Motif 778 (n=626)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A075B6Q4 | None | S71 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000256|ARBA:ARBA00043887}. |
A0A087WZ62 | None | S249 | ochoa | Mannosyltransferase (EC 2.4.1.-) | None |
A4UGR9 | XIRP2 | S2222 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
A8MV72 | None | S204 | ochoa | Putative UPF0607 protein ENSP00000382826 | None |
A8MV72 | None | S205 | ochoa | Putative UPF0607 protein ENSP00000382826 | None |
B0I1T2 | MYO1G | S842 | ochoa | Unconventional myosin-Ig [Cleaved into: Minor histocompatibility antigen HA-2 (mHag HA-2)] | Unconventional myosin required during immune response for detection of rare antigen-presenting cells by regulating T-cell migration. Unconventional myosins are actin-based motor molecules with ATPase activity and serve in intracellular movements. Acts as a regulator of T-cell migration by generating membrane tension, enforcing cell-intrinsic meandering search, thereby enhancing detection of rare antigens during lymph-node surveillance, enabling pathogen eradication. Also required in B-cells, where it regulates different membrane/cytoskeleton-dependent processes. Involved in Fc-gamma receptor (Fc-gamma-R) phagocytosis. {ECO:0000250|UniProtKB:Q5SUA5}.; FUNCTION: [Minor histocompatibility antigen HA-2]: Constitutes the minor histocompatibility antigen HA-2. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and their expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. HA-2 is restricted to MHC class I HLA-A*0201. {ECO:0000269|PubMed:11544309, ECO:0000305}. |
B4DLN1 | None | S248 | ochoa | Mitochondrial dicarboxylate carrier (Solute carrier family 25 member 10) | Catalyzes the electroneutral exchange or flux of physiologically important metabolites such as dicarboxylates (malonate, malate, succinate), inorganic sulfur-containing anions, and phosphate, across mitochondrial inner membrane. Plays an important role in gluconeogenesis, fatty acid metabolism, urea synthesis, and sulfur metabolism, particularly in liver, by supplying the substrates for the different metabolic processes. Regulates fatty acid release from adipocytes, and contributes to systemic insulin sensitivity. {ECO:0000256|ARBA:ARBA00057945}. |
O00327 | BMAL1 | S78 | psp | Basic helix-loop-helix ARNT-like protein 1 (Aryl hydrocarbon receptor nuclear translocator-like protein 1) (Basic-helix-loop-helix-PAS protein MOP3) (Brain and muscle ARNT-like 1) (Class E basic helix-loop-helix protein 5) (bHLHe5) (Member of PAS protein 3) (PAS domain-containing protein 3) (bHLH-PAS protein JAP3) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). Essential for the rhythmic interaction of CLOCK with ASS1 and plays a critical role in positively regulating CLOCK-mediated acetylation of ASS1 (PubMed:28985504). Plays a role in protecting against lethal sepsis by limiting the expression of immune checkpoint protein CD274 in macrophages in a PKM2-dependent manner (By similarity). Regulates the diurnal rhythms of skeletal muscle metabolism via transcriptional activation of genes promoting triglyceride synthesis (DGAT2) and metabolic efficiency (COQ10B) (By similarity). {ECO:0000250|UniProtKB:Q9WTL8, ECO:0000269|PubMed:11441146, ECO:0000269|PubMed:12738229, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:23955654, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}.; FUNCTION: (Microbial infection) Regulates SARS coronavirus-2/SARS-CoV-2 entry and replication in lung epithelial cells probably through the post-transcriptional regulation of ACE2 and interferon-stimulated gene expression. {ECO:0000269|PubMed:34545347}. |
O00470 | MEIS1 | S194 | ochoa | Homeobox protein Meis1 | Acts as a transcriptional regulator of PAX6. Acts as a transcriptional activator of PF4 in complex with PBX1 or PBX2. Required for hematopoiesis, megakaryocyte lineage development and vascular patterning. May function as a cofactor for HOXA7 and HOXA9 in the induction of myeloid leukemias. {ECO:0000269|PubMed:12609849}. |
O00499 | BIN1 | S276 | ochoa | Myc box-dependent-interacting protein 1 (Amphiphysin II) (Amphiphysin-like protein) (Box-dependent myc-interacting protein 1) (Bridging integrator 1) | Is a key player in the control of plasma membrane curvature, membrane shaping and membrane remodeling. Required in muscle cells for the formation of T-tubules, tubular invaginations of the plasma membrane that function in depolarization-contraction coupling (PubMed:24755653). Is a negative regulator of endocytosis (By similarity). Is also involved in the regulation of intracellular vesicles sorting, modulation of BACE1 trafficking and the control of amyloid-beta production (PubMed:27179792). In neuronal circuits, endocytosis regulation may influence the internalization of PHF-tau aggregates (By similarity). May be involved in the regulation of MYC activity and the control cell proliferation (PubMed:8782822). Has actin bundling activity and stabilizes actin filaments against depolymerization in vitro (PubMed:28893863). {ECO:0000250|UniProtKB:O08839, ECO:0000269|PubMed:24755653, ECO:0000269|PubMed:27179792, ECO:0000269|PubMed:28893863, ECO:0000269|PubMed:8782822}. |
O14713 | ITGB1BP1 | S50 | ochoa | Integrin beta-1-binding protein 1 (Integrin cytoplasmic domain-associated protein 1) (ICAP-1) | Key regulator of the integrin-mediated cell-matrix interaction signaling by binding to the ITGB1 cytoplasmic tail and preventing the activation of integrin alpha-5/beta-1 (heterodimer of ITGA5 and ITGB1) by talin or FERMT1. Plays a role in cell proliferation, differentiation, spreading, adhesion and migration in the context of mineralization and bone development and angiogenesis. Stimulates cellular proliferation in a fibronectin-dependent manner. Involved in the regulation of beta-1 integrin-containing focal adhesion (FA) site dynamics by controlling its assembly rate during cell adhesion; inhibits beta-1 integrin clustering within FA by directly competing with talin TLN1, and hence stimulates osteoblast spreading and migration in a fibronectin- and/or collagen-dependent manner. Acts as a guanine nucleotide dissociation inhibitor (GDI) by regulating Rho family GTPases during integrin-mediated cell matrix adhesion; reduces the level of active GTP-bound form of both CDC42 and RAC1 GTPases upon cell adhesion to fibronectin. Stimulates the release of active CDC42 from the membranes to maintain it in an inactive cytoplasmic pool. Participates in the translocation of the Rho-associated protein kinase ROCK1 to membrane ruffles at cell leading edges of the cell membrane, leading to an increase of myoblast cell migration on laminin. Plays a role in bone mineralization at a late stage of osteoblast differentiation; modulates the dynamic formation of focal adhesions into fibrillar adhesions, which are adhesive structures responsible for fibronectin deposition and fibrillogenesis. Plays a role in blood vessel development; acts as a negative regulator of angiogenesis by attenuating endothelial cell proliferation and migration, lumen formation and sprouting angiogenesis by promoting AKT phosphorylation and inhibiting ERK1/2 phosphorylation through activation of the Notch signaling pathway. Promotes transcriptional activity of the MYC promoter. {ECO:0000269|PubMed:11741838, ECO:0000269|PubMed:11807099, ECO:0000269|PubMed:11919189, ECO:0000269|PubMed:12473654, ECO:0000269|PubMed:15703214, ECO:0000269|PubMed:17916086, ECO:0000269|PubMed:20616313, ECO:0000269|PubMed:21768292, ECO:0000269|Ref.19}. |
O14818 | PSMA7 | S93 | ochoa | Proteasome subunit alpha type-7 (Proteasome subunit RC6-1) (Proteasome subunit XAPC7) (Proteasome subunit alpha-4) (alpha-4) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). Inhibits the transactivation function of HIF-1A under both normoxic and hypoxia-mimicking conditions. The interaction with EMAP2 increases the proteasome-mediated HIF-1A degradation under the hypoxic conditions. Plays a role in hepatitis C virus internal ribosome entry site-mediated translation. Mediates nuclear translocation of the androgen receptor (AR) and thereby enhances androgen-mediated transactivation. Promotes MAVS degradation and thereby negatively regulates MAVS-mediated innate immune response. {ECO:0000269|PubMed:11389899, ECO:0000269|PubMed:11713272, ECO:0000269|PubMed:12119296, ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:19442227, ECO:0000269|PubMed:19734229, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
O15018 | PDZD2 | S920 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15027 | SEC16A | S846 | psp | Protein transport protein Sec16A (SEC16 homolog A) (p250) | Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}. |
O15061 | SYNM | S633 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15350 | TP73 | S48 | psp | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15350 | TP73 | S388 | psp | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O43150 | ASAP2 | S294 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 (Development and differentiation-enhancing factor 2) (Paxillin-associated protein with ARF GAP activity 3) (PAG3) (Pyk2 C-terminus-associated protein) (PAP) | Activates the small GTPases ARF1, ARF5 and ARF6. Regulates the formation of post-Golgi vesicles and modulates constitutive secretion. Modulates phagocytosis mediated by Fc gamma receptor and ARF6. Modulates PXN recruitment to focal contacts and cell migration. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:10749932, ECO:0000269|PubMed:11304556}. |
O43182 | ARHGAP6 | S740 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43194 | GPR39 | S380 | ochoa | G-protein coupled receptor 39 | Zinc-sensing receptor that can sense changes in extracellular Zn(2+), mediate Zn(2+) signal transmission, and participates in the regulation of numerous physiological processes including glucose homeostasis regulation, gastrointestinal mobility, hormone secretion and cell death (PubMed:18180304). Activation by Zn(2+) in keratinocytes increases the intracellular concentration of Ca(2+) and activates the ERK/MAPK and PI3K/AKT signaling pathways leading to epithelial repair (PubMed:20522546). Plays an essential role in normal wound healing by inducing the production of cytokines including the major inflammatory cytokine IL6 via the PKC/MAPK/CEBPB pathway (By similarity). Regulates adipose tissue metabolism, especially lipolysis, and regulates the function of lipases, such as hormone-sensitive lipase and adipose triglyceride lipase (By similarity). Plays a role in the inhibition of cell death and protects against oxidative, endoplasmic reticulum and mitochondrial stress by inducing secretion of the cytoprotective pigment epithelium-derived growth factor (PEDF) and probably other protective transcripts in a GNA13/RHOA/SRE-dependent manner (PubMed:18180304). Forms dynamic heteroreceptor complexes with HTR1A and GALR1 depending on cell type or specific physiological states, resulting in signaling diversity: HTR1A-GPR39 shows additive increase in signaling along the serum response element (SRE) and NF-kappa-B pathways while GALR1 acts as an antagonist blocking SRE (PubMed:26365466). {ECO:0000250|UniProtKB:Q5U431, ECO:0000269|PubMed:18180304, ECO:0000269|PubMed:20522546, ECO:0000269|PubMed:26365466}. |
O43399 | TPD52L2 | S161 | ochoa | Tumor protein D54 (hD54) (Tumor protein D52-like 2) | None |
O43524 | FOXO3 | S231 | psp | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43633 | CHMP2A | S95 | ochoa | Charged multivesicular body protein 2a (Chromatin-modifying protein 2a) (CHMP2a) (Putative breast adenocarcinoma marker BC-2) (Vacuolar protein sorting-associated protein 2-1) (Vps2-1) (hVps2-1) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:21310966). Together with SPAST, the ESCRT-III complex promotes nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Recruited to the reforming nuclear envelope (NE) during anaphase by LEMD2 (PubMed:28242692). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. {ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692, ECO:0000305}.; FUNCTION: (Microbial infection) The ESCRT machinery functions in topologically equivalent membrane fission events, such as the budding of enveloped viruses (HIV-1 and other lentiviruses). Involved in HIV-1 p6- and p9-dependent virus release. {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844}. |
O43795 | MYO1B | S1027 | ochoa | Unconventional myosin-Ib (MYH-1c) (Myosin I alpha) (MMI-alpha) (MMIa) | Motor protein that may participate in process critical to neuronal development and function such as cell migration, neurite outgrowth and vesicular transport. {ECO:0000250}. |
O43815 | STRN | S204 | ochoa | Striatin | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}. |
O43829 | ZBTB14 | S222 | ochoa | Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) | Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}. |
O43829 | ZBTB14 | S393 | ochoa | Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) | Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}. |
O60610 | DIAPH1 | S208 | ochoa | Protein diaphanous homolog 1 (Diaphanous-related formin-1) (DRF1) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers (By similarity). Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization (By similarity). Required for cytokinesis, and transcriptional activation of the serum response factor (By similarity). DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics (By similarity). Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration (By similarity). Has neurite outgrowth promoting activity. Acts in a Rho-dependent manner to recruit PFY1 to the membrane (By similarity). In hear cells, it may play a role in the regulation of actin polymerization in hair cells (PubMed:20937854, PubMed:21834987, PubMed:26912466). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854, PubMed:21834987). It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity (PubMed:20937854, PubMed:21834987). In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854, PubMed:21834987). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (PubMed:20937854, PubMed:21834987). Plays a role in brain development (PubMed:24781755). Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity (By similarity). {ECO:0000250|UniProtKB:O08808, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24781755, ECO:0000269|PubMed:26912466}. |
O60664 | PLIN3 | S127 | ochoa | Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) | Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}. |
O60884 | DNAJA2 | S144 | ochoa | DnaJ homolog subfamily A member 2 (Cell cycle progression restoration gene 3 protein) (Dnj3) (Dj3) (HIRA-interacting protein 4) (Renal carcinoma antigen NY-REN-14) | Co-chaperone of Hsc70. Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro) (PubMed:24318877). {ECO:0000269|PubMed:24318877}. |
O75113 | N4BP1 | S398 | ochoa | NEDD4-binding protein 1 (N4BP1) (EC 3.1.-.-) | Potent suppressor of cytokine production that acts as a regulator of innate immune signaling and inflammation. Acts as a key negative regulator of select cytokine and chemokine responses elicited by TRIF-independent Toll-like receptors (TLRs), thereby limiting inflammatory cytokine responses to minor insults. In response to more threatening pathogens, cleaved by CASP8 downstream of TLR3 or TLR4, leading to its inactivation, thereby allowing production of inflammatory cytokines (By similarity). Acts as a restriction factor against some viruses, such as HIV-1: restricts HIV-1 replication by binding to HIV-1 mRNAs and mediating their degradation via its ribonuclease activity (PubMed:31133753). Also acts as an inhibitor of the E3 ubiquitin-protein ligase ITCH: acts by interacting with the second WW domain of ITCH, leading to compete with ITCH's substrates and impairing ubiquitination of substrates (By similarity). {ECO:0000250|UniProtKB:Q6A037, ECO:0000269|PubMed:31133753}. |
O75152 | ZC3H11A | S625 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75362 | ZNF217 | S441 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S445 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75417 | POLQ | S1879 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75473 | LGR5 | S851 | psp | Leucine-rich repeat-containing G-protein coupled receptor 5 (G-protein coupled receptor 49) (G-protein coupled receptor 67) (G-protein coupled receptor HG38) | Receptor for R-spondins that potentiates the canonical Wnt signaling pathway and acts as a stem cell marker of the intestinal epithelium and the hair follicle. Upon binding to R-spondins (RSPO1, RSPO2, RSPO3 or RSPO4), associates with phosphorylated LRP6 and frizzled receptors that are activated by extracellular Wnt receptors, triggering the canonical Wnt signaling pathway to increase expression of target genes. In contrast to classical G-protein coupled receptors, does not activate heterotrimeric G-proteins to transduce the signal. Involved in the development and/or maintenance of the adult intestinal stem cells during postembryonic development. {ECO:0000269|PubMed:21693646, ECO:0000269|PubMed:21727895, ECO:0000269|PubMed:21909076, ECO:0000269|PubMed:22815884, ECO:0000269|PubMed:23809763}. |
O75582 | RPS6KA5 | S381 | ochoa|psp | Ribosomal protein S6 kinase alpha-5 (S6K-alpha-5) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 5) (Nuclear mitogen- and stress-activated protein kinase 1) (RSK-like protein kinase) (RSKL) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:18511904, PubMed:9687510, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be important during development and breast tumor formation (PubMed:12569367). Directly represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393). May also phosphorylate 'Ser-28' of histone H3 (PubMed:12773393). Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14) (PubMed:12773393). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines (By similarity). Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors (By similarity). Plays a role in neuronal cell death by mediating the downstream effects of excitotoxic injury (By similarity). Phosphorylates TRIM7 at 'Ser-107' in response to growth factor signaling via the MEK/ERK pathway, thereby stimulating its ubiquitin ligase activity (PubMed:25851810). {ECO:0000250|UniProtKB:Q8C050, ECO:0000269|PubMed:11909979, ECO:0000269|PubMed:12569367, ECO:0000269|PubMed:12628924, ECO:0000269|PubMed:12763138, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:15010469, ECO:0000269|PubMed:18511904, ECO:0000269|PubMed:25851810, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9873047}. |
O75694 | NUP155 | S914 | ochoa | Nuclear pore complex protein Nup155 (155 kDa nucleoporin) (Nucleoporin Nup155) | Essential component of nuclear pore complex. Could be essessential for embryogenesis. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport. {ECO:0000250|UniProtKB:Q99P88}. |
O75955 | FLOT1 | S374 | ochoa | Flotillin-1 | May act as a scaffolding protein within caveolar membranes, functionally participating in formation of caveolae or caveolae-like vesicles. |
O94910 | ADGRL1 | S1129 | ochoa | Adhesion G protein-coupled receptor L1 (Calcium-independent alpha-latrotoxin receptor 1) (CIRL-1) (Latrophilin-1) (Lectomedin-2) | Calcium-independent receptor of high affinity for alpha-latrotoxin, an excitatory neurotoxin present in black widow spider venom which triggers massive exocytosis from neurons and neuroendocrine cells (PubMed:35907405). Receptor for TENM2 that mediates heterophilic synaptic cell-cell contact and postsynaptic specialization. Receptor probably implicated in the regulation of exocytosis (By similarity). {ECO:0000250|UniProtKB:O88917, ECO:0000269|PubMed:35907405}. |
O95049 | TJP3 | S568 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95232 | LUC7L3 | S110 | ochoa | Luc7-like protein 3 (Cisplatin resistance-associated-overexpressed protein) (Luc7A) (Okadaic acid-inducible phosphoprotein OA48-18) (cAMP regulatory element-associated protein 1) (CRE-associated protein 1) (CREAP-1) | Binds cAMP regulatory element DNA sequence. May play a role in RNA splicing. {ECO:0000269|PubMed:16462885}. |
O95466 | FMNL1 | S689 | ochoa | Formin-like protein 1 (CLL-associated antigen KW-13) (Leukocyte formin) | May play a role in the control of cell motility and survival of macrophages (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O95466 | FMNL1 | S921 | ochoa | Formin-like protein 1 (CLL-associated antigen KW-13) (Leukocyte formin) | May play a role in the control of cell motility and survival of macrophages (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O95490 | ADGRL2 | S1253 | ochoa | Adhesion G protein-coupled receptor L2 (Calcium-independent alpha-latrotoxin receptor 2) (CIRL-2) (Latrophilin homolog 1) (Latrophilin-2) (Lectomedin-1) | Orphan adhesion G-protein coupled receptor (aGPCR), which mediates synapse specificity (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (By similarity). Following G-protein coupled receptor activation, associates with cell adhesion molecules that are expressed at the surface of adjacent cells to direct synapse specificity. Specifically mediates the establishment of perforant-path synapses on CA1-region pyramidal neurons in the hippocampus. Localizes to postsynaptic spines in excitatory synapses in the S.lacunosum-moleculare and interacts with presynaptic cell adhesion molecules, such as teneurins, promoting synapse formation (By similarity). {ECO:0000250|UniProtKB:Q80TS3, ECO:0000250|UniProtKB:Q8JZZ7}. |
O95490 | ADGRL2 | S1353 | ochoa | Adhesion G protein-coupled receptor L2 (Calcium-independent alpha-latrotoxin receptor 2) (CIRL-2) (Latrophilin homolog 1) (Latrophilin-2) (Lectomedin-1) | Orphan adhesion G-protein coupled receptor (aGPCR), which mediates synapse specificity (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (By similarity). Following G-protein coupled receptor activation, associates with cell adhesion molecules that are expressed at the surface of adjacent cells to direct synapse specificity. Specifically mediates the establishment of perforant-path synapses on CA1-region pyramidal neurons in the hippocampus. Localizes to postsynaptic spines in excitatory synapses in the S.lacunosum-moleculare and interacts with presynaptic cell adhesion molecules, such as teneurins, promoting synapse formation (By similarity). {ECO:0000250|UniProtKB:Q80TS3, ECO:0000250|UniProtKB:Q8JZZ7}. |
O95602 | POLR1A | S1265 | ochoa | DNA-directed RNA polymerase I subunit RPA1 (RNA polymerase I subunit A1) (EC 2.7.7.6) (A190) (DNA-directed RNA polymerase I largest subunit) (DNA-directed RNA polymerase I subunit A) (RNA polymerase I 194 kDa subunit) (RPA194) | Catalytic core component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Transcribes 47S pre-rRNAs from multicopy rRNA gene clusters, giving rise to 5.8S, 18S and 28S ribosomal RNAs (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Pol I-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol I pre-initiation complex (PIC) is recruited by the selectivity factor 1 (SL1/TIF-IB) complex bound to the core promoter that precedes an rDNA repeat unit. The PIC assembly bends the promoter favoring the formation of the transcription bubble and promoter escape. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Highly processive, assembles in structures referred to as 'Miller trees' where many elongating Pol I complexes queue and transcribe the same rDNA coding regions. At terminator sequences downstream of the rDNA gene, PTRF interacts with Pol I and halts Pol I transcription leading to the release of the RNA transcript and polymerase from the DNA (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Forms Pol I active center together with the second largest subunit POLR1B/RPA2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR1A/RPA1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR1B/RPA2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and the template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. Has proofreading activity: Pauses and backtracks to allow the cleavage of a missincorporated nucleotide via POLR1H/RPA12. High Pol I processivity is associated with decreased transcription fidelity (By similarity) (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). {ECO:0000250|UniProtKB:P10964, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}. |
O95721 | SNAP29 | S105 | psp | Synaptosomal-associated protein 29 (SNAP-29) (Soluble 29 kDa NSF attachment protein) (Vesicle-membrane fusion protein SNAP-29) | SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. SNAP29 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane. Also plays a role in ciliogenesis by regulating membrane fusions. {ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:25686604}. |
O95747 | OXSR1 | S425 | ochoa | Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}. |
O95857 | TSPAN13 | S143 | ochoa | Tetraspanin-13 (Tspan-13) (Tetraspan NET-6) (Transmembrane 4 superfamily member 13) | None |
P00338 | LDHA | S89 | ochoa | L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}. |
P00558 | PGK1 | S174 | ochoa | Phosphoglycerate kinase 1 (EC 2.7.11.1) (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2) | Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate (PubMed:30323285, PubMed:7391028). Both L- and D- forms of purine and pyrimidine nucleotides can be used as substrates, but the activity is much lower on pyrimidines (PubMed:18463139). In addition to its role as a glycolytic enzyme, it seems that PGK1 acts as a polymerase alpha cofactor protein (primer recognition protein) (PubMed:2324090). Acts as a protein kinase when localized to the mitochondrion where it phosphorylates pyruvate dehydrogenase kinase PDK1 to inhibit pyruvate dehydrogenase complex activity and suppress the formation of acetyl-coenzyme A from pyruvate, and consequently inhibit oxidative phosphorylation and promote glycolysis (PubMed:26942675, PubMed:36849569). May play a role in sperm motility (PubMed:26677959). {ECO:0000269|PubMed:18463139, ECO:0000269|PubMed:2324090, ECO:0000269|PubMed:26677959, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:30323285, ECO:0000269|PubMed:36849569, ECO:0000269|PubMed:7391028}. |
P01024 | C3 | S1571 | ochoa | Complement C3 (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 1) [Cleaved into: Complement C3 beta chain; C3-beta-c (C3bc); Complement C3 alpha chain; C3a anaphylatoxin; Acylation stimulating protein (ASP) (C3adesArg); Complement C3b (Complement C3b-alpha' chain); Complement C3c alpha' chain fragment 1; Complement C3dg fragment; Complement C3g fragment; Complement C3d fragment; Complement C3f fragment; Complement C3c alpha' chain fragment 2] | Precursor of non-enzymatic components of the classical, alternative, lectin and GZMK complement pathways, which consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system. {ECO:0000269|PubMed:12878586, ECO:0000269|PubMed:18204047, ECO:0000269|PubMed:28264884, ECO:0000269|PubMed:31507604, ECO:0000269|PubMed:39914456, ECO:0000269|PubMed:624565, ECO:0000269|PubMed:6554279}.; FUNCTION: [Complement C3b]: Non-enzymatic component of C5 convertase (PubMed:28264884, PubMed:31507604, PubMed:3653927, PubMed:3897448). Generated following cleavage by C3 convertase, it covalently attaches to the surface of pathogens, where it acts as an opsonin that marks the surface of antigens for removal (PubMed:28264884, PubMed:31507604, PubMed:3653927, PubMed:3897448, PubMed:833545, PubMed:8349625). Complement C3b binds covalently via its reactive thioester, to cell surface carbohydrates or immune aggregates (PubMed:6903192). Together with complement C4b, it then recruits the serine protease complement C2b to form the C5 convertase, which cleaves and activate C5, the next component of the complement pathways (PubMed:12878586, PubMed:18204047, PubMed:2387864). In the alternative complement pathway, recruits the serine protease CFB to form the C5 convertase that cleaves and activates C5 (PubMed:624565, PubMed:6554279). {ECO:0000269|PubMed:12878586, ECO:0000269|PubMed:18204047, ECO:0000269|PubMed:2387864, ECO:0000269|PubMed:28264884, ECO:0000269|PubMed:31507604, ECO:0000269|PubMed:3653927, ECO:0000269|PubMed:3897448, ECO:0000269|PubMed:624565, ECO:0000269|PubMed:6554279, ECO:0000269|PubMed:6903192, ECO:0000269|PubMed:833545, ECO:0000269|PubMed:8349625}.; FUNCTION: [C3a anaphylatoxin]: Mediator of local inflammatory process released following cleavage by C3 convertase (PubMed:6968751). Acts by binding to its receptor, C3AR1, activating G protein-coupled receptor signaling, promoting the phosphorylation, ARRB2-mediated internalization and endocytosis of C3AR1 (PubMed:8702752). C3a anaphylatoxin stimulates the activation of immune cells such as mast cells and basophilic leukocytes to release inflammation agents, such as cytokines, chemokines and histamine, which promote inflammation development (PubMed:23383423). Also acts as potent chemoattractant for the migration of macrophages and neutrophils to the inflamed tissues, resulting in neutralization of the inflammatory triggers by multiple ways, such as phagocytosis and generation of reactive oxidants (PubMed:23383423). {ECO:0000269|PubMed:6968751, ECO:0000269|PubMed:8702752, ECO:0000303|PubMed:23383423}.; FUNCTION: [Acylation stimulating protein]: Adipogenic hormone that stimulates triglyceride synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial triglyceride clearance (PubMed:10432298, PubMed:15833747, PubMed:16333141, PubMed:19615750, PubMed:2909530, PubMed:8376604, PubMed:9059512). Appears to stimulate triglyceride synthesis via activation of the PLC, MAPK and AKT signaling pathways (PubMed:16333141). Acts by binding to its receptor, C5AR2, activating G protein-coupled receptor signaling, promoting the phosphorylation, ARRB2-mediated internalization and endocytosis of C5AR2 (PubMed:11773063, PubMed:12540846, PubMed:19615750). {ECO:0000269|PubMed:10432298, ECO:0000269|PubMed:11773063, ECO:0000269|PubMed:12540846, ECO:0000269|PubMed:15833747, ECO:0000269|PubMed:16333141, ECO:0000269|PubMed:19615750, ECO:0000269|PubMed:2909530, ECO:0000269|PubMed:8376604, ECO:0000269|PubMed:9059512}.; FUNCTION: [C3-beta-c]: Acts as a chemoattractant for neutrophils in chronic inflammation. {ECO:0000250|UniProtKB:P01026}. |
P03372 | ESR1 | S282 | psp | Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) | Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}. |
P04406 | GAPDH | S241 | ochoa|psp | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) | Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}. |
P04637 | TP53 | S269 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P05783 | KRT18 | S401 | ochoa | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P06576 | ATP5F1B | S319 | ochoa | ATP synthase F(1) complex subunit beta, mitochondrial (EC 7.1.2.2) (ATP synthase F1 subunit beta) | Catalytic subunit beta, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable) (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the subunit alpha (ATP5F1A), forms the catalytic core in the F(1) domain (PubMed:37244256). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:25168243, ECO:0000305|PubMed:36239646, ECO:0000305|PubMed:37244256}. |
P06732 | CKM | S332 | ochoa | Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) | Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}. |
P07949 | RET | S829 | ochoa | Proto-oncogene tyrosine-protein kinase receptor Ret (EC 2.7.10.1) (Cadherin family member 12) (Proto-oncogene c-Ret) [Cleaved into: Soluble RET kinase fragment; Extracellular cell-membrane anchored RET cadherin 120 kDa fragment] | Receptor tyrosine-protein kinase involved in numerous cellular mechanisms including cell proliferation, neuronal navigation, cell migration, and cell differentiation in response to glia cell line-derived growth family factors (GDNF, NRTN, ARTN, PSPN and GDF15) (PubMed:20064382, PubMed:20616503, PubMed:20702524, PubMed:21357690, PubMed:21454698, PubMed:24560924, PubMed:28846097, PubMed:28846099, PubMed:28953886, PubMed:31118272). In contrast to most receptor tyrosine kinases, RET requires not only its cognate ligands but also coreceptors, for activation (PubMed:21994944, PubMed:23333276, PubMed:28846097, PubMed:28846099, PubMed:28953886). GDNF ligands (GDNF, NRTN, ARTN, PSPN and GDF15) first bind their corresponding GDNFR coreceptors (GFRA1, GFRA2, GFRA3, GFRA4 and GFRAL, respectively), triggering RET autophosphorylation and activation, leading to activation of downstream signaling pathways, including the MAPK- and AKT-signaling pathways (PubMed:21994944, PubMed:23333276, PubMed:24560924, PubMed:25242331, PubMed:28846097, PubMed:28846099, PubMed:28953886). Acts as a dependence receptor via the GDNF-GFRA1 signaling: in the presence of the ligand GDNF in somatotrophs within pituitary, promotes survival and down regulates growth hormone (GH) production, but triggers apoptosis in absence of GDNF (PubMed:20616503, PubMed:21994944). Required for the molecular mechanisms orchestration during intestine organogenesis via the ARTN-GFRA3 signaling: involved in the development of enteric nervous system and renal organogenesis during embryonic life, and promotes the formation of Peyer's patch-like structures, a major component of the gut-associated lymphoid tissue (By similarity). Mediates, through interaction with GDF15-receptor GFRAL, GDF15-induced cell-signaling in the brainstem which triggers an aversive response, characterized by nausea, vomiting, and/or loss of appetite in response to various stresses (PubMed:28846097, PubMed:28846099, PubMed:28953886). Modulates cell adhesion via its cleavage by caspase in sympathetic neurons and mediates cell migration in an integrin (e.g. ITGB1 and ITGB3)-dependent manner (PubMed:20702524, PubMed:21357690). Also active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage (PubMed:21357690). Triggers the differentiation of rapidly adapting (RA) mechanoreceptors (PubMed:20064382). Involved in the development of the neural crest (By similarity). Regulates nociceptor survival and size (By similarity). Phosphorylates PTK2/FAK1 (PubMed:21454698). {ECO:0000250|UniProtKB:P35546, ECO:0000269|PubMed:20064382, ECO:0000269|PubMed:20616503, ECO:0000269|PubMed:20702524, ECO:0000269|PubMed:21357690, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:21994944, ECO:0000269|PubMed:23333276, ECO:0000269|PubMed:24560924, ECO:0000269|PubMed:25242331, ECO:0000269|PubMed:28846097, ECO:0000269|PubMed:28846099, ECO:0000269|PubMed:28953886, ECO:0000269|PubMed:31118272}.; FUNCTION: [Isoform 1]: Isoform 1 in complex with GFRAL induces higher activation of MAPK-signaling pathway than isoform 2 in complex with GFRAL. {ECO:0000269|PubMed:28846099}. |
P08581 | MET | S997 | ochoa | Hepatocyte growth factor receptor (HGF receptor) (EC 2.7.10.1) (HGF/SF receptor) (Proto-oncogene c-Met) (Scatter factor receptor) (SF receptor) (Tyrosine-protein kinase Met) | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of neuronal precursors, angiogenesis and kidney formation. During skeletal muscle development, it is crucial for the migration of muscle progenitor cells and for the proliferation of secondary myoblasts (By similarity). In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Also promotes differentiation and proliferation of hematopoietic cells. May regulate cortical bone osteogenesis (By similarity). {ECO:0000250|UniProtKB:P16056}.; FUNCTION: (Microbial infection) Acts as a receptor for Listeria monocytogenes internalin InlB, mediating entry of the pathogen into cells. {ECO:0000269|PubMed:11081636, ECO:0000305|PubMed:17662939, ECO:0000305|PubMed:19900460}. |
P08670 | VIM | S87 | ochoa | Vimentin | Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}. |
P09874 | PARP1 | S785 | ochoa|psp | Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}. |
P10412 | H1-4 | S104 | ochoa | Histone H1.4 (Histone H1b) (Histone H1s-4) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
P10768 | ESD | S197 | ochoa | S-formylglutathione hydrolase (FGH) (EC 3.1.2.12) (Esterase D) (Methylumbelliferyl-acetate deacetylase) (EC 3.1.1.56) | Serine hydrolase involved in the detoxification of formaldehyde. {ECO:0000269|PubMed:3770744, ECO:0000269|PubMed:4768551}. |
P11137 | MAP2 | S1679 | psp | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11274 | BCR | S205 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P11532 | DMD | S2437 | ochoa | Dystrophin | Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission. {ECO:0000250|UniProtKB:P11531, ECO:0000269|PubMed:16710609}. |
P12956 | XRCC6 | S222 | ochoa | X-ray repair cross-complementing protein 6 (EC 3.6.4.-) (EC 4.2.99.-) (5'-deoxyribose-5-phosphate lyase Ku70) (5'-dRP lyase Ku70) (70 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 1) (ATP-dependent DNA helicase II 70 kDa subunit) (CTC box-binding factor 75 kDa subunit) (CTC75) (CTCBF) (DNA repair protein XRCC6) (Lupus Ku autoantigen protein p70) (Ku70) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 6) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). 5'-dRP lyase activity allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Negatively regulates apoptosis by interacting with BAX and sequestering it from the mitochondria (PubMed:15023334). Might have deubiquitination activity, acting on BAX (PubMed:18362350). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:15023334, ECO:0000269|PubMed:18362350, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:2466842, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:9742108}. |
P13569 | CFTR | S753 | psp | Cystic fibrosis transmembrane conductance regulator (CFTR) (ATP-binding cassette sub-family C member 7) (Channel conductance-controlling ATPase) (EC 5.6.1.6) (cAMP-dependent chloride channel) | Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis (PubMed:26823428). Mediates the transport of chloride ions across the cell membrane (PubMed:10792060, PubMed:11524016, PubMed:11707463, PubMed:12519745, PubMed:12529365, PubMed:12588899, PubMed:12727866, PubMed:15010471, PubMed:17036051, PubMed:1712898, PubMed:17182731, PubMed:19398555, PubMed:19621064, PubMed:22178883, PubMed:25330774, PubMed:26846474, PubMed:28087700, PubMed:8910473, PubMed:9804160). Possesses an intrinsic ATPase activity and utilizes ATP to gate its channel; the passive flow of anions through the channel is gated by cycles of ATP binding and hydrolysis by the ATP-binding domains (PubMed:11524016, PubMed:15284228, PubMed:26627831, PubMed:8910473). The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration (PubMed:15010471, PubMed:19019741). In vitro, mediates ATP-dependent glutathione flux (PubMed:12727866). Exerts its function also by modulating the activity of other ion channels and transporters (PubMed:12403779, PubMed:22121115, PubMed:22178883, PubMed:27941075). Plays an important role in airway fluid homeostasis (PubMed:16645176, PubMed:19621064, PubMed:26823428). Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens (PubMed:14668433, PubMed:16645176, PubMed:26823428). Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex (PubMed:17182731, PubMed:17434346, PubMed:27941075). Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731). Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731, PubMed:27941075). May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7 (PubMed:12403779). Can inhibit the chloride channel activity of ANO1 (PubMed:22178883). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (PubMed:19923167, PubMed:27714810, PubMed:29393851). {ECO:0000269|PubMed:10792060, ECO:0000269|PubMed:11524016, ECO:0000269|PubMed:11707463, ECO:0000269|PubMed:12403779, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:12529365, ECO:0000269|PubMed:12588899, ECO:0000269|PubMed:12727866, ECO:0000269|PubMed:14668433, ECO:0000269|PubMed:15010471, ECO:0000269|PubMed:15284228, ECO:0000269|PubMed:16645176, ECO:0000269|PubMed:17036051, ECO:0000269|PubMed:1712898, ECO:0000269|PubMed:17182731, ECO:0000269|PubMed:19019741, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:19621064, ECO:0000269|PubMed:22178883, ECO:0000269|PubMed:25330774, ECO:0000269|PubMed:26627831, ECO:0000269|PubMed:26823428, ECO:0000269|PubMed:26846474, ECO:0000269|PubMed:27714810, ECO:0000269|PubMed:27941075, ECO:0000269|PubMed:28087700, ECO:0000269|PubMed:29393851, ECO:0000269|PubMed:8910473, ECO:0000269|PubMed:9804160, ECO:0000305|PubMed:19923167}. |
P15036 | ETS2 | S88 | ochoa | Protein C-ets-2 | Transcription factor activating transcription. Binds specifically the DNA GGAA/T core motif (Ets-binding site or EBS) in gene promoters and stimulates transcription. {ECO:0000269|PubMed:11909962}. |
P15121 | AKR1B1 | S23 | ochoa | Aldo-keto reductase family 1 member B1 (EC 1.1.1.21) (EC 1.1.1.300) (EC 1.1.1.372) (EC 1.1.1.54) (Aldehyde reductase) (Aldose reductase) (AR) | Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosacharides, bile acids and xenobiotics substrates. Key enzyme in the polyol pathway, catalyzes reduction of glucose to sorbitol during hyperglycemia (PubMed:1936586). Reduces steroids and their derivatives and prostaglandins. Displays low enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal (PubMed:12732097, PubMed:19010934, PubMed:8343525). Catalyzes the reduction of diverse phospholipid aldehydes such as 1-palmitoyl-2-(5-oxovaleroyl)-sn -glycero-3-phosphoethanolamin (POVPC) and related phospholipid aldehydes that are generated from the oxydation of phosphotidylcholine and phosphatdyleethanolamides (PubMed:17381426). Plays a role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls) (PubMed:21329684). {ECO:0000269|PubMed:12732097, ECO:0000269|PubMed:17381426, ECO:0000269|PubMed:19010934, ECO:0000269|PubMed:1936586, ECO:0000269|PubMed:21329684, ECO:0000269|PubMed:8343525}. |
P15927 | RPA2 | S72 | psp | Replication protein A 32 kDa subunit (RP-A p32) (Replication factor A protein 2) (RF-A protein 2) (Replication protein A 34 kDa subunit) (RP-A p34) | As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response. It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage. Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair. Also plays a role in base excision repair (BER) probably through interaction with UNG. Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. May also play a role in telomere maintenance. RPA stimulates 5'-3' helicase activity of BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:15205463, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:20154705, ECO:0000269|PubMed:21504906, ECO:0000269|PubMed:2406247, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:8702565, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}. |
P16401 | H1-5 | S107 | ochoa | Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
P16402 | H1-3 | S105 | ochoa | Histone H1.3 (Histone H1c) (Histone H1s-2) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
P16403 | H1-2 | S104 | ochoa | Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
P17405 | SMPD1 | S510 | psp | Sphingomyelin phosphodiesterase (EC 3.1.4.12) (EC 3.1.4.3) (Acid sphingomyelinase) (aSMase) [Cleaved into: Sphingomyelin phosphodiesterase, processed form] | Converts sphingomyelin to ceramide (PubMed:12563314, PubMed:1840600, PubMed:18815062, PubMed:25339683, PubMed:25920558, PubMed:27659707, PubMed:33163980). Exists as two enzymatic forms that arise from alternative trafficking of a single protein precursor, one that is targeted to the endolysosomal compartment, whereas the other is released extracellularly (PubMed:20807762, PubMed:21098024, PubMed:9660788). However, in response to various forms of stress, lysosomal exocytosis may represent a major source of the secretory form (PubMed:12563314, PubMed:20530211, PubMed:20807762, PubMed:22573858, PubMed:9393854). {ECO:0000269|PubMed:12563314, ECO:0000269|PubMed:1840600, ECO:0000269|PubMed:18815062, ECO:0000269|PubMed:20530211, ECO:0000269|PubMed:20807762, ECO:0000269|PubMed:21098024, ECO:0000269|PubMed:22573858, ECO:0000269|PubMed:25339683, ECO:0000269|PubMed:25920558, ECO:0000269|PubMed:27659707, ECO:0000269|PubMed:33163980, ECO:0000269|PubMed:9393854, ECO:0000269|PubMed:9660788, ECO:0000305}.; FUNCTION: In the lysosomes, converts sphingomyelin to ceramide (PubMed:20807762, PubMed:21098024). Plays an important role in the export of cholesterol from the intraendolysosomal membranes (PubMed:25339683). Also has phospholipase C activities toward 1,2-diacylglycerolphosphocholine and 1,2-diacylglycerolphosphoglycerol (PubMed:25339683). Modulates stress-induced apoptosis through the production of ceramide (PubMed:8706124). {ECO:0000269|PubMed:20807762, ECO:0000269|PubMed:21098024, ECO:0000269|PubMed:25339683, ECO:0000269|PubMed:8706124}.; FUNCTION: When secreted, modulates cell signaling with its ability to reorganize the plasma membrane by converting sphingomyelin to ceramide (PubMed:12563314, PubMed:17303575, PubMed:20807762). Secreted form is increased in response to stress and inflammatory mediators such as IL1B, IFNG or TNF as well as upon infection with bacteria and viruses (PubMed:12563314, PubMed:20807762, PubMed:9393854). Produces the release of ceramide in the outer leaflet of the plasma membrane playing a central role in host defense (PubMed:12563314, PubMed:20807762, PubMed:9393854). Ceramide reorganizes these rafts into larger signaling platforms that are required to internalize P.aeruginosa, induce apoptosis and regulate the cytokine response in infected cells (PubMed:12563314). In wounded cells, the lysosomal form is released extracellularly in the presence of Ca(2+) and promotes endocytosis and plasma membrane repair (PubMed:20530211). {ECO:0000269|PubMed:12563314, ECO:0000269|PubMed:17303575, ECO:0000269|PubMed:20530211, ECO:0000269|PubMed:20807762, ECO:0000269|PubMed:9393854}.; FUNCTION: [Sphingomyelin phosphodiesterase, processed form]: This form is generated following cleavage by CASP7 in the extracellular milieu in response to bacterial infection (PubMed:21157428). It shows increased ability to convert sphingomyelin to ceramide and promotes plasma membrane repair (By similarity). Plasma membrane repair by ceramide counteracts the action of gasdermin-D (GSDMD) perforin (PRF1) pores that are formed in response to bacterial infection (By similarity). {ECO:0000250|UniProtKB:Q04519, ECO:0000269|PubMed:21157428}.; FUNCTION: (Microbial infection) Secretion is activated by bacteria such as P.aeruginosa, N.gonorrhoeae and others, this activation results in the release of ceramide in the outer leaflet of the plasma membrane which facilitates the infection. {ECO:0000269|PubMed:12563314, ECO:0000269|PubMed:9393854, ECO:0000305|PubMed:31155842}.; FUNCTION: (Microbial infection) Secretion is activated by human coronaviruses SARS-CoV and SARS-CoV-2 as well as Zaire ebolavirus, this activation results in the release of ceramide in the outer leaflet of the plasma membrane which facilitates the infection. {ECO:0000269|PubMed:22573858, ECO:0000269|PubMed:33163980}.; FUNCTION: [Isoform 2]: Lacks residues that bind the cofactor Zn(2+) and has no enzyme activity. {ECO:0000269|PubMed:1840600, ECO:0000305}.; FUNCTION: [Isoform 3]: Lacks residues that bind the cofactor Zn(2+) and has no enzyme activity. {ECO:0000269|PubMed:1840600, ECO:0000305}. |
P17540 | CKMT2 | S162 | ochoa | Creatine kinase S-type, mitochondrial (EC 2.7.3.2) (Basic-type mitochondrial creatine kinase) (Mib-CK) (Sarcomeric mitochondrial creatine kinase) (S-MtCK) | Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. |
P20264 | POU3F3 | S393 | ochoa | POU domain, class 3, transcription factor 3 (Brain-specific homeobox/POU domain protein 1) (Brain-1) (Brn-1) (Octamer-binding protein 8) (Oct-8) (Octamer-binding transcription factor 8) (OTF-8) | Transcription factor that acts synergistically with SOX11 and SOX4. Plays a role in neuronal development (PubMed:31303265). Is implicated in an enhancer activity at the embryonic met-mesencephalic junction; the enhancer element contains the octamer motif (5'-ATTTGCAT-3') (By similarity). {ECO:0000250|UniProtKB:P31361, ECO:0000250|UniProtKB:Q63262, ECO:0000269|PubMed:31303265}. |
P20265 | POU3F2 | S341 | ochoa | POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) | Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}. |
P20273 | CD22 | S725 | ochoa | B-cell receptor CD22 (B-lymphocyte cell adhesion molecule) (BL-CAM) (Sialic acid-binding Ig-like lectin 2) (Siglec-2) (T-cell surface antigen Leu-14) (CD antigen CD22) | Most highly expressed siglec (sialic acid-binding immunoglobulin-like lectin) on B-cells that plays a role in various aspects of B-cell biology including differentiation, antigen presentation, and trafficking to bone marrow (PubMed:34330755, PubMed:8627166). Binds to alpha 2,6-linked sialic acid residues of surface molecules such as CD22 itself, CD45 and IgM in a cis configuration. Can also bind to ligands on other cells as an adhesion molecule in a trans configuration (PubMed:20172905). Acts as an inhibitory coreceptor on the surface of B-cells and inhibits B-cell receptor induced signaling, characterized by inhibition of the calcium mobilization and cellular activation. Mechanistically, the immunoreceptor tyrosine-based inhibitory motif domain is phosphorylated by the Src kinase LYN, which in turn leads to the recruitment of the protein tyrosine phosphatase 1/PTPN6, leading to the negative regulation of BCR signaling (PubMed:8627166). If this negative signaling from is of sufficient strength, apoptosis of the B-cell can be induced (PubMed:20516366). {ECO:0000269|PubMed:20172905, ECO:0000269|PubMed:20516366, ECO:0000269|PubMed:34330755, ECO:0000269|PubMed:8627166}. |
P21333 | FLNA | S189 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S215 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21397 | MAOA | S209 | psp | Amine oxidase [flavin-containing] A (EC 1.4.3.21) (EC 1.4.3.4) (Monoamine oxidase type A) (MAO-A) | Catalyzes the oxidative deamination of primary and some secondary amine such as neurotransmitters, with concomitant reduction of oxygen to hydrogen peroxide and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues (PubMed:18391214, PubMed:20493079, PubMed:24169519, PubMed:8316221). Preferentially oxidizes serotonin (PubMed:20493079, PubMed:24169519). Also catalyzes the oxidative deamination of kynuramine to 3-(2-aminophenyl)-3-oxopropanal that can spontaneously condense to 4-hydroxyquinoline (By similarity). {ECO:0000250|UniProtKB:P21396, ECO:0000269|PubMed:18391214, ECO:0000269|PubMed:20493079, ECO:0000269|PubMed:24169519, ECO:0000269|PubMed:8316221}. |
P21580 | TNFAIP3 | S220 | ochoa | Tumor necrosis factor alpha-induced protein 3 (TNF alpha-induced protein 3) (EC 2.3.2.-) (EC 3.4.19.12) (OTU domain-containing protein 7C) (Putative DNA-binding protein A20) (Zinc finger protein A20) [Cleaved into: A20p50; A20p37] | Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquitinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquitinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate 'Lys-11'-, 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death. Has a role in the function of the lymphoid system. Required for LPS-induced production of pro-inflammatory cytokines and IFN beta in LPS-tolerized macrophages. {ECO:0000269|PubMed:14748687, ECO:0000269|PubMed:15258597, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17961127, ECO:0000269|PubMed:18164316, ECO:0000269|PubMed:18952128, ECO:0000269|PubMed:19494296, ECO:0000269|PubMed:22099304, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:8692885, ECO:0000269|PubMed:9299557, ECO:0000269|PubMed:9882303}. |
P21796 | VDAC1 | S46 | ochoa | Non-selective voltage-gated ion channel VDAC1 (Outer mitochondrial membrane protein porin 1) (Plasmalemmal porin) (Porin 31HL) (Porin 31HM) (Voltage-dependent anion-selective channel protein 1) (VDAC-1) (hVDAC1) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:30061676, PubMed:8420959). The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:8420959). It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV (PubMed:10661876, PubMed:18755977, PubMed:8420959). The open state has a weak anion selectivity whereas the closed state is cation-selective (PubMed:18755977, PubMed:8420959). Binds various signaling molecules, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:18755977, PubMed:31015432). In depolarized mitochondria, acts downstream of PRKN and PINK1 to promote mitophagy or prevent apoptosis; polyubiquitination by PRKN promotes mitophagy, while monoubiquitination by PRKN decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:32047033). May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis (PubMed:15033708, PubMed:25296756). May mediate ATP export from cells (PubMed:30061676). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Mediates cytochrome c efflux (PubMed:20230784). {ECO:0000250|UniProtKB:Q60932, ECO:0000269|PubMed:10661876, ECO:0000269|PubMed:11845315, ECO:0000269|PubMed:15033708, ECO:0000269|PubMed:18755977, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:25296756, ECO:0000269|PubMed:30061676, ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P22492 | H1-6 | S108 | ochoa | Histone H1t (Testicular H1 histone) | Testis-specific histone H1 that forms less compacted chromatin compared to other H1 histone subtypes (PubMed:26757249). Formation of more relaxed chromatin may be required to promote chromatin architecture required for proper chromosome regulation during meiosis, such as homologous recombination (PubMed:26757249). Histones H1 act as linkers that bind to nucleosomes and compact polynucleosomes into a higher-order chromatin configuration (Probable). {ECO:0000269|PubMed:26757249, ECO:0000305}. |
P23458 | JAK1 | S228 | ochoa | Tyrosine-protein kinase JAK1 (EC 2.7.10.2) (Janus kinase 1) (JAK-1) | Tyrosine kinase of the non-receptor type, involved in the IFN-alpha/beta/gamma signal pathway (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). Kinase partner for the interleukin (IL)-2 receptor (PubMed:11909529) as well as interleukin (IL)-10 receptor (PubMed:12133952). Kinase partner for the type I interferon receptor IFNAR2 (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). In response to interferon-binding to IFNAR1-IFNAR2 heterodimer, phosphorylates and activates its binding partner IFNAR2, creating docking sites for STAT proteins (PubMed:7759950). Directly phosphorylates STAT proteins but also activates STAT signaling through the transactivation of other JAK kinases associated with signaling receptors (PubMed:16239216, PubMed:32750333, PubMed:8232552). {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12133952, ECO:0000269|PubMed:16239216, ECO:0000269|PubMed:28111307, ECO:0000269|PubMed:32750333, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:8232552}. |
P26232 | CTNNA2 | S320 | ochoa | Catenin alpha-2 (Alpha N-catenin) (Alpha-catenin-related protein) | May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system (By similarity). Required for proper regulation of cortical neuronal migration and neurite growth (PubMed:30013181). It acts as a negative regulator of Arp2/3 complex activity and Arp2/3-mediated actin polymerization (PubMed:30013181). It thereby suppresses excessive actin branching which would impair neurite growth and stability (PubMed:30013181). Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation (By similarity). {ECO:0000250|UniProtKB:Q61301, ECO:0000269|PubMed:30013181}. |
P27708 | CAD | S1938 | ochoa | Multifunctional protein CAD (Carbamoyl phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase) [Includes: Glutamine-dependent carbamoyl phosphate synthase (EC 6.3.5.5); Glutamine amidotransferase (GATase) (GLNase) (EC 3.5.1.2); Ammonium-dependent carbamoyl phosphate synthase (CPS) (CPSase) (EC 6.3.4.16); Aspartate carbamoyltransferase (EC 2.1.3.2); Dihydroorotase (EC 3.5.2.3)] | Multifunctional protein that encodes the first 3 enzymatic activities of the de novo pyrimidine pathway: carbamoylphosphate synthetase (CPSase; EC 6.3.5.5), aspartate transcarbamylase (ATCase; EC 2.1.3.2) and dihydroorotase (DHOase; EC 3.5.2.3). The CPSase-function is accomplished in 2 steps, by a glutamine-dependent amidotransferase activity (GATase) that binds and cleaves glutamine to produce ammonia, followed by an ammonium-dependent carbamoyl phosphate synthetase, which reacts with the ammonia, hydrogencarbonate and ATP to form carbamoyl phosphate. The endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site. ATCase then catalyzes the formation of carbamoyl-L-aspartate from L-aspartate and carbamoyl phosphate. In the last step, DHOase catalyzes the cyclization of carbamoyl aspartate to dihydroorotate. {ECO:0000269|PubMed:24332717}. |
P29350 | PTPN6 | S26 | ochoa | Tyrosine-protein phosphatase non-receptor type 6 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine phosphatase) (Protein-tyrosine phosphatase 1C) (PTP-1C) (Protein-tyrosine phosphatase SHP-1) (SH-PTP1) | Tyrosine phosphatase enzyme that plays important roles in controlling immune signaling pathways and fundamental physiological processes such as hematopoiesis (PubMed:14739280, PubMed:29925997). Dephosphorylates and negatively regulate several receptor tyrosine kinases (RTKs) such as EGFR, PDGFR and FGFR, thereby modulating their signaling activities (PubMed:21258366, PubMed:9733788). When recruited to immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors such as immunoglobulin-like transcript 2/LILRB1, programmed cell death protein 1/PDCD1, CD3D, CD22, CLEC12A and other receptors involved in immune regulation, initiates their dephosphorylation and subsequently inhibits downstream signaling events (PubMed:11907092, PubMed:14739280, PubMed:37932456, PubMed:38166031). Modulates the signaling of several cytokine receptors including IL-4 receptor (PubMed:9065461). Additionally, targets multiple cytoplasmic signaling molecules including STING1, LCK or STAT1 among others involved in diverse cellular processes including modulation of T-cell activation or cGAS-STING signaling (PubMed:34811497, PubMed:38532423). Within the nucleus, negatively regulates the activity of some transcription factors such as NFAT5 via direct dephosphorylation. Also acts as a key transcriptional regulator of hepatic gluconeogenesis by controlling recruitment of RNA polymerase II to the PCK1 promoter together with STAT5A (PubMed:37595871). {ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:11266449, ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:29925997, ECO:0000269|PubMed:34811497, ECO:0000269|PubMed:37595871, ECO:0000269|PubMed:37932456, ECO:0000269|PubMed:38166031, ECO:0000269|PubMed:38532423, ECO:0000269|PubMed:9065461, ECO:0000269|PubMed:9733788}. |
P29401 | TKT | S345 | ochoa | Transketolase (TK) (EC 2.2.1.1) | Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}. |
P29474 | NOS3 | S1179 | ochoa|psp | Nitric oxide synthase 3 (EC 1.14.13.39) (Constitutive NOS) (cNOS) (EC-NOS) (NOS type III) (NOSIII) (Nitric oxide synthase, endothelial) (Endothelial NOS) (eNOS) | Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway (PubMed:1378832). NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. {ECO:0000269|PubMed:1378832}.; FUNCTION: [Isoform eNOS13C]: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1. |
P30291 | WEE1 | S211 | psp | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P30566 | ADSL | S289 | ochoa | Adenylosuccinate lyase (ADSL) (ASL) (EC 4.3.2.2) (Adenylosuccinase) (ASase) | Catalyzes two non-sequential steps in de novo AMP synthesis: converts (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate (SAICAR) to fumarate plus 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide, and thereby also contributes to de novo IMP synthesis, and converts succinyladenosine monophosphate (SAMP) to AMP and fumarate. {ECO:0000269|PubMed:10888601}. |
P30679 | GNA15 | S330 | ochoa | Guanine nucleotide-binding protein subunit alpha-15 (G alpha-15) (G-protein subunit alpha-15) (Epididymis tissue protein Li 17E) (Guanine nucleotide-binding protein subunit alpha-16) (G alpha-16) (G-protein subunit alpha-16) | Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. |
P31943 | HNRNPH1 | S281 | ochoa | Heterogeneous nuclear ribonucleoprotein H (hnRNP H) [Cleaved into: Heterogeneous nuclear ribonucleoprotein H, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:16946708}. |
P32004 | L1CAM | S1152 | psp | Neural cell adhesion molecule L1 (N-CAM-L1) (NCAM-L1) (CD antigen CD171) | Neural cell adhesion molecule involved in the dynamics of cell adhesion and in the generation of transmembrane signals at tyrosine kinase receptors. During brain development, critical in multiple processes, including neuronal migration, axonal growth and fasciculation, and synaptogenesis. In the mature brain, plays a role in the dynamics of neuronal structure and function, including synaptic plasticity. {ECO:0000269|PubMed:20621658, ECO:0000305}. |
P32189 | GK | S125 | ochoa | Glycerol kinase (Glycerokinase) (EC 2.7.1.30) (ATP:glycerol 3-phosphotransferase) | Kinase that plays a key role in glycerol metabolism, catalyzing its phosphorylation to produce sn-glycerol 3-phosphate. Sn-glycerol 3-phosphate is a crucial intermediate in various metabolic pathways, such as the synthesis of glycerolipids and triglycerides, glycogenesis, glycolysis and gluconeogenesis. {ECO:0000269|PubMed:15845384, ECO:0000269|PubMed:37021775}. |
P32248 | CCR7 | S357 | psp | C-C chemokine receptor type 7 (C-C CKR-7) (CC-CKR-7) (CCR-7) (BLR2) (CDw197) (Epstein-Barr virus-induced G-protein coupled receptor 1) (EBI1) (EBV-induced G-protein coupled receptor 1) (MIP-3 beta receptor) (CD antigen CD197) | Receptor for the MIP-3-beta chemokine. Probable mediator of EBV effects on B-lymphocytes or of normal lymphocyte functions. |
P33981 | TTK | S49 | ochoa|psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P33981 | TTK | S258 | ochoa | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P35221 | CTNNA1 | S322 | ochoa | Catenin alpha-1 (Alpha E-catenin) (Cadherin-associated protein) (Renal carcinoma antigen NY-REN-13) | Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. Can associate with both E- and N-cadherins. Originally believed to be a stable component of E-cadherin/catenin adhesion complexes and to mediate the linkage of cadherins to the actin cytoskeleton at adherens junctions. In contrast, cortical actin was found to be much more dynamic than E-cadherin/catenin complexes and CTNNA1 was shown not to bind to F-actin when assembled in the complex suggesting a different linkage between actin and adherens junctions components. The homodimeric form may regulate actin filament assembly and inhibit actin branching by competing with the Arp2/3 complex for binding to actin filaments. Involved in the regulation of WWTR1/TAZ, YAP1 and TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). May play a crucial role in cell differentiation. {ECO:0000250|UniProtKB:P26231, ECO:0000269|PubMed:25653389}. |
P35237 | SERPINB6 | S306 | ochoa | Serpin B6 (Cytoplasmic antiproteinase) (CAP) (Peptidase inhibitor 6) (PI-6) (Placental thrombin inhibitor) | May be involved in the regulation of serine proteinases present in the brain or extravasated from the blood (By similarity). Inhibitor of cathepsin G, kallikrein-8 and thrombin. May play an important role in the inner ear in the protection against leakage of lysosomal content during stress and loss of this protection results in cell death and sensorineural hearing loss. {ECO:0000250, ECO:0000269|PubMed:10068683, ECO:0000269|PubMed:17761692, ECO:0000269|PubMed:20451170, ECO:0000269|PubMed:8136380, ECO:0000269|PubMed:8415716}. |
P35270 | SPR | S103 | ochoa | Sepiapterin reductase (SPR) (EC 1.1.1.153) | Catalyzes the final one or two reductions in tetra-hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin. |
P35749 | MYH11 | S371 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P38398 | BRCA1 | S308 | psp | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P40227 | CCT6A | S205 | ochoa | T-complex protein 1 subunit zeta (TCP-1-zeta) (EC 3.6.1.-) (Acute morphine dependence-related protein 2) (CCT-zeta-1) (Chaperonin containing T-complex polypeptide 1 subunit 6A) (HTR3) (Tcp20) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P42685 | FRK | S92 | ochoa | Tyrosine-protein kinase FRK (EC 2.7.10.2) (FYN-related kinase) (Nuclear tyrosine protein kinase RAK) (Protein-tyrosine kinase 5) | Non-receptor tyrosine-protein kinase that negatively regulates cell proliferation. Positively regulates PTEN protein stability through phosphorylation of PTEN on 'Tyr-336', which in turn prevents its ubiquitination and degradation, possibly by reducing its binding to NEDD4. May function as a tumor suppressor. {ECO:0000269|PubMed:19345329}. |
P45974 | USP5 | S783 | ochoa | Ubiquitin carboxyl-terminal hydrolase 5 (EC 3.4.19.12) (Deubiquitinating enzyme 5) (Isopeptidase T) (Ubiquitin thioesterase 5) (Ubiquitin-specific-processing protease 5) | Deubiquitinating enzyme that participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. Affects thereby important cellular signaling pathways such as NF-kappa-B, Wnt/beta-catenin, and cytokine production by regulating ubiquitin-dependent protein degradation. Participates in the activation of the Wnt signaling pathway by promoting FOXM1 deubiquitination and stabilization that induces the recruitment of beta-catenin to Wnt target gene promoter (PubMed:26912724). Regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains (PubMed:29567855). Promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein (PubMed:37534934). Affects T-cell biology by stabilizing the inhibitory receptor on T-cells PDC1 (PubMed:37208329). Acts as a negative regulator of autophagy by regulating ULK1 at both protein and mRNA levels (PubMed:37607937). Acts also as a negative regulator of type I interferon production by simultaneously removing both 'Lys-48'-linked unanchored and 'Lys-63'-linked anchored polyubiquitin chains on the transcription factor IRF3 (PubMed:39761299). Modulates the stability of DNA mismatch repair protein MLH1 and counteracts the effect of the ubiquitin ligase UBR4 (PubMed:39032648). Upon activation by insulin, it gets phosphorylated through mTORC1-mediated phosphorylation to enhance YTHDF1 stability by removing 'Lys-11'-linked polyubiquitination (PubMed:39900921). May also deubiquitinate other substrates such as the calcium channel CACNA1H (By similarity). {ECO:0000250|UniProtKB:P56399, ECO:0000269|PubMed:19098288, ECO:0000269|PubMed:26912724, ECO:0000269|PubMed:29567855, ECO:0000269|PubMed:37208329, ECO:0000269|PubMed:37534934, ECO:0000269|PubMed:39032648, ECO:0000269|PubMed:39761299, ECO:0000269|PubMed:39900921}. |
P46013 | MKI67 | S2941 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46939 | UTRN | S604 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P48643 | CCT5 | S51 | psp | T-complex protein 1 subunit epsilon (TCP-1-epsilon) (EC 3.6.1.-) (CCT-epsilon) (Chaperonin containing T-complex polypeptide 1 subunit 5) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P49335 | POU3F4 | S265 | ochoa | POU domain, class 3, transcription factor 4 (Brain-specific homeobox/POU domain protein 4) (Brain-4) (Brn-4) (Octamer-binding protein 9) (Oct-9) (Octamer-binding transcription factor 9) (OTF-9) | Probable transcription factor which exert its primary action widely during early neural development and in a very limited set of neurons in the mature brain. |
P49588 | AARS1 | S403 | ochoa | Alanine--tRNA ligase, cytoplasmic (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS) (Protein lactyltransferase AARS1) (EC 6.-.-.-) (Renal carcinoma antigen NY-REN-42) | Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala) (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:33909043). Also edits incorrectly charged tRNA(Ala) via its editing domain (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:29273753). In presence of high levels of lactate, also acts as a protein lactyltransferase that mediates lactylation of lysine residues in target proteins, such as TEAD1, TP53/p53 and YAP1 (PubMed:38512451, PubMed:38653238). Protein lactylation takes place in a two-step reaction: lactate is first activated by ATP to form lactate-AMP and then transferred to lysine residues of target proteins (PubMed:38512451, PubMed:38653238, PubMed:39322678). Acts as an inhibitor of TP53/p53 activity by catalyzing lactylation of TP53/p53 (PubMed:38653238). Acts as a positive regulator of the Hippo pathway by mediating lactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000269|PubMed:27622773, ECO:0000269|PubMed:27911835, ECO:0000269|PubMed:28493438, ECO:0000269|PubMed:29273753, ECO:0000269|PubMed:33909043, ECO:0000269|PubMed:38512451, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:39322678}. |
P49773 | HINT1 | S107 | psp | Adenosine 5'-monophosphoramidase HINT1 (EC 3.9.1.-) (Desumoylating isopeptidase HINT1) (EC 3.4.22.-) (Histidine triad nucleotide-binding protein 1) (Protein kinase C inhibitor 1) (Protein kinase C-interacting protein 1) (PKCI-1) | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (PubMed:15703176, PubMed:16835243, PubMed:17217311, PubMed:17337452, PubMed:22329685, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (PubMed:15703176, PubMed:16835243). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester (PubMed:15703176, PubMed:17337452, PubMed:22329685). Hydrolyzes 3-indolepropionic acyl-adenylate, tryptamine adenosine phosphoramidate monoester and other fluorogenic purine nucleoside tryptamine phosphoramidates in vitro (PubMed:17217311, PubMed:17337452, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide (PubMed:30772266). In addition, functions as scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (PubMed:16014379, PubMed:22647378). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis (PubMed:16835243). Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex (PubMed:19112177). Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RGS17 (PubMed:31088288). Deconjugates SUMO1 from RANGAP1 (By similarity). {ECO:0000250|UniProtKB:P80912, ECO:0000269|PubMed:15703176, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16835243, ECO:0000269|PubMed:17217311, ECO:0000269|PubMed:17337452, ECO:0000269|PubMed:19112177, ECO:0000269|PubMed:22329685, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:23614568, ECO:0000269|PubMed:28691797, ECO:0000269|PubMed:29787766, ECO:0000269|PubMed:30772266, ECO:0000269|PubMed:31088288, ECO:0000269|PubMed:31990367}. |
P49959 | MRE11 | S382 | psp | Double-strand break repair protein MRE11 (EC 3.1.-.-) (Meiotic recombination 11 homolog 1) (MRE11 homolog 1) (Meiotic recombination 11 homolog A) (MRE11 homolog A) | Core component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:11741547, PubMed:14657032, PubMed:22078559, PubMed:23080121, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:28867292, PubMed:29670289, PubMed:30464262, PubMed:30612738, PubMed:31353207, PubMed:37696958, PubMed:38128537, PubMed:9590181, PubMed:9651580, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:24316220, PubMed:28867292, PubMed:31353207, PubMed:38128537). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:24316220, PubMed:27889449, PubMed:28867292, PubMed:36050397, PubMed:38128537). Within the MRN complex, MRE11 possesses both single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity (PubMed:11741547, PubMed:22078559, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:29670289, PubMed:31353207, PubMed:36563124, PubMed:9590181, PubMed:9651580, PubMed:9705271). After DSBs, MRE11 is loaded onto DSBs sites and cleaves DNA by cooperating with RBBP8/CtIP to initiate end resection (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 first endonucleolytically cleaves the 5' strand at DNA DSB ends to prevent non-homologous end joining (NHEJ) and licence HR (PubMed:24316220). It then generates a single-stranded DNA gap via 3' to 5' exonucleolytic degradation to create entry sites for EXO1- and DNA2-mediated 5' to 3' long-range resection, which is required for single-strand invasion and recombination (PubMed:24316220, PubMed:28867292). RBBP8/CtIP specifically promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 endonuclease activity is also enhanced by AGER/RAGE (By similarity). The MRN complex is also required for DNA damage signaling via activation of the ATM and ATR kinases: the nuclease activity of MRE11 is not required to activate ATM and ATR (PubMed:14657032, PubMed:15064416, PubMed:15790808, PubMed:16622404). The MRN complex is also required for the processing of R-loops (PubMed:31537797). The MRN complex is involved in the activation of the cGAS-STING pathway induced by DNA damage during tumorigenesis: the MRN complex acts by displacing CGAS from nucleosome sequestration, thereby activating it (By similarity). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888). {ECO:0000250|UniProtKB:Q61216, ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:11741547, ECO:0000269|PubMed:14657032, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:22078559, ECO:0000269|PubMed:23080121, ECO:0000269|PubMed:24316220, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:29670289, ECO:0000269|PubMed:30464262, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:36050397, ECO:0000269|PubMed:36563124, ECO:0000269|PubMed:37696958, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9590181, ECO:0000269|PubMed:9651580, ECO:0000269|PubMed:9705271}.; FUNCTION: MRE11 contains two DNA-binding domains (DBDs), enabling it to bind both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). {ECO:0000305}. |
P50750 | CDK9 | S90 | psp | Cyclin-dependent kinase 9 (EC 2.7.11.22) (EC 2.7.11.23) (C-2K) (Cell division cycle 2-like protein kinase 4) (Cell division protein kinase 9) (Serine/threonine-protein kinase PITALRE) (Tat-associated kinase complex catalytic subunit) | Protein kinase involved in the regulation of transcription (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094, PubMed:29335245). Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:16427012, PubMed:20930849, PubMed:28426094, PubMed:30134174). This complex is inactive when in the 7SK snRNP complex form (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094). Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR and the negative elongation factors DSIF and NELFE (PubMed:10912001, PubMed:11112772, PubMed:12037670, PubMed:16427012, PubMed:20081228, PubMed:20980437, PubMed:21127351, PubMed:9857195). Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling) (PubMed:17956865, PubMed:18362169). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis (PubMed:10393184, PubMed:11112772). P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export (PubMed:15564463, PubMed:19575011, PubMed:19844166). Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing (PubMed:15564463, PubMed:19575011, PubMed:19844166). The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro (PubMed:21127351). Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage (PubMed:20493174). In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6 (PubMed:20493174). Promotes cardiac myocyte enlargement (PubMed:20081228). RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription (PubMed:21127351). AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect (PubMed:10912001, PubMed:11112772, PubMed:9857195). The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation (PubMed:12037670). Catalyzes phosphorylation of KAT5, promoting KAT5 recruitment to chromatin and histone acetyltransferase activity (PubMed:29335245). {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10574912, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11145967, ECO:0000269|PubMed:11575923, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:11884399, ECO:0000269|PubMed:12037670, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15564463, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:17956865, ECO:0000269|PubMed:18362169, ECO:0000269|PubMed:19575011, ECO:0000269|PubMed:19844166, ECO:0000269|PubMed:20081228, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:20930849, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:28426094, ECO:0000269|PubMed:29335245, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:9857195}. |
P51452 | DUSP3 | S24 | ochoa | Dual specificity protein phosphatase 3 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase VHR) (Vaccinia H1-related phosphatase) (VHR) | Shows activity both for tyrosine-protein phosphate and serine-protein phosphate, but displays a strong preference toward phosphotyrosines (PubMed:10224087, PubMed:11863439). Specifically dephosphorylates and inactivates ERK1 and ERK2 (PubMed:10224087, PubMed:11863439). {ECO:0000269|PubMed:10224087, ECO:0000269|PubMed:11863439}. |
P51570 | GALK1 | S230 | ochoa | Galactokinase (EC 2.7.1.6) (Galactose kinase) | Catalyzes the transfer of a phosphate from ATP to alpha-D-galactose and participates in the first committed step in the catabolism of galactose. {ECO:0000269|PubMed:12694189, ECO:0000269|PubMed:7542884}. |
P51911 | CNN1 | S205 | ochoa | Calponin-1 (Basic calponin) (Calponin H1, smooth muscle) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity (By similarity). {ECO:0000250}. |
P51955 | NEK2 | S368 | ochoa | Serine/threonine-protein kinase Nek2 (EC 2.7.11.1) (HSPK 21) (Never in mitosis A-related kinase 2) (NimA-related protein kinase 2) (NimA-like protein kinase 1) | Protein kinase which is involved in the control of centrosome separation and bipolar spindle formation in mitotic cells and chromatin condensation in meiotic cells. Regulates centrosome separation (essential for the formation of bipolar spindles and high-fidelity chromosome separation) by phosphorylating centrosomal proteins such as CROCC, CEP250 and NINL, resulting in their displacement from the centrosomes. Regulates kinetochore microtubule attachment stability in mitosis via phosphorylation of NDC80. Involved in regulation of mitotic checkpoint protein complex via phosphorylation of CDC20 and MAD2L1. Plays an active role in chromatin condensation during the first meiotic division through phosphorylation of HMGA2. Phosphorylates: PPP1CC; SGO1; NECAB3 and NPM1. Essential for localization of MAD2L1 to kinetochore and MAPK1 and NPM1 to the centrosome. Phosphorylates CEP68 and CNTLN directly or indirectly (PubMed:24554434). NEK2-mediated phosphorylation of CEP68 promotes CEP68 dissociation from the centrosome and its degradation at the onset of mitosis (PubMed:25704143). Involved in the regulation of centrosome disjunction (PubMed:26220856). Phosphorylates CCDC102B either directly or indirectly which causes CCDC102B to dissociate from the centrosome and allows for centrosome separation (PubMed:30404835). {ECO:0000269|PubMed:11742531, ECO:0000269|PubMed:12857871, ECO:0000269|PubMed:14978040, ECO:0000269|PubMed:15358203, ECO:0000269|PubMed:15388344, ECO:0000269|PubMed:17283141, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:17626005, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18297113, ECO:0000269|PubMed:20034488, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:30404835}.; FUNCTION: [Isoform 1]: Phosphorylates and activates NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.; FUNCTION: [Isoform 2]: Not present in the nucleolus and, in contrast to isoform 1, does not phosphorylate and activate NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}. |
P52565 | ARHGDIA | S176 | psp | Rho GDP-dissociation inhibitor 1 (Rho GDI 1) (Rho-GDI alpha) | Controls Rho proteins homeostasis. Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them. Retains Rho proteins such as CDC42, RAC1 and RHOA in an inactive cytosolic pool, regulating their stability and protecting them from degradation. Actively involved in the recycling and distribution of activated Rho GTPases in the cell, mediates extraction from membranes of both inactive and activated molecules due its exceptionally high affinity for prenylated forms. Through the modulation of Rho proteins, may play a role in cell motility regulation. In glioma cells, inhibits cell migration and invasion by mediating the signals of SEMA5A and PLXNB3 that lead to inactivation of RAC1. {ECO:0000269|PubMed:20400958, ECO:0000269|PubMed:23434736}. |
P52799 | EFNB2 | S284 | ochoa | Ephrin-B2 (EPH-related receptor tyrosine kinase ligand 5) (LERK-5) (HTK ligand) (HTK-L) | Cell surface transmembrane ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Binds to receptor tyrosine kinase including EPHA4, EPHA3 and EPHB4. Together with EPHB4 plays a central role in heart morphogenesis and angiogenesis through regulation of cell adhesion and cell migration. EPHB4-mediated forward signaling controls cellular repulsion and segregation from EFNB2-expressing cells. May play a role in constraining the orientation of longitudinally projecting axons. {ECO:0000269|PubMed:12734395}.; FUNCTION: (Microbial infection) Acts as a receptor for Hendra virus and Nipah virus. {ECO:0000269|PubMed:15998730, ECO:0000269|PubMed:16007075, ECO:0000269|PubMed:16477309, ECO:0000269|PubMed:17376907}. |
P53814 | SMTN | S689 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P54296 | MYOM2 | S737 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P55201 | BRPF1 | S577 | ochoa | Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}. |
P55209 | NAP1L1 | S69 | ochoa | Nucleosome assembly protein 1-like 1 (NAP-1-related protein) (hNRP) | Histone chaperone that plays a role in the nuclear import of H2A-H2B and nucleosome assembly (PubMed:20002496, PubMed:21211722, PubMed:26841755). Also participates in several important DNA repair mechanisms: greatly enhances ERCC6-mediated chromatin remodeling which is essential for transcription-coupled nucleotide excision DNA repair (PubMed:28369616). Also stimulates homologous recombination (HR) by RAD51 and RAD54 which is essential in mitotic DNA double strand break (DSB) repair (PubMed:24798879). Plays a key role in the regulation of embryonic neurogenesis (By similarity). Promotes the proliferation of neural progenitors and inhibits neuronal differentiation during cortical development (By similarity). Regulates neurogenesis via the modulation of RASSF10; regulates RASSF10 expression by promoting SETD1A-mediated H3K4 methylation at the RASSF10 promoter (By similarity). {ECO:0000250|UniProtKB:P28656, ECO:0000269|PubMed:20002496, ECO:0000269|PubMed:21211722, ECO:0000269|PubMed:24798879, ECO:0000269|PubMed:26841755, ECO:0000269|PubMed:28369616}.; FUNCTION: (Microbial infection) Positively regulates Epstein-Barr virus reactivation in epithelial cells through the induction of viral BZLF1 expression. {ECO:0000269|PubMed:23691099}.; FUNCTION: (Microbial infection) Together with human herpesvirus 8 protein LANA1, assists the proper assembly of the nucleosome on the replicated viral DNA. {ECO:0000269|PubMed:27599637}. |
P55316 | FOXG1 | S19 | psp | Forkhead box protein G1 (Brain factor 1) (BF-1) (BF1) (Brain factor 2) (BF-2) (BF2) (hBF-2) (Forkhead box protein G1A) (Forkhead box protein G1B) (Forkhead box protein G1C) (Forkhead-related protein FKHL1) (HFK1) (Forkhead-related protein FKHL2) (HFK2) (Forkhead-related protein FKHL3) (HFK3) | Transcription repression factor which plays an important role in the establishment of the regional subdivision of the developing brain and in the development of the telencephalon. {ECO:0000269|PubMed:12657635}. |
P55795 | HNRNPH2 | S281 | ochoa | Heterogeneous nuclear ribonucleoprotein H2 (hnRNP H2) (FTP-3) (Heterogeneous nuclear ribonucleoprotein H') (hnRNP H') [Cleaved into: Heterogeneous nuclear ribonucleoprotein H2, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Binds poly(RG). |
P56962 | STX17 | S202 | psp | Syntaxin-17 | SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion (PubMed:23217709, PubMed:25686604, PubMed:28306502). STX17 is a SNARE of the autophagosome involved in autophagy through the direct control of autophagosome membrane fusion with the lysosome membrane (PubMed:23217709, PubMed:25686604, PubMed:28306502, PubMed:28504273). May also play a role in the early secretory pathway where it may maintain the architecture of the endoplasmic reticulum-Golgi intermediate compartment/ERGIC and Golgi and/or regulate transport between the endoplasmic reticulum, the ERGIC and the Golgi (PubMed:21545355). {ECO:0000269|PubMed:21545355, ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686604, ECO:0000269|PubMed:28306502, ECO:0000269|PubMed:28504273}. |
P57764 | GSDMD | S181 | ochoa | Gasdermin-D (Gasdermin domain-containing protein 1) [Cleaved into: Gasdermin-D, N-terminal (GSDMD-NT) (hGSDMD-NTD); Gasdermin-D, C-terminal (GSDMD-CT) (hGSDMD-CTD); Gasdermin-D, p13 (Gasdermin-D, 13 kDa) (13 kDa GSDMD); Gasdermin-D, p40] | [Gasdermin-D]: Precursor of a pore-forming protein that plays a key role in host defense against pathogen infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27281216). This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-D, N-terminal) binds to membranes and forms pores, triggering pyroptosis (PubMed:26375003, PubMed:26375259, PubMed:27281216). {ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216}.; FUNCTION: [Gasdermin-D, N-terminal]: Promotes pyroptosis in response to microbial infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27418190, PubMed:28392147, PubMed:32820063, PubMed:34289345, PubMed:38040708, PubMed:38530158, PubMed:38599239). Produced by the cleavage of gasdermin-D by inflammatory caspases CASP1, CASP4 or CASP5 in response to canonical, as well as non-canonical (such as cytosolic LPS) inflammasome activators (PubMed:26375003, PubMed:26375259, PubMed:27418190). After cleavage, moves to the plasma membrane where it strongly binds to inner leaflet lipids, including monophosphorylated phosphatidylinositols, such as phosphatidylinositol 4-phosphate, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate, as well as phosphatidylinositol (3,4,5)-bisphosphate, and more weakly to phosphatidic acid and phosphatidylserine (PubMed:27281216, PubMed:29898893, PubMed:36227980). Homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukin-1 (IL1B and IL18) and triggering pyroptosis (PubMed:27281216, PubMed:27418190, PubMed:29898893, PubMed:33883744, PubMed:38040708, PubMed:38530158, PubMed:38599239). Gasdermin pores also allow the release of mature caspase-7 (CASP7) (By similarity). In some, but not all, cells types, pyroptosis is followed by pyroptotic cell death, which is caused by downstream activation of ninjurin-1 (NINJ1), which mediates membrane rupture (cytolysis) (PubMed:33472215, PubMed:37198476). Also forms pores in the mitochondrial membrane, resulting in release of mitochondrial DNA (mtDNA) into the cytosol (By similarity). Gasdermin-D, N-terminal released from pyroptotic cells into the extracellular milieu rapidly binds to and kills both Gram-negative and Gram-positive bacteria, without harming neighboring mammalian cells, as it does not disrupt the plasma membrane from the outside due to lipid-binding specificity (PubMed:27281216). Under cell culture conditions, also active against intracellular bacteria, such as Listeria monocytogenes (By similarity). Also active in response to MAP3K7/TAK1 inactivation by Yersinia toxin YopJ, which triggers cleavage by CASP8 and subsequent activation (By similarity). Required for mucosal tissue defense against enteric pathogens (By similarity). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Strongly binds to bacterial and mitochondrial lipids, including cardiolipin (PubMed:27281216). Does not bind to unphosphorylated phosphatidylinositol, phosphatidylethanolamine nor phosphatidylcholine (PubMed:27281216). {ECO:0000250|UniProtKB:Q9D8T2, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:27418190, ECO:0000269|PubMed:28392147, ECO:0000269|PubMed:29898893, ECO:0000269|PubMed:32820063, ECO:0000269|PubMed:33472215, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:36227980, ECO:0000269|PubMed:37198476, ECO:0000269|PubMed:38040708, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.; FUNCTION: [Gasdermin-D, p13]: Transcription coactivator produced by the cleavage by CASP3 or CASP7 in the upper small intestine in response to dietary antigens (By similarity). Required to maintain food tolerance in small intestine: translocates to the nucleus and acts as a coactivator for STAT1 to induce the transcription of CIITA and MHC class II molecules, which in turn induce type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:Q9D8T2}.; FUNCTION: [Gasdermin-D, p40]: Produced by the cleavage by papain allergen (PubMed:35794369). After cleavage, moves to the plasma membrane and homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the specific release of mature interleukin-33 (IL33), promoting type 2 inflammatory immune response (PubMed:35794369). {ECO:0000269|PubMed:35794369}. |
P61026 | RAB10 | S77 | ochoa | Ras-related protein Rab-10 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:21248164). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:21248164). That Rab is mainly involved in the biosynthetic transport of proteins from the Golgi to the plasma membrane (PubMed:21248164). Regulates, for instance, SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane (By similarity). In parallel, it regulates the transport of TLR4, a toll-like receptor to the plasma membrane and therefore may be important for innate immune response (By similarity). Also plays a specific role in asymmetric protein transport to the plasma membrane (PubMed:16641372). In neurons, it is involved in axonogenesis through regulation of vesicular membrane trafficking toward the axonal plasma membrane (By similarity). In epithelial cells, it regulates transport from the Golgi to the basolateral membrane (PubMed:16641372). May play a role in the basolateral recycling pathway and in phagosome maturation (By similarity). May play a role in endoplasmic reticulum dynamics and morphology controlling tubulation along microtubules and tubules fusion (PubMed:23263280). Together with LRRK2, RAB8A, and RILPL1, it regulates ciliogenesis (PubMed:30398148). When phosphorylated by LRRK2 on Thr-73, binds RILPL1 and inhibits ciliogenesis (PubMed:30398148). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation where it promotes the extracellular release of lysosomal content through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P24409, ECO:0000250|UniProtKB:P61027, ECO:0000269|PubMed:16641372, ECO:0000269|PubMed:21248164, ECO:0000269|PubMed:23263280, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}.; FUNCTION: (Microbial infection) Upon Legionella pneumophila infection promotes endoplasmic reticulum recruitment and bacterial replication. Plays a role in remodeling the Legionella-containing vacuole (LCV) into an endoplasmic reticulum-like vacuole. {ECO:0000269|PubMed:31540829}. |
P61247 | RPS3A | S154 | ochoa | Small ribosomal subunit protein eS1 (40S ribosomal protein S3a) (v-fos transformation effector protein) (Fte-1) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity). {ECO:0000255|HAMAP-Rule:MF_03122, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P62873 | GNB1 | S31 | ochoa | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 (Transducin beta chain 1) | Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems (PubMed:29925951, PubMed:33762731, PubMed:34239069, PubMed:35610220, PubMed:35714614, PubMed:35835867, PubMed:36087581, PubMed:36989299, PubMed:37327704, PubMed:37935376, PubMed:37935377, PubMed:37963465, PubMed:37991948, PubMed:38168118, PubMed:38552625). The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (PubMed:29925951, PubMed:33762731, PubMed:34239069, PubMed:35610220, PubMed:35714614, PubMed:35835867, PubMed:36087581, PubMed:36989299, PubMed:37327704, PubMed:37935376, PubMed:37935377, PubMed:37963465, PubMed:38168118, PubMed:38552625). {ECO:0000269|PubMed:29925951, ECO:0000269|PubMed:33762731, ECO:0000269|PubMed:34239069, ECO:0000269|PubMed:35610220, ECO:0000269|PubMed:35714614, ECO:0000269|PubMed:35835867, ECO:0000269|PubMed:36087581, ECO:0000269|PubMed:36989299, ECO:0000269|PubMed:37327704, ECO:0000269|PubMed:37935376, ECO:0000269|PubMed:37935377, ECO:0000269|PubMed:37963465, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:38168118, ECO:0000269|PubMed:38552625}. |
P62910 | RPL32 | S105 | ochoa | Large ribosomal subunit protein eL32 (60S ribosomal protein L32) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P63244 | RACK1 | S278 | ochoa|psp | Small ribosomal subunit protein RACK1 (Cell proliferation-inducing gene 21 protein) (Guanine nucleotide-binding protein subunit beta-2-like 1) (Guanine nucleotide-binding protein subunit beta-like protein 12.3) (Human lung cancer oncogene 7 protein) (HLC-7) (Receptor for activated C kinase) (Receptor of activated protein C kinase 1) [Cleaved into: Small ribosomal subunit protein RACK1, N-terminally processed (Guanine nucleotide-binding protein subunit beta-2-like 1, N-terminally processed) (Receptor of activated protein C kinase 1, N-terminally processed)] | Scaffolding protein involved in the recruitment, assembly and/or regulation of a variety of signaling molecules. Interacts with a wide variety of proteins and plays a role in many cellular processes. Component of the 40S ribosomal subunit involved in translational repression (PubMed:23636399). Involved in the initiation of the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, by promoting ubiquitination of a subset of 40S ribosomal subunits (PubMed:28132843). Binds to and stabilizes activated protein kinase C (PKC), increasing PKC-mediated phosphorylation. May recruit activated PKC to the ribosome, leading to phosphorylation of EIF6. Inhibits the activity of SRC kinases including SRC, LCK and YES1. Inhibits cell growth by prolonging the G0/G1 phase of the cell cycle. Enhances phosphorylation of BMAL1 by PRKCA and inhibits transcriptional activity of the BMAL1-CLOCK heterodimer. Facilitates ligand-independent nuclear translocation of AR following PKC activation, represses AR transactivation activity and is required for phosphorylation of AR by SRC. Modulates IGF1R-dependent integrin signaling and promotes cell spreading and contact with the extracellular matrix. Involved in PKC-dependent translocation of ADAM12 to the cell membrane. Promotes the ubiquitination and proteasome-mediated degradation of proteins such as CLEC1B and HIF1A. Required for VANGL2 membrane localization, inhibits Wnt signaling, and regulates cellular polarization and oriented cell division during gastrulation. Required for PTK2/FAK1 phosphorylation and dephosphorylation. Regulates internalization of the muscarinic receptor CHRM2. Promotes apoptosis by increasing oligomerization of BAX and disrupting the interaction of BAX with the anti-apoptotic factor BCL2L. Inhibits TRPM6 channel activity. Regulates cell surface expression of some GPCRs such as TBXA2R. Plays a role in regulation of FLT1-mediated cell migration. Involved in the transport of ABCB4 from the Golgi to the apical bile canalicular membrane (PubMed:19674157). Promotes migration of breast carcinoma cells by binding to and activating RHOA (PubMed:20499158). Acts as an adapter for the dephosphorylation and inactivation of AKT1 by promoting recruitment of PP2A phosphatase to AKT1 (By similarity). {ECO:0000250|UniProtKB:P68040, ECO:0000269|PubMed:11884618, ECO:0000269|PubMed:12589061, ECO:0000269|PubMed:12958311, ECO:0000269|PubMed:17108144, ECO:0000269|PubMed:17244529, ECO:0000269|PubMed:17956333, ECO:0000269|PubMed:18088317, ECO:0000269|PubMed:18258429, ECO:0000269|PubMed:18621736, ECO:0000269|PubMed:19423701, ECO:0000269|PubMed:19674157, ECO:0000269|PubMed:19785988, ECO:0000269|PubMed:20499158, ECO:0000269|PubMed:20541605, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:20976005, ECO:0000269|PubMed:21212275, ECO:0000269|PubMed:21347310, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:9584165}.; FUNCTION: (Microbial infection) Binds to Y.pseudotuberculosis yopK which leads to inhibition of phagocytosis and survival of bacteria following infection of host cells. {ECO:0000269|PubMed:21347310}.; FUNCTION: (Microbial infection) Enhances phosphorylation of HIV-1 Nef by PKCs. {ECO:0000269|PubMed:11312657}.; FUNCTION: (Microbial infection) In case of poxvirus infection, remodels the ribosomes so that they become optimal for the viral mRNAs (containing poly-A leaders) translation but not for host mRNAs. {ECO:0000269|PubMed:28636603}.; FUNCTION: (Microbial infection) Contributes to the cap-independent internal ribosome entry site (IRES)-mediated translation by some RNA viruses. {ECO:0000269|PubMed:25416947}. |
P78368 | CSNK1G2 | S381 | ochoa | Casein kinase I isoform gamma-2 (CKI-gamma 2) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling (By similarity). Phosphorylates COL4A3BP/CERT, MTA1 and SMAD3. SMAD3 phosphorylation promotes its ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Hyperphosphorylation of the serine-repeat motif of COL4A3BP/CERT leads to its inactivation by dissociation from the Golgi complex, thus down-regulating ER-to-Golgi transport of ceramide and sphingomyelin synthesis. Triggers PER1 proteasomal degradation probably through phosphorylation (PubMed:15077195, PubMed:15917222, PubMed:18794808, PubMed:19005213). Involved in brain development and vesicular trafficking and neurotransmitter releasing from small synaptic vesicles. Regulates fast synaptic transmission mediated by glutamate (By similarity). Involved in regulation of reactive oxygen species (ROS) levels (PubMed:37099597). {ECO:0000250|UniProtKB:P48729, ECO:0000250|UniProtKB:Q8BVP5, ECO:0000269|PubMed:15077195, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:18794808, ECO:0000269|PubMed:19005213, ECO:0000269|PubMed:37099597}. |
P78527 | PRKDC | S2053 | psp | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78527 | PRKDC | S2117 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
Q02539 | H1-1 | S107 | ochoa | Histone H1.1 (Histone H1a) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
Q03001 | DST | S2514 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03052 | POU3F1 | S326 | ochoa | POU domain, class 3, transcription factor 1 (Octamer-binding protein 6) (Oct-6) (Octamer-binding transcription factor 6) (OTF-6) (POU domain transcription factor SCIP) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). Acts as a transcriptional repressor of myelin-specific genes (By similarity). {ECO:0000250|UniProtKB:P20267, ECO:0000250|UniProtKB:P21952}. |
Q03188 | CENPC | S52 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q04721 | NOTCH2 | S1854 | ochoa | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
Q05193 | DNM1 | S347 | psp | Dynamin-1 (EC 3.6.5.5) (Dynamin) (Dynamin I) | Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission and participates in many forms of endocytosis, such as clathrin-mediated endocytosis or synaptic vesicle endocytosis as well as rapid endocytosis (RE) (PubMed:15703209, PubMed:20428113, PubMed:29668686, PubMed:8101525, PubMed:8910402, PubMed:9362482). Associates to the membrane, through lipid binding, and self-assembles into rings and stacks of interconnected rings through oligomerization to form a helical polymer around the vesicle membrane leading to constriction of invaginated coated pits around their necks (PubMed:30069048, PubMed:7877694, PubMed:9922133). Self-assembly of the helical polymer induces membrane tubules narrowing until the polymer reaches a length sufficient to trigger GTP hydrolysis (PubMed:19084269). Depending on the curvature imposed on the tubules, membrane detachment from the helical polymer upon GTP hydrolysis can cause spontaneous hemifission followed by complete fission (PubMed:19084269). May play a role in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells through its activation by dephosphorylation via the signaling downstream of EGFR (PubMed:29668686). Controls vesicle size at a step before fission, during formation of membrane pits, at hippocampal synapses (By similarity). Controls plastic adaptation of the synaptic vesicle recycling machinery to high levels of activity (By similarity). Mediates rapid endocytosis (RE), a Ca(2+)-dependent and clathrin- and K(+)-independent process in chromaffin cells (By similarity). Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP (By similarity). Through its interaction with DNAJC6, acts during the early steps of clathrin-coated vesicle (CCV) formation (PubMed:12791276). {ECO:0000250|UniProtKB:P39053, ECO:0000250|UniProtKB:Q08DF4, ECO:0000269|PubMed:12791276, ECO:0000269|PubMed:15703209, ECO:0000269|PubMed:19084269, ECO:0000269|PubMed:20428113, ECO:0000269|PubMed:29668686, ECO:0000269|PubMed:30069048, ECO:0000269|PubMed:7877694, ECO:0000269|PubMed:8101525, ECO:0000269|PubMed:8910402, ECO:0000269|PubMed:9362482, ECO:0000269|PubMed:9922133}. |
Q05397 | PTK2 | S843 | ochoa|psp | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q05397 | PTK2 | S850 | ochoa | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q06587 | RING1 | S38 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q07092 | COL16A1 | S260 | ochoa | Collagen alpha-1(XVI) chain | Involved in mediating cell attachment and inducing integrin-mediated cellular reactions, such as cell spreading and alterations in cell morphology. {ECO:0000269|PubMed:16754661}. |
Q07869 | PPARA | S179 | psp | Peroxisome proliferator-activated receptor alpha (PPAR-alpha) (Nuclear receptor subfamily 1 group C member 1) | Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as a transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2. {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:24043310, ECO:0000269|PubMed:7629123, ECO:0000269|PubMed:7684926, ECO:0000269|PubMed:9556573}. |
Q09666 | AHNAK | S5530 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q10571 | MN1 | S1034 | ochoa | Transcriptional activator MN1 (Probable tumor suppressor protein MN1) | Transcriptional activator which specifically regulates expression of TBX22 in the posterior region of the developing palate. Required during later stages of palate development for growth and medial fusion of the palatal shelves. Promotes maturation and normal function of calvarial osteoblasts, including expression of the osteoclastogenic cytokine TNFSF11/RANKL. Necessary for normal development of the membranous bones of the skull (By similarity). May play a role in tumor suppression (Probable). {ECO:0000250|UniProtKB:D3YWE6, ECO:0000305|PubMed:7731706}. |
Q12789 | GTF3C1 | S1063 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12888 | TP53BP1 | S1160 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12923 | PTPN13 | S908 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12929 | EPS8 | S775 | psp | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q13200 | PSMD2 | S436 | ochoa | 26S proteasome non-ATPase regulatory subunit 2 (26S proteasome regulatory subunit RPN1) (26S proteasome regulatory subunit S2) (26S proteasome subunit p97) (Protein 55.11) (Tumor necrosis factor type 1 receptor-associated protein 2) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}.; FUNCTION: Binds to the intracellular domain of tumor necrosis factor type 1 receptor. The binding domain of TRAP1 and TRAP2 resides outside the death domain of TNFR1. |
Q13224 | GRIN2B | S1415 | psp | Glutamate receptor ionotropic, NMDA 2B (GluN2B) (Glutamate [NMDA] receptor subunit epsilon-2) (N-methyl D-aspartate receptor subtype 2B) (NMDAR2B) (NR2B) (N-methyl-D-aspartate receptor subunit 3) (NR3) (hNR3) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). Participates in synaptic plasticity for learning and memory formation by contributing to the long-term depression (LTD) of hippocampus membrane currents (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). {ECO:0000250|UniProtKB:P35438, ECO:0000250|UniProtKB:Q01097, ECO:0000269|PubMed:24272827, ECO:0000269|PubMed:24863970, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27839871, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}. |
Q13283 | G3BP1 | S47 | ochoa | Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) | Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}. |
Q13393 | PLD1 | S540 | ochoa | Phospholipase D1 (PLD 1) (hPLD1) (EC 3.1.4.4) (Choline phosphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D1) | Function as phospholipase selective for phosphatidylcholine (PubMed:25936805, PubMed:8530346, PubMed:9582313). Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity). {ECO:0000250|UniProtKB:Q9Z280, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:8530346, ECO:0000269|PubMed:9582313}. |
Q13625 | TP53BP2 | S611 | ochoa | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q14008 | CKAP5 | S1995 | ochoa | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
Q14126 | DSG2 | S911 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14126 | DSG2 | S1068 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14409 | GK3 | S125 | ochoa | Glycerol kinase 3 (GK 3) (Glycerokinase 3) (EC 2.7.1.30) (ATP:glycerol 3-phosphotransferase 3) (Glycerol kinase 3 pseudogene) (Glycerol kinase, testis specific 1) | May be involved in the regulation of glycerol uptake and metabolism. {ECO:0000305}. |
Q14457 | BECN1 | S409 | ochoa|psp | Beclin-1 (Coiled-coil myosin-like BCL2-interacting protein) (Protein GT197) [Cleaved into: Beclin-1-C 35 kDa; Beclin-1-C 37 kDa] | Plays a central role in autophagy (PubMed:18570871, PubMed:21358617, PubMed:23184933, PubMed:23974797, PubMed:25484083, PubMed:28445460, PubMed:37776275). Acts as a core subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and required for the abscission step in cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20208530, PubMed:20643123, PubMed:23974797, PubMed:26783301). Essential for the formation of PI3KC3-C2 but not PI3KC3-C1 PI3K complex forms. Involved in endocytosis (PubMed:25275521). May play a role in antiviral host defense. {ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20208530, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23974797, ECO:0000269|PubMed:25275521, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:37776275, ECO:0000269|PubMed:9765397}.; FUNCTION: Beclin-1-C 35 kDa localized to mitochondria can promote apoptosis; it induces the mitochondrial translocation of BAX and the release of proapoptotic factors. {ECO:0000269|PubMed:21364619, ECO:0000269|PubMed:26263979}.; FUNCTION: (Microbial infection) Protects against infection by a neurovirulent strain of Sindbis virus. {ECO:0000269|PubMed:9765397}. |
Q14517 | FAT1 | S4285 | ochoa | Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] | [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}. |
Q14524 | SCN5A | S1934 | psp | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14527 | HLTF | S188 | ochoa | Helicase-like transcription factor (EC 2.3.2.27) (EC 3.6.4.-) (DNA-binding protein/plasminogen activator inhibitor 1 regulator) (HIP116) (RING finger protein 80) (RING-type E3 ubiquitin transferase HLTF) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3) (Sucrose nonfermenting protein 2-like 3) | Has both helicase and E3 ubiquitin ligase activities. Possesses intrinsic ATP-dependent nucleosome-remodeling activity; This activity may be required for transcriptional activation or repression of specific target promoters (By similarity). These may include the SERPINE1 and HIV-1 promoters and the SV40 enhancer, to which this protein can bind directly. Plays a role in error-free postreplication repair (PRR) of damaged DNA and maintains genomic stability through acting as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. {ECO:0000250, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:18316726, ECO:0000269|PubMed:18719106, ECO:0000269|PubMed:7876228, ECO:0000269|PubMed:8672239, ECO:0000269|PubMed:9126292}. |
Q14644 | RASA3 | S282 | ochoa | Ras GTPase-activating protein 3 (GAP1(IP4BP)) (Ins P4-binding protein) | Inhibitory regulator of the Ras-cyclic AMP pathway. Binds inositol tetrakisphosphate (IP4) with high affinity. Might be a specific IP4 receptor. |
Q14680 | MELK | S338 | ochoa | Maternal embryonic leucine zipper kinase (hMELK) (EC 2.7.11.1) (Protein kinase Eg3) (pEg3 kinase) (Protein kinase PK38) (hPK38) (Tyrosine-protein kinase MELK) (EC 2.7.10.2) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, self-renewal of stem cells, apoptosis and splicing regulation. Has a broad substrate specificity; phosphorylates BCL2L14, CDC25B, MAP3K5/ASK1 and ZNF622. Acts as an activator of apoptosis by phosphorylating and activating MAP3K5/ASK1. Acts as a regulator of cell cycle, notably by mediating phosphorylation of CDC25B, promoting localization of CDC25B to the centrosome and the spindle poles during mitosis. Plays a key role in cell proliferation and carcinogenesis. Required for proliferation of embryonic and postnatal multipotent neural progenitors. Phosphorylates and inhibits BCL2L14, possibly leading to affect mammary carcinogenesis by mediating inhibition of the pro-apoptotic function of BCL2L14. Also involved in the inhibition of spliceosome assembly during mitosis by phosphorylating ZNF622, thereby contributing to its redirection to the nucleus. May also play a role in primitive hematopoiesis. {ECO:0000269|PubMed:11802789, ECO:0000269|PubMed:12400006, ECO:0000269|PubMed:14699119, ECO:0000269|PubMed:15908796, ECO:0000269|PubMed:16216881, ECO:0000269|PubMed:17280616}. |
Q14761 | PTPRCAP | S99 | ochoa|psp | Protein tyrosine phosphatase receptor type C-associated protein (PTPRC-associated protein) (CD45-associated protein) (CD45-AP) (Lymphocyte phosphatase-associated phosphoprotein) | None |
Q15042 | RAB3GAP1 | S537 | ochoa | Rab3 GTPase-activating protein catalytic subunit (RAB3 GTPase-activating protein 130 kDa subunit) (Rab3-GAP p130) (Rab3-GAP) | Catalytic subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:10859313, PubMed:24891604, PubMed:9030515). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (PubMed:10859313). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (PubMed:15696165). The Rab3GAP complex, acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (PubMed:15696165, PubMed:23420520). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (PubMed:9030515, PubMed:9852129). {ECO:0000269|PubMed:10859313, ECO:0000269|PubMed:15696165, ECO:0000269|PubMed:23420520, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9030515, ECO:0000269|PubMed:9852129}. |
Q15080 | NCF4 | S315 | psp | Neutrophil cytosol factor 4 (NCF-4) (Neutrophil NADPH oxidase factor 4) (SH3 and PX domain-containing protein 4) (p40-phox) (p40phox) | Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (Probable). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (By similarity). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (By similarity). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (By similarity). {ECO:0000250|UniProtKB:P04839, ECO:0000250|UniProtKB:P14598, ECO:0000305|PubMed:8280052}. |
Q15124 | PGM5 | S221 | ochoa | Phosphoglucomutase-like protein 5 (Aciculin) (Phosphoglucomutase-related protein) (PGM-RP) | Component of adherens-type cell-cell and cell-matrix junctions (PubMed:8175905). Has no phosphoglucomutase activity in vitro (PubMed:8175905). {ECO:0000269|PubMed:8175905}. |
Q15149 | PLEC | S2755 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S3036 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S3580 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15155 | NOMO1 | S1202 | ochoa | BOS complex subunit NOMO1 (Nodal modulator 1) (pM5 protein) | Component of the multi-pass translocon (MPT) complex that mediates insertion of multi-pass membrane proteins into the lipid bilayer of membranes (PubMed:32820719, PubMed:36261522). The MPT complex takes over after the SEC61 complex: following membrane insertion of the first few transmembrane segments of proteins by the SEC61 complex, the MPT complex occludes the lateral gate of the SEC61 complex to promote insertion of subsequent transmembrane regions (PubMed:36261522). {ECO:0000269|PubMed:32820719, ECO:0000269|PubMed:36261522}. |
Q15582 | TGFBI | S649 | ochoa | Transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) (Kerato-epithelin) (RGD-containing collagen-associated protein) (RGD-CAP) | Plays a role in cell adhesion (PubMed:8024701). May play a role in cell-collagen interactions (By similarity). {ECO:0000250|UniProtKB:O11780, ECO:0000269|PubMed:8024701}. |
Q15637 | SF1 | S267 | ochoa | Splicing factor 1 (Mammalian branch point-binding protein) (BBP) (mBBP) (Transcription factor ZFM1) (Zinc finger gene in MEN1 locus) (Zinc finger protein 162) | Necessary for the ATP-dependent first step of spliceosome assembly. Binds to the intron branch point sequence (BPS) 5'-UACUAAC-3' of the pre-mRNA. May act as transcription repressor. {ECO:0000269|PubMed:10449420, ECO:0000269|PubMed:8752089, ECO:0000269|PubMed:9660765}. |
Q15648 | MED1 | S887 | psp | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15678 | PTPN14 | S486 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15785 | TOMM34 | S153 | ochoa | Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) | Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}. |
Q16531 | DDB1 | S661 | ochoa | DNA damage-binding protein 1 (DDB p127 subunit) (DNA damage-binding protein a) (DDBa) (Damage-specific DNA-binding protein 1) (HBV X-associated protein 1) (XAP-1) (UV-damaged DNA-binding factor) (UV-damaged DNA-binding protein 1) (UV-DDB 1) (XPE-binding factor) (XPE-BF) (Xeroderma pigmentosum group E-complementing protein) (XPCe) | Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:14739464, PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16407252, PubMed:16482215, PubMed:16940174, PubMed:17079684). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). Also functions as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355, PubMed:28886238). The functional specificity of the DCX E3 ubiquitin-protein ligase complex is determined by the variable substrate recognition component recruited by DDB1 (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355). DCX(DDB2) (also known as DDB1-CUL4-ROC1, CUL4-DDB-ROC1 and CUL4-DDB-RBX1) may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). DCX(DDB2) also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:17041588). DCX(ERCC8) (the CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). DDB1-mediated CRY1 degradation promotes FOXO1 protein stability and FOXO1-mediated gluconeogenesis in the liver (By similarity). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). Maternal factor required for proper zygotic genome activation and genome reprogramming (By similarity). {ECO:0000250|UniProtKB:Q3U1J4, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16407242, ECO:0000269|PubMed:16407252, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16482215, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:16940174, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:17079684, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18381890, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19966799, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:25043012, ECO:0000269|PubMed:25108355, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:28886238, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:38316879}. |
Q16655 | MLANA | S87 | ochoa | Melanoma antigen recognized by T-cells 1 (MART-1) (Antigen LB39-AA) (Antigen SK29-AA) (Protein Melan-A) | Involved in melanosome biogenesis by ensuring the stability of GPR143. Plays a vital role in the expression, stability, trafficking, and processing of melanocyte protein PMEL, which is critical to the formation of stage II melanosomes. {ECO:0000269|PubMed:15695812, ECO:0000269|PubMed:19717472}. |
Q16825 | PTPN21 | S492 | ochoa | Tyrosine-protein phosphatase non-receptor type 21 (EC 3.1.3.48) (Protein-tyrosine phosphatase D1) | None |
Q1W6H9 | FAM110C | S241 | ochoa | Protein FAM110C | May play a role in microtubule organization. May play a role in cell spreading and cell migration of epithelial cells; the function may involve the AKT1 signaling pathway. {ECO:0000269|PubMed:17499476, ECO:0000269|PubMed:19698782}. |
Q2LD37 | BLTP1 | S1971 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q3KQU3 | MAP7D1 | S254 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q460N5 | PARP14 | S1408 | ochoa | Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins (PubMed:16061477, PubMed:18851833, PubMed:25043379, PubMed:27796300). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation (PubMed:27796300). However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703' (PubMed:29858569). Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription (PubMed:27796300). In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation (PubMed:27796300). Mono-ADP-ribosylates PARP9 (PubMed:27796300). {ECO:0000269|PubMed:16061477, ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27796300, ECO:0000305|PubMed:29858569}. |
Q4AC94 | C2CD3 | S301 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4KMP7 | TBC1D10B | S318 | ochoa | TBC1 domain family member 10B (Rab27A-GAP-beta) | Acts as a GTPase-activating protein for RAB3A, RAB22A, RAB27A, and RAB35. Does not act on RAB2A and RAB6A. {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:19077034}. |
Q53F19 | NCBP3 | S73 | ochoa | Nuclear cap-binding protein subunit 3 (Protein ELG) | Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}. |
Q5BKX8 | CAVIN4 | S258 | ochoa | Caveolae-associated protein 4 (Muscle-related coiled-coil protein) (Muscle-restricted coiled-coil protein) | Modulates the morphology of formed caveolae in cardiomyocytes, but is not required for caveolar formation. Facilitates the recruitment of MAPK1/3 to caveolae within cardiomyocytes and regulates alpha-1 adrenergic receptor-induced hypertrophic responses in cardiomyocytes through MAPK1/3 activation. Contributes to proper membrane localization and stabilization of caveolin-3 (CAV3) in cardiomyocytes (By similarity). Induces RHOA activation and activates NPPA transcription and myofibrillar organization through the Rho/ROCK signaling pathway (PubMed:18332105). {ECO:0000250|UniProtKB:A2AMM0, ECO:0000269|PubMed:18332105}. |
Q5JXC2 | MIIP | S307 | ochoa | Migration and invasion-inhibitory protein (IGFBP2-binding protein) (Invasion-inhibitory protein 45) (IIp45) | Inhibits glioma cells invasion and down-regulates adhesion- and motility-associated genes such as NFKB2 and ICAM1. Exhibits opposing effects to IGFBP2 on cell invasion. {ECO:0000269|PubMed:14617774}. |
Q5M775 | SPECC1 | S935 | ochoa | Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) | None |
Q5PRF9 | SAMD4B | S557 | ochoa | Protein Smaug homolog 2 (Smaug 2) (hSmaug2) (Sterile alpha motif domain-containing protein 4B) (SAM domain-containing protein 4B) | Has transcriptional repressor activity. Overexpression inhibits the transcriptional activities of AP-1, p53/TP53 and CDKN1A. {ECO:0000269|PubMed:20510020}. |
Q5SW79 | CEP170 | S354 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T5X7 | BEND3 | S68 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5T7B8 | KIF24 | S524 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5TCZ1 | SH3PXD2A | S795 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5U3C3 | TMEM164 | S74 | ochoa | Transmembrane protein 164 (Arachidonoyl ether phospholipid synthase) | Positive regulator of ferroptosis (PubMed:35947500, PubMed:36782012). Involved in the acylation of ether lysophospholipids with the arachidonoyl chain (5Z,8Z,11Z,14Z-eicosatetraenoyl; C20:4) of diacylglycerophospholipids, generating C20:4 ether glycerophospholipids (ePEs) such as 1-(1Z-octadecenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine (PE (P-18:0/20:4)), which promotes ferroptosis (PubMed:36782012). Selectively mediates ATG5-dependent autophagosome formation during ferroptosis, rather than during starvation, and regulates the degradation of ferritin, GPX4 and lipid droplets to increase iron accumulation and lipid peroxidation, thereby promoting ferroptotic cell death (PubMed:35947500). {ECO:0000269|PubMed:35947500, ECO:0000269|PubMed:36782012}. |
Q5UE93 | PIK3R6 | S663 | ochoa | Phosphoinositide 3-kinase regulatory subunit 6 (Phosphoinositide 3-kinase gamma adapter protein of 87 kDa) (p84 PI3K adapter protein) (p84 PIKAP) (p87 PI3K adapter protein) (p87PIKAP) | Regulatory subunit of the PI3K gamma complex. Acts as an adapter to drive activation of PIK3CG by beta-gamma G protein dimers. The PIK3CG:PIK3R6 heterodimer is much less sensitive to beta-gamma G protein dimers than PIK3CG:PIK3R5 and its membrane recruitment and beta-gamma G protein dimer-dependent activation requires HRAS bound to PIK3CG. Recruits of the PI3K gamma complex to a PDE3B:RAPGEF3 signaling complex involved in angiogenesis; signaling seems to involve RRAS. {ECO:0000269|PubMed:21393242}. |
Q5UIP0 | RIF1 | S983 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S1008 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S1663 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VST9 | OBSCN | S2326 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT25 | CDC42BPA | S234 | psp | Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}. |
Q5VZ89 | DENND4C | S908 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5W0V3 | FHIP2A | S190 | ochoa | FHF complex subunit HOOK interacting protein 2A (FHIP2A) | Required for proper functioning of the nervous system. {ECO:0000269|PubMed:31353455}. |
Q5XKK7 | FAM219B | S140 | ochoa | Protein FAM219B | None |
Q658Y4 | FAM91A1 | S309 | ochoa | Protein FAM91A1 | As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1. {ECO:0000269|PubMed:29426865}. |
Q66K74 | MAP1S | S321 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q68EM7 | ARHGAP17 | S161 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6DN90 | IQSEC1 | S512 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6IBW4 | NCAPH2 | S376 | psp | Condensin-2 complex subunit H2 (Chromosome-associated protein H2) (hCAP-H2) (Kleisin-beta) (Non-SMC condensin II complex subunit H2) | Regulatory subunit of the condensin-2 complex, a complex that seems to provide chromosomes with an additional level of organization and rigidity and in establishing mitotic chromosome architecture (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of chromatin bridges at anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (By similarity). Seems to have lineage-specific role in T-cell development (PubMed:14532007). {ECO:0000250|UniProtKB:Q8BSP2, ECO:0000269|PubMed:14532007}. |
Q6IQ32 | ADNP2 | S869 | ochoa | Activity-dependent neuroprotector homeobox protein 2 (ADNP homeobox protein 2) (Zinc finger protein 508) | May be involved in transcriptional regulation. May play a role in neuronal function; perhaps involved in protection of brain tissues from oxidative stress. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q8CHC8}. |
Q6P0N0 | MIS18BP1 | S860 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P0Q8 | MAST2 | S290 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P5W5 | SLC39A4 | S469 | ochoa | Zinc transporter ZIP4 (Solute carrier family 39 member 4) (Zrt- and Irt-like protein 4) (ZIP-4) | Selective transporter that mediates the uptake of Zn(2+) (PubMed:17202136, PubMed:22242765, PubMed:27321477, PubMed:28875161, PubMed:31164399, PubMed:31914589, PubMed:31979155, PubMed:33837739, PubMed:36473915). Plays an essential role for dietary zinc uptake from small intestine (By similarity). The Zn(2+) uniporter activity is regulated by zinc availability (PubMed:17202136, PubMed:32348750). Also exhibits polyspecific binding and transport of Cu(2+), Cd(2+) and possibly Ni(2+) but at higher concentrations (PubMed:22242765, PubMed:31914589). {ECO:0000250|UniProtKB:Q78IQ7, ECO:0000269|PubMed:17202136, ECO:0000269|PubMed:22242765, ECO:0000269|PubMed:27321477, ECO:0000269|PubMed:28875161, ECO:0000269|PubMed:31164399, ECO:0000269|PubMed:31914589, ECO:0000269|PubMed:31979155, ECO:0000269|PubMed:32348750, ECO:0000269|PubMed:33837739, ECO:0000269|PubMed:36473915}. |
Q6PCB0 | VWA1 | S92 | ochoa | von Willebrand factor A domain-containing protein 1 | Promotes matrix assembly (By similarity). Involved in the organization of skeletal muscles and in the formation of neuromuscular junctions (Probable). {ECO:0000250|UniProtKB:Q8R2Z5, ECO:0000305|PubMed:33559681}. |
Q6PCB6 | ABHD17C | S211 | ochoa | Alpha/beta hydrolase domain-containing protein 17C (Abhydrolase domain-containing protein 17C) (EC 3.1.2.22) | Hydrolyzes fatty acids from S-acylated cysteine residues in proteins. Has depalmitoylating activity towards NRAS and DLG4/PSD95. {ECO:0000269|PubMed:26701913}. |
Q6PJF5 | RHBDF2 | S388 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6PJI9 | WDR59 | S750 | ochoa | GATOR2 complex protein WDR59 (WD repeat-containing protein 59) | As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027, PubMed:36577058). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:27487210). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027, ECO:0000269|PubMed:36577058}. |
Q6XZF7 | DNMBP | S516 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZVL6 | KIAA1549L | S1581 | ochoa | UPF0606 protein KIAA1549L | None |
Q70CQ2 | USP34 | S2401 | ochoa | Ubiquitin carboxyl-terminal hydrolase 34 (EC 3.4.19.12) (Deubiquitinating enzyme 34) (Ubiquitin thioesterase 34) (Ubiquitin-specific-processing protease 34) | Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins. {ECO:0000269|PubMed:21383061}. |
Q7L273 | KCTD9 | S318 | ochoa | BTB/POZ domain-containing protein KCTD9 | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex, which mediates the ubiquitination of target proteins, leading to their degradation by the proteasome. {ECO:0000305}. |
Q7L8J4 | SH3BP5L | S362 | ochoa | SH3 domain-binding protein 5-like (SH3BP-5-like) | Functions as a guanine nucleotide exchange factor (GEF) for RAB11A. {ECO:0000269|PubMed:30217979}. |
Q7L9B9 | EEPD1 | S428 | ochoa | Endonuclease/exonuclease/phosphatase family domain-containing protein 1 | None |
Q7LBC6 | KDM3B | S779 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7LDG7 | RASGRP2 | S123 | ochoa | RAS guanyl-releasing protein 2 (Calcium and DAG-regulated guanine nucleotide exchange factor I) (CalDAG-GEFI) (Cdc25-like protein) (hCDC25L) (F25B3.3 kinase-like protein) | Functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. May also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. Functions in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation. May function in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. {ECO:0000269|PubMed:10918068, ECO:0000269|PubMed:14702343, ECO:0000269|PubMed:17576779, ECO:0000269|PubMed:17702895, ECO:0000269|PubMed:24958846, ECO:0000269|PubMed:27235135}. |
Q7Z2D5 | PLPPR4 | S364 | ochoa | Phospholipid phosphatase-related protein type 4 (Brain-specific phosphatidic acid phosphatase-like protein 1) (Inactive 2-lysophosphatidate phosphatase PLPPR4) (Lipid phosphate phosphatase-related protein type 4) (Plasticity-related gene 1 protein) (PRG-1) | Postsynaptic density membrane protein that indirectly regulates glutamatergic synaptic transmission through lysophosphatidic acid (LPA)-mediated signaling pathways. Binds lysophosphatidic acid (LPA) and mediates its internalization into cells. Could act as receptor or a transporter of this lipid at the post-synaptic membrane (By similarity). Modulates lysophosphatidic acid (LPA) activity in neuron axonal outgrowth during development by attenuating phospholipid-induced axon collapse (By similarity). {ECO:0000250|UniProtKB:Q7TMB7, ECO:0000250|UniProtKB:Q7TME0}. |
Q7Z2W4 | ZC3HAV1 | S302 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z2W4 | ZC3HAV1 | S408 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z3E2 | CCDC186 | S747 | ochoa | Coiled-coil domain-containing protein 186 (CTCL tumor antigen HD-CL-01/L14-2) | None |
Q7Z5K2 | WAPL | S130 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z5K2 | WAPL | S305 | psp | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z6Z7 | HUWE1 | S3662 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z7L1 | SLFN11 | S142 | ochoa | Schlafen family member 11 (EC 3.1.-.-) | Inhibitor of DNA replication that promotes cell death in response to DNA damage (PubMed:22927417, PubMed:26658330, PubMed:29395061). Acts as a guardian of the genome by killing cells with defective replication (PubMed:29395061). Persistently blocks stressed replication forks by opening chromatin across replication initiation sites at stressed replication forks, possibly leading to unwind DNA ahead of the MCM helicase and block fork progression, ultimately leading to cell death (PubMed:29395061). Upon DNA damage, inhibits translation of ATR or ATM based on distinct codon usage without disrupting early DNA damage response signaling (PubMed:30374083). Antiviral restriction factor with manganese-dependent type II tRNA endoribonuclease (PubMed:36115853). A single tRNA molecule is bound and cleaved by the SLFN11 dimer (PubMed:36115853). Specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1) by acting as a specific inhibitor of the synthesis of retroviruses encoded proteins in a codon-usage-dependent manner (PubMed:23000900). Impairs the replication of human cytomegalovirus (HCMV) and some Flaviviruses (PubMed:35105802, PubMed:36115853). Exploits the unique viral codon bias towards A/T nucleotides (PubMed:23000900). Also acts as an interferon (IFN)-induced antiviral protein which acts as an inhibitor of retrovirus protein synthesis (PubMed:23000900). {ECO:0000269|PubMed:22927417, ECO:0000269|PubMed:23000900, ECO:0000269|PubMed:26658330, ECO:0000269|PubMed:29395061, ECO:0000269|PubMed:30374083, ECO:0000269|PubMed:35105802, ECO:0000269|PubMed:36115853}. |
Q86SG6 | NEK8 | S280 | ochoa | Serine/threonine-protein kinase Nek8 (EC 2.7.11.1) (Never in mitosis A-related kinase 8) (NimA-related protein kinase 8) (Nima-related protein kinase 12a) | Required for renal tubular integrity. May regulate local cytoskeletal structure in kidney tubule epithelial cells. May regulate ciliary biogenesis through targeting of proteins to the cilia (PubMed:37598857). Plays a role in organogenesis, and is involved in the regulation of the Hippo signaling pathway (PubMed:26967905). {ECO:0000269|PubMed:23418306, ECO:0000269|PubMed:26967905, ECO:0000269|PubMed:37598857}. |
Q86UU1 | PHLDB1 | S489 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86VP6 | CAND1 | S558 | ochoa | Cullin-associated NEDD8-dissociated protein 1 (Cullin-associated and neddylation-dissociated protein 1) (TBP-interacting protein of 120 kDa A) (TBP-interacting protein 120A) (p120 CAND1) | Key assembly factor of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complexes that promotes the exchange of the substrate-recognition F-box subunit in SCF complexes, thereby playing a key role in the cellular repertoire of SCF complexes. Acts as a F-box protein exchange factor. The exchange activity of CAND1 is coupled with cycles of neddylation conjugation: in the deneddylated state, cullin-binding CAND1 binds CUL1-RBX1, increasing dissociation of the SCF complex and promoting exchange of the F-box protein. Probably plays a similar role in other cullin-RING E3 ubiquitin ligase complexes. {ECO:0000269|PubMed:12504025, ECO:0000269|PubMed:12504026, ECO:0000269|PubMed:12609982, ECO:0000269|PubMed:16449638, ECO:0000269|PubMed:21249194, ECO:0000269|PubMed:23453757}. |
Q86VP6 | CAND1 | S859 | ochoa | Cullin-associated NEDD8-dissociated protein 1 (Cullin-associated and neddylation-dissociated protein 1) (TBP-interacting protein of 120 kDa A) (TBP-interacting protein 120A) (p120 CAND1) | Key assembly factor of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complexes that promotes the exchange of the substrate-recognition F-box subunit in SCF complexes, thereby playing a key role in the cellular repertoire of SCF complexes. Acts as a F-box protein exchange factor. The exchange activity of CAND1 is coupled with cycles of neddylation conjugation: in the deneddylated state, cullin-binding CAND1 binds CUL1-RBX1, increasing dissociation of the SCF complex and promoting exchange of the F-box protein. Probably plays a similar role in other cullin-RING E3 ubiquitin ligase complexes. {ECO:0000269|PubMed:12504025, ECO:0000269|PubMed:12504026, ECO:0000269|PubMed:12609982, ECO:0000269|PubMed:16449638, ECO:0000269|PubMed:21249194, ECO:0000269|PubMed:23453757}. |
Q86WB0 | ZC3HC1 | S479 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86WX3 | RPS19BP1 | S89 | ochoa | Active regulator of SIRT1 (40S ribosomal protein S19-binding protein 1) (RPS19-binding protein 1) (S19BP) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Acts as a chaperone that specifically mediates the integration of RPS19 in state post-A1 (PubMed:34516797). Direct regulator of SIRT1. Enhances SIRT1-mediated deacetylation of p53/TP53, thereby participating in inhibition of p53/TP53-mediated transcriptional activity (PubMed:17964266). {ECO:0000269|PubMed:17964266, ECO:0000269|PubMed:34516797}. |
Q86XA9 | HEATR5A | S1328 | ochoa | HEAT repeat-containing protein 5A | None |
Q86YS7 | C2CD5 | S606 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q8IUD2 | ERC1 | S41 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IWB9 | TEX2 | S230 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IYW5 | RNF168 | S470 | ochoa | E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) | E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}. |
Q8IZ41 | RASEF | S719 | ochoa | Ras and EF-hand domain-containing protein (Ras-related protein Rab-45) | Binds predominantly GDP, and also GTP (PubMed:17448446). Acts as a dynein adapter protein that activates dynein-mediated transport and dynein-dynactin motility on microtubules (PubMed:30814157). {ECO:0000269|PubMed:17448446, ECO:0000269|PubMed:30814157}. |
Q8N1G4 | LRRC47 | S518 | ochoa | Leucine-rich repeat-containing protein 47 | None |
Q8N2G8 | GHDC | S87 | ochoa | GH3 domain-containing protein | None |
Q8N3C0 | ASCC3 | S221 | ochoa | Activating signal cointegrator 1 complex subunit 3 (EC 5.6.2.4) (ASC-1 complex subunit p200) (ASC1p200) (Helicase, ATP binding 1) (Trip4 complex subunit p200) | ATPase involved both in DNA repair and rescue of stalled ribosomes (PubMed:22055184, PubMed:28757607, PubMed:32099016, PubMed:32579943, PubMed:36302773). 3'-5' DNA helicase involved in repair of alkylated DNA: promotes DNA unwinding to generate single-stranded substrate needed for ALKBH3, enabling ALKBH3 to process alkylated N3-methylcytosine (3mC) within double-stranded regions (PubMed:22055184). Also involved in activation of the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:28757607, PubMed:32099016, PubMed:32579943, PubMed:36302773). Drives the splitting of stalled ribosomes that are ubiquitinated in a ZNF598-dependent manner, as part of the ribosome quality control trigger (RQT) complex (PubMed:28757607, PubMed:32099016, PubMed:32579943, PubMed:36302773). Part of the ASC-1 complex that enhances NF-kappa-B, SRF and AP1 transactivation (PubMed:12077347). {ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:22055184, ECO:0000269|PubMed:28757607, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}. |
Q8N3J3 | HROB | S380 | ochoa | Homologous recombination OB-fold protein | DNA-binding protein involved in homologous recombination that acts by recruiting the MCM8-MCM9 helicase complex to sites of DNA damage to promote DNA repair synthesis. {ECO:0000269|PubMed:31467087}. |
Q8N4Z0 | RAB42 | S83 | psp | Ras-related protein Rab-42 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). The physiological function of RAB42 remains undefined (Probable). {ECO:0000250|UniProtKB:P62820, ECO:0000305}. |
Q8N594 | MPND | S123 | ochoa | MPN domain-containing protein (EC 3.4.-.-) | Probable protease (By similarity). Acts as a sensor of N(6)-methyladenosine methylation on DNA (m6A): recognizes and binds m6A DNA, leading to its degradation (PubMed:30982744). Binds only double strand DNA (dsDNA) in a sequence-independent manner (By similarity). {ECO:0000250|UniProtKB:Q3TV65, ECO:0000250|UniProtKB:Q5VVJ2, ECO:0000269|PubMed:30982744}. |
Q8N5H3 | FAM89B | S37 | ochoa | Leucine repeat adapter protein 25 | Negatively regulates TGF-beta-induced signaling; in cooperation with SKI prevents the translocation of SMAD2 from the nucleus to the cytoplasm in response to TGF-beta. Acts as an adapter that mediates the specific recognition of LIMK1 by CDC42BPA and CDC42BPB in the lamellipodia. LRAP25-mediated CDC42BPA/CDC42BPB targeting to LIMK1 and the lamellipodium results in LIMK1 activation and the subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation. {ECO:0000250|UniProtKB:Q9QUI1}. |
Q8NB16 | MLKL | S132 | ochoa | Mixed lineage kinase domain-like protein (hMLKL) | Pseudokinase that plays a key role in TNF-induced necroptosis, a programmed cell death process (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Does not have protein kinase activity (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Activated following phosphorylation by RIPK3, leading to homotrimerization, localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following activation by ZBP1, MLKL is phosphorylated by RIPK3 in the nucleus, triggering disruption of the nuclear envelope and leakage of cellular DNA into the cytosol.following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Binds to highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which is essential for its necroptotic function (PubMed:29883610). {ECO:0000250|UniProtKB:Q9D2Y4, ECO:0000269|PubMed:22265413, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:22421439, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:29883610}. |
Q8NCN2 | ZBTB34 | S207 | ochoa | Zinc finger and BTB domain-containing protein 34 | May be a transcriptional repressor. {ECO:0000269|PubMed:16718364}. |
Q8NF50 | DOCK8 | S1243 | ochoa | Dedicator of cytokinesis protein 8 | Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP (PubMed:22461490, PubMed:28028151). During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC (By similarity). Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane (PubMed:28028151). Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing (PubMed:25762780). {ECO:0000250|UniProtKB:Q8C147, ECO:0000269|PubMed:22461490, ECO:0000269|PubMed:25762780, ECO:0000269|PubMed:28028151}. |
Q8NFC6 | BOD1L1 | S2943 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8TDY4 | ASAP3 | S729 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 3 (Development and differentiation-enhancing factor-like 1) (Protein up-regulated in liver cancer 1) | Promotes cell proliferation. {ECO:0000269|PubMed:14654939}. |
Q8TE67 | EPS8L3 | S420 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8-like protein 3) (Epidermal growth factor receptor pathway substrate 8-related protein 3) (EPS8-related protein 3) | None |
Q8TEW8 | PARD3B | S403 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF17 | SH3TC2 | S30 | ochoa | SH3 domain and tetratricopeptide repeat-containing protein 2 | None |
Q8WXH0 | SYNE2 | S3825 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q92560 | BAP1 | S276 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92610 | ZNF592 | S1027 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92616 | GCN1 | S1859 | ochoa | Stalled ribosome sensor GCN1 (GCN1 eIF-2-alpha kinase activator homolog) (GCN1-like protein 1) (General control of amino-acid synthesis 1-like protein 1) (Translational activator GCN1) (HsGCN1) | Ribosome collision sensor that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:32610081, PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Directly binds to the ribosome and acts as a sentinel for colliding ribosomes: activated following ribosome stalling and promotes recruitment of RNF14, which directly ubiquitinates EEF1A1/eEF1A, leading to its degradation (PubMed:36638793, PubMed:37951215, PubMed:37951216). In addition to EEF1A1/eEF1A, the RNF14-RNF25 translation quality control pathway mediates degradation of ETF1/eRF1 and ubiquitination of ribosomal protein (PubMed:36638793, PubMed:37651229). GCN1 also acts as a positive activator of the integrated stress response (ISR) by mediating activation of EIF2AK4/GCN2 in response to amino acid starvation (By similarity). Interaction with EIF2AK4/GCN2 on translating ribosomes stimulates EIF2AK4/GCN2 kinase activity, leading to phosphorylation of eukaryotic translation initiation factor 2 (eIF-2-alpha/EIF2S1) (By similarity). EIF2S1/eIF-2-alpha phosphorylation converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (By similarity). {ECO:0000250|UniProtKB:E9PVA8, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q92817 | EVPL | S971 | ochoa | Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. |
Q92879 | CELF1 | S52 | psp | CUGBP Elav-like family member 1 (CELF-1) (50 kDa nuclear polyadenylated RNA-binding protein) (Bruno-like protein 2) (CUG triplet repeat RNA-binding protein 1) (CUG-BP1) (CUG-BP- and ETR-3-like factor 1) (Deadenylation factor CUG-BP) (Embryo deadenylation element-binding protein homolog) (EDEN-BP homolog) (RNA-binding protein BRUNOL-2) | RNA-binding protein implicated in the regulation of several post-transcriptional events. Involved in pre-mRNA alternative splicing, mRNA translation and stability. Mediates exon inclusion and/or exclusion in pre-mRNA that are subject to tissue-specific and developmentally regulated alternative splicing. Specifically activates exon 5 inclusion of cardiac isoforms of TNNT2 during heart remodeling at the juvenile to adult transition. Acts both as an activator and as a repressor of a pair of coregulated exons: promotes inclusion of the smooth muscle (SM) exon but exclusion of the non-muscle (NM) exon in actinin pre-mRNAs. Activates SM exon 5 inclusion by antagonizing the repressive effect of PTB. Promotes exclusion of exon 11 of the INSR pre-mRNA. Inhibits, together with HNRNPH1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Increases translation and controls the choice of translation initiation codon of CEBPB mRNA. Increases mRNA translation of CEBPB in aging liver (By similarity). Increases translation of CDKN1A mRNA by antagonizing the repressive effect of CALR3. Mediates rapid cytoplasmic mRNA deadenylation. Recruits the deadenylase PARN to the poly(A) tail of EDEN-containing mRNAs to promote their deadenylation. Required for completion of spermatogenesis (By similarity). Binds to (CUG)n triplet repeats in the 3'-UTR of transcripts such as DMPK and to Bruno response elements (BREs). Binds to muscle-specific splicing enhancer (MSE) intronic sites flanking the alternative exon 5 of TNNT2 pre-mRNA. Binds to AU-rich sequences (AREs or EDEN-like) localized in the 3'-UTR of JUN and FOS mRNAs. Binds to the IR RNA. Binds to the 5'-region of CDKN1A and CEBPB mRNAs. Binds with the 5'-region of CEBPB mRNA in aging liver. May be a specific regulator of miRNA biogenesis. Binds to primary microRNA pri-MIR140 and, with CELF2, negatively regulates the processing to mature miRNA (PubMed:28431233). {ECO:0000250, ECO:0000269|PubMed:10536163, ECO:0000269|PubMed:11124939, ECO:0000269|PubMed:11158314, ECO:0000269|PubMed:12649496, ECO:0000269|PubMed:12799066, ECO:0000269|PubMed:14726956, ECO:0000269|PubMed:16601207, ECO:0000269|PubMed:16946708, ECO:0000269|PubMed:28431233}. |
Q92930 | RAB8B | S182 | ochoa | Ras-related protein Rab-8B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB8B may be involved in polarized vesicular trafficking and neurotransmitter release (Probable). May participate in cell junction dynamics in Sertoli cells (By similarity). May also participate in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). {ECO:0000250|UniProtKB:P61006, ECO:0000250|UniProtKB:P70550, ECO:0000269|PubMed:32344433, ECO:0000305}. |
Q92997 | DVL3 | S175 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q93034 | CUL5 | S730 | psp | Cullin-5 (CUL-5) (Vasopressin-activated calcium-mobilizing receptor 1) (VACM-1) | Core component of multiple cullin-5-RING E3 ubiquitin-protein ligase complexes (ECS complexes, also named CRL5 complexes), which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:11384984, PubMed:15601820, PubMed:21199876, PubMed:21980433, PubMed:23897481, PubMed:25505247, PubMed:27910872, PubMed:32200094, PubMed:33268465, PubMed:35512830, PubMed:38418882). Acts a scaffold protein that contributes to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:11384984, PubMed:15601820, PubMed:33268465). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable SOCS box-containing substrate recognition component (PubMed:11384984, PubMed:15601820, PubMed:33268465). Acts as a key regulator of neuron positioning during cortex development: component of various SOCS-containing ECS complexes, such as the ECS(SOCS7) complex, that regulate reelin signaling by mediating ubiquitination and degradation of DAB1 (By similarity). ECS(SOCS1) seems to direct ubiquitination of JAK2 (PubMed:11384984). The ECS(SOCS2) complex mediates the ubiquitination and subsequent proteasomal degradation of phosphorylated EPOR and GHR (PubMed:21980433, PubMed:25505247). The ECS(SPSB3) complex catalyzes ubiquitination of nuclear CGAS (PubMed:38418882). ECS(KLHDC1) complex is part of the DesCEND (destruction via C-end degrons) pathway and mediates ubiquitination and degradation of truncated SELENOS selenoprotein produced by failed UGA/Sec decoding, which ends with a glycine (PubMed:32200094). The ECS(ASB9) complex mediates ubiquitination and degradation of CKB (PubMed:33268465). As part of some ECS complex, promotes 'Lys-11'-linked ubiquitination and degradation of BTRC (PubMed:27910872). As part of a multisubunit ECS complex, polyubiquitinates monoubiquitinated POLR2A (PubMed:19920177). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). As part of the ECS(RAB40A) complex, mediates RHOU 'Lys-48'-linked ubiquitination and degradation, thus inhibiting focal adhesion disassembly during cell migration (PubMed:26598620). As part of the ECS(RAB40B) complex, mediates LIMA1/EPLIN and RAP2 ubiquitination, thereby regulating actin cytoskeleton dynamics and stress fiber formation during cell migration (PubMed:33999101, PubMed:35293963). May form a cell surface vasopressin receptor (PubMed:9037604). {ECO:0000250|UniProtKB:Q9D5V5, ECO:0000269|PubMed:11384984, ECO:0000269|PubMed:15601820, ECO:0000269|PubMed:19920177, ECO:0000269|PubMed:21199876, ECO:0000269|PubMed:21980433, ECO:0000269|PubMed:23897481, ECO:0000269|PubMed:25505247, ECO:0000269|PubMed:26598620, ECO:0000269|PubMed:27910872, ECO:0000269|PubMed:32200094, ECO:0000269|PubMed:33268465, ECO:0000269|PubMed:33999101, ECO:0000269|PubMed:35293963, ECO:0000269|PubMed:35512830, ECO:0000269|PubMed:38418882, ECO:0000269|PubMed:9037604}.; FUNCTION: (Microbial infection) Following infection by HIV-1 virus, CUL5 associates with HIV-1 Vif proteins and forms a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex) that catalyzes ubiquitination and degradation of APOBEC3F and APOBEC3G (PubMed:16636053, PubMed:22190037). The complex can also ubiquitinate APOBEC3H to some extent (PubMed:37640699). {ECO:0000269|PubMed:16636053, ECO:0000269|PubMed:22190037, ECO:0000269|PubMed:37640699}.; FUNCTION: (Microbial infection) Seems to be involved in proteasomal degradation of p53/TP53 stimulated by adenovirus E1B-55 kDa protein. {ECO:0000269|PubMed:12186903}. |
Q969G5 | CAVIN3 | S56 | ochoa | Caveolae-associated protein 3 (Cavin-3) (Protein kinase C delta-binding protein) (Serum deprivation response factor-related gene product that binds to C-kinase) (hSRBC) | Regulates the traffic and/or budding of caveolae (PubMed:19262564). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in smooth muscle but not in the lung and heart endothelial cells. Regulates the equilibrium between cell surface-associated and cell surface-dissociated caveolae by promoting the rapid release of caveolae from the cell surface. Plays a role in the regulation of the circadian clock. Modulates the period length and phase of circadian gene expression and also regulates expression and interaction of the core clock components PER1/2 and CRY1/2 (By similarity). {ECO:0000250|UniProtKB:Q91VJ2, ECO:0000250|UniProtKB:Q9Z1H9, ECO:0000269|PubMed:19262564}. |
Q96A22 | C11orf52 | S74 | ochoa | Uncharacterized protein C11orf52 | None |
Q96AE4 | FUBP1 | S52 | ochoa | Far upstream element-binding protein 1 (FBP) (FUSE-binding protein 1) (DNA helicase V) (hDH V) | Regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. May act both as activator and repressor of transcription. {ECO:0000269|PubMed:8125259}. |
Q96BY6 | DOCK10 | S1257 | ochoa | Dedicator of cytokinesis protein 10 (Zizimin-3) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 and RAC1 by exchanging bound GDP for free GTP. Essential for dendritic spine morphogenesis in Purkinje cells and in hippocampal neurons, via a CDC42-mediated pathway. Sustains B-cell lymphopoiesis in secondary lymphoid tissues and regulates FCER2/CD23 expression. {ECO:0000250|UniProtKB:Q8BZN6}. |
Q96CP6 | GRAMD1A | S415 | ochoa | Protein Aster-A (GRAM domain-containing protein 1A) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). May play a role in tumor progression (By similarity). Plays a role in autophagy regulation and is required for biogenesis of the autophagosome (PubMed:31222192). This function in autophagy requires its cholesterol-transfer activity (PubMed:31222192). {ECO:0000250|UniProtKB:Q8VEF1, ECO:0000269|PubMed:31222192}. |
Q96CT7 | CCDC124 | S141 | ochoa | Coiled-coil domain-containing protein 124 | Ribosome-binding protein involved in ribosome hibernation: associates with translationally inactive ribosomes and stabilizes the nonrotated conformation of the 80S ribosome, thereby promoting ribosome preservation and storage (PubMed:32687489). Also required for proper progression of late cytokinetic stages (PubMed:23894443). {ECO:0000269|PubMed:23894443, ECO:0000269|PubMed:32687489}. |
Q96EU6 | RRP36 | S73 | ochoa | Ribosomal RNA processing protein 36 homolog | Involved in the early processing steps of the pre-rRNA in the maturation pathway leading to the 18S rRNA. {ECO:0000269|PubMed:20038530}. |
Q96G42 | KLHDC7B | S517 | ochoa | Kelch domain-containing protein 7B | None |
Q96GA3 | LTV1 | S247 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96H22 | CENPN | S218 | ochoa | Centromere protein N (CENP-N) (Interphase centromere complex protein 32) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPN is the first protein to bind specifically to CENPA nucleosomes and the direct binding of CENPA nucleosomes by CENPN is required for centromere assembly. Required for chromosome congression and efficiently align the chromosomes on a metaphase plate. {ECO:0000269|PubMed:16622419, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:18007590, ECO:0000269|PubMed:19543270}. |
Q96JJ3 | ELMO2 | S336 | ochoa | Engulfment and cell motility protein 2 (Protein ced-12 homolog A) (hCed-12A) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:11703939, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:27476657}. |
Q96JZ2 | HSH2D | S251 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96M89 | CCDC138 | S469 | ochoa | Coiled-coil domain-containing protein 138 | None |
Q96M96 | FGD4 | S388 | ochoa | FYVE, RhoGEF and PH domain-containing protein 4 (Actin filament-binding protein frabin) (FGD1-related F-actin-binding protein) (Zinc finger FYVE domain-containing protein 6) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. Activates MAPK8 (By similarity). {ECO:0000250, ECO:0000269|PubMed:15133042}. |
Q96N21 | TEPSIN | S330 | ochoa | AP-4 complex accessory subunit Tepsin (ENTH domain-containing protein 2) (Epsin for AP-4) (Tetra-epsin) | Associates with the adapter-like complex 4 (AP-4) and may therefore play a role in vesicular trafficking of proteins at the trans-Golgi network. {ECO:0000305|PubMed:22472443, ECO:0000305|PubMed:26542808}. |
Q96PN7 | TRERF1 | S762 | ochoa | Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) | Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}. |
Q96QD5 | DEPDC7 | S240 | ochoa | DEP domain-containing protein 7 (Protein TR2/D15) | None |
Q96QT4 | TRPM7 | S1258 | psp | Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] | Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}. |
Q96SD1 | DCLRE1C | S538 | psp | Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) | Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}. |
Q96T37 | RBM15 | S344 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T49 | PPP1R16B | S331 | psp | Protein phosphatase 1 regulatory inhibitor subunit 16B (Ankyrin repeat domain-containing protein 4) (CAAX box protein TIMAP) (TGF-beta-inhibited membrane-associated protein) (hTIMAP) | Regulator of protein phosphatase 1 (PP1) that acts as a positive regulator of pulmonary endothelial cell (EC) barrier function (PubMed:18586956). Involved in the regulation of the PI3K/AKT signaling pathway, angiogenesis and endothelial cell proliferation (PubMed:25007873). Regulates angiogenesis and endothelial cell proliferation through the control of ECE1 dephosphorylation, trafficking and activity (By similarity). Protects the endothelial barrier from lipopolysaccharide (LPS)-induced vascular leakage (By similarity). Involved in the regulation of endothelial cell filopodia extension (By similarity). May be a downstream target for TGF-beta1 signaling cascade in endothelial cells (PubMed:16263087, PubMed:18586956). Involved in PKA-mediated moesin dephosphorylation which is important in EC barrier protection against thrombin stimulation (PubMed:18586956). Promotes the interaction of PPP1CA with RPSA/LAMR1 and in turn facilitates the dephosphorylation of RPSA/LAMR1 (PubMed:16263087). Involved in the dephosphorylation of EEF1A1 (PubMed:26497934). {ECO:0000250|UniProtKB:Q8VHQ3, ECO:0000250|UniProtKB:Q95N27, ECO:0000269|PubMed:16263087, ECO:0000269|PubMed:18586956, ECO:0000269|PubMed:25007873, ECO:0000269|PubMed:26497934}. |
Q96T58 | SPEN | S1354 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99426 | TBCB | S91 | ochoa | Tubulin-folding cofactor B (Cytoskeleton-associated protein 1) (Cytoskeleton-associated protein CKAPI) (Tubulin-specific chaperone B) | Binds to alpha-tubulin folding intermediates after their interaction with cytosolic chaperonin in the pathway leading from newly synthesized tubulin to properly folded heterodimer (PubMed:9265649). Involved in regulation of tubulin heterodimer dissociation. May function as a negative regulator of axonal growth (By similarity). {ECO:0000250|UniProtKB:Q9D1E6, ECO:0000269|PubMed:9265649}. |
Q99496 | RNF2 | S41 | ochoa | E3 ubiquitin-protein ligase RING2 (EC 2.3.2.27) (Huntingtin-interacting protein 2-interacting protein 3) (HIP2-interacting protein 3) (Protein DinG) (RING finger protein 1B) (RING1b) (RING finger protein 2) (RING finger protein BAP-1) (RING-type E3 ubiquitin transferase RING2) | E3 ubiquitin-protein ligase that mediates monoubiquitination of 'Lys-119' of histone H2A (H2AK119Ub), thereby playing a central role in histone code and gene regulation (PubMed:15386022, PubMed:16359901, PubMed:21772249, PubMed:25355358, PubMed:25519132, PubMed:26151332, PubMed:33864376). H2AK119Ub gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. May be involved in the initiation of both imprinted and random X inactivation (By similarity). Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:16359901, PubMed:26151332). PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility (PubMed:26151332). E3 ubiquitin-protein ligase activity is enhanced by BMI1/PCGF4 (PubMed:21772249). Acts as the main E3 ubiquitin ligase on histone H2A of the PRC1 complex, while RING1 may rather act as a modulator of RNF2/RING2 activity (Probable). Association with the chromosomal DNA is cell-cycle dependent. In resting B- and T-lymphocytes, interaction with AURKB leads to block its activity, thereby maintaining transcription in resting lymphocytes (By similarity). Also acts as a negative regulator of autophagy by mediating ubiquitination of AMBRA1, leading to its subsequent degradation (By similarity). {ECO:0000250|UniProtKB:Q9CQJ4, ECO:0000269|PubMed:11513855, ECO:0000269|PubMed:15386022, ECO:0000269|PubMed:16359901, ECO:0000269|PubMed:16714294, ECO:0000269|PubMed:20696397, ECO:0000269|PubMed:21772249, ECO:0000269|PubMed:25355358, ECO:0000269|PubMed:25519132, ECO:0000269|PubMed:26151332, ECO:0000269|PubMed:33864376, ECO:0000305}. |
Q99708 | RBBP8 | S379 | ochoa | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99956 | DUSP9 | S361 | ochoa | Dual specificity protein phosphatase 9 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 4) (MAP kinase phosphatase 4) (MKP-4) | Inactivates MAP kinases. Has a specificity for the ERK family. |
Q99983 | OMD | S234 | ochoa | Osteomodulin (Keratan sulfate proteoglycan osteomodulin) (KSPG osteomodulin) (Osteoadherin) (OSAD) | May be implicated in biomineralization processes. Has a function in binding of osteoblasts via the alpha(V)beta(3)-integrin. {ECO:0000250|UniProtKB:O77742}. |
Q9BPX5 | ARPC5L | S64 | ochoa | Actin-related protein 2/3 complex subunit 5-like protein (Arp2/3 complex 16 kDa subunit 2) (ARC16-2) | May function as component of the Arp2/3 complex which is involved in regulation of actin polymerization and together with an activating nucleation-promoting factor (NPF) mediates the formation of branched actin networks. |
Q9BSJ8 | ESYT1 | S1064 | ochoa | Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) | Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}. |
Q9BT25 | HAUS8 | S311 | psp | HAUS augmin-like complex subunit 8 (HEC1/NDC80-interacting centrosome-associated protein 1) (Sarcoma antigen NY-SAR-48) | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:18362163, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q9BTE3 | MCMBP | S193 | ochoa | Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) | Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}. |
Q9BUF7 | CRB3 | S96 | ochoa | Protein crumbs homolog 3 | Involved in the establishment of cell polarity in mammalian epithelial cells (PubMed:12771187, PubMed:14718572, PubMed:23439680). Regulates the morphogenesis of tight junctions (PubMed:12771187, PubMed:14718572). Involved in promoting phosphorylation and cytoplasmic retention of transcriptional coactivators YAP1 and WWTR1/TAZ which leads to suppression of TGFB1-dependent transcription of target genes such as CCN2/CTGF, SERPINE1/PAI1, SNAI1/SNAIL1 and SMAD7 (By similarity). {ECO:0000250|UniProtKB:Q8QZT4, ECO:0000269|PubMed:12771187, ECO:0000269|PubMed:14718572, ECO:0000269|PubMed:23439680}. |
Q9BVQ7 | AFG2B | S607 | ochoa | ATPase family gene 2 protein homolog B (EC 3.6.4.10) (AFG2 AAA ATPase homolog B) (Ribosome biogenesis protein SPATA5L1) (Spermatogenesis-associated protein 5-like protein 1) | ATP-dependent chaperone part of the 55LCC heterohexameric ATPase complex which is chromatin-associated and promotes replisome proteostasis to maintain replication fork progression and genome stability. Required for replication fork progression, sister chromatid cohesion, and chromosome stability. The ATPase activity is specifically enhanced by replication fork DNA and is coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. Uses ATPase activity to process replisome substrates in S-phase, facilitating their proteolytic turnover from chromatin to ensure DNA replication and mitotic fidelity (PubMed:38554706). Plays an essential role in the cytoplasmic maturation steps of pre-60S ribosomal particles by promoting the release of shuttling protein RSL24D1/RLP24 from the pre-ribosomal particles (PubMed:35354024). {ECO:0000269|PubMed:35354024, ECO:0000269|PubMed:38554706}. |
Q9BVT8 | TMUB1 | S127 | ochoa | Transmembrane and ubiquitin-like domain-containing protein 1 (Dendritic cell-derived ubiquitin-like protein) (DULP) (Hepatocyte odd protein shuttling protein) (Ubiquitin-like protein SB144) [Cleaved into: iHOPS] | Involved in sterol-regulated ubiquitination and degradation of HMG-CoA reductase HMGCR (PubMed:21343306). Involved in positive regulation of AMPA-selective glutamate receptor GRIA2 recycling to the cell surface (By similarity). Acts as a negative regulator of hepatocyte growth during regeneration (By similarity). {ECO:0000250|UniProtKB:Q53AQ4, ECO:0000250|UniProtKB:Q9JMG3, ECO:0000269|PubMed:21343306}.; FUNCTION: [iHOPS]: May contribute to the regulation of translation during cell-cycle progression. May contribute to the regulation of cell proliferation (By similarity). May be involved in centrosome assembly. Modulates stabilization and nucleolar localization of tumor suppressor CDKN2A and enhances association between CDKN2A and NPM1 (By similarity). {ECO:0000250|UniProtKB:Q9JMG3}. |
Q9BXL7 | CARD11 | S655 | psp | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BXW4 | MAP1LC3C | S96 | psp | Microtubule-associated protein 1 light chain 3 gamma (Autophagy-related protein LC3 C) (Autophagy-related ubiquitin-like modifier LC3 C) (MAP1 light chain 3-like protein 3) (Microtubule-associated proteins 1A/1B light chain 3C) (MAP1A/MAP1B LC3 C) (MAP1A/MAP1B light chain 3 C) | Ubiquitin-like modifier that plays a crucial role in antibacterial autophagy (xenophagy) through the selective binding of CALCOCO2 (PubMed:23022382). Recruits all ATG8 family members to infecting bacteria such as S.typhimurium (PubMed:23022382). May also play a role in aggrephagy, the macroautophagic degradation of ubiquitinated and aggregated proteins (PubMed:28404643). {ECO:0000269|PubMed:23022382, ECO:0000269|PubMed:28404643}. |
Q9BXW6 | OSBPL1A | S509 | ochoa | Oxysterol-binding protein-related protein 1 (ORP-1) (OSBP-related protein 1) | Binds phospholipids; exhibits strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate (By similarity). Stabilizes GTP-bound RAB7A on late endosomes/lysosomes and alters functional properties of late endocytic compartments via its interaction with RAB7A (PubMed:16176980). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000250, ECO:0000269|PubMed:16176980, ECO:0000269|PubMed:17428193}. |
Q9BY89 | KIAA1671 | S1230 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYG5 | PARD6B | S177 | ochoa | Partitioning defective 6 homolog beta (PAR-6 beta) (PAR-6B) | Adapter protein involved in asymmetrical cell division and cell polarization processes. Probably involved in formation of epithelial tight junctions. Association with PARD3 may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly. The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins. |
Q9BZW8 | CD244 | S336 | ochoa | Natural killer cell receptor 2B4 (NK cell activation-inducing ligand) (NAIL) (NK cell type I receptor protein 2B4) (NKR2B4) (h2B4) (SLAM family member 4) (SLAMF4) (Signaling lymphocytic activation molecule 4) (CD antigen CD244) | Heterophilic receptor of the signaling lymphocytic activation molecule (SLAM) family; its ligand is CD48. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Acts as activating natural killer (NK) cell receptor (PubMed:10359122, PubMed:11714776, PubMed:8376943). Activating function implicates association with SH2D1A and FYN (PubMed:15713798). Downstreaming signaling involves predominantly VAV1, and, to a lesser degree, INPP5D/SHIP1 and CBL. Signal attenuation in the absence of SH2D1A is proposed to be dependent on INPP5D and to a lesser extent PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:10934222, PubMed:15713798). Stimulates NK cell cytotoxicity, production of IFN-gamma and granule exocytosis (PubMed:11714776, PubMed:8376943). Optimal expansion and activation of NK cells seems to be dependent on the engagement of CD244 with CD48 expressed on neighboring NK cells (By similarity). Acts as costimulator in NK activation by enhancing signals by other NK receptors such as NCR3 and NCR1 (PubMed:10741393). At early stages of NK cell differentiation may function as an inhibitory receptor possibly ensuring the self-tolerance of developing NK cells (PubMed:11917118). Involved in the regulation of CD8(+) T-cell proliferation; expression on activated T-cells and binding to CD48 provides costimulatory-like function for neighboring T-cells (By similarity). Inhibits inflammatory responses in dendritic cells (DCs) (By similarity). {ECO:0000250|UniProtKB:Q07763, ECO:0000269|PubMed:10359122, ECO:0000269|PubMed:10741393, ECO:0000269|PubMed:10934222, ECO:0000269|PubMed:11714776, ECO:0000269|PubMed:11917118, ECO:0000269|PubMed:8376943, ECO:0000305|PubMed:15713798}. |
Q9BZZ2 | SIGLEC1 | S654 | ochoa | Sialoadhesin (Sialic acid-binding Ig-like lectin 1) (Siglec-1) (CD antigen CD169) | Macrophage-restricted adhesion molecule that mediates sialic-acid dependent binding to lymphocytes, including granulocytes, monocytes, natural killer cells, B-cells and CD8 T-cells. Plays a crucial role in limiting bacterial dissemination by engaging sialylated bacteria to promote effective phagocytosis and antigen presentation for the adaptive immune response (PubMed:12940982, PubMed:33489013). Mediates the uptake of various enveloped viruses via sialic acid recognition and subsequently induces the formation of intracellular compartments filled with virions (VCCs) (PubMed:28129379). In turn, enhances macrophage-to-T-cell transmission of several viruses including HIV-1 or SARS-CoV-2 (PubMed:28129379, PubMed:34782760). Acts as an endocytic receptor mediating clathrin dependent endocytosis. Preferentially binds to alpha-2,3-linked sialic acid (PubMed:12940982). Binds to SPN/CD43 on T-cells (By similarity). May play a role in hemopoiesis. Plays a role in the inhibition of antiviral innate immune by promoting TBK1 degradation via TYROBP and TRIM27-mediated ubiquitination (PubMed:26358190). {ECO:0000250|UniProtKB:Q62230, ECO:0000269|PubMed:12940982, ECO:0000269|PubMed:26358190, ECO:0000269|PubMed:28129379, ECO:0000269|PubMed:33489013, ECO:0000269|PubMed:34782760}.; FUNCTION: (Microbial infection) Facilitates viral cytoplasmic entry into activated dendritic cells via recognition of sialylated gangliosides pesent on viral membrane. {ECO:0000269|PubMed:31160823}. |
Q9C026 | TRIM9 | S46 | ochoa | E3 ubiquitin-protein ligase TRIM9 (EC 2.3.2.27) (RING finger protein 91) (RING-type E3 ubiquitin transferase TRIM9) (Tripartite motif-containing protein 9) | E3 ubiquitin-protein ligase which ubiquitinates itself in cooperation with an E2 enzyme UBE2D2/UBC4 and serves as a targeting signal for proteasomal degradation. May play a role in regulation of neuronal functions and may also participate in the formation or breakdown of abnormal inclusions in neurodegenerative disorders. May act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP25 for the SNARE complex formation. {ECO:0000269|PubMed:20085810}. |
Q9C0C2 | TNKS1BP1 | S1187 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9GZY8 | MFF | S263 | ochoa | Mitochondrial fission factor | Plays a role in mitochondrial and peroxisomal fission (PubMed:18353969, PubMed:23530241, PubMed:24196833). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface (PubMed:23530241). May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles (By similarity). {ECO:0000250|UniProtKB:Q4KM98, ECO:0000269|PubMed:18353969, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:24196833}. |
Q9H078 | CLPB | S426 | ochoa | Mitochondrial disaggregase (EC 3.6.1.-) (Suppressor of potassium transport defect 3) [Cleaved into: Mitochondrial disaggregase, cleaved form] | Functions as a regulatory ATPase and participates in secretion/protein trafficking process. Has ATP-dependent protein disaggregase activity and is required to maintain the solubility of key mitochondrial proteins (PubMed:32573439, PubMed:34115842, PubMed:35247700, PubMed:36170828, PubMed:36745679). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). Plays a role in granulocyte differentiation (PubMed:34115842). {ECO:0000269|PubMed:31522117, ECO:0000269|PubMed:32573439, ECO:0000269|PubMed:34115842, ECO:0000269|PubMed:35247700, ECO:0000269|PubMed:36170828, ECO:0000269|PubMed:36745679}. |
Q9H4A3 | WNK1 | S2270 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H5I5 | PIEZO2 | S1857 | ochoa | Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Expressed in sensory neurons, is essential for diverse physiological processes, including respiratory control, systemic metabolism, urinary function, and proprioception (By similarity). Mediates airway stretch sensing, enabling efficient respiration at birth and maintaining normal breathing in adults (By similarity). It regulates brown and beige adipose tissue morphology and function, preventing systemic hypermetabolism (By similarity). In the lower urinary tract, acts as a sensor in both the bladder urothelium and innervating sensory neurons being required for bladder-stretch sensing and urethral micturition reflexes, ensuring proper urinary function (PubMed:33057202). Additionally, PIEZO2 serves as the principal mechanotransducer in proprioceptors, facilitating proprioception and coordinated body movements (By similarity). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). Required for Merkel-cell mechanotransduction (By similarity). Plays a major role in light-touch mechanosensation (By similarity). {ECO:0000250|UniProtKB:Q8CD54, ECO:0000269|PubMed:33057202, ECO:0000269|PubMed:37590348}. |
Q9H5J0 | ZBTB3 | S213 | ochoa | Zinc finger and BTB domain-containing protein 3 | May be involved in transcriptional regulation. |
Q9H9Q4 | NHEJ1 | S132 | psp | Non-homologous end-joining factor 1 (Protein cernunnos) (XRCC4-like factor) | DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781, PubMed:17717001, PubMed:18158905, PubMed:18644470, PubMed:20558749, PubMed:26100018, PubMed:28369633). Plays a key role in NHEJ by promoting the ligation of various mismatched and non-cohesive ends (PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are non-complementary or partially complementary (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781). In some studies, has been shown to associate with XRCC4 to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22228831, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). Alternatively, it has also been shown that rather than forming filaments, a single NHEJ1 dimer interacts through both head domains with XRCC4 to promote the close alignment of DNA ends (By similarity). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Binds DNA in a length-dependent manner (PubMed:17317666, PubMed:18158905). {ECO:0000250|UniProtKB:A0A1L8ENT6, ECO:0000269|PubMed:16439204, ECO:0000269|PubMed:16439205, ECO:0000269|PubMed:17317666, ECO:0000269|PubMed:17470781, ECO:0000269|PubMed:17717001, ECO:0000269|PubMed:18158905, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:19056826, ECO:0000269|PubMed:20558749, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28369633, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:30250067}. |
Q9HBE1 | PATZ1 | S585 | ochoa | POZ-, AT hook-, and zinc finger-containing protein 1 (BTB/POZ domain zinc finger transcription factor) (Protein kinase A RI subunit alpha-associated protein) (Zinc finger and BTB domain-containing protein 19) (Zinc finger protein 278) (Zinc finger sarcoma gene protein) | Transcriptional regulator that plays a role in many biological processes such as embryogenesis, senescence, T-cell development or neurogenesis (PubMed:10713105, PubMed:25755280, PubMed:31875552). Interacts with the TP53 protein to control genes that are important in proliferation and in the DNA-damage response. Mechanistically, the interaction inhibits the DNA binding and transcriptional activity of TP53/p53 (PubMed:25755280). Part of the transcriptional network modulating regulatory T-cell development and controls the generation of the regulatory T-cell pool under homeostatic conditions (PubMed:31875552). {ECO:0000269|PubMed:10713105, ECO:0000269|PubMed:25755280, ECO:0000269|PubMed:31875552}.; FUNCTION: (Microbial infection) Plays a positive role in viral cDNA synthesis. {ECO:0000269|PubMed:31060775}. |
Q9HCD6 | TANC2 | S294 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCH5 | SYTL2 | S516 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9NP80 | PNPLA8 | S511 | psp | Calcium-independent phospholipase A2-gamma (EC 3.1.1.-) (EC 3.1.1.5) (Intracellular membrane-associated calcium-independent phospholipase A2 gamma) (iPLA2-gamma) (PNPLA-gamma) (Patatin-like phospholipase domain-containing protein 8) (iPLA2-2) | Calcium-independent and membrane-bound phospholipase, that catalyzes the esterolytic cleavage of fatty acids from glycerophospholipids to yield free fatty acids and lysophospholipids, hence regulating membrane physical properties and the release of lipid second messengers and growth factors (PubMed:10744668, PubMed:10833412, PubMed:15695510, PubMed:15908428, PubMed:17213206, PubMed:18171998, PubMed:28442572). Hydrolyzes phosphatidylethanolamine, phosphatidylcholine and probably phosphatidylinositol with a possible preference for the former (PubMed:15695510). Also has a broad substrate specificity in terms of fatty acid moieties, hydrolyzing saturated and mono-unsaturated fatty acids at nearly equal rates from either the sn-1 or sn-2 position in diacyl phosphatidylcholine (PubMed:10744668, PubMed:10833412, PubMed:15695510, PubMed:15908428). However, has a weak activity toward polyunsaturated fatty acids at the sn-2 position, and thereby favors the production of 2-arachidonoyl lysophosphatidylcholine, a key branch point metabolite in eicosanoid signaling (PubMed:15908428). On the other hand, can produce arachidonic acid from the sn-1 position of diacyl phospholipid and from the sn-2 position of arachidonate-containing plasmalogen substrates (PubMed:15908428). Therefore, plays an important role in the mobilization of arachidonic acid in response to cellular stimuli and the generation of lipid second messengers (PubMed:15695510, PubMed:15908428). Can also hydrolyze lysophosphatidylcholine (PubMed:15695510). In the mitochondrial compartment, catalyzes the hydrolysis and release of oxidized aliphatic chains from cardiolipin and integrates mitochondrial bioenergetics and signaling. It is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition (PubMed:28442572). {ECO:0000250|UniProtKB:Q8K1N1, ECO:0000269|PubMed:10744668, ECO:0000269|PubMed:10833412, ECO:0000269|PubMed:15695510, ECO:0000269|PubMed:15908428, ECO:0000269|PubMed:17213206, ECO:0000269|PubMed:18171998, ECO:0000269|PubMed:28442572}. |
Q9NPG3 | UBN1 | S336 | ochoa | Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) | Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}. |
Q9NQW6 | ANLN | S140 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQW6 | ANLN | S141 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NRY4 | ARHGAP35 | S1174 | ochoa|psp | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NVI1 | FANCI | S559 | psp | Fanconi anemia group I protein (Protein FACI) | Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}. |
Q9NVU7 | SDAD1 | S459 | ochoa | Protein SDA1 homolog (Nucleolar protein 130) (SDA1 domain-containing protein 1) (hSDA) | Required for 60S pre-ribosomal subunits export to the cytoplasm. {ECO:0000250}. |
Q9NWS0 | PIH1D1 | S173 | ochoa | PIH1 domain-containing protein 1 (Nucleolar protein 17 homolog) | Involved in the assembly of C/D box small nucleolar ribonucleoprotein (snoRNP) particles (PubMed:17636026). Recruits the SWI/SNF complex to the core promoter of rRNA genes and enhances pre-rRNA transcription (PubMed:22368283, PubMed:24036451). Mediates interaction of TELO2 with the R2TP complex which is necessary for the stability of MTOR and SMG1 (PubMed:20864032). Positively regulates the assembly and activity of the mTORC1 complex (PubMed:24036451). {ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:20864032, ECO:0000269|PubMed:22368283, ECO:0000269|PubMed:24036451}. |
Q9NXW2 | DNAJB12 | S178 | ochoa | DnaJ homolog subfamily B member 12 | Acts as a co-chaperone with HSPA8/Hsc70; required to promote protein folding and trafficking, prevent aggregation of client proteins, and promote unfolded proteins to endoplasmic reticulum-associated degradation (ERAD) pathway (PubMed:21148293, PubMed:21150129). Acts by determining HSPA8/Hsc70's ATPase and polypeptide-binding activities (PubMed:21148293). Can also act independently of HSPA8/Hsc70: together with DNAJB14, acts as a chaperone that promotes maturation of potassium channels KCND2 and KCNH2 by stabilizing nascent channel subunits and assembling them into tetramers (PubMed:27916661). While stabilization of nascent channel proteins is dependent on HSPA8/Hsc70, the process of oligomerization of channel subunits is independent of HSPA8/Hsc70 (PubMed:27916661). When overexpressed, forms membranous structures together with DNAJB14 and HSPA8/Hsc70 within the nucleus; the role of these structures, named DJANGOs, is still unclear (PubMed:24732912). {ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27916661}.; FUNCTION: (Microbial infection) In case of infection by polyomavirus, involved in the virus endoplasmic reticulum membrane penetration and infection (PubMed:21673190, PubMed:24675744). {ECO:0000269|PubMed:21673190, ECO:0000269|PubMed:24675744}. |
Q9NYL9 | TMOD3 | S155 | ochoa | Tropomodulin-3 (Ubiquitous tropomodulin) (U-Tmod) | Blocks the elongation and depolymerization of the actin filaments at the pointed end. The Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton (By similarity). {ECO:0000250}. |
Q9NYM9 | BET1L | S70 | ochoa | BET1-like protein (Golgi SNARE with a size of 15 kDa) (GOS-15) (GS15) (Vesicle transport protein GOS15) | Vesicle SNARE required for targeting and fusion of retrograde transport vesicles with the Golgi complex. Required for the integrity of the Golgi complex (By similarity). {ECO:0000250|UniProtKB:O35152}. |
Q9NZN5 | ARHGEF12 | S1273 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZZ3 | CHMP5 | S86 | ochoa | Charged multivesicular body protein 5 (Chromatin-modifying protein 5) (SNF7 domain-containing protein 2) (Vacuolar protein sorting-associated protein 60) (Vps60) (hVps60) | Probable peripherally associated component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses) (PubMed:14519844). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in HIV-1 p6- and p9-dependent virus release (PubMed:14519844). {ECO:0000269|PubMed:14519844}. |
Q9P015 | MRPL15 | S33 | ochoa | Large ribosomal subunit protein uL15m (39S ribosomal protein L15, mitochondrial) (L15mt) (MRP-L15) | None |
Q9P270 | SLAIN2 | S431 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P2W9 | STX18 | S283 | ochoa | Syntaxin-18 (Cell growth-inhibiting gene 9 protein) | Syntaxin that may be involved in targeting and fusion of Golgi-derived retrograde transport vesicles with the ER. {ECO:0000269|PubMed:15029241}. |
Q9UBS3 | DNAJB9 | S106 | ochoa | DnaJ homolog subfamily B member 9 (Endoplasmic reticulum DNA J domain-containing protein 4) (ER-resident protein ERdj4) (ERdj4) (Microvascular endothelial differentiation gene 1 protein) (Mdg-1) | Co-chaperone for Hsp70 protein HSPA5/BiP that acts as a key repressor of the ERN1/IRE1-mediated unfolded protein response (UPR) (By similarity). J domain-containing co-chaperones stimulate the ATPase activity of Hsp70 proteins and are required for efficient substrate recognition by Hsp70 proteins (PubMed:18400946). In the unstressed endoplasmic reticulum, interacts with the luminal region of ERN1/IRE1 and selectively recruits HSPA5/BiP: HSPA5/BiP disrupts the dimerization of the active ERN1/IRE1 luminal region, thereby inactivating ERN1/IRE1 (By similarity). Also involved in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins. Required for survival of B-cell progenitors and normal antibody production (By similarity). {ECO:0000250|UniProtKB:G3H0N9, ECO:0000250|UniProtKB:Q9QYI6, ECO:0000269|PubMed:18400946}. |
Q9UBX3 | SLC25A10 | S93 | ochoa | Mitochondrial dicarboxylate carrier (DIC) (Solute carrier family 25 member 10) | Catalyzes the electroneutral exchange or flux of physiologically important metabolites such as dicarboxylates (malonate, malate, succinate), inorganic sulfur-containing anions, and phosphate, across mitochondrial inner membrane (PubMed:29211846). Plays an important role in gluconeogenesis, fatty acid metabolism, urea synthesis, and sulfur metabolism, particularly in liver, by supplying the substrates for the different metabolic processes. Regulates fatty acid release from adipocytes, and contributes to systemic insulin sensitivity (By similarity). {ECO:0000250|UniProtKB:Q9QZD8, ECO:0000269|PubMed:29211846}. |
Q9UBZ4 | APEX2 | S246 | ochoa | DNA-(apurinic or apyrimidinic site) endonuclease 2 (EC 3.1.11.2) (AP endonuclease XTH2) (APEX nuclease 2) (APEX nuclease-like 2) (Apurinic-apyrimidinic endonuclease 2) (AP endonuclease 2) | Functions as a weak apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents (PubMed:16687656). Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also displays double-stranded DNA 3'-5' exonuclease, 3'-phosphodiesterase activities (PubMed:16687656, PubMed:19443450, PubMed:32516598). Shows robust 3'-5' exonuclease activity on 3'-recessed heteroduplex DNA and is able to remove mismatched nucleotides preferentially (PubMed:16687656, PubMed:19443450). Also exhibits 3'-5' exonuclease activity on a single nucleotide gap containing heteroduplex DNA and on blunt-ended substrates (PubMed:16687656). Shows fairly strong 3'-phosphodiesterase activity involved in the removal of 3'-damaged termini formed in DNA by oxidative agents (PubMed:16687656, PubMed:19443450). In the nucleus functions in the PCNA-dependent BER pathway (PubMed:11376153). Plays a role in reversing blocked 3' DNA ends, problematic lesions that preclude DNA synthesis (PubMed:32516598). Required for somatic hypermutation (SHM) and DNA cleavage step of class switch recombination (CSR) of immunoglobulin genes (By similarity). Required for proper cell cycle progression during proliferation of peripheral lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q68G58, ECO:0000269|PubMed:11376153, ECO:0000269|PubMed:16687656, ECO:0000269|PubMed:19443450, ECO:0000269|PubMed:32516598}. |
Q9UHD1 | CHORDC1 | S20 | ochoa | Cysteine and histidine-rich domain-containing protein 1 (CHORD domain-containing protein 1) (CHORD-containing protein 1) (CHP-1) (Protein morgana) | Regulates centrosome duplication, probably by inhibiting the kinase activity of ROCK2 (PubMed:20230755). Proposed to act as co-chaperone for HSP90 (PubMed:20230755). May play a role in the regulation of NOD1 via a HSP90 chaperone complex (PubMed:20230755). In vitro, has intrinsic chaperone activity (PubMed:20230755). This function may be achieved by inhibiting association of ROCK2 with NPM1 (PubMed:20230755). Plays a role in ensuring the localization of the tyrosine kinase receptor EGFR to the plasma membrane, and thus ensures the subsequent regulation of EGFR activity and EGF-induced actin cytoskeleton remodeling (PubMed:32053105). Involved in stress response (PubMed:20230755). Prevents tumorigenesis (PubMed:20230755). {ECO:0000269|PubMed:20230755, ECO:0000269|PubMed:32053105}. |
Q9UHD8 | SEPTIN9 | S482 | ochoa | Septin-9 (MLL septin-like fusion protein MSF-A) (MLL septin-like fusion protein) (Ovarian/Breast septin) (Ov/Br septin) (Septin D1) | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). May play a role in the internalization of 2 intracellular microbial pathogens, Listeria monocytogenes and Shigella flexneri. {ECO:0000250, ECO:0000305}. |
Q9UHI6 | DDX20 | S320 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHV7 | MED13 | S839 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UJY4 | GGA2 | S326 | ochoa | ADP-ribosylation factor-binding protein GGA2 (Gamma-adaptin-related protein 2) (Golgi-localized, gamma ear-containing, ARF-binding protein 2) (VHS domain and ear domain of gamma-adaptin) (Vear) | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:10747088). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:27901063). Regulates retrograde transport of phosphorylated form of BACE1 from endosomes to the trans-Golgi network (PubMed:15615712). {ECO:0000269|PubMed:10747088, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:27901063}. |
Q9UK61 | TASOR | S905 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKB1 | FBXW11 | S65 | ochoa | F-box/WD repeat-containing protein 11 (F-box and WD repeats protein beta-TrCP2) (F-box/WD repeat-containing protein 1B) (Homologous to Slimb protein) (HOS) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:10437795, PubMed:10648623, PubMed:11158290, PubMed:19966869, PubMed:20347421, PubMed:22017875, PubMed:22017876, PubMed:36608670). Probably recognizes and binds to phosphorylated target proteins: the interaction with substrates requires the phosphorylation of the two serine residues in the substrates' destruction motif D-S-G-X(2,3,4)-S (PubMed:10437795, PubMed:10648623, PubMed:19966869, PubMed:20347421, PubMed:22017875, PubMed:22017876, PubMed:36608670). SCF(FBXW11) mediates the ubiquitination of phosphorylated CTNNB1 and participates in Wnt signaling regulation (PubMed:10321728). SCF(FBXW11) plays a key role in NF-kappa-B activation by mediating ubiquitination of phosphorylated NFKBIA, leading to its degradation by the proteasome, thereby allowing the associated NF-kappa-B complex to translocate into the nucleus and to activate transcription (PubMed:10321728, PubMed:10437795, PubMed:10644755, PubMed:20347421). The SCF(FBXW11) complex also regulates NF-kappa-B by mediating ubiquitination of phosphorylated NFKB1: specifically ubiquitinates the p105 form of NFKB1, leading to its degradation (PubMed:11158290). SCF(FBXW11) mediates the ubiquitination of IFNAR1 (PubMed:14532120, PubMed:15337770). SCF(FBXW11) mediates the ubiquitination of CEP68; this is required for centriole separation during mitosis (PubMed:25503564). Involved in the oxidative stress-induced a ubiquitin-mediated decrease in RCAN1 (PubMed:18575781). Mediates the degradation of CDC25A induced by ionizing radiation in cells progressing through S phase and thus may function in the intra-S-phase checkpoint (PubMed:14603323). Has an essential role in the control of the clock-dependent transcription via degradation of phosphorylated PER1 and phosphorylated PER2 (PubMed:15917222). SCF(FBXW11) mediates the ubiquitination of CYTH1, and probably CYTH2 (PubMed:29420262). SCF(FBXW11) acts as a regulator of mTORC1 signaling pathway by catalyzing ubiquitination and subsequent proteasomal degradation of phosphorylated DEPTOR, TFE3 and MITF (PubMed:22017875, PubMed:22017876, PubMed:36608670). {ECO:0000269|PubMed:10321728, ECO:0000269|PubMed:10437795, ECO:0000269|PubMed:10644755, ECO:0000269|PubMed:10648623, ECO:0000269|PubMed:11158290, ECO:0000269|PubMed:14532120, ECO:0000269|PubMed:14603323, ECO:0000269|PubMed:15337770, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:18575781, ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:20347421, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:29420262, ECO:0000269|PubMed:36608670}.; FUNCTION: (Microbial infection) Target of human immunodeficiency virus type 1 (HIV-1) protein VPU to polyubiquitinate and deplete BST2 from cells and antagonize its antiviral action. {ECO:0000269|PubMed:19730691}. |
Q9ULC3 | RAB23 | S200 | ochoa | Ras-related protein Rab-23 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. Together with SUFU, prevents nuclear import of GLI1, and thereby inhibits GLI1 transcription factor activity. Regulates GLI1 in differentiating chondrocytes. Likewise, regulates GLI3 proteolytic processing and modulates GLI2 and GLI3 transcription factor activity. Plays a role in autophagic vacuole assembly, and mediates defense against pathogens, such as S.aureus, by promoting their capture by autophagosomes that then merge with lysosomes. {ECO:0000269|PubMed:22365972, ECO:0000269|PubMed:22452336}. |
Q9ULI3 | HEG1 | S427 | ochoa | Protein HEG homolog 1 | Receptor component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions. {ECO:0000250}. |
Q9ULL1 | PLEKHG1 | S1183 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9UPU9 | SAMD4A | S578 | ochoa | Protein Smaug homolog 1 (Smaug 1) (hSmaug1) (Sterile alpha motif domain-containing protein 4A) (SAM domain-containing protein 4A) | Acts as a translational repressor of SRE-containing messengers. {ECO:0000269|PubMed:16221671}. |
Q9UQC2 | GAB2 | S285 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y210 | TRPC6 | S836 | ochoa | Short transient receptor potential channel 6 (TrpC6) (Transient receptor protein 6) (TRP-6) | Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:19936226, PubMed:23291369, PubMed:26892346, PubMed:9930701). Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C (PubMed:26892346). Seems not to be activated by intracellular calcium store depletion. {ECO:0000269|PubMed:19936226, ECO:0000269|PubMed:23291369, ECO:0000269|PubMed:26892346, ECO:0000269|PubMed:9930701}. |
Q9Y251 | HPSE | S426 | ochoa | Heparanase (EC 3.2.1.166) (Endo-glucoronidase) (Heparanase-1) (Hpa1) [Cleaved into: Heparanase 8 kDa subunit; Heparanase 50 kDa subunit] | Endoglycosidase that cleaves heparan sulfate proteoglycans (HSPGs) into heparan sulfate side chains and core proteoglycans. Participates in extracellular matrix (ECM) degradation and remodeling. Selectively cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group. Can also cleave the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying a 2-O-sulfo group, but not linkages between a glucuronic acid unit and a 2-O-sulfated iduronic acid moiety. It is essentially inactive at neutral pH but becomes active under acidic conditions such as during tumor invasion and in inflammatory processes. Facilitates cell migration associated with metastasis, wound healing and inflammation. Enhances shedding of syndecans, and increases endothelial invasion and angiogenesis in myelomas. Acts as a procoagulant by increasing the generation of activation factor X in the presence of tissue factor and activation factor VII. Increases cell adhesion to the extracellular matrix (ECM), independent of its enzymatic activity. Induces AKT1/PKB phosphorylation via lipid rafts increasing cell mobility and invasion. Heparin increases this AKT1/PKB activation. Regulates osteogenesis. Enhances angiogenesis through up-regulation of SRC-mediated activation of VEGF. Implicated in hair follicle inner root sheath differentiation and hair homeostasis. {ECO:0000269|PubMed:12213822, ECO:0000269|PubMed:12773484, ECO:0000269|PubMed:15044433, ECO:0000269|PubMed:16452201, ECO:0000269|PubMed:18557927, ECO:0000269|PubMed:18798279, ECO:0000269|PubMed:19244131, ECO:0000269|PubMed:20097882, ECO:0000269|PubMed:20181948, ECO:0000269|PubMed:20309870, ECO:0000269|PubMed:20561914, ECO:0000269|PubMed:21131364}. |
Q9Y276 | BCS1L | S174 | ochoa | Mitochondrial chaperone BCS1 (h-BCS1) (EC 3.6.1.-) (BCS1-like protein) | Chaperone necessary for the incorporation of Rieske iron-sulfur protein UQCRFS1 into the mitochondrial respiratory chain complex III (PubMed:11528392, PubMed:9878253). Plays an important role in the maintenance of mitochondrial tubular networks, respiratory chain assembly and formation of the LETM1 complex (PubMed:18628306). {ECO:0000269|PubMed:11528392, ECO:0000269|PubMed:18628306, ECO:0000269|PubMed:9878253}. |
Q9Y283 | INVS | S865 | psp | Inversin (Inversion of embryo turning homolog) (Nephrocystin-2) | Required for normal renal development and establishment of left-right axis. Probably acts as a molecular switch between different Wnt signaling pathways. Inhibits the canonical Wnt pathway by targeting cytoplasmic disheveled (DVL1) for degradation by the ubiquitin-proteasome. This suggests that it is required in renal development to oppose the repression of terminal differentiation of tubular epithelial cells by Wnt signaling. Involved in the organization of apical junctions in kidney cells together with NPHP1, NPHP4 and RPGRIP1L/NPHP8 (By similarity). Does not seem to be strictly required for ciliogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:15852005, ECO:0000269|PubMed:18371931}. |
Q9Y2Q0 | ATP8A1 | S1138 | ochoa | Phospholipid-transporting ATPase IA (EC 7.6.2.1) (ATPase class I type 8A member 1) (Chromaffin granule ATPase II) (P4-ATPase flippase complex alpha subunit ATP8A1) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids (PubMed:31416931). Phospholipid translocation also seems to be implicated in vesicle formation and in uptake of lipid signaling molecules. In vitro, its ATPase activity is selectively and stereospecifically stimulated by phosphatidylserine (PS) (PubMed:31416931). The flippase complex ATP8A1:TMEM30A seems to play a role in regulation of cell migration probably involving flippase-mediated translocation of phosphatidylethanolamine (PE) at the cell membrane (By similarity). Acts as aminophospholipid translocase at the cell membrane in neuronal cells (By similarity). {ECO:0000250|UniProtKB:P70704, ECO:0000269|PubMed:31416931}. |
Q9Y2T2 | AP3M1 | S150 | ochoa | AP-3 complex subunit mu-1 (AP-3 adaptor complex mu3A subunit) (Adaptor-related protein complex 3 subunit mu-1) (Mu-adaptin 3A) (Mu3A-adaptin) | Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. |
Q9Y3L3 | SH3BP1 | S262 | ochoa | SH3 domain-binding protein 1 | GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}. |
Q9Y3R5 | DOP1B | S1021 | ochoa | Protein DOP1B | May play a role in regulating membrane trafficking of cargo proteins. Together with ATP9A and MON2, regulates SNX3 retromer-mediated endosomal sorting of WLS away from lysosomal degradation. {ECO:0000269|PubMed:30213940}. |
Q9Y483 | MTF2 | S513 | ochoa | Metal-response element-binding transcription factor 2 (Metal regulatory transcription factor 2) (Metal-response element DNA-binding protein M96) (Polycomb-like protein 2) (hPCl2) | Polycomb group (PcG) protein that specifically binds histone H3 trimethylated at 'Lys-36' (H3K36me3) and recruits the PRC2 complex, thus enhancing PRC2 H3K27me3 methylation activity (PubMed:23142980, PubMed:23228662, PubMed:31959557). Regulates the transcriptional networks during embryonic stem cell self-renewal and differentiation (By similarity). Promotes recruitment of the PRC2 complex to the inactive X chromosome in differentiating XX ES cells and PRC2 recruitment to target genes in undifferentiated ES cells (By similarity). Required to repress Hox genes by enhancing H3K27me3 methylation of the PRC2 complex (By similarity). In some conditions may act as an inhibitor of PRC2 activity: able to activate the CDKN2A gene and promote cellular senescence by suppressing the catalytic activity of the PRC2 complex locally (By similarity). Binds to the metal-regulating-element (MRE) of MT1A gene promoter (By similarity). {ECO:0000250|UniProtKB:Q02395, ECO:0000269|PubMed:23142980, ECO:0000269|PubMed:23228662, ECO:0000269|PubMed:31959557}. |
Q9Y4F5 | CEP170B | S941 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4G8 | RAPGEF2 | S1256 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y4W6 | AFG3L2 | S53 | ochoa | Mitochondrial inner membrane m-AAA protease component AFG3L2 (EC 3.4.24.-) (EC 3.6.-.-) (AFG3-like protein 2) (Paraplegin-like protein) | Catalytic component of the m-AAA protease, a protease that plays a key role in proteostasis of inner mitochondrial membrane proteins, and which is essential for axonal and neuron development (PubMed:19748354, PubMed:28396416, PubMed:29932645, PubMed:30683687, PubMed:31327635, PubMed:37917749, PubMed:38157846). AFG3L2 possesses both ATPase and protease activities: the ATPase activity is required to unfold substrates, threading them into the internal proteolytic cavity for hydrolysis into small peptide fragments (PubMed:19748354, PubMed:31327635). The m-AAA protease carries out quality control in the inner membrane of the mitochondria by mediating degradation of mistranslated or misfolded polypeptides (PubMed:26504172, PubMed:30683687, PubMed:34718584). The m-AAA protease complex also promotes the processing and maturation of mitochondrial proteins, such as MRPL32/bL32m, PINK1 and SP7 (PubMed:22354088, PubMed:29932645, PubMed:30252181). Mediates protein maturation of the mitochondrial ribosomal subunit MRPL32/bL32m by catalyzing the cleavage of the presequence of MRPL32/bL32m prior to assembly into the mitochondrial ribosome (PubMed:29932645). Required for SPG7 maturation into its active mature form after SPG7 cleavage by mitochondrial-processing peptidase (MPP) (PubMed:30252181). Required for the maturation of PINK1 into its 52kDa mature form after its cleavage by mitochondrial-processing peptidase (MPP) (PubMed:22354088). Acts as a regulator of calcium in neurons by mediating degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU (PubMed:27642048, PubMed:28396416). Promotes the proteolytic degradation of GHITM upon hyperpolarization of mitochondria: progressive GHITM degradation leads to respiratory complex I degradation and broad reshaping of the mitochondrial proteome by AFG3L2 (PubMed:35912435). Also acts as a regulator of mitochondrial glutathione homeostasis by mediating cleavage and degradation of SLC25A39 (PubMed:37917749, PubMed:38157846). SLC25A39 cleavage is prevented when SLC25A39 binds iron-sulfur (PubMed:37917749, PubMed:38157846). Involved in the regulation of OMA1-dependent processing of OPA1 (PubMed:17615298, PubMed:29545505, PubMed:30252181, PubMed:30683687, PubMed:32600459). May act by mediating processing of OMA1 precursor, participating in OMA1 maturation (PubMed:29545505). {ECO:0000269|PubMed:17615298, ECO:0000269|PubMed:19748354, ECO:0000269|PubMed:22354088, ECO:0000269|PubMed:26504172, ECO:0000269|PubMed:27642048, ECO:0000269|PubMed:28396416, ECO:0000269|PubMed:29545505, ECO:0000269|PubMed:29932645, ECO:0000269|PubMed:30252181, ECO:0000269|PubMed:30683687, ECO:0000269|PubMed:31327635, ECO:0000269|PubMed:32600459, ECO:0000269|PubMed:34718584, ECO:0000269|PubMed:35912435, ECO:0000269|PubMed:37917749, ECO:0000269|PubMed:38157846}. |
Q9Y6A5 | TACC3 | S583 | ochoa | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
O15530 | PDPK1 | S176 | Sugiyama | 3-phosphoinositide-dependent protein kinase 1 (hPDK1) (EC 2.7.11.1) | Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of protein kinases (PubMed:10226025, PubMed:10480933, PubMed:10995762, PubMed:12167717, PubMed:14585963, PubMed:14604990, PubMed:16207722, PubMed:16251192, PubMed:17327236, PubMed:17371830, PubMed:18835241, PubMed:9094314, PubMed:9368760, PubMed:9445476, PubMed:9445477, PubMed:9707564, PubMed:9768361). Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), p70 ribosomal protein S6 kinase (RPS6KB1), p90 ribosomal protein S6 kinase (RPS6KA1, RPS6KA2 and RPS6KA3), cyclic AMP-dependent protein kinase (PRKACA), protein kinase C (PRKCD and PRKCZ), serum and glucocorticoid-inducible kinase (SGK1, SGK2 and SGK3), p21-activated kinase-1 (PAK1), TSSK3, protein kinase PKN (PKN1 and PKN2) (PubMed:10226025, PubMed:10480933, PubMed:10995762, PubMed:12167717, PubMed:14585963, PubMed:14604990, PubMed:16207722, PubMed:16251192, PubMed:17327236, PubMed:17371830, PubMed:18835241, PubMed:9094314, PubMed:9368760, PubMed:9445476, PubMed:9707564, PubMed:9768361). Plays a central role in the transduction of signals from insulin by providing the activating phosphorylation to PKB/AKT1, thus propagating the signal to downstream targets controlling cell proliferation and survival, as well as glucose and amino acid uptake and storage (PubMed:10226025, PubMed:12167717, PubMed:9094314). Negatively regulates the TGF-beta-induced signaling by: modulating the association of SMAD3 and SMAD7 with TGF-beta receptor, phosphorylating SMAD2, SMAD3, SMAD4 and SMAD7, preventing the nuclear translocation of SMAD3 and SMAD4 and the translocation of SMAD7 from the nucleus to the cytoplasm in response to TGF-beta (PubMed:17327236). Activates PPARG transcriptional activity and promotes adipocyte differentiation (By similarity). Activates the NF-kappa-B pathway via phosphorylation of IKKB (PubMed:16207722). The tyrosine phosphorylated form is crucial for the regulation of focal adhesions by angiotensin II (PubMed:14585963). Controls proliferation, survival, and growth of developing pancreatic cells (By similarity). Participates in the regulation of Ca(2+) entry and Ca(2+)-activated K(+) channels of mast cells (By similarity). Essential for the motility of vascular endothelial cells (ECs) and is involved in the regulation of their chemotaxis (PubMed:17371830). Plays a critical role in cardiac homeostasis by serving as a dual effector for cell survival and beta-adrenergic response (By similarity). Plays an important role during thymocyte development by regulating the expression of key nutrient receptors on the surface of pre-T cells and mediating Notch-induced cell growth and proliferative responses (By similarity). Provides negative feedback inhibition to toll-like receptor-mediated NF-kappa-B activation in macrophages (By similarity). {ECO:0000250|UniProtKB:Q9Z2A0, ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10480933, ECO:0000269|PubMed:10995762, ECO:0000269|PubMed:12167717, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:14604990, ECO:0000269|PubMed:16207722, ECO:0000269|PubMed:16251192, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:17371830, ECO:0000269|PubMed:18835241, ECO:0000269|PubMed:9094314, ECO:0000269|PubMed:9368760, ECO:0000269|PubMed:9445476, ECO:0000269|PubMed:9445477, ECO:0000269|PubMed:9707564, ECO:0000269|PubMed:9768361}.; FUNCTION: [Isoform 3]: Catalytically inactive. {ECO:0000269|PubMed:9445477}. |
Q6A1A2 | PDPK2P | S149 | Sugiyama | Putative 3-phosphoinositide-dependent protein kinase 2 (EC 2.7.11.1) (3-phosphoinositide-dependent protein kinase 2 pseudogene) | Phosphorylates and activates not only PKB/AKT, but also PKA, PKC-zeta, RPS6KA1 and RPS6KB1. May play a general role in signaling processes and in development (By similarity). {ECO:0000250}. |
Q9Y2B0 | CNPY2 | S55 | Sugiyama | Protein canopy homolog 2 (MIR-interacting saposin-like protein) (Putative secreted protein Zsig9) (Transmembrane protein 4) | Positive regulator of neurite outgrowth by stabilizing myosin regulatory light chain (MRLC). It prevents MIR-mediated MRLC ubiquitination and its subsequent proteasomal degradation. |
P30050 | RPL12 | S138 | Sugiyama | Large ribosomal subunit protein uL11 (60S ribosomal protein L12) | Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}. |
P62979 | RPS27A | S134 | Sugiyama | Ubiquitin-ribosomal protein eS31 fusion protein (Ubiquitin carboxyl extension protein 80) [Cleaved into: Ubiquitin; Small ribosomal subunit protein eS31 (40S ribosomal protein S27a)] | [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Small ribosomal subunit protein eS31]: Component of the 40S subunit of the ribosome (PubMed:23636399, PubMed:9582194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23636399, PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000305|PubMed:9582194}. |
P84098 | RPL19 | S122 | Sugiyama | Large ribosomal subunit protein eL19 (60S ribosomal protein L19) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q15084 | PDIA6 | S389 | Sugiyama | Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) | May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}. |
P55036 | PSMD4 | S39 | Sugiyama | 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}. |
P62942 | FKBP1A | S68 | Sugiyama | Peptidyl-prolyl cis-trans isomerase FKBP1A (PPIase FKBP1A) (EC 5.2.1.8) (12 kDa FK506-binding protein) (12 kDa FKBP) (FKBP-12) (Calstabin-1) (FK506-binding protein 1A) (FKBP-1A) (Immunophilin FKBP12) (Rotamase) | Keeps in an inactive conformation TGFBR1, the TGF-beta type I serine/threonine kinase receptor, preventing TGF-beta receptor activation in absence of ligand. Recruits SMAD7 to ACVR1B which prevents the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. May modulate the RYR1 calcium channel activity. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. {ECO:0000269|PubMed:16720724, ECO:0000269|PubMed:1696686, ECO:0000269|PubMed:1701173, ECO:0000269|PubMed:9233797}. |
Q16881 | TXNRD1 | S335 | Sugiyama | Thioredoxin reductase 1, cytoplasmic (TR) (EC 1.8.1.9) (Gene associated with retinoic and interferon-induced mortality 12 protein) (GRIM-12) (Gene associated with retinoic and IFN-induced mortality 12 protein) (KM-102-derived reductase-like factor) (Peroxidase TXNRD1) (EC 1.11.1.2) (Thioredoxin reductase TR1) | Reduces disulfideprotein thioredoxin (Trx) to its dithiol-containing form (PubMed:8577704). Homodimeric flavoprotein involved in the regulation of cellular redox reactions, growth and differentiation. Contains a selenocysteine residue at the C-terminal active site that is essential for catalysis (Probable). Also has reductase activity on hydrogen peroxide (H2O2) (PubMed:10849437). {ECO:0000269|PubMed:10849437, ECO:0000269|PubMed:8577704, ECO:0000305|PubMed:17512005}.; FUNCTION: [Isoform 1]: Induces actin and tubulin polymerization, leading to formation of cell membrane protrusions. {ECO:0000269|PubMed:18042542, ECO:0000269|PubMed:8577704}.; FUNCTION: [Isoform 4]: Enhances the transcriptional activity of estrogen receptors ESR1 and ESR2. {ECO:0000269|PubMed:15199063}.; FUNCTION: [Isoform 5]: Enhances the transcriptional activity of the estrogen receptor ESR2 only (PubMed:15199063). Mediates cell death induced by a combination of interferon-beta and retinoic acid (PubMed:9774665). {ECO:0000269|PubMed:15199063, ECO:0000269|PubMed:9774665}. |
Q9BQS8 | FYCO1 | S659 | Sugiyama | FYVE and coiled-coil domain-containing protein 1 (Zinc finger FYVE domain-containing protein 7) | May mediate microtubule plus end-directed vesicle transport. {ECO:0000269|PubMed:20100911}. |
Q9BRS2 | RIOK1 | S130 | Sugiyama | Serine/threonine-protein kinase RIO1 (EC 2.7.11.1) (EC 3.6.1.-) (RIO kinase 1) | Involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in processing of 18S-E pre-rRNA to the mature 18S rRNA. Required for the recycling of NOB1 and PNO1 from the late 40S precursor (PubMed:22072790). The association with the very late 40S subunit intermediate may involve a translation-like checkpoint point cycle preceeding the binding to the 60S ribosomal subunit (By similarity). Despite the protein kinase domain is proposed to act predominantly as an ATPase (By similarity). The catalytic activity regulates its dynamic association with the 40S subunit (By similarity). In addition to its role in ribosomal biogenesis acts as an adapter protein by recruiting NCL/nucleolin the to PRMT5 complex for its symmetrical methylation (PubMed:21081503). {ECO:0000250|UniProtKB:G0S3J5, ECO:0000250|UniProtKB:Q12196, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:22072790}. |
Q9Y696 | CLIC4 | S27 | Sugiyama | Chloride intracellular channel protein 4 (Glutaredoxin-like oxidoreductase CLIC4) (EC 1.8.-.-) (Intracellular chloride ion channel protein p64H1) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (PubMed:25581026, PubMed:37759794). Can insert into membranes and form voltage-dependent multi-ion conductive channels. Membrane insertion seems to be redox-regulated and may occur only under oxidizing conditions (By similarity) (PubMed:16176272). Has alternate cellular functions like a potential role in angiogenesis or in maintaining apical-basolateral membrane polarity during mitosis and cytokinesis. Could also promote endothelial cell proliferation and regulate endothelial morphogenesis (tubulogenesis). Promotes cell-surface expression of HRH3. {ECO:0000250|UniProtKB:Q9Z0W7, ECO:0000269|PubMed:12163372, ECO:0000269|PubMed:14569596, ECO:0000269|PubMed:16176272, ECO:0000269|PubMed:16239224, ECO:0000269|PubMed:18302930, ECO:0000269|PubMed:19247789, ECO:0000269|PubMed:25581026, ECO:0000269|PubMed:37759794}. |
Q3B891 | BRCA1 | S308 | GPS6 | BRCA1 DNA repair associated (BRCA1 protein) | None |
Q7KZF4 | SND1 | S727 | Sugiyama | Staphylococcal nuclease domain-containing protein 1 (EC 3.1.31.1) (100 kDa coactivator) (EBNA2 coactivator p100) (Tudor domain-containing protein 11) (p100 co-activator) | Endonuclease that mediates miRNA decay of both protein-free and AGO2-loaded miRNAs (PubMed:18453631, PubMed:28546213). As part of its function in miRNA decay, regulates mRNAs involved in G1-to-S phase transition (PubMed:28546213). Functions as a bridging factor between STAT6 and the basal transcription factor (PubMed:12234934). Plays a role in PIM1 regulation of MYB activity (PubMed:9809063). Functions as a transcriptional coactivator for STAT5 (By similarity). {ECO:0000250|UniProtKB:Q78PY7, ECO:0000269|PubMed:12234934, ECO:0000269|PubMed:18453631, ECO:0000269|PubMed:28546213, ECO:0000269|PubMed:9809063}.; FUNCTION: (Microbial infection) Functions as a transcriptional coactivator for the Epstein-Barr virus nuclear antigen 2 (EBNA2). {ECO:0000269|PubMed:7651391}.; FUNCTION: (Microbial infection) Promotes SARS-CoV-2 RNA synthesis by binding to negative-sense RNA and the viral protein nsp9. {ECO:0000269|PubMed:37794589}. |
Q5SSJ5 | HP1BP3 | S227 | Sugiyama | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
P28340 | POLD1 | S1064 | Sugiyama | DNA polymerase delta catalytic subunit (EC 2.7.7.7) (3'-5' exodeoxyribonuclease) (EC 3.1.11.-) (DNA polymerase subunit delta p125) | As the catalytic component of the trimeric (Pol-delta3 complex) and tetrameric DNA polymerase delta complexes (Pol-delta4 complex), plays a crucial role in high fidelity genome replication, including in lagging strand synthesis, and repair (PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24022480, PubMed:24035200, PubMed:31449058). Exhibits both DNA polymerase and 3'- to 5'-exonuclease activities (PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24022480, PubMed:24035200). Requires the presence of accessory proteins POLD2, POLD3 and POLD4 for full activity. Depending upon the absence (Pol-delta3) or the presence of POLD4 (Pol-delta4), displays differences in catalytic activity. Most notably, expresses higher proofreading activity in the context of Pol-delta3 compared with that of Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation (PubMed:20227374). Under conditions of DNA replication stress, in the presence of POLD3 and POLD4, may catalyze the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine, 8oxoG or abasic sites (PubMed:19074196, PubMed:24191025). {ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24022480, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24191025, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:31449058}. |
O15264 | MAPK13 | S38 | Sugiyama | Mitogen-activated protein kinase 13 (MAP kinase 13) (MAPK 13) (EC 2.7.11.24) (Mitogen-activated protein kinase p38 delta) (MAP kinase p38 delta) (Stress-activated protein kinase 4) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK13 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK13 is one of the less studied p38 MAPK isoforms. Some of the targets are downstream kinases such as MAPKAPK2, which are activated through phosphorylation and further phosphorylate additional targets. Plays a role in the regulation of protein translation by phosphorylating and inactivating EEF2K. Involved in cytoskeletal remodeling through phosphorylation of MAPT and STMN1. Mediates UV irradiation induced up-regulation of the gene expression of CXCL14. Plays an important role in the regulation of epidermal keratinocyte differentiation, apoptosis and skin tumor development. Phosphorylates the transcriptional activator MYB in response to stress which leads to rapid MYB degradation via a proteasome-dependent pathway. MAPK13 also phosphorylates and down-regulates PRKD1 during regulation of insulin secretion in pancreatic beta cells. {ECO:0000269|PubMed:11500363, ECO:0000269|PubMed:11943212, ECO:0000269|PubMed:15632108, ECO:0000269|PubMed:17256148, ECO:0000269|PubMed:18006338, ECO:0000269|PubMed:18367666, ECO:0000269|PubMed:20478268, ECO:0000269|PubMed:9731215}. |
Q96JJ7 | TMX3 | S268 | Sugiyama | Protein disulfide-isomerase TMX3 (EC 5.3.4.1) (Thioredoxin domain-containing protein 10) (Thioredoxin-related transmembrane protein 3) | Probable disulfide isomerase, which participates in the folding of proteins containing disulfide bonds. May act as a dithiol oxidase (PubMed:15623505). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:31304984). {ECO:0000269|PubMed:15623505, ECO:0000269|PubMed:31304984}. |
Q13972 | RASGRF1 | S287 | SIGNOR | Ras-specific guanine nucleotide-releasing factor 1 (Ras-GRF1) (Guanine nucleotide-releasing protein) (GNRP) (Ras-specific nucleotide exchange factor CDC25) | Promotes the exchange of Ras-bound GDP by GTP. {ECO:0000269|PubMed:11389730}. |
P35408 | PTGER4 | S354 | ELM | Prostaglandin E2 receptor EP4 subtype (PGE receptor EP4 subtype) (PGE2 receptor EP4 subtype) (Prostanoid EP4 receptor) | Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. |
P15735 | PHKG2 | S297 | Sugiyama | Phosphorylase b kinase gamma catalytic chain, liver/testis isoform (PHK-gamma-LT) (PHK-gamma-T) (EC 2.7.11.19) (PSK-C3) (Phosphorylase kinase subunit gamma-2) | Catalytic subunit of the phosphorylase b kinase (PHK), which mediates the neural and hormonal regulation of glycogen breakdown (glycogenolysis) by phosphorylating and thereby activating glycogen phosphorylase. May regulate glycogeneolysis in the testis. In vitro, phosphorylates PYGM (PubMed:35549678). {ECO:0000250|UniProtKB:P31325, ECO:0000269|PubMed:10487978, ECO:0000269|PubMed:35549678}. |
P41235 | HNF4A | S262 | PSP | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
O00469 | PLOD2 | S441 | Sugiyama | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (EC 1.14.11.4) (Lysyl hydroxylase 2) (LH2) | Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens. These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links. {ECO:0000250|UniProtKB:P24802}. |
P78371 | CCT2 | S101 | Sugiyama | T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P22061 | PCMT1 | S132 | Sugiyama | Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PIMT) (EC 2.1.1.77) (L-isoaspartyl protein carboxyl methyltransferase) (Protein L-isoaspartyl/D-aspartyl methyltransferase) (Protein-beta-aspartate methyltransferase) | Initiates the repair of damaged proteins by catalyzing methyl esterification of L-isoaspartyl and D-aspartyl residues produced by spontaneous isomerization and racemization of L-aspartyl and L-asparaginyl residues in aging peptides and proteins (PubMed:3167043, PubMed:6469980). Acts on EIF4EBP2, microtubule-associated protein 2, calreticulin, clathrin light chains a and b, Ubiquitin C-terminal hydrolase isozyme L1, phosphatidylethanolamine-binding protein 1, stathmin, beta-synuclein and alpha-synuclein (By similarity). {ECO:0000250|UniProtKB:P23506, ECO:0000269|PubMed:3167043, ECO:0000269|PubMed:6469980}. |
Q9HC38 | GLOD4 | S246 | Sugiyama | Glyoxalase domain-containing protein 4 | None |
A8MPP1 | DDX11L8 | S279 | Sugiyama | Putative ATP-dependent DNA helicase DDX11-like protein 8 (EC 5.6.2.-) (DEAD/H box protein 11-like 8) | Putative DNA helicase. {ECO:0000305}. |
Q96FC9 | DDX11 | S277 | Sugiyama | ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) | DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}. |
Q07352 | ZFP36L1 | S84 | Sugiyama | mRNA decay activator protein ZFP36L1 (Butyrate response factor 1) (EGF-response factor 1) (ERF-1) (TPA-induced sequence 11b) (Zinc finger protein 36, C3H1 type-like 1) (ZFP36-like 1) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:15687258). Functions by recruiting the CCR4-NOT deadenylase complex and components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:15687258, PubMed:18326031, PubMed:25106868). Also induces the degradation of ARE-containing mRNAs even in absence of poly(A) tail (By similarity). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:12198173, PubMed:15467755, PubMed:15538381, PubMed:17030608, PubMed:19179481, PubMed:20702587, PubMed:24700863, PubMed:25014217, PubMed:25106868, PubMed:26542173). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs) (By similarity). Promotes ARE-mediated mRNA decay of mineralocorticoid receptor NR3C2 mRNA in response to hypertonic stress (PubMed:24700863). Negatively regulates hematopoietic/erythroid cell differentiation by promoting ARE-mediated mRNA decay of the transcription factor STAT5B mRNA (PubMed:20702587). Positively regulates monocyte/macrophage cell differentiation by promoting ARE-mediated mRNA decay of the cyclin-dependent kinase CDK6 mRNA (PubMed:26542173). Promotes degradation of ARE-containing pluripotency-associated mRNAs in embryonic stem cells (ESCs), such as NANOG, through a fibroblast growth factor (FGF)-induced MAPK-dependent signaling pathway, and hence attenuates ESC self-renewal and positively regulates mesendoderm differentiation (By similarity). May play a role in mediating pro-apoptotic effects in malignant B-cells by promoting ARE-mediated mRNA decay of BCL2 mRNA (PubMed:25014217). In association with ZFP36L2 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination and functional immune cell formation (By similarity). Together with ZFP36L2 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA (By similarity). Participates in the delivery of target ARE-mRNAs to processing bodies (PBs) (PubMed:17369404). In addition to its cytosolic mRNA-decay function, plays a role in the regulation of nuclear mRNA 3'-end processing; modulates mRNA 3'-end maturation efficiency of the DLL4 mRNA through binding with an ARE embedded in a weak noncanonical polyadenylation (poly(A)) signal in endothelial cells (PubMed:21832157). Also involved in the regulation of stress granule (SG) and P-body (PB) formation and fusion (PubMed:15967811). Plays a role in vasculogenesis and endocardial development (By similarity). Plays a role in the regulation of keratinocyte proliferation, differentiation and apoptosis (PubMed:27182009). Plays a role in myoblast cell differentiation (By similarity). {ECO:0000250|UniProtKB:P17431, ECO:0000250|UniProtKB:P23950, ECO:0000269|PubMed:12198173, ECO:0000269|PubMed:15467755, ECO:0000269|PubMed:15538381, ECO:0000269|PubMed:15687258, ECO:0000269|PubMed:15967811, ECO:0000269|PubMed:17030608, ECO:0000269|PubMed:17369404, ECO:0000269|PubMed:18326031, ECO:0000269|PubMed:19179481, ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:21832157, ECO:0000269|PubMed:24700863, ECO:0000269|PubMed:25014217, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:26542173, ECO:0000269|PubMed:27182009}. |
Q12778 | FOXO1 | S234 | PSP | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q15349 | RPS6KA2 | S82 | Sugiyama | Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}. |
Q16512 | PKN1 | S156 | Sugiyama | Serine/threonine-protein kinase N1 (EC 2.7.11.13) (Protease-activated kinase 1) (PAK-1) (Protein kinase C-like 1) (Protein kinase C-like PKN) (Protein kinase PKN-alpha) (Protein-kinase C-related kinase 1) (Serine-threonine protein kinase N) | PKC-related serine/threonine-protein kinase involved in various processes such as regulation of the intermediate filaments of the actin cytoskeleton, cell migration, tumor cell invasion and transcription regulation. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Regulates the cytoskeletal network by phosphorylating proteins such as VIM and neurofilament proteins NEFH, NEFL and NEFM, leading to inhibit their polymerization. Phosphorylates 'Ser-575', 'Ser-637' and 'Ser-669' of MAPT/Tau, lowering its ability to bind to microtubules, resulting in disruption of tubulin assembly. Acts as a key coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-11' of histone H3 (H3T11ph), a specific tag for epigenetic transcriptional activation that promotes demethylation of histone H3 'Lys-9' (H3K9me) by KDM4C/JMJD2C. Phosphorylates HDAC5, HDAC7 and HDAC9, leading to impair their import in the nucleus. Phosphorylates 'Thr-38' of PPP1R14A, 'Ser-159', 'Ser-163' and 'Ser-170' of MARCKS, and GFAP. Able to phosphorylate RPS6 in vitro. {ECO:0000269|PubMed:11104762, ECO:0000269|PubMed:12514133, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:18066052, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:24248594, ECO:0000269|PubMed:8557118, ECO:0000269|PubMed:8621664, ECO:0000269|PubMed:9175763}. |
Q06210 | GFPT1 | S37 | Sugiyama | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}. |
P50851 | LRBA | S1725 | Sugiyama | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
O43399 | TPD52L2 | S103 | Sugiyama | Tumor protein D54 (hD54) (Tumor protein D52-like 2) | None |
Q14671 | PUM1 | S185 | Sugiyama | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q86Y07 | VRK2 | S190 | Sugiyama | Serine/threonine-protein kinase VRK2 (EC 2.7.11.1) (Vaccinia-related kinase 2) | Serine/threonine kinase that regulates several signal transduction pathways (PubMed:14645249, PubMed:16495336, PubMed:16704422, PubMed:17709393, PubMed:18286207, PubMed:18617507, PubMed:20679487). Isoform 1 modulates the stress response to hypoxia and cytokines, such as interleukin-1 beta (IL1B) and this is dependent on its interaction with MAPK8IP1, which assembles mitogen-activated protein kinase (MAPK) complexes (PubMed:17709393). Inhibition of signal transmission mediated by the assembly of MAPK8IP1-MAPK complexes reduces JNK phosphorylation and JUN-dependent transcription (PubMed:18286207). Phosphorylates 'Thr-18' of p53/TP53, histone H3, and may also phosphorylate MAPK8IP1 (PubMed:16704422). Phosphorylates BANF1 and disrupts its ability to bind DNA and reduces its binding to LEM domain-containing proteins (PubMed:16495336). Down-regulates the transactivation of transcription induced by ERBB2, HRAS, BRAF, and MEK1 (PubMed:20679487). Blocks the phosphorylation of ERK in response to ERBB2 and HRAS (PubMed:20679487). Can also phosphorylate the following substrates that are commonly used to establish in vitro kinase activity: casein, MBP and histone H2B, but it is not sure that this is physiologically relevant (PubMed:14645249). {ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:16704422, ECO:0000269|PubMed:17709393, ECO:0000269|PubMed:18286207, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:20679487}.; FUNCTION: [Isoform 2]: Phosphorylates 'Thr-18' of p53/TP53, as well as histone H3. Reduces p53/TP53 ubiquitination by MDM2, promotes p53/TP53 acetylation by EP300 and thereby increases p53/TP53 stability and activity. {ECO:0000269|PubMed:16704422}. |
Q8IY84 | NIM1K | S381 | Sugiyama | Serine/threonine-protein kinase NIM1 (EC 2.7.11.1) (NIM1 serine/threonine-protein kinase) | None |
P78406 | RAE1 | S74 | Sugiyama | mRNA export factor RAE1 (Rae1 protein homolog) (mRNA-associated protein mrnp 41) | Acts as a mRNA export factor involved in nucleocytoplasmic transport (PubMed:20498086, PubMed:33849972). Plays a role in mitotic bipolar spindle formation (PubMed:17172455). May function in attaching cytoplasmic mRNPs to the cytoskeleton both directly or indirectly (PubMed:17172455). {ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:20498086, ECO:0000269|PubMed:33849972}. |
Q96D15 | RCN3 | S119 | Sugiyama | Reticulocalbin-3 (EF-hand calcium-binding protein RLP49) | Probable molecular chaperone assisting protein biosynthesis and transport in the endoplasmic reticulum (PubMed:16433634, PubMed:28939891). Required for the proper biosynthesis and transport of pulmonary surfactant-associated protein A/SP-A, pulmonary surfactant-associated protein D/SP-D and the lipid transporter ABCA3 (By similarity). By regulating both the proper expression and the degradation through the endoplasmic reticulum-associated protein degradation pathway of these proteins plays a crucial role in pulmonary surfactant homeostasis (By similarity). Has an anti-fibrotic activity by negatively regulating the secretion of type I and type III collagens (PubMed:28939891). This calcium-binding protein also transiently associates with immature PCSK6 and regulates its secretion (PubMed:16433634). {ECO:0000250|UniProtKB:Q8BH97, ECO:0000269|PubMed:16433634, ECO:0000269|PubMed:28939891}. |
Q96PF2 | TSSK2 | S258 | Sugiyama | Testis-specific serine/threonine-protein kinase 2 (TSK-2) (TSK2) (TSSK-2) (Testis-specific kinase 2) (EC 2.7.11.1) (DiGeorge syndrome protein G) (DGS-G) (Serine/threonine-protein kinase 22B) | Testis-specific serine/threonine-protein kinase required during spermatid development. Phosphorylates TSKS at 'Ser-288' and SPAG16. Involved in the late stages of spermatogenesis, during the reconstruction of the cytoplasm. During spermatogenesis, required for the transformation of a ring-shaped structure around the base of the flagellum originating from the chromatoid body. {ECO:0000269|PubMed:15044604, ECO:0000269|PubMed:18533145, ECO:0000269|PubMed:20729278}. |
P36578 | RPL4 | S255 | Sugiyama | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q96PY6 | NEK1 | S251 | Sugiyama | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
P05388 | RPLP0 | S37 | Sugiyama | Large ribosomal subunit protein uL10 (60S acidic ribosomal protein P0) (60S ribosomal protein L10E) | Ribosomal protein P0 is the functional equivalent of E.coli protein L10. |
Q8NHW5 | RPLP0P6 | S37 | Sugiyama | Putative ribosomal protein uL10-like (60S acidic ribosomal protein P0-like) (Large ribosomal subunit protein uL10-like) | Ribosomal protein P0 is the functional equivalent of E.coli protein L10. {ECO:0000250}. |
Q9NRM7 | LATS2 | S653 | Sugiyama | Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}. |
Q9NRM7 | LATS2 | S829 | Sugiyama | Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}. |
Q14697 | GANAB | S44 | Sugiyama | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
Q9P2K8 | EIF2AK4 | S467 | Sugiyama | eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}. |
Q9UK32 | RPS6KA6 | S223 | Sugiyama | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
P29401 | TKT | S124 | Sugiyama | Transketolase (TK) (EC 2.2.1.1) | Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}. |
Q02878 | RPL6 | S198 | Sugiyama | Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}. |
Q8WVK2 | SNRNP27 | S123 | Sugiyama | U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein (U4/U6.U5 snRNP 27 kDa protein) (U4/U6.U5-27K) (Nucleic acid-binding protein RY-1) (U4/U6.U5 tri-snRNP-associated 27 kDa protein) (27K) (U4/U6.U5 tri-snRNP-associated protein 3) | May play a role in mRNA splicing. |
Q9GZT8 | NIF3L1 | S196 | Sugiyama | NIF3-like protein 1 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 1 protein) | May function as a transcriptional corepressor through its interaction with COPS2, negatively regulating the expression of genes involved in neuronal differentiation. {ECO:0000250|UniProtKB:Q9EQ80}. |
A0MZ66 | SHTN1 | S473 | ochoa | Shootin-1 (Shootin1) | Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}. |
A1X283 | SH3PXD2B | S499 | ochoa | SH3 and PX domain-containing protein 2B (Adapter protein HOFI) (Factor for adipocyte differentiation 49) (Tyrosine kinase substrate with four SH3 domains) | Adapter protein involved in invadopodia and podosome formation and extracellular matrix degradation. Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. Plays a role in mitotic clonal expansion during the immediate early stage of adipocyte differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497}. |
A7E2V4 | ZSWIM8 | S1266 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
O14530 | TXNDC9 | S181 | ochoa | Thioredoxin domain-containing protein 9 (ATP-binding protein associated with cell differentiation) (Protein 1-4) | Significantly diminishes the chaperonin TCP1 complex ATPase activity, thus negatively impacts protein folding, including that of actin or tubulin. {ECO:0000269|PubMed:16415341}. |
O14727 | APAF1 | S268 | psp | Apoptotic protease-activating factor 1 (APAF-1) | Oligomeric Apaf-1 mediates the cytochrome c-dependent autocatalytic activation of pro-caspase-9 (Apaf-3), leading to the activation of caspase-3 and apoptosis. This activation requires ATP. Isoform 6 is less effective in inducing apoptosis. {ECO:0000269|PubMed:10393175, ECO:0000269|PubMed:12804598}. |
O15014 | ZNF609 | S605 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O43166 | SIPA1L1 | S1639 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43524 | FOXO3 | S399 | ochoa|psp | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43852 | CALU | S35 | ochoa | Calumenin (Crocalbin) (IEF SSP 9302) | Involved in regulation of vitamin K-dependent carboxylation of multiple N-terminal glutamate residues. Seems to inhibit gamma-carboxylase GGCX. Binds 7 calcium ions with a low affinity (By similarity). {ECO:0000250}. |
O60825 | PFKFB2 | S32 | psp | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (6PF-2-K/Fru-2,6-P2ase 2) (PFK/FBPase 2) (6PF-2-K/Fru-2,6-P2ase heart-type isozyme) [Includes: 6-phosphofructo-2-kinase (EC 2.7.1.105); Fructose-2,6-bisphosphatase (EC 3.1.3.46)] | Synthesis and degradation of fructose 2,6-bisphosphate. {ECO:0000269|PubMed:11069105}. |
O60828 | PQBP1 | S218 | ochoa | Polyglutamine-binding protein 1 (PQBP-1) (38 kDa nuclear protein containing a WW domain) (Npw38) (Polyglutamine tract-binding protein 1) | Intrinsically disordered protein that acts as a scaffold, and which is involved in different processes, such as pre-mRNA splicing, transcription regulation, innate immunity and neuron development (PubMed:10198427, PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). Interacts with splicing-related factors via the intrinsically disordered region and regulates alternative splicing of target pre-mRNA species (PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). May suppress the ability of POU3F2 to transactivate the DRD1 gene in a POU3F2 dependent manner. Can activate transcription directly or via association with the transcription machinery (PubMed:10198427). May be involved in ATXN1 mutant-induced cell death (PubMed:12062018). The interaction with ATXN1 mutant reduces levels of phosphorylated RNA polymerase II large subunit (PubMed:12062018). Involved in the assembly of cytoplasmic stress granule, possibly by participating in the transport of neuronal RNA granules (PubMed:21933836). Also acts as an innate immune sensor of infection by retroviruses, such as HIV, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:26046437). Directly binds retroviral reverse-transcribed DNA in the cytosol and interacts with CGAS, leading to activate the cGAS-STING signaling pathway, triggering type-I interferon production (PubMed:26046437). {ECO:0000269|PubMed:10198427, ECO:0000269|PubMed:10332029, ECO:0000269|PubMed:12062018, ECO:0000269|PubMed:20410308, ECO:0000269|PubMed:21933836, ECO:0000269|PubMed:23512658, ECO:0000269|PubMed:26046437}. |
O75083 | WDR1 | S310 | ochoa | WD repeat-containing protein 1 (Actin-interacting protein 1) (AIP1) (NORI-1) | Induces disassembly of actin filaments in conjunction with ADF/cofilin family proteins (PubMed:15629458, PubMed:27557945, PubMed:29751004). Enhances cofilin-mediated actin severing (By similarity). Involved in cytokinesis. Involved in chemotactic cell migration by restricting lamellipodial membrane protrusions (PubMed:18494608). Involved in myocardium sarcomere organization. Required for cardiomyocyte growth and maintenance (By similarity). Involved in megakaryocyte maturation and platelet shedding. Required for the establishment of planar cell polarity (PCP) during follicular epithelium development and for cell shape changes during PCP; the function seems to implicate cooperation with CFL1 and/or DSTN/ADF. Involved in the generation/maintenance of cortical tension (By similarity). Involved in assembly and maintenance of epithelial apical cell junctions and plays a role in the organization of the perijunctional actomyosin belt (PubMed:25792565). {ECO:0000250|UniProtKB:O88342, ECO:0000250|UniProtKB:Q9W7F2, ECO:0000269|PubMed:15629458, ECO:0000269|PubMed:18494608, ECO:0000269|PubMed:25792565, ECO:0000269|PubMed:27557945, ECO:0000269|PubMed:29751004}. |
O75167 | PHACTR2 | S424 | ochoa | Phosphatase and actin regulator 2 | None |
O75351 | VPS4B | S93 | ochoa | Vacuolar protein sorting-associated protein 4B (EC 3.6.4.6) (Cell migration-inducing gene 1 protein) (Suppressor of K(+) transport growth defect 1) (Protein SKD1) | Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their ATP-dependent disassembly, possibly in combination with membrane fission (PubMed:18687924). Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:18687924, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:16193069, ECO:0000269|PubMed:18606141}. |
O75746 | SLC25A12 | S101 | ochoa | Electrogenic aspartate/glutamate antiporter SLC25A12, mitochondrial (Araceli hiperlarga) (Aralar) (Aralar1) (Mitochondrial aspartate glutamate carrier 1) (Solute carrier family 25 member 12) | Mitochondrial electrogenic aspartate/glutamate antiporter that favors efflux of aspartate and entry of glutamate and proton within the mitochondria as part of the malate-aspartate shuttle (PubMed:11566871, PubMed:19641205, PubMed:24515575, PubMed:38945283). Also mediates the uptake of L-cysteinesulfinate (3-sulfino-L-alanine) by mitochondria in exchange of L-glutamate and proton (PubMed:11566871). Can also exchange L-cysteinesulfinate with aspartate in their anionic form without any proton translocation (PubMed:11566871). Lacks transport activity towards L-glutamine or gamma-aminobutyric acid (GABA) (PubMed:38945283). {ECO:0000269|PubMed:11566871, ECO:0000269|PubMed:19641205, ECO:0000269|PubMed:24515575, ECO:0000269|PubMed:38945283}. |
O75781 | PALM | S62 | ochoa | Paralemmin-1 (Paralemmin) | Involved in plasma membrane dynamics and cell process formation. Isoform 1 and isoform 2 are necessary for axonal and dendritic filopodia induction, for dendritic spine maturation and synapse formation in a palmitoylation-dependent manner. {ECO:0000269|PubMed:14978216}. |
O95171 | SCEL | S347 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
P04075 | ALDOA | S309 | ochoa | Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) | Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}. |
P04350 | TUBB4A | T232 | ochoa | Tubulin beta-4A chain (Tubulin 5 beta) (Tubulin beta-4 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P05023 | ATP1A1 | S207 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P05181 | CYP2E1 | S56 | psp | Cytochrome P450 2E1 (EC 1.14.14.1) (4-nitrophenol 2-hydroxylase) (EC 1.14.13.n7) (CYPIIE1) (Cytochrome P450-J) | A cytochrome P450 monooxygenase involved in the metabolism of fatty acids (PubMed:10553002, PubMed:18577768). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10553002, PubMed:18577768). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates fatty acids specifically at the omega-1 position displaying the highest catalytic activity for saturated fatty acids (PubMed:10553002, PubMed:18577768). May be involved in the oxidative metabolism of xenobiotics (Probable). {ECO:0000269|PubMed:10553002, ECO:0000269|PubMed:18577768, ECO:0000305|PubMed:9348445}. |
P05455 | SSB | S163 | ochoa | Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) | Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}. |
P06703 | S100A6 | S46 | ochoa | Protein S100-A6 (Calcyclin) (Growth factor-inducible protein 2A9) (MLN 4) (Prolactin receptor-associated protein) (PRA) (S100 calcium-binding protein A6) | May function as calcium sensor and modulator, contributing to cellular calcium signaling. May function by interacting with other proteins, such as TPR-containing proteins, and indirectly play a role in many physiological processes such as the reorganization of the actin cytoskeleton and in cell motility. Binds 2 calcium ions. Calcium binding is cooperative. {ECO:0000269|PubMed:22399290}. |
P07437 | TUBB | T232 | ochoa | Tubulin beta chain (Tubulin beta-5 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P07951 | TPM2 | S63 | ochoa | Tropomyosin beta chain (Beta-tropomyosin) (Tropomyosin-2) | Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments. The non-muscle isoform may have a role in agonist-mediated receptor internalization. {ECO:0000250|UniProtKB:P58774, ECO:0000250|UniProtKB:P58775}. |
P12081 | HARS1 | S27 | ochoa | Histidine--tRNA ligase, cytoplasmic (EC 6.1.1.21) (Histidyl-tRNA synthetase) (HisRS) | Catalyzes the ATP-dependent ligation of histidine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (His-AMP) (PubMed:29235198). Plays a role in axon guidance (PubMed:26072516). {ECO:0000269|PubMed:26072516, ECO:0000269|PubMed:29235198}. |
P13612 | ITGA4 | S1011 | psp | Integrin alpha-4 (CD49 antigen-like family member D) (Integrin alpha-IV) (VLA-4 subunit alpha) (CD antigen CD49d) | Integrins alpha-4/beta-1 (VLA-4) and alpha-4/beta-7 are receptors for fibronectin. They recognize one or more domains within the alternatively spliced CS-1 and CS-5 regions of fibronectin. They are also receptors for VCAM1. Integrin alpha-4/beta-1 recognizes the sequence Q-I-D-S in VCAM1. Integrin alpha-4/beta-7 is also a receptor for MADCAM1. It recognizes the sequence L-D-T in MADCAM1. On activated endothelial cells integrin VLA-4 triggers homotypic aggregation for most VLA-4-positive leukocyte cell lines. It may also participate in cytolytic T-cell interactions with target cells. ITGA4:ITGB1 binds to fractalkine (CX3CL1) and may act as its coreceptor in CX3CR1-dependent fractalkine signaling (PubMed:23125415). ITGA4:ITGB1 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). Integrin ITGA4:ITGB1 represses PRKCA-mediated L-type voltage-gated channel Ca(2+) influx and ROCK-mediated calcium sensitivity in vascular smooth muscle cells via its interaction with SVEP1, thereby inhibiting vasocontraction (PubMed:35802072). {ECO:0000269|PubMed:18635536, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:23125415, ECO:0000269|PubMed:25398877, ECO:0000269|PubMed:35802072}. |
P15260 | IFNGR1 | S293 | ochoa | Interferon gamma receptor 1 (IFN-gamma receptor 1) (IFN-gamma-R1) (CDw119) (Interferon gamma receptor alpha-chain) (IFN-gamma-R-alpha) (CD antigen CD119) | Receptor subunit for interferon gamma/INFG that plays crucial roles in antimicrobial, antiviral, and antitumor responses by activating effector immune cells and enhancing antigen presentation (PubMed:20015550). Associates with transmembrane accessory factor IFNGR2 to form a functional receptor (PubMed:10986460, PubMed:2971451, PubMed:7615558, PubMed:7617032, PubMed:7673114). Upon ligand binding, the intracellular domain of IFNGR1 opens out to allow association of downstream signaling components JAK1 and JAK2. In turn, activated JAK1 phosphorylates IFNGR1 to form a docking site for STAT1. Subsequent phosphorylation of STAT1 leads to dimerization, translocation to the nucleus, and stimulation of target gene transcription (PubMed:28883123). STAT3 can also be activated in a similar manner although activation seems weaker. IFNGR1 intracellular domain phosphorylation also provides a docking site for SOCS1 that regulates the JAK-STAT pathway by competing with STAT1 binding to IFNGR1 (By similarity). {ECO:0000250|UniProtKB:P15261, ECO:0000269|PubMed:10986460, ECO:0000269|PubMed:20015550, ECO:0000269|PubMed:28883123, ECO:0000269|PubMed:2971451, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7617032, ECO:0000269|PubMed:7673114}. |
P15822 | HIVEP1 | S1740 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P19525 | EIF2AK2 | S92 | ochoa | Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) | IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}. |
P22234 | PAICS | S276 | ochoa | Bifunctional phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) [Includes: Phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) (AIR carboxylase) (AIRC); Phosphoribosylaminoimidazole succinocarboxamide synthetase (EC 6.3.2.6) (SAICAR synthetase)] | Bifunctional phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole succinocarboxamide synthetase catalyzing two reactions of the de novo purine biosynthetic pathway. {ECO:0000269|PubMed:17224163, ECO:0000269|PubMed:2183217, ECO:0000269|PubMed:31600779}. |
P22314 | UBA1 | S276 | ochoa | Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) | Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}. |
P23381 | WARS1 | S351 | ochoa | Tryptophan--tRNA ligase, cytoplasmic (EC 6.1.1.2) (Interferon-induced protein 53) (IFP53) (Tryptophanyl-tRNA synthetase) (TrpRS) (hWRS) [Cleaved into: T1-TrpRS; T2-TrpRS] | Catalyzes the attachment of tryptophan to tRNA(Trp) in a two-step reaction: tryptophan is first activated by ATP to form Trp-AMP and then transferred to the acceptor end of the tRNA(Trp). {ECO:0000269|PubMed:1373391, ECO:0000269|PubMed:1761529, ECO:0000269|PubMed:28369220}.; FUNCTION: [Isoform 1]: Has no angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.; FUNCTION: [T2-TrpRS]: Possesses an angiostatic activity but has no aminoacylation activity (PubMed:11773625, PubMed:11773626, PubMed:14630953). Inhibits fluid shear stress-activated responses of endothelial cells (PubMed:14630953). Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression (PubMed:14630953). {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626, ECO:0000269|PubMed:14630953}.; FUNCTION: [Isoform 2]: Has an angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}. |
P30086 | PEBP1 | S54 | ochoa | Phosphatidylethanolamine-binding protein 1 (PEBP-1) (HCNPpp) (Neuropolypeptide h3) (Prostatic-binding protein) (Raf kinase inhibitor protein) (RKIP) [Cleaved into: Hippocampal cholinergic neurostimulating peptide (HCNP)] | Binds ATP, opioids and phosphatidylethanolamine. Has lower affinity for phosphatidylinositol and phosphatidylcholine. Serine protease inhibitor which inhibits thrombin, neuropsin and chymotrypsin but not trypsin, tissue type plasminogen activator and elastase (By similarity). Inhibits the kinase activity of RAF1 by inhibiting its activation and by dissociating the RAF1/MEK complex and acting as a competitive inhibitor of MEK phosphorylation. {ECO:0000250, ECO:0000269|PubMed:18294816}.; FUNCTION: HCNP may be involved in the function of the presynaptic cholinergic neurons of the central nervous system. HCNP increases the production of choline acetyltransferase but not acetylcholinesterase. Seems to be mediated by a specific receptor (By similarity). {ECO:0000250}. |
P31645 | SLC6A4 | S149 | psp | Sodium-dependent serotonin transporter (SERT) (5HT transporter) (5HTT) (Solute carrier family 6 member 4) | Serotonin transporter that cotransports serotonin with one Na(+) ion in exchange for one K(+) ion and possibly one proton in an overall electroneutral transport cycle. Transports serotonin across the plasma membrane from the extracellular compartment to the cytosol thus limiting serotonin intercellular signaling (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Essential for serotonin homeostasis in the central nervous system. In the developing somatosensory cortex, acts in glutamatergic neurons to control serotonin uptake and its trophic functions accounting for proper spatial organization of cortical neurons and elaboration of sensory circuits. In the mature cortex, acts primarily in brainstem raphe neurons to mediate serotonin uptake from the synaptic cleft back into the pre-synaptic terminal thus terminating serotonin signaling at the synapse (By similarity). Modulates mucosal serotonin levels in the gastrointestinal tract through uptake and clearance of serotonin in enterocytes. Required for enteric neurogenesis and gastrointestinal reflexes (By similarity). Regulates blood serotonin levels by ensuring rapid high affinity uptake of serotonin from plasma to platelets, where it is further stored in dense granules via vesicular monoamine transporters and then released upon stimulation (PubMed:17506858, PubMed:18317590). Mechanistically, the transport cycle starts with an outward-open conformation having Na1(+) and Cl(-) sites occupied. The binding of a second extracellular Na2(+) ion and serotonin substrate leads to structural changes to outward-occluded to inward-occluded to inward-open, where the Na2(+) ion and serotonin are released into the cytosol. Binding of intracellular K(+) ion induces conformational transitions to inward-occluded to outward-open and completes the cycle by releasing K(+) possibly together with a proton bound to Asp-98 into the extracellular compartment. Na1(+) and Cl(-) ions remain bound throughout the transport cycle (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Additionally, displays serotonin-induced channel-like conductance for monovalent cations, mainly Na(+) ions. The channel activity is uncoupled from the transport cycle and may contribute to the membrane resting potential or excitability (By similarity). {ECO:0000250|UniProtKB:P31652, ECO:0000250|UniProtKB:Q60857, ECO:0000269|PubMed:10407194, ECO:0000269|PubMed:12869649, ECO:0000269|PubMed:17506858, ECO:0000269|PubMed:18317590, ECO:0000269|PubMed:21730057, ECO:0000269|PubMed:27049939, ECO:0000269|PubMed:27756841, ECO:0000269|PubMed:34851672}. |
P31942 | HNRNPH3 | S56 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P33981 | TTK | S382 | ochoa | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P33981 | TTK | S582 | psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P33991 | MCM4 | S142 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P35240 | NF2 | S566 | ochoa | Merlin (Moesin-ezrin-radixin-like protein) (Neurofibromin-2) (Schwannomerlin) (Schwannomin) | Probable regulator of the Hippo/SWH (Sav/Wts/Hpo) signaling pathway, a signaling pathway that plays a pivotal role in tumor suppression by restricting proliferation and promoting apoptosis. Along with WWC1 can synergistically induce the phosphorylation of LATS1 and LATS2 and can probably function in the regulation of the Hippo/SWH (Sav/Wts/Hpo) signaling pathway. May act as a membrane stabilizing protein. May inhibit PI3 kinase by binding to AGAP2 and impairing its stimulating activity. Suppresses cell proliferation and tumorigenesis by inhibiting the CUL4A-RBX1-DDB1-VprBP/DCAF1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:20178741, ECO:0000269|PubMed:21167305}. |
P35442 | THBS2 | S238 | ochoa | Thrombospondin-2 | Adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions. Ligand for CD36 mediating antiangiogenic properties. {ECO:0000269|PubMed:20714802}. |
P35520 | CBS | S227 | psp | Cystathionine beta-synthase (EC 4.2.1.22) (Beta-thionase) (Serine sulfhydrase) | Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine (PubMed:20506325, PubMed:23974653, PubMed:23981774). Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (By similarity). {ECO:0000250|UniProtKB:P32232, ECO:0000269|PubMed:20506325, ECO:0000269|PubMed:23974653, ECO:0000269|PubMed:23981774}. |
P35568 | IRS1 | S36 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35579 | MYH9 | S628 | ochoa | Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}. |
P35968 | KDR | S803 | ochoa | Vascular endothelial growth factor receptor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver kinase 1) (FLK-1) (Kinase insert domain receptor) (KDR) (Protein-tyrosine kinase receptor flk-1) (CD antigen CD309) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC. {ECO:0000269|PubMed:10102632, ECO:0000269|PubMed:10368301, ECO:0000269|PubMed:10600473, ECO:0000269|PubMed:11387210, ECO:0000269|PubMed:12649282, ECO:0000269|PubMed:1417831, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15215251, ECO:0000269|PubMed:15962004, ECO:0000269|PubMed:16966330, ECO:0000269|PubMed:17303569, ECO:0000269|PubMed:18529047, ECO:0000269|PubMed:19668192, ECO:0000269|PubMed:19834490, ECO:0000269|PubMed:20080685, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20705758, ECO:0000269|PubMed:21893193, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:7929439, ECO:0000269|PubMed:9160888, ECO:0000269|PubMed:9804796, ECO:0000269|PubMed:9837777}. |
P37231 | PPARG | S273 | psp | Peroxisome proliferator-activated receptor gamma (PPAR-gamma) (Nuclear receptor subfamily 1 group C member 3) | Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity). {ECO:0000250|UniProtKB:P37238, ECO:0000269|PubMed:16150867, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:9065481}.; FUNCTION: (Microbial infection) Upon treatment with M.tuberculosis or its lipoprotein LpqH, phosphorylation of MAPK p38 and IL-6 production are modulated, probably via this protein. {ECO:0000269|PubMed:25504154}. |
P39023 | RPL3 | S265 | ochoa | Large ribosomal subunit protein uL3 (60S ribosomal protein L3) (HIV-1 TAR RNA-binding protein B) (TARBP-B) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547, PubMed:35674491). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P42575 | CASP2 | S157 | ochoa|psp | Caspase-2 (CASP-2) (EC 3.4.22.55) (Neural precursor cell expressed developmentally down-regulated protein 2) (NEDD-2) (Protease ICH-1) [Cleaved into: Caspase-2 subunit p18; Caspase-2 subunit p13; Caspase-2 subunit p12] | Is a regulator of the cascade of caspases responsible for apoptosis execution (PubMed:11156409, PubMed:15073321, PubMed:8087842). Might function by either activating some proteins required for cell death or inactivating proteins necessary for cell survival (PubMed:15073321). Associates with PIDD1 and CRADD to form the PIDDosome, a complex that activates CASP2 and triggers apoptosis in response to genotoxic stress (PubMed:15073321). {ECO:0000269|PubMed:11156409, ECO:0000269|PubMed:15073321, ECO:0000269|PubMed:8087842}.; FUNCTION: [Isoform 1]: Acts as a positive regulator of apoptosis. {ECO:0000269|PubMed:8087842}.; FUNCTION: [Isoform 2]: Acts as a negative regulator of apoptosis. {ECO:0000269|PubMed:8087842}.; FUNCTION: [Isoform 3]: May function as an endogenous apoptosis inhibitor that antagonizes caspase activation and cell death. {ECO:0000269|PubMed:11156409}. |
P43307 | SSR1 | S246 | ochoa | Translocon-associated protein subunit alpha (TRAP-alpha) (Signal sequence receptor subunit alpha) (SSR-alpha) | TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins. May be involved in the recycling of the translocation apparatus after completion of the translocation process or may function as a membrane-bound chaperone facilitating folding of translocated proteins. |
P46100 | ATRX | S925 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P49327 | FASN | S1174 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49916 | LIG3 | S848 | ochoa | DNA ligase 3 (EC 6.5.1.1) (DNA ligase III) (Polydeoxyribonucleotide synthase [ATP] 3) | Isoform 3 functions as a heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. Isoform 1 is targeted to mitochondria, where it functions as a DNA ligase in mitochondrial base-excision DNA repair (PubMed:10207110, PubMed:24674627). {ECO:0000269|PubMed:10207110, ECO:0000269|PubMed:24674627}. |
P50991 | CCT4 | S303 | ochoa | T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P51587 | BRCA2 | S1982 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P52948 | NUP98 | S596 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P68371 | TUBB4B | T232 | ochoa | Tubulin beta-4B chain (Tubulin beta-2 chain) (Tubulin beta-2C chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P78527 | PRKDC | S314 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
Q00610 | CLTC | S1462 | ochoa | Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q00796 | SORD | S206 | ochoa | Sorbitol dehydrogenase (SDH) (EC 1.1.1.-) ((R,R)-butanediol dehydrogenase) (EC 1.1.1.4) (L-iditol 2-dehydrogenase) (EC 1.1.1.14) (Polyol dehydrogenase) (Ribitol dehydrogenase) (RDH) (EC 1.1.1.56) (Xylitol dehydrogenase) (XDH) (EC 1.1.1.9) | Polyol dehydrogenase that catalyzes the reversible NAD(+)-dependent oxidation of various sugar alcohols. Is mostly active with D-sorbitol (D-glucitol), L-threitol, xylitol and ribitol as substrates, leading to the C2-oxidized products D-fructose, L-erythrulose, D-xylulose, and D-ribulose, respectively (PubMed:3365415). Is a key enzyme in the polyol pathway that interconverts glucose and fructose via sorbitol, which constitutes an important alternate route for glucose metabolism. The polyol pathway is believed to be involved in the etiology of diabetic complications, such as diabetic neuropathy and retinopathy, induced by hyperglycemia (PubMed:12962626, PubMed:25105142, PubMed:29966615). May play a role in sperm motility by using sorbitol as an alternative energy source for sperm motility (PubMed:16278369). May have a more general function in the metabolism of secondary alcohols since it also catalyzes the stereospecific oxidation of (2R,3R)-2,3-butanediol. To a lesser extent, can also oxidize L-arabinitol, galactitol and D-mannitol and glycerol in vitro. Oxidizes neither ethanol nor other primary alcohols. Cannot use NADP(+) as the electron acceptor (PubMed:3365415). {ECO:0000269|PubMed:16278369, ECO:0000269|PubMed:3365415, ECO:0000303|PubMed:25105142, ECO:0000303|PubMed:29966615, ECO:0000305|PubMed:12962626}. |
Q02790 | FKBP4 | S217 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q02790 | FKBP4 | S336 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q03188 | CENPC | S232 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q03252 | LMNB2 | S134 | ochoa | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q04917 | YWHAH | S25 | psp | 14-3-3 protein eta (Protein AS1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}. |
Q06323 | PSME1 | S38 | ochoa | Proteasome activator complex subunit 1 (11S regulator complex subunit alpha) (REG-alpha) (Activator of multicatalytic protease subunit 1) (Interferon gamma up-regulated I-5111 protein) (IGUP I-5111) (Proteasome activator 28 subunit alpha) (PA28a) (PA28alpha) | Implicated in immunoproteasome assembly and required for efficient antigen processing. The PA28 activator complex enhances the generation of class I binding peptides by altering the cleavage pattern of the proteasome. |
Q07864 | POLE | S1184 | ochoa | DNA polymerase epsilon catalytic subunit A (EC 2.7.7.7) (3'-5' exodeoxyribonuclease) (EC 3.1.11.-) (DNA polymerase II subunit A) | Catalytic component of the DNA polymerase epsilon complex (PubMed:10801849). Participates in chromosomal DNA replication (By similarity). Required during synthesis of the leading DNA strands at the replication fork, binds at/or near replication origins and moves along DNA with the replication fork (By similarity). Has 3'-5' proofreading exonuclease activity that corrects errors arising during DNA replication (By similarity). Involved in DNA synthesis during DNA repair (PubMed:20227374, PubMed:27573199). Along with DNA polymerase POLD1 and DNA polymerase POLK, has a role in excision repair (NER) synthesis following UV irradiation (PubMed:20227374). {ECO:0000250|UniProtKB:P21951, ECO:0000269|PubMed:10801849, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:27573199}. |
Q08050 | FOXM1 | S306 | psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q08211 | DHX9 | S279 | ochoa | ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) | Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}. |
Q08357 | SLC20A2 | S375 | ochoa | Sodium-dependent phosphate transporter 2 (Gibbon ape leukemia virus receptor 2) (GLVR-2) (Phosphate transporter 2) (PiT-2) (Pit2) (hPit2) (Solute carrier family 20 member 2) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:12205090, PubMed:15955065, PubMed:16790504, PubMed:17494632, PubMed:22327515, PubMed:28722801, PubMed:30704756). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity). {ECO:0000250|UniProtKB:Q80UP8, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:22327515, ECO:0000269|PubMed:28722801, ECO:0000269|PubMed:30704756}.; FUNCTION: (Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants. {ECO:0000269|PubMed:11435563, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:8302848}. |
Q08623 | PUDP | S119 | ochoa | Pseudouridine-5'-phosphatase (EC 3.1.3.96) (Haloacid dehalogenase-like hydrolase domain-containing protein 1) (Haloacid dehalogenase-like hydrolase domain-containing protein 1A) (Protein GS1) (Pseudouridine-5'-monophosphatase) (5'-PsiMPase) | Dephosphorylates pseudouridine 5'-phosphate, a potential intermediate in rRNA degradation. Pseudouridine is then excreted intact in urine. {ECO:0000269|PubMed:20722631}. |
Q0ZGT2 | NEXN | S160 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q13283 | G3BP1 | S373 | ochoa | Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) | Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}. |
Q13576 | IQGAP2 | S1061 | ochoa | Ras GTPase-activating-like protein IQGAP2 | Binds to activated CDC42 and RAC1 but does not seem to stimulate their GTPase activity. Associates with calmodulin. |
Q13620 | CUL4B | S193 | ochoa | Cullin-4B (CUL-4B) | Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14578910, PubMed:16322693, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948, PubMed:30166453, PubMed:33854232, PubMed:33854239). The functional specificity of the E3 ubiquitin-protein ligase complex depends on the variable substrate recognition subunit (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460, PubMed:29779948). CUL4B may act within the complex as a scaffold protein, contributing to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme (PubMed:14578910, PubMed:16678110, PubMed:18593899, PubMed:22118460). Plays a role as part of the E3 ubiquitin-protein ligase complex in polyubiquitination of CDT1, histone H2A, histone H3 and histone H4 in response to radiation-induced DNA damage (PubMed:14578910, PubMed:16678110, PubMed:18593899). Targeted to UV damaged chromatin by DDB2 and may be important for DNA repair and DNA replication (PubMed:16678110). A number of DCX complexes (containing either TRPC4AP or DCAF12 as substrate-recognition component) are part of the DesCEND (destruction via C-end degrons) pathway, which recognizes a C-degron located at the extreme C terminus of target proteins, leading to their ubiquitination and degradation (PubMed:29779948). The DCX(AMBRA1) complex is a master regulator of the transition from G1 to S cell phase by mediating ubiquitination of phosphorylated cyclin-D (CCND1, CCND2 and CCND3) (PubMed:33854232, PubMed:33854239). The DCX(AMBRA1) complex also acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:30166453). Required for ubiquitination of cyclin E (CCNE1 or CCNE2), and consequently, normal G1 cell cycle progression (PubMed:16322693, PubMed:19801544). Regulates the mammalian target-of-rapamycin (mTOR) pathway involved in control of cell growth, size and metabolism (PubMed:18235224). Specific CUL4B regulation of the mTORC1-mediated pathway is dependent upon 26S proteasome function and requires interaction between CUL4B and MLST8 (PubMed:18235224). With CUL4A, contributes to ribosome biogenesis (PubMed:26711351). {ECO:0000269|PubMed:14578910, ECO:0000269|PubMed:16322693, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18235224, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19801544, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:26711351, ECO:0000269|PubMed:29779948, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854239}. |
Q13621 | SLC12A1 | S91 | psp | Solute carrier family 12 member 1 (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 1) (BSC1) (Kidney-specific Na-K-Cl symporter) (Na-K-2Cl cotransporter 2) (NKCC2) | Renal sodium, potassium and chloride ion cotransporter that mediates the transepithelial NaCl reabsorption in the thick ascending limb and plays an essential role in the urinary concentration and volume regulation (PubMed:21321328). Electrically silent transporter system (By similarity). {ECO:0000250|UniProtKB:P55014, ECO:0000250|UniProtKB:P55016, ECO:0000269|PubMed:21321328}. |
Q13885 | TUBB2A | T232 | ochoa | Tubulin beta-2A chain (Tubulin beta class IIa) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q14320 | FAM50A | S62 | ochoa | Protein FAM50A (Protein HXC-26) (Protein XAP-5) | Probably involved in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:32703943}. |
Q14571 | ITPR2 | S994 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR2 (IP3 receptor isoform 2) (IP3R 2) (InsP3R2) (Inositol 1,4,5-trisphosphate receptor type 2) (Type 2 inositol 1,4,5-trisphosphate receptor) (Type 2 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that upon inositol 1,4,5-trisphosphate binding transports calcium from the endoplasmic reticulum lumen to cytoplasm. Exists in two states; a long-lived closed state where the channel is essentially 'parked' with only very rare visits to an open state and that ligands facilitate the transition from the 'parked' state into a 'drive' mode represented by periods of bursting activity (By similarity). {ECO:0000250|UniProtKB:Q9Z329}. |
Q14684 | RRP1B | S344 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14966 | ZNF638 | S791 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14966 | ZNF638 | S1697 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14980 | NUMA1 | S112 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14BN4 | SLMAP | S458 | ochoa | Sarcolemmal membrane-associated protein (Sarcolemmal-associated protein) | Associates with the striatin-interacting phosphatase and kinase (STRIPAK) core complex, forming the extended (SIKE1:SLMAP)STRIPAK complex (PubMed:29063833, PubMed:30622739). The (SIKE1:SLMAP)STRIPAK complex dephosphorylates STK3 leading to the inhibition of Hippo signaling and the control of cell growth (PubMed:29063833, PubMed:30622739). May play a role during myoblast fusion (By similarity). {ECO:0000250|UniProtKB:Q3URD3, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739}. |
Q15149 | PLEC | S1721 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15334 | LLGL1 | S673 | psp | Lethal(2) giant larvae protein homolog 1 (LLGL) (DLG4) (Hugl-1) (Human homolog to the D-lgl gene protein) | Cortical cytoskeleton protein found in a complex involved in maintaining cell polarity and epithelial integrity. Involved in the regulation of mitotic spindle orientation, proliferation, differentiation and tissue organization of neuroepithelial cells. Involved in axonogenesis through RAB10 activation thereby regulating vesicular membrane trafficking toward the axonal plasma membrane. {ECO:0000269|PubMed:15735678, ECO:0000269|PubMed:16170365}. |
Q15428 | SF3A2 | S68 | ochoa | Splicing factor 3A subunit 2 (SF3a66) (Spliceosome-associated protein 62) (SAP 62) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A2 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes, including the Bact complex (PubMed:29360106, PubMed:29361316, PubMed:30315277). Interacts directly with the duplex formed by U2 snRNA and the intron (PubMed:29360106). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310}. |
Q15650 | TRIP4 | S276 | ochoa | Activating signal cointegrator 1 (ASC-1) (Thyroid receptor-interacting protein 4) (TR-interacting protein 4) (TRIP-4) | Transcription coactivator which associates with nuclear receptors, transcriptional coactivators including EP300, CREBBP and NCOA1, and basal transcription factors like TBP and TFIIA to facilitate nuclear receptors-mediated transcription (PubMed:10454579, PubMed:25219498). May thereby play an important role in establishing distinct coactivator complexes under different cellular conditions (PubMed:10454579, PubMed:25219498). Plays a role in thyroid hormone receptor and estrogen receptor transactivation (PubMed:10454579, PubMed:25219498). Also involved in androgen receptor transactivation (By similarity). Plays a pivotal role in the transactivation of NF-kappa-B, SRF and AP1 (PubMed:12077347). Acts as a mediator of transrepression between nuclear receptor and either AP1 or NF-kappa-B (PubMed:12077347). May play a role in the development of neuromuscular junction (PubMed:26924529). May play a role in late myogenic differentiation (By similarity). Also functions as part of the RQC trigger (RQT) complex that activates the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:32099016, PubMed:32579943, PubMed:36302773). {ECO:0000250|UniProtKB:Q9QXN3, ECO:0000269|PubMed:10454579, ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26924529, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}. |
Q15652 | JMJD1C | S384 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q16513 | PKN2 | S29 | ochoa | Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) | PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}. |
Q16623 | STX1A | S95 | ochoa | Syntaxin-1A (Neuron-specific antigen HPC-1) | Plays an essential role in hormone and neurotransmitter calcium-dependent exocytosis and endocytosis (PubMed:26635000). Part of the SNARE (Soluble NSF Attachment Receptor) complex composed of SNAP25, STX1A and VAMP2 which mediates the fusion of synaptic vesicles with the presynaptic plasma membrane. STX1A and SNAP25 are localized on the plasma membrane while VAMP2 resides in synaptic vesicles. The pairing of the three SNAREs from the N-terminal SNARE motifs to the C-terminal anchors leads to the formation of the SNARE complex, which brings membranes into close proximity and results in final fusion. Participates in the calcium-dependent regulation of acrosomal exocytosis in sperm (PubMed:23091057). Also plays an important role in the exocytosis of hormones such as insulin or glucagon-like peptide 1 (GLP-1) (By similarity). {ECO:0000250|UniProtKB:O35526, ECO:0000269|PubMed:23091057, ECO:0000269|PubMed:26635000}. |
Q16649 | NFIL3 | S20 | ochoa | Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) | Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}. |
Q16821 | PPP1R3A | S373 | ochoa | Protein phosphatase 1 regulatory subunit 3A (Protein phosphatase 1 glycogen-associated regulatory subunit) (Protein phosphatase type-1 glycogen targeting subunit) (RG1) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity). {ECO:0000250}. |
Q16828 | DUSP6 | S300 | psp | Dual specificity protein phosphatase 6 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST1) (Mitogen-activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) (MKP-3) | Dual specificity protein phosphatase, which mediates dephosphorylation and inactivation of MAP kinases (PubMed:8670865). Has a specificity for the ERK family (PubMed:8670865). Plays an important role in alleviating chronic postoperative pain (By similarity). Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity). Promotes cell differentiation by regulating MAPK1/MAPK3 activity and regulating the expression of AP1 transcription factors (PubMed:29043977). {ECO:0000250|UniProtKB:Q9DBB1, ECO:0000269|PubMed:29043977, ECO:0000269|PubMed:8670865}. |
Q16891 | IMMT | S390 | ochoa | MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}. |
Q4G0J3 | LARP7 | S411 | ochoa | La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) | RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}. |
Q52LW3 | ARHGAP29 | S492 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q53QZ3 | ARHGAP15 | S103 | ochoa | Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}. |
Q53S58 | TMEM177 | S275 | ochoa | Transmembrane protein 177 | Plays a role in the early steps of cytochrome c oxidase subunit II (MT-CO2/COX2) maturation and is required for the stabilization of COX20 and the newly synthesized MT-CO2/COX2 protein. {ECO:0000269|PubMed:29154948}. |
Q567U6 | CCDC93 | S273 | ochoa | Coiled-coil domain-containing protein 93 | Component of the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). Component of the CCC complex, which is involved in the regulation of endosomal recycling of surface proteins, including integrins, signaling receptor and channels (PubMed:37172566, PubMed:38459129). The CCC complex associates with SNX17, retriever and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGA5:ITGB1 (PubMed:25355947, PubMed:28892079). Involved in copper-dependent ATP7A trafficking between the trans-Golgi network and vesicles in the cell periphery; the function is proposed to depend on its association within the CCC complex and cooperation with the WASH complex on early endosomes and is dependent on its interaction with WASHC2C (PubMed:25355947). {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129}.; FUNCTION: (Microbial infection) The CCC complex, in collaboration with the heterotrimeric retriever complex, mediates the exit of human papillomavirus to the cell surface. {ECO:0000269|PubMed:28892079}. |
Q5BJF6 | ODF2 | S106 | ochoa | Outer dense fiber protein 2 (Cenexin) (Outer dense fiber of sperm tails protein 2) | Seems to be a major component of sperm tail outer dense fibers (ODF). ODFs are filamentous structures located on the outside of the axoneme in the midpiece and principal piece of the mammalian sperm tail and may help to maintain the passive elastic structures and elastic recoil of the sperm tail. May have a modulating influence on sperm motility. Functions as a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles. Component of the centrosome matrix required for the localization of PLK1 and NIN to the centrosomes. Required for the formation and/or maintenance of normal CETN1 assembly. {ECO:0000269|PubMed:16966375}. |
Q5FWF6 | ZNF789 | S146 | ochoa | Zinc finger protein 789 | May be involved in transcriptional regulation. |
Q5HYC2 | BRD10 | S606 | ochoa | Uncharacterized bromodomain-containing protein 10 | None |
Q5JTC6 | AMER1 | S683 | psp | APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) | Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}. |
Q5SRI9 | MANEA | S289 | ochoa | Glycoprotein endo-alpha-1,2-mannosidase (Endo-alpha mannosidase) (Endomannosidase) (hEndo) (EC 3.2.1.130) (Mandaselin) | None |
Q5TC82 | RC3H1 | S460 | ochoa | Roquin-1 (Roquin) (EC 2.3.2.27) (RING finger and C3H zinc finger protein 1) (RING finger and CCCH-type zinc finger domain-containing protein 1) (RING finger protein 198) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF, TNFRSF4 and in many more mRNAs (PubMed:25026078, PubMed:31636267). Cleaves translationally inactive mRNAs harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-independent manner (By similarity). Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs (By similarity). In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity (By similarity). In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression (By similarity). Also recognizes CDE in its own mRNA and in that of paralogous RC3H2, possibly leading to feedback loop regulation (By similarity). Recognizes and binds mRNAs containing a hexaloop stem-loop motif, called alternative decay element (ADE) (By similarity). Together with ZC3H12A, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Able to interact with double-stranded RNA (dsRNA) (PubMed:25026078, PubMed:25504471). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406, PubMed:31636267). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2A, UBE2B, UBE2D2, UBE2F, UBE2G1, UBE2G2 and UBE2L3 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). {ECO:0000250|UniProtKB:Q4VGL6, ECO:0000269|PubMed:25026078, ECO:0000269|PubMed:25504471, ECO:0000269|PubMed:25697406, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:31636267}. |
Q5UIP0 | RIF1 | S1162 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VU43 | PDE4DIP | S235 | ochoa | Myomegalin (Cardiomyopathy-associated protein 2) (Phosphodiesterase 4D-interacting protein) | Functions as an anchor sequestering components of the cAMP-dependent pathway to Golgi and/or centrosomes (By similarity). {ECO:0000250|UniProtKB:Q9WUJ3}.; FUNCTION: [Isoform 13]: Participates in microtubule dynamics, promoting microtubule assembly. Depending upon the cell context, may act at the level of the Golgi apparatus or that of the centrosome (PubMed:25217626, PubMed:27666745, PubMed:28814570, PubMed:29162697). In complex with AKAP9, recruits CAMSAP2 to the Golgi apparatus and tethers non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745, PubMed:28814570). In complex with AKAP9, EB1/MAPRE1 and CDK5RAP2, contributes to microtubules nucleation and extension from the centrosome to the cell periphery, a crucial process for directed cell migration, mitotic spindle orientation and cell-cycle progression (PubMed:29162697). {ECO:0000269|PubMed:25217626, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28814570, ECO:0000269|PubMed:29162697}. |
Q66GS9 | CEP135 | S439 | ochoa | Centrosomal protein of 135 kDa (Cep135) (Centrosomal protein 4) | Centrosomal microtubule-binding protein involved in centriole biogenesis (PubMed:27477386). Acts as a scaffolding protein during early centriole biogenesis. Required for the targeting of centriole satellite proteins to centrosomes such as of PCM1, SSX2IP and CEP290 and recruitment of WRAP73 to centrioles. Also required for centriole-centriole cohesion during interphase by acting as a platform protein for CEP250 at the centriole. Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18851962, ECO:0000269|PubMed:26675238, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27477386}. |
Q68DA7 | FMN1 | S620 | ochoa | Formin-1 (Limb deformity protein homolog) | Plays a role in the formation of adherens junction and the polymerization of linear actin cables. {ECO:0000250}. |
Q6GYQ0 | RALGAPA1 | S349 | ochoa | Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) | Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q6P996 | PDXDC1 | S572 | ochoa | Pyridoxal-dependent decarboxylase domain-containing protein 1 (EC 4.1.1.-) | None |
Q6WKZ4 | RAB11FIP1 | S1193 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6ZN28 | MACC1 | S160 | ochoa | Metastasis-associated in colon cancer protein 1 (SH3 domain-containing protein 7a5) | Acts as a transcription activator for MET and as a key regulator of HGF-MET signaling. Promotes cell motility, proliferation and hepatocyte growth factor (HGF)-dependent scattering in vitro and tumor growth and metastasis in vivo. {ECO:0000269|PubMed:19098908}. |
Q6ZNB6 | NFXL1 | S659 | ochoa | NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) | None |
Q6ZU52 | KIAA0408 | S128 | ochoa | Uncharacterized protein KIAA0408 | None |
Q70J99 | UNC13D | S784 | ochoa | Protein unc-13 homolog D (Munc13-4) | Plays a role in cytotoxic granule exocytosis in lymphocytes. Required for both granule maturation and granule docking and priming at the immunologic synapse. Regulates assembly of recycling and late endosomal structures, leading to the formation of an endosomal exocytic compartment that fuses with perforin-containing granules at the immunologic synapse and licences them for exocytosis. Regulates Ca(2+)-dependent secretory lysosome exocytosis in mast cells. {ECO:0000269|PubMed:15548590, ECO:0000269|PubMed:17237785}. |
Q76N32 | CEP68 | S603 | ochoa | Centrosomal protein of 68 kDa (Cep68) | Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}. |
Q7L5A8 | FA2H | S346 | ochoa | Fatty acid 2-hydroxylase (EC 1.14.18.-) (Fatty acid alpha-hydroxylase) (Fatty acid hydroxylase domain-containing protein 1) | Catalyzes the hydroxylation of free fatty acids at the C-2 position to produce 2-hydroxy fatty acids, which are building blocks of sphingolipids and glycosphingolipids common in neural tissue and epidermis (PubMed:15337768, PubMed:15863841, PubMed:17355976, PubMed:22517924). FA2H is stereospecific for the production of (R)-2-hydroxy fatty acids (PubMed:22517924). Plays an essential role in the synthesis of galactosphingolipids of the myelin sheath (By similarity). Responsible for the synthesis of sphingolipids and glycosphingolipids involved in the formation of epidermal lamellar bodies critical for skin permeability barrier (PubMed:17355976). Participates in the synthesis of glycosphingolipids and a fraction of type II wax diesters in sebaceous gland, specifically regulating hair follicle homeostasis (By similarity). Involved in the synthesis of sphingolipids of plasma membrane rafts, controlling lipid raft mobility and trafficking of raft-associated proteins (By similarity). {ECO:0000250|UniProtKB:Q5MPP0, ECO:0000269|PubMed:15337768, ECO:0000269|PubMed:15863841, ECO:0000269|PubMed:17355976, ECO:0000269|PubMed:22517924}. |
Q7L804 | RAB11FIP2 | S450 | ochoa | Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) | A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}. |
Q7Z3T8 | ZFYVE16 | S167 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z3T8 | ZFYVE16 | S319 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z4S6 | KIF21A | S520 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z5K2 | WAPL | S158 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z7C8 | TAF8 | S271 | ochoa | Transcription initiation factor TFIID subunit 8 (Protein taube nuss) (TBP-associated factor 43 kDa) (TBP-associated factor 8) (Transcription initiation factor TFIID 43 kDa subunit) (TAFII-43) (TAFII43) (hTAFII43) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF8 is involved in forming the TFIID-B module, together with TAF5 (PubMed:33795473). Mediates both basal and activator-dependent transcription (PubMed:14580349). Plays a role in the differentiation of preadipocyte fibroblasts to adipocytes, however, does not seem to play a role in differentiation of myoblasts (PubMed:14580349). Required for the integration of TAF10 in the TAF complex (PubMed:14580349). May be important for survival of cells of the inner cell mass which constitute the pluripotent cell population of the early embryo (By similarity). {ECO:0000250|UniProtKB:Q9EQH4, ECO:0000269|PubMed:14580349, ECO:0000269|PubMed:33795473}. |
Q8IVT5 | KSR1 | S184 | ochoa | Kinase suppressor of Ras 1 (EC 2.7.11.1) | Part of a multiprotein signaling complex which promotes phosphorylation of Raf family members and activation of downstream MAP kinases (By similarity). Independently of its kinase activity, acts as MAP2K1/MEK1 and MAP2K2/MEK2-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1 or MAP2K2/MEK2, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 and/or MAP2K2/MEK2 (PubMed:29433126). Promotes activation of MAPK1 and/or MAPK3, both in response to EGF and to cAMP (By similarity). Its kinase activity is unsure (By similarity). Some protein kinase activity has been detected in vitro, however the physiological relevance of this activity is unknown (By similarity). {ECO:0000250|UniProtKB:Q61097, ECO:0000269|PubMed:29433126}. |
Q8IYD8 | FANCM | S1467 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYW5 | RNF168 | S195 | ochoa | E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) | E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}. |
Q8N2G6 | ZCCHC24 | S70 | ochoa | Zinc finger CCHC domain-containing protein 24 | None |
Q8N9B5 | JMY | S854 | ochoa | Junction-mediating and -regulatory protein | Acts both as a nuclear p53/TP53-cofactor and a cytoplasmic regulator of actin dynamics depending on conditions (PubMed:30420355). In nucleus, acts as a cofactor that increases p53/TP53 response via its interaction with p300/EP300. Increases p53/TP53-dependent transcription and apoptosis, suggesting an important role in p53/TP53 stress response such as DNA damage. In cytoplasm, acts as a nucleation-promoting factor for both branched and unbranched actin filaments (PubMed:30420355). Activates the Arp2/3 complex to induce branched actin filament networks. Also catalyzes actin polymerization in the absence of Arp2/3, creating unbranched filaments (PubMed:30420355). Contributes to cell motility by controlling actin dynamics. May promote the rapid formation of a branched actin network by first nucleating new mother filaments and then activating Arp2/3 to branch off these filaments. Upon nutrient stress, directly recruited by MAP1LC3B to the phagophore membrane surfaces to promote actin assembly during autophagy (PubMed:30420355). The p53/TP53-cofactor and actin activator activities are regulated via its subcellular location (By similarity). {ECO:0000250|UniProtKB:Q9QXM1, ECO:0000269|PubMed:30420355}. |
Q8N9T8 | KRI1 | S141 | ochoa | Protein KRI1 homolog | None |
Q8NC96 | NECAP1 | S140 | ochoa | Adaptin ear-binding coat-associated protein 1 (NECAP endocytosis-associated protein 1) (NECAP-1) | Involved in endocytosis. {ECO:0000250}. |
Q8NHV4 | NEDD1 | S89 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8TD19 | NEK9 | S944 | ochoa|psp | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TF72 | SHROOM3 | S664 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WTT2 | NOC3L | S116 | ochoa | Nucleolar complex protein 3 homolog (NOC3 protein homolog) (Factor for adipocyte differentiation 24) (NOC3-like protein) (Nucleolar complex-associated protein 3-like protein) | May be required for adipogenesis. {ECO:0000250}. |
Q8WUM4 | PDCD6IP | S642 | ochoa | Programmed cell death 6-interacting protein (PDCD6-interacting protein) (ALG-2-interacting protein 1) (ALG-2-interacting protein X) (Hp95) | Multifunctional protein involved in endocytosis, multivesicular body biogenesis, membrane repair, cytokinesis, apoptosis and maintenance of tight junction integrity. Class E VPS protein involved in concentration and sorting of cargo proteins of the multivesicular body (MVB) for incorporation into intralumenal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome. Binds to the phospholipid lysobisphosphatidic acid (LBPA) which is abundant in MVBs internal membranes. The MVB pathway requires the sequential function of ESCRT-O, -I,-II and -III complexes (PubMed:14739459). The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:17556548, PubMed:17853893). Adapter for a subset of ESCRT-III proteins, such as CHMP4, to function at distinct membranes. Required for completion of cytokinesis (PubMed:17556548, PubMed:17853893, PubMed:18641129). May play a role in the regulation of both apoptosis and cell proliferation. Regulates exosome biogenesis in concert with SDC1/4 and SDCBP (PubMed:22660413). By interacting with F-actin, PARD3 and TJP1 secures the proper assembly and positioning of actomyosin-tight junction complex at the apical sides of adjacent epithelial cells that defines a spatial membrane domain essential for the maintenance of epithelial cell polarity and barrier (By similarity). {ECO:0000250|UniProtKB:Q9WU78, ECO:0000269|PubMed:14739459, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:18641129, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) Involved in HIV-1 virus budding. Can replace TSG101 it its role of supporting HIV-1 release; this function requires the interaction with CHMP4B. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:18641129}. |
Q8WWI1 | LMO7 | S221 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q92541 | RTF1 | S675 | ochoa | RNA polymerase-associated protein RTF1 homolog | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity). {ECO:0000250, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:20178742}. |
Q92574 | TSC1 | S644 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92576 | PHF3 | S680 | ochoa | PHD finger protein 3 | None |
Q92831 | KAT2B | S264 | psp | Histone acetyltransferase KAT2B (EC 2.3.1.48) (Histone acetyltransferase PCAF) (Histone acetylase PCAF) (Lysine acetyltransferase 2B) (P300/CBP-associated factor) (P/CAF) (Spermidine acetyltransferase KAT2B) (EC 2.3.1.57) | Functions as a histone acetyltransferase (HAT) to promote transcriptional activation (PubMed:8945521). Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles (PubMed:8945521). Has a a strong preference for acetylation of H3 at 'Lys-9' (H3K9ac) (PubMed:21131905). Also acetylates non-histone proteins, such as ACLY, MAPRE1/EB1, PLK4, RRP9/U3-55K and TBX5 (PubMed:10675335, PubMed:23001180, PubMed:23932781, PubMed:26867678, PubMed:27796307, PubMed:29174768, PubMed:9707565). Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A (PubMed:8684459). Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Acetylates RRP9/U3-55K, a core subunit of the U3 snoRNP complex, impairing pre-rRNA processing (PubMed:26867678). Acetylates MAPRE1/EB1, promoting dynamic kinetochore-microtubule interactions in early mitosis (PubMed:23001180). Also acetylates spermidine (PubMed:27389534). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:23001180, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:26867678, ECO:0000269|PubMed:27389534, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:29174768, ECO:0000269|PubMed:8684459, ECO:0000269|PubMed:8945521, ECO:0000269|PubMed:9707565}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. {ECO:0000269|PubMed:12486002}. |
Q96B01 | RAD51AP1 | S120 | ochoa | RAD51-associated protein 1 (HsRAD51AP1) (RAD51-interacting protein) | Structure-specific DNA-binding protein involved in DNA repair by promoting RAD51-mediated homologous recombination (PubMed:17996710, PubMed:17996711, PubMed:20871616, PubMed:25288561, PubMed:26323318). Acts by stimulating D-Loop formation by RAD51: specifically enhances joint molecule formation through its structure-specific DNA interaction and its interaction with RAD51 (PubMed:17996710, PubMed:17996711). Binds single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures: has a strong preference for branched-DNA structures that are obligatory intermediates during joint molecule formation (PubMed:17996710, PubMed:17996711, PubMed:22375013, PubMed:9396801). Cooperates with WDR48/UAF1 to stimulate RAD51-mediated homologous recombination: both WDR48/UAF1 and RAD51AP1 have coordinated role in DNA-binding during homologous recombination and DNA repair (PubMed:27239033, PubMed:27463890, PubMed:32350107). WDR48/UAF1 and RAD51AP1 also have a coordinated role in DNA-binding to promote USP1-mediated deubiquitination of FANCD2 (PubMed:31253762). Also involved in meiosis by promoting DMC1-mediated homologous meiotic recombination (PubMed:21307306). Key mediator of alternative lengthening of telomeres (ALT) pathway, a homology-directed repair mechanism of telomere elongation that controls proliferation in aggressive cancers, by stimulating homologous recombination (PubMed:31400850). May also bind RNA; additional evidences are however required to confirm RNA-binding in vivo (PubMed:9396801). {ECO:0000269|PubMed:17996710, ECO:0000269|PubMed:17996711, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:21307306, ECO:0000269|PubMed:22375013, ECO:0000269|PubMed:25288561, ECO:0000269|PubMed:26323318, ECO:0000269|PubMed:27239033, ECO:0000269|PubMed:27463890, ECO:0000269|PubMed:31253762, ECO:0000269|PubMed:31400850, ECO:0000269|PubMed:32350107, ECO:0000269|PubMed:9396801}. |
Q96MT8 | CEP63 | S437 | ochoa | Centrosomal protein of 63 kDa (Cep63) | Required for normal spindle assembly (PubMed:21406398, PubMed:21983783, PubMed:26297806, PubMed:35793002). Plays a key role in mother-centriole-dependent centriole duplication; the function seems also to involve CEP152, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:21983783, PubMed:26297806). Reported to be required for centrosomal recruitment of CEP152; however, this function has been questioned (PubMed:21983783, PubMed:26297806). Also recruits CDK1 to centrosomes (PubMed:21406398). Plays a role in DNA damage response (PubMed:21406398). Following DNA damage, such as double-strand breaks (DSBs), is removed from centrosomes; this leads to the inactivation of spindle assembly and delay in mitotic progression (PubMed:21406398). Promotes stabilization of FXR1 protein by inhibiting FXR1 ubiquitination (PubMed:35989368). {ECO:0000269|PubMed:21406398, ECO:0000269|PubMed:21983783, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:35793002, ECO:0000269|PubMed:35989368}. |
Q96NC0 | ZMAT2 | S75 | ochoa | Zinc finger matrin-type protein 2 | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}. |
Q99549 | MPHOSPH8 | S371 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99590 | SCAF11 | S694 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99816 | TSG101 | S48 | ochoa | Tumor susceptibility gene 101 protein (ESCRT-I complex subunit TSG101) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Binds to ubiquitinated cargo proteins and is required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs). Mediates the association between the ESCRT-0 and ESCRT-I complex. Required for completion of cytokinesis; the function requires CEP55. May be involved in cell growth and differentiation. Acts as a negative growth regulator. Involved in the budding of many viruses through an interaction with viral proteins that contain a late-budding motif P-[ST]-A-P. This interaction is essential for viral particle budding of numerous retroviruses. Required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). It may also play a role in the extracellular release of microvesicles that differ from the exosomes (PubMed:22315426). {ECO:0000269|PubMed:11916981, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:21070952, ECO:0000269|PubMed:21757351, ECO:0000269|PubMed:22315426, ECO:0000269|PubMed:22660413}. |
Q9BPZ7 | MAPKAP1 | S200 | ochoa | Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}. |
Q9BVA1 | TUBB2B | T232 | ochoa | Tubulin beta-2B chain | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers (PubMed:23001566, PubMed:26732629, PubMed:28013290). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. Plays a critical role in proper axon guidance in both central and peripheral axon tracts (PubMed:23001566). Implicated in neuronal migration (PubMed:19465910). {ECO:0000269|PubMed:19465910, ECO:0000269|PubMed:23001566, ECO:0000269|PubMed:26732629, ECO:0000269|PubMed:28013290}. |
Q9BWT3 | PAPOLG | S684 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BYC5 | FUT8 | S39 | ochoa | Alpha-(1,6)-fucosyltransferase (Alpha1-6FucT) (EC 2.4.1.68) (Fucosyltransferase 8) (GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1,6-fucosyltransferase) (GDP-fucose--glycoprotein fucosyltransferase) (Glycoprotein 6-alpha-L-fucosyltransferase) | Catalyzes the addition of fucose in alpha 1-6 linkage to the first GlcNAc residue, next to the peptide chains in N-glycans. {ECO:0000269|PubMed:17172260, ECO:0000269|PubMed:29304374, ECO:0000269|PubMed:9133635}. |
Q9BYT8 | NLN | S598 | ochoa | Neurolysin, mitochondrial (EC 3.4.24.16) (Angiotensin-binding protein) (Microsomal endopeptidase) (MEP) (Mitochondrial oligopeptidase M) (Neurotensin endopeptidase) | Hydrolyzes oligopeptides such as neurotensin, bradykinin and dynorphin A (By similarity). Acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (By similarity). {ECO:0000250|UniProtKB:P42676}. |
Q9BZE2 | PUS3 | S45 | ochoa | tRNA pseudouridine(38/39) synthase (EC 5.4.99.45) (tRNA pseudouridine synthase 3) (tRNA pseudouridylate synthase 3) (tRNA-uridine isomerase 3) | Formation of pseudouridine at position 39 in the anticodon stem and loop of transfer RNAs. {ECO:0000269|PubMed:27055666}. |
Q9BZS1 | FOXP3 | S270 | psp | Forkhead box protein P3 (Scurfin) [Cleaved into: Forkhead box protein P3, C-terminally processed; Forkhead box protein P3 41 kDa form] | Transcriptional regulator which is crucial for the development and inhibitory function of regulatory T-cells (Treg) (PubMed:17377532, PubMed:21458306, PubMed:23947341, PubMed:24354325, PubMed:24722479, PubMed:24835996, PubMed:30513302, PubMed:32644293). Plays an essential role in maintaining homeostasis of the immune system by allowing the acquisition of full suppressive function and stability of the Treg lineage, and by directly modulating the expansion and function of conventional T-cells (PubMed:23169781). Can act either as a transcriptional repressor or a transcriptional activator depending on its interactions with other transcription factors, histone acetylases and deacetylases (PubMed:17377532, PubMed:21458306, PubMed:23947341, PubMed:24354325, PubMed:24722479). The suppressive activity of Treg involves the coordinate activation of many genes, including CTLA4 and TNFRSF18 by FOXP3 along with repression of genes encoding cytokines such as interleukin-2 (IL2) and interferon-gamma (IFNG) (PubMed:17377532, PubMed:21458306, PubMed:23947341, PubMed:24354325, PubMed:24722479). Inhibits cytokine production and T-cell effector function by repressing the activity of two key transcription factors, RELA and NFATC2 (PubMed:15790681). Mediates transcriptional repression of IL2 via its association with histone acetylase KAT5 and histone deacetylase HDAC7 (PubMed:17360565). Can activate the expression of TNFRSF18, IL2RA and CTLA4 and repress the expression of IL2 and IFNG via its association with transcription factor RUNX1 (PubMed:17377532). Inhibits the differentiation of IL17 producing helper T-cells (Th17) by antagonizing RORC function, leading to down-regulation of IL17 expression, favoring Treg development (PubMed:18368049). Inhibits the transcriptional activator activity of RORA (PubMed:18354202). Can repress the expression of IL2 and IFNG via its association with transcription factor IKZF4 (By similarity). {ECO:0000250|UniProtKB:Q99JB6, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:17360565, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:18354202, ECO:0000269|PubMed:18368049, ECO:0000269|PubMed:21458306, ECO:0000269|PubMed:23169781, ECO:0000269|PubMed:24835996, ECO:0000269|PubMed:30513302, ECO:0000269|PubMed:32644293, ECO:0000303|PubMed:23947341, ECO:0000303|PubMed:24354325, ECO:0000303|PubMed:24722479}. |
Q9H3P7 | ACBD3 | S321 | ochoa | Golgi resident protein GCP60 (Acyl-CoA-binding domain-containing protein 3) (Golgi complex-associated protein 1) (GOCAP1) (Golgi phosphoprotein 1) (GOLPH1) (PBR- and PKA-associated protein 7) (Peripheral benzodiazepine receptor-associated protein PAP7) [Cleaved into: Golgi resident protein GCP60, N-terminally processed] | Involved in the maintenance of Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and Golgi (PubMed:11590181). Involved in hormone-induced steroid biosynthesis in testicular Leydig cells (By similarity). Recruits PI4KB to the Golgi apparatus membrane; enhances the enzyme activity of PI4KB activity via its membrane recruitment thereby increasing the local concentration of the substrate in the vicinity of the kinase (PubMed:27009356). {ECO:0000250|UniProtKB:Q8BMP6, ECO:0000269|PubMed:11590181, ECO:0000269|PubMed:27009356}.; FUNCTION: (Microbial infection) Plays an essential role in Aichi virus RNA replication by recruiting PI4KB at the viral replication sites. {ECO:0000269|PubMed:22124328, ECO:0000269|PubMed:22258260, ECO:0000269|PubMed:27989622}. |
Q9H582 | ZNF644 | S349 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H5J8 | TAF1D | S26 | ochoa | TATA box-binding protein-associated factor RNA polymerase I subunit D (RNA polymerase I-specific TBP-associated factor 41 kDa) (TAFI41) (TATA box-binding protein-associated factor 1D) (TBP-associated factor 1D) (Transcription initiation factor SL1/TIF-IB subunit D) | Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits. {ECO:0000269|PubMed:15970593, ECO:0000269|PubMed:17318177}. |
Q9H6A9 | PCNX3 | S178 | ochoa | Pecanex-like protein 3 (Pecanex homolog protein 3) | None |
Q9HCJ3 | RAVER2 | S622 | ochoa | Ribonucleoprotein PTB-binding 2 (Protein raver-2) | May bind single-stranded nucleic acids. {ECO:0000305}. |
Q9NQ84 | GPRC5C | S383 | ochoa | G-protein coupled receptor family C group 5 member C (Retinoic acid-induced gene 3 protein) (RAIG-3) | This retinoic acid-inducible G-protein coupled receptor provide evidence for a possible interaction between retinoid and G-protein signaling pathways. {ECO:0000250}. |
Q9NY27 | PPP4R2 | S139 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NY33 | DPP3 | S272 | ochoa | Dipeptidyl peptidase 3 (EC 3.4.14.4) (Dipeptidyl aminopeptidase III) (Dipeptidyl arylamidase III) (Dipeptidyl peptidase III) (DPP III) (Enkephalinase B) | Cleaves and degrades bioactive peptides, including angiotensin, Leu-enkephalin and Met-enkephalin (PubMed:1515063, PubMed:3233187). Also cleaves Arg-Arg-beta-naphthylamide (in vitro) (PubMed:11209758, PubMed:3233187, PubMed:9425109). {ECO:0000269|PubMed:11209758, ECO:0000269|PubMed:1515063, ECO:0000269|PubMed:3233187, ECO:0000269|PubMed:9425109}. |
Q9P2D6 | FAM135A | S705 | ochoa | Protein FAM135A | None |
Q9UBY0 | SLC9A2 | S687 | ochoa | Sodium/hydrogen exchanger 2 (Na(+)/H(+) exchanger 2) (NHE-2) (Solute carrier family 9 member 2) | Plasma membrane Na(+)/H(+) antiporter. Mediates the electroneutral exchange of intracellular H(+) ions for extracellular Na(+) (PubMed:10444453). Major apical Na(+)/H(+) exchanger in the base of the colonic crypt. Controls in the colonic crypt intracellular pH (pHi) to direct colonic epithelial cell differentiation into the absorptive enterocyte lineage at the expense of the secretory lineage (By similarity). {ECO:0000250|UniProtKB:Q3ZAS0, ECO:0000269|PubMed:10444453}. |
Q9UHB6 | LIMA1 | S55 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHG3 | PCYOX1 | S177 | ochoa | Prenylcysteine oxidase 1 (EC 1.8.3.5) (Prenylcysteine lyase) | Prenylcysteine oxidase that cleaves the thioether bond of prenyl-L-cysteines, such as farnesylcysteine and geranylgeranylcysteine (PubMed:10585463, PubMed:11078725, PubMed:12186880). Only active against free prenylcysteines and not prenylcysteine residues within prenylated proteins or peptides (By similarity). Involved in the final step in the degradation of prenylated proteins, by degrading prenylcysteines after the protein has been degraded (PubMed:10585463). {ECO:0000250|UniProtKB:F1N2K1, ECO:0000269|PubMed:10585463, ECO:0000269|PubMed:11078725, ECO:0000269|PubMed:12186880}. |
Q9UHW9 | SLC12A6 | S1023 | psp | Solute carrier family 12 member 6 (Electroneutral potassium-chloride cotransporter 3) (K-Cl cotransporter 3) | [Isoform 1]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10600773, PubMed:11551954, PubMed:16048901, PubMed:18566107, PubMed:19665974, PubMed:21628467, PubMed:27485015). May contribute to cell volume homeostasis in single cells (PubMed:16048901, PubMed:27485015). {ECO:0000269|PubMed:10600773, ECO:0000269|PubMed:11551954, ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:18566107, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21628467, ECO:0000269|PubMed:27485015, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 2]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901, PubMed:33199848, PubMed:34031912). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:33199848, ECO:0000269|PubMed:34031912, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 3]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 4]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 5]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 6]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}. |
Q9UK76 | JPT1 | S49 | ochoa | Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] | Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}. |
Q9UKA4 | AKAP11 | S1569 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKV3 | ACIN1 | S115 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9Y247 | FAM50B | S62 | ochoa | Protein FAM50B (Protein XAP-5-like) | None |
Q9Y2G8 | DNAJC16 | S727 | ochoa | DnaJ homolog subfamily C member 16 (Endoplasmic reticulum DNA J domain-containing protein 8) (ER-resident protein ERdj8) (ERdj8) | Plays an important role in regulating the size of autophagosomes during the formation process. {ECO:0000269|PubMed:32492081}. |
Q9Y2H2 | INPP5F | S881 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2H6 | FNDC3A | S203 | ochoa | Fibronectin type-III domain-containing protein 3A (Human gene expressed in odontoblasts) | Mediates spermatid-Sertoli adhesion during spermatogenesis. {ECO:0000250}. |
Q9Y3E5 | PTRH2 | S57 | ochoa | Peptidyl-tRNA hydrolase 2, mitochondrial (PTH 2) (EC 3.1.1.29) (Bcl-2 inhibitor of transcription 1) | Peptidyl-tRNA hydrolase which releases tRNAs from the ribosome during protein synthesis (PubMed:14660562). Promotes caspase-independent apoptosis by regulating the function of two transcriptional regulators, AES and TLE1. {ECO:0000269|PubMed:14660562, ECO:0000269|PubMed:15006356}. |
Q9Y4B5 | MTCL1 | S1616 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9HAW4 | CLSPN | S744 | EPSD|PSP | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O00444 | PLK4 | S640 | Sugiyama | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
O95625 | ZBTB11 | S537 | EPSD|PSP | Zinc finger and BTB domain-containing protein 11 | May be involved in transcriptional regulation. {ECO:0000305}. |
Q9NQW7 | XPNPEP1 | S109 | Sugiyama | Xaa-Pro aminopeptidase 1 (EC 3.4.11.9) (Aminoacylproline aminopeptidase) (Cytosolic aminopeptidase P) (Soluble aminopeptidase P) (sAmp) (X-Pro aminopeptidase 1) (X-prolyl aminopeptidase 1, soluble) | Metalloaminopeptidase that catalyzes the removal of a penultimate prolyl residue from the N-termini of peptides, such as Arg-Pro-Pro (PubMed:11106490, PubMed:18515364, PubMed:35165443). Contributes to the degradation of bradykinin (PubMed:11106490). {ECO:0000269|PubMed:11106490, ECO:0000269|PubMed:18515364, ECO:0000269|PubMed:35165443}. |
O43707 | ACTN4 | Y533 | Sugiyama | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
Q8NCX0 | CCDC150 | S233 | Sugiyama | Coiled-coil domain-containing protein 150 | None |
Q5T4S7 | UBR4 | S3846 | Sugiyama | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
P53621 | COPA | S730 | Sugiyama | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
Q6P1J9 | CDC73 | S174 | Sugiyama | Parafibromin (Cell division cycle protein 73 homolog) (Hyperparathyroidism 2 protein) | Tumor suppressor probably involved in transcriptional and post-transcriptional control pathways. May be involved in cell cycle progression through the regulation of cyclin D1/PRAD1 expression. Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the cleavage and polyadenylation specificity factor (CPSF) complex and the cleavage stimulation factor (CSTF) complex, and with Wnt signaling. Involved in polyadenylation of mRNA precursors. {ECO:0000269|PubMed:15580289, ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15923622, ECO:0000269|PubMed:16630820, ECO:0000269|PubMed:16989776, ECO:0000269|PubMed:19136632, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q8IZU2 | WDR17 | S124 | Sugiyama | WD repeat-containing protein 17 | None |
Q8WVJ2 | NUDCD2 | S106 | Sugiyama | NudC domain-containing protein 2 | May regulate the LIS1/dynein pathway by stabilizing LIS1 with Hsp90 chaperone. {ECO:0000269|PubMed:20133715}. |
P51617 | IRAK1 | S264 | Sugiyama | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
Q9Y2L5 | TRAPPC8 | S377 | Sugiyama | Trafficking protein particle complex subunit 8 (Protein TRS85 homolog) | Plays a role in endoplasmic reticulum to Golgi apparatus trafficking at a very early stage (PubMed:21525244). Maintains together with TBC1D14 the cycling pool of ATG9 required for initiation of autophagy (PubMed:26711178). Involved in collagen secretion (PubMed:32095531). {ECO:0000269|PubMed:21525244, ECO:0000269|PubMed:26711178, ECO:0000269|PubMed:32095531}. |
Q9Y624 | F11R | S34 | iPTMNet | Junctional adhesion molecule A (JAM-A) (Junctional adhesion molecule 1) (JAM-1) (Platelet F11 receptor) (Platelet adhesion molecule 1) (PAM-1) (CD antigen CD321) | Seems to play a role in epithelial tight junction formation. Appears early in primordial forms of cell junctions and recruits PARD3 (PubMed:11489913). The association of the PARD6-PARD3 complex may prevent the interaction of PARD3 with JAM1, thereby preventing tight junction assembly (By similarity). Plays a role in regulating monocyte transmigration involved in integrity of epithelial barrier (By similarity). Ligand for integrin alpha-L/beta-2 involved in memory T-cell and neutrophil transmigration (PubMed:11812992). Involved in platelet activation (PubMed:10753840). {ECO:0000250|UniProtKB:O88792, ECO:0000269|PubMed:10753840, ECO:0000269|PubMed:11489913, ECO:0000269|PubMed:11812992}.; FUNCTION: (Microbial infection) Acts as a receptor for Mammalian reovirus sigma-1. {ECO:0000269|PubMed:11239401}.; FUNCTION: (Microbial infection) Acts as a receptor for Human Rotavirus strain Wa. {ECO:0000269|PubMed:25481868}. |
P78362 | SRPK2 | S114 | Sugiyama | SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}. |
P06733 | ENO1 | S104 | Sugiyama | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
Q15642 | TRIP10 | S288 | Sugiyama | Cdc42-interacting protein 4 (Protein Felic) (Salt tolerant protein) (hSTP) (Thyroid receptor-interacting protein 10) (TR-interacting protein 10) (TRIP-10) | Required for translocation of GLUT4 to the plasma membrane in response to insulin signaling (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by recruiting WASL/N-WASP which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Required for the formation of podosomes, actin-rich adhesion structures specific to monocyte-derived cells. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:11069762, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391}. |
Q6P0Q8 | MAST2 | S775 | Sugiyama | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
P54136 | RARS1 | S336 | Sugiyama | Arginine--tRNA ligase, cytoplasmic (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS) | Forms part of a macromolecular complex that catalyzes the attachment of specific amino acids to cognate tRNAs during protein synthesis (PubMed:25288775). Modulates the secretion of AIMP1 and may be involved in generation of the inflammatory cytokine EMAP2 from AIMP1 (PubMed:17443684). {ECO:0000269|PubMed:17443684, ECO:0000269|PubMed:25288775}. |
Q9H1R3 | MYLK2 | S577 | Sugiyama | Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) | Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}. |
Q9P2K8 | EIF2AK4 | S1504 | Sugiyama | eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-5693532 | DNA Double-Strand Break Repair | 5.431738e-07 | 6.265 |
R-HSA-5357801 | Programmed Cell Death | 2.071588e-06 | 5.684 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 5.485129e-06 | 5.261 |
R-HSA-437239 | Recycling pathway of L1 | 5.741858e-06 | 5.241 |
R-HSA-75153 | Apoptotic execution phase | 4.784863e-06 | 5.320 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 7.171017e-06 | 5.144 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 1.017975e-05 | 4.992 |
R-HSA-109581 | Apoptosis | 1.357810e-05 | 4.867 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 2.398386e-05 | 4.620 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 2.337363e-05 | 4.631 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 3.653259e-05 | 4.437 |
R-HSA-8953897 | Cellular responses to stimuli | 4.782105e-05 | 4.320 |
R-HSA-2262752 | Cellular responses to stress | 5.637146e-05 | 4.249 |
R-HSA-5693538 | Homology Directed Repair | 6.759756e-05 | 4.170 |
R-HSA-69275 | G2/M Transition | 9.012334e-05 | 4.045 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 1.014196e-04 | 3.994 |
R-HSA-453274 | Mitotic G2-G2/M phases | 1.032749e-04 | 3.986 |
R-HSA-1640170 | Cell Cycle | 1.169077e-04 | 3.932 |
R-HSA-391251 | Protein folding | 1.522584e-04 | 3.817 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 1.725529e-04 | 3.763 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 2.038862e-04 | 3.691 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 1.963728e-04 | 3.707 |
R-HSA-390450 | Folding of actin by CCT/TriC | 2.607240e-04 | 3.584 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 2.785958e-04 | 3.555 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 2.785958e-04 | 3.555 |
R-HSA-390466 | Chaperonin-mediated protein folding | 2.936024e-04 | 3.532 |
R-HSA-8854518 | AURKA Activation by TPX2 | 3.926713e-04 | 3.406 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 3.911399e-04 | 3.408 |
R-HSA-68877 | Mitotic Prometaphase | 3.698133e-04 | 3.432 |
R-HSA-168255 | Influenza Infection | 3.968816e-04 | 3.401 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 5.080375e-04 | 3.294 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 4.988303e-04 | 3.302 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 5.427302e-04 | 3.265 |
R-HSA-68886 | M Phase | 6.415177e-04 | 3.193 |
R-HSA-9675108 | Nervous system development | 7.434065e-04 | 3.129 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 8.175077e-04 | 3.088 |
R-HSA-69278 | Cell Cycle, Mitotic | 8.003778e-04 | 3.097 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 8.914885e-04 | 3.050 |
R-HSA-380287 | Centrosome maturation | 9.924073e-04 | 3.003 |
R-HSA-9646399 | Aggrephagy | 1.021144e-03 | 2.991 |
R-HSA-73894 | DNA Repair | 1.020690e-03 | 2.991 |
R-HSA-156902 | Peptide chain elongation | 1.069844e-03 | 2.971 |
R-HSA-9948299 | Ribosome-associated quality control | 1.167612e-03 | 2.933 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 1.182574e-03 | 2.927 |
R-HSA-69481 | G2/M Checkpoints | 1.315312e-03 | 2.881 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 1.378306e-03 | 2.861 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 1.496149e-03 | 2.825 |
R-HSA-156842 | Eukaryotic Translation Elongation | 1.622179e-03 | 2.790 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 1.777627e-03 | 2.750 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 1.766795e-03 | 2.753 |
R-HSA-5617833 | Cilium Assembly | 1.822723e-03 | 2.739 |
R-HSA-5696400 | Dual Incision in GG-NER | 2.039004e-03 | 2.691 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 2.016111e-03 | 2.695 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 2.039004e-03 | 2.691 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 1.937394e-03 | 2.713 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 2.216845e-03 | 2.654 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 2.216845e-03 | 2.654 |
R-HSA-72764 | Eukaryotic Translation Termination | 2.216845e-03 | 2.654 |
R-HSA-422475 | Axon guidance | 2.333629e-03 | 2.632 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 2.657426e-03 | 2.576 |
R-HSA-69473 | G2/M DNA damage checkpoint | 2.990828e-03 | 2.524 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 3.207510e-03 | 2.494 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 3.377119e-03 | 2.471 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 3.377119e-03 | 2.471 |
R-HSA-2408557 | Selenocysteine synthesis | 3.432446e-03 | 2.464 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 3.835157e-03 | 2.416 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 4.546135e-03 | 2.342 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 4.546135e-03 | 2.342 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 4.546135e-03 | 2.342 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 4.546135e-03 | 2.342 |
R-HSA-9615710 | Late endosomal microautophagy | 4.101839e-03 | 2.387 |
R-HSA-192823 | Viral mRNA Translation | 3.940334e-03 | 2.404 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 4.546135e-03 | 2.342 |
R-HSA-373760 | L1CAM interactions | 4.215411e-03 | 2.375 |
R-HSA-69620 | Cell Cycle Checkpoints | 4.401957e-03 | 2.356 |
R-HSA-9008059 | Interleukin-37 signaling | 4.690756e-03 | 2.329 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 5.238942e-03 | 2.281 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 5.247983e-03 | 2.280 |
R-HSA-162588 | Budding and maturation of HIV virion | 5.339612e-03 | 2.272 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 5.835198e-03 | 2.234 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 5.835198e-03 | 2.234 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 6.051829e-03 | 2.218 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 6.240849e-03 | 2.205 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 6.802164e-03 | 2.167 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 6.830817e-03 | 2.166 |
R-HSA-9636667 | Manipulation of host energy metabolism | 7.368814e-03 | 2.133 |
R-HSA-190828 | Gap junction trafficking | 7.283250e-03 | 2.138 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 7.456486e-03 | 2.127 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 7.456486e-03 | 2.127 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 7.699275e-03 | 2.114 |
R-HSA-9612973 | Autophagy | 8.296540e-03 | 2.081 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 8.425202e-03 | 2.074 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 8.418203e-03 | 2.075 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 8.091033e-03 | 2.092 |
R-HSA-1632852 | Macroautophagy | 8.447728e-03 | 2.073 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 8.470895e-03 | 2.072 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 8.602631e-03 | 2.065 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 8.602631e-03 | 2.065 |
R-HSA-9663891 | Selective autophagy | 9.263472e-03 | 2.033 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 9.146139e-03 | 2.039 |
R-HSA-9711097 | Cellular response to starvation | 9.135862e-03 | 2.039 |
R-HSA-438064 | Post NMDA receptor activation events | 8.662046e-03 | 2.062 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 9.602123e-03 | 2.018 |
R-HSA-1169408 | ISG15 antiviral mechanism | 9.761079e-03 | 2.011 |
R-HSA-72613 | Eukaryotic Translation Initiation | 1.052870e-02 | 1.978 |
R-HSA-72737 | Cap-dependent Translation Initiation | 1.052870e-02 | 1.978 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 1.087452e-02 | 1.964 |
R-HSA-400685 | Sema4D in semaphorin signaling | 1.087452e-02 | 1.964 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 1.145545e-02 | 1.941 |
R-HSA-157858 | Gap junction trafficking and regulation | 1.160910e-02 | 1.935 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 1.174503e-02 | 1.930 |
R-HSA-444257 | RSK activation | 1.180398e-02 | 1.928 |
R-HSA-381070 | IRE1alpha activates chaperones | 1.199347e-02 | 1.921 |
R-HSA-2559583 | Cellular Senescence | 1.205696e-02 | 1.919 |
R-HSA-2408522 | Selenoamino acid metabolism | 1.206290e-02 | 1.919 |
R-HSA-6804754 | Regulation of TP53 Expression | 1.274189e-02 | 1.895 |
R-HSA-9833482 | PKR-mediated signaling | 1.379593e-02 | 1.860 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 1.309378e-02 | 1.883 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 1.379593e-02 | 1.860 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 1.381617e-02 | 1.860 |
R-HSA-9700206 | Signaling by ALK in cancer | 1.381617e-02 | 1.860 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 1.443244e-02 | 1.841 |
R-HSA-446652 | Interleukin-1 family signaling | 1.504444e-02 | 1.823 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 1.542395e-02 | 1.812 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 1.559796e-02 | 1.807 |
R-HSA-5693606 | DNA Double Strand Break Response | 1.569541e-02 | 1.804 |
R-HSA-5218859 | Regulated Necrosis | 1.683970e-02 | 1.774 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 1.677526e-02 | 1.775 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 1.719191e-02 | 1.765 |
R-HSA-9831926 | Nephron development | 1.719191e-02 | 1.765 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 1.738965e-02 | 1.760 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 1.743442e-02 | 1.759 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 1.743442e-02 | 1.759 |
R-HSA-210745 | Regulation of gene expression in beta cells | 1.743442e-02 | 1.759 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 1.901377e-02 | 1.721 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 1.940851e-02 | 1.712 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 2.152383e-02 | 1.667 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 2.152383e-02 | 1.667 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 2.042603e-02 | 1.690 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 2.198464e-02 | 1.658 |
R-HSA-70171 | Glycolysis | 2.144055e-02 | 1.669 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 2.063184e-02 | 1.685 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 2.202059e-02 | 1.657 |
R-HSA-162582 | Signal Transduction | 2.266766e-02 | 1.645 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 2.619106e-02 | 1.582 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 2.619106e-02 | 1.582 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 2.619106e-02 | 1.582 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 2.874869e-02 | 1.541 |
R-HSA-8852135 | Protein ubiquitination | 2.658067e-02 | 1.575 |
R-HSA-2467813 | Separation of Sister Chromatids | 2.502984e-02 | 1.602 |
R-HSA-5693537 | Resolution of D-Loop Structures | 2.874869e-02 | 1.541 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 2.921806e-02 | 1.534 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 2.619106e-02 | 1.582 |
R-HSA-198753 | ERK/MAPK targets | 2.547635e-02 | 1.594 |
R-HSA-68882 | Mitotic Anaphase | 2.536917e-02 | 1.596 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 2.625662e-02 | 1.581 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 2.384241e-02 | 1.623 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 2.874869e-02 | 1.541 |
R-HSA-450294 | MAP kinase activation | 2.904086e-02 | 1.537 |
R-HSA-9675135 | Diseases of DNA repair | 2.868991e-02 | 1.542 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 2.833105e-02 | 1.548 |
R-HSA-1257604 | PIP3 activates AKT signaling | 2.943569e-02 | 1.531 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 3.086035e-02 | 1.511 |
R-HSA-209543 | p75NTR recruits signalling complexes | 3.116984e-02 | 1.506 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 3.116984e-02 | 1.506 |
R-HSA-877312 | Regulation of IFNG signaling | 3.116984e-02 | 1.506 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 3.145900e-02 | 1.502 |
R-HSA-180746 | Nuclear import of Rev protein | 3.145900e-02 | 1.502 |
R-HSA-190861 | Gap junction assembly | 3.145900e-02 | 1.502 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 3.175892e-02 | 1.498 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 3.377706e-02 | 1.471 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 3.432407e-02 | 1.464 |
R-HSA-2559585 | Oncogene Induced Senescence | 3.432407e-02 | 1.464 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 3.540142e-02 | 1.451 |
R-HSA-9723905 | Loss of function of TP53 in cancer due to loss of tetramerization ability | 4.135022e-02 | 1.384 |
R-HSA-5467343 | Deletions in the AMER1 gene destabilize the destruction complex | 4.135022e-02 | 1.384 |
R-HSA-9723907 | Loss of Function of TP53 in Cancer | 4.135022e-02 | 1.384 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 3.592914e-02 | 1.445 |
R-HSA-73893 | DNA Damage Bypass | 3.581716e-02 | 1.446 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 3.626767e-02 | 1.440 |
R-HSA-912446 | Meiotic recombination | 4.114833e-02 | 1.386 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 3.707936e-02 | 1.431 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 3.707936e-02 | 1.431 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 4.052546e-02 | 1.392 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 3.592914e-02 | 1.445 |
R-HSA-162587 | HIV Life Cycle | 3.791380e-02 | 1.421 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 3.579984e-02 | 1.446 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 3.761687e-02 | 1.425 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 4.176576e-02 | 1.379 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 4.227933e-02 | 1.374 |
R-HSA-5633007 | Regulation of TP53 Activity | 4.235921e-02 | 1.373 |
R-HSA-199991 | Membrane Trafficking | 4.239857e-02 | 1.373 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 4.244165e-02 | 1.372 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 4.386446e-02 | 1.358 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 4.399177e-02 | 1.357 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 4.409381e-02 | 1.356 |
R-HSA-9652817 | Signaling by MAPK mutants | 4.566292e-02 | 1.340 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 4.765688e-02 | 1.322 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 4.736363e-02 | 1.325 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 5.102356e-02 | 1.292 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 5.102356e-02 | 1.292 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 4.478497e-02 | 1.349 |
R-HSA-193639 | p75NTR signals via NF-kB | 4.765688e-02 | 1.322 |
R-HSA-5688426 | Deubiquitination | 4.780766e-02 | 1.321 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 5.038127e-02 | 1.298 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 5.123479e-02 | 1.290 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 5.102356e-02 | 1.292 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 5.102356e-02 | 1.292 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 4.736363e-02 | 1.325 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 4.821178e-02 | 1.317 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 4.463861e-02 | 1.350 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 4.463861e-02 | 1.350 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 4.463861e-02 | 1.350 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 4.831000e-02 | 1.316 |
R-HSA-448424 | Interleukin-17 signaling | 5.012407e-02 | 1.300 |
R-HSA-1266738 | Developmental Biology | 4.839092e-02 | 1.315 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 5.012407e-02 | 1.300 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 5.102356e-02 | 1.292 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 5.102356e-02 | 1.292 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 4.765688e-02 | 1.322 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 4.821178e-02 | 1.317 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 5.324500e-02 | 1.274 |
R-HSA-376176 | Signaling by ROBO receptors | 5.363695e-02 | 1.271 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 5.393227e-02 | 1.268 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 5.624008e-02 | 1.250 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 6.757443e-02 | 1.170 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 6.270657e-02 | 1.203 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 6.270657e-02 | 1.203 |
R-HSA-6782135 | Dual incision in TC-NER | 6.359505e-02 | 1.197 |
R-HSA-194441 | Metabolism of non-coding RNA | 6.729007e-02 | 1.172 |
R-HSA-191859 | snRNP Assembly | 6.729007e-02 | 1.172 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 6.517066e-02 | 1.186 |
R-HSA-5620971 | Pyroptosis | 5.764597e-02 | 1.239 |
R-HSA-199920 | CREB phosphorylation | 5.624008e-02 | 1.250 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 6.270657e-02 | 1.203 |
R-HSA-68875 | Mitotic Prophase | 6.162312e-02 | 1.210 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 6.757443e-02 | 1.170 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 6.270657e-02 | 1.203 |
R-HSA-8949275 | RUNX3 Regulates Immune Response and Cell Migration | 6.757443e-02 | 1.170 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 5.882662e-02 | 1.230 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 5.657262e-02 | 1.247 |
R-HSA-70326 | Glucose metabolism | 5.469961e-02 | 1.262 |
R-HSA-162906 | HIV Infection | 6.383510e-02 | 1.195 |
R-HSA-9022707 | MECP2 regulates transcription factors | 6.757443e-02 | 1.170 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 5.484456e-02 | 1.261 |
R-HSA-9006925 | Intracellular signaling by second messengers | 6.000696e-02 | 1.222 |
R-HSA-186712 | Regulation of beta-cell development | 6.729007e-02 | 1.172 |
R-HSA-9856651 | MITF-M-dependent gene expression | 5.675251e-02 | 1.246 |
R-HSA-5689880 | Ub-specific processing proteases | 6.794326e-02 | 1.168 |
R-HSA-68962 | Activation of the pre-replicative complex | 6.799294e-02 | 1.168 |
R-HSA-114452 | Activation of BH3-only proteins | 6.799294e-02 | 1.168 |
R-HSA-9694516 | SARS-CoV-2 Infection | 7.025517e-02 | 1.153 |
R-HSA-9824446 | Viral Infection Pathways | 7.072182e-02 | 1.150 |
R-HSA-983189 | Kinesins | 7.110753e-02 | 1.148 |
R-HSA-162909 | Host Interactions of HIV factors | 7.170167e-02 | 1.144 |
R-HSA-72312 | rRNA processing | 7.312407e-02 | 1.136 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 7.350201e-02 | 1.134 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 7.495808e-02 | 1.125 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 7.495808e-02 | 1.125 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 7.635607e-02 | 1.117 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 7.635607e-02 | 1.117 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 7.635607e-02 | 1.117 |
R-HSA-194138 | Signaling by VEGF | 7.710860e-02 | 1.113 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 7.728357e-02 | 1.112 |
R-HSA-446107 | Type I hemidesmosome assembly | 7.958547e-02 | 1.099 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 7.958547e-02 | 1.099 |
R-HSA-5652227 | Fructose biosynthesis | 7.958547e-02 | 1.099 |
R-HSA-196025 | Formation of annular gap junctions | 7.958547e-02 | 1.099 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 7.958547e-02 | 1.099 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 8.099302e-02 | 1.092 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 8.099302e-02 | 1.092 |
R-HSA-9734091 | Drug-mediated inhibition of MET activation | 8.099302e-02 | 1.092 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 8.099302e-02 | 1.092 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 8.099302e-02 | 1.092 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 8.099302e-02 | 1.092 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 8.099302e-02 | 1.092 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 8.099302e-02 | 1.092 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 8.099302e-02 | 1.092 |
R-HSA-5619088 | Defective SLC39A4 causes acrodermatitis enteropathica, zinc-deficiency type (AEZ... | 8.099302e-02 | 1.092 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 8.099302e-02 | 1.092 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 8.099302e-02 | 1.092 |
R-HSA-169131 | Inhibition of PKR | 8.099302e-02 | 1.092 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 8.111178e-02 | 1.091 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 8.113400e-02 | 1.091 |
R-HSA-1834941 | STING mediated induction of host immune responses | 8.265952e-02 | 1.083 |
R-HSA-190873 | Gap junction degradation | 9.219805e-02 | 1.035 |
R-HSA-9700645 | ALK mutants bind TKIs | 9.219805e-02 | 1.035 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 1.053420e-01 | 0.977 |
R-HSA-390522 | Striated Muscle Contraction | 9.132765e-02 | 1.039 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 9.768769e-02 | 1.010 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 9.768769e-02 | 1.010 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 8.606738e-02 | 1.065 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 1.076521e-01 | 0.968 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 9.132765e-02 | 1.039 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 8.817772e-02 | 1.055 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 1.110048e-01 | 0.955 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 8.742219e-02 | 1.058 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 1.073158e-01 | 0.969 |
R-HSA-1500620 | Meiosis | 1.026262e-01 | 0.989 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 8.517356e-02 | 1.070 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 9.768769e-02 | 1.010 |
R-HSA-5675482 | Regulation of necroptotic cell death | 8.517356e-02 | 1.070 |
R-HSA-6804757 | Regulation of TP53 Degradation | 1.110048e-01 | 0.955 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 1.076521e-01 | 0.968 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 9.811832e-02 | 1.008 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 8.329090e-02 | 1.079 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 9.068523e-02 | 1.042 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 9.219805e-02 | 1.035 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 1.076521e-01 | 0.968 |
R-HSA-9766229 | Degradation of CDH1 | 9.639299e-02 | 1.016 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 9.829837e-02 | 1.007 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 1.099032e-01 | 0.959 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 9.096596e-02 | 1.041 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 9.902098e-02 | 1.004 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 9.219805e-02 | 1.035 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 9.068523e-02 | 1.042 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 1.076521e-01 | 0.968 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 9.132765e-02 | 1.039 |
R-HSA-9830369 | Kidney development | 1.012153e-01 | 0.995 |
R-HSA-176034 | Interactions of Tat with host cellular proteins | 1.189988e-01 | 0.924 |
R-HSA-5619039 | Defective SLC12A6 causes agenesis of the corpus callosum, with peripheral neurop... | 1.189988e-01 | 0.924 |
R-HSA-4085023 | Defective GFPT1 causes CMSTA1 | 1.189988e-01 | 0.924 |
R-HSA-5619111 | Defective SLC20A2 causes idiopathic basal ganglia calcification 1 (IBGC1) | 1.189988e-01 | 0.924 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 1.189988e-01 | 0.924 |
R-HSA-5609976 | Defective GALK1 causes GALCT2 | 1.189988e-01 | 0.924 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 1.554350e-01 | 0.808 |
R-HSA-5619104 | Defective SLC12A1 causes Bartter syndrome 1 (BS1) | 1.554350e-01 | 0.808 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 1.903665e-01 | 0.720 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 1.903665e-01 | 0.720 |
R-HSA-8875513 | MET interacts with TNS proteins | 1.903665e-01 | 0.720 |
R-HSA-209563 | Axonal growth stimulation | 1.903665e-01 | 0.720 |
R-HSA-8865999 | MET activates PTPN11 | 1.903665e-01 | 0.720 |
R-HSA-5579012 | Defective MAOA causes BRUNS | 1.903665e-01 | 0.720 |
R-HSA-8941237 | Invadopodia formation | 1.903665e-01 | 0.720 |
R-HSA-173736 | Alternative complement activation | 2.238552e-01 | 0.650 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 2.238552e-01 | 0.650 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 2.238552e-01 | 0.650 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 2.238552e-01 | 0.650 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 2.238552e-01 | 0.650 |
R-HSA-74713 | IRS activation | 2.559607e-01 | 0.592 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 2.559607e-01 | 0.592 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 2.559607e-01 | 0.592 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 2.559607e-01 | 0.592 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 1.329673e-01 | 0.876 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 1.329673e-01 | 0.876 |
R-HSA-4839748 | Signaling by AMER1 mutants | 1.329673e-01 | 0.876 |
R-HSA-937039 | IRAK1 recruits IKK complex | 1.473311e-01 | 0.832 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 1.473311e-01 | 0.832 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 2.867399e-01 | 0.543 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 2.867399e-01 | 0.543 |
R-HSA-69166 | Removal of the Flap Intermediate | 1.768973e-01 | 0.752 |
R-HSA-177504 | Retrograde neurotrophin signalling | 1.768973e-01 | 0.752 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 3.162478e-01 | 0.500 |
R-HSA-9645135 | STAT5 Activation | 3.162478e-01 | 0.500 |
R-HSA-3656244 | Defective B4GALT1 causes B4GALT1-CDG (CDG-2d) | 3.162478e-01 | 0.500 |
R-HSA-5263617 | Metabolism of ingested MeSeO2H into MeSeH | 3.162478e-01 | 0.500 |
R-HSA-3656243 | Defective ST3GAL3 causes MCT12 and EIEE15 | 3.162478e-01 | 0.500 |
R-HSA-3656225 | Defective CHST6 causes MCDC1 | 3.162478e-01 | 0.500 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 1.920054e-01 | 0.717 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 1.920054e-01 | 0.717 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 1.920054e-01 | 0.717 |
R-HSA-912526 | Interleukin receptor SHC signaling | 1.257404e-01 | 0.901 |
R-HSA-5656121 | Translesion synthesis by POLI | 2.072730e-01 | 0.683 |
R-HSA-5655862 | Translesion synthesis by POLK | 2.226611e-01 | 0.652 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 2.226611e-01 | 0.652 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 2.381337e-01 | 0.623 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 2.692021e-01 | 0.570 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 1.188153e-01 | 0.925 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 2.068537e-01 | 0.684 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 1.632558e-01 | 0.787 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 1.632558e-01 | 0.787 |
R-HSA-6807004 | Negative regulation of MET activity | 2.847390e-01 | 0.546 |
R-HSA-202040 | G-protein activation | 3.002424e-01 | 0.523 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 3.002424e-01 | 0.523 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 1.879383e-01 | 0.726 |
R-HSA-774815 | Nucleosome assembly | 1.879383e-01 | 0.726 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 1.879383e-01 | 0.726 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 1.315493e-01 | 0.881 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 3.156885e-01 | 0.501 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 1.597503e-01 | 0.797 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 1.840250e-01 | 0.735 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 2.494613e-01 | 0.603 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 1.951695e-01 | 0.710 |
R-HSA-6798695 | Neutrophil degranulation | 2.221197e-01 | 0.653 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 1.647906e-01 | 0.783 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 2.536576e-01 | 0.596 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 2.536576e-01 | 0.596 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 1.475064e-01 | 0.831 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 3.002424e-01 | 0.523 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 2.162375e-01 | 0.665 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 2.832636e-01 | 0.548 |
R-HSA-110320 | Translesion Synthesis by POLH | 2.692021e-01 | 0.570 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 2.509846e-01 | 0.600 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 1.329673e-01 | 0.876 |
R-HSA-9823739 | Formation of the anterior neural plate | 1.920054e-01 | 0.717 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 2.226611e-01 | 0.652 |
R-HSA-156711 | Polo-like kinase mediated events | 2.536576e-01 | 0.596 |
R-HSA-397795 | G-protein beta:gamma signalling | 2.287171e-01 | 0.641 |
R-HSA-6783310 | Fanconi Anemia Pathway | 1.879383e-01 | 0.726 |
R-HSA-5696398 | Nucleotide Excision Repair | 1.264849e-01 | 0.898 |
R-HSA-69183 | Processive synthesis on the lagging strand | 1.920054e-01 | 0.717 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 2.585937e-01 | 0.587 |
R-HSA-73864 | RNA Polymerase I Transcription | 2.994286e-01 | 0.524 |
R-HSA-5689901 | Metalloprotease DUBs | 1.547074e-01 | 0.810 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 2.381337e-01 | 0.623 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 2.585937e-01 | 0.587 |
R-HSA-9609690 | HCMV Early Events | 2.034492e-01 | 0.692 |
R-HSA-8939211 | ESR-mediated signaling | 1.336814e-01 | 0.874 |
R-HSA-8983432 | Interleukin-15 signaling | 1.473311e-01 | 0.832 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 1.189521e-01 | 0.925 |
R-HSA-174577 | Activation of C3 and C5 | 2.559607e-01 | 0.592 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 1.768973e-01 | 0.752 |
R-HSA-110312 | Translesion synthesis by REV1 | 1.920054e-01 | 0.717 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 1.647906e-01 | 0.783 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 1.475064e-01 | 0.831 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 2.509846e-01 | 0.600 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 3.310557e-01 | 0.480 |
R-HSA-5658442 | Regulation of RAS by GAPs | 2.314183e-01 | 0.636 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 1.425273e-01 | 0.846 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 2.999422e-01 | 0.523 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 3.310557e-01 | 0.480 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 1.553058e-01 | 0.809 |
R-HSA-9931529 | Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK | 2.559607e-01 | 0.592 |
R-HSA-209560 | NF-kB is activated and signals survival | 1.329673e-01 | 0.876 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 1.473311e-01 | 0.832 |
R-HSA-8866427 | VLDLR internalisation and degradation | 1.473311e-01 | 0.832 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 1.619907e-01 | 0.791 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 1.257404e-01 | 0.901 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 1.647906e-01 | 0.783 |
R-HSA-2682334 | EPH-Ephrin signaling | 1.444340e-01 | 0.840 |
R-HSA-68949 | Orc1 removal from chromatin | 2.494613e-01 | 0.603 |
R-HSA-6807878 | COPI-mediated anterograde transport | 1.706778e-01 | 0.768 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 3.157356e-01 | 0.501 |
R-HSA-451927 | Interleukin-2 family signaling | 3.191825e-01 | 0.496 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 1.165637e-01 | 0.933 |
R-HSA-9909396 | Circadian clock | 1.786919e-01 | 0.748 |
R-HSA-9843745 | Adipogenesis | 1.740084e-01 | 0.759 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 1.335556e-01 | 0.874 |
R-HSA-5689896 | Ovarian tumor domain proteases | 1.179506e-01 | 0.928 |
R-HSA-4641258 | Degradation of DVL | 1.179506e-01 | 0.928 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 1.647906e-01 | 0.783 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 2.436992e-01 | 0.613 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 2.436992e-01 | 0.613 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 3.156885e-01 | 0.501 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 2.770452e-01 | 0.557 |
R-HSA-72172 | mRNA Splicing | 2.425140e-01 | 0.615 |
R-HSA-6802957 | Oncogenic MAPK signaling | 2.031228e-01 | 0.692 |
R-HSA-5626978 | TNFR1-mediated ceramide production | 2.238552e-01 | 0.650 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 2.559607e-01 | 0.592 |
R-HSA-165158 | Activation of AKT2 | 2.559607e-01 | 0.592 |
R-HSA-420029 | Tight junction interactions | 1.448278e-01 | 0.839 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 1.647906e-01 | 0.783 |
R-HSA-176187 | Activation of ATR in response to replication stress | 2.287171e-01 | 0.641 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 2.622365e-01 | 0.581 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 2.622365e-01 | 0.581 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 1.786919e-01 | 0.748 |
R-HSA-202424 | Downstream TCR signaling | 2.432804e-01 | 0.614 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 1.619907e-01 | 0.791 |
R-HSA-9907900 | Proteasome assembly | 1.795792e-01 | 0.746 |
R-HSA-69186 | Lagging Strand Synthesis | 3.002424e-01 | 0.523 |
R-HSA-9764561 | Regulation of CDH1 Function | 1.434485e-01 | 0.843 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 2.735501e-01 | 0.563 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 2.585937e-01 | 0.587 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 2.359669e-01 | 0.627 |
R-HSA-913531 | Interferon Signaling | 1.960794e-01 | 0.708 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 2.238552e-01 | 0.650 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 2.238552e-01 | 0.650 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 1.619907e-01 | 0.791 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 1.768973e-01 | 0.752 |
R-HSA-6806942 | MET Receptor Activation | 3.162478e-01 | 0.500 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 1.920054e-01 | 0.717 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 2.226611e-01 | 0.652 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 1.647906e-01 | 0.783 |
R-HSA-69541 | Stabilization of p53 | 1.323868e-01 | 0.878 |
R-HSA-69190 | DNA strand elongation | 2.177280e-01 | 0.662 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 1.158809e-01 | 0.936 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 2.863505e-01 | 0.543 |
R-HSA-69002 | DNA Replication Pre-Initiation | 1.442896e-01 | 0.841 |
R-HSA-69239 | Synthesis of DNA | 2.409704e-01 | 0.618 |
R-HSA-72766 | Translation | 2.041502e-01 | 0.690 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 1.397269e-01 | 0.855 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 1.262180e-01 | 0.899 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 1.323868e-01 | 0.878 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 1.632558e-01 | 0.787 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 3.306288e-01 | 0.481 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 1.250800e-01 | 0.903 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 2.225219e-01 | 0.653 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 2.225219e-01 | 0.653 |
R-HSA-8951664 | Neddylation | 3.227990e-01 | 0.491 |
R-HSA-168898 | Toll-like Receptor Cascades | 1.830468e-01 | 0.737 |
R-HSA-9609646 | HCMV Infection | 2.558331e-01 | 0.592 |
R-HSA-9020702 | Interleukin-1 signaling | 1.988254e-01 | 0.702 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 2.703178e-01 | 0.568 |
R-HSA-194306 | Neurophilin interactions with VEGF and VEGFR | 1.554350e-01 | 0.808 |
R-HSA-8875791 | MET activates STAT3 | 1.903665e-01 | 0.720 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 2.238552e-01 | 0.650 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 2.559607e-01 | 0.592 |
R-HSA-202670 | ERKs are inactivated | 1.329673e-01 | 0.876 |
R-HSA-69478 | G2/M DNA replication checkpoint | 3.162478e-01 | 0.500 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 1.920054e-01 | 0.717 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 1.448278e-01 | 0.839 |
R-HSA-111471 | Apoptotic factor-mediated response | 2.536576e-01 | 0.596 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 2.536576e-01 | 0.596 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 1.398645e-01 | 0.854 |
R-HSA-5620924 | Intraflagellar transport | 2.137184e-01 | 0.670 |
R-HSA-350054 | Notch-HLH transcription pathway | 3.310557e-01 | 0.480 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 2.735501e-01 | 0.563 |
R-HSA-4641257 | Degradation of AXIN | 2.849132e-01 | 0.545 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 2.849132e-01 | 0.545 |
R-HSA-69306 | DNA Replication | 1.915799e-01 | 0.718 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 2.050152e-01 | 0.688 |
R-HSA-4086400 | PCP/CE pathway | 2.994286e-01 | 0.524 |
R-HSA-69242 | S Phase | 2.715243e-01 | 0.566 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 1.717088e-01 | 0.765 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 1.148935e-01 | 0.940 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 2.398071e-01 | 0.620 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 1.148935e-01 | 0.940 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 1.264934e-01 | 0.898 |
R-HSA-449147 | Signaling by Interleukins | 1.537654e-01 | 0.813 |
R-HSA-3295583 | TRP channels | 1.547074e-01 | 0.810 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 2.091535e-01 | 0.680 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 1.264934e-01 | 0.898 |
R-HSA-354192 | Integrin signaling | 2.287171e-01 | 0.641 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 2.238552e-01 | 0.650 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 2.381337e-01 | 0.623 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 1.323868e-01 | 0.878 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 1.262180e-01 | 0.899 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 2.398071e-01 | 0.620 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 2.509846e-01 | 0.600 |
R-HSA-169911 | Regulation of Apoptosis | 2.622365e-01 | 0.581 |
R-HSA-8873719 | RAB geranylgeranylation | 3.239478e-01 | 0.490 |
R-HSA-5673001 | RAF/MAP kinase cascade | 1.659276e-01 | 0.780 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 3.283089e-01 | 0.484 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 2.204604e-01 | 0.657 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 1.881575e-01 | 0.725 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 2.226611e-01 | 0.652 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 1.852483e-01 | 0.732 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 2.660075e-01 | 0.575 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 1.768973e-01 | 0.752 |
R-HSA-73887 | Death Receptor Signaling | 1.961526e-01 | 0.707 |
R-HSA-5653656 | Vesicle-mediated transport | 3.250622e-01 | 0.488 |
R-HSA-3371556 | Cellular response to heat stress | 1.225594e-01 | 0.912 |
R-HSA-5683057 | MAPK family signaling cascades | 2.151203e-01 | 0.667 |
R-HSA-9960525 | CASP5-mediated substrate cleavage | 1.903665e-01 | 0.720 |
R-HSA-205025 | NADE modulates death signalling | 2.238552e-01 | 0.650 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 1.189521e-01 | 0.925 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 2.559607e-01 | 0.592 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 2.867399e-01 | 0.543 |
R-HSA-70370 | Galactose catabolism | 2.226611e-01 | 0.652 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 1.475064e-01 | 0.831 |
R-HSA-71288 | Creatine metabolism | 2.847390e-01 | 0.546 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 3.002424e-01 | 0.523 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 1.879383e-01 | 0.726 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 2.509846e-01 | 0.600 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 1.700764e-01 | 0.769 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 2.677906e-01 | 0.572 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 3.191825e-01 | 0.496 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 3.306288e-01 | 0.481 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 3.306288e-01 | 0.481 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 2.165294e-01 | 0.664 |
R-HSA-114604 | GPVI-mediated activation cascade | 2.735501e-01 | 0.563 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 3.334092e-01 | 0.477 |
R-HSA-2132295 | MHC class II antigen presentation | 1.304941e-01 | 0.884 |
R-HSA-9607240 | FLT3 Signaling | 3.306288e-01 | 0.481 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 2.825631e-01 | 0.549 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 2.501931e-01 | 0.602 |
R-HSA-1474165 | Reproduction | 1.693824e-01 | 0.771 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 2.593577e-01 | 0.586 |
R-HSA-73884 | Base Excision Repair | 1.296891e-01 | 0.887 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 1.920054e-01 | 0.717 |
R-HSA-8854214 | TBC/RABGAPs | 1.713493e-01 | 0.766 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 3.002424e-01 | 0.523 |
R-HSA-5652084 | Fructose metabolism | 3.310557e-01 | 0.480 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 3.077406e-01 | 0.512 |
R-HSA-379724 | tRNA Aminoacylation | 3.239478e-01 | 0.490 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 3.335093e-01 | 0.477 |
R-HSA-5610787 | Hedgehog 'off' state | 1.930546e-01 | 0.714 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 2.856459e-01 | 0.544 |
R-HSA-8953854 | Metabolism of RNA | 2.249493e-01 | 0.648 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 3.239478e-01 | 0.490 |
R-HSA-9960519 | CASP4-mediated substrate cleavage | 1.903665e-01 | 0.720 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 2.238552e-01 | 0.650 |
R-HSA-9927353 | Co-inhibition by BTLA | 2.559607e-01 | 0.592 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 2.559607e-01 | 0.592 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 1.329673e-01 | 0.876 |
R-HSA-111457 | Release of apoptotic factors from the mitochondria | 2.867399e-01 | 0.543 |
R-HSA-194313 | VEGF ligand-receptor interactions | 2.867399e-01 | 0.543 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 2.867399e-01 | 0.543 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 1.619907e-01 | 0.791 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 1.165637e-01 | 0.933 |
R-HSA-175474 | Assembly Of The HIV Virion | 3.156885e-01 | 0.501 |
R-HSA-6807070 | PTEN Regulation | 3.397945e-01 | 0.469 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 1.632558e-01 | 0.787 |
R-HSA-70263 | Gluconeogenesis | 2.137184e-01 | 0.670 |
R-HSA-9007101 | Rab regulation of trafficking | 1.937198e-01 | 0.713 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 2.381337e-01 | 0.623 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 1.706778e-01 | 0.768 |
R-HSA-9833110 | RSV-host interactions | 2.225543e-01 | 0.653 |
R-HSA-373755 | Semaphorin interactions | 1.840619e-01 | 0.735 |
R-HSA-446728 | Cell junction organization | 2.818656e-01 | 0.550 |
R-HSA-5358351 | Signaling by Hedgehog | 3.335626e-01 | 0.477 |
R-HSA-5250971 | Toxicity of botulinum toxin type C (botC) | 2.559607e-01 | 0.592 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 2.867399e-01 | 0.543 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 2.867399e-01 | 0.543 |
R-HSA-9694493 | Maturation of protein E | 2.867399e-01 | 0.543 |
R-HSA-9683683 | Maturation of protein E | 2.867399e-01 | 0.543 |
R-HSA-391160 | Signal regulatory protein family interactions | 1.768973e-01 | 0.752 |
R-HSA-1483148 | Synthesis of PG | 2.226611e-01 | 0.652 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 2.381337e-01 | 0.623 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 3.156885e-01 | 0.501 |
R-HSA-9013694 | Signaling by NOTCH4 | 1.369864e-01 | 0.863 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 3.310557e-01 | 0.480 |
R-HSA-1500931 | Cell-Cell communication | 1.843103e-01 | 0.734 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 2.137184e-01 | 0.670 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 2.536576e-01 | 0.596 |
R-HSA-69206 | G1/S Transition | 2.433420e-01 | 0.614 |
R-HSA-5358508 | Mismatch Repair | 2.536576e-01 | 0.596 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 2.287171e-01 | 0.641 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 2.867399e-01 | 0.543 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 2.226611e-01 | 0.652 |
R-HSA-9671555 | Signaling by PDGFR in disease | 3.156885e-01 | 0.501 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 1.249828e-01 | 0.903 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 1.224942e-01 | 0.912 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 1.189521e-01 | 0.925 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 1.912082e-01 | 0.718 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 2.607588e-01 | 0.584 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 3.162478e-01 | 0.500 |
R-HSA-9694631 | Maturation of nucleoprotein | 2.692021e-01 | 0.570 |
R-HSA-6784531 | tRNA processing in the nucleus | 1.770165e-01 | 0.752 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 2.963139e-01 | 0.528 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 1.304941e-01 | 0.884 |
R-HSA-9694635 | Translation of Structural Proteins | 2.913262e-01 | 0.536 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 1.825798e-01 | 0.739 |
R-HSA-449836 | Other interleukin signaling | 2.692021e-01 | 0.570 |
R-HSA-166520 | Signaling by NTRKs | 2.715243e-01 | 0.566 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 3.002424e-01 | 0.523 |
R-HSA-9679506 | SARS-CoV Infections | 1.917719e-01 | 0.717 |
R-HSA-9827857 | Specification of primordial germ cells | 2.381337e-01 | 0.623 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 1.648150e-01 | 0.783 |
R-HSA-9678108 | SARS-CoV-1 Infection | 3.068752e-01 | 0.513 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 1.292155e-01 | 0.889 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 2.536576e-01 | 0.596 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 3.310557e-01 | 0.480 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 3.403888e-01 | 0.468 |
R-HSA-5619115 | Disorders of transmembrane transporters | 3.410457e-01 | 0.467 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 3.420695e-01 | 0.466 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 3.420695e-01 | 0.466 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 3.420695e-01 | 0.466 |
R-HSA-9683701 | Translation of Structural Proteins | 3.420695e-01 | 0.466 |
R-HSA-1268020 | Mitochondrial protein import | 3.428830e-01 | 0.465 |
R-HSA-9707616 | Heme signaling | 3.428830e-01 | 0.465 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 3.445365e-01 | 0.463 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 3.445365e-01 | 0.463 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 3.445365e-01 | 0.463 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 3.445365e-01 | 0.463 |
R-HSA-112412 | SOS-mediated signalling | 3.445365e-01 | 0.463 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 3.445365e-01 | 0.463 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 3.445365e-01 | 0.463 |
R-HSA-163754 | Insulin effects increased synthesis of Xylulose-5-Phosphate | 3.445365e-01 | 0.463 |
R-HSA-8948747 | Regulation of PTEN localization | 3.445365e-01 | 0.463 |
R-HSA-1614603 | Cysteine formation from homocysteine | 3.445365e-01 | 0.463 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 3.445365e-01 | 0.463 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 3.445365e-01 | 0.463 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 3.445365e-01 | 0.463 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 3.445365e-01 | 0.463 |
R-HSA-73886 | Chromosome Maintenance | 3.455591e-01 | 0.461 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 3.455591e-01 | 0.461 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 3.463239e-01 | 0.461 |
R-HSA-982772 | Growth hormone receptor signaling | 3.463239e-01 | 0.461 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 3.486417e-01 | 0.458 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 3.505483e-01 | 0.455 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 3.523634e-01 | 0.453 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 3.569054e-01 | 0.447 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 3.614752e-01 | 0.442 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 3.614752e-01 | 0.442 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 3.614752e-01 | 0.442 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 3.648951e-01 | 0.438 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 3.648951e-01 | 0.438 |
R-HSA-141424 | Amplification of signal from the kinetochores | 3.651761e-01 | 0.437 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 3.651761e-01 | 0.437 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 3.651761e-01 | 0.437 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 3.651761e-01 | 0.437 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 3.713211e-01 | 0.430 |
R-HSA-112126 | ALKBH3 mediated reversal of alkylation damage | 3.716566e-01 | 0.430 |
R-HSA-8875656 | MET receptor recycling | 3.716566e-01 | 0.430 |
R-HSA-8985947 | Interleukin-9 signaling | 3.716566e-01 | 0.430 |
R-HSA-3785653 | Myoclonic epilepsy of Lafora | 3.716566e-01 | 0.430 |
R-HSA-9927354 | Co-stimulation by ICOS | 3.716566e-01 | 0.430 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 3.716566e-01 | 0.430 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 3.716566e-01 | 0.430 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 3.716566e-01 | 0.430 |
R-HSA-425986 | Sodium/Proton exchangers | 3.716566e-01 | 0.430 |
R-HSA-9637628 | Modulation by Mtb of host immune system | 3.716566e-01 | 0.430 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 3.716566e-01 | 0.430 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 3.716566e-01 | 0.430 |
R-HSA-3928662 | EPHB-mediated forward signaling | 3.762619e-01 | 0.425 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 3.762619e-01 | 0.425 |
R-HSA-1266695 | Interleukin-7 signaling | 3.764932e-01 | 0.424 |
R-HSA-9830364 | Formation of the nephric duct | 3.764932e-01 | 0.424 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 3.810310e-01 | 0.419 |
R-HSA-5619102 | SLC transporter disorders | 3.811059e-01 | 0.419 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 3.875865e-01 | 0.412 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 3.875865e-01 | 0.412 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 3.875865e-01 | 0.412 |
R-HSA-211000 | Gene Silencing by RNA | 3.884680e-01 | 0.411 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 3.901163e-01 | 0.409 |
R-HSA-8874081 | MET activates PTK2 signaling | 3.913628e-01 | 0.407 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 3.913628e-01 | 0.407 |
R-HSA-525793 | Myogenesis | 3.913628e-01 | 0.407 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 3.913852e-01 | 0.407 |
R-HSA-114608 | Platelet degranulation | 3.931151e-01 | 0.405 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 3.976561e-01 | 0.400 |
R-HSA-9020958 | Interleukin-21 signaling | 3.976561e-01 | 0.400 |
R-HSA-9613354 | Lipophagy | 3.976561e-01 | 0.400 |
R-HSA-201688 | WNT mediated activation of DVL | 3.976561e-01 | 0.400 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 3.976561e-01 | 0.400 |
R-HSA-2025928 | Calcineurin activates NFAT | 3.976561e-01 | 0.400 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 3.976561e-01 | 0.400 |
R-HSA-193697 | p75NTR regulates axonogenesis | 3.976561e-01 | 0.400 |
R-HSA-176974 | Unwinding of DNA | 3.976561e-01 | 0.400 |
R-HSA-379398 | Enzymatic degradation of Dopamine by monoamine oxidase | 3.976561e-01 | 0.400 |
R-HSA-112411 | MAPK1 (ERK2) activation | 3.976561e-01 | 0.400 |
R-HSA-448706 | Interleukin-1 processing | 3.976561e-01 | 0.400 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 3.976561e-01 | 0.400 |
R-HSA-430116 | GP1b-IX-V activation signalling | 3.976561e-01 | 0.400 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 3.988609e-01 | 0.399 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 3.988609e-01 | 0.399 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 3.988609e-01 | 0.399 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 3.988609e-01 | 0.399 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 3.988609e-01 | 0.399 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 3.996688e-01 | 0.398 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 4.060708e-01 | 0.391 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 4.060708e-01 | 0.391 |
R-HSA-8949613 | Cristae formation | 4.060708e-01 | 0.391 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 4.060708e-01 | 0.391 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 4.060708e-01 | 0.391 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 4.060708e-01 | 0.391 |
R-HSA-201451 | Signaling by BMP | 4.060708e-01 | 0.391 |
R-HSA-75109 | Triglyceride biosynthesis | 4.060708e-01 | 0.391 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 4.100775e-01 | 0.387 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 4.100775e-01 | 0.387 |
R-HSA-202403 | TCR signaling | 4.107617e-01 | 0.386 |
R-HSA-9679191 | Potential therapeutics for SARS | 4.154112e-01 | 0.382 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 4.184484e-01 | 0.378 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 4.206051e-01 | 0.376 |
R-HSA-389356 | Co-stimulation by CD28 | 4.212290e-01 | 0.375 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 4.225814e-01 | 0.374 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 4.225814e-01 | 0.374 |
R-HSA-164843 | 2-LTR circle formation | 4.225814e-01 | 0.374 |
R-HSA-111458 | Formation of apoptosome | 4.225814e-01 | 0.374 |
R-HSA-9627069 | Regulation of the apoptosome activity | 4.225814e-01 | 0.374 |
R-HSA-198203 | PI3K/AKT activation | 4.225814e-01 | 0.374 |
R-HSA-5689877 | Josephin domain DUBs | 4.225814e-01 | 0.374 |
R-HSA-380612 | Metabolism of serotonin | 4.225814e-01 | 0.374 |
R-HSA-68952 | DNA replication initiation | 4.225814e-01 | 0.374 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 4.225814e-01 | 0.374 |
R-HSA-9020956 | Interleukin-27 signaling | 4.225814e-01 | 0.374 |
R-HSA-74749 | Signal attenuation | 4.225814e-01 | 0.374 |
R-HSA-9762292 | Regulation of CDH11 function | 4.225814e-01 | 0.374 |
R-HSA-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 4.225814e-01 | 0.374 |
R-HSA-9683686 | Maturation of spike protein | 4.225814e-01 | 0.374 |
R-HSA-110056 | MAPK3 (ERK1) activation | 4.225814e-01 | 0.374 |
R-HSA-379397 | Enzymatic degradation of dopamine by COMT | 4.225814e-01 | 0.374 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 4.225814e-01 | 0.374 |
R-HSA-9664873 | Pexophagy | 4.225814e-01 | 0.374 |
R-HSA-2586552 | Signaling by Leptin | 4.225814e-01 | 0.374 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 4.225861e-01 | 0.374 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 4.225861e-01 | 0.374 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 4.277882e-01 | 0.369 |
R-HSA-453276 | Regulation of mitotic cell cycle | 4.277882e-01 | 0.369 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 4.277882e-01 | 0.369 |
R-HSA-5632684 | Hedgehog 'on' state | 4.277882e-01 | 0.369 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 4.311554e-01 | 0.365 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 4.329763e-01 | 0.364 |
R-HSA-418360 | Platelet calcium homeostasis | 4.349549e-01 | 0.362 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 4.370888e-01 | 0.359 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 4.370888e-01 | 0.359 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 4.370888e-01 | 0.359 |
R-HSA-68867 | Assembly of the pre-replicative complex | 4.393278e-01 | 0.357 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 4.406554e-01 | 0.356 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 4.407061e-01 | 0.356 |
R-HSA-9711123 | Cellular response to chemical stress | 4.426868e-01 | 0.354 |
R-HSA-109704 | PI3K Cascade | 4.433097e-01 | 0.353 |
R-HSA-69052 | Switching of origins to a post-replicative state | 4.463460e-01 | 0.350 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 4.464766e-01 | 0.350 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 4.464766e-01 | 0.350 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 4.464766e-01 | 0.350 |
R-HSA-9020558 | Interleukin-2 signaling | 4.464766e-01 | 0.350 |
R-HSA-192814 | vRNA Synthesis | 4.464766e-01 | 0.350 |
R-HSA-4839744 | Signaling by APC mutants | 4.464766e-01 | 0.350 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 4.464766e-01 | 0.350 |
R-HSA-9832991 | Formation of the posterior neural plate | 4.464766e-01 | 0.350 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 4.464766e-01 | 0.350 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 4.464766e-01 | 0.350 |
R-HSA-5682910 | LGI-ADAM interactions | 4.464766e-01 | 0.350 |
R-HSA-210990 | PECAM1 interactions | 4.464766e-01 | 0.350 |
R-HSA-391908 | Prostanoid ligand receptors | 4.464766e-01 | 0.350 |
R-HSA-75205 | Dissolution of Fibrin Clot | 4.464766e-01 | 0.350 |
R-HSA-1989781 | PPARA activates gene expression | 4.469469e-01 | 0.350 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 4.491106e-01 | 0.348 |
R-HSA-112311 | Neurotransmitter clearance | 4.491106e-01 | 0.348 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 4.491106e-01 | 0.348 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 4.491106e-01 | 0.348 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 4.491106e-01 | 0.348 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 4.542264e-01 | 0.343 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 4.542264e-01 | 0.343 |
R-HSA-392499 | Metabolism of proteins | 4.573079e-01 | 0.340 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 4.594960e-01 | 0.338 |
R-HSA-9610379 | HCMV Late Events | 4.594960e-01 | 0.338 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 4.630636e-01 | 0.334 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 4.630636e-01 | 0.334 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 4.650529e-01 | 0.332 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 4.650529e-01 | 0.332 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 4.650529e-01 | 0.332 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 4.650529e-01 | 0.332 |
R-HSA-6794361 | Neurexins and neuroligins | 4.650529e-01 | 0.332 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 4.650529e-01 | 0.332 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 4.657695e-01 | 0.332 |
R-HSA-9018519 | Estrogen-dependent gene expression | 4.676581e-01 | 0.330 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 4.676581e-01 | 0.330 |
R-HSA-163685 | Integration of energy metabolism | 4.676581e-01 | 0.330 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 4.693845e-01 | 0.328 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 4.693845e-01 | 0.328 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 4.693845e-01 | 0.328 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 4.693845e-01 | 0.328 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 4.693845e-01 | 0.328 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 4.693845e-01 | 0.328 |
R-HSA-4839735 | Signaling by AXIN mutants | 4.693845e-01 | 0.328 |
R-HSA-141333 | Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB | 4.693845e-01 | 0.328 |
R-HSA-162592 | Integration of provirus | 4.693845e-01 | 0.328 |
R-HSA-5689603 | UCH proteinases | 4.738163e-01 | 0.324 |
R-HSA-421270 | Cell-cell junction organization | 4.740071e-01 | 0.324 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 4.743505e-01 | 0.324 |
R-HSA-195721 | Signaling by WNT | 4.744270e-01 | 0.324 |
R-HSA-1221632 | Meiotic synapsis | 4.757838e-01 | 0.323 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 4.757838e-01 | 0.323 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 4.757838e-01 | 0.323 |
R-HSA-8956320 | Nucleotide biosynthesis | 4.757838e-01 | 0.323 |
R-HSA-445355 | Smooth Muscle Contraction | 4.757838e-01 | 0.323 |
R-HSA-4791275 | Signaling by WNT in cancer | 4.768066e-01 | 0.322 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 4.768066e-01 | 0.322 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 4.768066e-01 | 0.322 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 4.797219e-01 | 0.319 |
R-HSA-212165 | Epigenetic regulation of gene expression | 4.812958e-01 | 0.318 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 4.828602e-01 | 0.316 |
R-HSA-5663205 | Infectious disease | 4.832940e-01 | 0.316 |
R-HSA-72649 | Translation initiation complex formation | 4.864142e-01 | 0.313 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 4.864142e-01 | 0.313 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 4.903330e-01 | 0.310 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 4.903330e-01 | 0.310 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 4.903330e-01 | 0.310 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 4.903330e-01 | 0.310 |
R-HSA-8851805 | MET activates RAS signaling | 4.913456e-01 | 0.309 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 4.913456e-01 | 0.309 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 4.913456e-01 | 0.309 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 4.913456e-01 | 0.309 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 4.913456e-01 | 0.309 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 4.913456e-01 | 0.309 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 4.913456e-01 | 0.309 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 4.913456e-01 | 0.309 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 4.913456e-01 | 0.309 |
R-HSA-8984722 | Interleukin-35 Signalling | 4.913456e-01 | 0.309 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 4.913456e-01 | 0.309 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 4.913456e-01 | 0.309 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 4.913456e-01 | 0.309 |
R-HSA-9842663 | Signaling by LTK | 4.913456e-01 | 0.309 |
R-HSA-69091 | Polymerase switching | 4.913456e-01 | 0.309 |
R-HSA-69109 | Leading Strand Synthesis | 4.913456e-01 | 0.309 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 4.913456e-01 | 0.309 |
R-HSA-8983711 | OAS antiviral response | 4.913456e-01 | 0.309 |
R-HSA-416482 | G alpha (12/13) signalling events | 4.918419e-01 | 0.308 |
R-HSA-5619084 | ABC transporter disorders | 4.918419e-01 | 0.308 |
R-HSA-216083 | Integrin cell surface interactions | 4.918419e-01 | 0.308 |
R-HSA-9012852 | Signaling by NOTCH3 | 4.969395e-01 | 0.304 |
R-HSA-9659379 | Sensory processing of sound | 5.007581e-01 | 0.300 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 5.007581e-01 | 0.300 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 5.034856e-01 | 0.298 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 5.036373e-01 | 0.298 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 5.073552e-01 | 0.295 |
R-HSA-75893 | TNF signaling | 5.073552e-01 | 0.295 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 5.073552e-01 | 0.295 |
R-HSA-193648 | NRAGE signals death through JNK | 5.073552e-01 | 0.295 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 5.073552e-01 | 0.295 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 5.093260e-01 | 0.293 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 5.123990e-01 | 0.290 |
R-HSA-1059683 | Interleukin-6 signaling | 5.123990e-01 | 0.290 |
R-HSA-8949664 | Processing of SMDT1 | 5.123990e-01 | 0.290 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 5.123990e-01 | 0.290 |
R-HSA-9683610 | Maturation of nucleoprotein | 5.123990e-01 | 0.290 |
R-HSA-1980145 | Signaling by NOTCH2 | 5.167146e-01 | 0.287 |
R-HSA-203615 | eNOS activation | 5.167146e-01 | 0.287 |
R-HSA-392518 | Signal amplification | 5.167146e-01 | 0.287 |
R-HSA-5205647 | Mitophagy | 5.167146e-01 | 0.287 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 5.167146e-01 | 0.287 |
R-HSA-901042 | Calnexin/calreticulin cycle | 5.167146e-01 | 0.287 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 5.167146e-01 | 0.287 |
R-HSA-397014 | Muscle contraction | 5.171582e-01 | 0.286 |
R-HSA-112399 | IRS-mediated signalling | 5.176574e-01 | 0.286 |
R-HSA-977225 | Amyloid fiber formation | 5.183817e-01 | 0.285 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 5.183817e-01 | 0.285 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 5.190898e-01 | 0.285 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 5.205041e-01 | 0.284 |
R-HSA-109582 | Hemostasis | 5.241235e-01 | 0.281 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 5.269804e-01 | 0.278 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 5.278424e-01 | 0.277 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 5.295610e-01 | 0.276 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 5.325823e-01 | 0.274 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 5.325823e-01 | 0.274 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 5.325823e-01 | 0.274 |
R-HSA-964739 | N-glycan trimming and elongation in the cis-Golgi | 5.325823e-01 | 0.274 |
R-HSA-5578768 | Physiological factors | 5.325823e-01 | 0.274 |
R-HSA-9856872 | Malate-aspartate shuttle | 5.325823e-01 | 0.274 |
R-HSA-1433559 | Regulation of KIT signaling | 5.325823e-01 | 0.274 |
R-HSA-9686114 | Non-canonical inflammasome activation | 5.325823e-01 | 0.274 |
R-HSA-435354 | Zinc transporters | 5.325823e-01 | 0.274 |
R-HSA-8979227 | Triglyceride metabolism | 5.379068e-01 | 0.269 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 5.407234e-01 | 0.267 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 5.407234e-01 | 0.267 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 5.407234e-01 | 0.267 |
R-HSA-8853659 | RET signaling | 5.421731e-01 | 0.266 |
R-HSA-212300 | PRC2 methylates histones and DNA | 5.421731e-01 | 0.266 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 5.421731e-01 | 0.266 |
R-HSA-74158 | RNA Polymerase III Transcription | 5.421731e-01 | 0.266 |
R-HSA-9682385 | FLT3 signaling in disease | 5.421731e-01 | 0.266 |
R-HSA-3371511 | HSF1 activation | 5.421731e-01 | 0.266 |
R-HSA-1227986 | Signaling by ERBB2 | 5.478475e-01 | 0.261 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 5.478475e-01 | 0.261 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 5.511396e-01 | 0.259 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 5.519313e-01 | 0.258 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 5.519313e-01 | 0.258 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 5.519313e-01 | 0.258 |
R-HSA-418885 | DCC mediated attractive signaling | 5.519313e-01 | 0.258 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 5.519313e-01 | 0.258 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 5.519313e-01 | 0.258 |
R-HSA-73942 | DNA Damage Reversal | 5.519313e-01 | 0.258 |
R-HSA-379401 | Dopamine clearance from the synaptic cleft | 5.519313e-01 | 0.258 |
R-HSA-171007 | p38MAPK events | 5.519313e-01 | 0.258 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 5.519313e-01 | 0.258 |
R-HSA-1295596 | Spry regulation of FGF signaling | 5.519313e-01 | 0.258 |
R-HSA-5676934 | Protein repair | 5.519313e-01 | 0.258 |
R-HSA-446353 | Cell-extracellular matrix interactions | 5.519313e-01 | 0.258 |
R-HSA-6794362 | Protein-protein interactions at synapses | 5.527171e-01 | 0.257 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 5.545484e-01 | 0.256 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 5.545484e-01 | 0.256 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 5.545484e-01 | 0.256 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 5.556643e-01 | 0.255 |
R-HSA-418346 | Platelet homeostasis | 5.571417e-01 | 0.254 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 5.576617e-01 | 0.254 |
R-HSA-9793380 | Formation of paraxial mesoderm | 5.576617e-01 | 0.254 |
R-HSA-8875878 | MET promotes cell motility | 5.666848e-01 | 0.247 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 5.666848e-01 | 0.247 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 5.673469e-01 | 0.246 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 5.704805e-01 | 0.244 |
R-HSA-168275 | Entry of Influenza Virion into Host Cell via Endocytosis | 5.704805e-01 | 0.244 |
R-HSA-9664420 | Killing mechanisms | 5.704805e-01 | 0.244 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 5.704805e-01 | 0.244 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 5.704805e-01 | 0.244 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 5.704805e-01 | 0.244 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 5.704805e-01 | 0.244 |
R-HSA-2485179 | Activation of the phototransduction cascade | 5.704805e-01 | 0.244 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 5.704805e-01 | 0.244 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 5.704805e-01 | 0.244 |
R-HSA-9708530 | Regulation of BACH1 activity | 5.704805e-01 | 0.244 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 5.704805e-01 | 0.244 |
R-HSA-9706369 | Negative regulation of FLT3 | 5.704805e-01 | 0.244 |
R-HSA-1236975 | Antigen processing-Cross presentation | 5.719399e-01 | 0.243 |
R-HSA-2672351 | Stimuli-sensing channels | 5.719399e-01 | 0.243 |
R-HSA-1643685 | Disease | 5.762667e-01 | 0.239 |
R-HSA-8848021 | Signaling by PTK6 | 5.769008e-01 | 0.239 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 5.769008e-01 | 0.239 |
R-HSA-70268 | Pyruvate metabolism | 5.775965e-01 | 0.238 |
R-HSA-8964043 | Plasma lipoprotein clearance | 5.785810e-01 | 0.238 |
R-HSA-9648002 | RAS processing | 5.785810e-01 | 0.238 |
R-HSA-201556 | Signaling by ALK | 5.785810e-01 | 0.238 |
R-HSA-9645723 | Diseases of programmed cell death | 5.857128e-01 | 0.232 |
R-HSA-74751 | Insulin receptor signalling cascade | 5.863213e-01 | 0.232 |
R-HSA-2428924 | IGF1R signaling cascade | 5.863213e-01 | 0.232 |
R-HSA-112315 | Transmission across Chemical Synapses | 5.875010e-01 | 0.231 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 5.882628e-01 | 0.230 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 5.882628e-01 | 0.230 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 5.882628e-01 | 0.230 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 5.882628e-01 | 0.230 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 5.882628e-01 | 0.230 |
R-HSA-9027307 | Biosynthesis of maresin-like SPMs | 5.882628e-01 | 0.230 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 5.882628e-01 | 0.230 |
R-HSA-5661270 | Formation of xylulose-5-phosphate | 5.882628e-01 | 0.230 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 5.902359e-01 | 0.229 |
R-HSA-3371568 | Attenuation phase | 5.902359e-01 | 0.229 |
R-HSA-8982491 | Glycogen metabolism | 5.902359e-01 | 0.229 |
R-HSA-1236974 | ER-Phagosome pathway | 5.937378e-01 | 0.226 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 5.937875e-01 | 0.226 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 5.956066e-01 | 0.225 |
R-HSA-1234174 | Cellular response to hypoxia | 5.956066e-01 | 0.225 |
R-HSA-1483249 | Inositol phosphate metabolism | 6.007422e-01 | 0.221 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 6.016493e-01 | 0.221 |
R-HSA-9694548 | Maturation of spike protein | 6.016493e-01 | 0.221 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 6.016493e-01 | 0.221 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 6.016493e-01 | 0.221 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 6.053100e-01 | 0.218 |
R-HSA-2028269 | Signaling by Hippo | 6.053100e-01 | 0.218 |
R-HSA-1614517 | Sulfide oxidation to sulfate | 6.053100e-01 | 0.218 |
R-HSA-2408550 | Metabolism of ingested H2SeO4 and H2SeO3 into H2Se | 6.053100e-01 | 0.218 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 6.053100e-01 | 0.218 |
R-HSA-3229121 | Glycogen storage diseases | 6.053100e-01 | 0.218 |
R-HSA-74160 | Gene expression (Transcription) | 6.109603e-01 | 0.214 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 6.128211e-01 | 0.213 |
R-HSA-5674135 | MAP2K and MAPK activation | 6.128211e-01 | 0.213 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 6.128211e-01 | 0.213 |
R-HSA-6811438 | Intra-Golgi traffic | 6.128211e-01 | 0.213 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 6.128211e-01 | 0.213 |
R-HSA-597592 | Post-translational protein modification | 6.146232e-01 | 0.211 |
R-HSA-3928664 | Ephrin signaling | 6.216524e-01 | 0.206 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 6.216524e-01 | 0.206 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 6.216524e-01 | 0.206 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 6.216524e-01 | 0.206 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 6.216524e-01 | 0.206 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 6.216524e-01 | 0.206 |
R-HSA-428643 | Organic anion transport by SLC5/17/25 transporters | 6.216524e-01 | 0.206 |
R-HSA-432142 | Platelet sensitization by LDL | 6.216524e-01 | 0.206 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 6.237517e-01 | 0.205 |
R-HSA-165159 | MTOR signalling | 6.237517e-01 | 0.205 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 6.237517e-01 | 0.205 |
R-HSA-73928 | Depyrimidination | 6.237517e-01 | 0.205 |
R-HSA-9006936 | Signaling by TGFB family members | 6.252621e-01 | 0.204 |
R-HSA-168249 | Innate Immune System | 6.292919e-01 | 0.201 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 6.344419e-01 | 0.198 |
R-HSA-1433557 | Signaling by SCF-KIT | 6.344419e-01 | 0.198 |
R-HSA-909733 | Interferon alpha/beta signaling | 6.351527e-01 | 0.197 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 6.373190e-01 | 0.196 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 6.373190e-01 | 0.196 |
R-HSA-392851 | Prostacyclin signalling through prostacyclin receptor | 6.373190e-01 | 0.196 |
R-HSA-500753 | Pyrimidine biosynthesis | 6.373190e-01 | 0.196 |
R-HSA-140179 | Amine Oxidase reactions | 6.373190e-01 | 0.196 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 6.373190e-01 | 0.196 |
R-HSA-392517 | Rap1 signalling | 6.373190e-01 | 0.196 |
R-HSA-912631 | Regulation of signaling by CBL | 6.373190e-01 | 0.196 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 6.373190e-01 | 0.196 |
R-HSA-1474290 | Collagen formation | 6.398966e-01 | 0.194 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 6.399585e-01 | 0.194 |
R-HSA-373752 | Netrin-1 signaling | 6.448930e-01 | 0.191 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 6.448930e-01 | 0.191 |
R-HSA-1592230 | Mitochondrial biogenesis | 6.483959e-01 | 0.188 |
R-HSA-9734767 | Developmental Cell Lineages | 6.493975e-01 | 0.187 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 6.523379e-01 | 0.186 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 6.523379e-01 | 0.186 |
R-HSA-445144 | Signal transduction by L1 | 6.523379e-01 | 0.186 |
R-HSA-2022857 | Keratan sulfate degradation | 6.523379e-01 | 0.186 |
R-HSA-196108 | Pregnenolone biosynthesis | 6.523379e-01 | 0.186 |
R-HSA-3322077 | Glycogen synthesis | 6.523379e-01 | 0.186 |
R-HSA-1181150 | Signaling by NODAL | 6.523379e-01 | 0.186 |
R-HSA-373753 | Nephrin family interactions | 6.523379e-01 | 0.186 |
R-HSA-391903 | Eicosanoid ligand-binding receptors | 6.523379e-01 | 0.186 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 6.551064e-01 | 0.184 |
R-HSA-9824272 | Somitogenesis | 6.551064e-01 | 0.184 |
R-HSA-157118 | Signaling by NOTCH | 6.589979e-01 | 0.181 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 6.650839e-01 | 0.177 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 6.650839e-01 | 0.177 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 6.650839e-01 | 0.177 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 6.650839e-01 | 0.177 |
R-HSA-6802949 | Signaling by RAS mutants | 6.650839e-01 | 0.177 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 6.650839e-01 | 0.177 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 6.650839e-01 | 0.177 |
R-HSA-392170 | ADP signalling through P2Y purinoceptor 12 | 6.667357e-01 | 0.176 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 6.667357e-01 | 0.176 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 6.667357e-01 | 0.176 |
R-HSA-9636383 | Prevention of phagosomal-lysosomal fusion | 6.667357e-01 | 0.176 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 6.667357e-01 | 0.176 |
R-HSA-210991 | Basigin interactions | 6.667357e-01 | 0.176 |
R-HSA-167044 | Signalling to RAS | 6.667357e-01 | 0.176 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 6.667357e-01 | 0.176 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 6.667357e-01 | 0.176 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 6.667357e-01 | 0.176 |
R-HSA-157579 | Telomere Maintenance | 6.686997e-01 | 0.175 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 6.729019e-01 | 0.172 |
R-HSA-418990 | Adherens junctions interactions | 6.745186e-01 | 0.171 |
R-HSA-8957275 | Post-translational protein phosphorylation | 6.756481e-01 | 0.170 |
R-HSA-422356 | Regulation of insulin secretion | 6.756481e-01 | 0.170 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 6.805381e-01 | 0.167 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 6.805381e-01 | 0.167 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 6.805381e-01 | 0.167 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 6.805381e-01 | 0.167 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 6.805381e-01 | 0.167 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 6.807826e-01 | 0.167 |
R-HSA-9614085 | FOXO-mediated transcription | 6.824949e-01 | 0.166 |
R-HSA-425410 | Metal ion SLC transporters | 6.843392e-01 | 0.165 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 6.862662e-01 | 0.164 |
R-HSA-9020591 | Interleukin-12 signaling | 6.885215e-01 | 0.162 |
R-HSA-382556 | ABC-family proteins mediated transport | 6.892397e-01 | 0.162 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 6.936218e-01 | 0.159 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 6.936218e-01 | 0.159 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 6.937696e-01 | 0.159 |
R-HSA-6803529 | FGFR2 alternative splicing | 6.937696e-01 | 0.159 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 6.937696e-01 | 0.159 |
R-HSA-166208 | mTORC1-mediated signalling | 6.937696e-01 | 0.159 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 6.937696e-01 | 0.159 |
R-HSA-8964038 | LDL clearance | 6.937696e-01 | 0.159 |
R-HSA-975578 | Reactions specific to the complex N-glycan synthesis pathway | 6.937696e-01 | 0.159 |
R-HSA-168799 | Neurotoxicity of clostridium toxins | 6.937696e-01 | 0.159 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 7.061289e-01 | 0.151 |
R-HSA-8854691 | Interleukin-20 family signaling | 7.064539e-01 | 0.151 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 7.064539e-01 | 0.151 |
R-HSA-9018682 | Biosynthesis of maresins | 7.064539e-01 | 0.151 |
R-HSA-9830674 | Formation of the ureteric bud | 7.064539e-01 | 0.151 |
R-HSA-446210 | Synthesis of UDP-N-acetyl-glucosamine | 7.064539e-01 | 0.151 |
R-HSA-3371571 | HSF1-dependent transactivation | 7.115102e-01 | 0.148 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 7.140419e-01 | 0.146 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 7.151986e-01 | 0.146 |
R-HSA-6806834 | Signaling by MET | 7.180674e-01 | 0.144 |
R-HSA-211999 | CYP2E1 reactions | 7.186135e-01 | 0.144 |
R-HSA-6783589 | Interleukin-6 family signaling | 7.186135e-01 | 0.144 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 7.186135e-01 | 0.144 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 7.186135e-01 | 0.144 |
R-HSA-8863678 | Neurodegenerative Diseases | 7.186135e-01 | 0.144 |
R-HSA-429947 | Deadenylation of mRNA | 7.186135e-01 | 0.144 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 7.186135e-01 | 0.144 |
R-HSA-9865881 | Complex III assembly | 7.186135e-01 | 0.144 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 7.186135e-01 | 0.144 |
R-HSA-5669034 | TNFs bind their physiological receptors | 7.186135e-01 | 0.144 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 7.201219e-01 | 0.143 |
R-HSA-9609507 | Protein localization | 7.280423e-01 | 0.138 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 7.283453e-01 | 0.138 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 7.288629e-01 | 0.137 |
R-HSA-997272 | Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits | 7.302702e-01 | 0.137 |
R-HSA-1296059 | G protein gated Potassium channels | 7.302702e-01 | 0.137 |
R-HSA-1296041 | Activation of G protein gated Potassium channels | 7.302702e-01 | 0.137 |
R-HSA-9620244 | Long-term potentiation | 7.302702e-01 | 0.137 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 7.302702e-01 | 0.137 |
R-HSA-3214842 | HDMs demethylate histones | 7.302702e-01 | 0.137 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 7.302702e-01 | 0.137 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 7.302702e-01 | 0.137 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 7.320041e-01 | 0.135 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 7.366955e-01 | 0.133 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 7.414446e-01 | 0.130 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 7.414446e-01 | 0.130 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 7.414446e-01 | 0.130 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 7.414446e-01 | 0.130 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 7.414446e-01 | 0.130 |
R-HSA-9637687 | Suppression of phagosomal maturation | 7.414446e-01 | 0.130 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 7.414446e-01 | 0.130 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 7.414446e-01 | 0.130 |
R-HSA-3214815 | HDACs deacetylate histones | 7.446642e-01 | 0.128 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 7.521568e-01 | 0.124 |
R-HSA-171306 | Packaging Of Telomere Ends | 7.521568e-01 | 0.124 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 7.521568e-01 | 0.124 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 7.521568e-01 | 0.124 |
R-HSA-901032 | ER Quality Control Compartment (ERQC) | 7.521568e-01 | 0.124 |
R-HSA-264876 | Insulin processing | 7.521568e-01 | 0.124 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 7.521568e-01 | 0.124 |
R-HSA-5578775 | Ion homeostasis | 7.524253e-01 | 0.124 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 7.524253e-01 | 0.124 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 7.599823e-01 | 0.119 |
R-HSA-1483166 | Synthesis of PA | 7.599823e-01 | 0.119 |
R-HSA-167287 | HIV elongation arrest and recovery | 7.624258e-01 | 0.118 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 7.624258e-01 | 0.118 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 7.624258e-01 | 0.118 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 7.624258e-01 | 0.118 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 7.624258e-01 | 0.118 |
R-HSA-73614 | Pyrimidine salvage | 7.624258e-01 | 0.118 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 7.644689e-01 | 0.117 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 7.673388e-01 | 0.115 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 7.673388e-01 | 0.115 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 7.673388e-01 | 0.115 |
R-HSA-447115 | Interleukin-12 family signaling | 7.705641e-01 | 0.113 |
R-HSA-5334118 | DNA methylation | 7.722699e-01 | 0.112 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 7.722699e-01 | 0.112 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 7.722699e-01 | 0.112 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 7.722699e-01 | 0.112 |
R-HSA-420092 | Glucagon-type ligand receptors | 7.722699e-01 | 0.112 |
R-HSA-180786 | Extension of Telomeres | 7.744984e-01 | 0.111 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 7.744984e-01 | 0.111 |
R-HSA-983712 | Ion channel transport | 7.745445e-01 | 0.111 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 7.814649e-01 | 0.107 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 7.814649e-01 | 0.107 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 7.814649e-01 | 0.107 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 7.814649e-01 | 0.107 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 7.814649e-01 | 0.107 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 7.814649e-01 | 0.107 |
R-HSA-351202 | Metabolism of polyamines | 7.814649e-01 | 0.107 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 7.817066e-01 | 0.107 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 7.817066e-01 | 0.107 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 7.817066e-01 | 0.107 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 7.817066e-01 | 0.107 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 7.834106e-01 | 0.106 |
R-HSA-445717 | Aquaporin-mediated transport | 7.882418e-01 | 0.103 |
R-HSA-112043 | PLC beta mediated events | 7.882418e-01 | 0.103 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 7.884593e-01 | 0.103 |
R-HSA-182971 | EGFR downregulation | 7.907529e-01 | 0.102 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 7.907529e-01 | 0.102 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 7.948331e-01 | 0.100 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 7.948331e-01 | 0.100 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 7.994248e-01 | 0.097 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 7.994248e-01 | 0.097 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 7.994248e-01 | 0.097 |
R-HSA-2024096 | HS-GAG degradation | 7.994248e-01 | 0.097 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 7.994248e-01 | 0.097 |
R-HSA-74752 | Signaling by Insulin receptor | 8.044709e-01 | 0.094 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 8.064060e-01 | 0.093 |
R-HSA-5690714 | CD22 mediated BCR regulation | 8.074733e-01 | 0.093 |
R-HSA-936837 | Ion transport by P-type ATPases | 8.074733e-01 | 0.093 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 8.077379e-01 | 0.093 |
R-HSA-2022854 | Keratan sulfate biosynthesis | 8.077379e-01 | 0.093 |
R-HSA-9930044 | Nuclear RNA decay | 8.077379e-01 | 0.093 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 8.077379e-01 | 0.093 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 8.077379e-01 | 0.093 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 8.077379e-01 | 0.093 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 8.077379e-01 | 0.093 |
R-HSA-72306 | tRNA processing | 8.086501e-01 | 0.092 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 8.096928e-01 | 0.092 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 8.123041e-01 | 0.090 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 8.135298e-01 | 0.090 |
R-HSA-212436 | Generic Transcription Pathway | 8.136000e-01 | 0.090 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 8.157069e-01 | 0.088 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 8.157069e-01 | 0.088 |
R-HSA-1482788 | Acyl chain remodelling of PC | 8.157069e-01 | 0.088 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 8.157069e-01 | 0.088 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 8.163298e-01 | 0.088 |
R-HSA-389948 | Co-inhibition by PD-1 | 8.167406e-01 | 0.088 |
R-HSA-5673000 | RAF activation | 8.233460e-01 | 0.084 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 8.233460e-01 | 0.084 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 8.233460e-01 | 0.084 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 8.233460e-01 | 0.084 |
R-HSA-112040 | G-protein mediated events | 8.251343e-01 | 0.083 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 8.306689e-01 | 0.081 |
R-HSA-1482839 | Acyl chain remodelling of PE | 8.306689e-01 | 0.081 |
R-HSA-2408508 | Metabolism of ingested SeMet, Sec, MeSec into H2Se | 8.306689e-01 | 0.081 |
R-HSA-187687 | Signalling to ERKs | 8.306689e-01 | 0.081 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 8.306897e-01 | 0.081 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 8.306897e-01 | 0.081 |
R-HSA-9758941 | Gastrulation | 8.331255e-01 | 0.079 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 8.360856e-01 | 0.078 |
R-HSA-73857 | RNA Polymerase II Transcription | 8.375893e-01 | 0.077 |
R-HSA-9845576 | Glycosphingolipid transport | 8.376887e-01 | 0.077 |
R-HSA-163560 | Triglyceride catabolism | 8.376887e-01 | 0.077 |
R-HSA-204005 | COPII-mediated vesicle transport | 8.413256e-01 | 0.075 |
R-HSA-3214847 | HATs acetylate histones | 8.430350e-01 | 0.074 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 8.444179e-01 | 0.073 |
R-HSA-110331 | Cleavage of the damaged purine | 8.444179e-01 | 0.073 |
R-HSA-549127 | SLC-mediated transport of organic cations | 8.444179e-01 | 0.073 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 8.444179e-01 | 0.073 |
R-HSA-8948216 | Collagen chain trimerization | 8.444179e-01 | 0.073 |
R-HSA-196757 | Metabolism of folate and pterines | 8.444179e-01 | 0.073 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 8.464134e-01 | 0.072 |
R-HSA-8978934 | Metabolism of cofactors | 8.464134e-01 | 0.072 |
R-HSA-73927 | Depurination | 8.508685e-01 | 0.070 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 8.508685e-01 | 0.070 |
R-HSA-9842860 | Regulation of endogenous retroelements | 8.557025e-01 | 0.068 |
R-HSA-1483255 | PI Metabolism | 8.557025e-01 | 0.068 |
R-HSA-4086398 | Ca2+ pathway | 8.561465e-01 | 0.067 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 8.570521e-01 | 0.067 |
R-HSA-71336 | Pentose phosphate pathway | 8.570521e-01 | 0.067 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 8.570521e-01 | 0.067 |
R-HSA-1236394 | Signaling by ERBB4 | 8.607989e-01 | 0.065 |
R-HSA-1226099 | Signaling by FGFR in disease | 8.607989e-01 | 0.065 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 8.607989e-01 | 0.065 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 8.629796e-01 | 0.064 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 8.629796e-01 | 0.064 |
R-HSA-167169 | HIV Transcription Elongation | 8.629796e-01 | 0.064 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 8.629796e-01 | 0.064 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 8.629796e-01 | 0.064 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 8.629796e-01 | 0.064 |
R-HSA-5260271 | Diseases of Immune System | 8.629796e-01 | 0.064 |
R-HSA-975576 | N-glycan antennae elongation in the medial/trans-Golgi | 8.629796e-01 | 0.064 |
R-HSA-111885 | Opioid Signalling | 8.636431e-01 | 0.064 |
R-HSA-917937 | Iron uptake and transport | 8.653133e-01 | 0.063 |
R-HSA-5576891 | Cardiac conduction | 8.675558e-01 | 0.062 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 8.686617e-01 | 0.061 |
R-HSA-1980143 | Signaling by NOTCH1 | 8.696931e-01 | 0.061 |
R-HSA-9656223 | Signaling by RAF1 mutants | 8.741084e-01 | 0.058 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 8.741084e-01 | 0.058 |
R-HSA-1474244 | Extracellular matrix organization | 8.753545e-01 | 0.058 |
R-HSA-168256 | Immune System | 8.776175e-01 | 0.057 |
R-HSA-112316 | Neuronal System | 8.781507e-01 | 0.056 |
R-HSA-991365 | Activation of GABAB receptors | 8.793296e-01 | 0.056 |
R-HSA-977444 | GABA B receptor activation | 8.793296e-01 | 0.056 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 8.793296e-01 | 0.056 |
R-HSA-1280218 | Adaptive Immune System | 8.799303e-01 | 0.056 |
R-HSA-9710421 | Defective pyroptosis | 8.843346e-01 | 0.053 |
R-HSA-5654743 | Signaling by FGFR4 | 8.843346e-01 | 0.053 |
R-HSA-5654738 | Signaling by FGFR2 | 8.859332e-01 | 0.053 |
R-HSA-9824443 | Parasitic Infection Pathways | 8.885134e-01 | 0.051 |
R-HSA-9658195 | Leishmania infection | 8.885134e-01 | 0.051 |
R-HSA-69236 | G1 Phase | 8.891323e-01 | 0.051 |
R-HSA-69231 | Cyclin D associated events in G1 | 8.891323e-01 | 0.051 |
R-HSA-446203 | Asparagine N-linked glycosylation | 8.932722e-01 | 0.049 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 8.937312e-01 | 0.049 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 8.937312e-01 | 0.049 |
R-HSA-1489509 | DAG and IP3 signaling | 8.937312e-01 | 0.049 |
R-HSA-5654741 | Signaling by FGFR3 | 8.937312e-01 | 0.049 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 8.937312e-01 | 0.049 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 8.968609e-01 | 0.047 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 8.981396e-01 | 0.047 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 9.005848e-01 | 0.045 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 9.023655e-01 | 0.045 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.026035e-01 | 0.045 |
R-HSA-9634597 | GPER1 signaling | 9.064162e-01 | 0.043 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 9.092028e-01 | 0.041 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.099190e-01 | 0.041 |
R-HSA-1638074 | Keratan sulfate/keratin metabolism | 9.102992e-01 | 0.041 |
R-HSA-380108 | Chemokine receptors bind chemokines | 9.102992e-01 | 0.041 |
R-HSA-9864848 | Complex IV assembly | 9.175890e-01 | 0.037 |
R-HSA-2514856 | The phototransduction cascade | 9.175890e-01 | 0.037 |
R-HSA-72187 | mRNA 3'-end processing | 9.210090e-01 | 0.036 |
R-HSA-112310 | Neurotransmitter release cycle | 9.214165e-01 | 0.036 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.241137e-01 | 0.034 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 9.242873e-01 | 0.034 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 9.291176e-01 | 0.032 |
R-HSA-3781865 | Diseases of glycosylation | 9.300043e-01 | 0.032 |
R-HSA-418597 | G alpha (z) signalling events | 9.304418e-01 | 0.031 |
R-HSA-9753281 | Paracetamol ADME | 9.304418e-01 | 0.031 |
R-HSA-6809371 | Formation of the cornified envelope | 9.306969e-01 | 0.031 |
R-HSA-177929 | Signaling by EGFR | 9.333291e-01 | 0.030 |
R-HSA-5654736 | Signaling by FGFR1 | 9.333291e-01 | 0.030 |
R-HSA-9837999 | Mitochondrial protein degradation | 9.338496e-01 | 0.030 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 9.361020e-01 | 0.029 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 9.403904e-01 | 0.027 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.403904e-01 | 0.027 |
R-HSA-9033241 | Peroxisomal protein import | 9.412926e-01 | 0.026 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 9.412926e-01 | 0.026 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 9.412926e-01 | 0.026 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 9.437301e-01 | 0.025 |
R-HSA-977443 | GABA receptor activation | 9.437301e-01 | 0.025 |
R-HSA-156590 | Glutathione conjugation | 9.437301e-01 | 0.025 |
R-HSA-5368286 | Mitochondrial translation initiation | 9.444047e-01 | 0.025 |
R-HSA-190236 | Signaling by FGFR | 9.444047e-01 | 0.025 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 9.460665e-01 | 0.024 |
R-HSA-8956321 | Nucleotide salvage | 9.460665e-01 | 0.024 |
R-HSA-1442490 | Collagen degradation | 9.460665e-01 | 0.024 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 9.483060e-01 | 0.023 |
R-HSA-186797 | Signaling by PDGF | 9.483060e-01 | 0.023 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 9.504527e-01 | 0.022 |
R-HSA-211981 | Xenobiotics | 9.525104e-01 | 0.021 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 9.533450e-01 | 0.021 |
R-HSA-416476 | G alpha (q) signalling events | 9.553439e-01 | 0.020 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 9.563733e-01 | 0.019 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 9.563733e-01 | 0.019 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 9.565218e-01 | 0.019 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 9.565218e-01 | 0.019 |
R-HSA-196807 | Nicotinate metabolism | 9.581854e-01 | 0.019 |
R-HSA-196071 | Metabolism of steroid hormones | 9.581854e-01 | 0.019 |
R-HSA-167172 | Transcription of the HIV genome | 9.599224e-01 | 0.018 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.614175e-01 | 0.017 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.614175e-01 | 0.017 |
R-HSA-9664417 | Leishmania phagocytosis | 9.615609e-01 | 0.017 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 9.615609e-01 | 0.017 |
R-HSA-9664407 | Parasite infection | 9.615609e-01 | 0.017 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 9.631831e-01 | 0.016 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 9.631831e-01 | 0.016 |
R-HSA-9840310 | Glycosphingolipid catabolism | 9.631831e-01 | 0.016 |
R-HSA-5419276 | Mitochondrial translation termination | 9.635832e-01 | 0.016 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 9.661790e-01 | 0.015 |
R-HSA-9749641 | Aspirin ADME | 9.675843e-01 | 0.014 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 9.675843e-01 | 0.014 |
R-HSA-6783783 | Interleukin-10 signaling | 9.737832e-01 | 0.012 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 9.737832e-01 | 0.012 |
R-HSA-2980736 | Peptide hormone metabolism | 9.745463e-01 | 0.011 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 9.746485e-01 | 0.011 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 9.748729e-01 | 0.011 |
R-HSA-9018677 | Biosynthesis of DHA-derived SPMs | 9.769186e-01 | 0.010 |
R-HSA-877300 | Interferon gamma signaling | 9.798162e-01 | 0.009 |
R-HSA-3247509 | Chromatin modifying enzymes | 9.824851e-01 | 0.008 |
R-HSA-15869 | Metabolism of nucleotides | 9.834608e-01 | 0.007 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.839293e-01 | 0.007 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 9.849065e-01 | 0.007 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.852055e-01 | 0.006 |
R-HSA-418555 | G alpha (s) signalling events | 9.868673e-01 | 0.006 |
R-HSA-4839726 | Chromatin organization | 9.886593e-01 | 0.005 |
R-HSA-1296071 | Potassium Channels | 9.892569e-01 | 0.005 |
R-HSA-5368287 | Mitochondrial translation | 9.894089e-01 | 0.005 |
R-HSA-611105 | Respiratory electron transport | 9.896137e-01 | 0.005 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.905433e-01 | 0.004 |
R-HSA-1483257 | Phospholipid metabolism | 9.916574e-01 | 0.004 |
R-HSA-375276 | Peptide ligand-binding receptors | 9.920766e-01 | 0.003 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.932331e-01 | 0.003 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.943237e-01 | 0.002 |
R-HSA-428157 | Sphingolipid metabolism | 9.952621e-01 | 0.002 |
R-HSA-166663 | Initial triggering of complement | 9.954117e-01 | 0.002 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.955789e-01 | 0.002 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 9.957861e-01 | 0.002 |
R-HSA-6805567 | Keratinization | 9.961518e-01 | 0.002 |
R-HSA-8957322 | Metabolism of steroids | 9.963951e-01 | 0.002 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.966966e-01 | 0.001 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 9.970026e-01 | 0.001 |
R-HSA-1660662 | Glycosphingolipid metabolism | 9.970026e-01 | 0.001 |
R-HSA-977606 | Regulation of Complement cascade | 9.972474e-01 | 0.001 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.974722e-01 | 0.001 |
R-HSA-382551 | Transport of small molecules | 9.977775e-01 | 0.001 |
R-HSA-9717189 | Sensory perception of taste | 9.980424e-01 | 0.001 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 9.980424e-01 | 0.001 |
R-HSA-1474228 | Degradation of the extracellular matrix | 9.981241e-01 | 0.001 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.983447e-01 | 0.001 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.985333e-01 | 0.001 |
R-HSA-5173105 | O-linked glycosylation | 9.985474e-01 | 0.001 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.987716e-01 | 0.001 |
R-HSA-9018678 | Biosynthesis of specialized proresolving mediators (SPMs) | 9.989223e-01 | 0.000 |
R-HSA-166658 | Complement cascade | 9.990105e-01 | 0.000 |
R-HSA-2187338 | Visual phototransduction | 9.990914e-01 | 0.000 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 9.994070e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.995162e-01 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.995924e-01 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 9.996131e-01 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.996973e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.999143e-01 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 9.999317e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.999422e-01 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 9.999579e-01 | 0.000 |
R-HSA-9748784 | Drug ADME | 9.999599e-01 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 9.999837e-01 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 9.999975e-01 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000e+00 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000e+00 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | 0.000 |
R-HSA-381753 | Olfactory Signaling Pathway | 1.000000e+00 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.920 | 0.191 | 2 | 0.923 |
CDC7 |
0.909 | 0.055 | 1 | 0.881 |
PRPK |
0.907 | -0.070 | -1 | 0.878 |
MTOR |
0.906 | 0.073 | 1 | 0.849 |
ULK2 |
0.906 | 0.001 | 2 | 0.862 |
CLK3 |
0.906 | 0.232 | 1 | 0.871 |
GCN2 |
0.906 | -0.068 | 2 | 0.876 |
PIM3 |
0.905 | 0.112 | -3 | 0.864 |
NDR2 |
0.905 | 0.123 | -3 | 0.861 |
DSTYK |
0.905 | 0.049 | 2 | 0.935 |
RAF1 |
0.904 | -0.024 | 1 | 0.904 |
CAMK1B |
0.904 | 0.082 | -3 | 0.907 |
NLK |
0.904 | 0.085 | 1 | 0.872 |
MST4 |
0.904 | 0.214 | 2 | 0.910 |
CDKL1 |
0.904 | 0.138 | -3 | 0.849 |
MARK4 |
0.903 | 0.213 | 4 | 0.909 |
MOS |
0.902 | 0.020 | 1 | 0.902 |
PKN3 |
0.902 | 0.120 | -3 | 0.871 |
TBK1 |
0.902 | -0.039 | 1 | 0.820 |
PRKD1 |
0.901 | 0.138 | -3 | 0.862 |
WNK1 |
0.901 | 0.121 | -2 | 0.900 |
NDR1 |
0.901 | 0.115 | -3 | 0.863 |
PKCD |
0.901 | 0.221 | 2 | 0.872 |
BMPR2 |
0.901 | -0.084 | -2 | 0.924 |
RSK2 |
0.900 | 0.152 | -3 | 0.806 |
PDHK4 |
0.900 | -0.242 | 1 | 0.911 |
NUAK2 |
0.900 | 0.130 | -3 | 0.871 |
TGFBR2 |
0.900 | 0.065 | -2 | 0.845 |
NEK6 |
0.899 | 0.036 | -2 | 0.902 |
AMPKA1 |
0.899 | 0.169 | -3 | 0.885 |
NIK |
0.899 | 0.096 | -3 | 0.924 |
PKN2 |
0.899 | 0.138 | -3 | 0.880 |
ATR |
0.898 | 0.014 | 1 | 0.881 |
CAMK2G |
0.898 | -0.040 | 2 | 0.867 |
PDHK1 |
0.898 | -0.142 | 1 | 0.905 |
CDKL5 |
0.898 | 0.134 | -3 | 0.839 |
NEK7 |
0.898 | -0.056 | -3 | 0.882 |
IKKE |
0.897 | -0.086 | 1 | 0.814 |
IKKB |
0.897 | -0.153 | -2 | 0.770 |
NIM1 |
0.897 | 0.175 | 3 | 0.834 |
RSK3 |
0.897 | 0.120 | -3 | 0.806 |
PRKD2 |
0.897 | 0.141 | -3 | 0.797 |
ERK5 |
0.897 | 0.056 | 1 | 0.843 |
P90RSK |
0.896 | 0.105 | -3 | 0.810 |
PIM1 |
0.895 | 0.153 | -3 | 0.812 |
CAMLCK |
0.895 | 0.060 | -2 | 0.888 |
HUNK |
0.895 | -0.032 | 2 | 0.864 |
LATS2 |
0.895 | 0.084 | -5 | 0.814 |
SRPK1 |
0.894 | 0.156 | -3 | 0.791 |
BCKDK |
0.894 | -0.060 | -1 | 0.855 |
MLK1 |
0.894 | -0.050 | 2 | 0.886 |
SKMLCK |
0.894 | 0.071 | -2 | 0.887 |
TSSK1 |
0.894 | 0.161 | -3 | 0.903 |
ULK1 |
0.894 | -0.112 | -3 | 0.867 |
AMPKA2 |
0.894 | 0.149 | -3 | 0.850 |
RIPK3 |
0.893 | -0.067 | 3 | 0.788 |
CAMK2D |
0.893 | 0.055 | -3 | 0.887 |
DAPK2 |
0.893 | 0.052 | -3 | 0.912 |
PKACG |
0.893 | 0.115 | -2 | 0.778 |
P70S6KB |
0.893 | 0.094 | -3 | 0.836 |
WNK3 |
0.893 | -0.125 | 1 | 0.881 |
HIPK4 |
0.893 | 0.090 | 1 | 0.819 |
ICK |
0.892 | 0.095 | -3 | 0.878 |
NEK9 |
0.892 | -0.028 | 2 | 0.910 |
CHAK2 |
0.892 | -0.005 | -1 | 0.867 |
TSSK2 |
0.891 | 0.093 | -5 | 0.859 |
QSK |
0.891 | 0.199 | 4 | 0.891 |
MAPKAPK3 |
0.890 | 0.039 | -3 | 0.810 |
SRPK2 |
0.890 | 0.159 | -3 | 0.715 |
QIK |
0.889 | 0.111 | -3 | 0.878 |
PKCA |
0.889 | 0.188 | 2 | 0.817 |
SIK |
0.889 | 0.171 | -3 | 0.799 |
GRK5 |
0.889 | -0.183 | -3 | 0.904 |
IRE1 |
0.888 | 0.013 | 1 | 0.840 |
AURC |
0.888 | 0.122 | -2 | 0.696 |
PKCB |
0.888 | 0.158 | 2 | 0.824 |
NUAK1 |
0.888 | 0.080 | -3 | 0.823 |
ANKRD3 |
0.887 | -0.072 | 1 | 0.919 |
MNK2 |
0.886 | 0.098 | -2 | 0.833 |
MELK |
0.886 | 0.068 | -3 | 0.842 |
PKCG |
0.886 | 0.130 | 2 | 0.822 |
IKKA |
0.886 | -0.061 | -2 | 0.757 |
PKR |
0.886 | 0.110 | 1 | 0.889 |
RIPK1 |
0.885 | -0.140 | 1 | 0.875 |
PRKD3 |
0.885 | 0.089 | -3 | 0.785 |
GRK6 |
0.885 | -0.062 | 1 | 0.885 |
MLK2 |
0.885 | -0.088 | 2 | 0.891 |
CDK8 |
0.885 | 0.036 | 1 | 0.697 |
MASTL |
0.885 | -0.262 | -2 | 0.842 |
IRE2 |
0.885 | 0.043 | 2 | 0.835 |
MARK3 |
0.885 | 0.180 | 4 | 0.859 |
MARK2 |
0.885 | 0.173 | 4 | 0.825 |
SRPK3 |
0.885 | 0.129 | -3 | 0.771 |
NEK2 |
0.884 | 0.030 | 2 | 0.886 |
PAK3 |
0.884 | 0.005 | -2 | 0.815 |
CAMK4 |
0.884 | -0.037 | -3 | 0.857 |
KIS |
0.884 | 0.036 | 1 | 0.725 |
SGK3 |
0.883 | 0.175 | -3 | 0.798 |
MSK2 |
0.883 | 0.036 | -3 | 0.783 |
ATM |
0.883 | 0.004 | 1 | 0.823 |
PAK1 |
0.883 | 0.034 | -2 | 0.812 |
MAPKAPK2 |
0.883 | 0.059 | -3 | 0.756 |
PHKG1 |
0.883 | 0.037 | -3 | 0.859 |
DLK |
0.883 | -0.194 | 1 | 0.896 |
RSK4 |
0.883 | 0.137 | -3 | 0.764 |
ALK4 |
0.883 | 0.033 | -2 | 0.875 |
PKCH |
0.883 | 0.103 | 2 | 0.812 |
LATS1 |
0.883 | 0.097 | -3 | 0.871 |
TGFBR1 |
0.882 | 0.086 | -2 | 0.848 |
BMPR1B |
0.882 | 0.138 | 1 | 0.826 |
GRK1 |
0.882 | -0.011 | -2 | 0.782 |
CAMK2B |
0.882 | 0.065 | 2 | 0.821 |
PLK1 |
0.882 | -0.025 | -2 | 0.857 |
CLK1 |
0.882 | 0.159 | -3 | 0.780 |
MLK3 |
0.882 | -0.007 | 2 | 0.826 |
CLK4 |
0.881 | 0.125 | -3 | 0.802 |
PKCZ |
0.881 | 0.077 | 2 | 0.860 |
PKACB |
0.881 | 0.148 | -2 | 0.715 |
AURB |
0.881 | 0.088 | -2 | 0.692 |
TTBK2 |
0.881 | -0.192 | 2 | 0.774 |
PAK6 |
0.880 | 0.084 | -2 | 0.740 |
BRSK1 |
0.880 | 0.057 | -3 | 0.829 |
PKG2 |
0.880 | 0.108 | -2 | 0.718 |
BRSK2 |
0.880 | 0.030 | -3 | 0.855 |
CDK5 |
0.879 | 0.117 | 1 | 0.713 |
MNK1 |
0.879 | 0.085 | -2 | 0.844 |
CDK19 |
0.879 | 0.039 | 1 | 0.654 |
GRK4 |
0.879 | -0.181 | -2 | 0.839 |
MARK1 |
0.879 | 0.124 | 4 | 0.877 |
FAM20C |
0.878 | 0.022 | 2 | 0.590 |
DYRK2 |
0.878 | 0.072 | 1 | 0.718 |
CAMK2A |
0.878 | 0.054 | 2 | 0.846 |
DNAPK |
0.878 | 0.097 | 1 | 0.771 |
YSK4 |
0.878 | -0.076 | 1 | 0.844 |
AKT2 |
0.878 | 0.125 | -3 | 0.723 |
MSK1 |
0.878 | 0.074 | -3 | 0.788 |
VRK2 |
0.878 | -0.134 | 1 | 0.922 |
MEK1 |
0.877 | -0.148 | 2 | 0.888 |
CDK7 |
0.877 | 0.008 | 1 | 0.697 |
MYLK4 |
0.877 | 0.038 | -2 | 0.805 |
CHAK1 |
0.877 | -0.079 | 2 | 0.846 |
MLK4 |
0.877 | -0.037 | 2 | 0.803 |
PIM2 |
0.877 | 0.120 | -3 | 0.784 |
DCAMKL1 |
0.875 | 0.097 | -3 | 0.811 |
ACVR2A |
0.875 | 0.029 | -2 | 0.839 |
PKCT |
0.875 | 0.125 | 2 | 0.823 |
PAK2 |
0.875 | -0.030 | -2 | 0.796 |
CDK13 |
0.875 | 0.027 | 1 | 0.669 |
CDK18 |
0.874 | 0.091 | 1 | 0.617 |
CHK1 |
0.874 | 0.004 | -3 | 0.848 |
PLK4 |
0.874 | -0.002 | 2 | 0.696 |
JNK2 |
0.874 | 0.090 | 1 | 0.643 |
ALK2 |
0.874 | 0.045 | -2 | 0.854 |
WNK4 |
0.874 | 0.011 | -2 | 0.894 |
MEKK1 |
0.874 | -0.005 | 1 | 0.883 |
ACVR2B |
0.874 | 0.024 | -2 | 0.847 |
HRI |
0.873 | -0.089 | -2 | 0.894 |
CAMK1G |
0.873 | 0.036 | -3 | 0.808 |
CLK2 |
0.873 | 0.202 | -3 | 0.781 |
BRAF |
0.873 | -0.006 | -4 | 0.849 |
PRKX |
0.873 | 0.164 | -3 | 0.690 |
IRAK4 |
0.873 | 0.013 | 1 | 0.859 |
PERK |
0.873 | -0.074 | -2 | 0.872 |
P38A |
0.873 | 0.057 | 1 | 0.732 |
JNK3 |
0.873 | 0.057 | 1 | 0.680 |
PLK3 |
0.872 | -0.062 | 2 | 0.816 |
MST3 |
0.872 | 0.136 | 2 | 0.902 |
SMG1 |
0.872 | -0.081 | 1 | 0.829 |
TLK2 |
0.872 | -0.066 | 1 | 0.860 |
GRK7 |
0.872 | 0.045 | 1 | 0.810 |
PHKG2 |
0.872 | 0.059 | -3 | 0.839 |
HIPK1 |
0.872 | 0.116 | 1 | 0.736 |
AKT1 |
0.872 | 0.145 | -3 | 0.737 |
CDK1 |
0.871 | 0.056 | 1 | 0.646 |
ZAK |
0.871 | -0.042 | 1 | 0.859 |
SNRK |
0.871 | -0.157 | 2 | 0.754 |
AURA |
0.870 | 0.039 | -2 | 0.659 |
NEK5 |
0.870 | 0.001 | 1 | 0.891 |
SSTK |
0.870 | 0.084 | 4 | 0.879 |
MEKK2 |
0.869 | -0.017 | 2 | 0.879 |
CDK9 |
0.869 | 0.011 | 1 | 0.678 |
DRAK1 |
0.869 | -0.068 | 1 | 0.815 |
SMMLCK |
0.868 | 0.039 | -3 | 0.867 |
MEK5 |
0.868 | -0.200 | 2 | 0.890 |
TAO3 |
0.868 | 0.084 | 1 | 0.862 |
PKACA |
0.868 | 0.118 | -2 | 0.667 |
CDK12 |
0.868 | 0.030 | 1 | 0.644 |
PKCI |
0.868 | 0.091 | 2 | 0.827 |
CDK2 |
0.868 | 0.005 | 1 | 0.733 |
HIPK3 |
0.867 | 0.073 | 1 | 0.748 |
ERK1 |
0.867 | 0.034 | 1 | 0.648 |
DCAMKL2 |
0.867 | 0.027 | -3 | 0.838 |
MEKK3 |
0.867 | -0.148 | 1 | 0.870 |
DYRK1A |
0.867 | 0.054 | 1 | 0.772 |
HIPK2 |
0.867 | 0.097 | 1 | 0.622 |
P38B |
0.867 | 0.056 | 1 | 0.658 |
CDK17 |
0.867 | 0.052 | 1 | 0.562 |
MAPKAPK5 |
0.867 | -0.113 | -3 | 0.775 |
P70S6K |
0.867 | 0.042 | -3 | 0.753 |
P38G |
0.866 | 0.058 | 1 | 0.557 |
ERK2 |
0.866 | -0.009 | 1 | 0.698 |
PRP4 |
0.866 | 0.034 | -3 | 0.808 |
MPSK1 |
0.865 | 0.099 | 1 | 0.813 |
BMPR1A |
0.865 | 0.091 | 1 | 0.809 |
CDK14 |
0.865 | 0.082 | 1 | 0.666 |
PINK1 |
0.864 | -0.176 | 1 | 0.856 |
PKCE |
0.864 | 0.138 | 2 | 0.809 |
TLK1 |
0.863 | -0.120 | -2 | 0.864 |
TAO2 |
0.863 | 0.044 | 2 | 0.921 |
CAMK1D |
0.862 | 0.055 | -3 | 0.715 |
CDK16 |
0.862 | 0.103 | 1 | 0.579 |
CDK10 |
0.862 | 0.116 | 1 | 0.649 |
DYRK1B |
0.861 | 0.060 | 1 | 0.671 |
DYRK3 |
0.861 | 0.082 | 1 | 0.740 |
PKN1 |
0.860 | 0.080 | -3 | 0.769 |
NEK8 |
0.860 | -0.107 | 2 | 0.895 |
NEK11 |
0.860 | -0.092 | 1 | 0.869 |
TNIK |
0.860 | 0.157 | 3 | 0.905 |
CDK3 |
0.860 | 0.079 | 1 | 0.579 |
GRK2 |
0.860 | -0.135 | -2 | 0.724 |
CAMKK1 |
0.860 | -0.122 | -2 | 0.796 |
HGK |
0.860 | 0.106 | 3 | 0.906 |
MEKK6 |
0.860 | 0.064 | 1 | 0.864 |
IRAK1 |
0.859 | -0.225 | -1 | 0.780 |
GAK |
0.859 | 0.021 | 1 | 0.864 |
EEF2K |
0.859 | 0.088 | 3 | 0.886 |
PAK5 |
0.859 | 0.017 | -2 | 0.670 |
NEK4 |
0.859 | -0.008 | 1 | 0.860 |
MINK |
0.858 | 0.099 | 1 | 0.866 |
PDK1 |
0.858 | -0.006 | 1 | 0.873 |
GCK |
0.858 | 0.083 | 1 | 0.865 |
DYRK4 |
0.857 | 0.057 | 1 | 0.639 |
AKT3 |
0.857 | 0.131 | -3 | 0.654 |
DAPK3 |
0.857 | 0.065 | -3 | 0.832 |
CK1E |
0.857 | -0.054 | -3 | 0.566 |
LKB1 |
0.857 | -0.053 | -3 | 0.883 |
MAP3K15 |
0.857 | 0.048 | 1 | 0.843 |
SGK1 |
0.857 | 0.140 | -3 | 0.639 |
PASK |
0.856 | -0.048 | -3 | 0.880 |
MST2 |
0.855 | -0.012 | 1 | 0.876 |
MRCKB |
0.855 | 0.121 | -3 | 0.776 |
ERK7 |
0.855 | 0.062 | 2 | 0.607 |
CAMKK2 |
0.855 | -0.115 | -2 | 0.791 |
P38D |
0.855 | 0.050 | 1 | 0.578 |
NEK1 |
0.855 | 0.051 | 1 | 0.866 |
TTBK1 |
0.855 | -0.215 | 2 | 0.691 |
ROCK2 |
0.854 | 0.151 | -3 | 0.816 |
HPK1 |
0.854 | 0.080 | 1 | 0.851 |
TAK1 |
0.854 | -0.040 | 1 | 0.895 |
PAK4 |
0.854 | 0.011 | -2 | 0.676 |
CHK2 |
0.853 | 0.049 | -3 | 0.669 |
KHS1 |
0.853 | 0.149 | 1 | 0.851 |
MRCKA |
0.853 | 0.108 | -3 | 0.788 |
GSK3B |
0.853 | -0.048 | 4 | 0.435 |
LOK |
0.853 | 0.016 | -2 | 0.806 |
LRRK2 |
0.853 | -0.055 | 2 | 0.915 |
CAMK1A |
0.852 | 0.068 | -3 | 0.687 |
YSK1 |
0.852 | 0.094 | 2 | 0.887 |
KHS2 |
0.851 | 0.167 | 1 | 0.859 |
GSK3A |
0.850 | -0.006 | 4 | 0.444 |
CDK6 |
0.850 | 0.060 | 1 | 0.646 |
VRK1 |
0.849 | -0.099 | 2 | 0.901 |
CK1G1 |
0.849 | -0.078 | -3 | 0.560 |
MAK |
0.849 | 0.141 | -2 | 0.753 |
MST1 |
0.849 | -0.009 | 1 | 0.860 |
CDK4 |
0.848 | 0.049 | 1 | 0.626 |
DAPK1 |
0.848 | 0.023 | -3 | 0.819 |
MOK |
0.848 | 0.130 | 1 | 0.745 |
NEK3 |
0.847 | -0.009 | 1 | 0.840 |
CK2A2 |
0.846 | 0.057 | 1 | 0.717 |
CK1D |
0.846 | -0.073 | -3 | 0.516 |
DMPK1 |
0.846 | 0.149 | -3 | 0.791 |
BUB1 |
0.845 | 0.076 | -5 | 0.817 |
PBK |
0.844 | 0.009 | 1 | 0.785 |
CK1A2 |
0.843 | -0.072 | -3 | 0.515 |
MEK2 |
0.843 | -0.213 | 2 | 0.870 |
PKG1 |
0.843 | 0.048 | -2 | 0.641 |
SLK |
0.843 | -0.073 | -2 | 0.735 |
ROCK1 |
0.842 | 0.124 | -3 | 0.789 |
RIPK2 |
0.842 | -0.270 | 1 | 0.825 |
JNK1 |
0.842 | -0.009 | 1 | 0.622 |
GRK3 |
0.842 | -0.138 | -2 | 0.672 |
PLK2 |
0.842 | -0.058 | -3 | 0.822 |
SBK |
0.841 | 0.054 | -3 | 0.599 |
STK33 |
0.841 | -0.182 | 2 | 0.678 |
TTK |
0.839 | 0.039 | -2 | 0.863 |
CRIK |
0.838 | 0.111 | -3 | 0.731 |
PDHK3_TYR |
0.837 | 0.169 | 4 | 0.918 |
MYO3B |
0.837 | 0.068 | 2 | 0.895 |
HASPIN |
0.835 | 0.010 | -1 | 0.710 |
OSR1 |
0.834 | -0.059 | 2 | 0.863 |
CK2A1 |
0.834 | 0.017 | 1 | 0.694 |
TAO1 |
0.833 | 0.001 | 1 | 0.805 |
ASK1 |
0.832 | -0.071 | 1 | 0.830 |
MYO3A |
0.832 | 0.022 | 1 | 0.847 |
BIKE |
0.831 | 0.017 | 1 | 0.725 |
TESK1_TYR |
0.830 | -0.015 | 3 | 0.929 |
PKMYT1_TYR |
0.829 | 0.076 | 3 | 0.892 |
MAP2K4_TYR |
0.827 | -0.053 | -1 | 0.897 |
MAP2K7_TYR |
0.827 | -0.124 | 2 | 0.919 |
LIMK2_TYR |
0.826 | 0.067 | -3 | 0.932 |
PDHK4_TYR |
0.825 | -0.018 | 2 | 0.928 |
MAP2K6_TYR |
0.824 | -0.074 | -1 | 0.893 |
PINK1_TYR |
0.824 | -0.129 | 1 | 0.888 |
BMPR2_TYR |
0.823 | -0.048 | -1 | 0.878 |
EPHA6 |
0.821 | 0.019 | -1 | 0.852 |
PDHK1_TYR |
0.821 | -0.134 | -1 | 0.890 |
ALPHAK3 |
0.820 | -0.133 | -1 | 0.785 |
LIMK1_TYR |
0.820 | -0.099 | 2 | 0.920 |
RET |
0.820 | -0.100 | 1 | 0.870 |
TYK2 |
0.819 | -0.087 | 1 | 0.871 |
ROS1 |
0.817 | -0.061 | 3 | 0.819 |
TYRO3 |
0.817 | -0.110 | 3 | 0.844 |
STLK3 |
0.816 | -0.212 | 1 | 0.826 |
MST1R |
0.816 | -0.142 | 3 | 0.846 |
EPHB4 |
0.816 | -0.050 | -1 | 0.838 |
TNNI3K_TYR |
0.815 | 0.119 | 1 | 0.887 |
JAK2 |
0.815 | -0.125 | 1 | 0.872 |
YANK3 |
0.814 | -0.124 | 2 | 0.435 |
AAK1 |
0.814 | 0.066 | 1 | 0.610 |
DDR1 |
0.813 | -0.157 | 4 | 0.845 |
CSF1R |
0.813 | -0.112 | 3 | 0.823 |
ABL2 |
0.812 | -0.041 | -1 | 0.814 |
JAK3 |
0.811 | -0.115 | 1 | 0.855 |
TXK |
0.811 | 0.034 | 1 | 0.868 |
JAK1 |
0.808 | 0.005 | 1 | 0.825 |
NEK10_TYR |
0.808 | -0.063 | 1 | 0.750 |
TNK2 |
0.808 | -0.069 | 3 | 0.784 |
ABL1 |
0.808 | -0.063 | -1 | 0.809 |
TNK1 |
0.808 | -0.045 | 3 | 0.820 |
INSRR |
0.808 | -0.132 | 3 | 0.797 |
PDGFRB |
0.807 | -0.144 | 3 | 0.843 |
YES1 |
0.807 | -0.115 | -1 | 0.834 |
ITK |
0.807 | -0.065 | -1 | 0.799 |
FER |
0.806 | -0.207 | 1 | 0.908 |
FGR |
0.806 | -0.172 | 1 | 0.891 |
EPHB1 |
0.805 | -0.132 | 1 | 0.901 |
HCK |
0.804 | -0.142 | -1 | 0.812 |
FLT3 |
0.804 | -0.156 | 3 | 0.834 |
LCK |
0.804 | -0.054 | -1 | 0.811 |
EPHA4 |
0.804 | -0.107 | 2 | 0.805 |
EPHB3 |
0.803 | -0.121 | -1 | 0.822 |
FGFR2 |
0.803 | -0.206 | 3 | 0.833 |
SRMS |
0.803 | -0.156 | 1 | 0.894 |
KDR |
0.802 | -0.138 | 3 | 0.789 |
AXL |
0.802 | -0.156 | 3 | 0.812 |
EPHB2 |
0.802 | -0.104 | -1 | 0.814 |
BLK |
0.802 | -0.014 | -1 | 0.814 |
KIT |
0.801 | -0.201 | 3 | 0.822 |
TEC |
0.801 | -0.090 | -1 | 0.739 |
CK1A |
0.801 | -0.131 | -3 | 0.419 |
FGFR1 |
0.801 | -0.197 | 3 | 0.807 |
TEK |
0.800 | -0.210 | 3 | 0.774 |
WEE1_TYR |
0.800 | -0.107 | -1 | 0.775 |
MERTK |
0.800 | -0.142 | 3 | 0.809 |
PDGFRA |
0.799 | -0.237 | 3 | 0.837 |
BMX |
0.799 | -0.087 | -1 | 0.715 |
BTK |
0.798 | -0.233 | -1 | 0.767 |
ALK |
0.798 | -0.181 | 3 | 0.759 |
LTK |
0.796 | -0.177 | 3 | 0.774 |
MET |
0.795 | -0.198 | 3 | 0.815 |
PTK6 |
0.794 | -0.263 | -1 | 0.744 |
DDR2 |
0.794 | -0.038 | 3 | 0.774 |
EPHA7 |
0.794 | -0.134 | 2 | 0.817 |
EPHA1 |
0.794 | -0.156 | 3 | 0.791 |
NTRK1 |
0.793 | -0.282 | -1 | 0.826 |
NTRK2 |
0.792 | -0.253 | 3 | 0.793 |
INSR |
0.792 | -0.206 | 3 | 0.772 |
FLT1 |
0.792 | -0.202 | -1 | 0.826 |
EPHA3 |
0.791 | -0.215 | 2 | 0.791 |
FRK |
0.790 | -0.181 | -1 | 0.817 |
FLT4 |
0.790 | -0.253 | 3 | 0.784 |
FYN |
0.789 | -0.113 | -1 | 0.782 |
ERBB2 |
0.789 | -0.273 | 1 | 0.818 |
FGFR3 |
0.789 | -0.254 | 3 | 0.805 |
PTK2B |
0.788 | -0.126 | -1 | 0.779 |
LYN |
0.787 | -0.189 | 3 | 0.746 |
NTRK3 |
0.786 | -0.225 | -1 | 0.777 |
EPHA5 |
0.785 | -0.163 | 2 | 0.794 |
MATK |
0.784 | -0.204 | -1 | 0.748 |
CK1G3 |
0.783 | -0.132 | -3 | 0.370 |
EPHA8 |
0.781 | -0.191 | -1 | 0.798 |
EGFR |
0.780 | -0.176 | 1 | 0.728 |
SRC |
0.779 | -0.195 | -1 | 0.788 |
YANK2 |
0.779 | -0.167 | 2 | 0.450 |
CSK |
0.779 | -0.260 | 2 | 0.822 |
MUSK |
0.776 | -0.205 | 1 | 0.712 |
FGFR4 |
0.775 | -0.221 | -1 | 0.773 |
PTK2 |
0.774 | -0.101 | -1 | 0.767 |
IGF1R |
0.772 | -0.239 | 3 | 0.709 |
EPHA2 |
0.771 | -0.193 | -1 | 0.764 |
SYK |
0.770 | -0.145 | -1 | 0.751 |
ERBB4 |
0.763 | -0.189 | 1 | 0.734 |
FES |
0.759 | -0.241 | -1 | 0.703 |
CK1G2 |
0.755 | -0.174 | -3 | 0.472 |
ZAP70 |
0.748 | -0.164 | -1 | 0.694 |