Motif 800 (n=702)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0A0A6YYK5 None S23 ochoa Uncharacterized protein None
A6H8Y1 BDP1 S420 ochoa Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}.
A8MW92 PHF20L1 Y586 ochoa PHD finger protein 20-like protein 1 Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}.
A8MW92 PHF20L1 S589 ochoa PHD finger protein 20-like protein 1 Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}.
H0YHG0 None S475 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
H0YIS7 RNASEK-C17orf49 S187 ochoa BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) Component of chromatin complexes such as the MLL1/MLL and NURF complexes. {ECO:0000256|ARBA:ARBA00059556}.
H3BU86 STX16-NPEPL1 S201 ochoa Syntaxin-16 SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. {ECO:0000256|ARBA:ARBA00037772}.
I3L4J1 None S114 ochoa vesicle-fusing ATPase (EC 3.6.4.6) (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}.
J3KQ70 INO80B-WBP1 S63 ochoa HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) None
O00287 RFXAP S190 ochoa Regulatory factor X-associated protein (RFX-associated protein) (RFX DNA-binding complex 36 kDa subunit) Part of the RFX complex that binds to the X-box of MHC II promoters.
O00401 WASL S207 ochoa Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}.
O00479 HMGN4 S29 ochoa High mobility group nucleosome-binding domain-containing protein 4 (Non-histone chromosomal protein HMG-17-like 3) (Non-histone chromosomal protein) None
O00515 LAD1 S201 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00515 LAD1 S392 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00533 CHL1 S1127 ochoa Neural cell adhesion molecule L1-like protein (Close homolog of L1) [Cleaved into: Processed neural cell adhesion molecule L1-like protein] Extracellular matrix and cell adhesion protein that plays a role in nervous system development and in synaptic plasticity. Both soluble and membranous forms promote neurite outgrowth of cerebellar and hippocampal neurons and suppress neuronal cell death. Plays a role in neuronal positioning of pyramidal neurons and in regulation of both the number of interneurons and the efficacy of GABAergic synapses. May play a role in regulating cell migration in nerve regeneration and cortical development. Potentiates integrin-dependent cell migration towards extracellular matrix proteins. Recruits ANK3 to the plasma membrane (By similarity). {ECO:0000250}.
O00567 NOP56 S520 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00757 FBP2 Y219 ochoa Fructose-1,6-bisphosphatase isozyme 2 (FBPase 2) (EC 3.1.3.11) (D-fructose-1,6-bisphosphate 1-phosphohydrolase 2) (Muscle FBPase) Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate in the presence of divalent cations and probably participates in glycogen synthesis from carbohydrate precursors, such as lactate. {ECO:0000269|PubMed:17350621, ECO:0000269|PubMed:18214967, ECO:0000269|PubMed:33977262}.
O14613 CDC42EP2 S31 ochoa Cdc42 effector protein 2 (Binder of Rho GTPases 1) Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts in a CDC42-dependent manner. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}.
O14617 AP3D1 S764 ochoa AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}.
O14646 CHD1 S367 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O14647 CHD2 S1441 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14654 IRS4 S917 ochoa Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}.
O14662 STX16 S201 ochoa Syntaxin-16 (Syn16) SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. {ECO:0000269|PubMed:18195106}.
O14777 NDC80 S50 ochoa|psp Kinetochore protein NDC80 homolog (Highly expressed in cancer protein) (Kinetochore protein Hec1) (HsHec1) (Kinetochore-associated protein 2) (Retinoblastoma-associated protein HEC) Acts as a component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity (PubMed:12351790, PubMed:14654001, PubMed:14699129, PubMed:15062103, PubMed:15235793, PubMed:15239953, PubMed:15548592, PubMed:16732327, PubMed:30409912, PubMed:9315664). Required for kinetochore integrity and the organization of stable microtubule binding sites in the outer plate of the kinetochore (PubMed:15548592, PubMed:30409912). The NDC80 complex synergistically enhances the affinity of the SKA1 complex for microtubules and may allow the NDC80 complex to track depolymerizing microtubules (PubMed:23085020). Plays a role in chromosome congression and is essential for the end-on attachment of the kinetochores to spindle microtubules (PubMed:23891108, PubMed:25743205). {ECO:0000269|PubMed:12351790, ECO:0000269|PubMed:14654001, ECO:0000269|PubMed:14699129, ECO:0000269|PubMed:15062103, ECO:0000269|PubMed:15235793, ECO:0000269|PubMed:15239953, ECO:0000269|PubMed:15548592, ECO:0000269|PubMed:16732327, ECO:0000269|PubMed:23085020, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:9315664}.
O14950 MYL12B S20 ochoa|psp Myosin regulatory light chain 12B (MLC-2A) (MLC-2) (Myosin regulatory light chain 2-B, smooth muscle isoform) (Myosin regulatory light chain 20 kDa) (MLC20) (Myosin regulatory light chain MRLC2) (SHUJUN-1) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Phosphorylation triggers actin polymerization in vascular smooth muscle. Implicated in cytokinesis, receptor capping, and cell locomotion. {ECO:0000269|PubMed:10965042}.
O14974 PPP1R12A S20 psp Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}.
O14974 PPP1R12A S473 ochoa|psp Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}.
O14976 GAK S1185 ochoa Cyclin-G-associated kinase (EC 2.7.11.1) (DnaJ homolog subfamily C member 26) Associates with cyclin G and CDK5. Seems to act as an auxilin homolog that is involved in the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells. Expression oscillates slightly during the cell cycle, peaking at G1 (PubMed:10625686). May play a role in clathrin-mediated endocytosis and intracellular trafficking, and in the dynamics of clathrin assembly/disassembly (PubMed:18489706). {ECO:0000269|PubMed:10625686, ECO:0000269|PubMed:18489706}.
O14981 BTAF1 S224 ochoa TATA-binding protein-associated factor 172 (EC 3.6.4.-) (ATP-dependent helicase BTAF1) (B-TFIID transcription factor-associated 170 kDa subunit) (TAF(II)170) (TBP-associated factor 172) (TAF-172) Regulates transcription in association with TATA binding protein (TBP). Removes TBP from the TATA box in an ATP-dependent manner.
O15014 ZNF609 S454 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15014 ZNF609 S605 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15042 U2SURP S236 ochoa U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) None
O15066 KIF3B S725 ochoa Kinesin-like protein KIF3B (HH0048) (Microtubule plus end-directed kinesin motor 3B) [Cleaved into: Kinesin-like protein KIF3B, N-terminally processed] Microtubule-based molecular motor that transport intracellular cargos, such as vesicles, organelles and protein complexes. Uses ATP hydrolysis to generate force to bind and move along the microtubule (By similarity). Plays a role in cilia formation (PubMed:32386558). Involved in photoreceptor integrity and opsin trafficking in rod photoreceptors (PubMed:32386558). Transports vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit GRIN2A into neuronal dendrites (By similarity). {ECO:0000250|UniProtKB:Q61771, ECO:0000269|PubMed:32386558}.
O43148 RNMT S71 ochoa mRNA cap guanine-N(7) methyltransferase (EC 2.1.1.56) (RG7MT1) (mRNA (guanine-N(7))-methyltransferase) (mRNA cap methyltransferase) (hCMT1) (hMet) (hcm1p) Catalytic subunit of the mRNA-capping methyltransferase RNMT:RAMAC complex that methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs (PubMed:10347220, PubMed:11114884, PubMed:22099306, PubMed:27422871, PubMed:9705270, PubMed:9790902). Binds RNA containing 5'-terminal GpppC (PubMed:11114884). {ECO:0000269|PubMed:10347220, ECO:0000269|PubMed:11114884, ECO:0000269|PubMed:22099306, ECO:0000269|PubMed:27422871, ECO:0000269|PubMed:9705270, ECO:0000269|PubMed:9790902}.
O43290 SART1 S321 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43623 SNAI2 S158 psp Zinc finger protein SNAI2 (Neural crest transcription factor Slug) (Protein snail homolog 2) Transcriptional repressor that modulates both activator-dependent and basal transcription. Involved in the generation and migration of neural crest cells. Plays a role in mediating RAF1-induced transcriptional repression of the TJ protein, occludin (OCLN) and subsequent oncogenic transformation of epithelial cells (By similarity). Represses BRCA2 expression by binding to its E2-box-containing silencer and recruiting CTBP1 and HDAC1 in breast cells. In epidermal keratinocytes, binds to the E-box in ITGA3 promoter and represses its transcription. Involved in the regulation of ITGB1 and ITGB4 expression and cell adhesion and proliferation in epidermal keratinocytes. Binds to E-box2 domain of BSG and activates its expression during TGFB1-induced epithelial-mesenchymal transition (EMT) in hepatocytes. Represses E-Cadherin/CDH1 transcription via E-box elements. Involved in osteoblast maturation. Binds to RUNX2 and SOC9 promoters and may act as a positive and negative transcription regulator, respectively, in osteoblasts. Binds to CXCL12 promoter via E-box regions in mesenchymal stem cells and osteoblasts. Plays an essential role in TWIST1-induced EMT and its ability to promote invasion and metastasis. {ECO:0000250, ECO:0000269|PubMed:10866665, ECO:0000269|PubMed:11912130, ECO:0000269|PubMed:15734731, ECO:0000269|PubMed:16707493, ECO:0000269|PubMed:19756381, ECO:0000269|PubMed:21182836}.
O60245 PCDH7 S949 ochoa Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) None
O60318 MCM3AP S579 ochoa Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}.
O60524 NEMF S936 ochoa Ribosome quality control complex subunit NEMF (Antigen NY-CO-1) (Nuclear export mediator factor) (Serologically defined colon cancer antigen 1) Key component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes as well as their ubiquitin-mediated proteasomal degradation (PubMed:25578875, PubMed:32726578, PubMed:33406423, PubMed:33909987). Thereby, frees 60S subunit ribosomes from the stalled translation complex and prevents the accumulation of nascent polypeptide chains that are potentially toxic for the cell (PubMed:25578875, PubMed:33406423, PubMed:33909987). Within the RQC complex, NEMF specifically binds stalled 60S ribosomal subunits by recognizing an exposed, nascent chain-conjugated tRNA moiety and promotes the recruitment of LTN1 to stalled 60S subunits (PubMed:25578875). Following binding to stalled 60S ribosomal subunits, NEMF mediates CAT tailing by recruiting alanine-charged tRNA to the A-site and directing the elongation of stalled nascent chains independently of mRNA or 40S subunits, leading to non-templated C-terminal alanine extensions (CAT tails) (PubMed:33406423, PubMed:33909987). Mainly recruits alanine-charged tRNAs, but can also other amino acid-charged tRNAs (PubMed:33406423, PubMed:33909987). CAT tailing is required to promote ubiquitination of stalled nascent chains by different E3 ubiquitin-protein ligases (PubMed:33909987). In the canonical RQC pathway (RQC-L), CAT tailing facilitates LTN1-dependent ubiquitination by exposing lysine residues that would otherwise remain buried in the ribosomal exit tunnel (By similarity). In the alternative RQC pathway (RQC-C) CAT tailing creates an C-degron mainly composed of alanine that is recognized by the CRL2(KLHDC10) and RCHY1/PIRH2 E3 ligases, leading to ubiquitination and degradation of stalled nascent chains (PubMed:33909987). NEMF may also indirectly play a role in nuclear export (PubMed:16103875). {ECO:0000250|UniProtKB:Q12532, ECO:0000269|PubMed:16103875, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33406423, ECO:0000269|PubMed:33909987}.
O60551 NMT2 S61 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60551 NMT2 S66 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60551 NMT2 S68 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60675 MAFK S25 ochoa Transcription factor MafK (Erythroid transcription factor NF-E2 p18 subunit) Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves (PubMed:9150357). However, they act as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2, NFE2L1/NRF1, NFE2L2/NRF2 and NFE2L3/NRF3, and recruiting them to specific DNA-binding sites (PubMed:8932385, PubMed:9150357). Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor (PubMed:9150357). {ECO:0000269|PubMed:8932385, ECO:0000269|PubMed:9150357}.
O60716 CTNND1 S895 ochoa Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}.
O60841 EIF5B S135 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S164 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S186 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O75128 COBL S258 ochoa Protein cordon-bleu Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}.
O75376 NCOR1 S1958 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75400 PRPF40A S888 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S933 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S935 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75475 PSIP1 S102 ochoa PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O75533 SF3B1 S35 ochoa Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
O75940 SMNDC1 S201 ochoa Survival of motor neuron-related-splicing factor 30 (30 kDa splicing factor SMNrp) (SMN-related protein) (Survival motor neuron domain-containing protein 1) Involved in spliceosome assembly. {ECO:0000269|PubMed:11331295, ECO:0000269|PubMed:11331595, ECO:0000269|PubMed:9817934}.
O76021 RSL1D1 S317 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76021 RSL1D1 S469 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O94874 UFL1 S462 ochoa|psp E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O94887 FARP2 S340 ochoa FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}.
O95149 SNUPN Y334 ochoa Snurportin-1 (RNA U transporter 1) Functions as an U snRNP-specific nuclear import adapter. Involved in the trimethylguanosine (m3G)-cap-dependent nuclear import of U snRNPs. Binds specifically to the terminal m3G-cap U snRNAs. {ECO:0000269|PubMed:10209022, ECO:0000269|PubMed:15920472, ECO:0000269|PubMed:16030253, ECO:0000269|PubMed:38413582, ECO:0000269|PubMed:9670026}.
O95239 KIF4A S891 ochoa Chromosome-associated kinesin KIF4A (Chromokinesin-A) Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}.
O95425 SVIL S1314 ochoa Supervillin (Archvillin) (p205/p250) [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}.
O95905 ECD S454 ochoa Protein ecdysoneless homolog (Human suppressor of GCR two) (hSGT1) Regulator of p53/TP53 stability and function. Inhibits MDM2-mediated degradation of p53/TP53 possibly by cooperating in part with TXNIP (PubMed:16849563, PubMed:23880345). May be involved transcriptional regulation. In vitro has intrinsic transactivation activity enhanced by EP300. May be a transcriptional activator required for the expression of glycolytic genes (PubMed:19919181, PubMed:9928932). Involved in regulation of cell cycle progression. Proposed to disrupt Rb-E2F binding leading to transcriptional activation of E2F proteins (PubMed:19640839). The cell cycle -regulating function may depend on its RUVBL1-mediated association with the R2TP complex (PubMed:26711270). May play a role in regulation of pre-mRNA splicing (PubMed:24722212). Participates together with DDX39A in mRNA nuclear export (PubMed:33941617). {ECO:0000269|PubMed:16849563, ECO:0000269|PubMed:19640839, ECO:0000269|PubMed:19919181, ECO:0000269|PubMed:23880345, ECO:0000269|PubMed:26711270, ECO:0000269|PubMed:33941617, ECO:0000305|PubMed:24722212, ECO:0000305|PubMed:9928932}.
O95997 PTTG1 S89 psp Securin (Esp1-associated protein) (Pituitary tumor-transforming gene 1 protein) (Tumor-transforming protein 1) (hPTTG) Regulatory protein, which plays a central role in chromosome stability, in the p53/TP53 pathway, and DNA repair. Probably acts by blocking the action of key proteins. During the mitosis, it blocks Separase/ESPL1 function, preventing the proteolysis of the cohesin complex and the subsequent segregation of the chromosomes. At the onset of anaphase, it is ubiquitinated, conducting to its destruction and to the liberation of ESPL1. Its function is however not limited to a blocking activity, since it is required to activate ESPL1. Negatively regulates the transcriptional activity and related apoptosis activity of TP53. The negative regulation of TP53 may explain the strong transforming capability of the protein when it is overexpressed. May also play a role in DNA repair via its interaction with Ku, possibly by connecting DNA damage-response pathways with sister chromatid separation. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11238996, ECO:0000269|PubMed:11371342, ECO:0000269|PubMed:12355087}.
P00519 ABL1 S619 ochoa|psp Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}.
P00519 ABL1 S620 ochoa Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}.
P02042 HBD S73 ochoa Hemoglobin subunit delta (Delta-globin) (Hemoglobin delta chain) Involved in oxygen transport from the lung to the various peripheral tissues.
P02144 MB S59 ochoa Myoglobin (Nitrite reductase MB) (EC 1.7.-.-) (Pseudoperoxidase MB) (EC 1.11.1.-) Monomeric heme protein which primary function is to store oxygen and facilitate its diffusion within muscle tissues. Reversibly binds oxygen through a pentacoordinated heme iron and enables its timely and efficient release as needed during periods of heightened demand (PubMed:30918256, PubMed:34679218). Depending on the oxidative conditions of tissues and cells, and in addition to its ability to bind oxygen, it also has a nitrite reductase activity whereby it regulates the production of bioactive nitric oxide (PubMed:32891753). Under stress conditions, like hypoxia and anoxia, it also protects cells against reactive oxygen species thanks to its pseudoperoxidase activity (PubMed:34679218). {ECO:0000269|PubMed:30918256, ECO:0000269|PubMed:32891753, ECO:0000269|PubMed:34679218}.
P02144 MB S93 ochoa Myoglobin (Nitrite reductase MB) (EC 1.7.-.-) (Pseudoperoxidase MB) (EC 1.11.1.-) Monomeric heme protein which primary function is to store oxygen and facilitate its diffusion within muscle tissues. Reversibly binds oxygen through a pentacoordinated heme iron and enables its timely and efficient release as needed during periods of heightened demand (PubMed:30918256, PubMed:34679218). Depending on the oxidative conditions of tissues and cells, and in addition to its ability to bind oxygen, it also has a nitrite reductase activity whereby it regulates the production of bioactive nitric oxide (PubMed:32891753). Under stress conditions, like hypoxia and anoxia, it also protects cells against reactive oxygen species thanks to its pseudoperoxidase activity (PubMed:34679218). {ECO:0000269|PubMed:30918256, ECO:0000269|PubMed:32891753, ECO:0000269|PubMed:34679218}.
P04049 RAF1 S604 ochoa RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}.
P04075 ALDOA S100 ochoa Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}.
P04150 NR3C1 S508 ochoa Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.
P04216 THY1 S96 ochoa Thy-1 membrane glycoprotein (CDw90) (Thy-1 antigen) (CD antigen CD90) May play a role in cell-cell or cell-ligand interactions during synaptogenesis and other events in the brain.
P05023 ATP1A1 S40 ochoa Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}.
P05204 HMGN2 S29 ochoa|psp Non-histone chromosomal protein HMG-17 (High mobility group nucleosome-binding domain-containing protein 2) Binds to the inner side of the nucleosomal DNA thus altering the interaction between the DNA and the histone octamer. May be involved in the process which maintains transcribable genes in a unique chromatin conformation (By similarity). {ECO:0000250}.
P05413 FABP3 S35 ochoa Fatty acid-binding protein, heart (Fatty acid-binding protein 3) (Heart-type fatty acid-binding protein) (H-FABP) (Mammary-derived growth inhibitor) (MDGI) (Muscle fatty acid-binding protein) (M-FABP) FABPs are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters.
P05455 SSB S350 ochoa Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}.
P06241 FYN S26 ochoa Tyrosine-protein kinase Fyn (EC 2.7.10.2) (Proto-oncogene Syn) (Proto-oncogene c-Fyn) (Src-like kinase) (SLK) (p59-Fyn) Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance (PubMed:11536198, PubMed:15489916, PubMed:15557120, PubMed:16387660, PubMed:20100835, PubMed:7568038, PubMed:7822789). Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain (PubMed:15489916). Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions (PubMed:15489916). Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin) (PubMed:17194753). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT (PubMed:14707117, PubMed:15536091). Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage (PubMed:16841086). Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL1 and TRPC6 (PubMed:14761972, PubMed:18258597, PubMed:19179337). Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein (PubMed:11162638, PubMed:12788081, PubMed:19652227). Involved in reelin signaling by mediating phosphorylation of DAB1 following reelin (RELN)-binding to its receptor (By similarity). Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation (PubMed:22080863). Phosphorylates PTK2B/PYK2 in response to T-cell receptor activation (PubMed:20028775). Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts (PubMed:18056706). CSK maintains LCK and FYN in an inactive form (By similarity). Promotes CD28-induced phosphorylation of VAV1 (PubMed:11005864). In mast cells, phosphorylates CLNK after activation of immunoglobulin epsilon receptor signaling (By similarity). Can also promote CD244-mediated NK cell activation (PubMed:15713798). {ECO:0000250|UniProtKB:P39688, ECO:0000269|PubMed:11005864, ECO:0000269|PubMed:11162638, ECO:0000269|PubMed:11536198, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:14707117, ECO:0000269|PubMed:14761972, ECO:0000269|PubMed:15536091, ECO:0000269|PubMed:15557120, ECO:0000269|PubMed:15713798, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:16841086, ECO:0000269|PubMed:17194753, ECO:0000269|PubMed:18056706, ECO:0000269|PubMed:18258597, ECO:0000269|PubMed:19179337, ECO:0000269|PubMed:19652227, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:7568038, ECO:0000269|PubMed:7822789, ECO:0000303|PubMed:15489916}.
P06748 NPM1 S243 ochoa Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}.
P08047 SP1 S698 psp Transcription factor Sp1 Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}.
P08172 CHRM2 S232 ochoa|psp Muscarinic acetylcholine receptor M2 The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}.
P08238 HSP90AB1 S587 ochoa Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}.
P09874 PARP1 S362 ochoa Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}.
P09874 PARP1 S455 ochoa Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}.
P09874 PARP1 S519 ochoa Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}.
P09884 POLA1 S195 ochoa DNA polymerase alpha catalytic subunit (EC 2.7.7.7) (DNA polymerase alpha catalytic subunit p180) Catalytic subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis. During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, a regulatory subunit POLA2 and two primase subunits PRIM1 and PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1. The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands. These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively. The reason this transfer occurs is because the polymerase alpha has limited processivity and lacks intrinsic 3' exonuclease activity for proofreading error, and therefore is not well suited for replicating long complexes. In the cytosol, responsible for a substantial proportion of the physiological concentration of cytosolic RNA:DNA hybrids, which are necessary to prevent spontaneous activation of type I interferon responses (PubMed:27019227). {ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:27019227, ECO:0000269|PubMed:31006512, ECO:0000269|PubMed:9518481}.
P0DJ93 SMIM13 S50 ochoa Small integral membrane protein 13 None
P0DMV8 HSPA1A S537 ochoa Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1) (Heat shock protein family A member 1A) Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). Required as a co-chaperone for optimal STUB1/CHIP ubiquitination of NFATC3 (By similarity). Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation (PubMed:28842558). {ECO:0000250|UniProtKB:P0DMW0, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28842558, ECO:0000269|PubMed:9499401, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}.
P0DMV9 HSPA1B S537 ochoa Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2) (Heat shock protein family A member 1B) Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). {ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}.
P10412 H1-4 S36 ochoa|psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P11021 HSPA5 S632 ochoa Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (PubMed:2294010, PubMed:23769672, PubMed:23990668, PubMed:28332555). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the EIF2AK3/PERK and ERN1/IRE1-mediated unfolded protein response (UPR) (PubMed:11907036, PubMed:1550958, PubMed:19538957, PubMed:36739529). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1 (By similarity). Also binds and inactivates EIF2AK3/PERK in unstressed cells (PubMed:11907036). Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1 and EIF2AK3/PERK, allowing their homodimerization and subsequent activation (PubMed:11907036). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. May also play a role in apoptosis and cell proliferation (PubMed:26045166). {ECO:0000250|UniProtKB:G3I8R9, ECO:0000250|UniProtKB:P20029, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:1550958, ECO:0000269|PubMed:19538957, ECO:0000269|PubMed:2294010, ECO:0000269|PubMed:23769672, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:26045166, ECO:0000269|PubMed:28332555, ECO:0000269|PubMed:29719251, ECO:0000269|PubMed:36739529}.; FUNCTION: (Microbial infection) Plays an important role in viral binding to the host cell membrane and entry for several flaviruses such as Dengue virus, Zika virus and Japanese encephalitis virus (PubMed:15098107, PubMed:28053106, PubMed:33432092). Acts as a component of the cellular receptor for Dengue virus serotype 2/DENV-2 on human liver cells (PubMed:15098107). {ECO:0000269|PubMed:15098107, ECO:0000269|PubMed:28053106, ECO:0000269|PubMed:33432092}.; FUNCTION: (Microbial infection) Acts as a receptor for CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:20484814, PubMed:24355926, PubMed:32487760). Acts as a receptor for R.delemar CotH3 in nasal epithelial cells, which may be an early step in rhinoorbital/cerebral mucormycosis (RCM) disease progression (PubMed:32487760). {ECO:0000269|PubMed:20484814, ECO:0000269|PubMed:24355926, ECO:0000269|PubMed:32487760}.
P11142 HSPA8 S537 ochoa Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}.
P11388 TOP2A S1247 ochoa|psp DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11388 TOP2A S1303 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P12883 MYH7 S648 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P13010 XRCC5 S579 ochoa X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}.
P13164 IFITM1 S80 ochoa Interferon-induced transmembrane protein 1 (Dispanin subfamily A member 2a) (DSPA2a) (Interferon-induced protein 17) (Interferon-inducible protein 9-27) (Leu-13 antigen) (CD antigen CD225) IFN-induced antiviral protein which inhibits the entry of viruses to the host cell cytoplasm, permitting endocytosis, but preventing subsequent viral fusion and release of viral contents into the cytosol. Active against multiple viruses, including influenza A virus, SARS coronaviruses (SARS-CoV and SARS-CoV-2), Marburg virus (MARV), Ebola virus (EBOV), Dengue virus (DNV), West Nile virus (WNV), human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) (PubMed:26354436, PubMed:33270927). Can inhibit: influenza virus hemagglutinin protein-mediated viral entry, MARV and EBOV GP1,2-mediated viral entry and SARS-CoV and SARS-CoV-2 S protein-mediated viral entry. Also implicated in cell adhesion and control of cell growth and migration (PubMed:33270927). Inhibits SARS-CoV-2 S protein-mediated syncytia formation (PubMed:33051876). Plays a key role in the antiproliferative action of IFN-gamma either by inhibiting the ERK activation or by arresting cell growth in G1 phase in a p53-dependent manner. Acts as a positive regulator of osteoblast differentiation. In hepatocytes, IFITM proteins act in a coordinated manner to restrict HCV infection by targeting the endocytosed HCV virion for lysosomal degradation (PubMed:26354436). IFITM2 and IFITM3 display anti-HCV activity that may complement the anti-HCV activity of IFITM1 by inhibiting the late stages of HCV entry, possibly in a coordinated manner by trapping the virion in the endosomal pathway and targeting it for degradation at the lysosome (PubMed:26354436). {ECO:0000269|PubMed:16847454, ECO:0000269|PubMed:20064371, ECO:0000269|PubMed:20838853, ECO:0000269|PubMed:21177806, ECO:0000269|PubMed:21253575, ECO:0000269|PubMed:21976647, ECO:0000269|PubMed:22479637, ECO:0000269|PubMed:22634173, ECO:0000269|PubMed:26354436, ECO:0000269|PubMed:33051876, ECO:0000269|PubMed:33270927}.
P13798 APEH S185 ochoa Acylamino-acid-releasing enzyme (AARE) (EC 3.4.19.1) (Acyl-peptide hydrolase) (APH) (Acylaminoacyl-peptidase) (Oxidized protein hydrolase) (OPH) This enzyme catalyzes the hydrolysis of the N-terminal peptide bond of an N-acetylated peptide to generate an N-acetylated amino acid and a peptide with a free N-terminus (PubMed:10719179, PubMed:1740429, PubMed:2006156). It preferentially cleaves off Ac-Ala, Ac-Met and Ac-Ser (By similarity). Also, involved in the degradation of oxidized and glycated proteins (PubMed:10719179). {ECO:0000250|UniProtKB:P13676, ECO:0000269|PubMed:10719179, ECO:0000269|PubMed:1740429, ECO:0000269|PubMed:2006156}.
P14618 PKM S269 ochoa Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}.
P15531 NME1 S44 psp Nucleoside diphosphate kinase A (NDK A) (NDP kinase A) (EC 2.7.4.6) (Granzyme A-activated DNase) (GAAD) (Metastasis inhibition factor nm23) (NM23-H1) (Tumor metastatic process-associated protein) Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination. During GZMA-mediated cell death, works in concert with TREX1. NME1 nicks one strand of DNA and TREX1 removes bases from the free 3' end to enhance DNA damage and prevent DNA end reannealing and rapid repair. {ECO:0000269|PubMed:12628186, ECO:0000269|PubMed:16818237, ECO:0000269|PubMed:8810265}.
P15822 HIVEP1 S65 ochoa Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis.
P16401 H1-5 S173 psp Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16615 ATP2A2 S663 ochoa|psp Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) (SR Ca(2+)-ATPase 2) (EC 7.2.2.10) (Calcium pump 2) (Calcium-transporting ATPase sarcoplasmic reticulum type, slow twitch skeletal muscle isoform) (Endoplasmic reticulum class 1/2 Ca(2+) ATPase) This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (PubMed:12542527, PubMed:16402920). Involved in autophagy in response to starvation. Upon interaction with VMP1 and activation, controls ER-isolation membrane contacts for autophagosome formation (PubMed:28890335). Also modulates ER contacts with lipid droplets, mitochondria and endosomes (PubMed:28890335). In coordination with FLVCR2 mediates heme-stimulated switching from mitochondrial ATP synthesis to thermogenesis (By similarity). {ECO:0000250|UniProtKB:O55143, ECO:0000269|PubMed:12542527, ECO:0000269|PubMed:16402920, ECO:0000269|PubMed:28890335}.; FUNCTION: [Isoform 2]: Involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic Ca(2+) spiking for activation of NFATC1 and production of mitochondrial ROS, thereby triggering Ca(2+) signaling cascades that promote osteoclast differentiation and activation. {ECO:0000250|UniProtKB:O55143}.
P16885 PLCG2 S957 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-gamma-2) (Phospholipase C-IV) (PLC-IV) (Phospholipase C-gamma-2) (PLC-gamma-2) The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling. {ECO:0000269|PubMed:23000145}.
P17252 PRKCA S226 ochoa|psp Protein kinase C alpha type (PKC-A) (PKC-alpha) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. Involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell cycle. Can promote cell growth by phosphorylating and activating RAF1, which mediates the activation of the MAPK/ERK signaling cascade, and/or by up-regulating CDKN1A, which facilitates active cyclin-dependent kinase (CDK) complex formation in glioma cells. In intestinal cells stimulated by the phorbol ester PMA, can trigger a cell cycle arrest program which is associated with the accumulation of the hyper-phosphorylated growth-suppressive form of RB1 and induction of the CDK inhibitors CDKN1A and CDKN1B. Exhibits anti-apoptotic function in glioma cells and protects them from apoptosis by suppressing the p53/TP53-mediated activation of IGFBP3, and in leukemia cells mediates anti-apoptotic action by phosphorylating BCL2. During macrophage differentiation induced by macrophage colony-stimulating factor (CSF1), is translocated to the nucleus and is associated with macrophage development. After wounding, translocates from focal contacts to lamellipodia and participates in the modulation of desmosomal adhesion. Plays a role in cell motility by phosphorylating CSPG4, which induces association of CSPG4 with extensive lamellipodia at the cell periphery and polarization of the cell accompanied by increases in cell motility. During chemokine-induced CD4(+) T cell migration, phosphorylates CDC42-guanine exchange factor DOCK8 resulting in its dissociation from LRCH1 and the activation of GTPase CDC42 (PubMed:28028151). Is highly expressed in a number of cancer cells where it can act as a tumor promoter and is implicated in malignant phenotypes of several tumors such as gliomas and breast cancers. Negatively regulates myocardial contractility and positively regulates angiogenesis, platelet aggregation and thrombus formation in arteries. Mediates hypertrophic growth of neonatal cardiomyocytes, in part through a MAPK1/3 (ERK1/2)-dependent signaling pathway, and upon PMA treatment, is required to induce cardiomyocyte hypertrophy up to heart failure and death, by increasing protein synthesis, protein-DNA ratio and cell surface area. Regulates cardiomyocyte function by phosphorylating cardiac troponin T (TNNT2/CTNT), which induces significant reduction in actomyosin ATPase activity, myofilament calcium sensitivity and myocardial contractility. In angiogenesis, is required for full endothelial cell migration, adhesion to vitronectin (VTN), and vascular endothelial growth factor A (VEGFA)-dependent regulation of kinase activation and vascular tube formation. Involved in the stabilization of VEGFA mRNA at post-transcriptional level and mediates VEGFA-induced cell proliferation. In the regulation of calcium-induced platelet aggregation, mediates signals from the CD36/GP4 receptor for granule release, and activates the integrin heterodimer ITGA2B-ITGB3 through the RAP1GAP pathway for adhesion. During response to lipopolysaccharides (LPS), may regulate selective LPS-induced macrophage functions involved in host defense and inflammation. But in some inflammatory responses, may negatively regulate NF-kappa-B-induced genes, through IL1A-dependent induction of NF-kappa-B inhibitor alpha (NFKBIA/IKBA). Upon stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), phosphorylates EIF4G1, which modulates EIF4G1 binding to MKNK1 and may be involved in the regulation of EIF4E phosphorylation. Phosphorylates KIT, leading to inhibition of KIT activity. Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. Phosphorylates SOCS2 at 'Ser-52' facilitating its ubiquitination and proteasomal degradation (By similarity). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P20444, ECO:0000269|PubMed:10848585, ECO:0000269|PubMed:11909826, ECO:0000269|PubMed:12724315, ECO:0000269|PubMed:12832403, ECO:0000269|PubMed:15016832, ECO:0000269|PubMed:15504744, ECO:0000269|PubMed:15526160, ECO:0000269|PubMed:18056764, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:21576361, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:28028151, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9738012, ECO:0000269|PubMed:9830023, ECO:0000269|PubMed:9873035, ECO:0000269|PubMed:9927633}.
P17844 DDX5 S402 ochoa Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}.
P17936 IGFBP3 S194 psp Insulin-like growth factor-binding protein 3 (IBP-3) (IGF-binding protein 3) (IGFBP-3) Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including proliferation, differentiation, and apoptosis in a cell-type specific manner (PubMed:10874028, PubMed:19556345). Also exhibits IGF-independent antiproliferative and apoptotic effects mediated by its receptor TMEM219/IGFBP-3R (PubMed:20353938). Inhibits the positive effect of humanin on insulin sensitivity (PubMed:19623253). Promotes testicular germ cell apoptosis (PubMed:19952275). Acts via LRP-1/alpha2M receptor, also known as TGF-beta type V receptor, to mediate cell growth inhibition independent of IGF1 (PubMed:9252371). Mechanistically, induces serine-specific dephosphorylation of IRS1 or IRS2 upon ligation to its receptor, leading to the inhibitory cascade (PubMed:15371331). In the nucleus, interacts with transcription factors such as retinoid X receptor-alpha/RXRA to regulate transcriptional signaling and apoptosis (PubMed:10874028). {ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:15371331, ECO:0000269|PubMed:19159218, ECO:0000269|PubMed:19556345, ECO:0000269|PubMed:19623253, ECO:0000269|PubMed:19952275, ECO:0000269|PubMed:20353938}.
P18583 SON S152 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P19338 NCL S67 ochoa Nucleolin (Protein C23) Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}.
P20042 EIF2S2 S218 psp Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P20810 CAST S655 ochoa|psp Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P20929 NEB S367 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P20929 NEB S1275 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P20929 NEB S3948 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P21397 MAOA S383 ochoa Amine oxidase [flavin-containing] A (EC 1.4.3.21) (EC 1.4.3.4) (Monoamine oxidase type A) (MAO-A) Catalyzes the oxidative deamination of primary and some secondary amine such as neurotransmitters, with concomitant reduction of oxygen to hydrogen peroxide and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues (PubMed:18391214, PubMed:20493079, PubMed:24169519, PubMed:8316221). Preferentially oxidizes serotonin (PubMed:20493079, PubMed:24169519). Also catalyzes the oxidative deamination of kynuramine to 3-(2-aminophenyl)-3-oxopropanal that can spontaneously condense to 4-hydroxyquinoline (By similarity). {ECO:0000250|UniProtKB:P21396, ECO:0000269|PubMed:18391214, ECO:0000269|PubMed:20493079, ECO:0000269|PubMed:24169519, ECO:0000269|PubMed:8316221}.
P22059 OSBP S193 ochoa Oxysterol-binding protein 1 Lipid transporter involved in lipid countertransport between the Golgi complex and membranes of the endoplasmic reticulum: specifically exchanges sterol with phosphatidylinositol 4-phosphate (PI4P), delivering sterol to the Golgi in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum (PubMed:24209621). Binds cholesterol and a range of oxysterols including 25-hydroxycholesterol (PubMed:15746430, PubMed:17428193). Cholesterol binding promotes the formation of a complex with PP2A and a tyrosine phosphatase which dephosphorylates ERK1/2, whereas 25-hydroxycholesterol causes its disassembly (PubMed:15746430). Regulates cholesterol efflux by decreasing ABCA1 stability (PubMed:18450749). {ECO:0000269|PubMed:15746430, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18450749, ECO:0000269|PubMed:24209621}.
P22059 OSBP S198 ochoa Oxysterol-binding protein 1 Lipid transporter involved in lipid countertransport between the Golgi complex and membranes of the endoplasmic reticulum: specifically exchanges sterol with phosphatidylinositol 4-phosphate (PI4P), delivering sterol to the Golgi in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum (PubMed:24209621). Binds cholesterol and a range of oxysterols including 25-hydroxycholesterol (PubMed:15746430, PubMed:17428193). Cholesterol binding promotes the formation of a complex with PP2A and a tyrosine phosphatase which dephosphorylates ERK1/2, whereas 25-hydroxycholesterol causes its disassembly (PubMed:15746430). Regulates cholesterol efflux by decreasing ABCA1 stability (PubMed:18450749). {ECO:0000269|PubMed:15746430, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18450749, ECO:0000269|PubMed:24209621}.
P24844 MYL9 S20 ochoa|psp Myosin regulatory light polypeptide 9 (20 kDa myosin light chain) (LC20) (MLC-2C) (Myosin RLC) (Myosin regulatory light chain 2, smooth muscle isoform) (Myosin regulatory light chain 9) (Myosin regulatory light chain MRLC1) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (PubMed:11942626, PubMed:2526655). In myoblasts, may regulate PIEZO1-dependent cortical actomyosin assembly involved in myotube formation (By similarity). {ECO:0000250|UniProtKB:Q9CQ19, ECO:0000269|PubMed:11942626, ECO:0000269|PubMed:2526655}.
P25054 APC S2064 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25054 APC S2627 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P26358 DNMT1 S1105 ochoa DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}.
P26639 TARS1 S39 ochoa Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}.
P27816 MAP4 S713 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P28715 ERCC5 S1067 ochoa DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}.
P29350 PTPN6 S534 ochoa Tyrosine-protein phosphatase non-receptor type 6 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine phosphatase) (Protein-tyrosine phosphatase 1C) (PTP-1C) (Protein-tyrosine phosphatase SHP-1) (SH-PTP1) Tyrosine phosphatase enzyme that plays important roles in controlling immune signaling pathways and fundamental physiological processes such as hematopoiesis (PubMed:14739280, PubMed:29925997). Dephosphorylates and negatively regulate several receptor tyrosine kinases (RTKs) such as EGFR, PDGFR and FGFR, thereby modulating their signaling activities (PubMed:21258366, PubMed:9733788). When recruited to immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors such as immunoglobulin-like transcript 2/LILRB1, programmed cell death protein 1/PDCD1, CD3D, CD22, CLEC12A and other receptors involved in immune regulation, initiates their dephosphorylation and subsequently inhibits downstream signaling events (PubMed:11907092, PubMed:14739280, PubMed:37932456, PubMed:38166031). Modulates the signaling of several cytokine receptors including IL-4 receptor (PubMed:9065461). Additionally, targets multiple cytoplasmic signaling molecules including STING1, LCK or STAT1 among others involved in diverse cellular processes including modulation of T-cell activation or cGAS-STING signaling (PubMed:34811497, PubMed:38532423). Within the nucleus, negatively regulates the activity of some transcription factors such as NFAT5 via direct dephosphorylation. Also acts as a key transcriptional regulator of hepatic gluconeogenesis by controlling recruitment of RNA polymerase II to the PCK1 promoter together with STAT5A (PubMed:37595871). {ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:11266449, ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:29925997, ECO:0000269|PubMed:34811497, ECO:0000269|PubMed:37595871, ECO:0000269|PubMed:37932456, ECO:0000269|PubMed:38166031, ECO:0000269|PubMed:38532423, ECO:0000269|PubMed:9065461, ECO:0000269|PubMed:9733788}.
P29374 ARID4A S676 ochoa AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}.
P29374 ARID4A S864 ochoa|psp AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}.
P29401 TKT S295 ochoa Transketolase (TK) (EC 2.2.1.1) Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}.
P29966 MARCKS S167 ochoa|psp Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P30101 PDIA3 S478 ochoa Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
P30414 NKTR S887 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P30414 NKTR S889 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P30414 NKTR S891 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P30419 NMT1 S73 ochoa Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}.
P31629 HIVEP2 S951 ochoa Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation.
P33981 TTK S37 ochoa|psp Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}.
P33981 TTK S403 ochoa Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}.
P34969 HTR7 S285 ochoa 5-hydroxytryptamine receptor 7 (5-HT-7) (5-HT7) (5-HT-X) (Serotonin receptor 7) G-protein coupled receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone and a mitogen (PubMed:35714614, PubMed:8226867). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (PubMed:35714614, PubMed:8226867). HTR7 is coupled to G(s) G alpha proteins and mediates activation of adenylate cyclase activity (PubMed:35714614). {ECO:0000269|PubMed:35714614, ECO:0000269|PubMed:8226867}.
P35251 RFC1 S139 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S164 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35659 DEK S210 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P35749 MYH11 S1266 ochoa Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) Muscle contraction.
P36952 SERPINB5 S135 ochoa Serpin B5 (Maspin) (Peptidase inhibitor 5) (PI-5) Tumor suppressor. It blocks the growth, invasion, and metastatic properties of mammary tumors. As it does not undergo the S (stressed) to R (relaxed) conformational transition characteristic of active serpins, it exhibits no serine protease inhibitory activity.
P36952 SERPINB5 S298 psp Serpin B5 (Maspin) (Peptidase inhibitor 5) (PI-5) Tumor suppressor. It blocks the growth, invasion, and metastatic properties of mammary tumors. As it does not undergo the S (stressed) to R (relaxed) conformational transition characteristic of active serpins, it exhibits no serine protease inhibitory activity.
P36956 SREBF1 S394 ochoa Sterol regulatory element-binding protein 1 (SREBP-1) (Class D basic helix-loop-helix protein 1) (bHLHd1) (Sterol regulatory element-binding transcription factor 1) [Cleaved into: Processed sterol regulatory element-binding protein 1 (Transcription factor SREBF1)] [Sterol regulatory element-binding protein 1]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 1), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis and lipid homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 1]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis and lipid homeostasis (PubMed:12177166, PubMed:32322062, PubMed:8402897). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:8402897). Regulates the promoters of genes involved in cholesterol biosynthesis and the LDL receptor (LDLR) pathway of sterol regulation (PubMed:12177166, PubMed:32322062, PubMed:8402897). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:8402897}.; FUNCTION: [Isoform SREBP-1A]: Isoform expressed only in select tissues, which has higher transcriptional activity compared to SREBP-1C (By similarity). Able to stimulate both lipogenic and cholesterogenic gene expression (PubMed:12177166, PubMed:32497488). Has a role in the nutritional regulation of fatty acids and triglycerides in lipogenic organs such as the liver (By similarity). Required for innate immune response in macrophages by regulating lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32497488}.; FUNCTION: [Isoform SREBP-1C]: Predominant isoform expressed in most tissues, which has weaker transcriptional activity compared to isoform SREBP-1A (By similarity). Primarily controls expression of lipogenic gene (PubMed:12177166). Strongly activates global lipid synthesis in rapidly growing cells (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166}.; FUNCTION: [Isoform SREBP-1aDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}.; FUNCTION: [Isoform SREBP-1cDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}.
P41238 APOBEC1 S47 psp C->U-editing enzyme APOBEC-1 (EC 3.5.4.-) (Apolipoprotein B mRNA-editing enzyme catalytic subunit 1) (APO1) (APOBEC-1) (Apolipoprotein B mRNA-editing enzyme 1) (EC 3.5.4.36) (HEPR) (mRNA(cytosine(6666)) deaminase 1) Cytidine deaminase catalyzing the cytidine to uridine postranscriptional editing of a variety of mRNAs (PubMed:30844405). Form complexes with cofactors that confer differential editing activity and selectivity. Responsible for the postranscriptional editing of a CAA codon for Gln to a UAA codon for stop in the apolipoprotein B mRNA (PubMed:24916387). Also involved in CGA (Arg) to UGA (Stop) editing in the NF1 mRNA (PubMed:11727199). May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation (By similarity). {ECO:0000250|UniProtKB:P51908, ECO:0000269|PubMed:11727199, ECO:0000269|PubMed:24916387, ECO:0000269|PubMed:30844405}.
P41240 CSK S364 psp Tyrosine-protein kinase CSK (EC 2.7.10.2) (C-Src kinase) (Protein-tyrosine kinase CYL) Non-receptor tyrosine-protein kinase that plays an important role in the regulation of cell growth, differentiation, migration and immune response. Phosphorylates tyrosine residues located in the C-terminal tails of Src-family kinases (SFKs) including LCK, SRC, HCK, FYN, LYN, CSK or YES1. Upon tail phosphorylation, Src-family members engage in intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is recruited to the plasma membrane via binding to transmembrane proteins or adapter proteins located near the plasma membrane. Suppresses signaling by various surface receptors, including T-cell receptor (TCR) and B-cell receptor (BCR) by phosphorylating and maintaining inactive several positive effectors such as FYN or LCK. {ECO:0000269|PubMed:1639064, ECO:0000269|PubMed:9281320}.
P42677 RPS27 Y31 ochoa Small ribosomal subunit protein eS27 (40S ribosomal protein S27) (Metallopan-stimulin 1) (MPS-1) Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for proper rRNA processing and maturation of 18S rRNAs (PubMed:25424902). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25424902, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}.
P43307 SSR1 S246 ochoa Translocon-associated protein subunit alpha (TRAP-alpha) (Signal sequence receptor subunit alpha) (SSR-alpha) TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins. May be involved in the recycling of the translocation apparatus after completion of the translocation process or may function as a membrane-bound chaperone facilitating folding of translocated proteins.
P45378 TNNT3 S166 ochoa Troponin T, fast skeletal muscle (TnTf) (Beta-TnTF) (Fast skeletal muscle troponin T) (fTnT) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P45378 TNNT3 S167 ochoa Troponin T, fast skeletal muscle (TnTf) (Beta-TnTF) (Fast skeletal muscle troponin T) (fTnT) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P46013 MKI67 S330 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 S357 ochoa|psp Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 S2471 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46063 RECQL S58 ochoa ATP-dependent DNA helicase Q1 (EC 5.6.2.4) (DNA 3'-5' helicase Q1) (DNA helicase, RecQ-like type 1) (RecQ1) (DNA-dependent ATPase Q1) (RecQ protein-like 1) DNA helicase that plays a role in DNA damage repair and genome stability (PubMed:15886194, PubMed:35025765, PubMed:7527136, PubMed:7961977, PubMed:8056767). Exhibits a Mg(2+)- and ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction (PubMed:19151156, PubMed:35025765, PubMed:7527136, PubMed:8056767). Full-length protein unwinds forked DNA substrates, resolves Holliday junctions, and has DNA strand annealing activity (PubMed:19151156, PubMed:25831490). Plays a role in restoring regressed replication forks (PubMed:35025765). Required to restart stalled replication forks induced by abortive topoisomerase 1 and 2 lesions (PubMed:35025765). Does not unwind G-quadruplex DNA (PubMed:18426915). May play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens (PubMed:15886194, PubMed:7961977). {ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:19151156, ECO:0000269|PubMed:25831490, ECO:0000269|PubMed:35025765, ECO:0000269|PubMed:7527136, ECO:0000269|PubMed:7961977, ECO:0000269|PubMed:8056767}.
P46100 ATRX S703 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S812 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1012 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1943 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1946 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1948 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P49006 MARCKSL1 S101 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P50579 METAP2 S49 ochoa Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18) (Initiation factor 2-associated 67 kDa glycoprotein) (p67) (p67eIF2) (Peptidase M) Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). The catalytic activity of human METAP2 toward Met-Val peptides is consistently two orders of magnitude higher than that of METAP1, suggesting that it is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo.; FUNCTION: Protects eukaryotic initiation factor EIF2S1 from translation-inhibiting phosphorylation by inhibitory kinases such as EIF2AK2/PKR and EIF2AK1/HCR. Plays a critical role in the regulation of protein synthesis.
P51451 BLK S24 ochoa Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}.
P51532 SMARCA4 S1452 ochoa|psp SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P51587 BRCA2 S1528 ochoa Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}.
P51825 AFF1 S684 ochoa AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) None
P51858 HDGF S83 ochoa Hepatoma-derived growth factor (HDGF) (High mobility group protein 1-like 2) (HMG-1L2) [Isoform 1]: Acts as a transcriptional repressor (PubMed:17974029). Has mitogenic activity for fibroblasts (PubMed:11751870, PubMed:26845719). Heparin-binding protein (PubMed:15491618). {ECO:0000269|PubMed:11751870, ECO:0000269|PubMed:15491618, ECO:0000269|PubMed:17974029, ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 2]: Does not have mitogenic activity for fibroblasts (PubMed:26845719). Does not bind heparin (PubMed:26845719). {ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 3]: Has mitogenic activity for fibroblasts (PubMed:26845719). Heparin-binding protein (PubMed:26845719). {ECO:0000269|PubMed:26845719}.
P51948 MNAT1 S189 ochoa CDK-activating kinase assembly factor MAT1 (CDK7/cyclin-H assembly factor) (Cyclin-G1-interacting protein) (Menage a trois) (RING finger protein 66) (RING finger protein MAT1) (p35) (p36) Stabilizes the cyclin H-CDK7 complex to form a functional CDK-activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II. {ECO:0000269|PubMed:10024882}.
P52732 KIF11 S1033 ochoa|psp Kinesin-like protein KIF11 (Kinesin-like protein 1) (Kinesin-like spindle protein HKSP) (Kinesin-related motor protein Eg5) (Thyroid receptor-interacting protein 5) (TR-interacting protein 5) (TRIP-5) Motor protein required for establishing a bipolar spindle and thus contributing to chromosome congression during mitosis (PubMed:19001501, PubMed:37728657). Required in non-mitotic cells for transport of secretory proteins from the Golgi complex to the cell surface (PubMed:23857769). {ECO:0000269|PubMed:19001501, ECO:0000269|PubMed:23857769}.
P52895 AKR1C2 S166 ochoa Aldo-keto reductase family 1 member C2 (EC 1.-.-.-) (EC 1.1.1.112) (EC 1.1.1.209) (EC 1.1.1.53) (EC 1.1.1.62) (EC 1.3.1.20) (3-alpha-HSD3) (Chlordecone reductase homolog HAKRD) (Dihydrodiol dehydrogenase 2) (DD-2) (DD2) (Dihydrodiol dehydrogenase/bile acid-binding protein) (DD/BABP) (Type III 3-alpha-hydroxysteroid dehydrogenase) (EC 1.1.1.357) Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids (PubMed:19218247). Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH (PubMed:14672942). Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens (PubMed:10998348). Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5-beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha-DHT) to 5-alpha-androstane-3-alpha,17-beta-diol (3-alpha-diol) (PubMed:15929998, PubMed:17034817, PubMed:17442338, PubMed:8573067). Also specifically able to produce 17beta-hydroxy-5alpha-androstan-3-one/5alphaDHT (PubMed:10998348). May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate (PubMed:19218247). Displays affinity for bile acids (PubMed:8486699). {ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:15929998, ECO:0000269|PubMed:17034817, ECO:0000269|PubMed:17442338, ECO:0000269|PubMed:19218247, ECO:0000269|PubMed:8486699, ECO:0000269|PubMed:8573067}.
P53355 DAPK1 S308 psp Death-associated protein kinase 1 (DAP kinase 1) (EC 2.7.11.1) Calcium/calmodulin-dependent serine/threonine kinase involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. Regulates both type I apoptotic and type II autophagic cell deaths signal, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles. Phosphorylates PIN1 resulting in inhibition of its catalytic activity, nuclear localization, and cellular function. Phosphorylates TPM1, enhancing stress fiber formation in endothelial cells. Phosphorylates STX1A and significantly decreases its binding to STXBP1. Phosphorylates PRKD1 and regulates JNK signaling by binding and activating PRKD1 under oxidative stress. Phosphorylates BECN1, reducing its interaction with BCL2 and BCL2L1 and promoting the induction of autophagy. Phosphorylates TSC2, disrupting the TSC1-TSC2 complex and stimulating mTORC1 activity in a growth factor-dependent pathway. Phosphorylates RPS6, MYL9 and DAPK3. Acts as a signaling amplifier of NMDA receptors at extrasynaptic sites for mediating brain damage in stroke. Cerebral ischemia recruits DAPK1 into the NMDA receptor complex and it phosphorylates GRINB at Ser-1303 inducing injurious Ca(2+) influx through NMDA receptor channels, resulting in an irreversible neuronal death. Required together with DAPK3 for phosphorylation of RPL13A upon interferon-gamma activation which is causing RPL13A involvement in transcript-selective translation inhibition.; FUNCTION: Isoform 2 cannot induce apoptosis but can induce membrane blebbing.
P53804 TTC3 S454 ochoa E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}.
P53999 SUB1 S52 ochoa Activated RNA polymerase II transcriptional coactivator p15 (Positive cofactor 4) (PC4) (SUB1 homolog) (p14) General coactivator that functions cooperatively with TAFs and mediates functional interactions between upstream activators and the general transcriptional machinery. May be involved in stabilizing the multiprotein transcription complex. Binds single-stranded DNA. Also binds, in vitro, non-specifically to double-stranded DNA (ds DNA). {ECO:0000269|PubMed:16605275, ECO:0000269|PubMed:16689930, ECO:0000269|PubMed:7628453, ECO:0000269|PubMed:8062391, ECO:0000269|PubMed:8062392, ECO:0000269|PubMed:9360603, ECO:0000269|PubMed:9482861}.
P55042 RRAD S290 psp GTP-binding protein RAD (RAD1) (Ras associated with diabetes) May regulate basal voltage-dependent L-type Ca(2+) currents and be required for beta-adrenergic augmentation of Ca(2+) influx in cardiomyocytes, thereby regulating increases in heart rate and contractile force (By similarity). May play an important role in cardiac antiarrhythmia via the strong suppression of voltage-gated L-type Ca(2+) currents (By similarity). Regulates voltage-dependent L-type calcium channel subunit alpha-1C trafficking to the cell membrane (By similarity). Inhibits cardiac hypertrophy through the calmodulin-dependent kinase II (CaMKII) pathway (PubMed:18056528). Inhibits phosphorylation and activation of CAMK2D (PubMed:18056528). {ECO:0000250|UniProtKB:O88667, ECO:0000269|PubMed:18056528}.
P55265 ADAR S593 ochoa Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}.
P56524 HDAC4 S196 ochoa Histone deacetylase 4 (HD4) (EC 3.5.1.98) Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Deacetylates HSPA1A and HSPA1B at 'Lys-77' leading to their preferential binding to co-chaperone STUB1 (PubMed:27708256). {ECO:0000269|PubMed:10523670, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:27708256}.
P57721 PCBP3 S82 ochoa Poly(rC)-binding protein 3 (Alpha-CP3) (PCBP3-overlapping transcript) (PCBP3-overlapping transcript 1) Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. {ECO:0000250}.
P61073 CXCR4 S321 ochoa C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (FB22) (Fusin) (HM89) (LCR1) (Leukocyte-derived seven transmembrane domain receptor) (LESTR) (Lipopolysaccharide-associated protein 3) (LAP-3) (LPS-associated protein 3) (NPYRL) (Stromal cell-derived factor 1 receptor) (SDF-1 receptor) (CD antigen CD184) Receptor for the C-X-C chemokine CXCL12/SDF-1 that transduces a signal by increasing intracellular calcium ion levels and enhancing MAPK1/MAPK3 activation (PubMed:10452968, PubMed:18799424, PubMed:24912431, PubMed:28978524). Involved in the AKT signaling cascade (PubMed:24912431). Plays a role in regulation of cell migration, e.g. during wound healing (PubMed:28978524). Acts as a receptor for extracellular ubiquitin; leading to enhanced intracellular calcium ions and reduced cellular cAMP levels (PubMed:20228059). Binds bacterial lipopolysaccharide (LPS) et mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Involved in hematopoiesis and in cardiac ventricular septum formation. Also plays an essential role in vascularization of the gastrointestinal tract, probably by regulating vascular branching and/or remodeling processes in endothelial cells. Involved in cerebellar development. In the CNS, could mediate hippocampal-neuron survival (By similarity). {ECO:0000250|UniProtKB:P70658, ECO:0000269|PubMed:10074102, ECO:0000269|PubMed:10452968, ECO:0000269|PubMed:10644702, ECO:0000269|PubMed:10825158, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:17197449, ECO:0000269|PubMed:18799424, ECO:0000269|PubMed:20048153, ECO:0000269|PubMed:20228059, ECO:0000269|PubMed:20505072, ECO:0000269|PubMed:24912431, ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:8752280, ECO:0000269|PubMed:8752281}.; FUNCTION: (Microbial infection) Acts as a coreceptor (CD4 being the primary receptor) for human immunodeficiency virus-1/HIV-1 X4 isolates and as a primary receptor for some HIV-2 isolates. Promotes Env-mediated fusion of the virus (PubMed:10074122, PubMed:10756055, PubMed:8849450, PubMed:8929542, PubMed:9427609). {ECO:0000269|PubMed:10074122, ECO:0000269|PubMed:10756055, ECO:0000269|PubMed:8849450, ECO:0000269|PubMed:8929542, ECO:0000269|PubMed:9427609}.
P61513 RPL37A S59 ochoa Large ribosomal subunit protein eL43 (60S ribosomal protein L37a) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P62241 RPS8 S160 ochoa Small ribosomal subunit protein eS8 (40S ribosomal protein S8) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P68871 HBB S73 ochoa Hemoglobin subunit beta (Beta-globin) (Hemoglobin beta chain) [Cleaved into: LVV-hemorphin-7; Spinorphin] Involved in oxygen transport from the lung to the various peripheral tissues. {ECO:0000269|PubMed:28066926}.; FUNCTION: LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.; FUNCTION: [Spinorphin]: Functions as an endogenous inhibitor of enkephalin-degrading enzymes such as DPP3, and as a selective antagonist of the P2RX3 receptor which is involved in pain signaling, these properties implicate it as a regulator of pain and inflammation.
P78316 NOP14 S239 ochoa Nucleolar protein 14 (Nucleolar complex protein 14) Involved in nucleolar processing of pre-18S ribosomal RNA. Has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm (By similarity). {ECO:0000250}.
P82979 SARNP S162 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
P84098 RPL19 S59 ochoa Large ribosomal subunit protein eL19 (60S ribosomal protein L19) Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P98082 DAB2 S193 ochoa Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
Q01064 PDE1B S466 ochoa Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1B (Cam-PDE 1B) (EC 3.1.4.17) (63 kDa Cam-PDE) Cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:15260978, PubMed:8855339, PubMed:9419816). Has a preference for cGMP as a substrate (PubMed:9419816). {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:8855339, ECO:0000269|PubMed:9419816}.
Q01628 IFITM3 S101 ochoa Interferon-induced transmembrane protein 3 (Dispanin subfamily A member 2b) (DSPA2b) (Interferon-inducible protein 1-8U) IFN-induced antiviral protein which disrupts intracellular cholesterol homeostasis. Inhibits the entry of viruses to the host cell cytoplasm by preventing viral fusion with cholesterol depleted endosomes. May inactivate new enveloped viruses which buds out of the infected cell, by letting them go out with a cholesterol depleted membrane. Active against multiple viruses, including influenza A virus, SARS coronaviruses (SARS-CoV and SARS-CoV-2), Marburg virus (MARV), Ebola virus (EBOV), Dengue virus (DNV), West Nile virus (WNV), human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV) and vesicular stomatitis virus (VSV) (PubMed:26354436, PubMed:33239446, PubMed:33270927). Can inhibit: influenza virus hemagglutinin protein-mediated viral entry, MARV and EBOV GP1,2-mediated viral entry, SARS-CoV and SARS-CoV-2 S protein-mediated viral entry and VSV G protein-mediated viral entry (PubMed:33270927). Plays a critical role in the structural stability and function of vacuolar ATPase (v-ATPase). Establishes physical contact with the v-ATPase of endosomes which is critical for proper clathrin localization and is also required for the function of the v-ATPase to lower the pH in phagocytic endosomes thus establishing an antiviral state. In hepatocytes, IFITM proteins act in a coordinated manner to restrict HCV infection by targeting the endocytosed HCV virion for lysosomal degradation (PubMed:26354436). IFITM2 and IFITM3 display anti-HCV activity that may complement the anti-HCV activity of IFITM1 by inhibiting the late stages of HCV entry, possibly in a coordinated manner by trapping the virion in the endosomal pathway and targeting it for degradation at the lysosome (PubMed:26354436). Exerts opposing activities on SARS-CoV-2, including amphipathicity-dependent restriction of virus at endosomes and amphipathicity-independent enhancement of infection at the plasma membrane (PubMed:33270927). {ECO:0000269|PubMed:20064371, ECO:0000269|PubMed:20534863, ECO:0000269|PubMed:20943977, ECO:0000269|PubMed:21177806, ECO:0000269|PubMed:21253575, ECO:0000269|PubMed:22046135, ECO:0000269|PubMed:22479637, ECO:0000269|PubMed:23601107, ECO:0000269|PubMed:26354436, ECO:0000269|PubMed:33239446, ECO:0000269|PubMed:33270927}.
Q01629 IFITM2 S100 ochoa Interferon-induced transmembrane protein 2 (Dispanin subfamily A member 2c) (DSPA2c) (Interferon-inducible protein 1-8D) IFN-induced antiviral protein which inhibits the entry of viruses to the host cell cytoplasm, permitting endocytosis, but preventing subsequent viral fusion and release of viral contents into the cytosol (PubMed:26354436, PubMed:33563656). Active against multiple viruses, including influenza A virus, SARS coronaviruses (SARS-CoV and SARS-CoV-2), Marburg virus (MARV), Ebola virus (EBOV), Dengue virus (DNV), West Nile virus (WNV), human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV) and vesicular stomatitis virus (VSV) (PubMed:26354436, PubMed:33239446, PubMed:33270927, PubMed:33563656). Can inhibit: influenza virus hemagglutinin protein-mediated viral entry, MARV and EBOV GP1,2-mediated viral entry, SARS-CoV and SARS-CoV-2 S protein-mediated viral entry and VSV G protein-mediated viral entry (PubMed:33563656). Induces cell cycle arrest and mediates apoptosis by caspase activation and in p53-independent manner. In hepatocytes, IFITM proteins act in a coordinated manner to restrict HCV infection by targeting the endocytosed HCV virion for lysosomal degradation (PubMed:26354436). IFITM2 and IFITM3 display anti-HCV activity that may complement the anti-HCV activity of IFITM1 by inhibiting the late stages of HCV entry, possibly in a coordinated manner by trapping the virion in the endosomal pathway and targeting it for degradation at the lysosome (PubMed:26354436). {ECO:0000269|PubMed:19544527, ECO:0000269|PubMed:20064371, ECO:0000269|PubMed:20534863, ECO:0000269|PubMed:20943977, ECO:0000269|PubMed:21177806, ECO:0000269|PubMed:21253575, ECO:0000269|PubMed:22479637, ECO:0000269|PubMed:26354436, ECO:0000269|PubMed:33239446, ECO:0000269|PubMed:33270927, ECO:0000269|PubMed:33563656}.
Q01780 EXOSC10 S848 ochoa Exosome complex component 10 (EC 3.1.13.-) (Autoantigen PM/Scl 2) (P100 polymyositis-scleroderma overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 100 kDa) (PM/Scl-100) (Polymyositis/scleroderma autoantigen 2) Catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. EXOSC10 is required for nucleolar localization of C1D and probably mediates the association of MTREX, C1D and MPHOSPH6 with the RNA exosome involved in the maturation of 5.8S rRNA. Plays a role in the recruitment of replication protein A complex (RPA) and RAD51 to DNA double-strand breaks caused by irradiation, contributing to DNA repair by homologous recombination (PubMed:25632158, PubMed:31086179). Regulates levels of damage-induced RNAs in order to prevent DNA-RNA hybrid formation at DNA double-strand breaks and limit DNA end resection after damage (PubMed:31086179). Plays a role in oocyte development, maturation and survival (By similarity). Required for normal testis development and mitotic division of spermatogonia (By similarity). Plays a role in proper embryo development (By similarity). Required for global protein translation (PubMed:26857222, PubMed:36912080). Required for cell proliferation (PubMed:36912080). Regulates metabolism of C9orf72-derived repeat RNA that can be translated into toxic dipeptide repeat proteins (PubMed:32830871). {ECO:0000250|UniProtKB:P56960, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:16455498, ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:17545563, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19056938, ECO:0000269|PubMed:20368444, ECO:0000269|PubMed:20699273, ECO:0000269|PubMed:25632158, ECO:0000269|PubMed:26857222, ECO:0000269|PubMed:31086179, ECO:0000269|PubMed:32830871, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:36912080}.
Q01831 XPC S346 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q01831 XPC S347 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q02241 KIF23 S298 ochoa Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}.
Q02641 CACNB1 S46 ochoa Voltage-dependent L-type calcium channel subunit beta-1 (CAB1) (Calcium channel voltage-dependent subunit beta 1) Regulatory subunit of L-type calcium channels (PubMed:1309651, PubMed:15615847, PubMed:8107964). Regulates the activity of L-type calcium channels that contain CACNA1A as pore-forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (PubMed:15615847). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit (PubMed:1309651). Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit (PubMed:8107964). {ECO:0000250|UniProtKB:P19517, ECO:0000269|PubMed:1309651, ECO:0000269|PubMed:15615847, ECO:0000269|PubMed:8107964}.
Q02878 RPL6 S143 ochoa Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}.
Q03164 KMT2A S926 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q04726 TLE3 S245 ochoa Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q04727 TLE4 S250 ochoa Transducin-like enhancer protein 4 (Grg-4) (Groucho-related protein 4) Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by PAX5, and by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Essential for the transcriptional repressor activity of SIX3 during retina and lens development and for SIX3 transcriptional auto-repression (By similarity). Involved in transcriptional repression of GNRHR and enhances MSX1-mediated transcriptional repression of CGA/alpha-GSU (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q62441}.
Q05519 SRSF11 S449 ochoa Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) May function in pre-mRNA splicing.
Q05519 SRSF11 S456 ochoa Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) May function in pre-mRNA splicing.
Q05519 SRSF11 S464 ochoa Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) May function in pre-mRNA splicing.
Q08211 DHX9 S279 ochoa ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}.
Q08945 SSRP1 S647 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q08945 SSRP1 S652 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q08999 RBL2 S948 ochoa|psp Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor.
Q09666 AHNAK S5832 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12789 GTF3C1 S1253 ochoa General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element.
Q12802 AKAP13 S1857 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12830 BPTF S2682 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q12873 CHD3 S713 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12923 PTPN13 S1215 ochoa Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}.
Q12923 PTPN13 S1316 ochoa Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}.
Q13017 ARHGAP5 S1176 ochoa Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}.
Q13029 PRDM2 S785 ochoa PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}.
Q13061 TRDN S415 ochoa Triadin Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact (By similarity). Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000250|UniProtKB:E9Q9K5, ECO:0000269|PubMed:22422768}.
Q13061 TRDN S642 ochoa Triadin Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact (By similarity). Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000250|UniProtKB:E9Q9K5, ECO:0000269|PubMed:22422768}.
Q13185 CBX3 S97 ochoa Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}.
Q13224 GRIN2B S1415 psp Glutamate receptor ionotropic, NMDA 2B (GluN2B) (Glutamate [NMDA] receptor subunit epsilon-2) (N-methyl D-aspartate receptor subtype 2B) (NMDAR2B) (NR2B) (N-methyl-D-aspartate receptor subunit 3) (NR3) (hNR3) Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). Participates in synaptic plasticity for learning and memory formation by contributing to the long-term depression (LTD) of hippocampus membrane currents (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). {ECO:0000250|UniProtKB:P35438, ECO:0000250|UniProtKB:Q01097, ECO:0000269|PubMed:24272827, ECO:0000269|PubMed:24863970, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27839871, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}.
Q13428 TCOF1 S1376 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13428 TCOF1 S1378 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13435 SF3B2 S344 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S346 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S347 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13480 GAB1 S206 ochoa GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}.
Q13523 PRP4K S87 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S283 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13573 SNW1 S92 ochoa SNW domain-containing protein 1 (Nuclear protein SkiP) (Nuclear receptor coactivator NCoA-62) (Ski-interacting protein) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Required for the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. May recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1-mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coactivators such as MAML1 to form an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ to form a transcriptional activation complex by releasing SNW1 and redundant NOTCH1 NICD. {ECO:0000269|PubMed:10644367, ECO:0000269|PubMed:11278756, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:11514567, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12840015, ECO:0000269|PubMed:14985122, ECO:0000269|PubMed:15194481, ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:19818711, ECO:0000269|PubMed:21245387, ECO:0000269|PubMed:21460037, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:9632709, ECO:0000305|PubMed:33509932}.; FUNCTION: (Microbial infection) Is recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat transcription by recruitment of MYC, MEN1 and TRRAP to the HIV promoter. {ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:19818711}.; FUNCTION: (Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters. {ECO:0000269|PubMed:10644367}.
Q14116 IL18 S133 ochoa Interleukin-18 (IL-18) (Iboctadekin) (Interferon gamma-inducing factor) (IFN-gamma-inducing factor) (Interleukin-1 gamma) (IL-1 gamma) Pro-inflammatory cytokine primarily involved in epithelial barrier repair, polarized T-helper 1 (Th1) cell and natural killer (NK) cell immune responses (PubMed:10653850). Upon binding to IL18R1 and IL18RAP, forms a signaling ternary complex which activates NF-kappa-B, triggering synthesis of inflammatory mediators (PubMed:14528293, PubMed:25500532, PubMed:37993714). Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T-helper 1 (Th1) cells and natural killer (NK) cells (PubMed:10653850). Involved in transduction of inflammation downstream of pyroptosis: its mature form is specifically released in the extracellular milieu by passing through the gasdermin-D (GSDMD) pore (PubMed:33883744). {ECO:0000269|PubMed:10653850, ECO:0000269|PubMed:14528293, ECO:0000269|PubMed:25500532, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:37993714}.
Q14152 EIF3A S1364 psp Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
Q14315 FLNC S2602 ochoa Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}.
Q14562 DHX8 S129 ochoa ATP-dependent RNA helicase DHX8 (EC 3.6.4.13) (DEAH box protein 8) (RNA helicase HRH1) Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). Facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome (PubMed:8608946). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:8608946}.
Q14669 TRIP12 S161 ochoa E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}.
Q14677 CLINT1 S164 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14690 PDCD11 S1454 ochoa Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}.
Q14839 CHD4 Y365 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q14997 PSME4 S1746 ochoa Proteasome activator complex subunit 4 (Proteasome activator PA200) (Protein BLM10 homolog) (Blm10) (hBlm10) Associated component of the proteasome that specifically recognizes acetylated histones and promotes ATP- and ubiquitin-independent degradation of core histones during spermatogenesis and DNA damage response. Recognizes and binds acetylated histones via its bromodomain-like (BRDL) region and activates the proteasome by opening the gated channel for substrate entry. Binds to the core proteasome via its C-terminus, which occupies the same binding sites as the proteasomal ATPases, opening the closed structure of the proteasome via an active gating mechanism. Component of the spermatoproteasome, a form of the proteasome specifically found in testis: binds to acetylated histones and promotes degradation of histones, thereby participating actively to the exchange of histones during spermatogenesis. Also involved in DNA damage response in somatic cells, by promoting degradation of histones following DNA double-strand breaks. {ECO:0000269|PubMed:12093752, ECO:0000269|PubMed:18845680, ECO:0000269|PubMed:22550082, ECO:0000269|PubMed:23706739}.
Q15014 MORF4L2 S90 ochoa Mortality factor 4-like protein 2 (MORF-related gene X protein) (Protein MSL3-2) (Transcription factor-like protein MRGX) Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histone H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. Also a component of the MSIN3A complex which acts to repress transcription by deacetylation of nucleosomal histones.
Q15014 MORF4L2 S92 ochoa Mortality factor 4-like protein 2 (MORF-related gene X protein) (Protein MSL3-2) (Transcription factor-like protein MRGX) Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histone H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. Also a component of the MSIN3A complex which acts to repress transcription by deacetylation of nucleosomal histones.
Q15021 NCAPD2 S1371 ochoa Condensin complex subunit 1 (Chromosome condensation-related SMC-associated protein 1) (Chromosome-associated protein D2) (hCAP-D2) (Non-SMC condensin I complex subunit D2) (XCAP-D2 homolog) Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. May target the condensin complex to DNA via its C-terminal domain (PubMed:11136719). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of non-centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}.
Q15032 R3HDM1 S138 ochoa R3H domain-containing protein 1 None
Q15311 RALBP1 S93 ochoa RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15361 TTF1 S403 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15365 PCBP1 S50 ochoa Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}.
Q15366 PCBP2 S50 ochoa Poly(rC)-binding protein 2 (Alpha-CP2) (Heterogeneous nuclear ribonucleoprotein E2) (hnRNP E2) Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:12414943, PubMed:7607214). Major cellular poly(rC)-binding protein (PubMed:12414943). Also binds poly(rU) (PubMed:12414943). Acts as a negative regulator of antiviral signaling (PubMed:19881509, PubMed:35322803). Negatively regulates cellular antiviral responses mediated by MAVS signaling (PubMed:19881509). It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation (PubMed:19881509). Negativeley regulates the cGAS-STING pathway via interaction with CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:35322803). Together with PCBP1, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:Q61990, ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:7607214}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12414943, PubMed:24371074). Also plays a role in initiation of viral RNA replication in concert with the viral protein 3CD (PubMed:12414943). {ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:24371074}.
Q15434 RBMS2 S108 ochoa RNA-binding motif, single-stranded-interacting protein 2 (Suppressor of CDC2 with RNA-binding motif 3) None
Q15648 MED1 S1375 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15652 JMJD1C S373 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15723 ELF2 S185 ochoa ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation.
Q15746 MYLK S947 ochoa|psp Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}.
Q15785 TOMM34 S186 ochoa Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}.
Q15911 ZFHX3 S3018 ochoa Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}.
Q16513 PKN2 S163 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16891 IMMT S356 ochoa MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}.
Q19T08 ECSCR S166 ochoa Endothelial cell-specific chemotaxis regulator (Apoptosis regulator through modulating IAP expression) (ARIA) (Endothelial cell-specific molecule 2) Regulates endothelial chemotaxis and tube formation. Has a role in angiogenesis and apoptosis via modulation of the actin cytoskeleton and facilitation of proteasomal degradation of the apoptosis inhibitors BIRC3/IAP1 and BIRC2/IAP2. {ECO:0000269|PubMed:18556573, ECO:0000269|PubMed:19416853}.
Q29980 MICB S345 ochoa MHC class I polypeptide-related sequence B (MIC-B) Widely expressed membrane-bound protein which acts as a ligand to stimulate an activating receptor KLRK1/NKG2D, expressed on the surface of essentially all human natural killer (NK), gammadelta T and CD8+ alphabeta T-cells (PubMed:11491531, PubMed:11777960). Up-regulated in stressed conditions, such as viral and bacterial infections or DNA damage response, serves as signal of cellular stress, and engagement of KLRK1/NKG2D by MICA triggers NK-cells resulting in a range of immune effector functions, such as cytotoxicity and cytokine production. {ECO:0000269|PubMed:11491531, ECO:0000269|PubMed:11777960, ECO:0000269|PubMed:9497295}.
Q29983 MICA S345 ochoa MHC class I polypeptide-related sequence A (MIC-A) Widely expressed membrane-bound protein which acts as a ligand to stimulate an activating receptor KLRK1/NKG2D, expressed on the surface of essentially all human natural killer (NK), gammadelta T and CD8 alphabeta T-cells (PubMed:11491531, PubMed:11777960). Up-regulated in stressed conditions, such as viral and bacterial infections or DNA damage response, serves as signal of cellular stress, and engagement of KLRK1/NKG2D by MICA triggers NK-cells resulting in a range of immune effector functions, such as cytotoxicity and cytokine production (PubMed:10426993). {ECO:0000269|PubMed:10426993, ECO:0000269|PubMed:11224526, ECO:0000269|PubMed:11491531, ECO:0000269|PubMed:11777960, ECO:0000269|PubMed:9497295}.
Q2KHR3 QSER1 S1272 ochoa Glutamine and serine-rich protein 1 Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}.
Q2LD37 BLTP1 S1432 ochoa Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}.
Q32NC0 C18orf21 S195 ochoa UPF0711 protein C18orf21 (HBV X-transactivated gene 13 protein) (HBV XAg-transactivated protein 13) None
Q3B726 POLR1F S242 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q49AR2 C5orf22 S192 ochoa UPF0489 protein C5orf22 None
Q4LE39 ARID4B S1159 ochoa AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}.
Q52LW3 ARHGAP29 S21 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q53EL6 PDCD4 S71 ochoa|psp Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}.
Q5BKZ1 ZNF326 S445 ochoa DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}.
Q5FWF5 ESCO1 S383 ochoa N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}.
Q5HYJ3 FAM76B S154 ochoa Protein FAM76B Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}.
Q5HYJ3 FAM76B S232 ochoa Protein FAM76B Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}.
Q5T0W9 FAM83B S804 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T3I0 GPATCH4 S220 ochoa G patch domain-containing protein 4 None
Q5T5C0 STXBP5 S905 ochoa Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}.
Q5TCX8 MAP3K21 S514 ochoa Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}.
Q5VT06 CEP350 S1807 ochoa Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}.
Q5VTL8 PRPF38B S471 ochoa Pre-mRNA-splicing factor 38B (Sarcoma antigen NY-SAR-27) May be required for pre-mRNA splicing. {ECO:0000305}.
Q5VWQ0 RSBN1 S206 ochoa Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}.
Q5VY43 PEAR1 S796 ochoa Platelet endothelial aggregation receptor 1 (hPEAR1) (Multiple epidermal growth factor-like domains protein 12) (Multiple EGF-like domains protein 12) Required for SVEP1-mediated platelet activation, via its interaction with SVEP1 and subsequent activation of AKT/mTOR signaling (PubMed:36792666). May be involved in the early stages of hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8VIK5, ECO:0000269|PubMed:36792666}.
Q5VZL5 ZMYM4 S1144 ochoa Zinc finger MYM-type protein 4 (Zinc finger protein 262) Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}.
Q5W0Q7 USPL1 S908 ochoa SUMO-specific isopeptidase USPL1 (EC 3.4.22.-) (Ubiquitin-specific peptidase-like protein 1) (USP-like 1) SUMO-specific isopeptidase involved in protein desumoylation. Specifically binds SUMO proteins with a higher affinity for SUMO2 and SUMO3 which it cleaves more efficiently. Also able to process full-length SUMO proteins to their mature forms (PubMed:22878415). Plays a key role in RNA polymerase-II-mediated snRNA transcription in the Cajal bodies (PubMed:24413172). Is a component of complexes that can bind to U snRNA genes (PubMed:24413172). {ECO:0000269|PubMed:22878415, ECO:0000269|PubMed:24413172}.
Q641Q2 WASHC2A S939 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q641Q2 WASHC2A S1179 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q69YH5 CDCA2 S710 ochoa Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}.
Q6AI08 HEATR6 S337 ochoa HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) Amplification-dependent oncogene.
Q6FI81 CIAPIN1 S272 ochoa Anamorsin (Cytokine-induced apoptosis inhibitor 1) (Fe-S cluster assembly protein DRE2 homolog) Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the scaffold complex NUBP1-NUBP2. Electrons are transferred to CIAPIN1 from NADPH via the FAD- and FMN-containing protein NDOR1 (PubMed:23596212). NDOR1-CIAPIN1 are also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RNR), probably by providing electrons for reduction during radical cofactor maturation in the catalytic small subunit (By similarity). Has anti-apoptotic effects in the cell. Involved in negative control of cell death upon cytokine withdrawal. Promotes development of hematopoietic cells (By similarity). {ECO:0000250|UniProtKB:P36152, ECO:0000250|UniProtKB:Q8WTY4, ECO:0000255|HAMAP-Rule:MF_03115, ECO:0000269|PubMed:23596212}.
Q6P3S1 DENND1B S711 ochoa DENN domain-containing protein 1B (Connecdenn 2) (Protein FAM31B) Guanine nucleotide exchange factor (GEF) for RAB35 that acts as a regulator of T-cell receptor (TCR) internalization in TH2 cells (PubMed:20154091, PubMed:20937701, PubMed:24520163, PubMed:26774822). Acts by promoting the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form (PubMed:20154091, PubMed:20937701). Plays a role in clathrin-mediated endocytosis (PubMed:20154091). Controls cytokine production in TH2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes: acts by mediating clathrin-mediated endocytosis of TCR via its interaction with the adapter protein complex 2 (AP-2) and GEF activity (PubMed:26774822). Dysregulation leads to impaired TCR down-modulation and recycling, affecting cytokine production in TH2 cells (PubMed:26774822). {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:24520163, ECO:0000269|PubMed:26774822}.
Q6P4R8 NFRKB S338 ochoa Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}.
Q6P5Q4 LMOD2 S491 ochoa Leiomodin-2 (Cardiac leiomodin) (C-LMOD) (Leiomodin) Mediates nucleation of actin filaments and thereby promotes actin polymerization (PubMed:18403713, PubMed:25250574, PubMed:26370058, PubMed:26417072). Plays a role in the regulation of actin filament length (By similarity). Required for normal sarcomere organization in the heart, and for normal heart function (PubMed:18403713). {ECO:0000250|UniProtKB:Q3UHZ5, ECO:0000269|PubMed:18403713, ECO:0000269|PubMed:25250574, ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:26417072}.
Q6P9G4 TMEM154 S115 ochoa Transmembrane protein 154 None
Q6PD62 CTR9 S970 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PD62 CTR9 S1020 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PJT7 ZC3H14 S365 ochoa Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}.
Q6UB98 ANKRD12 S132 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UB98 ANKRD12 S425 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6VMQ6 ATF7IP S113 ochoa Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}.
Q6VY07 PACS1 S409 ochoa Phosphofurin acidic cluster sorting protein 1 (PACS-1) Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}.
Q6VY07 PACS1 S411 ochoa Phosphofurin acidic cluster sorting protein 1 (PACS-1) Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}.
Q6ZSR9 None S186 ochoa Uncharacterized protein FLJ45252 None
Q6ZU52 KIAA0408 S246 ochoa Uncharacterized protein KIAA0408 None
Q6ZUT1 NKAPD1 S61 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q6ZUT1 NKAPD1 S184 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q6ZUT1 NKAPD1 S185 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q70Z53 FRA10AC1 S273 ochoa Protein FRA10AC1 May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:34694367}.
Q71UM5 RPS27L Y31 ochoa Ribosomal protein eS27-like (40S ribosomal protein S27-like) (Small ribosomal subunit protein eS27-like) None
Q7L804 RAB11FIP2 S185 ochoa Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}.
Q7RTP6 MICAL3 S1726 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7Z2T5 TRMT1L S243 ochoa tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}.
Q7Z417 NUFIP2 S333 ochoa FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q7Z5J4 RAI1 S560 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z6E9 RBBP6 S945 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6E9 RBBP6 S1221 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6E9 RBBP6 S1261 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6E9 RBBP6 S1626 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6J0 SH3RF1 S314 ochoa E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}.
Q7Z6J0 SH3RF1 S727 ochoa E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}.
Q86SF2 GALNT7 S103 ochoa N-acetylgalactosaminyltransferase 7 (EC 2.4.1.41) (Polypeptide GalNAc transferase 7) (GalNAc-T7) (pp-GaNTase 7) (Protein-UDP acetylgalactosaminyltransferase 7) (UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 7) Glycopeptide transferase involved in O-linked oligosaccharide biosynthesis, which catalyzes the transfer of an N-acetyl-D-galactosamine residue to an already glycosylated peptide. In contrast to other proteins of the family, it does not act as a peptide transferase that transfers GalNAc onto serine or threonine residue on the protein receptor, but instead requires the prior addition of a GalNAc on a peptide before adding additional GalNAc moieties. Some peptide transferase activity is however not excluded, considering that its appropriate peptide substrate may remain unidentified. {ECO:0000269|PubMed:10544240, ECO:0000269|PubMed:11925450}.
Q86SJ2 AMIGO2 S438 ochoa Amphoterin-induced protein 2 (AMIGO-2) (Alivin-1) (Differentially expressed in gastric adenocarcinomas) (DEGA) Required for depolarization-dependent survival of cultured cerebellar granule neurons. May mediate homophilic as well as heterophilic cell-cell interaction with AMIGO1 or AMIGO3. May contribute to signal transduction through its intracellular domain. May be required for tumorigenesis of a subset of gastric adenocarcinomas.
Q86SQ4 ADGRG6 S1199 ochoa Adhesion G-protein coupled receptor G6 (Developmentally regulated G-protein-coupled receptor) (G-protein coupled receptor 126) (Vascular inducible G protein-coupled receptor) [Cleaved into: Adhesion G-protein coupled receptor G6, N-terminal fragment (ADGRG6 N-terminal fragment) (ADGRG6-NTF); Adhesion G-protein coupled receptor G6, C-terminal fragment (ADGRG6 C-terminal fragment) (ADGRG6-CTF)] Adhesion G-protein coupled receptor (aGPCR) for steroid hormones, such as progesterone and 17alpha-hydroxyprogesterone (17OHP) (PubMed:35394864, PubMed:39884271). Involved in many biological processes, such as myelination, sprouting angiogenesis, placenta, ear and cartilage development (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as adenylate cyclase (PubMed:24227709, PubMed:35394864). ADGRG6 is coupled to G(i) G alpha proteins and mediates inhibition of adenylate cyclase (PubMed:24227709, PubMed:35394864). Also able to couple to G(q) G proteins (PubMed:24227709). Involved in myelination of the peripheral nervous system: required for differentiation of promyelinating Schwann cells and for normal myelination of axons (PubMed:24227709). Also acts as a regulator of body length and bone mass (PubMed:18391950). Acts as a regulator of blood-brain barrier formation in the central nervous system vie its association with LRP1 and ITGB1 (By similarity). {ECO:0000250|UniProtKB:Q6F3F9, ECO:0000269|PubMed:18391950, ECO:0000269|PubMed:24227709, ECO:0000269|PubMed:35394864, ECO:0000269|PubMed:39884271}.
Q86U86 PBRM1 S636 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86UD5 SLC9B2 S49 ochoa Sodium/hydrogen exchanger 9B2 (Na(+)/H(+) exchanger NHA2) (Na(+)/H(+) exchanger-like domain-containing protein 2) (NHE domain-containing protein 2) (Sodium/hydrogen exchanger-like domain-containing protein 2) (Solute carrier family 9 subfamily B member 2) Electroneutral Na(+) Li(+)/H(+) antiporter that extrudes Na(+) or Li(+) in exchange for external protons across the membrane (PubMed:18000046, PubMed:18508966, PubMed:22948142, PubMed:28154142, PubMed:36177733). Uses the proton gradient/membrane potential to extrude sodium (PubMed:22948142). Contributes to the regulation of intracellular pH and sodium homeostasis (By similarity). Also able to mediate Na(+)/Li(+) antiporter activity in kidney (PubMed:22948142). May play a physiological role in renal tubular function and blood pressure homeostasis (By similarity). Plays an important role for insulin secretion and clathrin-mediated endocytosis in beta-cells (By similarity). Involved in sperm motility and fertility (By similarity). It is controversial whether SLC9B2 plays a role in osteoclast differentiation or not (By similarity). {ECO:0000250|UniProtKB:Q5BKR2, ECO:0000269|PubMed:18000046, ECO:0000269|PubMed:18508966, ECO:0000269|PubMed:22948142, ECO:0000269|PubMed:28154142, ECO:0000269|PubMed:36177733}.
Q86UE4 MTDH S179 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UE4 MTDH S180 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UP2 KTN1 S77 ochoa Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
Q86UP2 KTN1 S1180 ochoa Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
Q86UR5 RIMS1 S1311 ochoa Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}.
Q86VF7 NRAP S1603 ochoa Nebulin-related-anchoring protein (N-RAP) May be involved in anchoring the terminal actin filaments in the myofibril to the membrane and in transmitting tension from the myofibrils to the extracellular matrix. {ECO:0000250|UniProtKB:Q80XB4}.
Q86VP3 PACS2 S329 ochoa Phosphofurin acidic cluster sorting protein 2 (PACS-2) (PACS1-like protein) Multifunctional sorting protein that controls the endoplasmic reticulum (ER)-mitochondria communication, including the apposition of mitochondria with the ER and ER homeostasis. In addition, in response to apoptotic inducer, translocates BIB to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated BID, the release of cytochrome c, the activation of caspase-3 thereby causing cell death. May also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. {ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:15692567}.
Q86W34 AMZ2 S230 ochoa Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}.
Q86YC2 PALB2 S454 ochoa Partner and localizer of BRCA2 Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}.
Q86YT6 MIB1 S807 ochoa E3 ubiquitin-protein ligase MIB1 (EC 2.3.2.27) (DAPK-interacting protein 1) (DIP-1) (Mind bomb homolog 1) (RING-type E3 ubiquitin transferase MIB1) (Zinc finger ZZ type with ankyrin repeat domain protein 2) E3 ubiquitin-protein ligase that mediates ubiquitination of Delta receptors, which act as ligands of Notch proteins. Positively regulates the Delta-mediated Notch signaling by ubiquitinating the intracellular domain of Delta, leading to endocytosis of Delta receptors. Probably mediates ubiquitination and subsequent proteasomal degradation of DAPK1, thereby antagonizing anti-apoptotic effects of DAPK1 to promote TNF-induced apoptosis (By similarity). Involved in ubiquitination of centriolar satellite CEP131, CEP290 and PCM1 proteins and hence inhibits primary cilium formation in proliferating cells. Mediates 'Lys-63'-linked polyubiquitination of TBK1, which probably participates in kinase activation. {ECO:0000250, ECO:0000269|PubMed:24121310}.; FUNCTION: (Microbial infection) During adenovirus infection, mediates ubiquitination of Core-capsid bridging protein. This allows viral genome delivery into nucleus for infection. {ECO:0000269|PubMed:31851912}.
Q86YV0 RASAL3 S224 ochoa RAS protein activator like-3 Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}.
Q86Z02 HIPK1 S38 ochoa Homeodomain-interacting protein kinase 1 (EC 2.7.11.1) (Nuclear body-associated kinase 2) Serine/threonine-protein kinase involved in transcription regulation and TNF-mediated cellular apoptosis. Plays a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX and MYB. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. Inactivates MYB transcription factor activity by phosphorylation. Prevents MAP3K5-JNK activation in the absence of TNF. TNF triggers its translocation to the cytoplasm in response to stress stimuli, thus activating nuclear MAP3K5-JNK by derepression and promoting apoptosis. May be involved in anti-oxidative stress responses. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. Promotes angiogenesis and to be involved in erythroid differentiation. May be involved in malignant squamous cell tumor formation. Phosphorylates PAGE4 at 'Thr-51' which is critical for the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:24559171). {ECO:0000269|PubMed:12702766, ECO:0000269|PubMed:12968034, ECO:0000269|PubMed:15701637, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:19646965, ECO:0000269|PubMed:24559171}.
Q8IV63 VRK3 S75 ochoa Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}.
Q8IVF2 AHNAK2 S1172 ochoa Protein AHNAK2 None
Q8IXM2 BACC1 S146 ochoa BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) Component of chromatin complexes such as the MLL1/MLL and NURF complexes.
Q8IY57 YAF2 S112 ochoa YY1-associated factor 2 Binds to MYC and inhibits MYC-mediated transactivation. Also binds to MYCN and enhances MYCN-dependent transcriptional activation. Increases calpain 2-mediated proteolysis of YY1 in vitro. Component of the E2F6.com-1 complex, a repressive complex that methylates 'Lys-9' of histone H3, suggesting that it is involved in chromatin-remodeling. {ECO:0000269|PubMed:11593398, ECO:0000269|PubMed:12706874, ECO:0000269|PubMed:9016636}.
Q8IZA0 KIAA0319L S978 ochoa Dyslexia-associated protein KIAA0319-like protein (Adeno-associated virus receptor) (AAVR) Possible role in axon guidance through interaction with RTN4R. {ECO:0000269|PubMed:20697954}.; FUNCTION: (Microbial infection) Acts as a receptor for adeno-associated virus and is involved in adeno-associated virus infection through endocytosis system. {ECO:0000269|PubMed:26814968}.
Q8IZA0 KIAA0319L S1003 ochoa Dyslexia-associated protein KIAA0319-like protein (Adeno-associated virus receptor) (AAVR) Possible role in axon guidance through interaction with RTN4R. {ECO:0000269|PubMed:20697954}.; FUNCTION: (Microbial infection) Acts as a receptor for adeno-associated virus and is involved in adeno-associated virus infection through endocytosis system. {ECO:0000269|PubMed:26814968}.
Q8N157 AHI1 S45 ochoa Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}.
Q8N1G2 CMTR1 S28 ochoa Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}.
Q8N3K9 CMYA5 S1551 ochoa Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}.
Q8N3V7 SYNPO S721 ochoa Synaptopodin Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}.
Q8N488 RYBP S123 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N573 OXR1 S294 ochoa Oxidation resistance protein 1 May be involved in protection from oxidative damage. {ECO:0000269|PubMed:11114193, ECO:0000269|PubMed:15060142}.
Q8N587 ZNF561 S211 ochoa Zinc finger protein 561 May be involved in transcriptional regulation.
Q8N5C7 DTWD1 S192 ochoa tRNA-uridine aminocarboxypropyltransferase 1 (EC 2.5.1.25) (DTW domain-containing protein 1) Catalyzes the formation of 3-(3-amino-3-carboxypropyl)uridine (acp3U) at position 20 in the D-loop of several cytoplasmic tRNAs (acp3U(20)). {ECO:0000269|PubMed:31804502}.
Q8N720 ZNF655 S254 ochoa Zinc finger protein 655 (Vav-interacting Krueppel-like protein) Probable transcription factor. {ECO:0000305}.
Q8NFC6 BOD1L1 S538 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFC6 BOD1L1 S545 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NHQ9 DDX55 S544 ochoa ATP-dependent RNA helicase DDX55 (EC 3.6.4.13) (DEAD box protein 55) Probable ATP-binding RNA helicase. Has ATPase activity and is involved in the maturation of precursor large subunit rRNAs (PubMed:33048000). {ECO:0000269|PubMed:33048000}.
Q8TD26 CHD6 S21 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TDB6 DTX3L S532 ochoa E3 ubiquitin-protein ligase DTX3L (EC 2.3.2.27) (B-lymphoma- and BAL-associated protein) (Protein deltex-3-like) (RING-type E3 ubiquitin transferase DTX3L) (Rhysin-2) (Rhysin2) E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses (PubMed:12670957, PubMed:19818714, PubMed:23230272, PubMed:26479788). Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4 (PubMed:28525742). In response to DNA damage, mediates monoubiquitination of 'Lys-91' of histone H4 (H4K91ub1) (PubMed:19818714). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 'Lys-20' methylation (H4K20me) (PubMed:19818714). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). By monoubiquitinating histone H2B H2BC9/H2BJ and thereby promoting chromatin remodeling, positively regulates STAT1-dependent interferon-stimulated gene transcription and thus STAT1-mediated control of viral replication (PubMed:26479788). Independently of its catalytic activity, promotes the sorting of chemokine receptor CXCR4 from early endosome to lysosome following CXCL12 stimulation by reducing E3 ligase ITCH activity and thus ITCH-mediated ubiquitination of endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:24790097). In addition, required for the recruitment of HGS and STAM to early endosomes (PubMed:24790097). In association with PARP9, plays a role in antiviral responses by mediating 'Lys-48'-linked ubiquitination of encephalomyocarditis virus (EMCV) and human rhinovirus (HRV) C3 proteases and thus promoting their proteasomal-mediated degradation (PubMed:26479788). {ECO:0000269|PubMed:12670957, ECO:0000269|PubMed:19818714, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28525742}.
Q8TEJ3 SH3RF3 S391 ochoa E3 ubiquitin-protein ligase SH3RF3 (EC 2.3.2.27) (Plenty of SH3s 2) (SH3 domain-containing RING finger protein 3) (SH3 multiple domains protein 4) Has E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20696164}.
Q8TEQ6 GEMIN5 S757 ochoa Gem-associated protein 5 (Gemin5) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}.
Q8TEY7 USP33 S387 ochoa Ubiquitin carboxyl-terminal hydrolase 33 (EC 3.4.19.12) (Deubiquitinating enzyme 33) (Ubiquitin thioesterase 33) (Ubiquitin-specific-processing protease 33) (VHL-interacting deubiquitinating enzyme 1) (hVDU1) Deubiquitinating enzyme involved in various processes such as centrosome duplication, cellular migration and beta-2 adrenergic receptor/ADRB2 recycling. Involved in regulation of centrosome duplication by mediating deubiquitination of CCP110 in S and G2/M phase, leading to stabilize CCP110 during the period which centrioles duplicate and elongate. Involved in cell migration via its interaction with intracellular domain of ROBO1, leading to regulate the Slit signaling. Plays a role in commissural axon guidance cross the ventral midline of the neural tube in a Slit-dependent manner, possibly by mediating the deubiquitination of ROBO1. Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination of beta-arrestins (ARRB1 and ARRB2) and beta-2 adrenergic receptor (ADRB2). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, leading to beta-arrestins deubiquitination and disengagement from ADRB2. This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Mediates deubiquitination of both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains. {ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:19363159, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:23486064}.
Q8TF05 PPP4R1 S442 ochoa Serine/threonine-protein phosphatase 4 regulatory subunit 1 Regulatory subunit of serine/threonine-protein phosphatase 4. May play a role in regulation of cell division in renal glomeruli. The PPP4C-PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. Plays a role in the inhibition of TNF-induced NF-kappa-B activation by regulating the dephosphorylation of TRAF2. {ECO:0000269|PubMed:15805470}.; FUNCTION: (Microbial infection) Participates in merkel polyomavirus-mediated inhibition of NF-kappa-B by bridging viral small tumor antigen with NEMO. {ECO:0000269|PubMed:28445980}.
Q8TF62 ATP8B4 S728 ochoa Probable phospholipid-transporting ATPase IM (EC 7.6.2.1) (ATPase class I type 8B member 4) (P4-ATPase flippase complex alpha subunit ATP8B4) Component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation also seems to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable). {ECO:0000305}.
Q8WUB8 PHF10 S327 ochoa PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}.
Q8WVK2 SNRNP27 S132 ochoa U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein (U4/U6.U5 snRNP 27 kDa protein) (U4/U6.U5-27K) (Nucleic acid-binding protein RY-1) (U4/U6.U5 tri-snRNP-associated 27 kDa protein) (27K) (U4/U6.U5 tri-snRNP-associated protein 3) May play a role in mRNA splicing.
Q8WXE9 STON2 S767 ochoa Stonin-2 (Stoned B) Adapter protein involved in endocytic machinery. Involved in the synaptic vesicle recycling. May facilitate clathrin-coated vesicle uncoating. {ECO:0000269|PubMed:11381094, ECO:0000269|PubMed:11454741, ECO:0000269|PubMed:21102408}.
Q8WYH8 ING5 S148 ochoa Inhibitor of growth protein 5 (p28ING5) Component of the HBO1 complex, which specifically mediates acetylation of histone H3 at 'Lys-14' (H3K14ac) and, to a lower extent, acetylation of histone H4 (PubMed:24065767). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). Through chromatin acetylation it may regulate DNA replication and may function as a transcriptional coactivator (PubMed:12750254, PubMed:16387653). Inhibits cell growth, induces a delay in S-phase progression and enhances Fas-induced apoptosis in an INCA1-dependent manner (PubMed:21750715). {ECO:0000269|PubMed:12750254, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21750715, ECO:0000269|PubMed:24065767}.
Q8WYP5 AHCTF1 S2181 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q8WZ75 ROBO4 S657 ochoa Roundabout homolog 4 (Magic roundabout) Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}.
Q92614 MYO18A S35 ochoa Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}.
Q92841 DDX17 S479 ochoa Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72) As an RNA helicase, unwinds RNA and alters RNA structures through ATP binding and hydrolysis. Involved in multiple cellular processes, including pre-mRNA splicing, alternative splicing, ribosomal RNA processing and miRNA processing, as well as transcription regulation. Regulates the alternative splicing of exons exhibiting specific features (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). For instance, promotes the inclusion of AC-rich alternative exons in CD44 transcripts (PubMed:12138182). This function requires the RNA helicase activity (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). Affects NFAT5 and histone macro-H2A.1/MACROH2A1 alternative splicing in a CDK9-dependent manner (PubMed:22266867, PubMed:26209609). In NFAT5, promotes the introduction of alternative exon 4, which contains 2 stop codons and may target NFAT5 exon 4-containing transcripts to nonsense-mediated mRNA decay, leading to the down-regulation of NFAT5 protein (PubMed:22266867). Affects splicing of mediators of steroid hormone signaling pathway, including kinases that phosphorylates ESR1, such as CDK2, MAPK1 and GSK3B, and transcriptional regulators, such as CREBBP, MED1, NCOR1 and NCOR2. By affecting GSK3B splicing, participates in ESR1 and AR stabilization (PubMed:24275493). In myoblasts and epithelial cells, cooperates with HNRNPH1 to control the splicing of specific subsets of exons (PubMed:24910439). In addition to binding mature mRNAs, also interacts with certain pri-microRNAs, including MIR663/miR-663a, MIR99B/miR-99b, and MIR6087/miR-6087 (PubMed:25126784). Binds pri-microRNAs on the 3' segment flanking the stem loop via the 5'-[ACG]CAUC[ACU]-3' consensus sequence (PubMed:24581491). Required for the production of subsets of microRNAs, including MIR21 and MIR125B1 (PubMed:24581491, PubMed:27478153). May be involved not only in microRNA primary transcript processing, but also stabilization (By similarity). Participates in MYC down-regulation at high cell density through the production of MYC-targeting microRNAs (PubMed:24581491). Along with DDX5, may be involved in the processing of the 32S intermediate into the mature 28S ribosomal RNA (PubMed:17485482). Promoter-specific transcription regulator, functioning as a coactivator or corepressor depending on the context of the promoter and the transcriptional complex in which it exists (PubMed:15298701). Enhances NFAT5 transcriptional activity (PubMed:22266867). Synergizes with TP53 in the activation of the MDM2 promoter; this activity requires acetylation on lysine residues (PubMed:17226766, PubMed:19995069, PubMed:20663877). May also coactivate MDM2 transcription through a TP53-independent pathway (PubMed:17226766). Coactivates MMP7 transcription (PubMed:17226766). Along with CTNNB1, coactivates MYC, JUN, FOSL1 and cyclin D1/CCND1 transcription (PubMed:17699760). Alone or in combination with DDX5 and/or SRA1 non-coding RNA, plays a critical role in promoting the assembly of proteins required for the formation of the transcription initiation complex and chromatin remodeling leading to coactivation of MYOD1-dependent transcription. This helicase-independent activity is required for skeletal muscle cells to properly differentiate into myotubes (PubMed:17011493, PubMed:24910439). During epithelial-to-mesenchymal transition, coregulates SMAD-dependent transcriptional activity, directly controlling key effectors of differentiation, including miRNAs which in turn directly repress its expression (PubMed:24910439). Plays a role in estrogen and testosterone signaling pathway at several levels. Mediates the use of alternative promoters in estrogen-responsive genes and regulates transcription and splicing of a large number of steroid hormone target genes (PubMed:19995069, PubMed:20406972, PubMed:20663877, PubMed:24275493). Contrary to splicing regulation activity, transcriptional coregulation of the estrogen receptor ESR1 is helicase-independent (PubMed:19718048, PubMed:24275493). Plays a role in innate immunity. Specifically restricts bunyavirus infection, including Rift Valley fever virus (RVFV) or La Crosse virus (LACV), but not vesicular stomatitis virus (VSV), in an interferon- and DROSHA-independent manner (PubMed:25126784). Binds to RVFV RNA, likely via structured viral RNA elements (PubMed:25126784). Promotes mRNA degradation mediated by the antiviral zinc-finger protein ZC3HAV1, in an ATPase-dependent manner (PubMed:18334637). {ECO:0000250|UniProtKB:Q501J6, ECO:0000269|PubMed:12138182, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766, ECO:0000269|PubMed:17485482, ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:18334637, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:19995069, ECO:0000269|PubMed:20406972, ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:23022728, ECO:0000269|PubMed:24275493, ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24910439, ECO:0000269|PubMed:25126784, ECO:0000269|PubMed:26209609, ECO:0000269|PubMed:27478153, ECO:0000305}.
Q92854 SEMA4D S788 ochoa Semaphorin-4D (A8) (BB18) (GR3) (CD antigen CD100) Cell surface receptor for PLXNB1 and PLXNB2 that plays an important role in cell-cell signaling (PubMed:20877282). Regulates GABAergic synapse development (By similarity). Promotes the development of inhibitory synapses in a PLXNB1-dependent manner (By similarity). Modulates the complexity and arborization of developing neurites in hippocampal neurons by activating PLXNB1 and interaction with PLXNB1 mediates activation of RHOA (PubMed:19788569). Promotes the migration of cerebellar granule cells (PubMed:16055703). Plays a role in the immune system; induces B-cells to aggregate and improves their viability (in vitro) (PubMed:8876214). Induces endothelial cell migration through the activation of PTK2B/PYK2, SRC, and the phosphatidylinositol 3-kinase-AKT pathway (PubMed:16055703). {ECO:0000250|UniProtKB:O09126, ECO:0000269|PubMed:16055703, ECO:0000269|PubMed:19788569, ECO:0000269|PubMed:20877282, ECO:0000269|PubMed:8876214}.
Q92922 SMARCC1 S212 ochoa SWI/SNF complex subunit SMARCC1 (BRG1-associated factor 155) (BAF155) (SWI/SNF complex 155 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:P97496, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q96A65 EXOC4 S226 ochoa Exocyst complex component 4 (Exocyst complex component Sec8) Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. {ECO:0000250|UniProtKB:Q62824}.
Q96AT1 KIAA1143 S130 ochoa Uncharacterized protein KIAA1143 None
Q96BK5 PINX1 S23 ochoa PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q96CC6 RHBDF1 S128 ochoa Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}.
Q96GA3 LTV1 S358 ochoa Protein LTV1 homolog Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}.
Q96GQ7 DDX27 S756 ochoa Probable ATP-dependent RNA helicase DDX27 (EC 3.6.4.13) (DEAD box protein 27) Probable ATP-dependent RNA helicase. Component of the nucleolar ribosomal RNA (rRNA) processing machinery that regulates 3' end formation of ribosomal 47S rRNA (PubMed:25825154). {ECO:0000269|PubMed:25825154}.
Q96GX5 MASTL S376 ochoa Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}.
Q96JH7 VCPIP1 S747 ochoa|psp Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}.
Q96JM3 CHAMP1 S634 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JS3 PGBD1 S358 ochoa PiggyBac transposable element-derived protein 1 (Cerebral protein 4) None
Q96NA2 RILP S315 ochoa Rab-interacting lysosomal protein Rab effector playing a role in late endocytic transport to degradative compartments (PubMed:11179213, PubMed:11696325, PubMed:12944476, PubMed:14668488, PubMed:27113757). Involved in the regulation of lysosomal morphology and distribution (PubMed:14668488, PubMed:27113757). Induces recruitment of dynein-dynactin motor complexes to Rab7A-containing late endosome and lysosome compartments (PubMed:11179213, PubMed:11696325). Promotes centripetal migration of phagosomes and the fusion of phagosomes with the late endosomes and lysosomes (PubMed:12944476). {ECO:0000269|PubMed:11179213, ECO:0000269|PubMed:11696325, ECO:0000269|PubMed:12944476, ECO:0000269|PubMed:14668488, ECO:0000269|PubMed:27113757}.
Q96NE9 FRMD6 S390 ochoa FERM domain-containing protein 6 (Willin) None
Q96NW4 ANKRD27 S962 ochoa Ankyrin repeat domain-containing protein 27 (VPS9 domain-containing protein) May be a guanine exchange factor (GEF) for Rab21, Rab32 and Rab38 and regulate endosome dynamics (PubMed:16525121, PubMed:18477474). May regulate the participation of VAMP7 in membrane fusion events; in vitro inhibits VAMP7-mediated SNARE complex formation by trapping VAMP7 in a closed, fusogenically inactive conformation (PubMed:23104059). Involved in peripheral melanosomal distribution of TYRP1 in melanocytes; the function, which probably is implicating vesicle-trafficking, includes cooperation with Rab32, Rab38 and VAMP7 (By similarity). Involved in the regulation of neurite growth; the function seems to require its GEF activity, probably towards Rab21, and VAMP7 but not Rab32/38 (By similarity). Proposed to be involved in Golgi sorting of VAMP7 and transport of VAMP7 vesicles to the cell surface; the function seems to implicate kinesin heavy chain isoform 5 proteins, GOLGA4, RAB21 and MACF1 (PubMed:22705394). Required for the colocalization of VAMP7 and Rab21, probably on TGN sites (PubMed:19745841). Involved in GLUT1 endosome-to-plasma membrane trafficking; the function is dependent of association with VPS29 (PubMed:24856514). Regulates the proper trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes (By similarity). {ECO:0000250|UniProtKB:Q3UMR0, ECO:0000269|PubMed:23104059, ECO:0000269|PubMed:24856514, ECO:0000305|PubMed:16525121, ECO:0000305|PubMed:18477474, ECO:0000305|PubMed:22705394}.
Q96PY5 FMNL2 S679 ochoa Formin-like protein 2 (Formin homology 2 domain-containing protein 2) Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}.
Q96Q45 TMEM237 S49 ochoa Transmembrane protein 237 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 4 protein) Component of the transition zone in primary cilia. Required for ciliogenesis. {ECO:0000269|PubMed:22152675}.
Q96QC0 PPP1R10 S320 ochoa Serine/threonine-protein phosphatase 1 regulatory subunit 10 (MHC class I region proline-rich protein CAT53) (PP1-binding protein of 114 kDa) (Phosphatase 1 nuclear targeting subunit) (p99) Substrate-recognition component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation (PubMed:39603239, PubMed:39603240). Promoter-proximal pausing by RNA polymerase II is a transcription halt following transcription initiation but prior to elongation, which acts as a checkpoint to control that transcripts are favorably configured for transcriptional elongation (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates RNA polymerase II transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). The PNUTS-PP1 complex also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (By similarity). PNUTS-PP1 complex mediates dephosphorylation of MYC, promoting MYC stability by preventing MYC ubiquitination by the SCF(FBXW7) complex (PubMed:30158517). In addition to acts as a substrate-recognition component, PPP1R10/PNUTS also acts as a nuclear targeting subunit for the PNUTS-PP1 complex (PubMed:9450550). In some context, PPP1R10/PNUTS also acts as an inhibitor of protein phosphatase 1 (PP1) activity by preventing access to substrates, such as RB (PubMed:18360108). {ECO:0000250|UniProtKB:Q80W00, ECO:0000269|PubMed:18360108, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240, ECO:0000269|PubMed:9450550}.
Q96QE3 ATAD5 S217 ochoa ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96SN8 CDK5RAP2 S841 ochoa CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}.
Q96T58 SPEN S836 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q96T58 SPEN S1358 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q96T88 UHRF1 S661 psp E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}.
Q99549 MPHOSPH8 S192 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S264 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S267 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99570 PIK3R4 S861 ochoa Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}.
Q99575 POP1 S24 ochoa Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q99590 SCAF11 S400 ochoa Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}.
Q99607 ELF4 S186 ochoa ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
Q99607 ELF4 S188 ochoa ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
Q99650 OSMR S800 ochoa Oncostatin-M-specific receptor subunit beta (Interleukin-31 receptor subunit beta) (IL-31 receptor subunit beta) (IL-31R subunit beta) (IL-31R-beta) (IL-31RB) Associates with IL31RA to form the IL31 receptor. Binds IL31 to activate STAT3 and possibly STAT1 and STAT5. Capable of transducing OSM-specific signaling events. {ECO:0000269|PubMed:15184896, ECO:0000269|PubMed:8999038}.
Q99698 LYST S1509 ochoa Lysosomal-trafficking regulator (Beige homolog) Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}.
Q99698 LYST S1510 ochoa Lysosomal-trafficking regulator (Beige homolog) Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}.
Q9BQ04 RBM4B S86 ochoa RNA-binding protein 4B (RNA-binding motif protein 30) (RNA-binding motif protein 4B) (RNA-binding protein 30) Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA (By similarity). {ECO:0000250}.
Q9BQ39 DDX50 S82 ochoa ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}.
Q9BQ70 TCF25 S143 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BQE4 SELENOS S146 ochoa Selenoprotein S (SelS) (VCP-interacting membrane protein) Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination. {ECO:0000269|PubMed:15215856}.
Q9BQE4 SELENOS S147 ochoa Selenoprotein S (SelS) (VCP-interacting membrane protein) Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination. {ECO:0000269|PubMed:15215856}.
Q9BRZ2 TRIM56 S475 ochoa E3 ubiquitin-protein ligase TRIM56 (EC 2.3.2.27) (RING finger protein 109) (Tripartite motif-containing protein 56) E3 ubiquitin-protein ligase that plays a key role in innate antiviral immunity by mediating ubiquitination of CGAS and STING1 (PubMed:21289118, PubMed:29426904). In response to pathogen- and host-derived double-stranded DNA (dsDNA), targets STING1 to 'Lys-63'-linked ubiquitination, thereby promoting its homodimerization, a step required for the production of type I interferon IFN-beta (By similarity). Also mediate monoubiquitination of CGAS, thereby promoting CGAS oligomerization and subsequent activation (PubMed:29426904). Promotes also TNFalpha-induced NF-kappa-B signaling by mediating 'Lys-63'-linked ubiquitination TAK1, leading to enhanced interaction between TAK1 and CHUK/IKKalpha (PubMed:35952808). Independently of its E3 ubiquitin ligase activity, positive regulator of TLR3 signaling. Potentiates extracellular double stranded RNA (dsRNA)-induced expression of IFNB1 and interferon-stimulated genes ISG15, IFIT1/ISG56, CXCL10, OASL and CCL5/RANTES (PubMed:22948160). Promotes establishment of an antiviral state by TLR3 ligand and TLR3-mediated chemokine induction following infection by hepatitis C virus (PubMed:22948160). Acts as a restriction factor of Zika virus through direct interaction with the viral RNA via its C-terminal region (PubMed:31251739). {ECO:0000250|UniProtKB:Q80VI1, ECO:0000269|PubMed:21289118, ECO:0000269|PubMed:22948160, ECO:0000269|PubMed:29426904, ECO:0000269|PubMed:31251739, ECO:0000269|PubMed:35952808}.
Q9BSM1 PCGF1 S195 psp Polycomb group RING finger protein 1 (Nervous system Polycomb-1) (NSPc1) (RING finger protein 68) Component of the Polycomb group (PcG) multiprotein BCOR complex, a complex required to maintain the transcriptionally repressive state of some genes, such as BCL6 and the cyclin-dependent kinase inhibitor, CDKN1A. Transcriptional repressor that may be targeted to the DNA by BCL6; this transcription repressor activity may be related to PKC signaling pathway. Represses CDKN1A expression by binding to its promoter, and this repression is dependent on the retinoic acid response element (RARE element). Promotes cell cycle progression and enhances cell proliferation as well. May have a positive role in tumor cell growth by down-regulating CDKN1A. Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:26151332). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). Regulates the expression of DPPA4 and NANOG in the NT2 embryonic carcinoma cells (PubMed:26687479). {ECO:0000269|PubMed:15620699, ECO:0000269|PubMed:16943429, ECO:0000269|PubMed:17088287, ECO:0000269|PubMed:26151332, ECO:0000269|PubMed:26687479}.
Q9BU76 MMTAG2 S216 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BU76 MMTAG2 S217 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BV36 MLPH S569 ochoa Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}.
Q9BV44 THUMPD3 S154 ochoa tRNA (guanine(6)-N(2))-methyltransferase THUMP3 (EC 2.1.1.256) (THUMP domain-containing protein 3) (tRNA(Trp) (guanine(7)-N(2))-methyltransferase THUMP3) (EC 2.1.1.-) Catalytic subunit of the THUMPD3-TRM112 methyltransferase complex, that specifically mediates the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 6 (m2G6) in tRNAs (PubMed:34669960, PubMed:37283053). This is one of the major tRNA (guanine-N(2))-methyltransferases (PubMed:37283053). Also catalyzes the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 7 of tRNA(Trp) (PubMed:34669960). {ECO:0000269|PubMed:34669960, ECO:0000269|PubMed:37283053}.
Q9BV73 CEP250 S2322 ochoa Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}.
Q9BWF3 RBM4 S86 ochoa RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}.
Q9BWT3 PAPOLG S516 ochoa Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}.
Q9BWU0 SLC4A1AP S709 ochoa Kanadaptin (Human lung cancer oncogene 3 protein) (HLC-3) (Kidney anion exchanger adapter protein) (Solute carrier family 4 anion exchanger member 1 adapter protein) None
Q9BXF6 RAB11FIP5 S243 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9BXW9 FANCD2 S886 ochoa|psp Fanconi anemia group D2 protein (Protein FACD2) Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}.
Q9BY42 RTF2 S214 ochoa Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}.
Q9BYF1 ACE2 S783 psp Angiotensin-converting enzyme 2 (EC 3.4.17.23) (Angiotensin-converting enzyme homolog) (ACEH) (Angiotensin-converting enzyme-related carboxypeptidase) (ACE-related carboxypeptidase) (EC 3.4.17.-) (Metalloprotease MPROT15) [Cleaved into: Processed angiotensin-converting enzyme 2] Essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis (PubMed:27217402). Converts angiotensin I to angiotensin 1-9, a nine-amino acid peptide with anti-hypertrophic effects in cardiomyocytes, and angiotensin II to angiotensin 1-7, which then acts as a beneficial vasodilator and anti-proliferation agent, counterbalancing the actions of the vasoconstrictor angiotensin II (PubMed:10924499, PubMed:10969042, PubMed:11815627, PubMed:14504186, PubMed:19021774). Also removes the C-terminal residue from three other vasoactive peptides, neurotensin, kinetensin, and des-Arg bradykinin, but is not active on bradykinin (PubMed:10969042, PubMed:11815627). Also cleaves other biological peptides, such as apelins (apelin-13, [Pyr1]apelin-13, apelin-17, apelin-36), casomorphins (beta-casomorphin-7, neocasomorphin) and dynorphin A with high efficiency (PubMed:11815627, PubMed:27217402, PubMed:28293165). In addition, ACE2 C-terminus is homologous to collectrin and is responsible for the trafficking of the neutral amino acid transporter SL6A19 to the plasma membrane of gut epithelial cells via direct interaction, regulating its expression on the cell surface and its catalytic activity (PubMed:18424768, PubMed:19185582). {ECO:0000269|PubMed:10924499, ECO:0000269|PubMed:10969042, ECO:0000269|PubMed:11815627, ECO:0000269|PubMed:14504186, ECO:0000269|PubMed:18424768, ECO:0000269|PubMed:19021774, ECO:0000269|PubMed:19185582, ECO:0000269|PubMed:27217402}.; FUNCTION: (Microbial infection) Acts as a receptor for human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63. {ECO:0000269|PubMed:14647384, ECO:0000269|PubMed:15452268, ECO:0000269|PubMed:15791205, ECO:0000269|PubMed:15897467, ECO:0000269|PubMed:19901337, ECO:0000269|PubMed:24227843, ECO:0000269|PubMed:32142651, ECO:0000269|PubMed:32221306, ECO:0000269|PubMed:32225175, ECO:0000269|PubMed:33000221, ECO:0000269|PubMed:33082294, ECO:0000269|PubMed:33432067}.; FUNCTION: [Isoform 2]: Non-functional as a carboxypeptidase. {ECO:0000269|PubMed:33077916}.; FUNCTION: [Isoform 2]: (Microbial infection) Non-functional as a receptor for human coronavirus SARS-CoV-2. {ECO:0000269|PubMed:33077916, ECO:0000269|PubMed:33432184}.
Q9BYW2 SETD2 S321 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BYW2 SETD2 S800 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BZ67 FRMD8 S446 ochoa FERM domain-containing protein 8 (Band4.1 inhibitor LRP interactor) (Bili) (iRhom tail-associated protein) (iTAP) Promotes the cell surface stability of iRhom1/RHBDF1 and iRhom2/RHBDF2 and prevents their degradation via the endolysosomal pathway. By acting on iRhoms, involved in ADAM17-mediated shedding of TNF, amphiregulin/AREG, HBEGF and TGFA from the cell surface (PubMed:29897333, PubMed:29897336). Negatively regulates Wnt signaling, possibly by antagonizing the recruitment of AXIN1 to LRP6 (PubMed:19572019). {ECO:0000269|PubMed:19572019, ECO:0000269|PubMed:29897333, ECO:0000269|PubMed:29897336}.
Q9BZE4 GTPBP4 S63 ochoa GTP-binding protein 4 (Chronic renal failure gene protein) (GTP-binding protein NGB) (Nucleolar GTP-binding protein 1) Involved in the biogenesis of the 60S ribosomal subunit (PubMed:32669547). Acts as a TP53 repressor, preventing TP53 stabilization and cell cycle arrest (PubMed:20308539). {ECO:0000269|PubMed:20308539, ECO:0000269|PubMed:32669547}.
Q9BZI7 UPF3B S310 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9BZI7 UPF3B S416 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9BZQ8 NIBAN1 S577 ochoa Protein Niban 1 (Cell growth-inhibiting gene 39 protein) (Protein FAM129A) Regulates phosphorylation of a number of proteins involved in translation regulation including EIF2A, EIF4EBP1 and RPS6KB1. May be involved in the endoplasmic reticulum stress response (By similarity). {ECO:0000250}.
Q9C086 INO80B S63 ochoa INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}.
Q9C0B1 FTO S173 ochoa Alpha-ketoglutarate-dependent dioxygenase FTO (Fat mass and obesity-associated protein) (U6 small nuclear RNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (EC 1.14.11.-) (U6 small nuclear RNA N(6)-methyladenosine-demethylase FTO) (EC 1.14.11.-) (mRNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (m6A(m)-demethylase FTO) (EC 1.14.11.-) (mRNA N(6)-methyladenosine demethylase FTO) (EC 1.14.11.53) (tRNA N1-methyl adenine demethylase FTO) (EC 1.14.11.-) RNA demethylase that mediates oxidative demethylation of different RNA species, such as mRNAs, tRNAs and snRNAs, and acts as a regulator of fat mass, adipogenesis and energy homeostasis (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:28002401, PubMed:30197295). Specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:30197295). M6A demethylation by FTO affects mRNA expression and stability (PubMed:30197295). Also able to demethylate m6A in U6 small nuclear RNA (snRNA) (PubMed:30197295). Mediates demethylation of N(6),2'-O-dimethyladenosine cap (m6A(m)), by demethylating the N(6)-methyladenosine at the second transcribed position of mRNAs and U6 snRNA (PubMed:28002401, PubMed:30197295). Demethylation of m6A(m) in the 5'-cap by FTO affects mRNA stability by promoting susceptibility to decapping (PubMed:28002401). Also acts as a tRNA demethylase by removing N(1)-methyladenine from various tRNAs (PubMed:30197295). Has no activity towards 1-methylguanine (PubMed:20376003). Has no detectable activity towards double-stranded DNA (PubMed:20376003). Also able to repair alkylated DNA and RNA by oxidative demethylation: demethylates single-stranded RNA containing 3-methyluracil, single-stranded DNA containing 3-methylthymine and has low demethylase activity towards single-stranded DNA containing 1-methyladenine or 3-methylcytosine (PubMed:18775698, PubMed:20376003). Ability to repair alkylated DNA and RNA is however unsure in vivo (PubMed:18775698, PubMed:20376003). Involved in the regulation of fat mass, adipogenesis and body weight, thereby contributing to the regulation of body size and body fat accumulation (PubMed:18775698, PubMed:20376003). Involved in the regulation of thermogenesis and the control of adipocyte differentiation into brown or white fat cells (PubMed:26287746). Regulates activity of the dopaminergic midbrain circuitry via its ability to demethylate m6A in mRNAs (By similarity). Plays an oncogenic role in a number of acute myeloid leukemias by enhancing leukemic oncogene-mediated cell transformation: acts by mediating m6A demethylation of target transcripts such as MYC, CEBPA, ASB2 and RARA, leading to promote their expression (PubMed:28017614, PubMed:29249359). {ECO:0000250|UniProtKB:Q8BGW1, ECO:0000269|PubMed:18775698, ECO:0000269|PubMed:20376003, ECO:0000269|PubMed:22002720, ECO:0000269|PubMed:25452335, ECO:0000269|PubMed:26287746, ECO:0000269|PubMed:26457839, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:28002401, ECO:0000269|PubMed:28017614, ECO:0000269|PubMed:29249359, ECO:0000269|PubMed:30197295}.
Q9C0C9 UBE2O S904 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9GZU2 PEG3 S671 ochoa Paternally-expressed gene 3 protein (Zinc finger and SCAN domain-containing protein 24) Induces apoptosis in cooperation with SIAH1A. Acts as a mediator between p53/TP53 and BAX in a neuronal death pathway that is activated by DNA damage. Acts synergistically with TRAF2 and inhibits TNF induced apoptosis through activation of NF-kappa-B (By similarity). Possesses a tumor suppressing activity in glioma cells. {ECO:0000250, ECO:0000269|PubMed:11260267}.
Q9H0G5 NSRP1 S27 ochoa Nuclear speckle splicing regulatory protein 1 (Coiled-coil domain-containing protein 55) (Nuclear speckle-related protein 70) (NSrp70) RNA-binding protein that mediates pre-mRNA alternative splicing regulation. {ECO:0000269|PubMed:21296756}.
Q9H165 BCL11A S432 ochoa BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}.
Q9H1E3 NUCKS1 S58 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H2Y7 ZNF106 S1370 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H4L7 SMARCAD1 S242 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}.
Q9H4M9 EHD1 S456 ochoa EH domain-containing protein 1 (PAST homolog 1) (hPAST1) (Testilin) ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis. In vitro causes vesiculation of endocytic membranes (PubMed:24019528). Acts in early endocytic membrane fusion and membrane trafficking of recycling endosomes (PubMed:15020713, PubMed:17233914, PubMed:20801876). Recruited to endosomal membranes upon nerve growth factor stimulation, indirectly regulates neurite outgrowth (By similarity). Plays a role in myoblast fusion (By similarity). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle (CV), an early step in cilium biogenesis (PubMed:31615969). Proposed to be required for the fusion of distal appendage vesicles (DAVs) to form the CV by recruiting SNARE complex component SNAP29. Is required for recruitment of transition zone proteins CEP290, RPGRIP1L, TMEM67 and B9D2, and of IFT20 following DAV reorganization before Rab8-dependent ciliary membrane extension. Required for the loss of CCP110 form the mother centriole essential for the maturation of the basal body during ciliogenesis (PubMed:25686250). {ECO:0000250|UniProtKB:Q641Z6, ECO:0000250|UniProtKB:Q9WVK4, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:31615969}.
Q9H501 ESF1 S180 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S823 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H582 ZNF644 S673 ochoa Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) May be involved in transcriptional regulation.
Q9H582 ZNF644 S1189 ochoa Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) May be involved in transcriptional regulation.
Q9H5V8 CDCP1 Y707 ochoa|psp CUB domain-containing protein 1 (Membrane glycoprotein gp140) (Subtractive immunization M plus HEp3-associated 135 kDa protein) (SIMA135) (Transmembrane and associated with src kinases) (CD antigen CD318) May be involved in cell adhesion and cell matrix association. May play a role in the regulation of anchorage versus migration or proliferation versus differentiation via its phosphorylation. May be a novel marker for leukemia diagnosis and for immature hematopoietic stem cell subsets. Belongs to the tetraspanin web involved in tumor progression and metastasis. {ECO:0000269|PubMed:11466621, ECO:0000269|PubMed:12799299, ECO:0000269|PubMed:15153610, ECO:0000269|PubMed:16007225, ECO:0000269|PubMed:16404722, ECO:0000269|PubMed:8647901}.
Q9H6T3 RPAP3 S87 ochoa RNA polymerase II-associated protein 3 Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. {ECO:0000269|PubMed:17643375}.
Q9H7B2 RPF2 Y263 ochoa Ribosome production factor 2 homolog (Brix domain-containing protein 1) (Ribosome biogenesis protein RPF2 homolog) Involved in ribosomal large subunit assembly. May regulate the localization of the 5S RNP/5S ribonucleoprotein particle to the nucleolus. {ECO:0000269|PubMed:24120868}.
Q9H7N4 SCAF1 S655 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9H9B1 EHMT1 S649 ochoa Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-methyltransferase 1D) Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. During G0 phase, it probably contributes to silencing of MYC- and E2F-responsive genes, suggesting a role in G0/G1 transition in cell cycle. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with probable chromatin reader BAZ2B (By similarity). {ECO:0000250|UniProtKB:Q5DW34, ECO:0000269|PubMed:12004135, ECO:0000269|PubMed:20118233}.
Q9HAZ2 PRDM16 S437 ochoa Histone-lysine N-methyltransferase PRDM16 (EC 2.1.1.367) (PR domain zinc finger protein 16) (PR domain-containing protein 16) (Transcription factor MEL1) (MDS1/EVI1-like gene 1) Binds DNA and functions as a transcriptional regulator (PubMed:12816872). Displays histone methyltransferase activity and monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). Probably catalyzes the monomethylation of free histone H3 in the cytoplasm which is then transported to the nucleus and incorporated into nucleosomes where SUV39H methyltransferases use it as a substrate to catalyze histone H3 'Lys-9' trimethylation (By similarity). Likely to be one of the primary histone methyltransferases along with MECOM/PRDM3 that direct cytoplasmic H3K9me1 methylation (By similarity). Functions in the differentiation of brown adipose tissue (BAT) which is specialized in dissipating chemical energy in the form of heat in response to cold or excess feeding while white adipose tissue (WAT) is specialized in the storage of excess energy and the control of systemic metabolism (By similarity). Together with CEBPB, regulates the differentiation of myoblastic precursors into brown adipose cells (By similarity). Functions as a repressor of TGF-beta signaling (PubMed:19049980). {ECO:0000250|UniProtKB:A2A935, ECO:0000269|PubMed:12816872, ECO:0000269|PubMed:19049980}.; FUNCTION: [Isoform 4]: Binds DNA and functions as a transcriptional regulator (PubMed:12816872). Functions as a repressor of TGF-beta signaling (PubMed:14656887). May regulate granulocyte differentiation (PubMed:12816872). {ECO:0000269|PubMed:12816872, ECO:0000269|PubMed:14656887}.
Q9HB21 PLEKHA1 S125 ochoa Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}.
Q9HBU1 BARX1 S209 ochoa Homeobox protein BarH-like 1 Transcription factor, which is involved in craniofacial development, in odontogenesis and in stomach organogenesis. May have a role in the differentiation of molars from incisors. Plays a role in suppressing endodermal Wnt activity (By similarity). Binds to a regulatory module of the NCAM promoter. {ECO:0000250, ECO:0000269|PubMed:9804553}.
Q9HC35 EML4 S132 ochoa Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}.
Q9HCE3 ZNF532 S1067 ochoa Zinc finger protein 532 May be involved in transcriptional regulation.
Q9HCG8 CWC22 S866 ochoa Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}.
Q9HCH5 SYTL2 S254 ochoa Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}.
Q9HCK8 CHD8 S1679 ochoa Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}.
Q9NQ29 LUC7L S336 ochoa Putative RNA-binding protein Luc7-like 1 (Putative SR protein LUC7B1) (SR+89) May bind to RNA via its Arg/Ser-rich domain. {ECO:0000269|PubMed:11170747}.
Q9NQ66 PLCB1 S988 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}.
Q9NQS7 INCENP S235 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NR30 DDX21 S89 ochoa|psp Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}.
Q9NR48 ASH1L S1544 ochoa Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}.
Q9NRF2 SH2B1 S161 psp SH2B adapter protein 1 (Pro-rich, PH and SH2 domain-containing signaling mediator) (PSM) (SH2 domain-containing protein 1B) Adapter protein for several members of the tyrosine kinase receptor family. Involved in multiple signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases, including the receptors of insulin (INS), insulin-like growth factor 1 (IGF1), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), platelet-derived growth factor (PDGF) and fibroblast growth factors (FGFs). In growth hormone (GH) signaling, autophosphorylated ('Tyr-813') JAK2 recruits SH2B1, which in turn is phosphorylated by JAK2 on tyrosine residues. These phosphotyrosines form potential binding sites for other signaling proteins. GH also promotes serine/threonine phosphorylation of SH2B1 and these phosphorylated residues may serve to recruit other proteins to the GHR-JAK2-SH2B1 complexes, such as RAC1. In leptin (LEP) signaling, binds to and potentiates the activation of JAK2 by globally enhancing downstream pathways. In response to leptin, binds simultaneously to both, JAK2 and IRS1 or IRS2, thus mediating formation of a complex of JAK2, SH2B1 and IRS1 or IRS2. Mediates tyrosine phosphorylation of IRS1 and IRS2, resulting in activation of the PI 3-kinase pathway. Acts as a positive regulator of NGF-mediated activation of the Akt/Forkhead pathway; prolongs NGF-induced phosphorylation of AKT1 on 'Ser-473' and AKT1 enzymatic activity. Enhances the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2 and of other receptor tyrosine kinases, such as FGFR3 and NTRK1. For JAK2, the mechanism seems to involve dimerization of both, SH2B1 and JAK2. Enhances RET phosphorylation and kinase activity. Isoforms seem to be differentially involved in IGF1 and PDGF-induced mitogenesis (By similarity). {ECO:0000250|UniProtKB:Q91ZM2, ECO:0000269|PubMed:11827956, ECO:0000269|PubMed:14565960, ECO:0000269|PubMed:15767667, ECO:0000269|PubMed:16569669, ECO:0000269|PubMed:17471236, ECO:0000269|PubMed:9694882, ECO:0000269|PubMed:9742218}.
Q9NRZ9 HELLS S188 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NVN8 GNL3L S22 ochoa Guanine nucleotide-binding protein-like 3-like protein Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}.
Q9NVR2 INTS10 S382 ochoa Integrator complex subunit 10 (Int10) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:32647223). Within the integrator complex, INTS10 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386}.
Q9NWH9 SLTM S97 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NWM3 CUEDC1 S351 ochoa CUE domain-containing protein 1 None
Q9NX05 FAM120C S1021 ochoa Constitutive coactivator of PPAR-gamma-like protein 2 (Protein FAM120C) (Tumor antigen BJ-HCC-21) None
Q9NYF8 BCLAF1 S496 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NZB2 FAM120A S1045 ochoa Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}.
Q9NZM5 NOP53 S233 psp Ribosome biogenesis protein NOP53 (Glioma tumor suppressor candidate region gene 2 protein) (Protein interacting with carboxyl terminus 1) (PICT-1) (p60) Nucleolar protein which is involved in the integration of the 5S RNP into the ribosomal large subunit during ribosome biogenesis (PubMed:24120868). In ribosome biogenesis, may also play a role in rRNA transcription (PubMed:27729611). Also functions as a nucleolar sensor that regulates the activation of p53/TP53 in response to ribosome biogenesis perturbation, DNA damage and other stress conditions (PubMed:21741933, PubMed:24120868, PubMed:27829214). DNA damage or perturbation of ribosome biogenesis disrupt the interaction between NOP53 and RPL11 allowing RPL11 transport to the nucleoplasm where it can inhibit MDM2 and allow p53/TP53 activation (PubMed:24120868, PubMed:27829214). It may also positively regulate the function of p53/TP53 in cell cycle arrest and apoptosis through direct interaction, preventing its MDM2-dependent ubiquitin-mediated proteasomal degradation (PubMed:22522597). Originally identified as a tumor suppressor, it may also play a role in cell proliferation and apoptosis by positively regulating the stability of PTEN, thereby antagonizing the PI3K-AKT/PKB signaling pathway (PubMed:15355975, PubMed:16971513, PubMed:27729611). May also inhibit cell proliferation and increase apoptosis through its interaction with NF2 (PubMed:21167305). May negatively regulate NPM1 by regulating its nucleoplasmic localization, oligomerization and ubiquitin-mediated proteasomal degradation (PubMed:25818168). Thereby, may prevent NPM1 interaction with MYC and negatively regulate transcription mediated by the MYC-NPM1 complex (PubMed:25956029). May also regulate cellular aerobic respiration (PubMed:24556985). In the cellular response to viral infection, may play a role in the attenuation of interferon-beta through the inhibition of RIGI (PubMed:27824081). {ECO:0000269|PubMed:15355975, ECO:0000269|PubMed:16971513, ECO:0000269|PubMed:21167305, ECO:0000269|PubMed:21741933, ECO:0000269|PubMed:22522597, ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:24556985, ECO:0000269|PubMed:25818168, ECO:0000269|PubMed:25956029, ECO:0000269|PubMed:27729611, ECO:0000269|PubMed:27824081, ECO:0000269|PubMed:27829214}.
Q9NZN4 EHD2 S484 ochoa EH domain-containing protein 2 (PAST homolog 2) ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (By similarity). Plays a role in membrane trafficking between the plasma membrane and endosomes (PubMed:17233914). Important for the internalization of GLUT4. Required for fusion of myoblasts to skeletal muscle myotubes. Required for normal translocation of FER1L5 to the plasma membrane (By similarity). Regulates the equilibrium between cell surface-associated and cell surface-dissociated caveolae by constraining caveolae at the cell membrane (PubMed:25588833). {ECO:0000250|UniProtKB:Q8BH64, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:25588833}.
Q9P0K8 FOXJ2 S439 ochoa Forkhead box protein J2 (Fork head homologous X) [Isoform FOXJ2.L]: Transcriptional activator. Able to bind to two different type of DNA binding sites. More effective than isoform FOXJ2.S in transcriptional activation (PubMed:10777590, PubMed:10966786). Plays an important role in spermatogenesis, especially in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q9ES18, ECO:0000269|PubMed:10777590, ECO:0000269|PubMed:10966786}.; FUNCTION: [Isoform FOXJ2.S]: Transcriptional activator. {ECO:0000269|PubMed:10966786}.
Q9P0L1 ZKSCAN7 S369 ochoa Zinc finger protein with KRAB and SCAN domains 7 (Zinc finger protein 167) (Zinc finger protein 448) (Zinc finger protein 64) May be involved in transcriptional regulation.
Q9P227 ARHGAP23 S1188 ochoa Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}.
Q9P2D0 IBTK Y996 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2E9 RRBP1 S155 ochoa Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}.
Q9P2Q2 FRMD4A S371 ochoa FERM domain-containing protein 4A Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}.
Q9UBU8 MORF4L1 S166 ochoa Mortality factor 4-like protein 1 (MORF-related gene 15 protein) (MRG15) (Protein MSL3-1) (Transcription factor-like protein MRG15) Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:12391155, PubMed:14966270, PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Required for homologous recombination repair (HRR) and resistance to mitomycin C (MMC). Involved in the localization of PALB2, BRCA2 and RAD51, but not BRCA1, to DNA-damage foci. {ECO:0000269|PubMed:12391155, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:20332121, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}.
Q9UBW7 ZMYM2 S1060 ochoa Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}.
Q9UBZ9 REV1 S1088 ochoa DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}.
Q9UER7 DAXX S647 ochoa Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}.
Q9UHB7 AFF4 S310 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UHR4 BAIAP2L1 S354 ochoa BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}.
Q9UJ70 NAGK S70 ochoa N-acetyl-D-glucosamine kinase (N-acetylglucosamine kinase) (EC 2.7.1.59) (GlcNAc kinase) (Muramyl dipeptide kinase) (EC 2.7.1.-) (N-acetyl-D-mannosamine kinase) (EC 2.7.1.60) Converts endogenous N-acetylglucosamine (GlcNAc), a major component of complex carbohydrates, from lysosomal degradation or nutritional sources into GlcNAc 6-phosphate (PubMed:22692205). Involved in the N-glycolylneuraminic acid (Neu5Gc) degradation pathway: although human is not able to catalyze formation of Neu5Gc due to the inactive CMAHP enzyme, Neu5Gc is present in food and must be degraded (PubMed:22692205). Also has N-acetylmannosamine (ManNAc) kinase activity (By similarity). Also involved in innate immunity by promoting detection of bacterial peptidoglycan by NOD2: acts by catalyzing phosphorylation of muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, to generate 6-O-phospho-muramyl dipeptide, which acts as a direct ligand for NOD2 (PubMed:36002575). {ECO:0000250|UniProtKB:Q9QZ08, ECO:0000269|PubMed:22692205, ECO:0000269|PubMed:36002575}.
Q9UKI2 CDC42EP3 S32 ochoa Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}.
Q9UKX7 NUP50 S263 ochoa Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}.
Q9ULG1 INO80 S237 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULG1 INO80 S240 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULH0 KIDINS220 S1521 ochoa Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}.
Q9ULS5 TMCC3 S174 ochoa Transmembrane and coiled-coil domain protein 3 None
Q9ULU4 ZMYND8 S1126 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9ULW2 FZD10 S553 ochoa Frizzled-10 (Fz-10) (hFz10) (FzE7) (CD antigen CD350) Receptor for Wnt proteins. Functions in the canonical Wnt/beta-catenin signaling pathway (By similarity). The canonical Wnt/beta-catenin signaling pathway leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues (Probable). {ECO:0000250|UniProtKB:Q8BKG4, ECO:0000305}.
Q9ULX6 AKAP8L S289 ochoa A-kinase anchor protein 8-like (AKAP8-like protein) (Helicase A-binding protein 95) (HAP95) (Homologous to AKAP95 protein) (HA95) (Neighbor of A-kinase-anchoring protein 95) (Neighbor of AKAP95) Could play a role in constitutive transport element (CTE)-mediated gene expression by association with DHX9. Increases CTE-dependent nuclear unspliced mRNA export (PubMed:10748171, PubMed:11402034). Proposed to target PRKACA to the nucleus but does not seem to be implicated in the binding of regulatory subunit II of PKA (PubMed:10761695, PubMed:11884601). May be involved in nuclear envelope breakdown and chromatin condensation. May be involved in anchoring nuclear membranes to chromatin in interphase and in releasing membranes from chromating at mitosis (PubMed:11034899). May regulate the initiation phase of DNA replication when associated with TMPO isoform Beta (PubMed:12538639). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function seems to act redundantly with AKAP8 (PubMed:16980585). May be involved in regulation of pre-mRNA splicing (PubMed:17594903). {ECO:0000269|PubMed:10748171, ECO:0000269|PubMed:11034899, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11884601, ECO:0000269|PubMed:12538639, ECO:0000269|PubMed:16980585, ECO:0000305|PubMed:10761695}.; FUNCTION: (Microbial infection) In case of EBV infection, may target PRKACA to EBNA-LP-containing nuclear sites to modulate transcription from specific promoters. {ECO:0000269|PubMed:11884601}.; FUNCTION: (Microbial infection) Can synergize with DHX9 to activate the CTE-mediated gene expression of type D retroviruses. {ECO:0000269|PubMed:11402034}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, involved in the DHX9-promoted annealing of host tRNA(Lys3) to viral genomic RNA as a primer in reverse transcription; in vitro negatively regulates DHX9 annealing activity. {ECO:0000269|PubMed:25034436}.
Q9UM54 MYO6 S1142 ochoa Unconventional myosin-VI (Unconventional myosin-6) Myosins are actin-based motor molecules with ATPase activity (By similarity). Unconventional myosins serve in intracellular movements (By similarity). Myosin 6 is a reverse-direction motor protein that moves towards the minus-end of actin filaments (PubMed:10519557). Has slow rate of actin-activated ADP release due to weak ATP binding (By similarity). Functions in a variety of intracellular processes such as vesicular membrane trafficking and cell migration (By similarity). Required for the structural integrity of the Golgi apparatus via the p53-dependent pro-survival pathway (PubMed:16507995). Appears to be involved in a very early step of clathrin-mediated endocytosis in polarized epithelial cells (PubMed:11447109). Together with TOM1, mediates delivery of endocytic cargo to autophagosomes thereby promoting autophagosome maturation and driving fusion with lysosomes (PubMed:23023224). Links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). May act as a regulator of F-actin dynamics (By similarity). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). May play a role in transporting DAB2 from the plasma membrane to specific cellular targets (By similarity). May play a role in the extension and network organization of neurites (By similarity). Required for structural integrity of inner ear hair cells (By similarity). Required for the correct localization of CLIC5 and RDX at the stereocilium base (By similarity). Modulates RNA polymerase II-dependent transcription (PubMed:16949370). {ECO:0000250|UniProtKB:Q29122, ECO:0000250|UniProtKB:Q64331, ECO:0000269|PubMed:10519557, ECO:0000269|PubMed:11447109, ECO:0000269|PubMed:16507995, ECO:0000269|PubMed:16949370, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:29467281, ECO:0000269|PubMed:31371777}.
Q9UMZ2 SYNRG S1044 ochoa Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}.
Q9UN37 VPS4A S90 ochoa Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}.
Q9UNH7 SNX6 S194 ochoa Sorting nexin-6 (TRAF4-associated factor 2) [Cleaved into: Sorting nexin-6, N-terminally processed] Involved in several stages of intracellular trafficking. Interacts with membranes phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 4,5-bisphosphate (Probable). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:19935774). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Does not have in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptor IGF2R (PubMed:17148574). May function as link between transport vesicles and dynactin (Probable). Negatively regulates retrograde transport of BACE1 from the cell surface to the trans-Golgi network (PubMed:20354142). Involved in E-cadherin sorting and degradation; inhibits PIP5K1C isoform 3-mediated E-cadherin degradation (PubMed:24610942). In association with GIT1 involved in EGFR degradation. Promotes lysosomal degradation of CDKN1B (By similarity). May contribute to transcription regulation (Probable). {ECO:0000250|UniProtKB:Q6P8X1, ECO:0000269|PubMed:17148574, ECO:0000269|PubMed:19935774, ECO:0000269|PubMed:20354142, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:24610942, ECO:0000303|PubMed:19935774, ECO:0000303|PubMed:20830743, ECO:0000305}.
Q9UNL4 ING4 S125 ochoa Inhibitor of growth protein 4 (p29ING4) Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653). Through chromatin acetylation it may function in DNA replication (PubMed:16387653). May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation (PubMed:15251430, PubMed:15528276). Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA (PubMed:15029197). May also specifically suppress loss of contact inhibition elicited by activated oncogenes such as MYC (PubMed:15029197). Represses hypoxia inducible factor's (HIF) activity by interacting with HIF prolyl hydroxylase 2 (EGLN1) (PubMed:15897452). Can enhance apoptosis induced by serum starvation in mammary epithelial cell line HC11 (By similarity). {ECO:0000250|UniProtKB:Q8C0D7, ECO:0000269|PubMed:15029197, ECO:0000269|PubMed:15251430, ECO:0000269|PubMed:15528276, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:16387653}.
Q9UPV0 CEP164 S383 ochoa Centrosomal protein of 164 kDa (Cep164) Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}.
Q9UPV0 CEP164 S1205 ochoa Centrosomal protein of 164 kDa (Cep164) Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}.
Q9UQ84 EXO1 S454 psp Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}.
Q9UQR1 ZNF148 S336 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9Y210 TRPC6 S840 ochoa Short transient receptor potential channel 6 (TrpC6) (Transient receptor protein 6) (TRP-6) Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:19936226, PubMed:23291369, PubMed:26892346, PubMed:9930701). Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C (PubMed:26892346). Seems not to be activated by intracellular calcium store depletion. {ECO:0000269|PubMed:19936226, ECO:0000269|PubMed:23291369, ECO:0000269|PubMed:26892346, ECO:0000269|PubMed:9930701}.
Q9Y266 NUDC S281 ochoa Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q9Y2K5 R3HDM2 S143 ochoa R3H domain-containing protein 2 None
Q9Y2M0 FAN1 S180 ochoa Fanconi-associated nuclease 1 (EC 3.1.21.-) (EC 3.1.4.1) (FANCD2/FANCI-associated nuclease 1) (hFAN1) (Myotubularin-related protein 15) Nuclease required for the repair of DNA interstrand cross-links (ICL) recruited at sites of DNA damage by monoubiquitinated FANCD2. Specifically involved in repair of ICL-induced DNA breaks by being required for efficient homologous recombination, probably in the resolution of homologous recombination intermediates (PubMed:20603015, PubMed:20603016, PubMed:20603073, PubMed:20671156, PubMed:24981866, PubMed:25430771). Not involved in DNA double-strand breaks resection (PubMed:20603015, PubMed:20603016). Acts as a 5'-3' exonuclease that anchors at a cut end of DNA and cleaves DNA successively at every third nucleotide, allowing to excise an ICL from one strand through flanking incisions. Probably keeps excising with 3'-flap annealing until it reaches and unhooks the ICL (PubMed:25430771). Acts at sites that have a 5'-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3' flap (PubMed:25430771). Also has endonuclease activity toward 5'-flaps (PubMed:20603015, PubMed:20603016, PubMed:24981866). {ECO:0000269|PubMed:20603015, ECO:0000269|PubMed:20603016, ECO:0000269|PubMed:20603073, ECO:0000269|PubMed:20671156, ECO:0000269|PubMed:24981866, ECO:0000269|PubMed:25135477, ECO:0000269|PubMed:25430771}.
Q9Y2W1 THRAP3 S494 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2X9 ZNF281 S683 ochoa Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}.
Q9Y388 RBMX2 S185 ochoa RNA-binding motif protein, X-linked 2 Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9Y388 RBMX2 S187 ochoa RNA-binding motif protein, X-linked 2 Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9Y426 C2CD2 S516 ochoa C2 domain-containing protein 2 (Transmembrane protein 24-like) None
Q9Y426 C2CD2 S522 ochoa C2 domain-containing protein 2 (Transmembrane protein 24-like) None
Q9Y490 TLN1 S417 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y4F1 FARP1 S613 ochoa FERM, ARHGEF and pleckstrin domain-containing protein 1 (Chondrocyte-derived ezrin-like protein) (FERM, RhoGEF and pleckstrin domain-containing protein 1) (Pleckstrin homology domain-containing family C member 2) (PH domain-containing family C member 2) Functions as a guanine nucleotide exchange factor for RAC1. May play a role in semaphorin signaling. Plays a role in the assembly and disassembly of dendritic filopodia, the formation of dendritic spines, regulation of dendrite length and ultimately the formation of synapses (By similarity). {ECO:0000250}.
Q9Y5A6 ZSCAN21 S208 ochoa Zinc finger and SCAN domain-containing protein 21 (Renal carcinoma antigen NY-REN-21) (Zinc finger protein 38 homolog) (Zfp-38) Strong transcriptional activator (By similarity). Plays an important role in spermatogenesis; essential for the progression of meiotic prophase I in spermatocytes (By similarity). {ECO:0000250|UniProtKB:Q07231}.
Q9Y5B6 PAXBP1 S158 ochoa PAX3- and PAX7-binding protein 1 (GC-rich sequence DNA-binding factor 1) Adapter protein linking the transcription factors PAX3 and PAX7 to the histone methylation machinery and involved in myogenesis. Associates with a histone methyltransferase complex that specifically mediates dimethylation and trimethylation of 'Lys-4' of histone H3. Mediates the recruitment of that complex to the transcription factors PAX3 and PAX7 on chromatin to regulate the expression of genes involved in muscle progenitor cells proliferation including ID3 and CDC20. {ECO:0000250|UniProtKB:P58501}.
Q9Y5S9 RBM8A S46 ochoa RNA-binding protein 8A (Binder of OVCA1-1) (BOV-1) (RNA-binding motif protein 8A) (RNA-binding protein Y14) (Ribonucleoprotein RBM8A) Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The MAGOH-RBM8A heterodimer interacts with the EJC key regulator PYM1 leading to EJC disassembly in the cytoplasm and translation enhancement of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Its removal from cytoplasmic mRNAs requires translation initiation from EJC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. The MAGOH-RBM8A heterodimer is a component of the nonsense mediated decay (NMD) pathway. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly. {ECO:0000269|PubMed:12121612, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:12730685, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}.
Q9Y6R1 SLC4A4 S65 ochoa|psp Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6R1 SLC4A4 S68 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6R1 SLC4A4 S1034 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6R6 ZNF780B S661 ochoa Zinc finger protein 780B (Zinc finger protein 779) May be involved in transcriptional regulation. {ECO:0000250}.
Q9Y6Y8 SEC23IP S728 ochoa SEC23-interacting protein (p125) Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}.
R4GMW8 BIVM-ERCC5 S1521 ochoa DNA excision repair protein ERCC-5 None
P62241 RPS8 S66 Sugiyama Small ribosomal subunit protein eS8 (40S ribosomal protein S8) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P52789 HK2 S893 Sugiyama Hexokinase-2 (EC 2.7.1.1) (Hexokinase type II) (HK II) (Hexokinase-B) (Muscle form hexokinase) Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D-fructose 6-phosphate, respectively) (PubMed:23185017, PubMed:26985301, PubMed:29298880). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (PubMed:29298880). Plays a key role in maintaining the integrity of the outer mitochondrial membrane by preventing the release of apoptogenic molecules from the intermembrane space and subsequent apoptosis (PubMed:18350175). {ECO:0000269|PubMed:18350175, ECO:0000269|PubMed:23185017, ECO:0000269|PubMed:26985301, ECO:0000269|PubMed:29298880}.
Q13439 GOLGA4 S1190 Sugiyama Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}.
Q15648 MED1 S932 Sugiyama Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q7Z2W4 ZC3HAV1 S640 Sugiyama Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}.
Q9BRS2 RIOK1 S130 Sugiyama Serine/threonine-protein kinase RIO1 (EC 2.7.11.1) (EC 3.6.1.-) (RIO kinase 1) Involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in processing of 18S-E pre-rRNA to the mature 18S rRNA. Required for the recycling of NOB1 and PNO1 from the late 40S precursor (PubMed:22072790). The association with the very late 40S subunit intermediate may involve a translation-like checkpoint point cycle preceeding the binding to the 60S ribosomal subunit (By similarity). Despite the protein kinase domain is proposed to act predominantly as an ATPase (By similarity). The catalytic activity regulates its dynamic association with the 40S subunit (By similarity). In addition to its role in ribosomal biogenesis acts as an adapter protein by recruiting NCL/nucleolin the to PRMT5 complex for its symmetrical methylation (PubMed:21081503). {ECO:0000250|UniProtKB:G0S3J5, ECO:0000250|UniProtKB:Q12196, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:22072790}.
P13489 RNH1 S208 Sugiyama Ribonuclease inhibitor (Placental ribonuclease inhibitor) (Placental RNase inhibitor) (Ribonuclease/angiogenin inhibitor 1) (RAI) Ribonuclease inhibitor which inhibits RNASE1, RNASE2 and angiogenin (ANG) (PubMed:12578357, PubMed:14515218, PubMed:3219362, PubMed:3243277, PubMed:3470787, PubMed:9050852). May play a role in redox homeostasis (PubMed:17292889). Required to inhibit the cytotoxic tRNA ribonuclease activity of ANG in the cytoplasm in absence of stress (PubMed:23843625, PubMed:32510170). Relocates to the nucleus in response to stress, relieving inhibition of ANG in the cytoplasm, and inhibiting the angiogenic activity of ANG in the nucleus (PubMed:23843625). {ECO:0000269|PubMed:12578357, ECO:0000269|PubMed:14515218, ECO:0000269|PubMed:17292889, ECO:0000269|PubMed:23843625, ECO:0000269|PubMed:3219362, ECO:0000269|PubMed:3243277, ECO:0000269|PubMed:32510170, ECO:0000269|PubMed:3470787, ECO:0000269|PubMed:9050852}.
O15111 CHUK S402 Sugiyama Inhibitor of nuclear factor kappa-B kinase subunit alpha (I-kappa-B kinase alpha) (IKK-A) (IKK-alpha) (IkBKA) (IkappaB kinase) (EC 2.7.11.10) (Conserved helix-loop-helix ubiquitous kinase) (I-kappa-B kinase 1) (IKK-1) (IKK1) (Nuclear factor NF-kappa-B inhibitor kinase alpha) (NFKBIKA) (Transcription factor 16) (TCF-16) Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed:35952808, PubMed:9244310, PubMed:9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed:21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B-responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed:30217973). {ECO:0000250|UniProtKB:Q60680, ECO:0000269|PubMed:12789342, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17434128, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20501937, ECO:0000269|PubMed:21765415, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35952808, ECO:0000269|PubMed:9244310, ECO:0000269|PubMed:9252186, ECO:0000269|PubMed:9346484, ECO:0000303|PubMed:18626576}.
P09234 SNRPC S48 Sugiyama U1 small nuclear ribonucleoprotein C (U1 snRNP C) (U1-C) (U1C) Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5' splice-site and the subsequent assembly of the spliceosome. SNRPC/U1-C is directly involved in initial 5' splice-site recognition for both constitutive and regulated alternative splicing. The interaction with the 5' splice-site seems to precede base-pairing between the pre-mRNA and the U1 snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base pairing of the 5' end of the U1 snRNA and the 5' splice-site region. {ECO:0000255|HAMAP-Rule:MF_03153, ECO:0000269|PubMed:1826349, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:2136774, ECO:0000269|PubMed:8798632}.
P61247 RPS3A Y31 Sugiyama Small ribosomal subunit protein eS1 (40S ribosomal protein S3a) (v-fos transformation effector protein) (Fte-1) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity). {ECO:0000255|HAMAP-Rule:MF_03122, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
O60828 PQBP1 S210 Sugiyama Polyglutamine-binding protein 1 (PQBP-1) (38 kDa nuclear protein containing a WW domain) (Npw38) (Polyglutamine tract-binding protein 1) Intrinsically disordered protein that acts as a scaffold, and which is involved in different processes, such as pre-mRNA splicing, transcription regulation, innate immunity and neuron development (PubMed:10198427, PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). Interacts with splicing-related factors via the intrinsically disordered region and regulates alternative splicing of target pre-mRNA species (PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). May suppress the ability of POU3F2 to transactivate the DRD1 gene in a POU3F2 dependent manner. Can activate transcription directly or via association with the transcription machinery (PubMed:10198427). May be involved in ATXN1 mutant-induced cell death (PubMed:12062018). The interaction with ATXN1 mutant reduces levels of phosphorylated RNA polymerase II large subunit (PubMed:12062018). Involved in the assembly of cytoplasmic stress granule, possibly by participating in the transport of neuronal RNA granules (PubMed:21933836). Also acts as an innate immune sensor of infection by retroviruses, such as HIV, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:26046437). Directly binds retroviral reverse-transcribed DNA in the cytosol and interacts with CGAS, leading to activate the cGAS-STING signaling pathway, triggering type-I interferon production (PubMed:26046437). {ECO:0000269|PubMed:10198427, ECO:0000269|PubMed:10332029, ECO:0000269|PubMed:12062018, ECO:0000269|PubMed:20410308, ECO:0000269|PubMed:21933836, ECO:0000269|PubMed:23512658, ECO:0000269|PubMed:26046437}.
P09497 CLTB S144 Sugiyama Clathrin light chain B (Lcb) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles.
Q9H4F8 SMOC1 Y407 Sugiyama SPARC-related modular calcium-binding protein 1 (Secreted modular calcium-binding protein 1) (SMOC-1) Plays essential roles in both eye and limb development. Probable regulator of osteoblast differentiation. {ECO:0000269|PubMed:20359165, ECO:0000269|PubMed:21194678, ECO:0000269|PubMed:21194680}.
Q9Y237 PIN4 S72 Sugiyama Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 (EC 5.2.1.8) (Parvulin-14) (Par14) (hPar14) (Parvulin-17) (Par17) (hPar17) (Peptidyl-prolyl cis-trans isomerase Pin4) (PPIase Pin4) (Peptidyl-prolyl cis/trans isomerase EPVH) (hEPVH) (Rotamase Pin4) Isoform 1 is involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to tightly bent AT-rich stretches of double-stranded DNA. {ECO:0000269|PubMed:19369196}.; FUNCTION: Isoform 2 binds to double-stranded DNA. {ECO:0000269|PubMed:19369196}.
P07333 CSF1R Y556 Sugiyama Macrophage colony-stimulating factor 1 receptor (CSF-1 receptor) (CSF-1-R) (CSF-1R) (M-CSF-R) (EC 2.7.10.1) (Proto-oncogene c-Fms) (CD antigen CD115) Tyrosine-protein kinase that acts as a cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of pro-inflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding, including the ERK1/2 and the JNK pathway (PubMed:20504948, PubMed:30982609). Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor. In the central nervous system, may play a role in the development of microglia macrophages (PubMed:30982608). {ECO:0000269|PubMed:12882960, ECO:0000269|PubMed:15117969, ECO:0000269|PubMed:16170366, ECO:0000269|PubMed:16337366, ECO:0000269|PubMed:16648572, ECO:0000269|PubMed:17121910, ECO:0000269|PubMed:18467591, ECO:0000269|PubMed:18814279, ECO:0000269|PubMed:19193011, ECO:0000269|PubMed:19934330, ECO:0000269|PubMed:20489731, ECO:0000269|PubMed:20504948, ECO:0000269|PubMed:20829061, ECO:0000269|PubMed:30982608, ECO:0000269|PubMed:30982609, ECO:0000269|PubMed:7683918}.
P09619 PDGFRB S980 Sugiyama Platelet-derived growth factor receptor beta (PDGF-R-beta) (PDGFR-beta) (EC 2.7.10.1) (Beta platelet-derived growth factor receptor) (Beta-type platelet-derived growth factor receptor) (CD140 antigen-like family member B) (Platelet-derived growth factor receptor 1) (PDGFR-1) (CD antigen CD140b) Tyrosine-protein kinase that acts as a cell-surface receptor for homodimeric PDGFB and PDGFD and for heterodimers formed by PDGFA and PDGFB, and plays an essential role in the regulation of embryonic development, cell proliferation, survival, differentiation, chemotaxis and migration. Plays an essential role in blood vessel development by promoting proliferation, migration and recruitment of pericytes and smooth muscle cells to endothelial cells. Plays a role in the migration of vascular smooth muscle cells and the formation of neointima at vascular injury sites. Required for normal development of the cardiovascular system. Required for normal recruitment of pericytes (mesangial cells) in the kidney glomerulus, and for normal formation of a branched network of capillaries in kidney glomeruli. Promotes rearrangement of the actin cytoskeleton and the formation of membrane ruffles. Binding of its cognate ligands - homodimeric PDGFB, heterodimers formed by PDGFA and PDGFB or homodimeric PDGFD -leads to the activation of several signaling cascades; the response depends on the nature of the bound ligand and is modulated by the formation of heterodimers between PDGFRA and PDGFRB. Phosphorylates PLCG1, PIK3R1, PTPN11, RASA1/GAP, CBL, SHC1 and NCK1. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, mobilization of cytosolic Ca(2+) and the activation of protein kinase C. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to the activation of the AKT1 signaling pathway. Phosphorylation of SHC1, or of the C-terminus of PTPN11, creates a binding site for GRB2, resulting in the activation of HRAS, RAF1 and down-stream MAP kinases, including MAPK1/ERK2 and/or MAPK3/ERK1. Promotes phosphorylation and activation of SRC family kinases. Promotes phosphorylation of PDCD6IP/ALIX and STAM. Receptor signaling is down-regulated by protein phosphatases that dephosphorylate the receptor and its down-stream effectors, and by rapid internalization of the activated receptor. {ECO:0000269|PubMed:11297552, ECO:0000269|PubMed:11331881, ECO:0000269|PubMed:1314164, ECO:0000269|PubMed:1396585, ECO:0000269|PubMed:1653029, ECO:0000269|PubMed:1709159, ECO:0000269|PubMed:1846866, ECO:0000269|PubMed:20494825, ECO:0000269|PubMed:20529858, ECO:0000269|PubMed:21098708, ECO:0000269|PubMed:21679854, ECO:0000269|PubMed:21733313, ECO:0000269|PubMed:2554309, ECO:0000269|PubMed:26599395, ECO:0000269|PubMed:2835772, ECO:0000269|PubMed:2850496, ECO:0000269|PubMed:7685273, ECO:0000269|PubMed:7691811, ECO:0000269|PubMed:7692233, ECO:0000269|PubMed:8195171}.
O60479 DLX3 S138 SIGNOR|iPTMNet|EPSD Homeobox protein DLX-3 Transcriptional activator (By similarity). Activates transcription of GNRHR, via binding to the downstream activin regulatory element (DARE) in the gene promoter (By similarity). {ECO:0000250|UniProtKB:Q64205}.
P17948 FLT1 S1291 Sugiyama Vascular endothelial growth factor receptor 1 (VEGFR-1) (EC 2.7.10.1) (Fms-like tyrosine kinase 1) (FLT-1) (Tyrosine-protein kinase FRT) (Tyrosine-protein kinase receptor FLT) (FLT) (Vascular permeability factor receptor) Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. Acts as a positive regulator of postnatal retinal hyaloid vessel regression (By similarity). May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1 (PubMed:16685275). {ECO:0000250|UniProtKB:P35969, ECO:0000269|PubMed:11141500, ECO:0000269|PubMed:11312102, ECO:0000269|PubMed:11811792, ECO:0000269|PubMed:12796773, ECO:0000269|PubMed:14633857, ECO:0000269|PubMed:15735759, ECO:0000269|PubMed:16685275, ECO:0000269|PubMed:18079407, ECO:0000269|PubMed:18515749, ECO:0000269|PubMed:18583712, ECO:0000269|PubMed:18593464, ECO:0000269|PubMed:20512933, ECO:0000269|PubMed:20551949, ECO:0000269|PubMed:21752276, ECO:0000269|PubMed:7824266, ECO:0000269|PubMed:8248162, ECO:0000269|PubMed:8605350, ECO:0000269|PubMed:9299537, ECO:0000269|Ref.11}.; FUNCTION: [Isoform 1]: Phosphorylates PLCG. {ECO:0000269|PubMed:9299537}.; FUNCTION: [Isoform 2]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 3]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 4]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 7]: Has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion. {ECO:0000269|PubMed:20512933}.
Q03112 MECOM S624 SIGNOR Histone-lysine N-methyltransferase MECOM (EC 2.1.1.367) (Ecotropic virus integration site 1 protein homolog) (EVI-1) (MDS1 and EVI1 complex locus protein) (Myelodysplasia syndrome 1 protein) (Myelodysplasia syndrome-associated protein 1) [Isoform 1]: Functions as a transcriptional regulator binding to DNA sequences in the promoter region of target genes and regulating positively or negatively their expression. Oncogene which plays a role in development, cell proliferation and differentiation. May also play a role in apoptosis through regulation of the JNK and TGF-beta signaling. Involved in hematopoiesis. {ECO:0000269|PubMed:10856240, ECO:0000269|PubMed:11568182, ECO:0000269|PubMed:15897867, ECO:0000269|PubMed:16462766, ECO:0000269|PubMed:19767769, ECO:0000269|PubMed:9665135}.; FUNCTION: [Isoform 7]: Displays histone methyltransferase activity and monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. Probably catalyzes the monomethylation of free histone H3 in the cytoplasm which is then transported to the nucleus and incorporated into nucleosomes where SUV39H methyltransferases use it as a substrate to catalyze histone H3 'Lys-9' trimethylation. Likely to be one of the primary histone methyltransferases along with PRDM16 that direct cytoplasmic H3K9me1 methylation. {ECO:0000250|UniProtKB:P14404}.
Q8N6T3 ARFGAP1 S273 Sugiyama ADP-ribosylation factor GTPase-activating protein 1 (ARF GAP 1) (ADP-ribosylation factor 1 GTPase-activating protein) (ARF1 GAP) (ARF1-directed GTPase-activating protein) GTPase-activating protein (GAP) for the ADP ribosylation factor 1 (ARF1). Involved in membrane trafficking and /or vesicle transport. Promotes hydrolysis of the ARF1-bound GTP and thus, is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles, a prerequisite for vesicle's fusion with target compartment. Probably regulates ARF1-mediated transport via its interaction with the KDELR proteins and TMED2. Overexpression induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, as when ARF1 is deactivated. Its activity is stimulated by phosphoinosides and inhibited by phosphatidylcholine (By similarity). {ECO:0000250}.
Q9UPT8 ZC3H4 S140 Sugiyama Zinc finger CCCH domain-containing protein 4 RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}.
Q9Y6E0 STK24 Y295 Sugiyama Serine/threonine-protein kinase 24 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 3) (MST-3) (STE20-like kinase MST3) [Cleaved into: Serine/threonine-protein kinase 24 36 kDa subunit (Mammalian STE20-like protein kinase 3 N-terminal) (MST3/N); Serine/threonine-protein kinase 24 12 kDa subunit (Mammalian STE20-like protein kinase 3 C-terminal) (MST3/C)] Serine/threonine-protein kinase that acts on both serine and threonine residues and promotes apoptosis in response to stress stimuli and caspase activation. Mediates oxidative-stress-induced cell death by modulating phosphorylation of JNK1-JNK2 (MAPK8 and MAPK9), p38 (MAPK11, MAPK12, MAPK13 and MAPK14) during oxidative stress. Plays a role in a staurosporine-induced caspase-independent apoptotic pathway by regulating the nuclear translocation of AIFM1 and ENDOG and the DNase activity associated with ENDOG. Phosphorylates STK38L on 'Thr-442' and stimulates its kinase activity. In association with STK26 negatively regulates Golgi reorientation in polarized cell migration upon RHO activation (PubMed:27807006). Also regulates cellular migration with alteration of PTPN12 activity and PXN phosphorylation: phosphorylates PTPN12 and inhibits its activity and may regulate PXN phosphorylation through PTPN12. May act as a key regulator of axon regeneration in the optic nerve and radial nerve. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:16314523, ECO:0000269|PubMed:17046825, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:19604147, ECO:0000269|PubMed:19782762, ECO:0000269|PubMed:19855390, ECO:0000269|PubMed:27807006}.
Q9GZR7 DDX24 S166 Sugiyama ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
Q9UPN9 TRIM33 S787 Sugiyama E3 ubiquitin-protein ligase TRIM33 (EC 2.3.2.27) (Ectodermin homolog) (RET-fused gene 7 protein) (Protein Rfg7) (RING-type E3 ubiquitin transferase TRIM33) (Transcription intermediary factor 1-gamma) (TIF1-gamma) (Tripartite motif-containing protein 33) Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade). {ECO:0000250, ECO:0000269|PubMed:10022127, ECO:0000269|PubMed:15820681, ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:19135894}.
Q01082 SPTBN1 S1666 Sugiyama Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q02156 PRKCE S238 Sugiyama Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}.
P10809 HSPD1 S83 Sugiyama 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}.
Q9BTD8 RBM42 S433 Sugiyama RNA-binding protein 42 (RNA-binding motif protein 42) Binds (via the RRM domain) to the 3'-untranslated region (UTR) of CDKN1A mRNA. {ECO:0000250}.
Q6UB99 ANKRD11 Y817 Sugiyama Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q13557 CAMK2D S264 Sugiyama Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}.
P47712 PLA2G4A S458 Sugiyama Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}.
P48444 ARCN1 S244 Sugiyama Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.
Q8IU85 CAMK1D S159 Sugiyama Calcium/calmodulin-dependent protein kinase type 1D (EC 2.7.11.17) (CaM kinase I delta) (CaM kinase ID) (CaM-KI delta) (CaMKI delta) (CaMKID) (CaMKI-like protein kinase) (CKLiK) Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1 signaling cascade and, upon calcium influx, activates CREB-dependent gene transcription, regulates calcium-mediated granulocyte function and respiratory burst and promotes basal dendritic growth of hippocampal neurons. In neutrophil cells, required for cytokine-induced proliferative responses and activation of the respiratory burst. Activates the transcription factor CREB1 in hippocampal neuron nuclei. May play a role in apoptosis of erythroleukemia cells. In vitro, phosphorylates transcription factor CREM isoform Beta. {ECO:0000269|PubMed:11050006, ECO:0000269|PubMed:15840691, ECO:0000269|PubMed:16324104, ECO:0000269|PubMed:17056143}.
Q6YHU6 THADA S1024 Sugiyama tRNA (32-2'-O)-methyltransferase regulator THADA (Gene inducing thyroid adenomas protein) (Thyroid adenoma-associated protein) Together with methyltransferase FTSJ1, methylates the 2'-O-ribose of nucleotides at position 32 of the anticodon loop of substrate tRNAs. {ECO:0000269|PubMed:25404562}.
P17275 JUNB S312 Sugiyama Transcription factor JunB (Transcription factor AP-1 subunit JunB) Transcription factor involved in regulating gene activity following the primary growth factor response. Binds to the DNA sequence 5'-TGA[GC]TCA-3'. Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to an AP-1 consensus sequence and its transcriptional activity (By similarity). {ECO:0000250|UniProtKB:P09450}.
P20810 CAST S45 SIGNOR Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P27824 CANX S74 Sugiyama Calnexin (IP90) (Major histocompatibility complex class I antigen-binding protein p88) (p90) Calcium-binding protein that interacts with newly synthesized monoglucosylated glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at the synapse.
Q9H0H5 RACGAP1 S410 ELM|iPTMNet|EPSD Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}.
Q9NXV6 CDKN2AIP S175 Sugiyama CDKN2A-interacting protein (Collaborator of ARF) Regulates DNA damage response in a dose-dependent manner through a number of signaling pathways involved in cell proliferation, apoptosis and senescence. {ECO:0000269|PubMed:15109303, ECO:0000269|PubMed:24825908}.
Q9H093 NUAK2 S389 Sugiyama NUAK family SNF1-like kinase 2 (EC 2.7.11.1) (Omphalocele kinase 2) (SNF1/AMP kinase-related kinase) (SNARK) Stress-activated kinase involved in tolerance to glucose starvation. Induces cell-cell detachment by increasing F-actin conversion to G-actin. Expression is induced by CD95 or TNF-alpha, via NF-kappa-B. Protects cells from CD95-mediated apoptosis and is required for the increased motility and invasiveness of CD95-activated tumor cells. Phosphorylates LATS1 and LATS2. Plays a key role in neural tube closure during embryonic development through LATS2 phosphorylation and regulation of the nuclear localization of YAP1 a critical downstream regulatory target in the Hippo signaling pathway (PubMed:32845958). {ECO:0000269|PubMed:14575707, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15345718, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:32845958}.
Q9H173 SIL1 S128 Sugiyama Nucleotide exchange factor SIL1 (BiP-associated protein) (BAP) Required for protein translocation and folding in the endoplasmic reticulum (ER). Functions as a nucleotide exchange factor for the ER lumenal chaperone HSPA5. {ECO:0000269|PubMed:12356756}.
Q13439 GOLGA4 S993 Sugiyama Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}.
Q8N5F7 NKAP S266 Sugiyama NF-kappa-B-activating protein Acts as a transcriptional repressor (PubMed:14550261, PubMed:19409814, PubMed:31587868). Plays a role as a transcriptional corepressor of the Notch-mediated signaling required for T-cell development (PubMed:19409814). Also involved in the TNF and IL-1 induced NF-kappa-B activation. Associates with chromatin at the Notch-regulated SKP2 promoter. {ECO:0000269|PubMed:14550261, ECO:0000269|PubMed:19409814, ECO:0000269|PubMed:31587868}.
Q86WR0 CCDC25 S188 Sugiyama Coiled-coil domain-containing protein 25 Transmembrane receptor that senses neutrophil extracellular traps (NETs) and triggers the ILK-PARVB pathway to enhance cell motility (PubMed:32528174). NETs are mainly composed of DNA fibers and are released by neutrophils to bind pathogens during inflammation (PubMed:32528174). Formation of NETs is also associated with cancer metastasis, NET-DNA acting as a chemotactic factor to attract cancer cells (PubMed:32528174). Specifically binds NETs on its extracellular region, in particular the 8-OHdG-enriched DNA present in NETs, and recruits ILK, initiating the ILK-PARVB cascade to induce cytoskeleton rearrangement and directional migration of cells (PubMed:32528174). In the context of cancer, promotes cancer metastasis by sensing NETs and promoting migration of tumor cells (PubMed:32528174). {ECO:0000269|PubMed:32528174}.
A4UGR9 XIRP2 S2318 ochoa Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}.
A4UGR9 XIRP2 S2400 ochoa Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}.
A6NKT7 RGPD3 S1613 ochoa RanBP2-like and GRIP domain-containing protein 3 None
O14715 RGPD8 S1612 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14776 TCERG1 S833 ochoa Transcription elongation regulator 1 (TATA box-binding protein-associated factor 2S) (Transcription factor CA150) Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter. {ECO:0000269|PubMed:11604498, ECO:0000269|PubMed:9315662}.
O15117 FYB1 S184 ochoa FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}.
O15164 TRIM24 S1025 ochoa Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}.
O15381 NVL S207 ochoa Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}.
O43896 KIF1C Y671 ochoa Kinesin-like protein KIF1C Motor required for the retrograde transport of Golgi vesicles to the endoplasmic reticulum. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:9685376}.
O60669 SLC16A7 S457 ochoa Monocarboxylate transporter 2 (MCT 2) (Solute carrier family 16 member 7) Proton-coupled monocarboxylate symporter. Catalyzes the rapid transport across the plasma membrane of monocarboxylates such as L-lactate, pyruvate and ketone bodies, acetoacetate, beta-hydroxybutyrate and acetate (PubMed:32415067, PubMed:9786900). Dimerization is functionally required and both subunits work cooperatively in transporting substrate (PubMed:32415067). {ECO:0000269|PubMed:32415067, ECO:0000269|PubMed:9786900}.
O60841 EIF5B S137 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60934 NBN S347 ochoa Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}.
O75113 N4BP1 S425 ochoa NEDD4-binding protein 1 (N4BP1) (EC 3.1.-.-) Potent suppressor of cytokine production that acts as a regulator of innate immune signaling and inflammation. Acts as a key negative regulator of select cytokine and chemokine responses elicited by TRIF-independent Toll-like receptors (TLRs), thereby limiting inflammatory cytokine responses to minor insults. In response to more threatening pathogens, cleaved by CASP8 downstream of TLR3 or TLR4, leading to its inactivation, thereby allowing production of inflammatory cytokines (By similarity). Acts as a restriction factor against some viruses, such as HIV-1: restricts HIV-1 replication by binding to HIV-1 mRNAs and mediating their degradation via its ribonuclease activity (PubMed:31133753). Also acts as an inhibitor of the E3 ubiquitin-protein ligase ITCH: acts by interacting with the second WW domain of ITCH, leading to compete with ITCH's substrates and impairing ubiquitination of substrates (By similarity). {ECO:0000250|UniProtKB:Q6A037, ECO:0000269|PubMed:31133753}.
O75128 COBL S260 ochoa Protein cordon-bleu Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}.
O75674 TOM1L1 S314 ochoa TOM1-like protein 1 (Src-activating and signaling molecule protein) (Target of Myb-like protein 1) Probable adapter protein involved in signaling pathways. Interacts with the SH2 and SH3 domains of various signaling proteins when it is phosphorylated. May promote FYN activation, possibly by disrupting intramolecular SH3-dependent interactions (By similarity). {ECO:0000250}.
O75940 SMNDC1 S60 ochoa Survival of motor neuron-related-splicing factor 30 (30 kDa splicing factor SMNrp) (SMN-related protein) (Survival motor neuron domain-containing protein 1) Involved in spliceosome assembly. {ECO:0000269|PubMed:11331295, ECO:0000269|PubMed:11331595, ECO:0000269|PubMed:9817934}.
O95835 LATS1 S674 psp Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}.
P00338 LDHA S237 ochoa L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}.
P08238 HSP90AB1 S490 ochoa Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}.
P09661 SNRPA1 S178 ochoa U2 small nuclear ribonucleoprotein A' (U2 snRNP A') Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:27035939, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Associated with sn-RNP U2, where it contributes to the binding of stem loop IV of U2 snRNA (PubMed:27035939, PubMed:32494006, PubMed:9716128). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:27035939, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:9716128}.
P0DJD0 RGPD1 S1597 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 S1605 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P10515 DLAT S475 ochoa Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial (EC 2.3.1.12) (70 kDa mitochondrial autoantigen of primary biliary cirrhosis) (PBC) (Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex) (M2 antigen complex 70 kDa subunit) (Pyruvate dehydrogenase complex component E2) (PDC-E2) (PDCE2) As part of the pyruvate dehydrogenase complex, catalyzes the transfers of an acetyl group to a lipoic acid moiety (Probable). The pyruvate dehydrogenase complex, catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle (Probable). {ECO:0000305|PubMed:20160912}.
P11388 TOP2A S1302 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P18583 SON S154 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P19525 EIF2AK2 S92 ochoa Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}.
P21333 FLNA S368 ochoa Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}.
P30414 NKTR S379 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P35659 DEK S231 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P42285 MTREX S40 ochoa Exosome RNA helicase MTR4 (EC 3.6.4.13) (ATP-dependent RNA helicase DOB1) (ATP-dependent RNA helicase SKIV2L2) (Superkiller viralicidic activity 2-like 2) (TRAMP-like complex helicase) Catalyzes the ATP-dependent unwinding of RNA duplexes with a single-stranded 3' RNA extension (PubMed:27871484, PubMed:29844170, PubMed:29906447). Central subunit of many protein complexes, namely TRAMP-like, nuclear exosome targeting (NEXT) and poly(A) tail exosome targeting (PAXT) (PubMed:21855801, PubMed:27871484, PubMed:29844170). NEXT functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation. NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:27871484, PubMed:29844170). PAXT directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor ZCCHC8, which links to RNA-binding protein adapters (PubMed:27871484). Associated with the RNA exosome complex and involved in the 3'-processing of the 7S pre-RNA to the mature 5.8S rRNA (PubMed:17412707, PubMed:29107693). May be involved in pre-mRNA splicing. In the context of NEXT complex can also in vitro unwind DNA:RNA heteroduplexes with a 3' poly (A) RNA tracking strand (PubMed:29844170). Can promote unwinding and degradation of structured RNA substrates when associated with the nuclear exosome and its cofactors. Can displace a DNA strand while translocating on RNA to ultimately degrade the RNA within a DNA/RNA heteroduplex (PubMed:29906447). Plays a role in DNA damage response (PubMed:29902117). {ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:21855801, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:29107693, ECO:0000269|PubMed:29844170, ECO:0000269|PubMed:29902117, ECO:0000269|PubMed:29906447}.
P43403 ZAP70 S88 ochoa Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}.
P45973 CBX5 S97 ochoa Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}.
P46013 MKI67 S1136 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 S2110 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P48200 IREB2 S177 ochoa Iron-responsive element-binding protein 2 (IRE-BP 2) (Iron regulatory protein 2) (IRP2) RNA-binding protein that binds to iron-responsive elements (IRES), which are stem-loop structures found in the 5'-UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'-UTR of transferrin receptor mRNA. Binding to the IRE element in ferritin results in the repression of its mRNA translation. Binding of the protein to the transferrin receptor mRNA inhibits the degradation of this otherwise rapidly degraded mRNA. {ECO:0000269|PubMed:7983023}.
P49023 PXN S216 ochoa Paxillin Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}.
P49327 FASN S1254 ochoa Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
P49792 RANBP2 S2588 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P54132 BLM S53 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P57740 NUP107 S37 ochoa|psp Nuclear pore complex protein Nup107 (107 kDa nucleoporin) (Nucleoporin Nup107) Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:12552102, PubMed:15229283, PubMed:30179222). Required for the assembly of peripheral proteins into the NPC (PubMed:12552102, PubMed:15229283). May anchor NUP62 to the NPC (PubMed:15229283). Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:12552102, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:30179222}.
P60983 GMFB S53 psp Glia maturation factor beta (GMF-beta) This protein causes differentiation of brain cells, stimulation of neural regeneration, and inhibition of proliferation of tumor cells.
P61244 MAX S117 ochoa Protein max (Class D basic helix-loop-helix protein 4) (bHLHd4) (Myc-associated factor X) Transcription regulator. Forms a sequence-specific DNA-binding protein complex with MYC or MAD which recognizes the core sequence 5'-CAC[GA]TG-3'. The MYC:MAX complex is a transcriptional activator, whereas the MAD:MAX complex is a repressor. May repress transcription via the recruitment of a chromatin remodeling complex containing H3 'Lys-9' histone methyltransferase activity. Represses MYC transcriptional activity from E-box elements. {ECO:0000269|PubMed:26070438}.
P63151 PPP2R2A S409 ochoa Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform (PP2A subunit B isoform B55-alpha) (B55) (PP2A subunit B isoform PR55-alpha) (PP2A subunit B isoform R2-alpha) (PP2A subunit B isoform alpha) Substrate-recognition subunit of protein phosphatase 2A (PP2A) that plays a key role in cell cycle by controlling mitosis entry and exit (PubMed:1849734, PubMed:33108758). Involved in chromosome clustering during late mitosis by mediating dephosphorylation of MKI67 (By similarity). Essential for serine/threonine-protein phosphatase 2A-mediated dephosphorylation of WEE1, preventing its ubiquitin-mediated proteolysis, increasing WEE1 protein levels, and promoting the G2/M checkpoint (PubMed:33108758). {ECO:0000250|UniProtKB:Q6P1F6, ECO:0000269|PubMed:1849734, ECO:0000269|PubMed:33108758}.
Q01804 OTUD4 S1011 ochoa OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}.
Q02952 AKAP12 S1251 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q12830 BPTF S1373 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q13017 ARHGAP5 S1115 ochoa Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}.
Q13029 PRDM2 S787 ochoa PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}.
Q13151 HNRNPA0 S21 ochoa Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}.
Q13185 CBX3 S99 ochoa Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}.
Q13247 SRSF6 S265 ochoa Serine/arginine-rich splicing factor 6 (Pre-mRNA-splicing factor SRP55) (Splicing factor, arginine/serine-rich 6) Plays a role in constitutive splicing and modulates the selection of alternative splice sites. Plays a role in the alternative splicing of MAPT/Tau exon 10. Binds to alternative exons of TNC pre-mRNA and promotes the expression of alternatively spliced TNC. Plays a role in wound healing and in the regulation of keratinocyte differentiation and proliferation via its role in alternative splicing. {ECO:0000269|PubMed:12549914, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:22767602, ECO:0000269|PubMed:24440982}.
Q13523 PRP4K S285 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S623 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13637 RAB32 S134 ochoa Ras-related protein Rab-32 (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:11784320, PubMed:21808068). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:11784320). Also acts as an A-kinase anchoring protein by binding to the type II regulatory subunit of protein kinase A and anchoring it to the mitochondrion. Also involved in synchronization of mitochondrial fission (PubMed:12186851). Plays a role in the maturation of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis (PubMed:21255211). Plays an important role in the control of melanin production and melanosome biogenesis (PubMed:23084991). In concert with RAB38, regulates the proper trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes (By similarity). Stimulates phosphorylation of RAB10 'Thr-73' by LRRK2 (PubMed:38127736). {ECO:0000250|UniProtKB:Q9CZE3, ECO:0000269|PubMed:11784320, ECO:0000269|PubMed:12186851, ECO:0000269|PubMed:21255211, ECO:0000269|PubMed:21808068, ECO:0000269|PubMed:23084991, ECO:0000269|PubMed:38127736}.
Q13873 BMPR2 S680 ochoa Bone morphogenetic protein receptor type-2 (BMP type-2 receptor) (BMPR-2) (EC 2.7.11.30) (Bone morphogenetic protein receptor type II) (BMP type II receptor) (BMPR-II) On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Can also mediate signaling through the activation of the p38MAPK cascade (PubMed:12045205). Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. Promotes signaling also by binding to activin A/INHBA (PubMed:24018044). {ECO:0000250|UniProtKB:O35607, ECO:0000269|PubMed:12045205, ECO:0000269|PubMed:24018044}.
Q14155 ARHGEF7 S591 ochoa Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}.
Q14157 UBAP2L S116 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14191 WRN S1399 ochoa Bifunctional 3'-5' exonuclease/ATP-dependent helicase WRN (DNA helicase, RecQ-like type 3) (RecQ protein-like 2) (Werner syndrome protein) [Includes: 3'-5' exonuclease (EC 3.1.-.-); ATP-dependent helicase (EC 5.6.2.4) (DNA 3'-5' helicase WRN)] Multifunctional enzyme that has magnesium and ATP-dependent 3'-5' DNA-helicase activity on partially duplex substrates (PubMed:9224595, PubMed:9288107, PubMed:9611231). Also has 3'->5' exonuclease activity towards double-stranded (ds)DNA with a 5'-overhang (PubMed:11863428). Has no nuclease activity towards single-stranded (ss)DNA or blunt-ended dsDNA (PubMed:11863428). Helicase activity is most efficient with (d)ATP, but (d)CTP will substitute with reduced efficiency; strand displacement is enhanced by single-strand binding-protein (heterotrimeric replication protein A complex, RPA1, RPA2, RPA3) (PubMed:9611231). Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or during DNA repair. Alleviates stalling of DNA polymerases at the site of DNA lesions. Plays a role in the formation of DNA replication focal centers; stably associates with foci elements generating binding sites for RP-A (By similarity). Plays a role in double-strand break repair after gamma-irradiation (PubMed:9224595, PubMed:9288107, PubMed:9611231). Unwinds some G-quadruplex DNA (d(CGG)n tracts); unwinding seems to occur in both 5'-3' and 3'-5' direction and requires a short single-stranded tail (PubMed:10212265). d(CGG)n tracts have a propensity to assemble into tetraplex structures; other G-rich substrates from a telomeric or IgG switch sequence are not unwound (PubMed:10212265). Depletion leads to chromosomal breaks and genome instability (PubMed:33199508). {ECO:0000250|UniProtKB:O09053, ECO:0000269|PubMed:10212265, ECO:0000269|PubMed:11863428, ECO:0000269|PubMed:17563354, ECO:0000269|PubMed:18596042, ECO:0000269|PubMed:19283071, ECO:0000269|PubMed:19652551, ECO:0000269|PubMed:21639834, ECO:0000269|PubMed:27063109, ECO:0000269|PubMed:33199508, ECO:0000269|PubMed:9224595, ECO:0000269|PubMed:9288107, ECO:0000269|PubMed:9611231}.
Q14515 SPARCL1 S90 ochoa SPARC-like protein 1 (High endothelial venule protein) (Hevin) (MAST 9) None
Q14677 CLINT1 S205 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14966 ZNF638 S624 ochoa Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}.
Q15293 RCN1 S158 ochoa Reticulocalbin-1 May regulate calcium-dependent activities in the endoplasmic reticulum lumen or post-ER compartment.
Q15652 JMJD1C S378 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q16513 PKN2 S167 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q17R98 ZNF827 S66 ochoa Zinc finger protein 827 As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}.
Q29RF7 PDS5A S1232 ochoa Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}.
Q53QZ3 ARHGAP15 S103 ochoa Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}.
Q58FF8 HSP90AB2P S266 ochoa Putative heat shock protein HSP 90-beta 2 (Heat shock protein 90-beta b) (Heat shock protein 90Bb) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q5FWF6 ZNF789 S146 ochoa Zinc finger protein 789 May be involved in transcriptional regulation.
Q5JSZ5 PRRC2B S1185 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q66LE6 PPP2R2D S415 ochoa Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform (PP2A subunit B isoform B55-delta) (PP2A subunit B isoform PR55-delta) (PP2A subunit B isoform R2-delta) (PP2A subunit B isoform delta) Substrate-recognition subunit of protein phosphatase 2A (PP2A) that plays a key role in cell cycle by controlling mitosis entry and exit. Involved in chromosome clustering during late mitosis by mediating dephosphorylation of MKI67 (By similarity). The activity of PP2A complexes containing PPP2R2D (PR55-delta) fluctuate during the cell cycle: the activity is high in interphase and low in mitosis (By similarity). {ECO:0000250|UniProtKB:Q7ZX64, ECO:0000250|UniProtKB:Q925E7}.
Q68DK7 MSL1 S393 ochoa Male-specific lethal 1 homolog (MSL-1) (Male-specific lethal 1-like 1) (MSL1-like 1) (Male-specific lethal-1 homolog 1) Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Within the MSL complex, acts as a scaffold to tether MSL3 and KAT8 together for enzymatic activity regulation (PubMed:22547026). Greatly enhances MSL2 E3 ubiquitin ligase activity, promoting monoubiquitination of histone H2B at 'Lys-34' (H2BK34Ub) (PubMed:21726816, PubMed:30930284). This modification in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). {ECO:0000250|UniProtKB:Q6PDM1, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}.
Q6GYQ0 RALGAPA1 S711 ochoa Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}.
Q6R327 RICTOR S1199 ochoa Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}.
Q6ZT07 TBC1D9 S418 ochoa TBC1 domain family member 9 (TBC1 domain family member 9A) May act as a GTPase-activating protein for Rab family protein(s).
Q7L0Y3 TRMT10C S80 ochoa tRNA methyltransferase 10 homolog C (HBV pre-S2 trans-regulated protein 2) (Mitochondrial ribonuclease P protein 1) (Mitochondrial RNase P protein 1) (RNA (guanine-9-)-methyltransferase domain-containing protein 1) (Renal carcinoma antigen NY-REN-49) (mRNA methyladenosine-N(1)-methyltransferase) (EC 2.1.1.-) (tRNA (adenine(9)-N(1))-methyltransferase) (EC 2.1.1.218) (tRNA (guanine(9)-N(1))-methyltransferase) (EC 2.1.1.221) Mitochondrial tRNA N(1)-methyltransferase involved in mitochondrial tRNA maturation (PubMed:18984158, PubMed:21593607, PubMed:23042678, PubMed:27132592). Component of mitochondrial ribonuclease P, a complex composed of TRMT10C/MRPP1, HSD17B10/MRPP2 and PRORP/MRPP3, which cleaves tRNA molecules in their 5'-ends (PubMed:18984158). Together with HSD17B10/MRPP2, forms a subcomplex of the mitochondrial ribonuclease P, named MRPP1-MRPP2 subcomplex, which displays functions that are independent of the ribonuclease P activity (PubMed:23042678, PubMed:29040705). The MRPP1-MRPP2 subcomplex catalyzes the formation of N(1)-methylguanine and N(1)-methyladenine at position 9 (m1G9 and m1A9, respectively) in tRNAs; TRMT10C/MRPP1 acting as the catalytic N(1)-methyltransferase subunit (PubMed:23042678). The MRPP1-MRPP2 subcomplex also acts as a tRNA maturation platform: following 5'-end cleavage by the mitochondrial ribonuclease P complex, the MRPP1-MRPP2 subcomplex enhances the efficiency of 3'-processing catalyzed by ELAC2, retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA tRNA nucleotidyltransferase TRNT1 enzyme (PubMed:29040705). In addition to tRNA N(1)-methyltransferase activity, TRMT10C/MRPP1 also acts as a mRNA N(1)-methyltransferase by mediating methylation of adenosine residues at the N(1) position of MT-ND5 mRNA (PubMed:29072297). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly. {ECO:0000269|PubMed:18984158, ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:23042678, ECO:0000269|PubMed:24703694, ECO:0000269|PubMed:27132592, ECO:0000269|PubMed:29040705, ECO:0000269|PubMed:29072297}.
Q7Z2E3 APTX S182 ochoa Aprataxin (EC 3.6.1.71) (EC 3.6.1.72) (Forkhead-associated domain histidine triad-like protein) (FHA-HIT) DNA-binding protein involved in single-strand DNA break repair, double-strand DNA break repair and base excision repair (PubMed:15044383, PubMed:15380105, PubMed:16964241, PubMed:17276982, PubMed:24362567). Resolves abortive DNA ligation intermediates formed either at base excision sites, or when DNA ligases attempt to repair non-ligatable breaks induced by reactive oxygen species (PubMed:16964241, PubMed:24362567). Catalyzes the release of adenylate groups covalently linked to 5'-phosphate termini, resulting in the production of 5'-phosphate termini that can be efficiently rejoined (PubMed:16964241, PubMed:17276982, PubMed:24362567). Also able to hydrolyze adenosine 5'-monophosphoramidate (AMP-NH(2)) and diadenosine tetraphosphate (AppppA), but with lower catalytic activity (PubMed:16547001). Likewise, catalyzes the release of 3'-linked guanosine (DNAppG) and inosine (DNAppI) from DNA, but has higher specific activity with 5'-linked adenosine (AppDNA) (By similarity). {ECO:0000250|UniProtKB:O74859, ECO:0000269|PubMed:15044383, ECO:0000269|PubMed:15380105, ECO:0000269|PubMed:16547001, ECO:0000269|PubMed:16964241, ECO:0000269|PubMed:17276982, ECO:0000269|PubMed:24362567}.
Q7Z3J3 RGPD4 S1613 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z6B7 SRGAP1 S196 ochoa SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}.
Q86VF7 NRAP S1482 ochoa Nebulin-related-anchoring protein (N-RAP) May be involved in anchoring the terminal actin filaments in the myofibril to the membrane and in transmitting tension from the myofibrils to the extracellular matrix. {ECO:0000250|UniProtKB:Q80XB4}.
Q8IUW5 RELL1 S249 ochoa RELT-like protein 1 Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}.
Q8IY57 YAF2 S144 ochoa YY1-associated factor 2 Binds to MYC and inhibits MYC-mediated transactivation. Also binds to MYCN and enhances MYCN-dependent transcriptional activation. Increases calpain 2-mediated proteolysis of YY1 in vitro. Component of the E2F6.com-1 complex, a repressive complex that methylates 'Lys-9' of histone H3, suggesting that it is involved in chromatin-remodeling. {ECO:0000269|PubMed:11593398, ECO:0000269|PubMed:12706874, ECO:0000269|PubMed:9016636}.
Q8IYD8 FANCM S1467 ochoa Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}.
Q8IZE3 SCYL3 S513 ochoa Protein-associating with the carboxyl-terminal domain of ezrin (Ezrin-binding protein PACE-1) (SCY1-like protein 3) May play a role in regulating cell adhesion/migration complexes in migrating cells. {ECO:0000269|PubMed:12651155}.
Q8NDI1 EHBP1 S578 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8TDI0 CHD5 S558 ochoa Chromodomain-helicase-DNA-binding protein 5 (CHD-5) (EC 3.6.4.-) (ATP-dependent helicase CHD5) ATP-dependent chromatin-remodeling factor that binds DNA through histones and regulates gene transcription. May specifically recognize and bind trimethylated 'Lys-27' (H3K27me3) and non-methylated 'Lys-4' of histone H3. Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin. Plays a role in the development of the nervous system by activating the expression of genes promoting neuron terminal differentiation. In parallel, it may also positively regulate the trimethylation of histone H3 at 'Lys-27' thereby specifically repressing genes that promote the differentiation into non-neuronal cell lineages. Regulates the expression of genes involved in cell proliferation and differentiation. Downstream activated genes may include CDKN2A that positively regulates the p53/TP53 pathway, which in turn, prevents cell proliferation. In spermatogenesis, it probably regulates histone hyperacetylation and the replacement of histones by transition proteins in chromatin, a crucial step in the condensation of spermatid chromatin and the production of functional spermatozoa. {ECO:0000250|UniProtKB:A2A8L1, ECO:0000269|PubMed:23948251}.
Q8TF76 HASPIN S287 ochoa Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}.
Q8WUY3 PRUNE2 S1613 ochoa Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}.
Q8WYB5 KAT6B S445 ochoa Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}.
Q92576 PHF3 S677 ochoa PHD finger protein 3 None
Q92613 JADE3 S557 ochoa Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}.
Q92794 KAT6A S420 ochoa Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}.
Q92993 KAT5 S202 ochoa Histone acetyltransferase KAT5 (EC 2.3.1.48) (60 kDa Tat-interactive protein) (Tip60) (Histone acetyltransferase HTATIP) (HIV-1 Tat interactive protein) (Lysine acetyltransferase 5) (Protein 2-hydroxyisobutyryltransferase KAT5) (EC 2.3.1.-) (Protein acetyltransferase KAT5) (EC 2.3.1.-) (Protein crotonyltransferase KAT5) (EC 2.3.1.-) (Protein lactyltransferase KAT5) (EC 2.3.1.-) (cPLA(2)-interacting protein) Catalytic subunit of the NuA4 histone acetyltransferase complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H2A and H4 (PubMed:12776177, PubMed:14966270, PubMed:15042092, PubMed:15121871, PubMed:15310756, PubMed:16387653, PubMed:19909775, PubMed:25865756, PubMed:27153538, PubMed:29174981, PubMed:29335245, PubMed:32822602, PubMed:33076429). Histone acetylation alters nucleosome-DNA interactions and promotes interaction of the modified histones with other proteins which positively regulate transcription (PubMed:12776177, PubMed:14966270, PubMed:15042092, PubMed:15121871, PubMed:15310756). The NuA4 histone acetyltransferase complex is required for the activation of transcriptional programs associated with proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:17709392, PubMed:19783983, PubMed:32832608). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR): the complex inhibits TP53BP1 binding to chromatin via MBTD1, which recognizes and binds histone H4 trimethylated at 'Lys-20' (H4K20me), and KAT5 that catalyzes acetylation of 'Lys-15' of histone H2A (H2AK15ac), thereby blocking the ubiquitination mark required for TP53BP1 localization at DNA breaks (PubMed:27153538, PubMed:32832608). Also involved in DSB repair by mediating acetylation of 'Lys-5' of histone H2AX (H2AXK5ac), promoting NBN/NBS1 assembly at the sites of DNA damage (PubMed:17709392, PubMed:26438602). The NuA4 complex plays a key role in hematopoietic stem cell maintenance and is required to maintain acetylated H2A.Z/H2AZ1 at MYC target genes (By similarity). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone hyperacetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Also acetylates non-histone proteins, such as BMAL1, ATM, AURKB, CHKA, CGAS, ERCC4/XPF, LPIN1, TP53/p53, NDC80/HEC1, NR1D2, RAN, SOX4, FOXP3, SQSTM1, ULK1 and RUBCNL/Pacer (PubMed:16141325, PubMed:17189187, PubMed:17360565, PubMed:17996965, PubMed:24835996, PubMed:26829474, PubMed:29040603, PubMed:30409912, PubMed:30704899, PubMed:31857589, PubMed:32034146, PubMed:32817552, PubMed:34077757). Directly acetylates and activates ATM (PubMed:16141325). Promotes nucleotide excision repair (NER) by mediating acetylation of ERCC4/XPF, thereby promoting formation of the ERCC4-ERCC1 complex (PubMed:32034146). Relieves NR1D2-mediated inhibition of APOC3 expression by acetylating NR1D2 (PubMed:17996965). Acts as a regulator of regulatory T-cells (Treg) by catalyzing FOXP3 acetylation, thereby promoting FOXP3 transcriptional repressor activity (PubMed:17360565, PubMed:24835996). Involved in skeletal myoblast differentiation by mediating acetylation of SOX4 (PubMed:26291311). Catalyzes acetylation of APBB1/FE65, increasing its transcription activator activity (PubMed:33938178). Promotes transcription elongation during the activation phase of the circadian cycle by catalyzing acetylation of BMAL1, promoting elongation of circadian transcripts (By similarity). Together with GSK3 (GSK3A or GSK3B), acts as a regulator of autophagy: phosphorylated at Ser-86 by GSK3 under starvation conditions, leading to activate acetyltransferase activity and promote acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Acts as a regulator of the cGAS-STING innate antiviral response by catalyzing acetylation the N-terminus of CGAS, thereby promoting CGAS DNA-binding and activation (PubMed:32817552). Also regulates lipid metabolism by mediating acetylation of CHKA or LPIN1 (PubMed:34077757). Promotes lipolysis of lipid droplets following glucose deprivation by mediating acetylation of isoform 1 of CHKA, thereby promoting monomerization of CHKA and its conversion into a tyrosine-protein kinase (PubMed:34077757). Acts as a regulator of fatty-acid-induced triacylglycerol synthesis by catalyzing acetylation of LPIN1, thereby promoting the synthesis of diacylglycerol (PubMed:29765047). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), S-lactoyl-CoA (lactyl-CoA) and 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), and is able to mediate protein crotonylation, lactylation and 2-hydroxyisobutyrylation, respectively (PubMed:29192674, PubMed:34608293, PubMed:38961290). Acts as a key regulator of chromosome segregation and kinetochore-microtubule attachment during mitosis by mediating acetylation or crotonylation of target proteins (PubMed:26829474, PubMed:29040603, PubMed:30409912, PubMed:34608293). Catalyzes acetylation of AURKB at kinetochores, increasing AURKB activity and promoting accurate chromosome segregation in mitosis (PubMed:26829474). Acetylates RAN during mitosis, promoting microtubule assembly at mitotic chromosomes (PubMed:29040603). Acetylates NDC80/HEC1 during mitosis, promoting robust kinetochore-microtubule attachment (PubMed:30409912). Catalyzes crotonylation of MAPRE1/EB1, thereby ensuring accurate spindle positioning in mitosis (PubMed:34608293). Catalyzes lactylation of NBN/NBS1 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38961290). {ECO:0000250|UniProtKB:Q8CHK4, ECO:0000269|PubMed:12776177, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15121871, ECO:0000269|PubMed:15310756, ECO:0000269|PubMed:16141325, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17360565, ECO:0000269|PubMed:17709392, ECO:0000269|PubMed:17996965, ECO:0000269|PubMed:19783983, ECO:0000269|PubMed:19909775, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:24835996, ECO:0000269|PubMed:25865756, ECO:0000269|PubMed:26291311, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:26829474, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:29040603, ECO:0000269|PubMed:29174981, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:29335245, ECO:0000269|PubMed:29765047, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32822602, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:33076429, ECO:0000269|PubMed:33938178, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:34608293, ECO:0000269|PubMed:38961290}.; FUNCTION: (Microbial infection) Catalyzes the acetylation of flavivirus NS3 protein to modulate their RNA-binding and -unwinding activities leading to facilitate viral replication. {ECO:0000269|PubMed:37478852}.
Q96GX5 MASTL S375 ochoa Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}.
Q96JS3 PGBD1 S360 ochoa PiggyBac transposable element-derived protein 1 (Cerebral protein 4) None
Q96KC8 DNAJC1 S479 ochoa DnaJ homolog subfamily C member 1 (DnaJ protein homolog MTJ1) May modulate protein synthesis. {ECO:0000250}.
Q96SN8 CDK5RAP2 S843 ochoa CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}.
Q99081 TCF12 S540 ochoa Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}.
Q99459 CDC5L S283 ochoa Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}.
Q99590 SCAF11 S402 ochoa Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}.
Q99615 DNAJC7 S393 ochoa DnaJ homolog subfamily C member 7 (Tetratricopeptide repeat protein 2) (TPR repeat protein 2) Acts as a co-chaperone regulating the molecular chaperones HSP70 and HSP90 in folding of steroid receptors, such as the glucocorticoid receptor and the progesterone receptor. Proposed to act as a recycling chaperone by facilitating the return of chaperone substrates to early stages of chaperoning if further folding is required. In vitro, induces ATP-independent dissociation of HSP90 but not of HSP70 from the chaperone-substrate complexes. Recruits NR1I3 to the cytoplasm (By similarity). {ECO:0000250, ECO:0000269|PubMed:12853476, ECO:0000269|PubMed:18620420}.
Q99666 RGPD5 S1612 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q99801 NKX3-1 S195 psp Homeobox protein Nkx-3.1 (Homeobox protein NK-3 homolog A) Transcription factor, which binds preferentially the consensus sequence 5'-TAAGT[AG]-3' and can behave as a transcriptional repressor. Plays an important role in normal prostate development, regulating proliferation of glandular epithelium and in the formation of ducts in prostate. Acts as a tumor suppressor controlling prostate carcinogenesis, as shown by the ability to inhibit proliferation and invasion activities of PC-3 prostate cancer cells. {ECO:0000269|PubMed:19462257}.
Q9BYW2 SETD2 S1206 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9C0I1 MTMR12 S601 ochoa Myotubularin-related protein 12 (Inactive phosphatidylinositol 3-phosphatase 12) (Phosphatidylinositol 3 phosphate 3-phosphatase adapter subunit) (3-PAP) (3-phosphatase adapter protein) Acts as an adapter for the myotubularin-related phosphatases (PubMed:11504939, PubMed:12847286, PubMed:23818870). Regulates phosphatase MTM1 protein stability and possibly its intracellular location (PubMed:23818870). By stabilizing MTM1 protein levels, required for skeletal muscle maintenance but not for myogenesis (By similarity). {ECO:0000250|UniProtKB:Q80TA6, ECO:0000269|PubMed:11504939, ECO:0000269|PubMed:12847286, ECO:0000269|PubMed:23818870}.
Q9C0K0 BCL11B S488 ochoa B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}.
Q9H0X9 OSBPL5 S35 ochoa Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}.
Q9H165 BCL11A S438 ochoa BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}.
Q9H4A3 WNK1 S2011 ochoa Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}.
Q9H4G0 EPB41L1 S60 ochoa Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases.
Q9H501 ESF1 S179 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H6H4 REEP4 S114 ochoa Receptor expression-enhancing protein 4 Microtubule-binding protein required to ensure proper cell division and nuclear envelope reassembly by sequestering the endoplasmic reticulum away from chromosomes during mitosis. Probably acts by clearing the endoplasmic reticulum membrane from metaphase chromosomes. {ECO:0000269|PubMed:23911198}.
Q9H902 REEP1 S114 ochoa Receptor expression-enhancing protein 1 (Spastic paraplegia 31 protein) Required for endoplasmic reticulum (ER) network formation, shaping and remodeling; it links ER tubules to the cytoskeleton. May also enhance the cell surface expression of odorant receptors (PubMed:20200447). May play a role in long-term axonal maintenance (PubMed:24478229). {ECO:0000269|PubMed:20200447, ECO:0000269|PubMed:24478229}.
Q9NQ84 GPRC5C S344 ochoa G-protein coupled receptor family C group 5 member C (Retinoic acid-induced gene 3 protein) (RAIG-3) This retinoic acid-inducible G-protein coupled receptor provide evidence for a possible interaction between retinoid and G-protein signaling pathways. {ECO:0000250}.
Q9NVR2 INTS10 S381 ochoa Integrator complex subunit 10 (Int10) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:32647223). Within the integrator complex, INTS10 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386}.
Q9NZN5 ARHGEF12 S1176 ochoa Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}.
Q9P2D1 CHD7 S725 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2N5 RBM27 S128 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q9UBW7 ZMYM2 S1056 ochoa|psp Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}.
Q9UHQ1 NARF S29 ochoa Nuclear prelamin A recognition factor (Iron-only hydrogenase-like protein 2) (IOP2) None
Q9UIG0 BAZ1B S321 ochoa Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}.
Q9ULC3 RAB23 S187 ochoa Ras-related protein Rab-23 (EC 3.6.5.2) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. Together with SUFU, prevents nuclear import of GLI1, and thereby inhibits GLI1 transcription factor activity. Regulates GLI1 in differentiating chondrocytes. Likewise, regulates GLI3 proteolytic processing and modulates GLI2 and GLI3 transcription factor activity. Plays a role in autophagic vacuole assembly, and mediates defense against pathogens, such as S.aureus, by promoting their capture by autophagosomes that then merge with lysosomes. {ECO:0000269|PubMed:22365972, ECO:0000269|PubMed:22452336}.
Q9ULI0 ATAD2B S118 ochoa ATPase family AAA domain-containing protein 2B None
Q9ULR3 PPM1H S119 ochoa Protein phosphatase 1H (EC 3.1.3.16) Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}.
Q9Y2H5 PLEKHA6 S962 ochoa Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) None
Q9Y2K1 ZBTB1 S395 ochoa Zinc finger and BTB domain-containing protein 1 Acts as a transcriptional repressor (PubMed:20797634). Represses cAMP-responsive element (CRE)-mediated transcriptional activation (PubMed:21706167). In addition, has a role in translesion DNA synthesis. Requires for UV-inducible RAD18 loading, PCNA monoubiquitination, POLH recruitment to replication factories and efficient translesion DNA synthesis (PubMed:24657165). Plays a key role in the transcriptional regulation of T lymphocyte development (By similarity). {ECO:0000250|UniProtKB:Q91VL9, ECO:0000269|PubMed:20797634, ECO:0000269|PubMed:21706167, ECO:0000269|PubMed:24657165}.
Q9Y2L6 FRMD4B S639 ochoa FERM domain-containing protein 4B (GRP1-binding protein GRSP1) Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}.
Q9Y2W1 THRAP3 S468 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y4F1 FARP1 S340 ochoa FERM, ARHGEF and pleckstrin domain-containing protein 1 (Chondrocyte-derived ezrin-like protein) (FERM, RhoGEF and pleckstrin domain-containing protein 1) (Pleckstrin homology domain-containing family C member 2) (PH domain-containing family C member 2) Functions as a guanine nucleotide exchange factor for RAC1. May play a role in semaphorin signaling. Plays a role in the assembly and disassembly of dendritic filopodia, the formation of dendritic spines, regulation of dendrite length and ultimately the formation of synapses (By similarity). {ECO:0000250}.
Q9Y6X4 FAM169A S526 ochoa Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) None
U3KPZ7 LOC127814297 S128 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000256|ARBA:ARBA00043866}.
P06744 GPI S247 Sugiyama Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) (Autocrine motility factor) (AMF) (Neuroleukin) (NLK) (Phosphoglucose isomerase) (PGI) (Phosphohexose isomerase) (PHI) (Sperm antigen 36) (SA-36) In the cytoplasm, catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate, the second step in glycolysis, and the reverse reaction during gluconeogenesis (PubMed:28803808). Besides it's role as a glycolytic enzyme, also acts as a secreted cytokine: acts as an angiogenic factor (AMF) that stimulates endothelial cell motility (PubMed:11437381). Acts as a neurotrophic factor, neuroleukin, for spinal and sensory neurons (PubMed:11004567, PubMed:3352745). It is secreted by lectin-stimulated T-cells and induces immunoglobulin secretion (PubMed:11004567, PubMed:3352745). {ECO:0000269|PubMed:11004567, ECO:0000269|PubMed:11437381, ECO:0000269|PubMed:28803808, ECO:0000269|PubMed:3352745}.
P14314 PRKCSH S451 Sugiyama Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}.
P33176 KIF5B S527 Sugiyama Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}.
O15075 DCLK1 S151 Sugiyama Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system.
O15075 DCLK1 S438 Sugiyama Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system.
P07900 HSP90AA1 S470 Sugiyama Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
Q7L5Y9 MAEA S226 Sugiyama E3 ubiquitin-protein transferase MAEA (EC 2.3.2.27) (Cell proliferation-inducing gene 5 protein) (Erythroblast macrophage protein) (Human lung cancer oncogene 10 protein) (HLC-10) (Macrophage erythroblast attacher) (P44EMLP) Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1. MAEA and RMND5A are both required for catalytic activity of the CTLH E3 ubiquitin-protein ligase complex (PubMed:29911972). MAEA is required for normal cell proliferation (PubMed:29911972). The CTLH E3 ubiquitin-protein ligase complex is not required for the degradation of enzymes involved in gluconeogenesis, such as FBP1 (PubMed:29911972). Plays a role in erythroblast enucleation during erythrocyte maturation and in the development of mature macrophages (By similarity). Mediates the attachment of erythroid cell to mature macrophages; this MAEA-mediated contact inhibits erythroid cell apoptosis (PubMed:9763581). Participates in erythroblastic island formation, which is the functional unit of definitive erythropoiesis. Associates with F-actin to regulate actin distribution in erythroblasts and macrophages (By similarity). May contribute to nuclear architecture and cells division events (Probable). {ECO:0000250|UniProtKB:Q4VC33, ECO:0000269|PubMed:29911972, ECO:0000269|PubMed:9763581, ECO:0000305|PubMed:16510120}.
P07237 P4HB S449 Sugiyama Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}.
P10636 MAPT S610 GPS6|EPSD Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}.
Download
reactome_id name p -log10_p
R-HSA-3371568 Attenuation phase 3.566852e-09 8.448
R-HSA-3371571 HSF1-dependent transactivation 1.035454e-08 7.985
R-HSA-72163 mRNA Splicing - Major Pathway 2.476746e-08 7.606
R-HSA-72172 mRNA Splicing 7.263525e-08 7.139
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 4.306287e-07 6.366
R-HSA-3371511 HSF1 activation 5.251720e-07 6.280
R-HSA-3371556 Cellular response to heat stress 6.558047e-07 6.183
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 2.940189e-06 5.532
R-HSA-8953854 Metabolism of RNA 3.710050e-06 5.431
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 3.934961e-05 4.405
R-HSA-4839726 Chromatin organization 5.497635e-05 4.260
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 7.554714e-05 4.122
R-HSA-9700206 Signaling by ALK in cancer 7.554714e-05 4.122
R-HSA-9709603 Impaired BRCA2 binding to PALB2 9.409292e-05 4.026
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 1.207369e-04 3.918
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.207369e-04 3.918
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.207369e-04 3.918
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 1.207369e-04 3.918
R-HSA-3247509 Chromatin modifying enzymes 3.327672e-04 3.478
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 3.501576e-04 3.456
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 4.376219e-04 3.359
R-HSA-212165 Epigenetic regulation of gene expression 5.090912e-04 3.293
R-HSA-373755 Semaphorin interactions 1.145951e-03 2.941
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 1.479273e-03 2.830
R-HSA-383280 Nuclear Receptor transcription pathway 1.421259e-03 2.847
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 1.616233e-03 2.791
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 1.634419e-03 2.787
R-HSA-422475 Axon guidance 1.588366e-03 2.799
R-HSA-9675108 Nervous system development 1.601866e-03 2.795
R-HSA-9833482 PKR-mediated signaling 1.697890e-03 2.770
R-HSA-5693537 Resolution of D-Loop Structures 1.882236e-03 2.725
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 2.158219e-03 2.666
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 2.158219e-03 2.666
R-HSA-9932451 SWI/SNF chromatin remodelers 2.395211e-03 2.621
R-HSA-9932444 ATP-dependent chromatin remodelers 2.395211e-03 2.621
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 2.362567e-03 2.627
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 2.474334e-03 2.607
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 3.435195e-03 2.464
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 3.435195e-03 2.464
R-HSA-9673013 Diseases of Telomere Maintenance 3.435195e-03 2.464
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 3.435195e-03 2.464
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 3.435195e-03 2.464
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 3.419651e-03 2.466
R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR signaling 3.542100e-03 2.451
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 3.586157e-03 2.445
R-HSA-8953750 Transcriptional Regulation by E2F6 4.035145e-03 2.394
R-HSA-8953897 Cellular responses to stimuli 4.119722e-03 2.385
R-HSA-9709570 Impaired BRCA2 binding to RAD51 4.307873e-03 2.366
R-HSA-8868773 rRNA processing in the nucleus and cytosol 4.156284e-03 2.381
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 4.743720e-03 2.324
R-HSA-72737 Cap-dependent Translation Initiation 4.582707e-03 2.339
R-HSA-72613 Eukaryotic Translation Initiation 4.582707e-03 2.339
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 4.743720e-03 2.324
R-HSA-381070 IRE1alpha activates chaperones 4.752627e-03 2.323
R-HSA-3214841 PKMTs methylate histone lysines 5.059456e-03 2.296
R-HSA-9008059 Interleukin-37 signaling 4.924650e-03 2.308
R-HSA-2262752 Cellular responses to stress 5.393462e-03 2.268
R-HSA-168255 Influenza Infection 5.923882e-03 2.227
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 6.304842e-03 2.200
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 6.463969e-03 2.190
R-HSA-72689 Formation of a pool of free 40S subunits 6.711772e-03 2.173
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 7.071251e-03 2.151
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 7.163941e-03 2.145
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 7.170183e-03 2.144
R-HSA-74160 Gene expression (Transcription) 7.430761e-03 2.129
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 7.860193e-03 2.105
R-HSA-927802 Nonsense-Mediated Decay (NMD) 8.044790e-03 2.094
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 8.044790e-03 2.094
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 8.207861e-03 2.086
R-HSA-381038 XBP1(S) activates chaperone genes 8.651233e-03 2.063
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 9.312063e-03 2.031
R-HSA-9675135 Diseases of DNA repair 9.312063e-03 2.031
R-HSA-983189 Kinesins 9.741860e-03 2.011
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 1.005997e-02 1.997
R-HSA-400685 Sema4D in semaphorin signaling 1.132409e-02 1.946
R-HSA-9012546 Interleukin-18 signaling 1.213029e-02 1.916
R-HSA-2682334 EPH-Ephrin signaling 1.361143e-02 1.866
R-HSA-72312 rRNA processing 1.365746e-02 1.865
R-HSA-190873 Gap junction degradation 1.526672e-02 1.816
R-HSA-9700645 ALK mutants bind TKIs 1.526672e-02 1.816
R-HSA-913531 Interferon Signaling 1.645948e-02 1.784
R-HSA-5685942 HDR through Homologous Recombination (HRR) 1.657627e-02 1.781
R-HSA-3928664 Ephrin signaling 1.777466e-02 1.750
R-HSA-72764 Eukaryotic Translation Termination 1.726564e-02 1.763
R-HSA-9613829 Chaperone Mediated Autophagy 1.777466e-02 1.750
R-HSA-445355 Smooth Muscle Contraction 1.704218e-02 1.768
R-HSA-72649 Translation initiation complex formation 1.843194e-02 1.734
R-HSA-381119 Unfolded Protein Response (UPR) 1.846400e-02 1.734
R-HSA-168273 Influenza Viral RNA Transcription and Replication 1.857377e-02 1.731
R-HSA-9764560 Regulation of CDH1 Gene Transcription 2.036863e-02 1.691
R-HSA-72702 Ribosomal scanning and start codon recognition 2.144643e-02 1.669
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 2.144643e-02 1.669
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 2.323991e-02 1.634
R-HSA-73762 RNA Polymerase I Transcription Initiation 2.166810e-02 1.664
R-HSA-1640170 Cell Cycle 2.210487e-02 1.656
R-HSA-5633007 Regulation of TP53 Activity 2.294317e-02 1.639
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 2.473988e-02 1.607
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 2.478692e-02 1.606
R-HSA-909733 Interferon alpha/beta signaling 2.483639e-02 1.605
R-HSA-156902 Peptide chain elongation 2.537593e-02 1.596
R-HSA-9930044 Nuclear RNA decay 2.720144e-02 1.565
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 2.720144e-02 1.565
R-HSA-5696394 DNA Damage Recognition in GG-NER 2.984797e-02 1.525
R-HSA-8856688 Golgi-to-ER retrograde transport 2.751770e-02 1.560
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 2.806236e-02 1.552
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 2.994833e-02 1.524
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 3.159257e-02 1.500
R-HSA-376176 Signaling by ROBO receptors 3.172009e-02 1.499
R-HSA-156842 Eukaryotic Translation Elongation 3.329850e-02 1.478
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 3.414366e-02 1.467
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 3.561331e-02 1.448
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 3.660075e-02 1.437
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 3.720201e-02 1.429
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 3.879565e-02 1.411
R-HSA-73894 DNA Repair 3.957310e-02 1.403
R-HSA-1280215 Cytokine Signaling in Immune system 4.059925e-02 1.391
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 4.169086e-02 1.380
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 4.176687e-02 1.379
R-HSA-1433559 Regulation of KIT signaling 4.282890e-02 1.368
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 4.629752e-02 1.334
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 4.888115e-02 1.311
R-HSA-399954 Sema3A PAK dependent Axon repulsion 4.885539e-02 1.311
R-HSA-69278 Cell Cycle, Mitotic 4.751475e-02 1.323
R-HSA-3214847 HATs acetylate histones 4.927129e-02 1.307
R-HSA-70171 Glycolysis 5.156991e-02 1.288
R-HSA-446353 Cell-extracellular matrix interactions 4.885539e-02 1.311
R-HSA-2408557 Selenocysteine synthesis 5.393775e-02 1.268
R-HSA-73863 RNA Polymerase I Transcription Termination 5.443141e-02 1.264
R-HSA-3928663 EPHA-mediated growth cone collapse 5.443141e-02 1.264
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 5.443141e-02 1.264
R-HSA-9709275 Impaired BRCA2 translocation to the nucleus 8.179171e-02 1.087
R-HSA-9763198 Impaired BRCA2 binding to SEM1 (DSS1) 8.179171e-02 1.087
R-HSA-5602636 IKBKB deficiency causes SCID 1.201471e-01 0.920
R-HSA-5603027 IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... 1.201471e-01 0.920
R-HSA-5619054 Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... 1.201471e-01 0.920
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 1.569025e-01 0.804
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 1.569025e-01 0.804
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 1.569025e-01 0.804
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 1.569025e-01 0.804
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 1.569025e-01 0.804
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 1.569025e-01 0.804
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 1.569025e-01 0.804
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 1.569025e-01 0.804
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 1.569025e-01 0.804
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 1.569025e-01 0.804
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 1.569025e-01 0.804
R-HSA-4755609 Defective DHDDS causes RP59 1.569025e-01 0.804
R-HSA-447041 CHL1 interactions 6.878144e-02 1.163
R-HSA-8865999 MET activates PTPN11 1.921246e-01 0.716
R-HSA-5579012 Defective MAOA causes BRUNS 1.921246e-01 0.716
R-HSA-9032500 Activated NTRK2 signals through FYN 8.098535e-02 1.092
R-HSA-196025 Formation of annular gap junctions 8.098535e-02 1.092
R-HSA-2465910 MASTL Facilitates Mitotic Progression 9.379489e-02 1.028
R-HSA-9818035 NFE2L2 regulating ER-stress associated genes 2.258773e-01 0.646
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 1.071383e-01 0.970
R-HSA-164843 2-LTR circle formation 1.071383e-01 0.970
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 5.527220e-02 1.257
R-HSA-9673768 Signaling by membrane-tethered fusions of PDGFRA or PDGFRB 2.582217e-01 0.588
R-HSA-9032759 NTRK2 activates RAC1 2.582217e-01 0.588
R-HSA-180292 GAB1 signalosome 7.675283e-02 1.115
R-HSA-69091 Polymerase switching 1.497272e-01 0.825
R-HSA-69109 Leading Strand Synthesis 1.497272e-01 0.825
R-HSA-9833576 CDH11 homotypic and heterotypic interactions 2.892167e-01 0.539
R-HSA-111957 Cam-PDE 1 activation 2.892167e-01 0.539
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 2.892167e-01 0.539
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 1.645834e-01 0.784
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 1.645834e-01 0.784
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 1.101031e-01 0.958
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 1.101031e-01 0.958
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 1.796833e-01 0.745
R-HSA-177539 Autointegration results in viral DNA circles 3.189183e-01 0.496
R-HSA-350054 Notch-HLH transcription pathway 1.191838e-01 0.924
R-HSA-5656121 Translesion synthesis by POLI 2.104328e-01 0.677
R-HSA-8851907 MET activates PI3K/AKT signaling 3.473806e-01 0.459
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 3.473806e-01 0.459
R-HSA-9732724 IFNG signaling activates MAPKs 3.473806e-01 0.459
R-HSA-114516 Disinhibition of SNARE formation 3.473806e-01 0.459
R-HSA-72731 Recycling of eIF2:GDP 3.473806e-01 0.459
R-HSA-2470946 Cohesin Loading onto Chromatin 3.473806e-01 0.459
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 3.473806e-01 0.459
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 1.004351e-01 0.998
R-HSA-5655862 Translesion synthesis by POLK 2.260002e-01 0.646
R-HSA-180910 Vpr-mediated nuclear import of PICs 1.211601e-01 0.917
R-HSA-5637812 Signaling by EGFRvIII in Cancer 2.416462e-01 0.617
R-HSA-5637810 Constitutive Signaling by EGFRvIII 2.416462e-01 0.617
R-HSA-111995 phospho-PLA2 pathway 3.746550e-01 0.426
R-HSA-8875656 MET receptor recycling 3.746550e-01 0.426
R-HSA-9028335 Activated NTRK2 signals through PI3K 3.746550e-01 0.426
R-HSA-9660537 Signaling by MRAS-complex mutants 3.746550e-01 0.426
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 3.746550e-01 0.426
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 1.435445e-01 0.843
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 8.642861e-02 1.063
R-HSA-72187 mRNA 3'-end processing 1.165772e-01 0.933
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 2.000758e-01 0.699
R-HSA-9818032 NFE2L2 regulating MDR associated enzymes 4.007912e-01 0.397
R-HSA-170984 ARMS-mediated activation 4.007912e-01 0.397
R-HSA-9613354 Lipophagy 4.007912e-01 0.397
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 9.542230e-02 1.020
R-HSA-9656223 Signaling by RAF1 mutants 1.593002e-01 0.798
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 2.109824e-01 0.676
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 2.109824e-01 0.676
R-HSA-192823 Viral mRNA Translation 5.888313e-02 1.230
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 1.098100e-01 0.959
R-HSA-1855170 IPs transport between nucleus and cytosol 2.331591e-01 0.632
R-HSA-159227 Transport of the SLBP independent Mature mRNA 2.331591e-01 0.632
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 3.043827e-01 0.517
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 3.043827e-01 0.517
R-HSA-8875555 MET activates RAP1 and RAC1 4.258365e-01 0.371
R-HSA-9027277 Erythropoietin activates Phospholipase C gamma (PLCG) 4.258365e-01 0.371
R-HSA-68952 DNA replication initiation 4.258365e-01 0.371
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 2.444007e-01 0.612
R-HSA-191859 snRNP Assembly 1.611527e-01 0.793
R-HSA-194441 Metabolism of non-coding RNA 1.611527e-01 0.793
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 1.111403e-01 0.954
R-HSA-141424 Amplification of signal from the kinetochores 1.111403e-01 0.954
R-HSA-9649948 Signaling downstream of RAS mutants 2.011864e-01 0.696
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 3.199680e-01 0.495
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 2.557261e-01 0.592
R-HSA-5696400 Dual Incision in GG-NER 2.557261e-01 0.592
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 2.671219e-01 0.573
R-HSA-4839744 Signaling by APC mutants 4.498365e-01 0.347
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 4.498365e-01 0.347
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 4.498365e-01 0.347
R-HSA-112308 Presynaptic depolarization and calcium channel opening 4.498365e-01 0.347
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 4.498365e-01 0.347
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 1.710807e-01 0.767
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 3.508593e-01 0.455
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 3.508593e-01 0.455
R-HSA-73772 RNA Polymerase I Promoter Escape 2.550958e-01 0.593
R-HSA-112382 Formation of RNA Pol II elongation complex 2.550958e-01 0.593
R-HSA-416550 Sema4D mediated inhibition of cell attachment and migration 4.728347e-01 0.325
R-HSA-2514853 Condensation of Prometaphase Chromosomes 4.728347e-01 0.325
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 4.728347e-01 0.325
R-HSA-5339716 Signaling by GSK3beta mutants 4.728347e-01 0.325
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 1.500824e-01 0.824
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 3.131576e-01 0.504
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 3.247206e-01 0.488
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 4.948728e-01 0.306
R-HSA-3000484 Scavenging by Class F Receptors 4.948728e-01 0.306
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 4.948728e-01 0.306
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 4.948728e-01 0.306
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 4.948728e-01 0.306
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 4.948728e-01 0.306
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 3.305697e-01 0.481
R-HSA-5576892 Phase 0 - rapid depolarisation 4.256474e-01 0.371
R-HSA-9615710 Late endosomal microautophagy 4.400761e-01 0.356
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 3.592932e-01 0.445
R-HSA-380259 Loss of Nlp from mitotic centrosomes 3.592932e-01 0.445
R-HSA-72165 mRNA Splicing - Minor Pathway 4.051022e-01 0.392
R-HSA-8957275 Post-translational protein phosphorylation 3.227215e-01 0.491
R-HSA-8854518 AURKA Activation by TPX2 3.879877e-01 0.411
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 4.276234e-01 0.369
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 4.540260e-01 0.343
R-HSA-380287 Centrosome maturation 4.724915e-01 0.326
R-HSA-1643713 Signaling by EGFR in Cancer 3.962250e-01 0.402
R-HSA-5696398 Nucleotide Excision Repair 1.317277e-01 0.880
R-HSA-69186 Lagging Strand Synthesis 3.043827e-01 0.517
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 3.962250e-01 0.402
R-HSA-5656169 Termination of translesion DNA synthesis 4.400761e-01 0.356
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 4.148967e-01 0.382
R-HSA-5693607 Processing of DNA double-strand break ends 3.314623e-01 0.480
R-HSA-2467813 Separation of Sister Chromatids 3.744499e-01 0.427
R-HSA-6783310 Fanconi Anemia Pathway 3.937432e-01 0.405
R-HSA-162592 Integration of provirus 1.351645e-01 0.869
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 2.011864e-01 0.696
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 2.011864e-01 0.696
R-HSA-1538133 G0 and Early G1 8.153208e-02 1.089
R-HSA-9948299 Ribosome-associated quality control 7.235001e-02 1.141
R-HSA-76046 RNA Polymerase III Transcription Initiation 4.543034e-01 0.343
R-HSA-5674135 MAP2K and MAPK activation 3.478346e-01 0.459
R-HSA-5693532 DNA Double-Strand Break Repair 6.678828e-02 1.175
R-HSA-9842860 Regulation of endogenous retroelements 5.637534e-02 1.249
R-HSA-2424491 DAP12 signaling 4.543034e-01 0.343
R-HSA-5693538 Homology Directed Repair 6.010604e-02 1.221
R-HSA-72086 mRNA Capping 4.400761e-01 0.356
R-HSA-6802957 Oncogenic MAPK signaling 2.093690e-01 0.679
R-HSA-110312 Translesion synthesis by REV1 1.949807e-01 0.710
R-HSA-5696395 Formation of Incision Complex in GG-NER 1.435445e-01 0.843
R-HSA-9762292 Regulation of CDH11 function 4.258365e-01 0.371
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 3.354669e-01 0.474
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 4.498365e-01 0.347
R-HSA-68877 Mitotic Prometaphase 7.477104e-02 1.126
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 3.210162e-01 0.493
R-HSA-5693606 DNA Double Strand Break Response 3.975202e-01 0.401
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 9.455342e-02 1.024
R-HSA-5693548 Sensing of DNA Double Strand Breaks 1.351645e-01 0.869
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 7.001094e-02 1.155
R-HSA-6802949 Signaling by RAS mutants 2.011864e-01 0.696
R-HSA-8856828 Clathrin-mediated endocytosis 3.816335e-01 0.418
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 2.785752e-01 0.555
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 1.711812e-01 0.767
R-HSA-68884 Mitotic Telophase/Cytokinesis 1.351645e-01 0.869
R-HSA-399719 Trafficking of AMPA receptors 7.566043e-02 1.121
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 1.949807e-01 0.710
R-HSA-164940 Nef mediated downregulation of MHC class I complex cell surface expression 3.746550e-01 0.426
R-HSA-173107 Binding and entry of HIV virion 4.258365e-01 0.371
R-HSA-75955 RNA Polymerase II Transcription Elongation 2.643634e-01 0.578
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 4.805284e-01 0.318
R-HSA-9758274 Regulation of NF-kappa B signaling 2.104328e-01 0.677
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 9.954017e-02 1.002
R-HSA-74158 RNA Polymerase III Transcription 2.785752e-01 0.555
R-HSA-4641265 Repression of WNT target genes 1.497272e-01 0.825
R-HSA-180746 Nuclear import of Rev protein 1.004351e-01 0.998
R-HSA-9620244 Long-term potentiation 1.479591e-01 0.830
R-HSA-73864 RNA Polymerase I Transcription 7.856546e-02 1.105
R-HSA-427413 NoRC negatively regulates rRNA expression 1.252394e-01 0.902
R-HSA-432722 Golgi Associated Vesicle Biogenesis 2.643634e-01 0.578
R-HSA-8941856 RUNX3 regulates NOTCH signaling 4.948728e-01 0.306
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 3.131576e-01 0.504
R-HSA-9843745 Adipogenesis 1.811270e-01 0.742
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 4.517850e-01 0.345
R-HSA-9818026 NFE2L2 regulating inflammation associated genes 2.582217e-01 0.588
R-HSA-418885 DCC mediated attractive signaling 1.949807e-01 0.710
R-HSA-163754 Insulin effects increased synthesis of Xylulose-5-Phosphate 3.473806e-01 0.459
R-HSA-72200 mRNA Editing: C to U Conversion 3.473806e-01 0.459
R-HSA-8849473 PTK6 Expression 3.473806e-01 0.459
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 2.900735e-01 0.537
R-HSA-69190 DNA strand elongation 4.821215e-01 0.317
R-HSA-674695 RNA Polymerase II Pre-transcription Events 4.632867e-01 0.334
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 1.435445e-01 0.843
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 1.435445e-01 0.843
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 3.305697e-01 0.481
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 3.305697e-01 0.481
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 3.305697e-01 0.481
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 3.305697e-01 0.481
R-HSA-373753 Nephrin family interactions 9.280287e-02 1.032
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 2.229344e-01 0.652
R-HSA-9703465 Signaling by FLT3 fusion proteins 1.580088e-01 0.801
R-HSA-8937144 Aryl hydrocarbon receptor signalling 2.892167e-01 0.539
R-HSA-5099900 WNT5A-dependent internalization of FZD4 2.104328e-01 0.677
R-HSA-73854 RNA Polymerase I Promoter Clearance 7.141626e-02 1.146
R-HSA-3214815 HDACs deacetylate histones 1.348951e-01 0.870
R-HSA-9707616 Heme signaling 1.820868e-01 0.740
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 3.962250e-01 0.402
R-HSA-912446 Meiotic recombination 4.608105e-01 0.336
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 3.962250e-01 0.402
R-HSA-399997 Acetylcholine regulates insulin secretion 6.206872e-02 1.207
R-HSA-69618 Mitotic Spindle Checkpoint 1.996603e-01 0.700
R-HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 4.948728e-01 0.306
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 4.259489e-01 0.371
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 3.478346e-01 0.459
R-HSA-1433557 Signaling by SCF-KIT 3.708666e-01 0.431
R-HSA-75072 mRNA Editing 9.379489e-02 1.028
R-HSA-162599 Late Phase of HIV Life Cycle 2.477821e-01 0.606
R-HSA-5218920 VEGFR2 mediated vascular permeability 3.362830e-01 0.473
R-HSA-68882 Mitotic Anaphase 4.255826e-01 0.371
R-HSA-2555396 Mitotic Metaphase and Anaphase 4.309579e-01 0.366
R-HSA-162587 HIV Life Cycle 7.615612e-02 1.118
R-HSA-77042 Formation of editosomes by ADAR proteins 8.179171e-02 1.087
R-HSA-169131 Inhibition of PKR 8.179171e-02 1.087
R-HSA-75064 mRNA Editing: A to I Conversion 1.569025e-01 0.804
R-HSA-446343 Localization of the PINCH-ILK-PARVIN complex to focal adhesions 1.569025e-01 0.804
R-HSA-194306 Neurophilin interactions with VEGF and VEGFR 1.569025e-01 0.804
R-HSA-75102 C6 deamination of adenosine 1.569025e-01 0.804
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 7.675283e-02 1.115
R-HSA-5603029 IkBA variant leads to EDA-ID 2.892167e-01 0.539
R-HSA-75094 Formation of the Editosome 2.892167e-01 0.539
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 1.645834e-01 0.784
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 1.101031e-01 0.958
R-HSA-203641 NOSTRIN mediated eNOS trafficking 3.473806e-01 0.459
R-HSA-176033 Interactions of Vpr with host cellular proteins 1.435445e-01 0.843
R-HSA-428543 Inactivation of CDC42 and RAC1 4.007912e-01 0.397
R-HSA-379398 Enzymatic degradation of Dopamine by monoamine oxidase 4.007912e-01 0.397
R-HSA-5140745 WNT5A-dependent internalization of FZD2, FZD5 and ROR2 4.258365e-01 0.371
R-HSA-380612 Metabolism of serotonin 4.258365e-01 0.371
R-HSA-192905 vRNP Assembly 4.498365e-01 0.347
R-HSA-192814 vRNA Synthesis 4.498365e-01 0.347
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 3.661271e-01 0.436
R-HSA-110362 POLB-Dependent Long Patch Base Excision Repair 4.728347e-01 0.325
R-HSA-4839735 Signaling by AXIN mutants 4.728347e-01 0.325
R-HSA-202670 ERKs are inactivated 4.728347e-01 0.325
R-HSA-4839748 Signaling by AMER1 mutants 4.728347e-01 0.325
R-HSA-174411 Polymerase switching on the C-strand of the telomere 3.812540e-01 0.419
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 4.948728e-01 0.306
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 3.497142e-01 0.456
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 3.937432e-01 0.405
R-HSA-1227990 Signaling by ERBB2 in Cancer 4.543034e-01 0.343
R-HSA-68886 M Phase 1.467603e-01 0.833
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 4.572936e-01 0.340
R-HSA-203615 eNOS activation 2.557261e-01 0.592
R-HSA-9665348 Signaling by ERBB2 ECD mutants 2.573372e-01 0.589
R-HSA-162594 Early Phase of HIV Life Cycle 1.013042e-01 0.994
R-HSA-9909396 Circadian clock 4.442455e-01 0.352
R-HSA-9861718 Regulation of pyruvate metabolism 2.011864e-01 0.696
R-HSA-162906 HIV Infection 1.127903e-01 0.948
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 1.593002e-01 0.798
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 1.284458e-01 0.891
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 1.004351e-01 0.998
R-HSA-177243 Interactions of Rev with host cellular proteins 1.435445e-01 0.843
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 1.796833e-01 0.745
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 1.211601e-01 0.917
R-HSA-9010642 ROBO receptors bind AKAP5 3.746550e-01 0.426
R-HSA-525793 Myogenesis 3.962250e-01 0.402
R-HSA-5334118 DNA methylation 4.400761e-01 0.356
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 1.772494e-01 0.751
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 3.564681e-01 0.448
R-HSA-69231 Cyclin D associated events in G1 1.840407e-01 0.735
R-HSA-69236 G1 Phase 1.840407e-01 0.735
R-HSA-9664565 Signaling by ERBB2 KD Mutants 4.400761e-01 0.356
R-HSA-390648 Muscarinic acetylcholine receptors 2.582217e-01 0.588
R-HSA-448706 Interleukin-1 processing 4.007912e-01 0.397
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 2.444007e-01 0.612
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 2.011864e-01 0.696
R-HSA-8963888 Chylomicron assembly 4.498365e-01 0.347
R-HSA-141333 Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB 4.728347e-01 0.325
R-HSA-9675126 Diseases of mitotic cell cycle 4.821215e-01 0.317
R-HSA-9937080 Developmental Lineage of Multipotent Pancreatic Progenitor Cells 4.821215e-01 0.317
R-HSA-73886 Chromosome Maintenance 3.549652e-01 0.450
R-HSA-9759475 Regulation of CDH11 Expression and Function 4.400761e-01 0.356
R-HSA-4420097 VEGFA-VEGFR2 Pathway 4.720294e-01 0.326
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 2.671219e-01 0.573
R-HSA-2644603 Signaling by NOTCH1 in Cancer 3.305697e-01 0.481
R-HSA-194138 Signaling by VEGF 3.893082e-01 0.410
R-HSA-9683686 Maturation of spike protein 1.071383e-01 0.970
R-HSA-9839394 TGFBR3 expression 1.479591e-01 0.830
R-HSA-112043 PLC beta mediated events 7.792379e-02 1.108
R-HSA-1482801 Acyl chain remodelling of PS 3.812540e-01 0.419
R-HSA-5655302 Signaling by FGFR1 in disease 1.593002e-01 0.798
R-HSA-199992 trans-Golgi Network Vesicle Budding 2.579691e-01 0.588
R-HSA-114604 GPVI-mediated activation cascade 2.785752e-01 0.555
R-HSA-1980143 Signaling by NOTCH1 1.531342e-01 0.815
R-HSA-453279 Mitotic G1 phase and G1/S transition 2.698077e-01 0.569
R-HSA-70268 Pyruvate metabolism 3.898951e-01 0.409
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 9.101091e-02 1.041
R-HSA-202433 Generation of second messenger molecules 3.247206e-01 0.488
R-HSA-157579 Telomere Maintenance 3.153211e-01 0.501
R-HSA-936837 Ion transport by P-type ATPases 3.688688e-01 0.433
R-HSA-76002 Platelet activation, signaling and aggregation 3.763720e-01 0.424
R-HSA-199991 Membrane Trafficking 3.447774e-01 0.462
R-HSA-3928662 EPHB-mediated forward signaling 3.823287e-01 0.418
R-HSA-177929 Signaling by EGFR 1.412703e-01 0.850
R-HSA-397014 Muscle contraction 7.675886e-02 1.115
R-HSA-8981607 Intracellular oxygen transport 1.921246e-01 0.716
R-HSA-9960525 CASP5-mediated substrate cleavage 1.921246e-01 0.716
R-HSA-430116 GP1b-IX-V activation signalling 9.379489e-02 1.028
R-HSA-8941855 RUNX3 regulates CDKN1A transcription 2.892167e-01 0.539
R-HSA-5674499 Negative feedback regulation of MAPK pathway 2.892167e-01 0.539
R-HSA-195399 VEGF binds to VEGFR leading to receptor dimerization 2.892167e-01 0.539
R-HSA-175567 Integration of viral DNA into host genomic DNA 3.189183e-01 0.496
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 8.153208e-02 1.089
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 8.762162e-02 1.057
R-HSA-111996 Ca-dependent events 6.516742e-02 1.186
R-HSA-8964041 LDL remodeling 3.473806e-01 0.459
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 1.004351e-01 0.998
R-HSA-9909505 Modulation of host responses by IFN-stimulated genes 2.416462e-01 0.617
R-HSA-168276 NS1 Mediated Effects on Host Pathways 1.359095e-01 0.867
R-HSA-9619229 Activation of RAC1 downstream of NMDARs 4.007912e-01 0.397
R-HSA-1433617 Regulation of signaling by NODAL 4.007912e-01 0.397
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 1.286521e-01 0.891
R-HSA-2179392 EGFR Transactivation by Gastrin 4.258365e-01 0.371
R-HSA-9706019 RHOBTB3 ATPase cycle 4.498365e-01 0.347
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 4.728347e-01 0.325
R-HSA-113501 Inhibition of replication initiation of damaged DNA by RB1/E2F1 4.728347e-01 0.325
R-HSA-168330 Viral RNP Complexes in the Host Cell Nucleus 4.728347e-01 0.325
R-HSA-180689 APOBEC3G mediated resistance to HIV-1 infection 4.728347e-01 0.325
R-HSA-418359 Reduction of cytosolic Ca++ levels 4.728347e-01 0.325
R-HSA-389357 CD28 dependent PI3K/Akt signaling 4.110268e-01 0.386
R-HSA-8943724 Regulation of PTEN gene transcription 3.305697e-01 0.481
R-HSA-9707564 Cytoprotection by HMOX1 3.481201e-01 0.458
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 3.812540e-01 0.419
R-HSA-2980766 Nuclear Envelope Breakdown 3.019783e-01 0.520
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 3.114836e-01 0.507
R-HSA-1227986 Signaling by ERBB2 7.385676e-02 1.132
R-HSA-9860931 Response of endothelial cells to shear stress 2.236741e-01 0.650
R-HSA-112040 G-protein mediated events 1.048962e-01 0.979
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 2.900735e-01 0.537
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 2.128020e-01 0.672
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 1.071383e-01 0.970
R-HSA-210990 PECAM1 interactions 1.209489e-01 0.917
R-HSA-9818749 Regulation of NFE2L2 gene expression 3.189183e-01 0.496
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 8.762162e-02 1.057
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 2.331591e-01 0.632
R-HSA-174414 Processive synthesis on the C-strand of the telomere 4.110268e-01 0.386
R-HSA-180786 Extension of Telomeres 3.210162e-01 0.493
R-HSA-6784531 tRNA processing in the nucleus 3.497142e-01 0.456
R-HSA-8863795 Downregulation of ERBB2 signaling 4.543034e-01 0.343
R-HSA-438064 Post NMDA receptor activation events 3.898951e-01 0.409
R-HSA-1839124 FGFR1 mutant receptor activation 2.331591e-01 0.632
R-HSA-9006335 Signaling by Erythropoietin 4.400761e-01 0.356
R-HSA-73933 Resolution of Abasic Sites (AP sites) 3.362830e-01 0.473
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 2.573372e-01 0.589
R-HSA-5621575 CD209 (DC-SIGN) signaling 3.661271e-01 0.436
R-HSA-1500931 Cell-Cell communication 8.875345e-02 1.052
R-HSA-373752 Netrin-1 signaling 3.823287e-01 0.418
R-HSA-418990 Adherens junctions interactions 3.201079e-01 0.495
R-HSA-9855142 Cellular responses to mechanical stimuli 1.746530e-01 0.758
R-HSA-111933 Calmodulin induced events 1.140589e-01 0.943
R-HSA-9764265 Regulation of CDH1 Expression and Function 1.249196e-01 0.903
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 1.249196e-01 0.903
R-HSA-162909 Host Interactions of HIV factors 3.755505e-01 0.425
R-HSA-421270 Cell-cell junction organization 4.880296e-01 0.312
R-HSA-75108 Activation, myristolyation of BID and translocation to mitochondria 1.569025e-01 0.804
R-HSA-9960519 CASP4-mediated substrate cleavage 1.921246e-01 0.716
R-HSA-9707587 Regulation of HMOX1 expression and activity 2.258773e-01 0.646
R-HSA-9706374 FLT3 signaling through SRC family kinases 2.258773e-01 0.646
R-HSA-9820962 Assembly and release of respiratory syncytial virus (RSV) virions 1.071383e-01 0.970
R-HSA-9927353 Co-inhibition by BTLA 2.582217e-01 0.588
R-HSA-8866376 Reelin signalling pathway 2.582217e-01 0.588
R-HSA-8941284 RUNX2 regulates chondrocyte maturation 2.582217e-01 0.588
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 1.351645e-01 0.869
R-HSA-194313 VEGF ligand-receptor interactions 2.892167e-01 0.539
R-HSA-1489509 DAG and IP3 signaling 7.894684e-02 1.103
R-HSA-111997 CaM pathway 1.140589e-01 0.943
R-HSA-379397 Enzymatic degradation of dopamine by COMT 4.258365e-01 0.371
R-HSA-73856 RNA Polymerase II Transcription Termination 1.749988e-01 0.757
R-HSA-425381 Bicarbonate transporters 4.498365e-01 0.347
R-HSA-433692 Proton-coupled monocarboxylate transport 4.728347e-01 0.325
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 3.362830e-01 0.473
R-HSA-8951936 RUNX3 regulates p14-ARF 4.948728e-01 0.306
R-HSA-937039 IRAK1 recruits IKK complex 4.948728e-01 0.306
R-HSA-380615 Serotonin clearance from the synaptic cleft 4.948728e-01 0.306
R-HSA-879415 Advanced glycosylation endproduct receptor signaling 4.948728e-01 0.306
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 4.948728e-01 0.306
R-HSA-418890 Role of second messengers in netrin-1 signaling 4.948728e-01 0.306
R-HSA-877312 Regulation of IFNG signaling 4.948728e-01 0.306
R-HSA-69473 G2/M DNA damage checkpoint 2.740019e-01 0.562
R-HSA-418360 Platelet calcium homeostasis 4.400761e-01 0.356
R-HSA-9031628 NGF-stimulated transcription 9.415953e-02 1.026
R-HSA-446728 Cell junction organization 2.947726e-01 0.531
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 4.528149e-01 0.344
R-HSA-446652 Interleukin-1 family signaling 1.162759e-01 0.935
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 7.385676e-02 1.132
R-HSA-9006115 Signaling by NTRK2 (TRKB) 1.682609e-01 0.774
R-HSA-264876 Insulin processing 1.682609e-01 0.774
R-HSA-5578775 Ion homeostasis 2.925069e-01 0.534
R-HSA-901042 Calnexin/calreticulin cycle 2.557261e-01 0.592
R-HSA-8853884 Transcriptional Regulation by VENTX 3.362830e-01 0.473
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 1.840407e-01 0.735
R-HSA-70326 Glucose metabolism 5.775296e-02 1.238
R-HSA-432142 Platelet sensitization by LDL 2.573372e-01 0.589
R-HSA-9768777 Regulation of NPAS4 gene transcription 4.007912e-01 0.397
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 4.387715e-01 0.358
R-HSA-1226099 Signaling by FGFR in disease 4.632867e-01 0.334
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 2.421732e-01 0.616
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 1.925533e-01 0.715
R-HSA-9762293 Regulation of CDH11 gene transcription 4.007912e-01 0.397
R-HSA-9711097 Cellular response to starvation 2.236418e-01 0.650
R-HSA-8878171 Transcriptional regulation by RUNX1 1.726287e-01 0.763
R-HSA-9682385 FLT3 signaling in disease 2.785752e-01 0.555
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 1.306059e-01 0.884
R-HSA-111885 Opioid Signalling 3.675306e-01 0.435
R-HSA-8874177 ATF6B (ATF6-beta) activates chaperones 1.569025e-01 0.804
R-HSA-5336415 Uptake and function of diphtheria toxin 6.878144e-02 1.163
R-HSA-9834752 Respiratory syncytial virus genome replication 9.379489e-02 1.028
R-HSA-381183 ATF6 (ATF6-alpha) activates chaperone genes 1.351645e-01 0.869
R-HSA-446388 Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... 2.892167e-01 0.539
R-HSA-9764302 Regulation of CDH19 Expression and Function 2.892167e-01 0.539
R-HSA-381033 ATF6 (ATF6-alpha) activates chaperones 1.645834e-01 0.784
R-HSA-391160 Signal regulatory protein family interactions 1.796833e-01 0.745
R-HSA-8866423 VLDL assembly 3.189183e-01 0.496
R-HSA-164944 Nef and signal transduction 3.189183e-01 0.496
R-HSA-933543 NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 4.498365e-01 0.347
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 3.508593e-01 0.455
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 3.016049e-01 0.521
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 4.948728e-01 0.306
R-HSA-9005895 Pervasive developmental disorders 4.948728e-01 0.306
R-HSA-9697154 Disorders of Nervous System Development 4.948728e-01 0.306
R-HSA-190828 Gap junction trafficking 3.823287e-01 0.418
R-HSA-888590 GABA synthesis, release, reuptake and degradation 4.543034e-01 0.343
R-HSA-9018519 Estrogen-dependent gene expression 1.239562e-01 0.907
R-HSA-9824446 Viral Infection Pathways 4.028899e-01 0.395
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 3.752564e-01 0.426
R-HSA-109582 Hemostasis 4.099866e-01 0.387
R-HSA-1169408 ISG15 antiviral mechanism 4.724915e-01 0.326
R-HSA-73857 RNA Polymerase II Transcription 1.022569e-01 0.990
R-HSA-9006936 Signaling by TGFB family members 2.335336e-01 0.632
R-HSA-69205 G1/S-Specific Transcription 2.785752e-01 0.555
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 3.066331e-01 0.513
R-HSA-70263 Gluconeogenesis 4.276234e-01 0.369
R-HSA-140342 Apoptosis induced DNA fragmentation 1.071383e-01 0.970
R-HSA-9860276 SLC15A4:TASL-dependent IRF5 activation 2.892167e-01 0.539
R-HSA-9840373 Cellular response to mitochondrial stress 4.007912e-01 0.397
R-HSA-390666 Serotonin receptors 4.258365e-01 0.371
R-HSA-2691232 Constitutive Signaling by NOTCH1 HD Domain Mutants 4.948728e-01 0.306
R-HSA-1247673 Erythrocytes take up oxygen and release carbon dioxide 4.948728e-01 0.306
R-HSA-2691230 Signaling by NOTCH1 HD Domain Mutants in Cancer 4.948728e-01 0.306
R-HSA-1250196 SHC1 events in ERBB2 signaling 4.543034e-01 0.343
R-HSA-157858 Gap junction trafficking and regulation 4.387715e-01 0.358
R-HSA-9705683 SARS-CoV-2-host interactions 2.652259e-01 0.576
R-HSA-170834 Signaling by TGF-beta Receptor Complex 1.823534e-01 0.739
R-HSA-2586552 Signaling by Leptin 4.258365e-01 0.371
R-HSA-2514859 Inactivation, recovery and regulation of the phototransduction cascade 2.011864e-01 0.696
R-HSA-187037 Signaling by NTRK1 (TRKA) 4.099529e-01 0.387
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB 1.071383e-01 0.970
R-HSA-163765 ChREBP activates metabolic gene expression 1.209489e-01 0.917
R-HSA-9823730 Formation of definitive endoderm 2.887328e-01 0.540
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 1.156495e-01 0.937
R-HSA-2132295 MHC class II antigen presentation 1.362577e-01 0.866
R-HSA-166520 Signaling by NTRKs 1.768856e-01 0.752
R-HSA-9020956 Interleukin-27 signaling 4.258365e-01 0.371
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 6.456997e-02 1.190
R-HSA-212436 Generic Transcription Pathway 1.705793e-01 0.768
R-HSA-450520 HuR (ELAVL1) binds and stabilizes mRNA 4.007912e-01 0.397
R-HSA-9679191 Potential therapeutics for SARS 1.858501e-01 0.731
R-HSA-3214858 RMTs methylate histone arginines 3.823287e-01 0.418
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 2.984157e-01 0.525
R-HSA-9839373 Signaling by TGFBR3 4.051022e-01 0.392
R-HSA-110357 Displacement of DNA glycosylase by APEX1 3.473806e-01 0.459
R-HSA-418889 Caspase activation via Dependence Receptors in the absence of ligand 4.007912e-01 0.397
R-HSA-9694516 SARS-CoV-2 Infection 4.082146e-01 0.389
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 3.478346e-01 0.459
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 3.508593e-01 0.455
R-HSA-2514856 The phototransduction cascade 2.458967e-01 0.609
R-HSA-198323 AKT phosphorylates targets in the cytosol 4.948728e-01 0.306
R-HSA-9679506 SARS-CoV Infections 3.363720e-01 0.473
R-HSA-982772 Growth hormone receptor signaling 3.508593e-01 0.455
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 1.958890e-01 0.708
R-HSA-75153 Apoptotic execution phase 8.386075e-02 1.076
R-HSA-9827857 Specification of primordial germ cells 2.416462e-01 0.617
R-HSA-9692914 SARS-CoV-1-host interactions 2.423124e-01 0.616
R-HSA-449147 Signaling by Interleukins 2.180887e-01 0.661
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 4.007912e-01 0.397
R-HSA-9678108 SARS-CoV-1 Infection 1.316019e-01 0.881
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 2.573372e-01 0.589
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 3.199680e-01 0.495
R-HSA-3700989 Transcriptional Regulation by TP53 2.615691e-01 0.582
R-HSA-447115 Interleukin-12 family signaling 2.295562e-01 0.639
R-HSA-9020933 Interleukin-23 signaling 3.746550e-01 0.426
R-HSA-111465 Apoptotic cleavage of cellular proteins 2.220150e-01 0.654
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 3.962250e-01 0.402
R-HSA-8984722 Interleukin-35 Signalling 4.948728e-01 0.306
R-HSA-73943 Reversal of alkylation damage by DNA dioxygenases 4.948728e-01 0.306
R-HSA-9020591 Interleukin-12 signaling 2.902351e-01 0.537
R-HSA-8983711 OAS antiviral response 4.948728e-01 0.306
R-HSA-2408522 Selenoamino acid metabolism 3.744499e-01 0.427
R-HSA-168316 Assembly of Viral Components at the Budding Site 2.582217e-01 0.588
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 3.784355e-01 0.422
R-HSA-9830364 Formation of the nephric duct 3.812540e-01 0.419
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 3.131576e-01 0.504
R-HSA-354192 Integrin signaling 4.956987e-01 0.305
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 4.956987e-01 0.305
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 4.956987e-01 0.305
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 4.956987e-01 0.305
R-HSA-9022692 Regulation of MECP2 expression and activity 4.956987e-01 0.305
R-HSA-9614085 FOXO-mediated transcription 5.045199e-01 0.297
R-HSA-68875 Mitotic Prophase 5.083361e-01 0.294
R-HSA-390522 Striated Muscle Contraction 5.090470e-01 0.293
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 5.090470e-01 0.293
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 5.090470e-01 0.293
R-HSA-114508 Effects of PIP2 hydrolysis 5.090470e-01 0.293
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 5.090470e-01 0.293
R-HSA-193648 NRAGE signals death through JNK 5.141518e-01 0.289
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 5.141518e-01 0.289
R-HSA-9861559 PDH complex synthesizes acetyl-CoA from PYR 5.159910e-01 0.287
R-HSA-389359 CD28 dependent Vav1 pathway 5.159910e-01 0.287
R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 5.159910e-01 0.287
R-HSA-75892 Platelet Adhesion to exposed collagen 5.159910e-01 0.287
R-HSA-174490 Membrane binding and targetting of GAG proteins 5.159910e-01 0.287
R-HSA-9682706 Replication of the SARS-CoV-1 genome 5.159910e-01 0.287
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 5.175544e-01 0.286
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 5.175544e-01 0.286
R-HSA-5673000 RAF activation 5.221619e-01 0.282
R-HSA-69620 Cell Cycle Checkpoints 5.232000e-01 0.281
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 5.280639e-01 0.277
R-HSA-1483255 PI Metabolism 5.280639e-01 0.277
R-HSA-983712 Ion channel transport 5.283760e-01 0.277
R-HSA-6782135 Dual incision in TC-NER 5.346895e-01 0.272
R-HSA-9772572 Early SARS-CoV-2 Infection Events 5.346895e-01 0.272
R-HSA-381042 PERK regulates gene expression 5.350396e-01 0.272
R-HSA-399956 CRMPs in Sema3A signaling 5.362274e-01 0.271
R-HSA-69166 Removal of the Flap Intermediate 5.362274e-01 0.271
R-HSA-1483115 Hydrolysis of LPC 5.362274e-01 0.271
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 5.362274e-01 0.271
R-HSA-418457 cGMP effects 5.362274e-01 0.271
R-HSA-5655291 Signaling by FGFR4 in disease 5.362274e-01 0.271
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 5.362274e-01 0.271
R-HSA-5578768 Physiological factors 5.362274e-01 0.271
R-HSA-1170546 Prolactin receptor signaling 5.362274e-01 0.271
R-HSA-9828642 Respiratory syncytial virus genome transcription 5.362274e-01 0.271
R-HSA-9686114 Non-canonical inflammasome activation 5.362274e-01 0.271
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 5.362274e-01 0.271
R-HSA-1482798 Acyl chain remodeling of CL 5.362274e-01 0.271
R-HSA-9679514 SARS-CoV-1 Genome Replication and Transcription 5.362274e-01 0.271
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 5.476770e-01 0.261
R-HSA-432720 Lysosome Vesicle Biogenesis 5.476770e-01 0.261
R-HSA-8853659 RET signaling 5.476770e-01 0.261
R-HSA-6804757 Regulation of TP53 Degradation 5.476770e-01 0.261
R-HSA-8941326 RUNX2 regulates bone development 5.476770e-01 0.261
R-HSA-163560 Triglyceride catabolism 5.476770e-01 0.261
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 5.522657e-01 0.258
R-HSA-8873719 RAB geranylgeranylation 5.547264e-01 0.256
R-HSA-196299 Beta-catenin phosphorylation cascade 5.556190e-01 0.255
R-HSA-69183 Processive synthesis on the lagging strand 5.556190e-01 0.255
R-HSA-174430 Telomere C-strand synthesis initiation 5.556190e-01 0.255
R-HSA-379401 Dopamine clearance from the synaptic cleft 5.556190e-01 0.255
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 5.556190e-01 0.255
R-HSA-9857492 Protein lipoylation 5.556190e-01 0.255
R-HSA-416700 Other semaphorin interactions 5.556190e-01 0.255
R-HSA-3270619 IRF3-mediated induction of type I IFN 5.556190e-01 0.255
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 5.556190e-01 0.255
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 5.556190e-01 0.255
R-HSA-8876725 Protein methylation 5.556190e-01 0.255
R-HSA-73942 DNA Damage Reversal 5.556190e-01 0.255
R-HSA-5689896 Ovarian tumor domain proteases 5.600716e-01 0.252
R-HSA-69242 S Phase 5.632651e-01 0.249
R-HSA-168325 Viral Messenger RNA Synthesis 5.645497e-01 0.248
R-HSA-2428928 IRS-related events triggered by IGF1R 5.645497e-01 0.248
R-HSA-418346 Platelet homeostasis 5.661530e-01 0.247
R-HSA-9006931 Signaling by Nuclear Receptors 5.681490e-01 0.246
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 5.742008e-01 0.241
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 5.742008e-01 0.241
R-HSA-9733458 Induction of Cell-Cell Fusion 5.742008e-01 0.241
R-HSA-9678110 Attachment and Entry 5.742008e-01 0.241
R-HSA-434316 Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion 5.742008e-01 0.241
R-HSA-169893 Prolonged ERK activation events 5.742008e-01 0.241
R-HSA-9708530 Regulation of BACH1 activity 5.742008e-01 0.241
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 5.742008e-01 0.241
R-HSA-9706369 Negative regulation of FLT3 5.742008e-01 0.241
R-HSA-168268 Virus Assembly and Release 5.742008e-01 0.241
R-HSA-375165 NCAM signaling for neurite out-growth 5.742397e-01 0.241
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 5.742397e-01 0.241
R-HSA-2672351 Stimuli-sensing channels 5.809429e-01 0.236
R-HSA-6790901 rRNA modification in the nucleus and cytosol 5.837941e-01 0.234
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 5.841261e-01 0.233
R-HSA-6806003 Regulation of TP53 Expression and Degradation 5.841261e-01 0.233
R-HSA-201556 Signaling by ALK 5.841261e-01 0.233
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 5.920068e-01 0.228
R-HSA-5576893 Phase 2 - plateau phase 5.920068e-01 0.228
R-HSA-9927020 Heme assimilation 5.920068e-01 0.228
R-HSA-6787450 tRNA modification in the mitochondrion 5.920068e-01 0.228
R-HSA-3134975 Regulation of innate immune responses to cytosolic DNA 5.920068e-01 0.228
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 5.920068e-01 0.228
R-HSA-9675151 Disorders of Developmental Biology 5.920068e-01 0.228
R-HSA-2428924 IGF1R signaling cascade 5.932110e-01 0.227
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 5.937194e-01 0.226
R-HSA-202403 TCR signaling 5.954592e-01 0.225
R-HSA-9670095 Inhibition of DNA recombination at telomere 5.957841e-01 0.225
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 5.957841e-01 0.225
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 5.957841e-01 0.225
R-HSA-167169 HIV Transcription Elongation 5.957841e-01 0.225
R-HSA-5576891 Cardiac conduction 5.977693e-01 0.223
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 6.024887e-01 0.220
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 6.071954e-01 0.217
R-HSA-9694548 Maturation of spike protein 6.071954e-01 0.217
R-HSA-9607240 FLT3 Signaling 6.071954e-01 0.217
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 6.090692e-01 0.215
R-HSA-1963642 PI3K events in ERBB2 signaling 6.090692e-01 0.215
R-HSA-2028269 Signaling by Hippo 6.090692e-01 0.215
R-HSA-174437 Removal of the Flap Intermediate from the C-strand 6.090692e-01 0.215
R-HSA-5358606 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 6.090692e-01 0.215
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 6.090692e-01 0.215
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 6.090692e-01 0.215
R-HSA-139853 Elevation of cytosolic Ca2+ levels 6.090692e-01 0.215
R-HSA-9768759 Regulation of NPAS4 gene expression 6.090692e-01 0.215
R-HSA-1660517 Synthesis of PIPs at the late endosome membrane 6.090692e-01 0.215
R-HSA-9694686 Replication of the SARS-CoV-2 genome 6.090692e-01 0.215
R-HSA-1483249 Inositol phosphate metabolism 6.096913e-01 0.215
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 6.107452e-01 0.214
R-HSA-8986944 Transcriptional Regulation by MECP2 6.174700e-01 0.209
R-HSA-9683701 Translation of Structural Proteins 6.183603e-01 0.209
R-HSA-5357801 Programmed Cell Death 6.216553e-01 0.206
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 6.254190e-01 0.204
R-HSA-418217 G beta:gamma signalling through PLC beta 6.254190e-01 0.204
R-HSA-2564830 Cytosolic iron-sulfur cluster assembly 6.254190e-01 0.204
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 6.254190e-01 0.204
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 6.254190e-01 0.204
R-HSA-73980 RNA Polymerase III Transcription Termination 6.254190e-01 0.204
R-HSA-500657 Presynaptic function of Kainate receptors 6.254190e-01 0.204
R-HSA-8849932 Synaptic adhesion-like molecules 6.254190e-01 0.204
R-HSA-4419969 Depolymerization of the Nuclear Lamina 6.254190e-01 0.204
R-HSA-5358508 Mismatch Repair 6.254190e-01 0.204
R-HSA-6804760 Regulation of TP53 Activity through Methylation 6.254190e-01 0.204
R-HSA-9679504 Translation of Replicase and Assembly of the Replication Transcription Complex 6.254190e-01 0.204
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 6.292794e-01 0.201
R-HSA-167172 Transcription of the HIV genome 6.294737e-01 0.201
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 6.294737e-01 0.201
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 6.294737e-01 0.201
R-HSA-162582 Signal Transduction 6.329218e-01 0.199
R-HSA-163685 Integration of energy metabolism 6.359860e-01 0.197
R-HSA-9710421 Defective pyroptosis 6.399538e-01 0.194
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 6.403346e-01 0.194
R-HSA-5654710 PI-3K cascade:FGFR3 6.410860e-01 0.193
R-HSA-110320 Translesion Synthesis by POLH 6.410860e-01 0.193
R-HSA-912631 Regulation of signaling by CBL 6.410860e-01 0.193
R-HSA-9754189 Germ layer formation at gastrulation 6.410860e-01 0.193
R-HSA-937041 IKK complex recruitment mediated by RIP1 6.410860e-01 0.193
R-HSA-140179 Amine Oxidase reactions 6.410860e-01 0.193
R-HSA-1237044 Erythrocytes take up carbon dioxide and release oxygen 6.410860e-01 0.193
R-HSA-113510 E2F mediated regulation of DNA replication 6.410860e-01 0.193
R-HSA-844456 The NLRP3 inflammasome 6.410860e-01 0.193
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 6.410860e-01 0.193
R-HSA-1480926 O2/CO2 exchange in erythrocytes 6.410860e-01 0.193
R-HSA-9913635 Strand-asynchronous mitochondrial DNA replication 6.410860e-01 0.193
R-HSA-449836 Other interleukin signaling 6.410860e-01 0.193
R-HSA-392517 Rap1 signalling 6.410860e-01 0.193
R-HSA-1912420 Pre-NOTCH Processing in Golgi 6.410860e-01 0.193
R-HSA-9856532 Mechanical load activates signaling by PIEZO1 and integrins in osteocytes 6.410860e-01 0.193
R-HSA-1834941 STING mediated induction of host immune responses 6.410860e-01 0.193
R-HSA-9694682 SARS-CoV-2 Genome Replication and Transcription 6.410860e-01 0.193
R-HSA-72766 Translation 6.412134e-01 0.193
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 6.421432e-01 0.192
R-HSA-195253 Degradation of beta-catenin by the destruction complex 6.467470e-01 0.189
R-HSA-69202 Cyclin E associated events during G1/S transition 6.467470e-01 0.189
R-HSA-69275 G2/M Transition 6.468984e-01 0.189
R-HSA-109581 Apoptosis 6.471567e-01 0.189
R-HSA-2172127 DAP12 interactions 6.503848e-01 0.187
R-HSA-375280 Amine ligand-binding receptors 6.503848e-01 0.187
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 6.550727e-01 0.184
R-HSA-5654720 PI-3K cascade:FGFR4 6.560986e-01 0.183
R-HSA-389513 Co-inhibition by CTLA4 6.560986e-01 0.183
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 6.560986e-01 0.183
R-HSA-5620916 VxPx cargo-targeting to cilium 6.560986e-01 0.183
R-HSA-1181150 Signaling by NODAL 6.560986e-01 0.183
R-HSA-1482922 Acyl chain remodelling of PI 6.560986e-01 0.183
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 6.571375e-01 0.182
R-HSA-8939211 ESR-mediated signaling 6.573365e-01 0.182
R-HSA-453274 Mitotic G2-G2/M phases 6.574080e-01 0.182
R-HSA-76009 Platelet Aggregation (Plug Formation) 6.605741e-01 0.180
R-HSA-5578749 Transcriptional regulation by small RNAs 6.634417e-01 0.178
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 6.634417e-01 0.178
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 6.634417e-01 0.178
R-HSA-2219528 PI3K/AKT Signaling in Cancer 6.636097e-01 0.178
R-HSA-6807878 COPI-mediated anterograde transport 6.694005e-01 0.174
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 6.704841e-01 0.174
R-HSA-198753 ERK/MAPK targets 6.704841e-01 0.174
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 6.704841e-01 0.174
R-HSA-1482925 Acyl chain remodelling of PG 6.704841e-01 0.174
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 6.704841e-01 0.174
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 6.705236e-01 0.174
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 6.705236e-01 0.174
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 6.715714e-01 0.173
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 6.802357e-01 0.167
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 6.802357e-01 0.167
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 6.802357e-01 0.167
R-HSA-9006925 Intracellular signaling by second messengers 6.804140e-01 0.167
R-HSA-9759194 Nuclear events mediated by NFE2L2 6.825325e-01 0.166
R-HSA-5653656 Vesicle-mediated transport 6.827212e-01 0.166
R-HSA-9711123 Cellular response to chemical stress 6.841727e-01 0.165
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 6.842688e-01 0.165
R-HSA-9694614 Attachment and Entry 6.842688e-01 0.165
R-HSA-8876384 Listeria monocytogenes entry into host cells 6.842688e-01 0.165
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 6.842688e-01 0.165
R-HSA-2022377 Metabolism of Angiotensinogen to Angiotensins 6.842688e-01 0.165
R-HSA-9671555 Signaling by PDGFR in disease 6.842688e-01 0.165
R-HSA-9755088 Ribavirin ADME 6.842688e-01 0.165
R-HSA-175474 Assembly Of The HIV Virion 6.842688e-01 0.165
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 6.873961e-01 0.163
R-HSA-389356 Co-stimulation by CD28 6.897127e-01 0.161
R-HSA-5689603 UCH proteinases 6.950916e-01 0.158
R-HSA-5654689 PI-3K cascade:FGFR1 6.974775e-01 0.156
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 6.974775e-01 0.156
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 6.974775e-01 0.156
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 6.974775e-01 0.156
R-HSA-9669938 Signaling by KIT in disease 6.974775e-01 0.156
R-HSA-912694 Regulation of IFNA/IFNB signaling 6.974775e-01 0.156
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 6.974775e-01 0.156
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 6.974775e-01 0.156
R-HSA-9694676 Translation of Replicase and Assembly of the Replication Transcription Complex 6.974775e-01 0.156
R-HSA-73893 DNA Damage Bypass 6.989573e-01 0.156
R-HSA-9766229 Degradation of CDH1 6.989573e-01 0.156
R-HSA-112315 Transmission across Chemical Synapses 7.034287e-01 0.153
R-HSA-109704 PI3K Cascade 7.079723e-01 0.150
R-HSA-4086400 PCP/CE pathway 7.100512e-01 0.149
R-HSA-416482 G alpha (12/13) signalling events 7.100512e-01 0.149
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 7.101345e-01 0.149
R-HSA-400451 Free fatty acids regulate insulin secretion 7.101345e-01 0.149
R-HSA-912526 Interleukin receptor SHC signaling 7.101345e-01 0.149
R-HSA-446210 Synthesis of UDP-N-acetyl-glucosamine 7.101345e-01 0.149
R-HSA-3000170 Syndecan interactions 7.101345e-01 0.149
R-HSA-69206 G1/S Transition 7.124496e-01 0.147
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 7.159033e-01 0.145
R-HSA-9659379 Sensory processing of sound 7.173166e-01 0.144
R-HSA-9856651 MITF-M-dependent gene expression 7.215356e-01 0.142
R-HSA-202430 Translocation of ZAP-70 to Immunological synapse 7.222627e-01 0.141
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 7.222627e-01 0.141
R-HSA-933542 TRAF6 mediated NF-kB activation 7.222627e-01 0.141
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 7.222627e-01 0.141
R-HSA-8963898 Plasma lipoprotein assembly 7.222627e-01 0.141
R-HSA-418592 ADP signalling through P2Y purinoceptor 1 7.222627e-01 0.141
R-HSA-446199 Synthesis of dolichyl-phosphate 7.222627e-01 0.141
R-HSA-6783589 Interleukin-6 family signaling 7.222627e-01 0.141
R-HSA-8863678 Neurodegenerative Diseases 7.222627e-01 0.141
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 7.222627e-01 0.141
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 7.225583e-01 0.141
R-HSA-114608 Platelet degranulation 7.238448e-01 0.140
R-HSA-69481 G2/M Checkpoints 7.238448e-01 0.140
R-HSA-6794361 Neurexins and neuroligins 7.253259e-01 0.139
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 7.253259e-01 0.139
R-HSA-5339562 Uptake and actions of bacterial toxins 7.253259e-01 0.139
R-HSA-9755511 KEAP1-NFE2L2 pathway 7.267065e-01 0.139
R-HSA-5654695 PI-3K cascade:FGFR2 7.338841e-01 0.134
R-HSA-5218921 VEGFR2 mediated cell proliferation 7.338841e-01 0.134
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 7.338841e-01 0.134
R-HSA-1266695 Interleukin-7 signaling 7.338841e-01 0.134
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 7.450199e-01 0.128
R-HSA-3295583 TRP channels 7.450199e-01 0.128
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 7.450199e-01 0.128
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 7.450199e-01 0.128
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 7.450199e-01 0.128
R-HSA-1474165 Reproduction 7.456549e-01 0.127
R-HSA-211000 Gene Silencing by RNA 7.466483e-01 0.127
R-HSA-1989781 PPARA activates gene expression 7.467143e-01 0.127
R-HSA-418597 G alpha (z) signalling events 7.497147e-01 0.125
R-HSA-9012852 Signaling by NOTCH3 7.497147e-01 0.125
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 7.556904e-01 0.122
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 7.556904e-01 0.122
R-HSA-445095 Interaction between L1 and Ankyrins 7.556904e-01 0.122
R-HSA-8949613 Cristae formation 7.556904e-01 0.122
R-HSA-201451 Signaling by BMP 7.556904e-01 0.122
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 7.556904e-01 0.122
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 7.556904e-01 0.122
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 7.556904e-01 0.122
R-HSA-193807 Synthesis of bile acids and bile salts via 27-hydroxycholesterol 7.556904e-01 0.122
R-HSA-5655332 Signaling by FGFR3 in disease 7.556904e-01 0.122
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 7.556904e-01 0.122
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 7.563136e-01 0.121
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 7.574204e-01 0.121
R-HSA-1500620 Meiosis 7.579657e-01 0.120
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 7.642607e-01 0.117
R-HSA-9764561 Regulation of CDH1 Function 7.649202e-01 0.116
R-HSA-5621480 Dectin-2 family 7.649202e-01 0.116
R-HSA-112399 IRS-mediated signalling 7.649202e-01 0.116
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 7.649202e-01 0.116
R-HSA-167287 HIV elongation arrest and recovery 7.659149e-01 0.116
R-HSA-167290 Pausing and recovery of HIV elongation 7.659149e-01 0.116
R-HSA-9619483 Activation of AMPK downstream of NMDARs 7.659149e-01 0.116
R-HSA-113418 Formation of the Early Elongation Complex 7.659149e-01 0.116
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 7.659149e-01 0.116
R-HSA-451326 Activation of kainate receptors upon glutamate binding 7.659149e-01 0.116
R-HSA-622312 Inflammasomes 7.659149e-01 0.116
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 7.659149e-01 0.116
R-HSA-5620971 Pyroptosis 7.659149e-01 0.116
R-HSA-204174 Regulation of pyruvate dehydrogenase (PDH) complex 7.757122e-01 0.110
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 7.757122e-01 0.110
R-HSA-5654708 Downstream signaling of activated FGFR3 7.757122e-01 0.110
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 7.757122e-01 0.110
R-HSA-392154 Nitric oxide stimulates guanylate cyclase 7.757122e-01 0.110
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 7.757122e-01 0.110
R-HSA-9730414 MITF-M-regulated melanocyte development 7.763307e-01 0.110
R-HSA-8979227 Triglyceride metabolism 7.793171e-01 0.108
R-HSA-9645723 Diseases of programmed cell death 7.823501e-01 0.107
R-HSA-5654716 Downstream signaling of activated FGFR4 7.850999e-01 0.105
R-HSA-112311 Neurotransmitter clearance 7.850999e-01 0.105
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 7.850999e-01 0.105
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 7.850999e-01 0.105
R-HSA-68962 Activation of the pre-replicative complex 7.850999e-01 0.105
R-HSA-5617833 Cilium Assembly 7.872930e-01 0.104
R-HSA-450294 MAP kinase activation 7.929358e-01 0.101
R-HSA-112310 Neurotransmitter release cycle 7.937621e-01 0.100
R-HSA-73884 Base Excision Repair 7.937621e-01 0.100
R-HSA-186763 Downstream signal transduction 7.940953e-01 0.100
R-HSA-9820960 Respiratory syncytial virus (RSV) attachment and entry 7.940953e-01 0.100
R-HSA-162588 Budding and maturation of HIV virion 7.940953e-01 0.100
R-HSA-182971 EGFR downregulation 7.940953e-01 0.100
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 7.940953e-01 0.100
R-HSA-9833109 Evasion by RSV of host interferon responses 7.940953e-01 0.100
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 7.949559e-01 0.100
R-HSA-9616222 Transcriptional regulation of granulopoiesis 7.994629e-01 0.097
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 7.994629e-01 0.097
R-HSA-4791275 Signaling by WNT in cancer 8.027147e-01 0.095
R-HSA-373760 L1CAM interactions 8.046223e-01 0.094
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 8.058070e-01 0.094
R-HSA-8848021 Signaling by PTK6 8.058070e-01 0.094
R-HSA-2980736 Peptide hormone metabolism 8.093151e-01 0.092
R-HSA-9772573 Late SARS-CoV-2 Infection Events 8.099414e-01 0.092
R-HSA-9668328 Sealing of the nuclear envelope (NE) by ESCRT-III 8.109738e-01 0.091
R-HSA-397795 G-protein beta:gamma signalling 8.109738e-01 0.091
R-HSA-5675482 Regulation of necroptotic cell death 8.109738e-01 0.091
R-HSA-9733709 Cardiogenesis 8.109738e-01 0.091
R-HSA-5609975 Diseases associated with glycosylation precursor biosynthesis 8.109738e-01 0.091
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 8.119719e-01 0.090
R-HSA-74751 Insulin receptor signalling cascade 8.119719e-01 0.090
R-HSA-72306 tRNA processing 8.161074e-01 0.088
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 8.188876e-01 0.087
R-HSA-1482788 Acyl chain remodelling of PC 8.188876e-01 0.087
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 8.188876e-01 0.087
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 8.201220e-01 0.086
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 8.264705e-01 0.083
R-HSA-168638 NOD1/2 Signaling Pathway 8.264705e-01 0.083
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 8.264705e-01 0.083
R-HSA-392518 Signal amplification 8.264705e-01 0.083
R-HSA-1980145 Signaling by NOTCH2 8.264705e-01 0.083
R-HSA-9830369 Kidney development 8.294307e-01 0.081
R-HSA-199977 ER to Golgi Anterograde Transport 8.319717e-01 0.080
R-HSA-5654696 Downstream signaling of activated FGFR2 8.337364e-01 0.079
R-HSA-5654687 Downstream signaling of activated FGFR1 8.337364e-01 0.079
R-HSA-1482839 Acyl chain remodelling of PE 8.337364e-01 0.079
R-HSA-187687 Signalling to ERKs 8.337364e-01 0.079
R-HSA-2559585 Oncogene Induced Senescence 8.337364e-01 0.079
R-HSA-193775 Synthesis of bile acids and bile salts via 24-hydroxycholesterol 8.337364e-01 0.079
R-HSA-5218859 Regulated Necrosis 8.349177e-01 0.078
R-HSA-8878159 Transcriptional regulation by RUNX3 8.390945e-01 0.076
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 8.402448e-01 0.076
R-HSA-212300 PRC2 methylates histones and DNA 8.406985e-01 0.075
R-HSA-975871 MyD88 cascade initiated on plasma membrane 8.435590e-01 0.074
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 8.435590e-01 0.074
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 8.435590e-01 0.074
R-HSA-422356 Regulation of insulin secretion 8.435590e-01 0.074
R-HSA-448424 Interleukin-17 signaling 8.454157e-01 0.073
R-HSA-419037 NCAM1 interactions 8.473695e-01 0.072
R-HSA-196757 Metabolism of folate and pterines 8.473695e-01 0.072
R-HSA-193704 p75 NTR receptor-mediated signalling 8.479159e-01 0.072
R-HSA-5673001 RAF/MAP kinase cascade 8.484488e-01 0.071
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 8.504342e-01 0.070
R-HSA-2559583 Cellular Senescence 8.512776e-01 0.070
R-HSA-6785470 tRNA processing in the mitochondrion 8.537615e-01 0.069
R-HSA-8875878 MET promotes cell motility 8.537615e-01 0.069
R-HSA-5213460 RIPK1-mediated regulated necrosis 8.537615e-01 0.069
R-HSA-9958790 SLC-mediated transport of inorganic anions 8.537615e-01 0.069
R-HSA-5683057 MAPK family signaling cascades 8.580270e-01 0.066
R-HSA-71336 Pentose phosphate pathway 8.598861e-01 0.066
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 8.600285e-01 0.065
R-HSA-4086398 Ca2+ pathway 8.600285e-01 0.065
R-HSA-201681 TCF dependent signaling in response to WNT 8.606911e-01 0.065
R-HSA-9612973 Autophagy 8.636492e-01 0.064
R-HSA-5602358 Diseases associated with the TLR signaling cascade 8.657547e-01 0.063
R-HSA-5260271 Diseases of Immune System 8.657547e-01 0.063
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 8.657547e-01 0.063
R-HSA-1251985 Nuclear signaling by ERBB4 8.657547e-01 0.063
R-HSA-8868766 rRNA processing in the mitochondrion 8.657547e-01 0.063
R-HSA-9646399 Aggrephagy 8.657547e-01 0.063
R-HSA-451927 Interleukin-2 family signaling 8.657547e-01 0.063
R-HSA-5684996 MAPK1/MAPK3 signaling 8.661952e-01 0.062
R-HSA-8852135 Protein ubiquitination 8.690568e-01 0.061
R-HSA-3000171 Non-integrin membrane-ECM interactions 8.690568e-01 0.061
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 8.690568e-01 0.061
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 8.699652e-01 0.060
R-HSA-195721 Signaling by WNT 8.709490e-01 0.060
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 8.713777e-01 0.060
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 8.713777e-01 0.060
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 8.755564e-01 0.058
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 8.767656e-01 0.057
R-HSA-167161 HIV Transcription Initiation 8.767656e-01 0.057
R-HSA-75953 RNA Polymerase II Transcription Initiation 8.767656e-01 0.057
R-HSA-5675221 Negative regulation of MAPK pathway 8.767656e-01 0.057
R-HSA-6811438 Intra-Golgi traffic 8.767656e-01 0.057
R-HSA-9694635 Translation of Structural Proteins 8.775472e-01 0.057
R-HSA-6783783 Interleukin-10 signaling 8.815994e-01 0.055
R-HSA-110329 Cleavage of the damaged pyrimidine 8.819281e-01 0.055
R-HSA-73928 Depyrimidination 8.819281e-01 0.055
R-HSA-379716 Cytosolic tRNA aminoacylation 8.819281e-01 0.055
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 8.859741e-01 0.053
R-HSA-73776 RNA Polymerase II Promoter Escape 8.868746e-01 0.052
R-HSA-5654743 Signaling by FGFR4 8.868746e-01 0.052
R-HSA-975155 MyD88 dependent cascade initiated on endosome 8.892698e-01 0.051
R-HSA-3858494 Beta-catenin independent WNT signaling 8.911616e-01 0.050
R-HSA-5683826 Surfactant metabolism 8.916142e-01 0.050
R-HSA-9907900 Proteasome assembly 8.916142e-01 0.050
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 8.924800e-01 0.049
R-HSA-166166 MyD88-independent TLR4 cascade 8.924800e-01 0.049
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 8.930236e-01 0.049
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 8.961555e-01 0.048
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 8.961555e-01 0.048
R-HSA-774815 Nucleosome assembly 8.961555e-01 0.048
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 8.961555e-01 0.048
R-HSA-4608870 Asymmetric localization of PCP proteins 8.961555e-01 0.048
R-HSA-5654741 Signaling by FGFR3 8.961555e-01 0.048
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 8.961555e-01 0.048
R-HSA-6807070 PTEN Regulation 8.995280e-01 0.046
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 9.005068e-01 0.046
R-HSA-5357905 Regulation of TNFR1 signaling 9.005068e-01 0.046
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 9.016157e-01 0.045
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 9.046760e-01 0.044
R-HSA-437239 Recycling pathway of L1 9.046760e-01 0.044
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 9.047860e-01 0.043
R-HSA-6794362 Protein-protein interactions at synapses 9.066662e-01 0.043
R-HSA-5687128 MAPK6/MAPK4 signaling 9.066662e-01 0.043
R-HSA-5620924 Intraflagellar transport 9.086707e-01 0.042
R-HSA-8963899 Plasma lipoprotein remodeling 9.086707e-01 0.042
R-HSA-380108 Chemokine receptors bind chemokines 9.124983e-01 0.040
R-HSA-6798695 Neutrophil degranulation 9.127562e-01 0.040
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 9.128608e-01 0.040
R-HSA-1852241 Organelle biogenesis and maintenance 9.147446e-01 0.039
R-HSA-5658442 Regulation of RAS by GAPs 9.161657e-01 0.038
R-HSA-9748787 Azathioprine ADME 9.161657e-01 0.038
R-HSA-5655253 Signaling by FGFR2 in disease 9.161657e-01 0.038
R-HSA-9007101 Rab regulation of trafficking 9.178151e-01 0.037
R-HSA-1592230 Mitochondrial biogenesis 9.178151e-01 0.037
R-HSA-9663891 Selective autophagy 9.186684e-01 0.037
R-HSA-1169091 Activation of NF-kappaB in B cells 9.196796e-01 0.036
R-HSA-5358346 Hedgehog ligand biogenesis 9.196796e-01 0.036
R-HSA-9864848 Complex IV assembly 9.196796e-01 0.036
R-HSA-1257604 PIP3 activates AKT signaling 9.207315e-01 0.036
R-HSA-2187338 Visual phototransduction 9.213199e-01 0.036
R-HSA-1236974 ER-Phagosome pathway 9.214339e-01 0.036
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 9.226497e-01 0.035
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 9.226497e-01 0.035
R-HSA-8878166 Transcriptional regulation by RUNX2 9.226497e-01 0.035
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 9.230464e-01 0.035
R-HSA-9634815 Transcriptional Regulation by NPAS4 9.230464e-01 0.035
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 9.234594e-01 0.035
R-HSA-9758941 Gastrulation 9.255465e-01 0.034
R-HSA-983169 Class I MHC mediated antigen processing & presentation 9.259346e-01 0.033
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 9.262722e-01 0.033
R-HSA-157118 Signaling by NOTCH 9.267241e-01 0.033
R-HSA-1266738 Developmental Biology 9.291295e-01 0.032
R-HSA-73929 Base-Excision Repair, AP Site Formation 9.293631e-01 0.032
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 9.294154e-01 0.032
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 9.294154e-01 0.032
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 9.315041e-01 0.031
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 9.315469e-01 0.031
R-HSA-74752 Signaling by Insulin receptor 9.316343e-01 0.031
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 9.323245e-01 0.030
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 9.323245e-01 0.030
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 9.351620e-01 0.029
R-HSA-5654736 Signaling by FGFR1 9.351620e-01 0.029
R-HSA-75893 TNF signaling 9.351620e-01 0.029
R-HSA-3299685 Detoxification of Reactive Oxygen Species 9.351620e-01 0.029
R-HSA-109606 Intrinsic Pathway for Apoptosis 9.351620e-01 0.029
R-HSA-73887 Death Receptor Signaling 9.352330e-01 0.029
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 9.375913e-01 0.028
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 9.375913e-01 0.028
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 9.375913e-01 0.028
R-HSA-1483166 Synthesis of PA 9.378806e-01 0.028
R-HSA-9610379 HCMV Late Events 9.404821e-01 0.027
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 9.404855e-01 0.027
R-HSA-5607764 CLEC7A (Dectin-1) signaling 9.426283e-01 0.026
R-HSA-186712 Regulation of beta-cell development 9.429812e-01 0.025
R-HSA-168898 Toll-like Receptor Cascades 9.447601e-01 0.025
R-HSA-1660661 Sphingolipid de novo biosynthesis 9.453725e-01 0.024
R-HSA-5362517 Signaling by Retinoic Acid 9.453725e-01 0.024
R-HSA-379724 tRNA Aminoacylation 9.453725e-01 0.024
R-HSA-199418 Negative regulation of the PI3K/AKT network 9.465802e-01 0.024
R-HSA-9793380 Formation of paraxial mesoderm 9.476635e-01 0.023
R-HSA-8939902 Regulation of RUNX2 expression and activity 9.476635e-01 0.023
R-HSA-445717 Aquaporin-mediated transport 9.476635e-01 0.023
R-HSA-192105 Synthesis of bile acids and bile salts 9.483952e-01 0.023
R-HSA-186797 Signaling by PDGF 9.498587e-01 0.022
R-HSA-1268020 Mitochondrial protein import 9.498587e-01 0.022
R-HSA-9609690 HCMV Early Events 9.516421e-01 0.022
R-HSA-9020702 Interleukin-1 signaling 9.519282e-01 0.021
R-HSA-5690714 CD22 mediated BCR regulation 9.539770e-01 0.020
R-HSA-5619102 SLC transporter disorders 9.553005e-01 0.020
R-HSA-8957322 Metabolism of steroids 9.573649e-01 0.019
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 9.577575e-01 0.019
R-HSA-6782315 tRNA modification in the nucleus and cytosol 9.577575e-01 0.019
R-HSA-9833110 RSV-host interactions 9.583136e-01 0.018
R-HSA-948021 Transport to the Golgi and subsequent modification 9.588676e-01 0.018
R-HSA-193368 Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 9.595298e-01 0.018
R-HSA-913709 O-linked glycosylation of mucins 9.612278e-01 0.017
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 9.612278e-01 0.017
R-HSA-5621481 C-type lectin receptors (CLRs) 9.613598e-01 0.017
R-HSA-69239 Synthesis of DNA 9.625609e-01 0.017
R-HSA-9664422 FCGR3A-mediated phagocytosis 9.634735e-01 0.016
R-HSA-9664407 Parasite infection 9.634735e-01 0.016
R-HSA-9664417 Leishmania phagocytosis 9.634735e-01 0.016
R-HSA-1236975 Antigen processing-Cross presentation 9.638820e-01 0.016
R-HSA-204005 COPII-mediated vesicle transport 9.644135e-01 0.016
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 9.644135e-01 0.016
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.644135e-01 0.016
R-HSA-1632852 Macroautophagy 9.646270e-01 0.016
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 9.659069e-01 0.015
R-HSA-453276 Regulation of mitotic cell cycle 9.659069e-01 0.015
R-HSA-9638482 Metal ion assimilation from the host 9.659069e-01 0.015
R-HSA-5620920 Cargo trafficking to the periciliary membrane 9.659069e-01 0.015
R-HSA-8978934 Metabolism of cofactors 9.659069e-01 0.015
R-HSA-194068 Bile acid and bile salt metabolism 9.663912e-01 0.015
R-HSA-9924644 Developmental Lineages of the Mammary Gland 9.673377e-01 0.014
R-HSA-499943 Interconversion of nucleotide di- and triphosphates 9.673377e-01 0.014
R-HSA-1912422 Pre-NOTCH Expression and Processing 9.698432e-01 0.013
R-HSA-1236394 Signaling by ERBB4 9.700220e-01 0.013
R-HSA-9013694 Signaling by NOTCH4 9.700220e-01 0.013
R-HSA-917937 Iron uptake and transport 9.712804e-01 0.013
R-HSA-5628897 TP53 Regulates Metabolic Genes 9.729524e-01 0.012
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 9.733388e-01 0.012
R-HSA-9609646 HCMV Infection 9.735089e-01 0.012
R-HSA-2029485 Role of phospholipids in phagocytosis 9.739182e-01 0.011
R-HSA-9955298 SLC-mediated transport of organic anions 9.747477e-01 0.011
R-HSA-191273 Cholesterol biosynthesis 9.747477e-01 0.011
R-HSA-112316 Neuronal System 9.754468e-01 0.011
R-HSA-5579029 Metabolic disorders of biological oxidation enzymes 9.758080e-01 0.011
R-HSA-69306 DNA Replication 9.768157e-01 0.010
R-HSA-5688426 Deubiquitination 9.768200e-01 0.010
R-HSA-6806834 Signaling by MET 9.768238e-01 0.010
R-HSA-5654738 Signaling by FGFR2 9.768238e-01 0.010
R-HSA-168256 Immune System 9.780945e-01 0.010
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 9.787294e-01 0.009
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 9.796227e-01 0.009
R-HSA-1483257 Phospholipid metabolism 9.808907e-01 0.008
R-HSA-877300 Interferon gamma signaling 9.809822e-01 0.008
R-HSA-1280218 Adaptive Immune System 9.810021e-01 0.008
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 9.831986e-01 0.007
R-HSA-390466 Chaperonin-mediated protein folding 9.835576e-01 0.007
R-HSA-202424 Downstream TCR signaling 9.855442e-01 0.006
R-HSA-373080 Class B/2 (Secretin family receptors) 9.855442e-01 0.006
R-HSA-1912408 Pre-NOTCH Transcription and Translation 9.861516e-01 0.006
R-HSA-446219 Synthesis of substrates in N-glycan biosythesis 9.865446e-01 0.006
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 9.872911e-01 0.006
R-HSA-391251 Protein folding 9.872911e-01 0.006
R-HSA-5663205 Infectious disease 9.874361e-01 0.005
R-HSA-2029481 FCGR activation 9.878252e-01 0.005
R-HSA-9837999 Mitochondrial protein degradation 9.883369e-01 0.005
R-HSA-1474290 Collagen formation 9.883369e-01 0.005
R-HSA-9824443 Parasitic Infection Pathways 9.886615e-01 0.005
R-HSA-9658195 Leishmania infection 9.886615e-01 0.005
R-HSA-2168880 Scavenging of heme from plasma 9.892968e-01 0.005
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 9.897467e-01 0.004
R-HSA-190236 Signaling by FGFR 9.905907e-01 0.004
R-HSA-1643685 Disease 9.912573e-01 0.004
R-HSA-446203 Asparagine N-linked glycosylation 9.913343e-01 0.004
R-HSA-382556 ABC-family proteins mediated transport 9.913654e-01 0.004
R-HSA-388841 Regulation of T cell activation by CD28 family 9.915174e-01 0.004
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.915907e-01 0.004
R-HSA-9009391 Extra-nuclear estrogen signaling 9.917285e-01 0.004
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 9.930346e-01 0.003
R-HSA-5619507 Activation of HOX genes during differentiation 9.930346e-01 0.003
R-HSA-163125 Post-translational modification: synthesis of GPI-anchored proteins 9.930346e-01 0.003
R-HSA-9734767 Developmental Cell Lineages 9.931352e-01 0.003
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.938767e-01 0.003
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 9.941348e-01 0.003
R-HSA-69002 DNA Replication Pre-Initiation 9.943815e-01 0.002
R-HSA-9609507 Protein localization 9.945343e-01 0.002
R-HSA-2871796 FCERI mediated MAPK activation 9.950614e-01 0.002
R-HSA-446193 Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... 9.953046e-01 0.002
R-HSA-389948 Co-inhibition by PD-1 9.954613e-01 0.002
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 9.959138e-01 0.002
R-HSA-2871809 FCERI mediated Ca+2 mobilization 9.960168e-01 0.002
R-HSA-5619115 Disorders of transmembrane transporters 9.965351e-01 0.002
R-HSA-597592 Post-translational protein modification 9.970890e-01 0.001
R-HSA-9816359 Maternal to zygotic transition (MZT) 9.971766e-01 0.001
R-HSA-418555 G alpha (s) signalling events 9.973538e-01 0.001
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.975497e-01 0.001
R-HSA-9664433 Leishmania parasite growth and survival 9.975497e-01 0.001
R-HSA-418594 G alpha (i) signalling events 9.977802e-01 0.001
R-HSA-416476 G alpha (q) signalling events 9.980332e-01 0.001
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.980571e-01 0.001
R-HSA-1474228 Degradation of the extracellular matrix 9.982415e-01 0.001
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.984332e-01 0.001
R-HSA-5173105 O-linked glycosylation 9.986419e-01 0.001
R-HSA-5358351 Signaling by Hedgehog 9.986992e-01 0.001
R-HSA-2871837 FCERI mediated NF-kB activation 9.990379e-01 0.000
R-HSA-1483206 Glycerophospholipid biosynthesis 9.992352e-01 0.000
R-HSA-2142753 Arachidonate metabolism 9.993185e-01 0.000
R-HSA-392499 Metabolism of proteins 9.993891e-01 0.000
R-HSA-9909648 Regulation of PD-L1(CD274) expression 9.997246e-01 0.000
R-HSA-5689880 Ub-specific processing proteases 9.997362e-01 0.000
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.997461e-01 0.000
R-HSA-611105 Respiratory electron transport 9.997875e-01 0.000
R-HSA-1474244 Extracellular matrix organization 9.998063e-01 0.000
R-HSA-202733 Cell surface interactions at the vascular wall 9.998076e-01 0.000
R-HSA-3781865 Diseases of glycosylation 9.998360e-01 0.000
R-HSA-375276 Peptide ligand-binding receptors 9.998496e-01 0.000
R-HSA-428157 Sphingolipid metabolism 9.999214e-01 0.000
R-HSA-9640148 Infection with Enterobacteria 9.999279e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.999627e-01 0.000
R-HSA-9748784 Drug ADME 9.999639e-01 0.000
R-HSA-8951664 Neddylation 9.999683e-01 0.000
R-HSA-388396 GPCR downstream signalling 9.999736e-01 0.000
R-HSA-168249 Innate Immune System 9.999742e-01 0.000
R-HSA-9824439 Bacterial Infection Pathways 9.999778e-01 0.000
R-HSA-15869 Metabolism of nucleotides 9.999835e-01 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 9.999885e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.999900e-01 0.000
R-HSA-372790 Signaling by GPCR 9.999933e-01 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 9.999970e-01 0.000
R-HSA-382551 Transport of small molecules 9.999986e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999997e-01 0.000
R-HSA-8978868 Fatty acid metabolism 9.999998e-01 0.000
R-HSA-5668914 Diseases of metabolism 9.999999e-01 0.000
R-HSA-500792 GPCR ligand binding 1.000000e+00 0.000
R-HSA-211859 Biological oxidations 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-9752946 Expression and translocation of olfactory receptors 1.000000e+00 0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
R-HSA-381753 Olfactory Signaling Pathway 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
COTCOT 0.907 0.256 2 0.853
CLK3CLK3 0.903 0.349 1 0.874
MOSMOS 0.894 0.262 1 0.912
CDC7CDC7 0.893 0.130 1 0.898
CAMK2GCAMK2G 0.889 0.186 2 0.869
PIM3PIM3 0.888 0.107 -3 0.855
NDR2NDR2 0.887 0.121 -3 0.860
PRPKPRPK 0.886 -0.078 -1 0.886
DSTYKDSTYK 0.885 0.072 2 0.875
GRK1GRK1 0.883 0.217 -2 0.837
MTORMTOR 0.882 -0.062 1 0.789
BMPR1BBMPR1B 0.882 0.323 1 0.847
GCN2GCN2 0.881 -0.125 2 0.784
CAMK1BCAMK1B 0.881 0.018 -3 0.880
IKKBIKKB 0.880 -0.078 -2 0.780
BMPR2BMPR2 0.880 -0.011 -2 0.932
NLKNLK 0.879 0.047 1 0.850
RAF1RAF1 0.879 -0.114 1 0.830
FAM20CFAM20C 0.879 0.173 2 0.659
PIM1PIM1 0.878 0.137 -3 0.796
CDKL1CDKL1 0.877 0.038 -3 0.814
ATRATR 0.876 -0.026 1 0.824
GRK6GRK6 0.876 0.124 1 0.849
PDHK4PDHK4 0.876 -0.297 1 0.845
CAMK2BCAMK2B 0.876 0.220 2 0.857
KISKIS 0.876 0.127 1 0.736
SRPK1SRPK1 0.875 0.115 -3 0.759
NEK6NEK6 0.875 -0.013 -2 0.917
TGFBR2TGFBR2 0.875 0.034 -2 0.884
SKMLCKSKMLCK 0.875 0.067 -2 0.888
RSK2RSK2 0.875 0.078 -3 0.782
LATS2LATS2 0.875 0.101 -5 0.774
TBK1TBK1 0.875 -0.149 1 0.708
PKN3PKN3 0.874 0.001 -3 0.842
GRK5GRK5 0.874 -0.058 -3 0.883
TGFBR1TGFBR1 0.874 0.231 -2 0.887
MST4MST4 0.873 0.045 2 0.830
IKKAIKKA 0.873 0.020 -2 0.776
ERK5ERK5 0.873 -0.002 1 0.813
NDR1NDR1 0.873 0.012 -3 0.851
ULK2ULK2 0.873 -0.209 2 0.743
NIKNIK 0.872 -0.046 -3 0.903
NUAK2NUAK2 0.872 0.013 -3 0.856
CAMK2ACAMK2A 0.872 0.203 2 0.878
MLK1MLK1 0.871 -0.083 2 0.787
WNK1WNK1 0.871 -0.016 -2 0.888
NEK7NEK7 0.871 -0.139 -3 0.863
IKKEIKKE 0.871 -0.166 1 0.701
CAMK2DCAMK2D 0.871 0.063 -3 0.854
PRKD1PRKD1 0.870 0.011 -3 0.827
CAMLCKCAMLCK 0.870 -0.017 -2 0.882
RIPK3RIPK3 0.869 -0.105 3 0.754
ALK2ALK2 0.869 0.262 -2 0.895
PKCDPKCD 0.869 0.055 2 0.770
CDKL5CDKL5 0.869 0.024 -3 0.801
MARK4MARK4 0.869 -0.024 4 0.877
ALK4ALK4 0.868 0.141 -2 0.906
DAPK2DAPK2 0.868 -0.024 -3 0.884
PRKD2PRKD2 0.868 0.044 -3 0.781
ICKICK 0.868 0.050 -3 0.849
LATS1LATS1 0.868 0.137 -3 0.876
GRK7GRK7 0.868 0.167 1 0.773
PDHK1PDHK1 0.868 -0.317 1 0.823
PKN2PKN2 0.867 -0.019 -3 0.851
ACVR2BACVR2B 0.867 0.206 -2 0.878
SRPK2SRPK2 0.867 0.093 -3 0.681
ATMATM 0.867 0.034 1 0.767
P90RSKP90RSK 0.866 0.001 -3 0.785
CDK1CDK1 0.866 0.166 1 0.685
BMPR1ABMPR1A 0.866 0.287 1 0.837
CHAK2CHAK2 0.866 -0.080 -1 0.875
GRK4GRK4 0.866 -0.046 -2 0.880
HIPK4HIPK4 0.866 0.020 1 0.813
HUNKHUNK 0.866 -0.164 2 0.766
ACVR2AACVR2A 0.866 0.175 -2 0.866
CLK2CLK2 0.865 0.215 -3 0.765
AMPKA1AMPKA1 0.865 -0.024 -3 0.867
MAPKAPK2MAPKAPK2 0.865 0.058 -3 0.742
PLK1PLK1 0.865 0.046 -2 0.892
CDK8CDK8 0.864 0.064 1 0.717
P70S6KBP70S6KB 0.864 -0.009 -3 0.811
DLKDLK 0.864 -0.122 1 0.824
TSSK2TSSK2 0.864 -0.007 -5 0.838
RSK3RSK3 0.863 -0.016 -3 0.778
PKACGPKACG 0.863 0.009 -2 0.780
ULK1ULK1 0.862 -0.239 -3 0.842
MLK3MLK3 0.862 -0.004 2 0.725
CLK4CLK4 0.862 0.112 -3 0.778
AURCAURC 0.861 0.068 -2 0.692
ANKRD3ANKRD3 0.861 -0.155 1 0.835
MAPKAPK3MAPKAPK3 0.861 -0.049 -3 0.786
CDK5CDK5 0.861 0.130 1 0.741
PKRPKR 0.861 0.009 1 0.831
BCKDKBCKDK 0.861 -0.213 -1 0.812
PLK3PLK3 0.861 0.051 2 0.783
SRPK3SRPK3 0.860 0.056 -3 0.734
WNK3WNK3 0.860 -0.282 1 0.793
RSK4RSK4 0.860 0.079 -3 0.753
TSSK1TSSK1 0.860 -0.004 -3 0.885
JNK3JNK3 0.859 0.124 1 0.701
JNK2JNK2 0.859 0.143 1 0.667
NEK9NEK9 0.859 -0.230 2 0.794
CK2A2CK2A2 0.859 0.301 1 0.785
DYRK2DYRK2 0.859 0.082 1 0.737
MASTLMASTL 0.859 -0.357 -2 0.851
PRKXPRKX 0.858 0.155 -3 0.690
CLK1CLK1 0.858 0.113 -3 0.755
AMPKA2AMPKA2 0.858 -0.031 -3 0.834
MLK2MLK2 0.857 -0.196 2 0.777
PKCBPKCB 0.857 0.017 2 0.715
MSK2MSK2 0.857 -0.020 -3 0.748
CDK19CDK19 0.856 0.054 1 0.680
MSK1MSK1 0.856 0.051 -3 0.755
PKACBPKACB 0.855 0.087 -2 0.713
PKCGPKCG 0.855 -0.014 2 0.719
CDK7CDK7 0.855 0.038 1 0.726
DNAPKDNAPK 0.855 0.070 1 0.683
MLK4MLK4 0.855 -0.053 2 0.696
IRE1IRE1 0.855 -0.144 1 0.778
NUAK1NUAK1 0.855 -0.035 -3 0.809
CAMK4CAMK4 0.855 -0.119 -3 0.836
CDK2CDK2 0.855 0.097 1 0.752
PAK1PAK1 0.855 -0.040 -2 0.805
MEK1MEK1 0.854 -0.176 2 0.809
CDK18CDK18 0.854 0.107 1 0.655
IRE2IRE2 0.854 -0.081 2 0.713
TTBK2TTBK2 0.854 -0.238 2 0.664
NIM1NIM1 0.854 -0.163 3 0.795
YSK4YSK4 0.854 -0.134 1 0.752
RIPK1RIPK1 0.853 -0.290 1 0.793
CDK3CDK3 0.853 0.178 1 0.626
PKCAPKCA 0.853 -0.010 2 0.706
QSKQSK 0.852 -0.034 4 0.855
MYLK4MYLK4 0.852 -0.004 -2 0.801
MNK2MNK2 0.852 -0.022 -2 0.823
GRK2GRK2 0.852 -0.008 -2 0.765
CDK13CDK13 0.852 0.039 1 0.696
VRK2VRK2 0.851 -0.293 1 0.867
TLK2TLK2 0.851 -0.052 1 0.778
P38BP38B 0.851 0.108 1 0.673
P38AP38A 0.851 0.071 1 0.738
AURBAURB 0.850 0.018 -2 0.690
PRKD3PRKD3 0.850 -0.039 -3 0.751
P38GP38G 0.850 0.106 1 0.598
PKCHPKCH 0.850 -0.050 2 0.697
PASKPASK 0.849 0.095 -3 0.868
CDK17CDK17 0.849 0.089 1 0.606
MARK3MARK3 0.849 -0.017 4 0.814
AURAAURA 0.849 0.027 -2 0.664
PKCZPKCZ 0.849 -0.069 2 0.738
ERK1ERK1 0.849 0.078 1 0.664
QIKQIK 0.849 -0.156 -3 0.849
MNK1MNK1 0.849 -0.007 -2 0.835
DRAK1DRAK1 0.849 -0.050 1 0.775
MELKMELK 0.849 -0.105 -3 0.816
HIPK2HIPK2 0.849 0.111 1 0.658
PAK3PAK3 0.849 -0.122 -2 0.802
SIKSIK 0.848 -0.054 -3 0.778
PIM2PIM2 0.848 0.027 -3 0.755
BRAFBRAF 0.848 -0.044 -4 0.858
MARK2MARK2 0.848 -0.037 4 0.782
CHK1CHK1 0.848 -0.052 -3 0.846
PRP4PRP4 0.848 0.063 -3 0.792
ERK2ERK2 0.847 0.044 1 0.705
BRSK1BRSK1 0.847 -0.067 -3 0.807
CK2A1CK2A1 0.847 0.260 1 0.761
HIPK1HIPK1 0.847 0.080 1 0.752
SMG1SMG1 0.847 -0.104 1 0.770
PHKG1PHKG1 0.847 -0.120 -3 0.842
DYRK4DYRK4 0.846 0.116 1 0.674
PKG2PKG2 0.846 0.006 -2 0.709
MEKK3MEKK3 0.846 -0.133 1 0.783
AKT2AKT2 0.846 0.018 -3 0.695
NEK2NEK2 0.846 -0.200 2 0.765
CAMK1GCAMK1G 0.845 -0.054 -3 0.774
GSK3AGSK3A 0.844 0.100 4 0.499
GAKGAK 0.844 0.104 1 0.845
CDK16CDK16 0.844 0.130 1 0.622
CHAK1CHAK1 0.844 -0.212 2 0.705
PAK6PAK6 0.844 -0.014 -2 0.720
SGK3SGK3 0.844 -0.017 -3 0.767
PAK2PAK2 0.844 -0.118 -2 0.792
PERKPERK 0.844 -0.164 -2 0.892
CK1ECK1E 0.843 -0.010 -3 0.561
DCAMKL1DCAMKL1 0.843 -0.036 -3 0.800
CDK12CDK12 0.843 0.034 1 0.669
MST3MST3 0.843 -0.017 2 0.802
MARK1MARK1 0.842 -0.073 4 0.834
DYRK1ADYRK1A 0.842 0.031 1 0.774
TLK1TLK1 0.842 -0.092 -2 0.900
TAO3TAO3 0.842 -0.029 1 0.779
HRIHRI 0.841 -0.215 -2 0.901
BRSK2BRSK2 0.841 -0.148 -3 0.831
CDK9CDK9 0.841 0.001 1 0.701
PLK4PLK4 0.841 -0.166 2 0.595
MEKK1MEKK1 0.841 -0.208 1 0.791
CDK14CDK14 0.841 0.075 1 0.693
NEK5NEK5 0.840 -0.158 1 0.807
PINK1PINK1 0.840 -0.188 1 0.839
MEKK2MEKK2 0.840 -0.156 2 0.765
SMMLCKSMMLCK 0.840 -0.040 -3 0.830
ZAKZAK 0.840 -0.185 1 0.764
P38DP38D 0.840 0.104 1 0.620
MEK5MEK5 0.839 -0.341 2 0.785
CDK10CDK10 0.838 0.100 1 0.682
GRK3GRK3 0.838 -0.003 -2 0.725
PLK2PLK2 0.838 0.076 -3 0.845
GSK3BGSK3B 0.838 0.014 4 0.489
DYRK1BDYRK1B 0.838 0.058 1 0.698
PKACAPKACA 0.837 0.041 -2 0.656
SSTKSSTK 0.837 -0.045 4 0.841
SNRKSNRK 0.836 -0.285 2 0.648
DCAMKL2DCAMKL2 0.836 -0.078 -3 0.826
WNK4WNK4 0.836 -0.210 -2 0.878
HIPK3HIPK3 0.836 0.009 1 0.738
CK1DCK1D 0.836 -0.003 -3 0.509
DYRK3DYRK3 0.836 0.046 1 0.751
IRAK4IRAK4 0.835 -0.186 1 0.779
MPSK1MPSK1 0.835 -0.031 1 0.787
DAPK3DAPK3 0.835 0.028 -3 0.816
JNK1JNK1 0.835 0.080 1 0.659
PKCTPKCT 0.834 -0.075 2 0.703
MAPKAPK5MAPKAPK5 0.834 -0.191 -3 0.721
CAMK1DCAMK1D 0.834 -0.015 -3 0.698
EEF2KEEF2K 0.833 0.002 3 0.864
NEK8NEK8 0.833 -0.197 2 0.779
GCKGCK 0.833 -0.018 1 0.779
TAO2TAO2 0.833 -0.112 2 0.819
AKT1AKT1 0.833 0.002 -3 0.714
CAMKK1CAMKK1 0.832 -0.193 -2 0.792
ERK7ERK7 0.832 0.008 2 0.527
MST2MST2 0.831 -0.088 1 0.786
PDHK3_TYRPDHK3_TYR 0.831 0.323 4 0.936
PKCEPKCE 0.830 0.006 2 0.700
P70S6KP70S6K 0.830 -0.091 -3 0.712
TAK1TAK1 0.829 -0.073 1 0.812
PHKG2PHKG2 0.829 -0.120 -3 0.813
NEK11NEK11 0.829 -0.252 1 0.772
PKCIPKCI 0.829 -0.077 2 0.711
CK1A2CK1A2 0.829 -0.029 -3 0.506
LKB1LKB1 0.828 -0.155 -3 0.856
CK1G1CK1G1 0.828 -0.089 -3 0.568
DAPK1DAPK1 0.828 0.010 -3 0.795
TNIKTNIK 0.828 -0.016 3 0.880
CAMKK2CAMKK2 0.828 -0.197 -2 0.783
CDK6CDK6 0.827 0.064 1 0.673
TTBK1TTBK1 0.826 -0.258 2 0.590
MINKMINK 0.826 -0.101 1 0.763
MAKMAK 0.825 0.109 -2 0.756
PDK1PDK1 0.825 -0.189 1 0.783
HGKHGK 0.825 -0.100 3 0.871
PDHK4_TYRPDHK4_TYR 0.825 0.224 2 0.874
IRAK1IRAK1 0.824 -0.361 -1 0.785
HPK1HPK1 0.823 -0.079 1 0.756
MST1MST1 0.823 -0.113 1 0.762
LRRK2LRRK2 0.823 -0.218 2 0.811
CDK4CDK4 0.823 0.047 1 0.657
MRCKAMRCKA 0.822 0.013 -3 0.768
MAP2K6_TYRMAP2K6_TYR 0.822 0.151 -1 0.911
NEK4NEK4 0.821 -0.257 1 0.761
PAK5PAK5 0.821 -0.081 -2 0.667
MAP3K15MAP3K15 0.821 -0.205 1 0.744
VRK1VRK1 0.821 -0.229 2 0.797
SGK1SGK1 0.821 0.009 -3 0.610
ROCK2ROCK2 0.820 0.013 -3 0.797
MRCKBMRCKB 0.820 -0.003 -3 0.749
MEKK6MEKK6 0.820 -0.237 1 0.770
KHS2KHS2 0.819 -0.009 1 0.762
AKT3AKT3 0.819 0.006 -3 0.626
BMPR2_TYRBMPR2_TYR 0.819 0.116 -1 0.909
TESK1_TYRTESK1_TYR 0.819 -0.017 3 0.892
PDHK1_TYRPDHK1_TYR 0.819 0.121 -1 0.927
KHS1KHS1 0.819 -0.057 1 0.748
PAK4PAK4 0.819 -0.069 -2 0.675
NEK1NEK1 0.819 -0.209 1 0.774
LOKLOK 0.819 -0.138 -2 0.801
SLKSLK 0.819 -0.110 -2 0.750
MAP2K4_TYRMAP2K4_TYR 0.818 0.012 -1 0.902
TTKTTK 0.818 0.038 -2 0.902
DMPK1DMPK1 0.818 0.073 -3 0.773
PKN1PKN1 0.817 -0.092 -3 0.729
CAMK1ACAMK1A 0.817 -0.042 -3 0.662
MOKMOK 0.816 0.039 1 0.751
CHK2CHK2 0.816 -0.069 -3 0.638
MAP2K7_TYRMAP2K7_TYR 0.815 -0.165 2 0.840
STK33STK33 0.814 -0.222 2 0.590
SBKSBK 0.813 -0.006 -3 0.572
EPHA6EPHA6 0.813 0.100 -1 0.899
PBKPBK 0.813 -0.066 1 0.766
YSK1YSK1 0.812 -0.168 2 0.768
PKMYT1_TYRPKMYT1_TYR 0.812 -0.148 3 0.850
OSR1OSR1 0.811 -0.083 2 0.752
PINK1_TYRPINK1_TYR 0.811 -0.172 1 0.835
BUB1BUB1 0.810 -0.031 -5 0.780
ALPHAK3ALPHAK3 0.810 -0.000 -1 0.811
TXKTXK 0.810 0.181 1 0.863
MEK2MEK2 0.810 -0.372 2 0.765
LIMK2_TYRLIMK2_TYR 0.808 -0.090 -3 0.910
RIPK2RIPK2 0.807 -0.384 1 0.720
BIKEBIKE 0.806 0.009 1 0.726
EPHB4EPHB4 0.806 -0.006 -1 0.874
HASPINHASPIN 0.806 -0.035 -1 0.714
ROCK1ROCK1 0.805 -0.017 -3 0.763
EPHA4EPHA4 0.804 0.053 2 0.786
LIMK1_TYRLIMK1_TYR 0.802 -0.252 2 0.816
YES1YES1 0.802 -0.022 -1 0.877
RETRET 0.802 -0.213 1 0.777
MYO3BMYO3B 0.801 -0.124 2 0.780
CRIKCRIK 0.800 -0.031 -3 0.708
ASK1ASK1 0.800 -0.218 1 0.735
MYO3AMYO3A 0.800 -0.124 1 0.757
PKG1PKG1 0.800 -0.074 -2 0.621
TYRO3TYRO3 0.799 -0.195 3 0.791
SRMSSRMS 0.799 0.005 1 0.857
FERFER 0.799 -0.094 1 0.876
BLKBLK 0.799 0.098 -1 0.880
INSRRINSRR 0.799 -0.059 3 0.742
NEK3NEK3 0.798 -0.319 1 0.734
LCKLCK 0.798 0.045 -1 0.874
FGRFGR 0.798 -0.112 1 0.838
YANK3YANK3 0.798 -0.115 2 0.402
DDR1DDR1 0.798 -0.215 4 0.849
JAK3JAK3 0.797 -0.112 1 0.768
MST1RMST1R 0.797 -0.252 3 0.795
ITKITK 0.797 -0.024 -1 0.839
TYK2TYK2 0.797 -0.318 1 0.773
ROS1ROS1 0.797 -0.222 3 0.764
CSF1RCSF1R 0.797 -0.166 3 0.777
EPHB2EPHB2 0.796 0.011 -1 0.858
ABL2ABL2 0.796 -0.090 -1 0.842
HCKHCK 0.796 -0.059 -1 0.868
EPHB1EPHB1 0.795 -0.059 1 0.846
TAO1TAO1 0.795 -0.181 1 0.700
CK1ACK1A 0.795 -0.049 -3 0.418
JAK2JAK2 0.794 -0.294 1 0.772
EPHB3EPHB3 0.793 -0.063 -1 0.858
FYNFYN 0.793 0.076 -1 0.854
FGFR2FGFR2 0.792 -0.169 3 0.787
ABL1ABL1 0.791 -0.134 -1 0.833
TNK2TNK2 0.790 -0.155 3 0.735
KITKIT 0.790 -0.163 3 0.778
BMXBMX 0.790 -0.038 -1 0.759
TECTEC 0.790 -0.053 -1 0.767
KDRKDR 0.789 -0.147 3 0.745
AAK1AAK1 0.788 0.046 1 0.625
FLT1FLT1 0.788 -0.058 -1 0.874
EPHA7EPHA7 0.788 -0.039 2 0.772
PDGFRBPDGFRB 0.788 -0.252 3 0.793
MERTKMERTK 0.787 -0.127 3 0.758
TNNI3K_TYRTNNI3K_TYR 0.787 -0.124 1 0.802
TEKTEK 0.786 -0.215 3 0.723
STLK3STLK3 0.786 -0.285 1 0.725
FLT3FLT3 0.786 -0.234 3 0.779
NEK10_TYRNEK10_TYR 0.786 -0.207 1 0.653
METMET 0.786 -0.134 3 0.763
EPHA3EPHA3 0.785 -0.117 2 0.755
PTK2PTK2 0.785 0.090 -1 0.837
EPHA5EPHA5 0.784 -0.003 2 0.773
FGFR1FGFR1 0.784 -0.249 3 0.751
BTKBTK 0.783 -0.230 -1 0.793
AXLAXL 0.783 -0.225 3 0.762
FGFR3FGFR3 0.782 -0.154 3 0.760
WEE1_TYRWEE1_TYR 0.782 -0.164 -1 0.772
LYNLYN 0.782 -0.083 3 0.698
TNK1TNK1 0.782 -0.246 3 0.766
JAK1JAK1 0.781 -0.213 1 0.714
ERBB2ERBB2 0.781 -0.195 1 0.744
PTK2BPTK2B 0.780 -0.070 -1 0.806
SYKSYK 0.780 0.079 -1 0.824
FRKFRK 0.780 -0.126 -1 0.879
PTK6PTK6 0.779 -0.274 -1 0.759
NTRK1NTRK1 0.779 -0.265 -1 0.839
EPHA8EPHA8 0.779 -0.054 -1 0.851
DDR2DDR2 0.778 -0.096 3 0.724
LTKLTK 0.778 -0.229 3 0.719
SRCSRC 0.777 -0.073 -1 0.846
EPHA1EPHA1 0.777 -0.171 3 0.734
PDGFRAPDGFRA 0.777 -0.375 3 0.792
EGFREGFR 0.777 -0.079 1 0.656
ALKALK 0.777 -0.271 3 0.698
FLT4FLT4 0.776 -0.242 3 0.741
INSRINSR 0.775 -0.232 3 0.715
CK1G3CK1G3 0.774 -0.059 -3 0.372
NTRK2NTRK2 0.774 -0.293 3 0.747
MATKMATK 0.774 -0.171 -1 0.771
NTRK3NTRK3 0.770 -0.227 -1 0.792
EPHA2EPHA2 0.770 -0.046 -1 0.814
FGFR4FGFR4 0.769 -0.133 -1 0.805
CSKCSK 0.768 -0.208 2 0.772
ERBB4ERBB4 0.766 -0.055 1 0.686
YANK2YANK2 0.765 -0.141 2 0.420
IGF1RIGF1R 0.761 -0.198 3 0.654
CK1G2CK1G2 0.756 -0.059 -3 0.476
MUSKMUSK 0.755 -0.261 1 0.634
FESFES 0.748 -0.199 -1 0.734
ZAP70ZAP70 0.748 -0.070 -1 0.742