10523658). Has histone acetyltransferase activity (HAT) with unique specificity for free and nucleosomal H3 (PubMed:10523658). May cooperate with GTF3C5 in facilitating the recruitment of TFIIIB and RNA polymerase through direct interactions with BRF1, POLR3C and POLR3F (PubMed:10523658). May be localized close to the A box (PubMed:10523658). {ECO:0000269|PubMed:10523658}. |
Q9UKV3 | ACIN1 | S983 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKX7 | NUP50 | S141 | ochoa | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9UMD9 | COL17A1 | S56 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UNF1 | MAGED2 | S70 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UNF1 | MAGED2 | S85 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UNK0 | STX8 | S160 | ochoa | Syntaxin-8 | Vesicle trafficking protein that functions in the early secretory pathway, possibly by mediating retrograde transport from cis-Golgi membranes to the ER. |
Q9UPT8 | ZC3H4 | S1065 | ochoa | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UPV0 | CEP164 | S407 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UQB8 | BAIAP2 | S475 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9UQM7 | CAMK2A | S331 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit alpha (CaM kinase II subunit alpha) (CaMK-II subunit alpha) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in various processes, such as synaptic plasticity, neurotransmitter release and long-term potentiation (PubMed:14722083). Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development (PubMed:28130356). Also regulates the migration of developing neurons (PubMed:29100089). Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity (PubMed:23805378). Phosphorylates the transcription factor ETS1 in response to calcium signaling, thereby decreasing ETS1 affinity for DNA (By similarity). In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (PubMed:11972023). In response to interferon-beta (IFN-beta) stimulation, stimulates the JAK-STAT signaling pathway (PubMed:35568036). Acts as a negative regulator of 2-arachidonoylglycerol (2-AG)-mediated synaptic signaling via modulation of DAGLA activity (By similarity). {ECO:0000250|UniProtKB:P11275, ECO:0000250|UniProtKB:P11798, ECO:0000269|PubMed:11972023, ECO:0000269|PubMed:23805378, ECO:0000269|PubMed:28130356, ECO:0000269|PubMed:29100089}. |
Q9Y232 | CDYL | S149 | ochoa | Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) | [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}. |
Q9Y250 | LZTS1 | S172 | ochoa | Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) | Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}. |
Q9Y251 | HPSE | S426 | ochoa | Heparanase (EC 3.2.1.166) (Endo-glucoronidase) (Heparanase-1) (Hpa1) [Cleaved into: Heparanase 8 kDa subunit; Heparanase 50 kDa subunit] | Endoglycosidase that cleaves heparan sulfate proteoglycans (HSPGs) into heparan sulfate side chains and core proteoglycans. Participates in extracellular matrix (ECM) degradation and remodeling. Selectively cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group. Can also cleave the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying a 2-O-sulfo group, but not linkages between a glucuronic acid unit and a 2-O-sulfated iduronic acid moiety. It is essentially inactive at neutral pH but becomes active under acidic conditions such as during tumor invasion and in inflammatory processes. Facilitates cell migration associated with metastasis, wound healing and inflammation. Enhances shedding of syndecans, and increases endothelial invasion and angiogenesis in myelomas. Acts as a procoagulant by increasing the generation of activation factor X in the presence of tissue factor and activation factor VII. Increases cell adhesion to the extracellular matrix (ECM), independent of its enzymatic activity. Induces AKT1/PKB phosphorylation via lipid rafts increasing cell mobility and invasion. Heparin increases this AKT1/PKB activation. Regulates osteogenesis. Enhances angiogenesis through up-regulation of SRC-mediated activation of VEGF. Implicated in hair follicle inner root sheath differentiation and hair homeostasis. {ECO:0000269|PubMed:12213822, ECO:0000269|PubMed:12773484, ECO:0000269|PubMed:15044433, ECO:0000269|PubMed:16452201, ECO:0000269|PubMed:18557927, ECO:0000269|PubMed:18798279, ECO:0000269|PubMed:19244131, ECO:0000269|PubMed:20097882, ECO:0000269|PubMed:20181948, ECO:0000269|PubMed:20309870, ECO:0000269|PubMed:20561914, ECO:0000269|PubMed:21131364}. |
Q9Y297 | BTRC | S82 | psp | F-box/WD repeat-containing protein 1A (E3RSIkappaB) (Epididymis tissue protein Li 2a) (F-box and WD repeats protein beta-TrCP) (pIkappaBalpha-E3 receptor subunit) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). Recognizes and binds to phosphorylated target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). SCF(BTRC) mediates the ubiquitination of CTNNB1 and participates in Wnt signaling (PubMed:12077367, PubMed:12820959). SCF(BTRC) mediates the ubiquitination of phosphorylated NFKB1, ATF4, CDC25A, DLG1, FBXO5, PER1, SMAD3, SMAD4, SNAI1 and probably NFKB2 (PubMed:10835356, PubMed:11238952, PubMed:14603323, PubMed:14681206). SCF(BTRC) mediates the ubiquitination of NFKBIA, NFKBIB and NFKBIE; the degradation frees the associated NFKB1 to translocate into the nucleus and to activate transcription (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:9859996). Ubiquitination of NFKBIA occurs at 'Lys-21' and 'Lys-22' (PubMed:10066435). The SCF(FBXW11) complex also regulates NF-kappa-B by mediating ubiquitination of phosphorylated NFKB1: specifically ubiquitinates the p105 form of NFKB1, leading to its degradation (PubMed:10835356, PubMed:11158290, PubMed:14673179). SCF(BTRC) mediates the ubiquitination of CEP68; this is required for centriole separation during mitosis (PubMed:25503564, PubMed:25704143). SCF(BTRC) mediates the ubiquitination and subsequent degradation of nuclear NFE2L1 (By similarity). Has an essential role in the control of the clock-dependent transcription via degradation of phosphorylated PER1 and PER2 (PubMed:15917222). May be involved in ubiquitination and subsequent proteasomal degradation through a DBB1-CUL4 E3 ubiquitin-protein ligase. Required for activation of NFKB-mediated transcription by IL1B, MAP3K14, MAP3K1, IKBKB and TNF. Required for proteolytic processing of GLI3 (PubMed:16371461). Mediates ubiquitination of REST, thereby leading to its proteasomal degradation (PubMed:18354482, PubMed:21258371). SCF(BTRC) mediates the ubiquitination and subsequent proteasomal degradation of KLF4; thereby negatively regulating cell pluripotency maintenance and embryogenesis (By similarity). SCF(BTRC) acts as a regulator of mTORC1 signaling pathway by catalyzing ubiquitination and subsequent proteasomal degradation of phosphorylated DEPTOR, TFE3 and MITF (PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:33110214, PubMed:36608670). SCF(BTRC) directs 'Lys-48'-linked ubiquitination of UBR2 in the T-cell receptor signaling pathway (PubMed:38225265). {ECO:0000250|UniProtKB:Q3ULA2, ECO:0000269|PubMed:10066435, ECO:0000269|PubMed:10497169, ECO:0000269|PubMed:10644755, ECO:0000269|PubMed:10835356, ECO:0000269|PubMed:11158290, ECO:0000269|PubMed:11238952, ECO:0000269|PubMed:11359933, ECO:0000269|PubMed:11994270, ECO:0000269|PubMed:12077367, ECO:0000269|PubMed:12791267, ECO:0000269|PubMed:12820959, ECO:0000269|PubMed:12902344, ECO:0000269|PubMed:14603323, ECO:0000269|PubMed:14673179, ECO:0000269|PubMed:14681206, ECO:0000269|PubMed:14988407, ECO:0000269|PubMed:15448698, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16371461, ECO:0000269|PubMed:18354482, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:22087322, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:38225265, ECO:0000269|PubMed:9859996, ECO:0000269|PubMed:9990852}. |
Q9Y2W2 | WBP11 | S604 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y426 | C2CD2 | S519 | ochoa | C2 domain-containing protein 2 (Transmembrane protein 24-like) | None |
Q9Y490 | TLN1 | S455 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4E5 | ZNF451 | S825 | ochoa | E3 SUMO-protein ligase ZNF451 (EC 2.3.2.-) (Coactivator for steroid receptors) (E3 SUMO-protein transferase ZNF451) (Zinc finger protein 451) | E3 SUMO-protein ligase; has a preference for SUMO2 and SUMO3 and facilitates UBE2I/UBC9-mediated sumoylation of target proteins (PubMed:26524493, PubMed:26524494). Plays a role in protein SUMO2 modification in response to stress caused by DNA damage and by proteasome inhibitors (in vitro). Required for MCM4 sumoylation (By similarity). Has no activity with SUMO1 (PubMed:26524493). Preferentially transfers an additional SUMO2 chain onto the SUMO2 consensus site 'Lys-11' (PubMed:26524493). Negatively regulates transcriptional activation mediated by the SMAD4 complex in response to TGF-beta signaling. Inhibits EP300-mediated acetylation of histone H3 at 'Lys-9' (PubMed:24324267). Plays a role in regulating the transcription of AR targets (PubMed:18656483). {ECO:0000250|UniProtKB:Q8C0P7, ECO:0000269|PubMed:18656483, ECO:0000269|PubMed:24324267, ECO:0000269|PubMed:26524493, ECO:0000269|PubMed:26524494}. |
Q9Y520 | PRRC2C | S1100 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y5K6 | CD2AP | S458 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y5K6 | CD2AP | S550 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y5M8 | SRPRB | S213 | ochoa | Signal recognition particle receptor subunit beta (SR-beta) (Protein APMCF1) | Component of the signal recognition particle (SRP) complex receptor (SR) (By similarity). Ensures, in conjunction with the SRP complex, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system (By similarity). May mediate the membrane association of SR (By similarity). {ECO:0000250|UniProtKB:P47758}. |
Q9Y6Q9 | NCOA3 | S101 | psp | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q9Y6R1 | SLC4A4 | S232 | ochoa|psp | Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) | Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}. |
Q9Y6X4 | FAM169A | S278 | ochoa | Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) | None |
Q9BUB5 | MKNK1 | S352 | SIGNOR | MAP kinase-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 1) (MAPK signal-integrating kinase 1) (Mnk1) | May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. {ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:15350534, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9878069}. |
Q16658 | FSCN1 | S234 | Sugiyama | Fascin (55 kDa actin-bundling protein) (Singed-like protein) (p55) | Actin-binding protein that contains 2 major actin binding sites (PubMed:21685497, PubMed:23184945). Organizes filamentous actin into parallel bundles (PubMed:20393565, PubMed:21685497, PubMed:23184945). Plays a role in the organization of actin filament bundles and the formation of microspikes, membrane ruffles, and stress fibers (PubMed:22155786). Important for the formation of a diverse set of cell protrusions, such as filopodia, and for cell motility and migration (PubMed:20393565, PubMed:21685497, PubMed:23184945). Mediates reorganization of the actin cytoskeleton and axon growth cone collapse in response to NGF (PubMed:22155786). {ECO:0000269|PubMed:20137952, ECO:0000269|PubMed:20393565, ECO:0000269|PubMed:21685497, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:23184945, ECO:0000269|PubMed:9362073, ECO:0000269|PubMed:9571235}. |
P06733 | ENO1 | S349 | Sugiyama | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
Q14683 | SMC1A | S514 | Sugiyama | Structural maintenance of chromosomes protein 1A (SMC protein 1A) (SMC-1-alpha) (SMC-1A) (Sb1.8) | Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. Involved in DNA repair via its interaction with BRCA1 and its related phosphorylation by ATM, or via its phosphorylation by ATR. Works as a downstream effector both in the ATM/NBS1 branch and in the ATR/MSH2 branch of S-phase checkpoint. {ECO:0000269|PubMed:11877377}. |
Q9Y3B8 | REXO2 | S203 | Sugiyama | Oligoribonuclease, mitochondrial (EC 3.1.15.-) (RNA exonuclease 2 homolog) (Small fragment nuclease) | 3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides (PubMed:23741365, PubMed:30926754, PubMed:31588022, PubMed:32365187). Binds and degrades longer oligonucleotides with a lower affinity (PubMed:30926754, PubMed:31588022, PubMed:32365187). Plays dual roles in mitochondria, scavenging nanoRNAs (small RNA oligonucleotides of <5 nucleotides) that are produced by the degradosome and clearing short RNAs that are generated by RNA processing (PubMed:30926754, PubMed:31588022, PubMed:32365187). Essential for correct initiation of mitochondrial transcription, degrading mitochondrial RNA dinucleotides to prevent RNA-primed transcription at non-canonical sites in the mitochondrial genome (PubMed:31588022). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:Q9D8S4, ECO:0000269|PubMed:23741365, ECO:0000269|PubMed:30926754, ECO:0000269|PubMed:31588022, ECO:0000269|PubMed:32365187}.; FUNCTION: [Isoform 3]: 3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides. {ECO:0000269|PubMed:10851236, ECO:0000269|PubMed:16682444}. |
P14314 | PRKCSH | S478 | Sugiyama | Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) | Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}. |
O15119 | TBX3 | S723 | Sugiyama | T-box transcription factor TBX3 (T-box protein 3) | Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}. |
P23434 | GCSH | S150 | Sugiyama | Glycine cleavage system H protein, mitochondrial (Lipoic acid-containing protein) | The glycine cleavage system catalyzes the degradation of glycine. The H protein (GCSH) shuttles the methylamine group of glycine from the P protein (GLDC) to the T protein (GCST). Has a pivotal role in the lipoylation of enzymes involved in cellular energetics such as the mitochondrial dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), and the mitochondrial dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex (DLST) (PubMed:36190515). {ECO:0000269|PubMed:1671321, ECO:0000269|PubMed:36190515}. |
P47897 | QARS1 | S219 | Sugiyama | Glutamine--tRNA ligase (EC 6.1.1.18) (Glutaminyl-tRNA synthetase) (GlnRS) | Glutamine--tRNA ligase (PubMed:26869582). Plays a critical role in brain development (PubMed:24656866). {ECO:0000269|PubMed:24656866, ECO:0000269|PubMed:26869582}. |
Q6IBS0 | TWF2 | S140 | Sugiyama | Twinfilin-2 (A6-related protein) (hA6RP) (Protein tyrosine kinase 9-like) (Twinfilin-1-like protein) | Actin-binding protein involved in motile and morphological processes. Inhibits actin polymerization, likely by sequestering G-actin. By capping the barbed ends of filaments, it also regulates motility. Seems to play an important role in clathrin-mediated endocytosis and distribution of endocytic organelles. May play a role in regulating the mature length of the middle and short rows of stereocilia (By similarity). {ECO:0000250}. |
Q6ULP2 | AFTPH | S328 | Sugiyama | Aftiphilin | Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025}. |
P07900 | HSP90AA1 | S460 | Sugiyama | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P27797 | CALR | S78 | Sugiyama | Calreticulin (CRP55) (Calregulin) (Endoplasmic reticulum resident protein 60) (ERp60) (HACBP) (grp60) | Calcium-binding chaperone that promotes folding, oligomeric assembly and quality control in the endoplasmic reticulum (ER) via the calreticulin/calnexin cycle. This lectin interacts transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (PubMed:7876246). Interacts with the DNA-binding domain of NR3C1 and mediates its nuclear export (PubMed:11149926). Involved in maternal gene expression regulation. May participate in oocyte maturation via the regulation of calcium homeostasis (By similarity). Present in the cortical granules of non-activated oocytes, is exocytosed during the cortical reaction in response to oocyte activation and might participate in the block to polyspermy (By similarity). {ECO:0000250|UniProtKB:P28491, ECO:0000250|UniProtKB:Q8K3H7, ECO:0000269|PubMed:11149926, ECO:0000269|PubMed:7876246}. |
P30533 | LRPAP1 | S135 | Sugiyama | Alpha-2-macroglobulin receptor-associated protein (Alpha-2-MRAP) (Low density lipoprotein receptor-related protein-associated protein 1) (RAP) | Molecular chaperone for LDL receptor-related proteins that may regulate their ligand binding activity along the secretory pathway. {ECO:0000269|PubMed:32296178, ECO:0000269|PubMed:7774585}. |
Q9NRX4 | PHPT1 | S80 | Sugiyama | 14 kDa phosphohistidine phosphatase (EC 3.9.1.3) (Phosphohistidine phosphatase 1) (PHPT1) (Protein histidine phosphatase) (PHP) (Protein janus-A homolog) | Exhibits phosphohistidine phosphatase activity. {ECO:0000269|PubMed:19836471, ECO:0000269|PubMed:25574816}. |
Q14457 | BECN1 | S279 | PSP | Beclin-1 (Coiled-coil myosin-like BCL2-interacting protein) (Protein GT197) [Cleaved into: Beclin-1-C 35 kDa; Beclin-1-C 37 kDa] | Plays a central role in autophagy (PubMed:18570871, PubMed:21358617, PubMed:23184933, PubMed:23974797, PubMed:25484083, PubMed:28445460, PubMed:37776275). Acts as a core subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and required for the abscission step in cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20208530, PubMed:20643123, PubMed:23974797, PubMed:26783301). Essential for the formation of PI3KC3-C2 but not PI3KC3-C1 PI3K complex forms. Involved in endocytosis (PubMed:25275521). May play a role in antiviral host defense. {ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20208530, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23974797, ECO:0000269|PubMed:25275521, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:37776275, ECO:0000269|PubMed:9765397}.; FUNCTION: Beclin-1-C 35 kDa localized to mitochondria can promote apoptosis; it induces the mitochondrial translocation of BAX and the release of proapoptotic factors. {ECO:0000269|PubMed:21364619, ECO:0000269|PubMed:26263979}.; FUNCTION: (Microbial infection) Protects against infection by a neurovirulent strain of Sindbis virus. {ECO:0000269|PubMed:9765397}. |
Q969S3 | ZNF622 | S38 | Sugiyama | Cytoplasmic 60S subunit biogenesis factor ZNF622 (Zinc finger protein 622) (Zinc finger-like protein 9) | Pre-60S-associated cytoplasmic factor involved in the cytoplasmic maturation of the 60S subunit. {ECO:0000269|PubMed:33711283}. |
P05997 | COL5A2 | S1277 | Sugiyama | Collagen alpha-2(V) chain | Type V collagen is a member of group I collagen (fibrillar forming collagen). It is a minor connective tissue component of nearly ubiquitous distribution. Type V collagen binds to DNA, heparan sulfate, thrombospondin, heparin, and insulin. Type V collagen is a key determinant in the assembly of tissue-specific matrices (By similarity). {ECO:0000250}. |
Q8N6N3 | C1orf52 | S129 | Sugiyama | UPF0690 protein C1orf52 (BCL10-associated gene protein) | None |
P08631 | HCK | S130 | Sugiyama | Tyrosine-protein kinase HCK (EC 2.7.10.2) (Hematopoietic cell kinase) (Hemopoietic cell kinase) (p59-HCK/p60-HCK) (p59Hck) (p61Hck) | Non-receptor tyrosine-protein kinase found in hematopoietic cells that transmits signals from cell surface receptors and plays an important role in the regulation of innate immune responses, including neutrophil, monocyte, macrophage and mast cell functions, phagocytosis, cell survival and proliferation, cell adhesion and migration. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as FCGR1A and FCGR2A, but also CSF3R, PLAUR, the receptors for IFNG, IL2, IL6 and IL8, and integrins, such as ITGB1 and ITGB2. During the phagocytic process, mediates mobilization of secretory lysosomes, degranulation, and activation of NADPH oxidase to bring about the respiratory burst. Plays a role in the release of inflammatory molecules. Promotes reorganization of the actin cytoskeleton and actin polymerization, formation of podosomes and cell protrusions. Inhibits TP73-mediated transcription activation and TP73-mediated apoptosis. Phosphorylates CBL in response to activation of immunoglobulin gamma Fc region receptors. Phosphorylates ADAM15, BCR, ELMO1, FCGR2A, GAB1, GAB2, RAPGEF1, STAT5B, TP73, VAV1 and WAS. {ECO:0000269|PubMed:10092522, ECO:0000269|PubMed:10779760, ECO:0000269|PubMed:10973280, ECO:0000269|PubMed:11741929, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:12411494, ECO:0000269|PubMed:15010462, ECO:0000269|PubMed:15952790, ECO:0000269|PubMed:15998323, ECO:0000269|PubMed:17310994, ECO:0000269|PubMed:17535448, ECO:0000269|PubMed:19114024, ECO:0000269|PubMed:19903482, ECO:0000269|PubMed:20452982, ECO:0000269|PubMed:21338576, ECO:0000269|PubMed:7535819, ECO:0000269|PubMed:8132624, ECO:0000269|PubMed:9406996, ECO:0000269|PubMed:9407116}. |
Q8NBS9 | TXNDC5 | S255 | Sugiyama | Thioredoxin domain-containing protein 5 (EC 1.8.4.-) (EC 5.3.4.1) (Endoplasmic reticulum resident protein 46) (ER protein 46) (ERp46) (Thioredoxin-like protein p46) | Protein disulfide isomerase of the endoplasmic reticulum lumen involved in the formation of disulfide bonds in proteins. Can reduce insulin disulfide bonds. {ECO:0000250|UniProtKB:Q91W90}. |
P12931 | SRC | S212 | Sugiyama | Proto-oncogene tyrosine-protein kinase Src (EC 2.7.10.2) (Proto-oncogene c-Src) (pp60c-src) (p60-Src) | Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors (PubMed:34234773). Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates such as AFAP1. Phosphorylation of AFAP1 allows the SRC SH2 domain to bind AFAP1 and to localize to actin filaments. Cytoskeletal reorganization is also controlled through the phosphorylation of cortactin (CTTN) (Probable). When cells adhere via focal adhesions to the extracellular matrix, signals are transmitted by integrins into the cell resulting in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN) (PubMed:21411625). In addition to phosphorylating focal adhesion proteins, SRC is also active at the sites of cell-cell contact adherens junctions and phosphorylates substrates such as beta-catenin (CTNNB1), delta-catenin (CTNND1), and plakoglobin (JUP). Another type of cell-cell junction, the gap junction, is also a target for SRC, which phosphorylates connexin-43 (GJA1). SRC is implicated in regulation of pre-mRNA-processing and phosphorylates RNA-binding proteins such as KHDRBS1 (Probable). Phosphorylates PKP3 at 'Tyr-195' in response to reactive oxygen species, which may cause the release of PKP3 from desmosome cell junctions into the cytoplasm (PubMed:25501895). Also plays a role in PDGF-mediated tyrosine phosphorylation of both STAT1 and STAT3, leading to increased DNA binding activity of these transcription factors (By similarity). Involved in the RAS pathway through phosphorylation of RASA1 and RASGRF1 (PubMed:11389730). Plays a role in EGF-mediated calcium-activated chloride channel activation (PubMed:18586953). Required for epidermal growth factor receptor (EGFR) internalization through phosphorylation of clathrin heavy chain (CLTC and CLTCL1) at 'Tyr-1477'. Involved in beta-arrestin (ARRB1 and ARRB2) desensitization through phosphorylation and activation of GRK2, leading to beta-arrestin phosphorylation and internalization. Has a critical role in the stimulation of the CDK20/MAPK3 mitogen-activated protein kinase cascade by epidermal growth factor (Probable). Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus (PubMed:7853507). Plays an important role in osteoclastic bone resorption in conjunction with PTK2B/PYK2. Both the formation of a SRC-PTK2B/PYK2 complex and SRC kinase activity are necessary for this function. Recruited to activated integrins by PTK2B/PYK2, thereby phosphorylating CBL, which in turn induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14585963, PubMed:8755529). Promotes energy production in osteoclasts by activating mitochondrial cytochrome C oxidase (PubMed:12615910). Phosphorylates DDR2 on tyrosine residues, thereby promoting its subsequent autophosphorylation (PubMed:16186108). Phosphorylates RUNX3 and COX2 on tyrosine residues, TNK2 on 'Tyr-284' and CBL on 'Tyr-731' (PubMed:20100835, PubMed:21309750). Enhances RIGI-elicited antiviral signaling (PubMed:19419966). Phosphorylates PDPK1 at 'Tyr-9', 'Tyr-373' and 'Tyr-376' (PubMed:14585963). Phosphorylates BCAR1 at 'Tyr-128' (PubMed:22710723). Phosphorylates CBLC at multiple tyrosine residues, phosphorylation at 'Tyr-341' activates CBLC E3 activity (PubMed:20525694). Phosphorylates synaptic vesicle protein synaptophysin (SYP) (By similarity). Involved in anchorage-independent cell growth (PubMed:19307596). Required for podosome formation (By similarity). Mediates IL6 signaling by activating YAP1-NOTCH pathway to induce inflammation-induced epithelial regeneration (PubMed:25731159). Phosphorylates OTUB1, promoting deubiquitination of RPTOR (PubMed:35927303). Phosphorylates caspase CASP8 at 'Tyr-380' which negatively regulates CASP8 processing and activation, down-regulating CASP8 proapoptotic function (PubMed:16619028). {ECO:0000250|UniProtKB:P05480, ECO:0000250|UniProtKB:Q9WUD9, ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:12615910, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:16186108, ECO:0000269|PubMed:16619028, ECO:0000269|PubMed:18586953, ECO:0000269|PubMed:19307596, ECO:0000269|PubMed:19419966, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:21309750, ECO:0000269|PubMed:21411625, ECO:0000269|PubMed:22710723, ECO:0000269|PubMed:25501895, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:34234773, ECO:0000269|PubMed:35927303, ECO:0000269|PubMed:7853507, ECO:0000269|PubMed:8755529, ECO:0000269|PubMed:8759729, ECO:0000305|PubMed:11964124, ECO:0000305|PubMed:8672527, ECO:0000305|PubMed:9442882}.; FUNCTION: [Isoform 1]: Non-receptor protein tyrosine kinase which phosphorylates synaptophysin with high affinity. {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 2]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in L1CAM-mediated neurite elongation, possibly by acting downstream of L1CAM to drive cytoskeletal rearrangements involved in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}.; FUNCTION: [Isoform 3]: Non-receptor protein tyrosine kinase which shows higher basal kinase activity than isoform 1, possibly due to weakened intramolecular interactions which enhance autophosphorylation of Tyr-419 and subsequent activation (By similarity). The SH3 domain shows reduced affinity with the linker sequence between the SH2 and kinase domains which may account for the increased basal activity (By similarity). Displays altered substrate specificity compared to isoform 1, showing weak affinity for synaptophysin and for peptide substrates containing class I or class II SH3 domain-binding motifs (By similarity). Plays a role in neurite elongation (By similarity). {ECO:0000250|UniProtKB:Q9WUD9}. |
P17948 | FLT1 | S1031 | Sugiyama | Vascular endothelial growth factor receptor 1 (VEGFR-1) (EC 2.7.10.1) (Fms-like tyrosine kinase 1) (FLT-1) (Tyrosine-protein kinase FRT) (Tyrosine-protein kinase receptor FLT) (FLT) (Vascular permeability factor receptor) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. Acts as a positive regulator of postnatal retinal hyaloid vessel regression (By similarity). May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1 (PubMed:16685275). {ECO:0000250|UniProtKB:P35969, ECO:0000269|PubMed:11141500, ECO:0000269|PubMed:11312102, ECO:0000269|PubMed:11811792, ECO:0000269|PubMed:12796773, ECO:0000269|PubMed:14633857, ECO:0000269|PubMed:15735759, ECO:0000269|PubMed:16685275, ECO:0000269|PubMed:18079407, ECO:0000269|PubMed:18515749, ECO:0000269|PubMed:18583712, ECO:0000269|PubMed:18593464, ECO:0000269|PubMed:20512933, ECO:0000269|PubMed:20551949, ECO:0000269|PubMed:21752276, ECO:0000269|PubMed:7824266, ECO:0000269|PubMed:8248162, ECO:0000269|PubMed:8605350, ECO:0000269|PubMed:9299537, ECO:0000269|Ref.11}.; FUNCTION: [Isoform 1]: Phosphorylates PLCG. {ECO:0000269|PubMed:9299537}.; FUNCTION: [Isoform 2]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 3]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 4]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 7]: Has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion. {ECO:0000269|PubMed:20512933}. |
P32969 | RPL9 | S135 | Sugiyama | Large ribosomal subunit protein uL6 (60S ribosomal protein L9) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q9BWD1 | ACAT2 | S208 | Sugiyama | Acetyl-CoA acetyltransferase, cytosolic (EC 2.3.1.9) (Acetyl-CoA transferase-like protein) (Cytosolic acetoacetyl-CoA thiolase) | Involved in the biosynthetic pathway of cholesterol. {ECO:0000303|PubMed:15733928}. |
P41235 | HNF4A | S95 | PSP | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P27540 | ARNT | S558 | Sugiyama | Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Class E basic helix-loop-helix protein 2) (bHLHe2) (Dioxin receptor, nuclear translocator) (Hypoxia-inducible factor 1-beta) (HIF-1-beta) (HIF1-beta) | Required for activity of the AHR. Upon ligand binding, AHR translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE). Not required for the ligand-binding subunit to translocate from the cytosol to the nucleus after ligand binding (PubMed:34521881). The complex initiates transcription of genes involved in the regulation of a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (Probable). The heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters and functions as a transcriptional regulator of the adaptive response to hypoxia (By similarity). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28396409). {ECO:0000250|UniProtKB:P53762, ECO:0000269|PubMed:28396409, ECO:0000269|PubMed:34521881, ECO:0000305|PubMed:34521881}. |
P29597 | TYK2 | S912 | Sugiyama | Non-receptor tyrosine-protein kinase TYK2 (EC 2.7.10.2) | Tyrosine kinase of the non-receptor type involved in numerous cytokines and interferons signaling, which regulates cell growth, development, cell migration, innate and adaptive immunity (PubMed:10542297, PubMed:10995743, PubMed:7657660, PubMed:7813427, PubMed:8232552). Plays both structural and catalytic roles in numerous interleukins and interferons (IFN-alpha/beta) signaling (PubMed:10542297). Associates with heterodimeric cytokine receptor complexes and activates STAT family members including STAT1, STAT3, STAT4 or STAT6 (PubMed:10542297, PubMed:7638186). The heterodimeric cytokine receptor complexes are composed of (1) a TYK2-associated receptor chain (IFNAR1, IL12RB1, IL10RB or IL13RA1), and (2) a second receptor chain associated either with JAK1 or JAK2 (PubMed:10542297, PubMed:25762719, PubMed:7526154, PubMed:7813427). In response to cytokine-binding to receptors, phosphorylates and activates receptors (IFNAR1, IL12RB1, IL10RB or IL13RA1), creating docking sites for STAT members (PubMed:7526154, PubMed:7657660). In turn, recruited STATs are phosphorylated by TYK2 (or JAK1/JAK2 on the second receptor chain), form homo- and heterodimers, translocate to the nucleus, and regulate cytokine/growth factor responsive genes (PubMed:10542297, PubMed:25762719, PubMed:7657660). Negatively regulates STAT3 activity by promototing phosphorylation at a specific tyrosine that differs from the site used for signaling (PubMed:29162862). {ECO:0000269|PubMed:10542297, ECO:0000269|PubMed:10995743, ECO:0000269|PubMed:25762719, ECO:0000269|PubMed:29162862, ECO:0000269|PubMed:7526154, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:7813427, ECO:0000269|PubMed:8232552}. |
Q8N6T3 | ARFGAP1 | S277 | Sugiyama | ADP-ribosylation factor GTPase-activating protein 1 (ARF GAP 1) (ADP-ribosylation factor 1 GTPase-activating protein) (ARF1 GAP) (ARF1-directed GTPase-activating protein) | GTPase-activating protein (GAP) for the ADP ribosylation factor 1 (ARF1). Involved in membrane trafficking and /or vesicle transport. Promotes hydrolysis of the ARF1-bound GTP and thus, is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles, a prerequisite for vesicle's fusion with target compartment. Probably regulates ARF1-mediated transport via its interaction with the KDELR proteins and TMED2. Overexpression induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, as when ARF1 is deactivated. Its activity is stimulated by phosphoinosides and inhibited by phosphatidylcholine (By similarity). {ECO:0000250}. |
Q00610 | CLTC | S1127 | Sugiyama | Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
O75821 | EIF3G | S223 | Sugiyama | Eukaryotic translation initiation factor 3 subunit G (eIF3g) (Eukaryotic translation initiation factor 3 RNA-binding subunit) (eIF-3 RNA-binding subunit) (Eukaryotic translation initiation factor 3 subunit 4) (eIF-3-delta) (eIF3 p42) (eIF3 p44) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). This subunit can bind 18S rRNA. {ECO:0000255|HAMAP-Rule:MF_03006, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P53992 | SEC24C | S378 | Sugiyama | Protein transport protein Sec24C (SEC24-related protein C) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:10214955, PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24D may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:10214955, ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
Q96EP5 | DAZAP1 | S195 | Sugiyama | DAZ-associated protein 1 (Deleted in azoospermia-associated protein 1) | RNA-binding protein, which may be required during spermatogenesis. |
P51813 | BMX | S122 | Sugiyama | Cytoplasmic tyrosine-protein kinase BMX (EC 2.7.10.2) (Bone marrow tyrosine kinase gene in chromosome X protein) (Epithelial and endothelial tyrosine kinase) (ETK) (NTK38) | Non-receptor tyrosine kinase that plays central but diverse modulatory roles in various signaling processes involved in the regulation of actin reorganization, cell migration, cell proliferation and survival, cell adhesion, and apoptosis. Participates in signal transduction stimulated by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen receptors and integrins. Induces tyrosine phosphorylation of BCAR1 in response to integrin regulation. Activation of BMX by integrins is mediated by PTK2/FAK1, a key mediator of integrin signaling events leading to the regulation of actin cytoskeleton and cell motility. Plays a critical role in TNF-induced angiogenesis, and implicated in the signaling of TEK and FLT1 receptors, 2 important receptor families essential for angiogenesis. Required for the phosphorylation and activation of STAT3, a transcription factor involved in cell differentiation. Also involved in interleukin-6 (IL6) induced differentiation. Also plays a role in programming adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts. May be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1. May also play a role in the growth and differentiation of hematopoietic cells; as well as in signal transduction in endocardial and arterial endothelial cells. {ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:12370298, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:15788485, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:9520419}. |
P51813 | BMX | S186 | Sugiyama | Cytoplasmic tyrosine-protein kinase BMX (EC 2.7.10.2) (Bone marrow tyrosine kinase gene in chromosome X protein) (Epithelial and endothelial tyrosine kinase) (ETK) (NTK38) | Non-receptor tyrosine kinase that plays central but diverse modulatory roles in various signaling processes involved in the regulation of actin reorganization, cell migration, cell proliferation and survival, cell adhesion, and apoptosis. Participates in signal transduction stimulated by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen receptors and integrins. Induces tyrosine phosphorylation of BCAR1 in response to integrin regulation. Activation of BMX by integrins is mediated by PTK2/FAK1, a key mediator of integrin signaling events leading to the regulation of actin cytoskeleton and cell motility. Plays a critical role in TNF-induced angiogenesis, and implicated in the signaling of TEK and FLT1 receptors, 2 important receptor families essential for angiogenesis. Required for the phosphorylation and activation of STAT3, a transcription factor involved in cell differentiation. Also involved in interleukin-6 (IL6) induced differentiation. Also plays a role in programming adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts. May be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1. May also play a role in the growth and differentiation of hematopoietic cells; as well as in signal transduction in endocardial and arterial endothelial cells. {ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:12370298, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:15788485, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:9520419}. |
P05362 | ICAM1 | S444 | Sugiyama | Intercellular adhesion molecule 1 (ICAM-1) (Major group rhinovirus receptor) (CD antigen CD54) | ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2). During leukocyte trans-endothelial migration, ICAM1 engagement promotes the assembly of endothelial apical cups through ARHGEF26/SGEF and RHOG activation. {ECO:0000269|PubMed:11173916, ECO:0000269|PubMed:17875742}.; FUNCTION: (Microbial infection) Acts as a receptor for major receptor group rhinovirus A-B capsid proteins. {ECO:0000269|PubMed:1968231, ECO:0000269|PubMed:2538243}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus A21 capsid proteins. {ECO:0000269|PubMed:11160747, ECO:0000269|PubMed:16004874, ECO:0000269|PubMed:9539703}.; FUNCTION: (Microbial infection) Upon Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, is degraded by viral E3 ubiquitin ligase MIR2, presumably to prevent lysis of infected cells by cytotoxic T-lymphocytes and NK cell. {ECO:0000269|PubMed:11413168}. |
O95786 | RIGI | S764 | EPSD|PSP | Antiviral innate immune response receptor RIG-I (ATP-dependent RNA helicase DDX58) (EC 3.6.4.13) (DEAD box protein 58) (RIG-I-like receptor 1) (RLR-1) (RNA sensor RIG-I) (Retinoic acid-inducible gene 1 protein) (RIG-1) (Retinoic acid-inducible gene I protein) (RIG-I) | Innate immune receptor that senses cytoplasmic viral nucleic acids and activates a downstream signaling cascade leading to the production of type I interferons and pro-inflammatory cytokines (PubMed:15208624, PubMed:15708988, PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:17190814, PubMed:18636086, PubMed:19122199, PubMed:19211564, PubMed:24366338, PubMed:28469175, PubMed:29117565, PubMed:31006531, PubMed:34935440, PubMed:35263596, PubMed:36793726). Forms a ribonucleoprotein complex with viral RNAs on which it homooligomerizes to form filaments (PubMed:15208624, PubMed:15708988). The homooligomerization allows the recruitment of RNF135 an E3 ubiquitin-protein ligase that activates and amplifies the RIG-I-mediated antiviral signaling in an RNA length-dependent manner through ubiquitination-dependent and -independent mechanisms (PubMed:28469175, PubMed:31006531). Upon activation, associates with mitochondria antiviral signaling protein (MAVS/IPS1) that activates the IKK-related kinases TBK1 and IKBKE which in turn phosphorylate the interferon regulatory factors IRF3 and IRF7, activating transcription of antiviral immunological genes including the IFN-alpha and IFN-beta interferons (PubMed:28469175, PubMed:31006531). Ligands include 5'-triphosphorylated ssRNAs and dsRNAs but also short dsRNAs (<1 kb in length) (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). In addition to the 5'-triphosphate moiety, blunt-end base pairing at the 5'-end of the RNA is very essential (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). Overhangs at the non-triphosphorylated end of the dsRNA RNA have no major impact on its activity (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). A 3'overhang at the 5'triphosphate end decreases and any 5'overhang at the 5' triphosphate end abolishes its activity (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). Detects both positive and negative strand RNA viruses including members of the families Paramyxoviridae: Human respiratory syncytial virus and measles virus (MeV), Rhabdoviridae: vesicular stomatitis virus (VSV), Orthomyxoviridae: influenza A and B virus, Flaviviridae: Japanese encephalitis virus (JEV), hepatitis C virus (HCV), dengue virus (DENV) and west Nile virus (WNV) (PubMed:21616437, PubMed:21884169). It also detects rotaviruses and reoviruses (PubMed:21616437, PubMed:21884169). Detects and binds to SARS-CoV-2 RNAs which is inhibited by m6A RNA modifications (Ref.74). Also involved in antiviral signaling in response to viruses containing a dsDNA genome such as Epstein-Barr virus (EBV) (PubMed:19631370). Detects dsRNA produced from non-self dsDNA by RNA polymerase III, such as Epstein-Barr virus-encoded RNAs (EBERs). May play important roles in granulocyte production and differentiation, bacterial phagocytosis and in the regulation of cell migration. {ECO:0000269|PubMed:15208624, ECO:0000269|PubMed:15708988, ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:17190814, ECO:0000269|PubMed:18636086, ECO:0000269|PubMed:19122199, ECO:0000269|PubMed:19211564, ECO:0000269|PubMed:19576794, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:21742966, ECO:0000269|PubMed:24366338, ECO:0000269|PubMed:28469175, ECO:0000269|PubMed:29117565, ECO:0000269|PubMed:31006531, ECO:0000269|PubMed:34935440, ECO:0000269|PubMed:35263596, ECO:0000269|PubMed:36793726, ECO:0000269|Ref.74, ECO:0000303|PubMed:21616437, ECO:0000303|PubMed:21884169}. |
P40763 | STAT3 | S194 | Sugiyama | Signal transducer and activator of transcription 3 (Acute-phase response factor) | Signal transducer and transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors (PubMed:10688651, PubMed:12359225, PubMed:12873986, PubMed:15194700, PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18242580, PubMed:18782771, PubMed:22306293, PubMed:23084476, PubMed:28262505, PubMed:32929201, PubMed:38404237). Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene (PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18782771, PubMed:28262505, PubMed:32929201). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:12873986). Upon activation of IL6ST/gp130 signaling by interleukin-6 (IL6), binds to the IL6-responsive elements identified in the promoters of various acute-phase protein genes (PubMed:12359225). Activated by IL31 through IL31RA (PubMed:15194700). Acts as a regulator of inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells (Treg): acetylation promotes its transcription activity and cell differentiation while deacetylation and oxidation of lysine residues by LOXL3 inhibits differentiation (PubMed:28065600, PubMed:28262505). Involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1 (PubMed:17344214). Mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). May play an apoptotic role by transctivating BIRC5 expression under LEP activation (PubMed:18242580). Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity (PubMed:23084476). Plays a crucial role in basal beta cell functions, such as regulation of insulin secretion (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC3 and NFATC4, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:P42227, ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:12359225, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15194700, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:17344214, ECO:0000269|PubMed:18242580, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:28065600, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:32929201, ECO:0000269|PubMed:38404237}. |
P05023 | ATP1A1 | S675 | Sugiyama | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P54577 | YARS1 | S366 | Sugiyama | Tyrosine--tRNA ligase, cytoplasmic (EC 6.1.1.1) (Tyrosyl-tRNA synthetase) (TyrRS) [Cleaved into: Tyrosine--tRNA ligase, cytoplasmic, N-terminally processed] | Tyrosine--tRNA ligase that catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (Probable) (PubMed:25533949). Also acts as a positive regulator of poly-ADP-ribosylation in the nucleus, independently of its tyrosine--tRNA ligase activity (PubMed:25533949). Activity is switched upon resveratrol-binding: resveratrol strongly inhibits the tyrosine--tRNA ligase activity and promotes relocalization to the nucleus, where YARS1 specifically stimulates the poly-ADP-ribosyltransferase activity of PARP1 (PubMed:25533949). {ECO:0000269|PubMed:25533949, ECO:0000305|PubMed:16429158, ECO:0000305|PubMed:9162081}. |
P31327 | CPS1 | S1261 | Sugiyama | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
Q8IW41 | MAPKAPK5 | S438 | Sugiyama | MAP kinase-activated protein kinase 5 (MAPK-activated protein kinase 5) (MAPKAP kinase 5) (MAPKAP-K5) (MAPKAPK-5) (MK-5) (MK5) (EC 2.7.11.1) (p38-regulated/activated protein kinase) (PRAK) | Tumor suppressor serine/threonine-protein kinase involved in mTORC1 signaling and post-transcriptional regulation. Phosphorylates FOXO3, ERK3/MAPK6, ERK4/MAPK4, HSP27/HSPB1, p53/TP53 and RHEB. Acts as a tumor suppressor by mediating Ras-induced senescence and phosphorylating p53/TP53. Involved in post-transcriptional regulation of MYC by mediating phosphorylation of FOXO3: phosphorylation of FOXO3 leads to promote nuclear localization of FOXO3, enabling expression of miR-34b and miR-34c, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent MYC translation. Acts as a negative regulator of mTORC1 signaling by mediating phosphorylation and inhibition of RHEB. Part of the atypical MAPK signaling via its interaction with ERK3/MAPK6 or ERK4/MAPK4: the precise role of the complex formed with ERK3/MAPK6 or ERK4/MAPK4 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPK (ERK3/MAPK6 or ERK4/MAPK4), ERK3/MAPK6 (or ERK4/MAPK4) is phosphorylated and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6 (or ERK4/MAPK4). Mediates phosphorylation of HSP27/HSPB1 in response to PKA/PRKACA stimulation, inducing F-actin rearrangement. {ECO:0000269|PubMed:17254968, ECO:0000269|PubMed:17728103, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:9628874}. |
P08174 | CD55 | S78 | Sugiyama | Complement decay-accelerating factor (CD antigen CD55) | This protein recognizes C4b and C3b fragments that condense with cell-surface hydroxyl or amino groups when nascent C4b and C3b are locally generated during C4 and c3 activation. Interaction of daf with cell-associated C4b and C3b polypeptides interferes with their ability to catalyze the conversion of C2 and factor B to enzymatically active C2a and Bb and thereby prevents the formation of C4b2a and C3bBb, the amplification convertases of the complement cascade (PubMed:7525274). Inhibits complement activation by destabilizing and preventing the formation of C3 and C5 convertases, which prevents complement damage (PubMed:28657829). {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:28657829}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus A21, coxsackieviruses B1, B3 and B5. {ECO:0000269|PubMed:9151867}.; FUNCTION: (Microbial infection) Acts as a receptor for Human enterovirus 70 and D68 (Probable). {ECO:0000269|PubMed:8764022}.; FUNCTION: (Microbial infection) Acts as a receptor for Human echoviruses 6, 7, 11, 12, 20 and 21. {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:12409401}. |
P22061 | PCMT1 | S119 | Sugiyama | Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PIMT) (EC 2.1.1.77) (L-isoaspartyl protein carboxyl methyltransferase) (Protein L-isoaspartyl/D-aspartyl methyltransferase) (Protein-beta-aspartate methyltransferase) | Initiates the repair of damaged proteins by catalyzing methyl esterification of L-isoaspartyl and D-aspartyl residues produced by spontaneous isomerization and racemization of L-aspartyl and L-asparaginyl residues in aging peptides and proteins (PubMed:3167043, PubMed:6469980). Acts on EIF4EBP2, microtubule-associated protein 2, calreticulin, clathrin light chains a and b, Ubiquitin C-terminal hydrolase isozyme L1, phosphatidylethanolamine-binding protein 1, stathmin, beta-synuclein and alpha-synuclein (By similarity). {ECO:0000250|UniProtKB:P23506, ECO:0000269|PubMed:3167043, ECO:0000269|PubMed:6469980}. |
Q14008 | CKAP5 | S1873 | Sugiyama | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
P07305 | H1-0 | S66 | Sugiyama | Histone H1.0 (Histone H1') (Histone H1(0)) [Cleaved into: Histone H1.0, N-terminally processed] | Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures. The histones H1.0 are found in cells that are in terminal stages of differentiation or that have low rates of cell division. |
O00410 | IPO5 | S726 | Sugiyama | Importin-5 (Imp5) (Importin subunit beta-3) (Karyopherin beta-3) (Ran-binding protein 5) (RanBP5) | Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607, PubMed:9687515). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones. Binds to CPEB3 and mediates its nuclear import following neuronal stimulation (By similarity). In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000250|UniProtKB:Q8BKC5, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:9687515}. |
P16455 | MGMT | S22 | Sugiyama | Methylated-DNA--protein-cysteine methyltransferase (EC 2.1.1.63) (6-O-methylguanine-DNA methyltransferase) (MGMT) (O-6-methylguanine-DNA-alkyltransferase) | Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. |
P43034 | PAFAH1B1 | S161 | Sugiyama | Platelet-activating factor acetylhydrolase IB subunit beta (Lissencephaly-1 protein) (LIS-1) (PAF acetylhydrolase 45 kDa subunit) (PAF-AH 45 kDa subunit) (PAF-AH alpha) (PAFAH alpha) | Regulatory subunit (beta subunit) of the cytosolic type I platelet-activating factor (PAF) acetylhydrolase (PAF-AH (I)), an enzyme that catalyzes the hydrolyze of the acetyl group at the sn-2 position of PAF and its analogs and participates in PAF inactivation. Regulates the PAF-AH (I) activity in a catalytic dimer composition-dependent manner (By similarity). Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors (By similarity). Positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus end. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the peripheral transport of microtubule fragments and the coupling of the nucleus and centrosome. Required during brain development for the proliferation of neuronal precursors and the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Neuronal migration involves a process called nucleokinesis, whereby migrating cells extend an anterior process into which the nucleus subsequently translocates. During nucleokinesis dynein at the nuclear surface may translocate the nucleus towards the centrosome by exerting force on centrosomal microtubules. May also play a role in other forms of cell locomotion including the migration of fibroblasts during wound healing. Required for dynein recruitment to microtubule plus ends and BICD2-bound cargos (PubMed:22956769). May modulate the Reelin pathway through interaction of the PAF-AH (I) catalytic dimer with VLDLR (By similarity). {ECO:0000250|UniProtKB:P43033, ECO:0000250|UniProtKB:P63005, ECO:0000269|PubMed:15173193, ECO:0000269|PubMed:22956769}. |
Q9P0L2 | MARK1 | S498 | Sugiyama | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9UHD2 | TBK1 | S151 | Sugiyama | Serine/threonine-protein kinase TBK1 (EC 2.7.11.1) (NF-kappa-B-activating kinase) (T2K) (TANK-binding kinase 1) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents (PubMed:10581243, PubMed:11839743, PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:15485837, PubMed:18583960, PubMed:21138416, PubMed:23453971, PubMed:23453972, PubMed:23746807, PubMed:25636800, PubMed:26611359, PubMed:32404352, PubMed:34363755, PubMed:32298923). Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X (PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:18583960, PubMed:25636800). This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB (PubMed:12702806, PubMed:15367631, PubMed:25636800, PubMed:32972995). In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli (PubMed:23453971, PubMed:23453972, PubMed:23746807). Plays a key role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1 (PubMed:25636800, PubMed:30842653, PubMed:37926288). Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce expression of interferons (PubMed:25636800). Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing-complexes (PubMed:21931631). Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed:10783893, PubMed:15489227). Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed:21617041). Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome maturation (PubMed:27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, which leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed:16155125). Plays an essential role in the TLR3- and IFN-dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1-mediated cell death, probably acting via CYLD phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Also participates in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed:27135603). {ECO:0000250|UniProtKB:Q9WUN2, ECO:0000269|PubMed:10581243, ECO:0000269|PubMed:10783893, ECO:0000269|PubMed:11839743, ECO:0000269|PubMed:12692549, ECO:0000269|PubMed:12702806, ECO:0000269|PubMed:14703513, ECO:0000269|PubMed:15367631, ECO:0000269|PubMed:15485837, ECO:0000269|PubMed:15489227, ECO:0000269|PubMed:16155125, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21270402, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:22851595, ECO:0000269|PubMed:23453971, ECO:0000269|PubMed:23453972, ECO:0000269|PubMed:23746807, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:26611359, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27135603, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:31530866, ECO:0000269|PubMed:31709703, ECO:0000269|PubMed:32298923, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:34363755, ECO:0000269|PubMed:37926288}. |
Q9UQM7 | CAMK2A | S314 | SIGNOR | Calcium/calmodulin-dependent protein kinase type II subunit alpha (CaM kinase II subunit alpha) (CaMK-II subunit alpha) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in various processes, such as synaptic plasticity, neurotransmitter release and long-term potentiation (PubMed:14722083). Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development (PubMed:28130356). Also regulates the migration of developing neurons (PubMed:29100089). Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity (PubMed:23805378). Phosphorylates the transcription factor ETS1 in response to calcium signaling, thereby decreasing ETS1 affinity for DNA (By similarity). In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (PubMed:11972023). In response to interferon-beta (IFN-beta) stimulation, stimulates the JAK-STAT signaling pathway (PubMed:35568036). Acts as a negative regulator of 2-arachidonoylglycerol (2-AG)-mediated synaptic signaling via modulation of DAGLA activity (By similarity). {ECO:0000250|UniProtKB:P11275, ECO:0000250|UniProtKB:P11798, ECO:0000269|PubMed:11972023, ECO:0000269|PubMed:23805378, ECO:0000269|PubMed:28130356, ECO:0000269|PubMed:29100089}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-68877 | Mitotic Prometaphase | 4.626034e-07 | 6.335 |
R-HSA-1640170 | Cell Cycle | 4.292791e-07 | 6.367 |
R-HSA-68886 | M Phase | 1.397251e-06 | 5.855 |
R-HSA-9656223 | Signaling by RAF1 mutants | 2.430203e-06 | 5.614 |
R-HSA-69278 | Cell Cycle, Mitotic | 2.151861e-06 | 5.667 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 5.649353e-06 | 5.248 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 5.649353e-06 | 5.248 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 5.649353e-06 | 5.248 |
R-HSA-6802949 | Signaling by RAS mutants | 5.649353e-06 | 5.248 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 4.535003e-06 | 5.343 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 1.149464e-05 | 4.940 |
R-HSA-1500931 | Cell-Cell communication | 2.523384e-05 | 4.598 |
R-HSA-446353 | Cell-extracellular matrix interactions | 2.394650e-05 | 4.621 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 5.501635e-05 | 4.260 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 5.649160e-05 | 4.248 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 5.649160e-05 | 4.248 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 5.729035e-05 | 4.242 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 6.442042e-05 | 4.191 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 6.836005e-05 | 4.165 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 7.087304e-05 | 4.150 |
R-HSA-8854518 | AURKA Activation by TPX2 | 7.915888e-05 | 4.102 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 1.031413e-04 | 3.987 |
R-HSA-5674135 | MAP2K and MAPK activation | 1.148311e-04 | 3.940 |
R-HSA-177929 | Signaling by EGFR | 1.331802e-04 | 3.876 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 1.300496e-04 | 3.886 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 1.635369e-04 | 3.786 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 1.624144e-04 | 3.789 |
R-HSA-199991 | Membrane Trafficking | 1.787242e-04 | 3.748 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 1.931462e-04 | 3.714 |
R-HSA-380287 | Centrosome maturation | 1.983588e-04 | 3.703 |
R-HSA-5673000 | RAF activation | 2.334452e-04 | 3.632 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 2.663724e-04 | 3.575 |
R-HSA-9833482 | PKR-mediated signaling | 3.135505e-04 | 3.504 |
R-HSA-196025 | Formation of annular gap junctions | 3.338662e-04 | 3.476 |
R-HSA-162582 | Signal Transduction | 3.294998e-04 | 3.482 |
R-HSA-449147 | Signaling by Interleukins | 3.866566e-04 | 3.413 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 3.896420e-04 | 3.409 |
R-HSA-913531 | Interferon Signaling | 4.189992e-04 | 3.378 |
R-HSA-190873 | Gap junction degradation | 4.621932e-04 | 3.335 |
R-HSA-6802957 | Oncogenic MAPK signaling | 4.799438e-04 | 3.319 |
R-HSA-446728 | Cell junction organization | 5.851026e-04 | 3.233 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 6.066620e-04 | 3.217 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 6.630142e-04 | 3.178 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 7.286051e-04 | 3.138 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 8.181509e-04 | 3.087 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 1.001331e-03 | 2.999 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 1.053932e-03 | 2.977 |
R-HSA-437239 | Recycling pathway of L1 | 1.293548e-03 | 2.888 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 1.278150e-03 | 2.893 |
R-HSA-5683057 | MAPK family signaling cascades | 1.356894e-03 | 2.867 |
R-HSA-157858 | Gap junction trafficking and regulation | 1.581594e-03 | 2.801 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 1.751970e-03 | 2.756 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 2.041620e-03 | 2.690 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 1.799645e-03 | 2.745 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 2.477794e-03 | 2.606 |
R-HSA-1295596 | Spry regulation of FGF signaling | 2.477794e-03 | 2.606 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 2.503650e-03 | 2.601 |
R-HSA-5653656 | Vesicle-mediated transport | 2.456699e-03 | 2.610 |
R-HSA-1632852 | Macroautophagy | 2.672460e-03 | 2.573 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 2.926854e-03 | 2.534 |
R-HSA-9700206 | Signaling by ALK in cancer | 2.926854e-03 | 2.534 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 2.953332e-03 | 2.530 |
R-HSA-2467813 | Separation of Sister Chromatids | 3.046842e-03 | 2.516 |
R-HSA-69275 | G2/M Transition | 3.196462e-03 | 2.495 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 3.278589e-03 | 2.484 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 3.278589e-03 | 2.484 |
R-HSA-453274 | Mitotic G2-G2/M phases | 3.478280e-03 | 2.459 |
R-HSA-5603027 | IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... | 3.580267e-03 | 2.446 |
R-HSA-5602636 | IKBKB deficiency causes SCID | 3.580267e-03 | 2.446 |
R-HSA-69620 | Cell Cycle Checkpoints | 3.763695e-03 | 2.424 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 3.840926e-03 | 2.416 |
R-HSA-168256 | Immune System | 4.019342e-03 | 2.396 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 3.860919e-03 | 2.413 |
R-HSA-8953897 | Cellular responses to stimuli | 4.118867e-03 | 2.385 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 4.271701e-03 | 2.369 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 4.271701e-03 | 2.369 |
R-HSA-190828 | Gap junction trafficking | 4.535830e-03 | 2.343 |
R-HSA-6806834 | Signaling by MET | 4.716022e-03 | 2.326 |
R-HSA-5654738 | Signaling by FGFR2 | 4.716022e-03 | 2.326 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 5.634783e-03 | 2.249 |
R-HSA-430116 | GP1b-IX-V activation signalling | 5.428954e-03 | 2.265 |
R-HSA-373760 | L1CAM interactions | 5.373438e-03 | 2.270 |
R-HSA-2262752 | Cellular responses to stress | 5.378871e-03 | 2.269 |
R-HSA-9612973 | Autophagy | 5.658168e-03 | 2.247 |
R-HSA-9018519 | Estrogen-dependent gene expression | 5.874718e-03 | 2.231 |
R-HSA-6804754 | Regulation of TP53 Expression | 6.244305e-03 | 2.205 |
R-HSA-1299308 | Tandem of pore domain in a weak inwardly rectifying K+ channels (TWIK) | 6.244305e-03 | 2.205 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 6.430857e-03 | 2.192 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 6.068304e-03 | 2.217 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 6.486634e-03 | 2.188 |
R-HSA-373753 | Nephrin family interactions | 6.486634e-03 | 2.188 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 6.487888e-03 | 2.188 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 6.895749e-03 | 2.161 |
R-HSA-141424 | Amplification of signal from the kinetochores | 6.895749e-03 | 2.161 |
R-HSA-5693606 | DNA Double Strand Break Response | 6.964229e-03 | 2.157 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 7.437697e-03 | 2.129 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 8.052055e-03 | 2.094 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 8.197196e-03 | 2.086 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 8.521594e-03 | 2.069 |
R-HSA-5617833 | Cilium Assembly | 9.231533e-03 | 2.035 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 9.536693e-03 | 2.021 |
R-HSA-209560 | NF-kB is activated and signals survival | 9.948991e-03 | 2.002 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 1.036634e-02 | 1.984 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 1.036634e-02 | 1.984 |
R-HSA-202403 | TCR signaling | 1.036634e-02 | 1.984 |
R-HSA-68882 | Mitotic Anaphase | 1.036668e-02 | 1.984 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 1.072129e-02 | 1.970 |
R-HSA-69473 | G2/M DNA damage checkpoint | 1.097791e-02 | 1.959 |
R-HSA-1169408 | ISG15 antiviral mechanism | 1.166473e-02 | 1.933 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 1.177306e-02 | 1.929 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 1.202367e-02 | 1.920 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 1.306786e-02 | 1.884 |
R-HSA-1280218 | Adaptive Immune System | 1.314631e-02 | 1.881 |
R-HSA-9620244 | Long-term potentiation | 1.340568e-02 | 1.873 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 1.352414e-02 | 1.869 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 1.388283e-02 | 1.858 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 1.390584e-02 | 1.857 |
R-HSA-168255 | Influenza Infection | 1.451997e-02 | 1.838 |
R-HSA-5689901 | Metalloprotease DUBs | 1.488480e-02 | 1.827 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 1.506363e-02 | 1.822 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 1.719080e-02 | 1.765 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 1.613552e-02 | 1.792 |
R-HSA-5633007 | Regulation of TP53 Activity | 1.654684e-02 | 1.781 |
R-HSA-73894 | DNA Repair | 1.711599e-02 | 1.767 |
R-HSA-190236 | Signaling by FGFR | 1.560725e-02 | 1.807 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 1.736695e-02 | 1.760 |
R-HSA-5654743 | Signaling by FGFR4 | 1.756879e-02 | 1.755 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 1.814234e-02 | 1.741 |
R-HSA-193639 | p75NTR signals via NF-kB | 1.858125e-02 | 1.731 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 1.858125e-02 | 1.731 |
R-HSA-3371556 | Cellular response to heat stress | 1.870183e-02 | 1.728 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 2.122107e-02 | 1.673 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 2.103221e-02 | 1.677 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 1.992431e-02 | 1.701 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 1.992431e-02 | 1.701 |
R-HSA-5654741 | Signaling by FGFR3 | 2.033511e-02 | 1.692 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 2.069909e-02 | 1.684 |
R-HSA-210745 | Regulation of gene expression in beta cells | 1.992431e-02 | 1.701 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 2.380224e-02 | 1.623 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 2.248587e-02 | 1.648 |
R-HSA-390466 | Chaperonin-mediated protein folding | 2.362244e-02 | 1.627 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 2.405541e-02 | 1.619 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 2.314788e-02 | 1.635 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 2.337177e-02 | 1.631 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 2.405541e-02 | 1.619 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 2.434179e-02 | 1.614 |
R-HSA-182971 | EGFR downregulation | 2.380224e-02 | 1.623 |
R-HSA-194138 | Signaling by VEGF | 2.293895e-02 | 1.639 |
R-HSA-418990 | Adherens junctions interactions | 2.394520e-02 | 1.621 |
R-HSA-438064 | Post NMDA receptor activation events | 2.362244e-02 | 1.627 |
R-HSA-9008059 | Interleukin-37 signaling | 2.181049e-02 | 1.661 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 2.314788e-02 | 1.635 |
R-HSA-75153 | Apoptotic execution phase | 2.181912e-02 | 1.661 |
R-HSA-9663891 | Selective autophagy | 2.479797e-02 | 1.606 |
R-HSA-114608 | Platelet degranulation | 2.481216e-02 | 1.605 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 2.522469e-02 | 1.598 |
R-HSA-1538133 | G0 and Early G1 | 2.590071e-02 | 1.587 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 2.590071e-02 | 1.587 |
R-HSA-9679191 | Potential therapeutics for SARS | 2.705912e-02 | 1.568 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 2.708414e-02 | 1.567 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 2.727941e-02 | 1.564 |
R-HSA-9723907 | Loss of Function of TP53 in Cancer | 2.864552e-02 | 1.543 |
R-HSA-9661070 | Defective translocation of RB1 mutants to the nucleus | 2.864552e-02 | 1.543 |
R-HSA-9723905 | Loss of function of TP53 in cancer due to loss of tetramerization ability | 2.864552e-02 | 1.543 |
R-HSA-180292 | GAB1 signalosome | 3.030660e-02 | 1.518 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 3.042171e-02 | 1.517 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 3.259640e-02 | 1.487 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 3.093046e-02 | 1.510 |
R-HSA-3371571 | HSF1-dependent transactivation | 3.028767e-02 | 1.519 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 3.030660e-02 | 1.518 |
R-HSA-391251 | Protein folding | 3.127859e-02 | 1.505 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 2.810692e-02 | 1.551 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 2.810692e-02 | 1.551 |
R-HSA-2682334 | EPH-Ephrin signaling | 3.127859e-02 | 1.505 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 3.205855e-02 | 1.494 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 3.259640e-02 | 1.487 |
R-HSA-421270 | Cell-cell junction organization | 2.946984e-02 | 1.531 |
R-HSA-74160 | Gene expression (Transcription) | 3.024586e-02 | 1.519 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 3.284573e-02 | 1.484 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 3.284573e-02 | 1.484 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 3.290931e-02 | 1.483 |
R-HSA-2559583 | Cellular Senescence | 3.338603e-02 | 1.476 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 3.372166e-02 | 1.472 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 3.372166e-02 | 1.472 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 3.482870e-02 | 1.458 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 3.482870e-02 | 1.458 |
R-HSA-2559585 | Oncogene Induced Senescence | 3.537952e-02 | 1.451 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 3.556399e-02 | 1.449 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 3.566689e-02 | 1.448 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 3.600570e-02 | 1.444 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 3.694408e-02 | 1.432 |
R-HSA-446107 | Type I hemidesmosome assembly | 4.135771e-02 | 1.383 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 4.135771e-02 | 1.383 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 4.830457e-02 | 1.316 |
R-HSA-9613354 | Lipophagy | 4.830457e-02 | 1.316 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 4.830457e-02 | 1.316 |
R-HSA-9700645 | ALK mutants bind TKIs | 4.830457e-02 | 1.316 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 5.564008e-02 | 1.255 |
R-HSA-390450 | Folding of actin by CCT/TriC | 5.564008e-02 | 1.255 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 3.732772e-02 | 1.428 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 3.732772e-02 | 1.428 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 3.732772e-02 | 1.428 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 3.732772e-02 | 1.428 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 4.510449e-02 | 1.346 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 4.510449e-02 | 1.346 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 4.510449e-02 | 1.346 |
R-HSA-6803529 | FGFR2 alternative splicing | 4.927011e-02 | 1.307 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 5.361661e-02 | 1.271 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 5.361661e-02 | 1.271 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 5.361661e-02 | 1.271 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 4.661703e-02 | 1.331 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 4.970191e-02 | 1.304 |
R-HSA-8875878 | MET promotes cell motility | 4.364219e-02 | 1.360 |
R-HSA-9020933 | Interleukin-23 signaling | 4.135771e-02 | 1.383 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 5.289645e-02 | 1.277 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 5.361661e-02 | 1.271 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 5.289645e-02 | 1.277 |
R-HSA-9020956 | Interleukin-27 signaling | 5.564008e-02 | 1.255 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 5.564008e-02 | 1.255 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 4.510449e-02 | 1.346 |
R-HSA-6804757 | Regulation of TP53 Degradation | 3.802341e-02 | 1.420 |
R-HSA-9764561 | Regulation of CDH1 Function | 4.285817e-02 | 1.368 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 5.274769e-02 | 1.278 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 4.830457e-02 | 1.316 |
R-HSA-5260271 | Diseases of Immune System | 4.970191e-02 | 1.304 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 4.970191e-02 | 1.304 |
R-HSA-73857 | RNA Polymerase II Transcription | 4.353821e-02 | 1.361 |
R-HSA-2132295 | MHC class II antigen presentation | 4.929057e-02 | 1.307 |
R-HSA-168898 | Toll-like Receptor Cascades | 4.590549e-02 | 1.338 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 5.253702e-02 | 1.280 |
R-HSA-212436 | Generic Transcription Pathway | 4.993290e-02 | 1.302 |
R-HSA-68875 | Mitotic Prophase | 4.438445e-02 | 1.353 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 5.384066e-02 | 1.269 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 4.661703e-02 | 1.331 |
R-HSA-5654736 | Signaling by FGFR1 | 4.057580e-02 | 1.392 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 5.564008e-02 | 1.255 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 4.929729e-02 | 1.307 |
R-HSA-422475 | Axon guidance | 4.435163e-02 | 1.353 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 5.564008e-02 | 1.255 |
R-HSA-3214841 | PKMTs methylate histone lysines | 5.289645e-02 | 1.277 |
R-HSA-9675108 | Nervous system development | 5.046903e-02 | 1.297 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 4.830457e-02 | 1.316 |
R-HSA-450294 | MAP kinase activation | 5.274769e-02 | 1.278 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 4.297087e-02 | 1.367 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 4.135771e-02 | 1.383 |
R-HSA-8964038 | LDL clearance | 4.927011e-02 | 1.307 |
R-HSA-3000170 | Syndecan interactions | 5.361661e-02 | 1.271 |
R-HSA-8964043 | Plasma lipoprotein clearance | 4.661703e-02 | 1.331 |
R-HSA-1296346 | Tandem pore domain potassium channels | 5.564008e-02 | 1.255 |
R-HSA-6807004 | Negative regulation of MET activity | 3.732772e-02 | 1.428 |
R-HSA-186797 | Signaling by PDGF | 5.541079e-02 | 1.256 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 4.057580e-02 | 1.392 |
R-HSA-186712 | Regulation of beta-cell development | 4.765054e-02 | 1.322 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 5.620015e-02 | 1.250 |
R-HSA-5657655 | MGMT-mediated DNA damage reversal | 5.647218e-02 | 1.248 |
R-HSA-5545483 | Defective Mismatch Repair Associated With MLH1 | 5.647218e-02 | 1.248 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 5.647218e-02 | 1.248 |
R-HSA-5619043 | Defective SLC2A1 causes GLUT1 deficiency syndrome 1 (GLUT1DS1) | 5.647218e-02 | 1.248 |
R-HSA-5632987 | Defective Mismatch Repair Associated With PMS2 | 5.647218e-02 | 1.248 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 5.647218e-02 | 1.248 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 5.647218e-02 | 1.248 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 5.692068e-02 | 1.245 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 5.692068e-02 | 1.245 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 5.814070e-02 | 1.236 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 5.814070e-02 | 1.236 |
R-HSA-373755 | Semaphorin interactions | 5.815024e-02 | 1.235 |
R-HSA-69481 | G2/M Checkpoints | 5.822363e-02 | 1.235 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 6.333639e-02 | 1.198 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 7.136690e-02 | 1.147 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 7.136690e-02 | 1.147 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 7.136690e-02 | 1.147 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 7.136690e-02 | 1.147 |
R-HSA-209543 | p75NTR recruits signalling complexes | 7.970624e-02 | 1.099 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 7.970624e-02 | 1.099 |
R-HSA-3000484 | Scavenging by Class F Receptors | 7.970624e-02 | 1.099 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 7.970624e-02 | 1.099 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 7.970624e-02 | 1.099 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 7.970624e-02 | 1.099 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 7.970624e-02 | 1.099 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 6.283879e-02 | 1.202 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 7.274161e-02 | 1.138 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 7.274161e-02 | 1.138 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 7.793813e-02 | 1.108 |
R-HSA-113418 | Formation of the Early Elongation Complex | 7.793813e-02 | 1.108 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 7.298761e-02 | 1.137 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 7.618124e-02 | 1.118 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 6.770710e-02 | 1.169 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 7.136690e-02 | 1.147 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 7.827108e-02 | 1.106 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 6.283879e-02 | 1.202 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 6.283879e-02 | 1.202 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 7.136690e-02 | 1.147 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 7.793813e-02 | 1.108 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 7.432980e-02 | 1.129 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 7.970624e-02 | 1.099 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 7.944936e-02 | 1.100 |
R-HSA-192905 | vRNP Assembly | 6.333639e-02 | 1.198 |
R-HSA-8866427 | VLDLR internalisation and degradation | 7.970624e-02 | 1.099 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 7.274161e-02 | 1.138 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 6.682552e-02 | 1.175 |
R-HSA-69231 | Cyclin D associated events in G1 | 6.675931e-02 | 1.175 |
R-HSA-69236 | G1 Phase | 6.675931e-02 | 1.175 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 6.361456e-02 | 1.196 |
R-HSA-446652 | Interleukin-1 family signaling | 6.326986e-02 | 1.199 |
R-HSA-447115 | Interleukin-12 family signaling | 6.367322e-02 | 1.196 |
R-HSA-8939211 | ESR-mediated signaling | 7.581328e-02 | 1.120 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 6.584590e-02 | 1.181 |
R-HSA-1266695 | Interleukin-7 signaling | 6.283879e-02 | 1.202 |
R-HSA-3928662 | EPHB-mediated forward signaling | 6.675931e-02 | 1.175 |
R-HSA-936837 | Ion transport by P-type ATPases | 6.096595e-02 | 1.215 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 7.523912e-02 | 1.124 |
R-HSA-210990 | PECAM1 interactions | 6.333639e-02 | 1.198 |
R-HSA-8984722 | Interleukin-35 Signalling | 7.970624e-02 | 1.099 |
R-HSA-9675135 | Diseases of DNA repair | 7.432980e-02 | 1.129 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 6.180334e-02 | 1.209 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 7.970624e-02 | 1.099 |
R-HSA-937039 | IRAK1 recruits IKK complex | 7.970624e-02 | 1.099 |
R-HSA-448424 | Interleukin-17 signaling | 7.944936e-02 | 1.100 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 7.136690e-02 | 1.147 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 6.333639e-02 | 1.198 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 7.298761e-02 | 1.137 |
R-HSA-8983711 | OAS antiviral response | 7.970624e-02 | 1.099 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 6.119911e-02 | 1.213 |
R-HSA-381070 | IRE1alpha activates chaperones | 7.691449e-02 | 1.114 |
R-HSA-397014 | Muscle contraction | 7.976814e-02 | 1.098 |
R-HSA-9679506 | SARS-CoV Infections | 8.064657e-02 | 1.093 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 8.128124e-02 | 1.090 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 8.143453e-02 | 1.089 |
R-HSA-205017 | NFG and proNGF binds to p75NTR | 8.350333e-02 | 1.078 |
R-HSA-5609974 | Defective PGM1 causes PGM1-CDG | 8.350333e-02 | 1.078 |
R-HSA-5619054 | Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... | 8.350333e-02 | 1.078 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 8.350333e-02 | 1.078 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 1.097617e-01 | 0.960 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 1.097617e-01 | 0.960 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 1.097617e-01 | 0.960 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 1.097617e-01 | 0.960 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 1.097617e-01 | 0.960 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 1.097617e-01 | 0.960 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 1.097617e-01 | 0.960 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 1.097617e-01 | 0.960 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 1.097617e-01 | 0.960 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 1.097617e-01 | 0.960 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 1.097617e-01 | 0.960 |
R-HSA-177504 | Retrograde neurotrophin signalling | 9.721577e-02 | 1.012 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 1.063409e-01 | 0.973 |
R-HSA-9857492 | Protein lipoylation | 1.063409e-01 | 0.973 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 1.156847e-01 | 0.937 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 1.156847e-01 | 0.937 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 1.156847e-01 | 0.937 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 8.329233e-02 | 1.079 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 8.879970e-02 | 1.052 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 9.445564e-02 | 1.025 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 9.445564e-02 | 1.025 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 1.061942e-01 | 0.974 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 1.061942e-01 | 0.974 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 1.122672e-01 | 0.950 |
R-HSA-5696400 | Dual Incision in GG-NER | 1.184694e-01 | 0.926 |
R-HSA-72187 | mRNA 3'-end processing | 9.948342e-02 | 1.002 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 9.948342e-02 | 1.002 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 1.040162e-01 | 0.983 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 9.624305e-02 | 1.017 |
R-HSA-72172 | mRNA Splicing | 1.219784e-01 | 0.914 |
R-HSA-72086 | mRNA Capping | 8.329233e-02 | 1.079 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 8.879970e-02 | 1.052 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 1.063409e-01 | 0.973 |
R-HSA-354192 | Integrin signaling | 1.061942e-01 | 0.974 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 8.329233e-02 | 1.079 |
R-HSA-1059683 | Interleukin-6 signaling | 8.833022e-02 | 1.054 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 9.721577e-02 | 1.012 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 1.063409e-01 | 0.973 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 1.184694e-01 | 0.926 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 1.201374e-01 | 0.920 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 9.504523e-02 | 1.022 |
R-HSA-5693537 | Resolution of D-Loop Structures | 1.122672e-01 | 0.950 |
R-HSA-164939 | Nef mediated downregulation of CD28 cell surface expression | 8.350333e-02 | 1.078 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 1.061942e-01 | 0.974 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 1.061942e-01 | 0.974 |
R-HSA-4086398 | Ca2+ pathway | 8.969549e-02 | 1.047 |
R-HSA-75893 | TNF signaling | 1.181634e-01 | 0.928 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 1.230558e-01 | 0.910 |
R-HSA-5693538 | Homology Directed Repair | 9.347300e-02 | 1.029 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 1.156847e-01 | 0.937 |
R-HSA-453276 | Regulation of mitotic cell cycle | 8.279149e-02 | 1.082 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 8.279149e-02 | 1.082 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 8.879970e-02 | 1.052 |
R-HSA-9636667 | Manipulation of host energy metabolism | 8.350333e-02 | 1.078 |
R-HSA-194306 | Neurophilin interactions with VEGF and VEGFR | 1.097617e-01 | 0.960 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 1.156847e-01 | 0.937 |
R-HSA-5576886 | Phase 4 - resting membrane potential | 1.156847e-01 | 0.937 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 8.329233e-02 | 1.079 |
R-HSA-399719 | Trafficking of AMPA receptors | 9.445564e-02 | 1.025 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 1.184694e-01 | 0.926 |
R-HSA-6807878 | COPI-mediated anterograde transport | 9.470086e-02 | 1.024 |
R-HSA-162906 | HIV Infection | 1.100093e-01 | 0.959 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 1.121160e-01 | 0.950 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 1.156847e-01 | 0.937 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 1.061942e-01 | 0.974 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 1.122672e-01 | 0.950 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 1.144976e-01 | 0.941 |
R-HSA-162909 | Host Interactions of HIV factors | 1.108918e-01 | 0.955 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 9.445564e-02 | 1.025 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 9.470086e-02 | 1.024 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 1.146139e-01 | 0.941 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 9.688822e-02 | 1.014 |
R-HSA-5673001 | RAF/MAP kinase cascade | 1.206892e-01 | 0.918 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 1.090494e-01 | 0.962 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 1.215271e-01 | 0.915 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 1.010806e-01 | 0.995 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 1.010806e-01 | 0.995 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 1.010806e-01 | 0.995 |
R-HSA-445355 | Smooth Muscle Contraction | 1.040162e-01 | 0.983 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 1.230558e-01 | 0.910 |
R-HSA-4839726 | Chromatin organization | 9.742752e-02 | 1.011 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 1.061942e-01 | 0.974 |
R-HSA-180746 | Nuclear import of Rev protein | 1.184694e-01 | 0.926 |
R-HSA-389356 | Co-stimulation by CD28 | 8.231470e-02 | 1.085 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 8.833022e-02 | 1.054 |
R-HSA-1226099 | Signaling by FGFR in disease | 9.325611e-02 | 1.030 |
R-HSA-901042 | Calnexin/calreticulin cycle | 1.184694e-01 | 0.926 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 1.061942e-01 | 0.974 |
R-HSA-70171 | Glycolysis | 1.076807e-01 | 0.968 |
R-HSA-9020591 | Interleukin-12 signaling | 1.005911e-01 | 0.997 |
R-HSA-391160 | Signal regulatory protein family interactions | 9.721577e-02 | 1.012 |
R-HSA-9824446 | Viral Infection Pathways | 1.024100e-01 | 0.990 |
R-HSA-9659379 | Sensory processing of sound | 1.121160e-01 | 0.950 |
R-HSA-166520 | Signaling by NTRKs | 1.145957e-01 | 0.941 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 1.019790e-01 | 0.991 |
R-HSA-109581 | Apoptosis | 8.308783e-02 | 1.080 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 8.833022e-02 | 1.054 |
R-HSA-9678108 | SARS-CoV-1 Infection | 1.164465e-01 | 0.934 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 8.838974e-02 | 1.054 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 1.231950e-01 | 0.909 |
R-HSA-5357801 | Programmed Cell Death | 1.244901e-01 | 0.905 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 1.247958e-01 | 0.904 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 1.247958e-01 | 0.904 |
R-HSA-6783984 | Glycine degradation | 1.252271e-01 | 0.902 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 1.252271e-01 | 0.902 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 1.252271e-01 | 0.902 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 1.252271e-01 | 0.902 |
R-HSA-3247509 | Chromatin modifying enzymes | 1.261141e-01 | 0.899 |
R-HSA-8853659 | RET signaling | 1.312415e-01 | 0.882 |
R-HSA-69205 | G1/S-Specific Transcription | 1.312415e-01 | 0.882 |
R-HSA-180786 | Extension of Telomeres | 1.330936e-01 | 0.876 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 1.330936e-01 | 0.876 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 1.346710e-01 | 0.871 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 1.349493e-01 | 0.870 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 1.349493e-01 | 0.870 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 1.349493e-01 | 0.870 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 1.349493e-01 | 0.870 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 1.349493e-01 | 0.870 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 1.349493e-01 | 0.870 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 1.349493e-01 | 0.870 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 1.349493e-01 | 0.870 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 1.349493e-01 | 0.870 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 1.349493e-01 | 0.870 |
R-HSA-8875791 | MET activates STAT3 | 1.352693e-01 | 0.869 |
R-HSA-209563 | Axonal growth stimulation | 1.352693e-01 | 0.869 |
R-HSA-8865999 | MET activates PTPN11 | 1.352693e-01 | 0.869 |
R-HSA-198745 | Signalling to STAT3 | 1.352693e-01 | 0.869 |
R-HSA-3249367 | STAT6-mediated induction of chemokines | 1.352693e-01 | 0.869 |
R-HSA-8875513 | MET interacts with TNS proteins | 1.352693e-01 | 0.869 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 1.352693e-01 | 0.869 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 1.378013e-01 | 0.861 |
R-HSA-5689896 | Ovarian tumor domain proteases | 1.378013e-01 | 0.861 |
R-HSA-8948216 | Collagen chain trimerization | 1.378013e-01 | 0.861 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 1.382347e-01 | 0.859 |
R-HSA-1227986 | Signaling by ERBB2 | 1.382347e-01 | 0.859 |
R-HSA-9711123 | Cellular response to chemical stress | 1.385214e-01 | 0.858 |
R-HSA-205025 | NADE modulates death signalling | 1.600475e-01 | 0.796 |
R-HSA-69200 | Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... | 1.600475e-01 | 0.796 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 2.074986e-01 | 0.683 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 2.074986e-01 | 0.683 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 2.074986e-01 | 0.683 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 2.302114e-01 | 0.638 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 2.522745e-01 | 0.598 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 2.522745e-01 | 0.598 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 2.522745e-01 | 0.598 |
R-HSA-163767 | PP2A-mediated dephosphorylation of key metabolic factors | 2.522745e-01 | 0.598 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 2.737066e-01 | 0.563 |
R-HSA-9028335 | Activated NTRK2 signals through PI3K | 2.737066e-01 | 0.563 |
R-HSA-8875656 | MET receptor recycling | 2.737066e-01 | 0.563 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 1.548614e-01 | 0.810 |
R-HSA-389513 | Co-inhibition by CTLA4 | 1.650178e-01 | 0.782 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 1.650178e-01 | 0.782 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 1.752867e-01 | 0.756 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 1.752867e-01 | 0.756 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 1.752867e-01 | 0.756 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 2.066256e-01 | 0.685 |
R-HSA-429947 | Deadenylation of mRNA | 2.172049e-01 | 0.663 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 1.581156e-01 | 0.801 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 1.721371e-01 | 0.764 |
R-HSA-167161 | HIV Transcription Initiation | 1.721371e-01 | 0.764 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 1.721371e-01 | 0.764 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 2.491747e-01 | 0.603 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 2.491747e-01 | 0.603 |
R-HSA-8949613 | Cristae formation | 2.491747e-01 | 0.603 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 2.491747e-01 | 0.603 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 1.864952e-01 | 0.729 |
R-HSA-167287 | HIV elongation arrest and recovery | 2.598730e-01 | 0.585 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 2.598730e-01 | 0.585 |
R-HSA-9615710 | Late endosomal microautophagy | 2.705757e-01 | 0.568 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 2.011507e-01 | 0.696 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 2.160657e-01 | 0.665 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 2.620012e-01 | 0.582 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 2.384904e-01 | 0.623 |
R-HSA-167169 | HIV Transcription Elongation | 1.581156e-01 | 0.801 |
R-HSA-3928664 | Ephrin signaling | 1.448331e-01 | 0.839 |
R-HSA-6798695 | Neutrophil degranulation | 2.320852e-01 | 0.634 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 1.581156e-01 | 0.801 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 2.737066e-01 | 0.563 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 1.841172e-01 | 0.735 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 2.522745e-01 | 0.598 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 1.512434e-01 | 0.820 |
R-HSA-8874081 | MET activates PTK2 signaling | 2.384904e-01 | 0.623 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 2.799311e-01 | 0.553 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 1.961043e-01 | 0.708 |
R-HSA-191650 | Regulation of gap junction activity | 1.600475e-01 | 0.796 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 2.737066e-01 | 0.563 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 1.448331e-01 | 0.839 |
R-HSA-9839394 | TGFBR3 expression | 2.278303e-01 | 0.642 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 2.011507e-01 | 0.696 |
R-HSA-6783589 | Interleukin-6 family signaling | 2.172049e-01 | 0.663 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 1.487507e-01 | 0.828 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 2.542469e-01 | 0.595 |
R-HSA-204005 | COPII-mediated vesicle transport | 1.936003e-01 | 0.713 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 2.384904e-01 | 0.623 |
R-HSA-8849474 | PTK6 Activates STAT3 | 1.841172e-01 | 0.735 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 1.841172e-01 | 0.735 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 1.841172e-01 | 0.735 |
R-HSA-8849473 | PTK6 Expression | 2.522745e-01 | 0.598 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 1.650178e-01 | 0.782 |
R-HSA-6783783 | Interleukin-10 signaling | 2.420103e-01 | 0.616 |
R-HSA-8854691 | Interleukin-20 family signaling | 2.066256e-01 | 0.685 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 2.174358e-01 | 0.663 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 1.877351e-01 | 0.726 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 1.637663e-01 | 0.786 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 1.961043e-01 | 0.708 |
R-HSA-420597 | Nectin/Necl trans heterodimerization | 1.841172e-01 | 0.735 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 2.384904e-01 | 0.623 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 1.721371e-01 | 0.764 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 1.600475e-01 | 0.796 |
R-HSA-9692913 | SARS-CoV-1-mediated effects on programmed cell death | 1.600475e-01 | 0.796 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 1.600475e-01 | 0.796 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 2.522745e-01 | 0.598 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 1.581156e-01 | 0.801 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 2.054162e-01 | 0.687 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 1.762997e-01 | 0.754 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 2.384904e-01 | 0.623 |
R-HSA-1236974 | ER-Phagosome pathway | 1.593417e-01 | 0.798 |
R-HSA-9012852 | Signaling by NOTCH3 | 2.775944e-01 | 0.557 |
R-HSA-5358508 | Mismatch Repair | 1.448331e-01 | 0.839 |
R-HSA-8866376 | Reelin signalling pathway | 1.841172e-01 | 0.735 |
R-HSA-193681 | Ceramide signalling | 2.074986e-01 | 0.683 |
R-HSA-114516 | Disinhibition of SNARE formation | 2.522745e-01 | 0.598 |
R-HSA-3371378 | Regulation by c-FLIP | 2.737066e-01 | 0.563 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 1.448331e-01 | 0.839 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 1.548614e-01 | 0.810 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 2.598730e-01 | 0.585 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 1.434544e-01 | 0.843 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 2.011507e-01 | 0.696 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 2.340588e-01 | 0.631 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 1.792765e-01 | 0.746 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 1.541211e-01 | 0.812 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 1.448331e-01 | 0.839 |
R-HSA-9020702 | Interleukin-1 signaling | 2.287858e-01 | 0.641 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 2.522745e-01 | 0.598 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 1.856536e-01 | 0.731 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 2.775944e-01 | 0.557 |
R-HSA-162587 | HIV Life Cycle | 2.497523e-01 | 0.602 |
R-HSA-4086400 | PCP/CE pathway | 2.420103e-01 | 0.616 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 2.705757e-01 | 0.568 |
R-HSA-9909396 | Circadian clock | 2.630165e-01 | 0.580 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 1.600475e-01 | 0.796 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 2.074986e-01 | 0.683 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 2.522745e-01 | 0.598 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 1.444703e-01 | 0.840 |
R-HSA-9646399 | Aggrephagy | 1.581156e-01 | 0.801 |
R-HSA-912446 | Meiotic recombination | 2.465262e-01 | 0.608 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 2.630165e-01 | 0.580 |
R-HSA-8985947 | Interleukin-9 signaling | 2.737066e-01 | 0.563 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 1.845261e-01 | 0.734 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 1.721371e-01 | 0.764 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 2.029824e-01 | 0.693 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 1.487507e-01 | 0.828 |
R-HSA-193670 | p75NTR negatively regulates cell cycle via SC1 | 1.600475e-01 | 0.796 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 2.074986e-01 | 0.683 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 2.074986e-01 | 0.683 |
R-HSA-5653890 | Lactose synthesis | 2.302114e-01 | 0.638 |
R-HSA-69416 | Dimerization of procaspase-8 | 2.737066e-01 | 0.563 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 1.448331e-01 | 0.839 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 1.934860e-01 | 0.713 |
R-HSA-9836573 | Mitochondrial RNA degradation | 2.172049e-01 | 0.663 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 1.934860e-01 | 0.713 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 2.068108e-01 | 0.684 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 2.384904e-01 | 0.623 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 2.598730e-01 | 0.585 |
R-HSA-202424 | Downstream TCR signaling | 1.639886e-01 | 0.785 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 1.913253e-01 | 0.718 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 2.068108e-01 | 0.684 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 2.302114e-01 | 0.638 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 2.491747e-01 | 0.603 |
R-HSA-6784531 | tRNA processing in the nucleus | 1.487507e-01 | 0.828 |
R-HSA-5688426 | Deubiquitination | 1.816302e-01 | 0.741 |
R-HSA-9669938 | Signaling by KIT in disease | 1.961043e-01 | 0.708 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 2.011507e-01 | 0.696 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 1.600475e-01 | 0.796 |
R-HSA-390651 | Dopamine receptors | 1.600475e-01 | 0.796 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 2.074986e-01 | 0.683 |
R-HSA-194313 | VEGF ligand-receptor interactions | 2.074986e-01 | 0.683 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 2.522745e-01 | 0.598 |
R-HSA-418886 | Netrin mediated repulsion signals | 2.522745e-01 | 0.598 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 1.581156e-01 | 0.801 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 1.581156e-01 | 0.801 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 1.650818e-01 | 0.782 |
R-HSA-180024 | DARPP-32 events | 2.705757e-01 | 0.568 |
R-HSA-69206 | G1/S Transition | 2.250656e-01 | 0.648 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 2.288435e-01 | 0.640 |
R-HSA-1236975 | Antigen processing-Cross presentation | 2.718434e-01 | 0.566 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 2.545278e-01 | 0.594 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 2.312028e-01 | 0.636 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 1.994816e-01 | 0.700 |
R-HSA-597592 | Post-translational protein modification | 2.367286e-01 | 0.626 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 2.812739e-01 | 0.551 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 1.841172e-01 | 0.735 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 2.074986e-01 | 0.683 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 2.074986e-01 | 0.683 |
R-HSA-164944 | Nef and signal transduction | 2.302114e-01 | 0.638 |
R-HSA-8964011 | HDL clearance | 2.302114e-01 | 0.638 |
R-HSA-447041 | CHL1 interactions | 2.522745e-01 | 0.598 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 2.522745e-01 | 0.598 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 2.737066e-01 | 0.563 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 2.737066e-01 | 0.563 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 2.737066e-01 | 0.563 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 1.444703e-01 | 0.840 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 2.085781e-01 | 0.681 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 2.854253e-01 | 0.545 |
R-HSA-202433 | Generation of second messenger molecules | 1.581156e-01 | 0.801 |
R-HSA-5578775 | Ion homeostasis | 2.854253e-01 | 0.545 |
R-HSA-70326 | Glucose metabolism | 1.847912e-01 | 0.733 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 2.074986e-01 | 0.683 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 1.512434e-01 | 0.820 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 2.491747e-01 | 0.603 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 2.545278e-01 | 0.594 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 2.390892e-01 | 0.621 |
R-HSA-211000 | Gene Silencing by RNA | 2.663621e-01 | 0.575 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 2.405294e-01 | 0.619 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 2.609063e-01 | 0.584 |
R-HSA-216083 | Integrin cell surface interactions | 2.420103e-01 | 0.616 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 2.074986e-01 | 0.683 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 2.737066e-01 | 0.563 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 2.388434e-01 | 0.622 |
R-HSA-9831926 | Nephron development | 1.448331e-01 | 0.839 |
R-HSA-449836 | Other interleukin signaling | 1.548614e-01 | 0.810 |
R-HSA-3214842 | HDMs demethylate histones | 2.278303e-01 | 0.642 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 1.686892e-01 | 0.773 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 2.066256e-01 | 0.685 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 2.737066e-01 | 0.563 |
R-HSA-9865881 | Complex III assembly | 2.172049e-01 | 0.663 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 2.542469e-01 | 0.595 |
R-HSA-9694516 | SARS-CoV-2 Infection | 1.915100e-01 | 0.718 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 2.491747e-01 | 0.603 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 2.854253e-01 | 0.545 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 2.491747e-01 | 0.603 |
R-HSA-168316 | Assembly of Viral Components at the Budding Site | 1.841172e-01 | 0.735 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 1.650756e-01 | 0.782 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 1.448331e-01 | 0.839 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 1.961043e-01 | 0.708 |
R-HSA-1500620 | Meiosis | 2.863456e-01 | 0.543 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 2.919590e-01 | 0.535 |
R-HSA-5694530 | Cargo concentration in the ER | 2.919590e-01 | 0.535 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 2.919590e-01 | 0.535 |
R-HSA-186763 | Downstream signal transduction | 2.919590e-01 | 0.535 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 2.924905e-01 | 0.534 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 2.939939e-01 | 0.532 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 2.939939e-01 | 0.532 |
R-HSA-1483249 | Inositol phosphate metabolism | 2.939939e-01 | 0.532 |
R-HSA-5218900 | CASP8 activity is inhibited | 2.945257e-01 | 0.531 |
R-HSA-193697 | p75NTR regulates axonogenesis | 2.945257e-01 | 0.531 |
R-HSA-2025928 | Calcineurin activates NFAT | 2.945257e-01 | 0.531 |
R-HSA-9020958 | Interleukin-21 signaling | 2.945257e-01 | 0.531 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 2.945257e-01 | 0.531 |
R-HSA-170984 | ARMS-mediated activation | 2.945257e-01 | 0.531 |
R-HSA-1433617 | Regulation of signaling by NODAL | 2.945257e-01 | 0.531 |
R-HSA-112411 | MAPK1 (ERK2) activation | 2.945257e-01 | 0.531 |
R-HSA-176974 | Unwinding of DNA | 2.945257e-01 | 0.531 |
R-HSA-9768777 | Regulation of NPAS4 gene transcription | 2.945257e-01 | 0.531 |
R-HSA-448706 | Interleukin-1 processing | 2.945257e-01 | 0.531 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 2.945257e-01 | 0.531 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 2.945257e-01 | 0.531 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 2.945257e-01 | 0.531 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 2.945257e-01 | 0.531 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 2.945257e-01 | 0.531 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 3.011365e-01 | 0.521 |
R-HSA-69190 | DNA strand elongation | 3.026230e-01 | 0.519 |
R-HSA-4791275 | Signaling by WNT in cancer | 3.026230e-01 | 0.519 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 3.090093e-01 | 0.510 |
R-HSA-194441 | Metabolism of non-coding RNA | 3.090093e-01 | 0.510 |
R-HSA-191859 | snRNP Assembly | 3.090093e-01 | 0.510 |
R-HSA-9645723 | Diseases of programmed cell death | 3.121926e-01 | 0.506 |
R-HSA-5675482 | Regulation of necroptotic cell death | 3.132584e-01 | 0.504 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 3.132584e-01 | 0.504 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 3.132584e-01 | 0.504 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 3.132584e-01 | 0.504 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 3.147492e-01 | 0.502 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 3.147492e-01 | 0.502 |
R-HSA-9858328 | OADH complex synthesizes glutaryl-CoA from 2-OA | 3.147492e-01 | 0.502 |
R-HSA-9762292 | Regulation of CDH11 function | 3.147492e-01 | 0.502 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 3.147492e-01 | 0.502 |
R-HSA-6803544 | Ion influx/efflux at host-pathogen interface | 3.147492e-01 | 0.502 |
R-HSA-426048 | Arachidonate production from DAG | 3.147492e-01 | 0.502 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 3.147492e-01 | 0.502 |
R-HSA-2586552 | Signaling by Leptin | 3.147492e-01 | 0.502 |
R-HSA-9683686 | Maturation of spike protein | 3.147492e-01 | 0.502 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 3.147492e-01 | 0.502 |
R-HSA-110056 | MAPK3 (ERK1) activation | 3.147492e-01 | 0.502 |
R-HSA-6799990 | Metal sequestration by antimicrobial proteins | 3.147492e-01 | 0.502 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 3.147492e-01 | 0.502 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 3.147492e-01 | 0.502 |
R-HSA-1266738 | Developmental Biology | 3.155634e-01 | 0.501 |
R-HSA-379724 | tRNA Aminoacylation | 3.168890e-01 | 0.499 |
R-HSA-983189 | Kinesins | 3.168890e-01 | 0.499 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 3.168890e-01 | 0.499 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 3.215714e-01 | 0.493 |
R-HSA-390522 | Striated Muscle Contraction | 3.238581e-01 | 0.490 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 3.238581e-01 | 0.490 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 3.238581e-01 | 0.490 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 3.238581e-01 | 0.490 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 3.238581e-01 | 0.490 |
R-HSA-1442490 | Collagen degradation | 3.247718e-01 | 0.488 |
R-HSA-1474244 | Extracellular matrix organization | 3.252786e-01 | 0.488 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 3.308139e-01 | 0.480 |
R-HSA-1268020 | Mitochondrial protein import | 3.326546e-01 | 0.478 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 3.326546e-01 | 0.478 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 3.343942e-01 | 0.476 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 3.343942e-01 | 0.476 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 3.343942e-01 | 0.476 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 3.343942e-01 | 0.476 |
R-HSA-4839744 | Signaling by APC mutants | 3.343942e-01 | 0.476 |
R-HSA-192814 | vRNA Synthesis | 3.343942e-01 | 0.476 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 3.343942e-01 | 0.476 |
R-HSA-425381 | Bicarbonate transporters | 3.343942e-01 | 0.476 |
R-HSA-5205647 | Mitophagy | 3.344153e-01 | 0.476 |
R-HSA-190861 | Gap junction assembly | 3.344153e-01 | 0.476 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 3.344153e-01 | 0.476 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 3.344153e-01 | 0.476 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 3.354503e-01 | 0.474 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 3.405339e-01 | 0.468 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 3.447704e-01 | 0.462 |
R-HSA-187687 | Signalling to ERKs | 3.449239e-01 | 0.462 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 3.449239e-01 | 0.462 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 3.484067e-01 | 0.458 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 3.534772e-01 | 0.452 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 3.534772e-01 | 0.452 |
R-HSA-202670 | ERKs are inactivated | 3.534772e-01 | 0.452 |
R-HSA-4839735 | Signaling by AXIN mutants | 3.534772e-01 | 0.452 |
R-HSA-4839748 | Signaling by AMER1 mutants | 3.534772e-01 | 0.452 |
R-HSA-428540 | Activation of RAC1 | 3.534772e-01 | 0.452 |
R-HSA-8941326 | RUNX2 regulates bone development | 3.553780e-01 | 0.449 |
R-HSA-9682385 | FLT3 signaling in disease | 3.553780e-01 | 0.449 |
R-HSA-111933 | Calmodulin induced events | 3.553780e-01 | 0.449 |
R-HSA-111997 | CaM pathway | 3.553780e-01 | 0.449 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 3.553780e-01 | 0.449 |
R-HSA-73886 | Chromosome Maintenance | 3.561555e-01 | 0.448 |
R-HSA-1474290 | Collagen formation | 3.578340e-01 | 0.446 |
R-HSA-9837999 | Mitochondrial protein degradation | 3.578340e-01 | 0.446 |
R-HSA-8953854 | Metabolism of RNA | 3.589157e-01 | 0.445 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 3.627129e-01 | 0.440 |
R-HSA-9006925 | Intracellular signaling by second messengers | 3.630745e-01 | 0.440 |
R-HSA-9856651 | MITF-M-dependent gene expression | 3.633337e-01 | 0.440 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 3.657721e-01 | 0.437 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 3.657721e-01 | 0.437 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 3.657721e-01 | 0.437 |
R-HSA-419037 | NCAM1 interactions | 3.657721e-01 | 0.437 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 3.675554e-01 | 0.435 |
R-HSA-9830369 | Kidney development | 3.719553e-01 | 0.430 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 3.720142e-01 | 0.429 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 3.720142e-01 | 0.429 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 3.720142e-01 | 0.429 |
R-HSA-69091 | Polymerase switching | 3.720142e-01 | 0.429 |
R-HSA-69109 | Leading Strand Synthesis | 3.720142e-01 | 0.429 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 3.720142e-01 | 0.429 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 3.720142e-01 | 0.429 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 3.720142e-01 | 0.429 |
R-HSA-877312 | Regulation of IFNG signaling | 3.720142e-01 | 0.429 |
R-HSA-8983432 | Interleukin-15 signaling | 3.720142e-01 | 0.429 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 3.720142e-01 | 0.429 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 3.720142e-01 | 0.429 |
R-HSA-9842663 | Signaling by LTK | 3.720142e-01 | 0.429 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 3.735773e-01 | 0.428 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 3.761010e-01 | 0.425 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 3.761010e-01 | 0.425 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 3.761010e-01 | 0.425 |
R-HSA-167172 | Transcription of the HIV genome | 3.797719e-01 | 0.420 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 3.797719e-01 | 0.420 |
R-HSA-5218859 | Regulated Necrosis | 3.797719e-01 | 0.420 |
R-HSA-73887 | Death Receptor Signaling | 3.838295e-01 | 0.416 |
R-HSA-157579 | Telomere Maintenance | 3.839349e-01 | 0.416 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 3.839349e-01 | 0.416 |
R-HSA-69541 | Stabilization of p53 | 3.863599e-01 | 0.413 |
R-HSA-201556 | Signaling by ALK | 3.863599e-01 | 0.413 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 3.863599e-01 | 0.413 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 3.863599e-01 | 0.413 |
R-HSA-9853506 | OGDH complex synthesizes succinyl-CoA from 2-OG | 3.900208e-01 | 0.409 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 3.900208e-01 | 0.409 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 3.900208e-01 | 0.409 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 3.900208e-01 | 0.409 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 3.900208e-01 | 0.409 |
R-HSA-8949664 | Processing of SMDT1 | 3.900208e-01 | 0.409 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 3.900208e-01 | 0.409 |
R-HSA-170968 | Frs2-mediated activation | 3.900208e-01 | 0.409 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 3.900208e-01 | 0.409 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 3.900208e-01 | 0.409 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 3.900208e-01 | 0.409 |
R-HSA-1475029 | Reversible hydration of carbon dioxide | 3.900208e-01 | 0.409 |
R-HSA-9796292 | Formation of axial mesoderm | 3.900208e-01 | 0.409 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 3.900208e-01 | 0.409 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 3.900208e-01 | 0.409 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 3.900208e-01 | 0.409 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 3.900208e-01 | 0.409 |
R-HSA-8957275 | Post-translational protein phosphorylation | 3.904444e-01 | 0.408 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 3.953393e-01 | 0.403 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 3.953393e-01 | 0.403 |
R-HSA-109582 | Hemostasis | 3.957978e-01 | 0.403 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 3.965445e-01 | 0.402 |
R-HSA-3371568 | Attenuation phase | 3.965445e-01 | 0.402 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 3.965445e-01 | 0.402 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 3.965445e-01 | 0.402 |
R-HSA-451927 | Interleukin-2 family signaling | 3.965445e-01 | 0.402 |
R-HSA-983712 | Ion channel transport | 4.009834e-01 | 0.397 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 4.030850e-01 | 0.395 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 4.043313e-01 | 0.393 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 4.066504e-01 | 0.391 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 4.066504e-01 | 0.391 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 4.066504e-01 | 0.391 |
R-HSA-69166 | Removal of the Flap Intermediate | 4.075122e-01 | 0.390 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 4.075122e-01 | 0.390 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 4.075122e-01 | 0.390 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 4.075122e-01 | 0.390 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 4.075122e-01 | 0.390 |
R-HSA-1433559 | Regulation of KIT signaling | 4.075122e-01 | 0.390 |
R-HSA-1170546 | Prolactin receptor signaling | 4.075122e-01 | 0.390 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 4.075122e-01 | 0.390 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 4.075122e-01 | 0.390 |
R-HSA-435354 | Zinc transporters | 4.075122e-01 | 0.390 |
R-HSA-9856872 | Malate-aspartate shuttle | 4.075122e-01 | 0.390 |
R-HSA-9828642 | Respiratory syncytial virus genome transcription | 4.075122e-01 | 0.390 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 4.075122e-01 | 0.390 |
R-HSA-168249 | Innate Immune System | 4.078613e-01 | 0.389 |
R-HSA-877300 | Interferon gamma signaling | 4.094511e-01 | 0.388 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 4.166739e-01 | 0.380 |
R-HSA-5576891 | Cardiac conduction | 4.244337e-01 | 0.372 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 4.245030e-01 | 0.372 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 4.245030e-01 | 0.372 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 4.245030e-01 | 0.372 |
R-HSA-69183 | Processive synthesis on the lagging strand | 4.245030e-01 | 0.372 |
R-HSA-110312 | Translesion synthesis by REV1 | 4.245030e-01 | 0.372 |
R-HSA-418885 | DCC mediated attractive signaling | 4.245030e-01 | 0.372 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 4.245030e-01 | 0.372 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 4.245030e-01 | 0.372 |
R-HSA-171007 | p38MAPK events | 4.245030e-01 | 0.372 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 4.245030e-01 | 0.372 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 4.245030e-01 | 0.372 |
R-HSA-5676934 | Protein repair | 4.245030e-01 | 0.372 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 4.245030e-01 | 0.372 |
R-HSA-73942 | DNA Damage Reversal | 4.245030e-01 | 0.372 |
R-HSA-8876725 | Protein methylation | 4.245030e-01 | 0.372 |
R-HSA-111996 | Ca-dependent events | 4.266115e-01 | 0.370 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 4.266115e-01 | 0.370 |
R-HSA-111885 | Opioid Signalling | 4.292427e-01 | 0.367 |
R-HSA-1474228 | Degradation of the extracellular matrix | 4.300833e-01 | 0.366 |
R-HSA-1257604 | PIP3 activates AKT signaling | 4.331786e-01 | 0.363 |
R-HSA-9609690 | HCMV Early Events | 4.338146e-01 | 0.363 |
R-HSA-9833110 | RSV-host interactions | 4.356517e-01 | 0.361 |
R-HSA-1433557 | Signaling by SCF-KIT | 4.364597e-01 | 0.360 |
R-HSA-8854214 | TBC/RABGAPs | 4.364597e-01 | 0.360 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 4.410076e-01 | 0.356 |
R-HSA-5656121 | Translesion synthesis by POLI | 4.410076e-01 | 0.356 |
R-HSA-168275 | Entry of Influenza Virion into Host Cell via Endocytosis | 4.410076e-01 | 0.356 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 4.410076e-01 | 0.356 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 4.410076e-01 | 0.356 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 4.410076e-01 | 0.356 |
R-HSA-169893 | Prolonged ERK activation events | 4.410076e-01 | 0.356 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 4.410076e-01 | 0.356 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 4.410076e-01 | 0.356 |
R-HSA-5635838 | Activation of SMO | 4.410076e-01 | 0.356 |
R-HSA-168268 | Virus Assembly and Release | 4.410076e-01 | 0.356 |
R-HSA-5696398 | Nucleotide Excision Repair | 4.420405e-01 | 0.355 |
R-HSA-195721 | Signaling by WNT | 4.447574e-01 | 0.352 |
R-HSA-5663205 | Infectious disease | 4.478711e-01 | 0.349 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 4.488792e-01 | 0.348 |
R-HSA-389948 | Co-inhibition by PD-1 | 4.524751e-01 | 0.344 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 4.558763e-01 | 0.341 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 4.558763e-01 | 0.341 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 4.558763e-01 | 0.341 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 4.558763e-01 | 0.341 |
R-HSA-1489509 | DAG and IP3 signaling | 4.558763e-01 | 0.341 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 4.570399e-01 | 0.340 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 4.570399e-01 | 0.340 |
R-HSA-5655862 | Translesion synthesis by POLK | 4.570399e-01 | 0.340 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 4.570399e-01 | 0.340 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 4.570399e-01 | 0.340 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 4.570399e-01 | 0.340 |
R-HSA-1566977 | Fibronectin matrix formation | 4.570399e-01 | 0.340 |
R-HSA-70370 | Galactose catabolism | 4.570399e-01 | 0.340 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 4.610721e-01 | 0.336 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 4.654393e-01 | 0.332 |
R-HSA-9839373 | Signaling by TGFBR3 | 4.654393e-01 | 0.332 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 4.726133e-01 | 0.325 |
R-HSA-1614517 | Sulfide oxidation to sulfate | 4.726133e-01 | 0.325 |
R-HSA-2408550 | Metabolism of ingested H2SeO4 and H2SeO3 into H2Se | 4.726133e-01 | 0.325 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 4.726133e-01 | 0.325 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 4.726133e-01 | 0.325 |
R-HSA-6807070 | PTEN Regulation | 4.747932e-01 | 0.323 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 4.749023e-01 | 0.323 |
R-HSA-9664407 | Parasite infection | 4.803071e-01 | 0.318 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 4.803071e-01 | 0.318 |
R-HSA-9664417 | Leishmania phagocytosis | 4.803071e-01 | 0.318 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 4.842631e-01 | 0.315 |
R-HSA-5620924 | Intraflagellar transport | 4.842631e-01 | 0.315 |
R-HSA-70263 | Gluconeogenesis | 4.842631e-01 | 0.315 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 4.858013e-01 | 0.314 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 4.877409e-01 | 0.312 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 4.877409e-01 | 0.312 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 4.877409e-01 | 0.312 |
R-HSA-432142 | Platelet sensitization by LDL | 4.877409e-01 | 0.312 |
R-HSA-210993 | Tie2 Signaling | 4.877409e-01 | 0.312 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 4.935199e-01 | 0.307 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 4.935199e-01 | 0.307 |
R-HSA-9766229 | Degradation of CDH1 | 4.935199e-01 | 0.307 |
R-HSA-389661 | Glyoxylate metabolism and glycine degradation | 4.935199e-01 | 0.307 |
R-HSA-392499 | Metabolism of proteins | 5.003223e-01 | 0.301 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 5.024355e-01 | 0.299 |
R-HSA-110320 | Translesion Synthesis by POLH | 5.024355e-01 | 0.299 |
R-HSA-9754189 | Germ layer formation at gastrulation | 5.024355e-01 | 0.299 |
R-HSA-912631 | Regulation of signaling by CBL | 5.024355e-01 | 0.299 |
R-HSA-9834899 | Specification of the neural plate border | 5.024355e-01 | 0.299 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 5.024355e-01 | 0.299 |
R-HSA-1834941 | STING mediated induction of host immune responses | 5.024355e-01 | 0.299 |
R-HSA-392517 | Rap1 signalling | 5.024355e-01 | 0.299 |
R-HSA-844456 | The NLRP3 inflammasome | 5.024355e-01 | 0.299 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 5.024355e-01 | 0.299 |
R-HSA-109704 | PI3K Cascade | 5.026708e-01 | 0.299 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 5.045364e-01 | 0.297 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 5.106215e-01 | 0.292 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 5.167095e-01 | 0.287 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 5.167095e-01 | 0.287 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 5.167095e-01 | 0.287 |
R-HSA-1362409 | Mitochondrial iron-sulfur cluster biogenesis | 5.167095e-01 | 0.287 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 5.167095e-01 | 0.287 |
R-HSA-1181150 | Signaling by NODAL | 5.167095e-01 | 0.287 |
R-HSA-9823730 | Formation of definitive endoderm | 5.167095e-01 | 0.287 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 5.167095e-01 | 0.287 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 5.167095e-01 | 0.287 |
R-HSA-445144 | Signal transduction by L1 | 5.167095e-01 | 0.287 |
R-HSA-3322077 | Glycogen synthesis | 5.167095e-01 | 0.287 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 5.217352e-01 | 0.283 |
R-HSA-72613 | Eukaryotic Translation Initiation | 5.226887e-01 | 0.282 |
R-HSA-72737 | Cap-dependent Translation Initiation | 5.226887e-01 | 0.282 |
R-HSA-446203 | Asparagine N-linked glycosylation | 5.244302e-01 | 0.280 |
R-HSA-69242 | S Phase | 5.289560e-01 | 0.277 |
R-HSA-1221632 | Meiotic synapsis | 5.294742e-01 | 0.276 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 5.294742e-01 | 0.276 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 5.305748e-01 | 0.275 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 5.305748e-01 | 0.275 |
R-HSA-69186 | Lagging Strand Synthesis | 5.305748e-01 | 0.275 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 5.305748e-01 | 0.275 |
R-HSA-167044 | Signalling to RAS | 5.305748e-01 | 0.275 |
R-HSA-198753 | ERK/MAPK targets | 5.305748e-01 | 0.275 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 5.305748e-01 | 0.275 |
R-HSA-196836 | Vitamin C (ascorbate) metabolism | 5.305748e-01 | 0.275 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 5.346127e-01 | 0.272 |
R-HSA-212165 | Epigenetic regulation of gene expression | 5.394432e-01 | 0.268 |
R-HSA-112315 | Transmission across Chemical Synapses | 5.394432e-01 | 0.268 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 5.405189e-01 | 0.267 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 5.440431e-01 | 0.264 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 5.440431e-01 | 0.264 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 5.440431e-01 | 0.264 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 5.440431e-01 | 0.264 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 5.440431e-01 | 0.264 |
R-HSA-9671555 | Signaling by PDGFR in disease | 5.440431e-01 | 0.264 |
R-HSA-9755088 | Ribavirin ADME | 5.440431e-01 | 0.264 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 5.467902e-01 | 0.262 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 5.493797e-01 | 0.260 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 5.552797e-01 | 0.255 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 5.552797e-01 | 0.255 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 5.552797e-01 | 0.255 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 5.561428e-01 | 0.255 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 5.571259e-01 | 0.254 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 5.571259e-01 | 0.254 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 5.571259e-01 | 0.254 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 5.571259e-01 | 0.254 |
R-HSA-350054 | Notch-HLH transcription pathway | 5.571259e-01 | 0.254 |
R-HSA-166208 | mTORC1-mediated signalling | 5.571259e-01 | 0.254 |
R-HSA-189200 | Cellular hexose transport | 5.571259e-01 | 0.254 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 5.571259e-01 | 0.254 |
R-HSA-112399 | IRS-mediated signalling | 5.636559e-01 | 0.249 |
R-HSA-5621480 | Dectin-2 family | 5.636559e-01 | 0.249 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 5.637538e-01 | 0.249 |
R-HSA-1989781 | PPARA activates gene expression | 5.653547e-01 | 0.248 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 5.698340e-01 | 0.244 |
R-HSA-912526 | Interleukin receptor SHC signaling | 5.698340e-01 | 0.244 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 5.698340e-01 | 0.244 |
R-HSA-9937008 | Mitochondrial mRNA modification | 5.698340e-01 | 0.244 |
R-HSA-982772 | Growth hormone receptor signaling | 5.698340e-01 | 0.244 |
R-HSA-6782135 | Dual incision in TC-NER | 5.719184e-01 | 0.243 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 5.754898e-01 | 0.240 |
R-HSA-9734767 | Developmental Cell Lineages | 5.794256e-01 | 0.237 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 5.821783e-01 | 0.235 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 5.821783e-01 | 0.235 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 5.821783e-01 | 0.235 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 5.821783e-01 | 0.235 |
R-HSA-8863678 | Neurodegenerative Diseases | 5.821783e-01 | 0.235 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 5.821783e-01 | 0.235 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 5.881009e-01 | 0.231 |
R-HSA-8873719 | RAB geranylgeranylation | 5.881009e-01 | 0.231 |
R-HSA-9006936 | Signaling by TGFB family members | 5.904569e-01 | 0.229 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 5.941690e-01 | 0.226 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 5.941690e-01 | 0.226 |
R-HSA-420029 | Tight junction interactions | 5.941690e-01 | 0.226 |
R-HSA-389887 | Beta-oxidation of pristanoyl-CoA | 5.941690e-01 | 0.226 |
R-HSA-9830364 | Formation of the nephric duct | 5.941690e-01 | 0.226 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 5.941690e-01 | 0.226 |
R-HSA-400685 | Sema4D in semaphorin signaling | 5.941690e-01 | 0.226 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 5.941690e-01 | 0.226 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 5.941690e-01 | 0.226 |
R-HSA-3000157 | Laminin interactions | 5.941690e-01 | 0.226 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 5.941690e-01 | 0.226 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 5.954158e-01 | 0.225 |
R-HSA-9793380 | Formation of paraxial mesoderm | 5.960205e-01 | 0.225 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 5.960205e-01 | 0.225 |
R-HSA-112043 | PLC beta mediated events | 5.960205e-01 | 0.225 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 5.960205e-01 | 0.225 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 6.017377e-01 | 0.221 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 6.038255e-01 | 0.219 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 6.038255e-01 | 0.219 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 6.038255e-01 | 0.219 |
R-HSA-525793 | Myogenesis | 6.058163e-01 | 0.218 |
R-HSA-3295583 | TRP channels | 6.058163e-01 | 0.218 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 6.058163e-01 | 0.218 |
R-HSA-70635 | Urea cycle | 6.058163e-01 | 0.218 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 6.058163e-01 | 0.218 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 6.079944e-01 | 0.216 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 6.082192e-01 | 0.216 |
R-HSA-2408522 | Selenoamino acid metabolism | 6.099545e-01 | 0.215 |
R-HSA-8848021 | Signaling by PTK6 | 6.115160e-01 | 0.214 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 6.115160e-01 | 0.214 |
R-HSA-1643685 | Disease | 6.118099e-01 | 0.213 |
R-HSA-1474165 | Reproduction | 6.135790e-01 | 0.212 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 6.171301e-01 | 0.210 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 6.171301e-01 | 0.210 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 6.171301e-01 | 0.210 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 6.171301e-01 | 0.210 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 6.171301e-01 | 0.210 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 6.171301e-01 | 0.210 |
R-HSA-201451 | Signaling by BMP | 6.171301e-01 | 0.210 |
R-HSA-9843745 | Adipogenesis | 6.188933e-01 | 0.208 |
R-HSA-2428924 | IGF1R signaling cascade | 6.190921e-01 | 0.208 |
R-HSA-74751 | Insulin receptor signalling cascade | 6.190921e-01 | 0.208 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 6.203103e-01 | 0.207 |
R-HSA-3214847 | HATs acetylate histones | 6.203103e-01 | 0.207 |
R-HSA-5619102 | SLC transporter disorders | 6.242207e-01 | 0.205 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 6.254205e-01 | 0.204 |
R-HSA-376176 | Signaling by ROBO receptors | 6.254205e-01 | 0.204 |
R-HSA-5610787 | Hedgehog 'off' state | 6.263688e-01 | 0.203 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 6.265541e-01 | 0.203 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 6.281198e-01 | 0.202 |
R-HSA-171319 | Telomere Extension By Telomerase | 6.281198e-01 | 0.202 |
R-HSA-5620971 | Pyroptosis | 6.281198e-01 | 0.202 |
R-HSA-622312 | Inflammasomes | 6.281198e-01 | 0.202 |
R-HSA-9842860 | Regulation of endogenous retroelements | 6.382859e-01 | 0.195 |
R-HSA-1483255 | PI Metabolism | 6.382859e-01 | 0.195 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 6.387947e-01 | 0.195 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 6.387947e-01 | 0.195 |
R-HSA-9006335 | Signaling by Erythropoietin | 6.387947e-01 | 0.195 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 6.387947e-01 | 0.195 |
R-HSA-112040 | G-protein mediated events | 6.411371e-01 | 0.193 |
R-HSA-913709 | O-linked glycosylation of mucins | 6.482589e-01 | 0.188 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 6.482589e-01 | 0.188 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 6.491638e-01 | 0.188 |
R-HSA-68962 | Activation of the pre-replicative complex | 6.491638e-01 | 0.188 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 6.491638e-01 | 0.188 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 6.491638e-01 | 0.188 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 6.491638e-01 | 0.188 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 6.491638e-01 | 0.188 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 6.491638e-01 | 0.188 |
R-HSA-114452 | Activation of BH3-only proteins | 6.491638e-01 | 0.188 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 6.491638e-01 | 0.188 |
R-HSA-112311 | Neurotransmitter clearance | 6.491638e-01 | 0.188 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 6.491638e-01 | 0.188 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 6.491638e-01 | 0.188 |
R-HSA-163685 | Integration of energy metabolism | 6.498048e-01 | 0.187 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 6.514159e-01 | 0.186 |
R-HSA-5689880 | Ub-specific processing proteases | 6.562675e-01 | 0.183 |
R-HSA-162588 | Budding and maturation of HIV virion | 6.592359e-01 | 0.181 |
R-HSA-5358351 | Signaling by Hedgehog | 6.597310e-01 | 0.181 |
R-HSA-112316 | Neuronal System | 6.653222e-01 | 0.177 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 6.689518e-01 | 0.175 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 6.689518e-01 | 0.175 |
R-HSA-3000178 | ECM proteoglycans | 6.689518e-01 | 0.175 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 6.690194e-01 | 0.175 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 6.690194e-01 | 0.175 |
R-HSA-2024096 | HS-GAG degradation | 6.690194e-01 | 0.175 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 6.690194e-01 | 0.175 |
R-HSA-9609646 | HCMV Infection | 6.695630e-01 | 0.174 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 6.724243e-01 | 0.172 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 6.756274e-01 | 0.170 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 6.778781e-01 | 0.169 |
R-HSA-397795 | G-protein beta:gamma signalling | 6.785226e-01 | 0.168 |
R-HSA-176187 | Activation of ATR in response to replication stress | 6.785226e-01 | 0.168 |
R-HSA-9930044 | Nuclear RNA decay | 6.785226e-01 | 0.168 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 6.785226e-01 | 0.168 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 6.785226e-01 | 0.168 |
R-HSA-9733709 | Cardiogenesis | 6.785226e-01 | 0.168 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 6.785226e-01 | 0.168 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 6.877536e-01 | 0.163 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 6.877536e-01 | 0.163 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 6.877536e-01 | 0.163 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 6.929588e-01 | 0.159 |
R-HSA-6803157 | Antimicrobial peptides | 6.938359e-01 | 0.159 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 6.949989e-01 | 0.158 |
R-HSA-8852135 | Protein ubiquitination | 6.949989e-01 | 0.158 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 6.967200e-01 | 0.157 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 6.967200e-01 | 0.157 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 6.967200e-01 | 0.157 |
R-HSA-203615 | eNOS activation | 6.967200e-01 | 0.157 |
R-HSA-1980145 | Signaling by NOTCH2 | 6.967200e-01 | 0.157 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 6.967200e-01 | 0.157 |
R-HSA-392518 | Signal amplification | 6.967200e-01 | 0.157 |
R-HSA-5689603 | UCH proteinases | 7.012404e-01 | 0.154 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 7.041393e-01 | 0.152 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 7.054294e-01 | 0.152 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 7.054294e-01 | 0.152 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 7.054294e-01 | 0.152 |
R-HSA-212300 | PRC2 methylates histones and DNA | 7.138893e-01 | 0.146 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 7.138893e-01 | 0.146 |
R-HSA-74158 | RNA Polymerase III Transcription | 7.138893e-01 | 0.146 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 7.138893e-01 | 0.146 |
R-HSA-3371511 | HSF1 activation | 7.138893e-01 | 0.146 |
R-HSA-163560 | Triglyceride catabolism | 7.138893e-01 | 0.146 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 7.138893e-01 | 0.146 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 7.199961e-01 | 0.143 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 7.221067e-01 | 0.141 |
R-HSA-71064 | Lysine catabolism | 7.221067e-01 | 0.141 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 7.221067e-01 | 0.141 |
R-HSA-549127 | SLC-mediated transport of organic cations | 7.221067e-01 | 0.141 |
R-HSA-196757 | Metabolism of folate and pterines | 7.221067e-01 | 0.141 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 7.300886e-01 | 0.137 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 7.300886e-01 | 0.137 |
R-HSA-9931953 | Biofilm formation | 7.300886e-01 | 0.137 |
R-HSA-9609507 | Protein localization | 7.321964e-01 | 0.135 |
R-HSA-9007101 | Rab regulation of trafficking | 7.334584e-01 | 0.135 |
R-HSA-1592230 | Mitochondrial biogenesis | 7.334584e-01 | 0.135 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 7.363151e-01 | 0.133 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 7.364905e-01 | 0.133 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 7.378417e-01 | 0.132 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 7.378417e-01 | 0.132 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 7.378417e-01 | 0.132 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 7.420087e-01 | 0.130 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 7.420087e-01 | 0.130 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 7.453726e-01 | 0.128 |
R-HSA-9854311 | Maturation of TCA enzymes and regulation of TCA cycle | 7.453726e-01 | 0.128 |
R-HSA-8982491 | Glycogen metabolism | 7.453726e-01 | 0.128 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 7.453726e-01 | 0.128 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 7.453726e-01 | 0.128 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 7.526876e-01 | 0.123 |
R-HSA-9694548 | Maturation of spike protein | 7.526876e-01 | 0.123 |
R-HSA-9607240 | FLT3 Signaling | 7.526876e-01 | 0.123 |
R-HSA-3000480 | Scavenging by Class A Receptors | 7.597928e-01 | 0.119 |
R-HSA-6811438 | Intra-Golgi traffic | 7.597928e-01 | 0.119 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 7.597928e-01 | 0.119 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 7.597928e-01 | 0.119 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 7.597928e-01 | 0.119 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 7.597928e-01 | 0.119 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 7.597928e-01 | 0.119 |
R-HSA-9683701 | Translation of Structural Proteins | 7.597928e-01 | 0.119 |
R-HSA-165159 | MTOR signalling | 7.666944e-01 | 0.115 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 7.666944e-01 | 0.115 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 7.666944e-01 | 0.115 |
R-HSA-156902 | Peptide chain elongation | 7.730778e-01 | 0.112 |
R-HSA-9710421 | Defective pyroptosis | 7.733981e-01 | 0.112 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 7.733981e-01 | 0.112 |
R-HSA-373752 | Netrin-1 signaling | 7.799095e-01 | 0.108 |
R-HSA-3214858 | RMTs methylate histone arginines | 7.799095e-01 | 0.108 |
R-HSA-375280 | Amine ligand-binding receptors | 7.799095e-01 | 0.108 |
R-HSA-73884 | Base Excision Repair | 7.826852e-01 | 0.106 |
R-HSA-774815 | Nucleosome assembly | 7.862343e-01 | 0.104 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 7.862343e-01 | 0.104 |
R-HSA-6783310 | Fanconi Anemia Pathway | 7.862343e-01 | 0.104 |
R-HSA-9824272 | Somitogenesis | 7.862343e-01 | 0.104 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 7.862343e-01 | 0.104 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 7.873538e-01 | 0.104 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 7.919341e-01 | 0.101 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 7.923776e-01 | 0.101 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 7.923776e-01 | 0.101 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 7.923776e-01 | 0.101 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 7.923776e-01 | 0.101 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 7.923776e-01 | 0.101 |
R-HSA-156842 | Eukaryotic Translation Elongation | 7.964271e-01 | 0.099 |
R-HSA-74752 | Signaling by Insulin receptor | 7.964271e-01 | 0.099 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 7.983448e-01 | 0.098 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 7.983448e-01 | 0.098 |
R-HSA-72306 | tRNA processing | 7.991646e-01 | 0.097 |
R-HSA-2029481 | FCGR activation | 8.008341e-01 | 0.096 |
R-HSA-9634597 | GPER1 signaling | 8.041408e-01 | 0.095 |
R-HSA-425410 | Metal ion SLC transporters | 8.041408e-01 | 0.095 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 8.051565e-01 | 0.094 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 8.093953e-01 | 0.092 |
R-HSA-73893 | DNA Damage Bypass | 8.097706e-01 | 0.092 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 8.097706e-01 | 0.092 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 8.135518e-01 | 0.090 |
R-HSA-72764 | Eukaryotic Translation Termination | 8.135518e-01 | 0.090 |
R-HSA-1296071 | Potassium Channels | 8.176272e-01 | 0.087 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 8.205503e-01 | 0.086 |
R-HSA-611105 | Respiratory electron transport | 8.242671e-01 | 0.084 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 8.257094e-01 | 0.083 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 8.257094e-01 | 0.083 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 8.257094e-01 | 0.083 |
R-HSA-68949 | Orc1 removal from chromatin | 8.257094e-01 | 0.083 |
R-HSA-6794361 | Neurexins and neuroligins | 8.257094e-01 | 0.083 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 8.257094e-01 | 0.083 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 8.307204e-01 | 0.081 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 8.307204e-01 | 0.081 |
R-HSA-72649 | Translation initiation complex formation | 8.355877e-01 | 0.078 |
R-HSA-2408557 | Selenocysteine synthesis | 8.368310e-01 | 0.077 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 8.368310e-01 | 0.077 |
R-HSA-192823 | Viral mRNA Translation | 8.439875e-01 | 0.074 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 8.449073e-01 | 0.073 |
R-HSA-193648 | NRAGE signals death through JNK | 8.449073e-01 | 0.073 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 8.474581e-01 | 0.072 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 8.508583e-01 | 0.070 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 8.508583e-01 | 0.070 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 8.536996e-01 | 0.069 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 8.536996e-01 | 0.069 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 8.536996e-01 | 0.069 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 8.579075e-01 | 0.067 |
R-HSA-9033241 | Peroxisomal protein import | 8.579075e-01 | 0.067 |
R-HSA-8979227 | Triglyceride metabolism | 8.579075e-01 | 0.067 |
R-HSA-69239 | Synthesis of DNA | 8.606492e-01 | 0.065 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 8.619946e-01 | 0.064 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 8.619946e-01 | 0.064 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 8.619946e-01 | 0.064 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 8.619946e-01 | 0.064 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 8.619946e-01 | 0.064 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 8.619946e-01 | 0.064 |
R-HSA-2672351 | Stimuli-sensing channels | 8.637800e-01 | 0.064 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 8.637800e-01 | 0.064 |
R-HSA-211976 | Endogenous sterols | 8.659643e-01 | 0.062 |
R-HSA-9707616 | Heme signaling | 8.698201e-01 | 0.061 |
R-HSA-9824443 | Parasitic Infection Pathways | 8.705104e-01 | 0.060 |
R-HSA-9658195 | Leishmania infection | 8.705104e-01 | 0.060 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 8.716213e-01 | 0.060 |
R-HSA-8957322 | Metabolism of steroids | 8.724216e-01 | 0.059 |
R-HSA-6799198 | Complex I biogenesis | 8.735652e-01 | 0.059 |
R-HSA-157118 | Signaling by NOTCH | 8.740414e-01 | 0.058 |
R-HSA-211981 | Xenobiotics | 8.772028e-01 | 0.057 |
R-HSA-1234174 | Cellular response to hypoxia | 8.807360e-01 | 0.055 |
R-HSA-9610379 | HCMV Late Events | 8.837516e-01 | 0.054 |
R-HSA-9711097 | Cellular response to starvation | 8.860516e-01 | 0.053 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 8.875009e-01 | 0.052 |
R-HSA-5619115 | Disorders of transmembrane transporters | 8.877810e-01 | 0.052 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 8.969370e-01 | 0.047 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 8.969370e-01 | 0.047 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 8.999035e-01 | 0.046 |
R-HSA-8978934 | Metabolism of cofactors | 8.999035e-01 | 0.046 |
R-HSA-5632684 | Hedgehog 'on' state | 8.999035e-01 | 0.046 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.005438e-01 | 0.045 |
R-HSA-74259 | Purine catabolism | 9.027847e-01 | 0.044 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 9.027847e-01 | 0.044 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 9.027847e-01 | 0.044 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 9.027847e-01 | 0.044 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 9.055832e-01 | 0.043 |
R-HSA-69052 | Switching of origins to a post-replicative state | 9.055832e-01 | 0.043 |
R-HSA-9013694 | Signaling by NOTCH4 | 9.083013e-01 | 0.042 |
R-HSA-1236394 | Signaling by ERBB4 | 9.083013e-01 | 0.042 |
R-HSA-6809371 | Formation of the cornified envelope | 9.101397e-01 | 0.041 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.108924e-01 | 0.041 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 9.109413e-01 | 0.041 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 9.135054e-01 | 0.039 |
R-HSA-1980143 | Signaling by NOTCH1 | 9.135054e-01 | 0.039 |
R-HSA-418555 | G alpha (s) signalling events | 9.142393e-01 | 0.039 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 9.142635e-01 | 0.039 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 9.142635e-01 | 0.039 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 9.142635e-01 | 0.039 |
R-HSA-9694635 | Translation of Structural Proteins | 9.159959e-01 | 0.038 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.162583e-01 | 0.038 |
R-HSA-73864 | RNA Polymerase I Transcription | 9.184149e-01 | 0.037 |
R-HSA-191273 | Cholesterol biosynthesis | 9.184149e-01 | 0.037 |
R-HSA-8951664 | Neddylation | 9.200121e-01 | 0.036 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 9.230462e-01 | 0.035 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 9.252625e-01 | 0.034 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 9.315365e-01 | 0.031 |
R-HSA-390918 | Peroxisomal lipid metabolism | 9.315365e-01 | 0.031 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 9.331883e-01 | 0.030 |
R-HSA-6794362 | Protein-protein interactions at synapses | 9.335088e-01 | 0.030 |
R-HSA-3781865 | Diseases of glycosylation | 9.345795e-01 | 0.029 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 9.354244e-01 | 0.029 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 9.354244e-01 | 0.029 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.355305e-01 | 0.029 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.372849e-01 | 0.028 |
R-HSA-5173105 | O-linked glycosylation | 9.385202e-01 | 0.028 |
R-HSA-9948299 | Ribosome-associated quality control | 9.399776e-01 | 0.027 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.410574e-01 | 0.026 |
R-HSA-112310 | Neurotransmitter release cycle | 9.442071e-01 | 0.025 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 9.488936e-01 | 0.023 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 9.503667e-01 | 0.022 |
R-HSA-68867 | Assembly of the pre-replicative complex | 9.503667e-01 | 0.022 |
R-HSA-72766 | Translation | 9.504400e-01 | 0.022 |
R-HSA-428157 | Sphingolipid metabolism | 9.544903e-01 | 0.020 |
R-HSA-9758941 | Gastrulation | 9.550927e-01 | 0.020 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.561732e-01 | 0.019 |
R-HSA-422356 | Regulation of insulin secretion | 9.583572e-01 | 0.018 |
R-HSA-69306 | DNA Replication | 9.592676e-01 | 0.018 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.595581e-01 | 0.018 |
R-HSA-9614085 | FOXO-mediated transcription | 9.595581e-01 | 0.018 |
R-HSA-418346 | Platelet homeostasis | 9.680010e-01 | 0.014 |
R-HSA-69002 | DNA Replication Pre-Initiation | 9.706919e-01 | 0.013 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.715377e-01 | 0.013 |
R-HSA-2871796 | FCERI mediated MAPK activation | 9.731569e-01 | 0.012 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 9.738701e-01 | 0.011 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.757511e-01 | 0.011 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.757511e-01 | 0.011 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.759865e-01 | 0.011 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.765197e-01 | 0.010 |
R-HSA-909733 | Interferon alpha/beta signaling | 9.768141e-01 | 0.010 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 9.768141e-01 | 0.010 |
R-HSA-2980736 | Peptide hormone metabolism | 9.781338e-01 | 0.010 |
R-HSA-15869 | Metabolism of nucleotides | 9.794901e-01 | 0.009 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.805524e-01 | 0.009 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.825421e-01 | 0.008 |
R-HSA-977606 | Regulation of Complement cascade | 9.827040e-01 | 0.008 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 9.833563e-01 | 0.007 |
R-HSA-8956319 | Nucleotide catabolism | 9.850625e-01 | 0.007 |
R-HSA-416476 | G alpha (q) signalling events | 9.892112e-01 | 0.005 |
R-HSA-6805567 | Keratinization | 9.897298e-01 | 0.004 |
R-HSA-382551 | Transport of small molecules | 9.909000e-01 | 0.004 |
R-HSA-166658 | Complement cascade | 9.914463e-01 | 0.004 |
R-HSA-72312 | rRNA processing | 9.947459e-01 | 0.002 |
R-HSA-1483257 | Phospholipid metabolism | 9.948024e-01 | 0.002 |
R-HSA-418594 | G alpha (i) signalling events | 9.948524e-01 | 0.002 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 9.955183e-01 | 0.002 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.955915e-01 | 0.002 |
R-HSA-372790 | Signaling by GPCR | 9.958952e-01 | 0.002 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.959587e-01 | 0.002 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.979751e-01 | 0.001 |
R-HSA-9640148 | Infection with Enterobacteria | 9.984918e-01 | 0.001 |
R-HSA-9748784 | Drug ADME | 9.990590e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.994004e-01 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 9.994938e-01 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.995566e-01 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 9.996702e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.998087e-01 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 9.998402e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 9.999539e-01 | 0.000 |
R-HSA-211859 | Biological oxidations | 9.999982e-01 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 9.999995e-01 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.907 | 0.206 | 2 | 0.923 |
CLK3 |
0.892 | 0.203 | 1 | 0.820 |
PIM3 |
0.892 | 0.138 | -3 | 0.878 |
PRKD1 |
0.889 | 0.166 | -3 | 0.856 |
PRPK |
0.889 | -0.086 | -1 | 0.885 |
CDC7 |
0.888 | -0.028 | 1 | 0.818 |
PRKD2 |
0.888 | 0.179 | -3 | 0.807 |
IKKB |
0.888 | -0.049 | -2 | 0.771 |
CAMK1B |
0.887 | 0.077 | -3 | 0.905 |
GCN2 |
0.887 | -0.099 | 2 | 0.832 |
MOS |
0.887 | 0.037 | 1 | 0.852 |
RIPK3 |
0.887 | 0.094 | 3 | 0.814 |
DSTYK |
0.886 | 0.011 | 2 | 0.925 |
RAF1 |
0.886 | -0.061 | 1 | 0.860 |
NLK |
0.886 | 0.063 | 1 | 0.819 |
PKN3 |
0.886 | 0.113 | -3 | 0.874 |
ATR |
0.886 | 0.086 | 1 | 0.874 |
TBK1 |
0.886 | -0.046 | 1 | 0.778 |
ULK2 |
0.885 | -0.076 | 2 | 0.832 |
WNK1 |
0.885 | 0.099 | -2 | 0.887 |
NUAK2 |
0.885 | 0.129 | -3 | 0.883 |
PKN2 |
0.884 | 0.136 | -3 | 0.886 |
SKMLCK |
0.884 | 0.145 | -2 | 0.875 |
NDR2 |
0.884 | 0.039 | -3 | 0.882 |
CDKL1 |
0.884 | 0.082 | -3 | 0.842 |
MTOR |
0.883 | -0.097 | 1 | 0.803 |
BMPR2 |
0.883 | -0.068 | -2 | 0.900 |
MST4 |
0.883 | 0.103 | 2 | 0.892 |
PIM1 |
0.882 | 0.163 | -3 | 0.823 |
CAMK2G |
0.882 | -0.044 | 2 | 0.841 |
ERK5 |
0.882 | 0.067 | 1 | 0.795 |
RSK2 |
0.882 | 0.104 | -3 | 0.808 |
IKKE |
0.882 | -0.080 | 1 | 0.767 |
CHAK2 |
0.881 | 0.064 | -1 | 0.873 |
AMPKA1 |
0.881 | 0.140 | -3 | 0.896 |
PDHK4 |
0.881 | -0.294 | 1 | 0.867 |
MLK1 |
0.880 | -0.000 | 2 | 0.856 |
TGFBR2 |
0.880 | 0.027 | -2 | 0.805 |
PKCD |
0.880 | 0.133 | 2 | 0.839 |
NEK6 |
0.880 | -0.009 | -2 | 0.872 |
NIK |
0.880 | 0.050 | -3 | 0.927 |
MARK4 |
0.880 | 0.110 | 4 | 0.870 |
TSSK2 |
0.880 | 0.166 | -5 | 0.871 |
NDR1 |
0.880 | 0.040 | -3 | 0.878 |
CAMLCK |
0.880 | 0.072 | -2 | 0.877 |
TSSK1 |
0.879 | 0.186 | -3 | 0.911 |
CDKL5 |
0.879 | 0.095 | -3 | 0.831 |
NEK7 |
0.879 | -0.087 | -3 | 0.870 |
SRPK1 |
0.878 | 0.110 | -3 | 0.786 |
AURC |
0.878 | 0.141 | -2 | 0.700 |
RSK3 |
0.877 | 0.064 | -3 | 0.808 |
P90RSK |
0.877 | 0.060 | -3 | 0.809 |
PKACG |
0.877 | 0.099 | -2 | 0.793 |
MAPKAPK3 |
0.876 | 0.054 | -3 | 0.819 |
DAPK2 |
0.876 | 0.052 | -3 | 0.909 |
AMPKA2 |
0.876 | 0.130 | -3 | 0.864 |
CAMK2D |
0.876 | 0.023 | -3 | 0.885 |
P70S6KB |
0.874 | 0.057 | -3 | 0.839 |
HIPK4 |
0.874 | 0.062 | 1 | 0.781 |
WNK3 |
0.874 | -0.116 | 1 | 0.861 |
PDHK1 |
0.874 | -0.278 | 1 | 0.859 |
NEK9 |
0.874 | -0.039 | 2 | 0.882 |
IKKA |
0.874 | -0.031 | -2 | 0.760 |
ICK |
0.873 | 0.064 | -3 | 0.875 |
GRK5 |
0.873 | -0.158 | -3 | 0.902 |
MNK2 |
0.873 | 0.107 | -2 | 0.828 |
MLK2 |
0.873 | 0.014 | 2 | 0.862 |
ULK1 |
0.872 | -0.159 | -3 | 0.853 |
IRE1 |
0.872 | 0.010 | 1 | 0.851 |
PRKD3 |
0.872 | 0.103 | -3 | 0.781 |
MELK |
0.872 | 0.104 | -3 | 0.847 |
RIPK1 |
0.872 | -0.062 | 1 | 0.874 |
HUNK |
0.871 | -0.114 | 2 | 0.847 |
NIM1 |
0.871 | 0.003 | 3 | 0.820 |
NUAK1 |
0.871 | 0.080 | -3 | 0.836 |
CAMK4 |
0.871 | 0.022 | -3 | 0.867 |
LATS2 |
0.870 | -0.020 | -5 | 0.732 |
GRK1 |
0.870 | 0.014 | -2 | 0.772 |
PKR |
0.870 | 0.121 | 1 | 0.882 |
ANKRD3 |
0.870 | -0.047 | 1 | 0.905 |
PAK1 |
0.870 | 0.043 | -2 | 0.804 |
MLK3 |
0.870 | 0.031 | 2 | 0.789 |
MAPKAPK2 |
0.870 | 0.050 | -3 | 0.772 |
ATM |
0.869 | 0.060 | 1 | 0.821 |
MASTL |
0.869 | -0.195 | -2 | 0.827 |
KIS |
0.869 | -0.005 | 1 | 0.666 |
GRK6 |
0.869 | -0.057 | 1 | 0.836 |
PKCB |
0.869 | 0.097 | 2 | 0.789 |
AURB |
0.869 | 0.099 | -2 | 0.694 |
PKG2 |
0.869 | 0.140 | -2 | 0.738 |
PAK3 |
0.869 | 0.012 | -2 | 0.807 |
PKCA |
0.868 | 0.090 | 2 | 0.780 |
DLK |
0.867 | -0.149 | 1 | 0.853 |
PHKG1 |
0.867 | 0.044 | -3 | 0.868 |
PKCG |
0.866 | 0.051 | 2 | 0.790 |
SRPK2 |
0.866 | 0.074 | -3 | 0.709 |
IRE2 |
0.866 | 0.021 | 2 | 0.793 |
CAMK2B |
0.866 | 0.039 | 2 | 0.805 |
MNK1 |
0.866 | 0.094 | -2 | 0.842 |
PLK1 |
0.866 | -0.015 | -2 | 0.825 |
QSK |
0.866 | 0.102 | 4 | 0.850 |
SMG1 |
0.866 | 0.104 | 1 | 0.835 |
PKACB |
0.865 | 0.118 | -2 | 0.723 |
QIK |
0.865 | 0.010 | -3 | 0.879 |
MYLK4 |
0.865 | 0.067 | -2 | 0.799 |
SGK3 |
0.865 | 0.125 | -3 | 0.810 |
PAK6 |
0.865 | 0.084 | -2 | 0.734 |
TTBK2 |
0.865 | -0.162 | 2 | 0.759 |
BCKDK |
0.865 | -0.240 | -1 | 0.813 |
CLK1 |
0.864 | 0.114 | -3 | 0.783 |
PKCZ |
0.864 | 0.048 | 2 | 0.833 |
CDK8 |
0.864 | -0.030 | 1 | 0.643 |
ALK4 |
0.864 | 0.013 | -2 | 0.845 |
FAM20C |
0.864 | 0.034 | 2 | 0.612 |
CHAK1 |
0.864 | -0.023 | 2 | 0.829 |
BMPR1B |
0.864 | 0.091 | 1 | 0.766 |
CLK4 |
0.863 | 0.082 | -3 | 0.803 |
NEK2 |
0.863 | -0.015 | 2 | 0.859 |
SIK |
0.863 | 0.073 | -3 | 0.805 |
MSK2 |
0.863 | -0.013 | -3 | 0.780 |
CAMK2A |
0.863 | 0.034 | 2 | 0.821 |
MARK3 |
0.863 | 0.129 | 4 | 0.834 |
TGFBR1 |
0.863 | 0.046 | -2 | 0.817 |
RSK4 |
0.863 | 0.074 | -3 | 0.775 |
PKCH |
0.863 | 0.038 | 2 | 0.771 |
SRPK3 |
0.862 | 0.052 | -3 | 0.762 |
AKT2 |
0.862 | 0.102 | -3 | 0.724 |
LATS1 |
0.862 | 0.036 | -3 | 0.893 |
MSK1 |
0.861 | 0.053 | -3 | 0.791 |
VRK2 |
0.861 | -0.061 | 1 | 0.893 |
MLK4 |
0.861 | -0.024 | 2 | 0.763 |
GRK4 |
0.861 | -0.176 | -2 | 0.815 |
CDK5 |
0.861 | 0.049 | 1 | 0.667 |
MARK2 |
0.860 | 0.103 | 4 | 0.793 |
PIM2 |
0.860 | 0.102 | -3 | 0.786 |
YSK4 |
0.860 | -0.086 | 1 | 0.803 |
PRKX |
0.860 | 0.145 | -3 | 0.719 |
BRSK2 |
0.860 | 0.005 | -3 | 0.861 |
CDK7 |
0.859 | -0.029 | 1 | 0.643 |
CAMK1G |
0.859 | 0.045 | -3 | 0.802 |
CHK1 |
0.859 | 0.028 | -3 | 0.877 |
DYRK2 |
0.859 | 0.004 | 1 | 0.669 |
PAK2 |
0.859 | -0.029 | -2 | 0.785 |
SSTK |
0.859 | 0.162 | 4 | 0.824 |
MEK1 |
0.859 | -0.158 | 2 | 0.874 |
CDK19 |
0.858 | -0.024 | 1 | 0.602 |
BRSK1 |
0.858 | 0.005 | -3 | 0.837 |
DCAMKL1 |
0.858 | 0.074 | -3 | 0.826 |
DNAPK |
0.858 | 0.064 | 1 | 0.770 |
CLK2 |
0.858 | 0.149 | -3 | 0.787 |
IRAK4 |
0.858 | 0.045 | 1 | 0.868 |
PLK3 |
0.857 | -0.023 | 2 | 0.809 |
JNK2 |
0.857 | 0.039 | 1 | 0.577 |
ACVR2B |
0.857 | 0.011 | -2 | 0.815 |
P38A |
0.856 | 0.026 | 1 | 0.682 |
ACVR2A |
0.856 | -0.007 | -2 | 0.803 |
JNK3 |
0.856 | 0.010 | 1 | 0.618 |
GRK7 |
0.856 | 0.008 | 1 | 0.769 |
CDK1 |
0.856 | 0.012 | 1 | 0.588 |
HRI |
0.856 | -0.074 | -2 | 0.865 |
TLK2 |
0.856 | -0.067 | 1 | 0.842 |
DRAK1 |
0.855 | -0.025 | 1 | 0.799 |
CDK18 |
0.855 | 0.013 | 1 | 0.573 |
CDK13 |
0.855 | -0.042 | 1 | 0.615 |
SNRK |
0.855 | -0.116 | 2 | 0.726 |
NEK5 |
0.854 | 0.036 | 1 | 0.892 |
AURA |
0.854 | 0.021 | -2 | 0.653 |
PERK |
0.854 | -0.083 | -2 | 0.842 |
ALK2 |
0.854 | 0.007 | -2 | 0.820 |
MARK1 |
0.853 | 0.040 | 4 | 0.840 |
AKT1 |
0.853 | 0.101 | -3 | 0.746 |
MST3 |
0.853 | 0.065 | 2 | 0.883 |
PHKG2 |
0.853 | 0.027 | -3 | 0.845 |
DCAMKL2 |
0.853 | 0.056 | -3 | 0.849 |
MAPKAPK5 |
0.852 | -0.091 | -3 | 0.760 |
CDK2 |
0.852 | -0.005 | 1 | 0.679 |
MPSK1 |
0.852 | 0.166 | 1 | 0.859 |
PKACA |
0.852 | 0.097 | -2 | 0.684 |
PKCT |
0.852 | 0.036 | 2 | 0.782 |
PLK4 |
0.851 | -0.083 | 2 | 0.664 |
ERK1 |
0.851 | 0.000 | 1 | 0.591 |
WNK4 |
0.851 | -0.068 | -2 | 0.873 |
SMMLCK |
0.851 | 0.025 | -3 | 0.862 |
P38B |
0.851 | 0.021 | 1 | 0.594 |
HIPK1 |
0.851 | 0.033 | 1 | 0.694 |
MEKK1 |
0.850 | -0.111 | 1 | 0.857 |
PINK1 |
0.850 | -0.121 | 1 | 0.857 |
GSK3B |
0.850 | 0.077 | 4 | 0.510 |
BRAF |
0.849 | -0.111 | -4 | 0.851 |
GAK |
0.849 | 0.212 | 1 | 0.902 |
MEKK2 |
0.849 | -0.070 | 2 | 0.846 |
MEK5 |
0.849 | -0.220 | 2 | 0.866 |
P70S6K |
0.848 | 0.012 | -3 | 0.749 |
PRP4 |
0.848 | 0.022 | -3 | 0.807 |
MEKK3 |
0.848 | -0.161 | 1 | 0.832 |
CDK9 |
0.848 | -0.054 | 1 | 0.626 |
HIPK2 |
0.848 | 0.030 | 1 | 0.575 |
ZAK |
0.848 | -0.136 | 1 | 0.825 |
ERK2 |
0.848 | -0.047 | 1 | 0.637 |
P38G |
0.847 | -0.006 | 1 | 0.499 |
CDK12 |
0.847 | -0.043 | 1 | 0.585 |
PKCI |
0.847 | 0.032 | 2 | 0.796 |
DYRK1A |
0.847 | 0.000 | 1 | 0.715 |
GSK3A |
0.846 | 0.098 | 4 | 0.520 |
TAO3 |
0.846 | -0.020 | 1 | 0.822 |
GRK2 |
0.846 | -0.103 | -2 | 0.719 |
CDK17 |
0.846 | -0.028 | 1 | 0.509 |
TLK1 |
0.846 | -0.118 | -2 | 0.836 |
PKCE |
0.845 | 0.086 | 2 | 0.772 |
CDK3 |
0.845 | 0.049 | 1 | 0.529 |
CDK14 |
0.845 | 0.005 | 1 | 0.624 |
CAMK1D |
0.845 | 0.041 | -3 | 0.726 |
HIPK3 |
0.845 | -0.009 | 1 | 0.693 |
BMPR1A |
0.844 | 0.040 | 1 | 0.745 |
PDK1 |
0.844 | 0.034 | 1 | 0.864 |
PKN1 |
0.843 | 0.071 | -3 | 0.765 |
CDK10 |
0.843 | 0.039 | 1 | 0.611 |
PASK |
0.843 | -0.017 | -3 | 0.893 |
CK1E |
0.843 | -0.045 | -3 | 0.559 |
NEK8 |
0.843 | -0.091 | 2 | 0.865 |
IRAK1 |
0.843 | -0.168 | -1 | 0.799 |
TTBK1 |
0.842 | -0.146 | 2 | 0.678 |
CAMKK1 |
0.842 | -0.098 | -2 | 0.788 |
PAK5 |
0.842 | 0.003 | -2 | 0.661 |
TAO2 |
0.842 | -0.034 | 2 | 0.895 |
NEK11 |
0.841 | -0.124 | 1 | 0.836 |
NEK4 |
0.841 | -0.030 | 1 | 0.841 |
AKT3 |
0.840 | 0.093 | -3 | 0.657 |
LKB1 |
0.840 | -0.016 | -3 | 0.876 |
DAPK3 |
0.840 | 0.042 | -3 | 0.841 |
P38D |
0.840 | 0.015 | 1 | 0.536 |
EEF2K |
0.840 | 0.046 | 3 | 0.893 |
TNIK |
0.839 | 0.070 | 3 | 0.918 |
DYRK4 |
0.839 | -0.003 | 1 | 0.585 |
HGK |
0.839 | 0.026 | 3 | 0.923 |
DYRK3 |
0.839 | 0.002 | 1 | 0.700 |
CDK16 |
0.839 | 0.007 | 1 | 0.530 |
PAK4 |
0.838 | 0.010 | -2 | 0.667 |
ERK7 |
0.838 | 0.043 | 2 | 0.582 |
MRCKB |
0.838 | 0.091 | -3 | 0.783 |
CAMKK2 |
0.838 | -0.094 | -2 | 0.793 |
LOK |
0.838 | 0.033 | -2 | 0.813 |
BUB1 |
0.838 | 0.153 | -5 | 0.780 |
GCK |
0.838 | 0.002 | 1 | 0.821 |
MINK |
0.838 | 0.008 | 1 | 0.831 |
DYRK1B |
0.837 | -0.029 | 1 | 0.625 |
CAMK1A |
0.837 | 0.068 | -3 | 0.694 |
CHK2 |
0.837 | 0.043 | -3 | 0.671 |
NEK1 |
0.836 | 0.022 | 1 | 0.860 |
SGK1 |
0.836 | 0.084 | -3 | 0.644 |
MAP3K15 |
0.836 | -0.033 | 1 | 0.813 |
MRCKA |
0.836 | 0.077 | -3 | 0.800 |
ROCK2 |
0.836 | 0.110 | -3 | 0.831 |
CK1G1 |
0.836 | -0.071 | -3 | 0.557 |
TAK1 |
0.836 | -0.018 | 1 | 0.863 |
MST2 |
0.836 | -0.067 | 1 | 0.829 |
MEKK6 |
0.835 | -0.069 | 1 | 0.829 |
VRK1 |
0.834 | -0.045 | 2 | 0.886 |
CK1D |
0.834 | -0.045 | -3 | 0.507 |
HPK1 |
0.833 | 0.005 | 1 | 0.803 |
CK1A2 |
0.833 | -0.037 | -3 | 0.506 |
DAPK1 |
0.833 | 0.014 | -3 | 0.823 |
LRRK2 |
0.833 | -0.097 | 2 | 0.892 |
PBK |
0.832 | 0.164 | 1 | 0.845 |
MAK |
0.832 | 0.111 | -2 | 0.775 |
CDK6 |
0.832 | 0.005 | 1 | 0.607 |
KHS1 |
0.832 | 0.051 | 1 | 0.808 |
PLK2 |
0.831 | 0.008 | -3 | 0.845 |
JNK1 |
0.830 | -0.028 | 1 | 0.560 |
MST1 |
0.830 | -0.061 | 1 | 0.820 |
GRK3 |
0.830 | -0.102 | -2 | 0.664 |
DMPK1 |
0.830 | 0.127 | -3 | 0.802 |
KHS2 |
0.829 | 0.064 | 1 | 0.816 |
STK33 |
0.829 | -0.131 | 2 | 0.666 |
SLK |
0.829 | -0.052 | -2 | 0.746 |
PKG1 |
0.828 | 0.067 | -2 | 0.662 |
YSK1 |
0.827 | -0.039 | 2 | 0.855 |
CDK4 |
0.826 | -0.025 | 1 | 0.571 |
MOK |
0.825 | 0.051 | 1 | 0.718 |
BIKE |
0.824 | 0.215 | 1 | 0.812 |
RIPK2 |
0.824 | -0.230 | 1 | 0.791 |
ROCK1 |
0.824 | 0.081 | -3 | 0.797 |
CK2A2 |
0.823 | -0.037 | 1 | 0.653 |
HASPIN |
0.823 | 0.065 | -1 | 0.729 |
MEK2 |
0.822 | -0.237 | 2 | 0.847 |
SBK |
0.822 | 0.026 | -3 | 0.601 |
TTK |
0.822 | 0.031 | -2 | 0.823 |
PDHK3_TYR |
0.820 | 0.146 | 4 | 0.877 |
CRIK |
0.820 | 0.070 | -3 | 0.742 |
NEK3 |
0.820 | -0.114 | 1 | 0.818 |
MYO3B |
0.816 | 0.006 | 2 | 0.867 |
OSR1 |
0.815 | -0.074 | 2 | 0.842 |
CK2A1 |
0.814 | -0.043 | 1 | 0.628 |
TESK1_TYR |
0.813 | -0.029 | 3 | 0.921 |
MYO3A |
0.812 | -0.044 | 1 | 0.819 |
PKMYT1_TYR |
0.811 | -0.048 | 3 | 0.895 |
MAP2K4_TYR |
0.810 | -0.093 | -1 | 0.897 |
PDHK4_TYR |
0.810 | 0.001 | 2 | 0.917 |
ASK1 |
0.810 | -0.128 | 1 | 0.798 |
LIMK2_TYR |
0.810 | 0.054 | -3 | 0.932 |
MAP2K7_TYR |
0.810 | -0.180 | 2 | 0.896 |
TAO1 |
0.810 | -0.077 | 1 | 0.767 |
AAK1 |
0.809 | 0.255 | 1 | 0.717 |
BMPR2_TYR |
0.809 | -0.019 | -1 | 0.892 |
MAP2K6_TYR |
0.809 | -0.076 | -1 | 0.896 |
EPHA6 |
0.808 | 0.094 | -1 | 0.889 |
PINK1_TYR |
0.807 | -0.162 | 1 | 0.858 |
RET |
0.806 | -0.049 | 1 | 0.838 |
EPHB4 |
0.805 | 0.061 | -1 | 0.879 |
PDHK1_TYR |
0.805 | -0.124 | -1 | 0.908 |
YANK3 |
0.804 | -0.085 | 2 | 0.443 |
ALPHAK3 |
0.804 | -0.119 | -1 | 0.796 |
TYRO3 |
0.804 | -0.013 | 3 | 0.863 |
TYK2 |
0.803 | -0.101 | 1 | 0.841 |
ROS1 |
0.803 | -0.028 | 3 | 0.843 |
MST1R |
0.802 | -0.077 | 3 | 0.864 |
YES1 |
0.802 | 0.069 | -1 | 0.894 |
ABL2 |
0.802 | 0.041 | -1 | 0.849 |
JAK2 |
0.801 | -0.074 | 1 | 0.834 |
LIMK1_TYR |
0.801 | -0.158 | 2 | 0.894 |
TXK |
0.801 | 0.126 | 1 | 0.811 |
CSF1R |
0.801 | -0.026 | 3 | 0.850 |
TNK2 |
0.800 | 0.063 | 3 | 0.811 |
DDR1 |
0.800 | -0.094 | 4 | 0.797 |
HCK |
0.799 | 0.062 | -1 | 0.881 |
LCK |
0.799 | 0.131 | -1 | 0.879 |
BLK |
0.798 | 0.162 | -1 | 0.883 |
ABL1 |
0.798 | 0.019 | -1 | 0.844 |
ITK |
0.797 | 0.042 | -1 | 0.858 |
FGR |
0.796 | -0.048 | 1 | 0.879 |
JAK3 |
0.796 | -0.084 | 1 | 0.825 |
STLK3 |
0.795 | -0.214 | 1 | 0.782 |
CK1A |
0.795 | -0.076 | -3 | 0.411 |
EPHB1 |
0.794 | -0.023 | 1 | 0.838 |
SRMS |
0.793 | -0.031 | 1 | 0.836 |
FER |
0.793 | -0.128 | 1 | 0.862 |
EPHB3 |
0.793 | -0.007 | -1 | 0.865 |
INSRR |
0.793 | -0.098 | 3 | 0.810 |
TNNI3K_TYR |
0.793 | 0.024 | 1 | 0.850 |
TNK1 |
0.793 | -0.034 | 3 | 0.838 |
EPHA4 |
0.792 | -0.042 | 2 | 0.808 |
JAK1 |
0.792 | -0.011 | 1 | 0.790 |
PDGFRB |
0.792 | -0.129 | 3 | 0.863 |
EPHB2 |
0.792 | 0.003 | -1 | 0.861 |
BMX |
0.791 | 0.029 | -1 | 0.791 |
KDR |
0.791 | -0.066 | 3 | 0.812 |
KIT |
0.791 | -0.099 | 3 | 0.851 |
NEK10_TYR |
0.791 | -0.071 | 1 | 0.721 |
FLT3 |
0.790 | -0.115 | 3 | 0.856 |
AXL |
0.790 | -0.055 | 3 | 0.832 |
TEC |
0.789 | 0.007 | -1 | 0.812 |
BTK |
0.789 | -0.059 | -1 | 0.832 |
MERTK |
0.789 | -0.026 | 3 | 0.824 |
TEK |
0.788 | -0.121 | 3 | 0.805 |
FYN |
0.788 | 0.080 | -1 | 0.857 |
FGFR2 |
0.787 | -0.171 | 3 | 0.842 |
WEE1_TYR |
0.785 | -0.081 | -1 | 0.790 |
PDGFRA |
0.785 | -0.181 | 3 | 0.863 |
MET |
0.784 | -0.112 | 3 | 0.836 |
EPHA7 |
0.784 | -0.035 | 2 | 0.816 |
FGFR1 |
0.784 | -0.171 | 3 | 0.820 |
ALK |
0.784 | -0.124 | 3 | 0.778 |
LYN |
0.783 | 0.005 | 3 | 0.778 |
EPHA1 |
0.783 | -0.041 | 3 | 0.822 |
LTK |
0.783 | -0.105 | 3 | 0.795 |
DDR2 |
0.783 | 0.004 | 3 | 0.794 |
FRK |
0.782 | -0.047 | -1 | 0.888 |
FLT1 |
0.781 | -0.114 | -1 | 0.843 |
EPHA3 |
0.780 | -0.118 | 2 | 0.784 |
PTK6 |
0.780 | -0.202 | -1 | 0.775 |
NTRK1 |
0.780 | -0.211 | -1 | 0.840 |
PTK2B |
0.778 | -0.034 | -1 | 0.836 |
SRC |
0.777 | -0.004 | -1 | 0.855 |
NTRK2 |
0.777 | -0.195 | 3 | 0.808 |
ERBB2 |
0.777 | -0.197 | 1 | 0.784 |
INSR |
0.777 | -0.175 | 3 | 0.792 |
FLT4 |
0.776 | -0.191 | 3 | 0.807 |
FGFR3 |
0.776 | -0.178 | 3 | 0.815 |
EPHA5 |
0.774 | -0.077 | 2 | 0.792 |
NTRK3 |
0.773 | -0.169 | -1 | 0.790 |
MATK |
0.773 | -0.147 | -1 | 0.765 |
EPHA8 |
0.772 | -0.087 | -1 | 0.844 |
CK1G3 |
0.772 | -0.092 | -3 | 0.364 |
YANK2 |
0.771 | -0.116 | 2 | 0.456 |
CSK |
0.770 | -0.161 | 2 | 0.815 |
EGFR |
0.768 | -0.126 | 1 | 0.692 |
PTK2 |
0.768 | -0.015 | -1 | 0.813 |
FGFR4 |
0.765 | -0.138 | -1 | 0.796 |
MUSK |
0.763 | -0.160 | 1 | 0.692 |
EPHA2 |
0.762 | -0.099 | -1 | 0.809 |
SYK |
0.760 | -0.075 | -1 | 0.793 |
IGF1R |
0.759 | -0.195 | 3 | 0.729 |
ERBB4 |
0.754 | -0.111 | 1 | 0.689 |
CK1G2 |
0.753 | -0.102 | -3 | 0.468 |
FES |
0.748 | -0.171 | -1 | 0.761 |
ZAP70 |
0.740 | -0.100 | -1 | 0.725 |